1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore NoAlias and NonNull because they don't affect the
59   // call sequence.
60   AttributeList CallerAttrs = F.getAttributes();
61   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
62           .removeAttribute(Attribute::NoAlias)
63           .removeAttribute(Attribute::NonNull)
64           .hasAttributes())
65     return false;
66 
67   // It's not safe to eliminate the sign / zero extension of the return value.
68   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
69       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
70     return false;
71 
72   // Check if the only use is a function return node.
73   return isUsedByReturnOnly(Node, Chain);
74 }
75 
76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
77     const uint32_t *CallerPreservedMask,
78     const SmallVectorImpl<CCValAssign> &ArgLocs,
79     const SmallVectorImpl<SDValue> &OutVals) const {
80   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
81     const CCValAssign &ArgLoc = ArgLocs[I];
82     if (!ArgLoc.isRegLoc())
83       continue;
84     unsigned Reg = ArgLoc.getLocReg();
85     // Only look at callee saved registers.
86     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
87       continue;
88     // Check that we pass the value used for the caller.
89     // (We look for a CopyFromReg reading a virtual register that is used
90     //  for the function live-in value of register Reg)
91     SDValue Value = OutVals[I];
92     if (Value->getOpcode() != ISD::CopyFromReg)
93       return false;
94     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
95     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
96       return false;
97   }
98   return true;
99 }
100 
101 /// Set CallLoweringInfo attribute flags based on a call instruction
102 /// and called function attributes.
103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
104                                                      unsigned ArgIdx) {
105   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
106   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
107   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
108   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
109   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
110   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
111   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
112   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
113   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
114   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
115   Alignment  = CS->getParamAlignment(ArgIdx);
116 }
117 
118 /// Generate a libcall taking the given operands as arguments and returning a
119 /// result of type RetVT.
120 std::pair<SDValue, SDValue>
121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
122                             ArrayRef<SDValue> Ops, bool isSigned,
123                             const SDLoc &dl, bool doesNotReturn,
124                             bool isReturnValueUsed) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setSExtResult(signExtend)
151       .setZExtResult(!signExtend);
152   return LowerCallTo(CLI);
153 }
154 
155 /// Soften the operands of a comparison. This code is shared among BR_CC,
156 /// SELECT_CC, and SETCC handlers.
157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
158                                          SDValue &NewLHS, SDValue &NewRHS,
159                                          ISD::CondCode &CCCode,
160                                          const SDLoc &dl) const {
161   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
162          && "Unsupported setcc type!");
163 
164   // Expand into one or more soft-fp libcall(s).
165   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
166   bool ShouldInvertCC = false;
167   switch (CCCode) {
168   case ISD::SETEQ:
169   case ISD::SETOEQ:
170     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
171           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
172           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
173     break;
174   case ISD::SETNE:
175   case ISD::SETUNE:
176     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
177           (VT == MVT::f64) ? RTLIB::UNE_F64 :
178           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
179     break;
180   case ISD::SETGE:
181   case ISD::SETOGE:
182     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183           (VT == MVT::f64) ? RTLIB::OGE_F64 :
184           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
185     break;
186   case ISD::SETLT:
187   case ISD::SETOLT:
188     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
189           (VT == MVT::f64) ? RTLIB::OLT_F64 :
190           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
191     break;
192   case ISD::SETLE:
193   case ISD::SETOLE:
194     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
195           (VT == MVT::f64) ? RTLIB::OLE_F64 :
196           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
197     break;
198   case ISD::SETGT:
199   case ISD::SETOGT:
200     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
201           (VT == MVT::f64) ? RTLIB::OGT_F64 :
202           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
203     break;
204   case ISD::SETUO:
205     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
206           (VT == MVT::f64) ? RTLIB::UO_F64 :
207           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
208     break;
209   case ISD::SETO:
210     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
211           (VT == MVT::f64) ? RTLIB::O_F64 :
212           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
213     break;
214   case ISD::SETONE:
215     // SETONE = SETOLT | SETOGT
216     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
217           (VT == MVT::f64) ? RTLIB::OLT_F64 :
218           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
220           (VT == MVT::f64) ? RTLIB::OGT_F64 :
221           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
222     break;
223   case ISD::SETUEQ:
224     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
225           (VT == MVT::f64) ? RTLIB::UO_F64 :
226           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
227     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
228           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
229           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
230     break;
231   default:
232     // Invert CC for unordered comparisons
233     ShouldInvertCC = true;
234     switch (CCCode) {
235     case ISD::SETULT:
236       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
237             (VT == MVT::f64) ? RTLIB::OGE_F64 :
238             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
239       break;
240     case ISD::SETULE:
241       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
242             (VT == MVT::f64) ? RTLIB::OGT_F64 :
243             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
244       break;
245     case ISD::SETUGT:
246       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
247             (VT == MVT::f64) ? RTLIB::OLE_F64 :
248             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
249       break;
250     case ISD::SETUGE:
251       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
252             (VT == MVT::f64) ? RTLIB::OLT_F64 :
253             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
254       break;
255     default: llvm_unreachable("Do not know how to soften this setcc!");
256     }
257   }
258 
259   // Use the target specific return value for comparions lib calls.
260   EVT RetVT = getCmpLibcallReturnType();
261   SDValue Ops[2] = {NewLHS, NewRHS};
262   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
263                        dl).first;
264   NewRHS = DAG.getConstant(0, dl, RetVT);
265 
266   CCCode = getCmpLibcallCC(LC1);
267   if (ShouldInvertCC)
268     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
269 
270   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
271     SDValue Tmp = DAG.getNode(
272         ISD::SETCC, dl,
273         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
274         NewLHS, NewRHS, DAG.getCondCode(CCCode));
275     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
276                          dl).first;
277     NewLHS = DAG.getNode(
278         ISD::SETCC, dl,
279         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
280         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
281     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
282     NewRHS = SDValue();
283   }
284 }
285 
286 /// Return the entry encoding for a jump table in the current function. The
287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
288 unsigned TargetLowering::getJumpTableEncoding() const {
289   // In non-pic modes, just use the address of a block.
290   if (!isPositionIndependent())
291     return MachineJumpTableInfo::EK_BlockAddress;
292 
293   // In PIC mode, if the target supports a GPRel32 directive, use it.
294   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
295     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
296 
297   // Otherwise, use a label difference.
298   return MachineJumpTableInfo::EK_LabelDifference32;
299 }
300 
301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
302                                                  SelectionDAG &DAG) const {
303   // If our PIC model is GP relative, use the global offset table as the base.
304   unsigned JTEncoding = getJumpTableEncoding();
305 
306   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
307       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
308     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
309 
310   return Table;
311 }
312 
313 /// This returns the relocation base for the given PIC jumptable, the same as
314 /// getPICJumpTableRelocBase, but as an MCExpr.
315 const MCExpr *
316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
317                                              unsigned JTI,MCContext &Ctx) const{
318   // The normal PIC reloc base is the label at the start of the jump table.
319   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
320 }
321 
322 bool
323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
324   const TargetMachine &TM = getTargetMachine();
325   const GlobalValue *GV = GA->getGlobal();
326 
327   // If the address is not even local to this DSO we will have to load it from
328   // a got and then add the offset.
329   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
330     return false;
331 
332   // If the code is position independent we will have to add a base register.
333   if (isPositionIndependent())
334     return false;
335 
336   // Otherwise we can do it.
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Optimization Methods
342 //===----------------------------------------------------------------------===//
343 
344 /// If the specified instruction has a constant integer operand and there are
345 /// bits set in that constant that are not demanded, then clear those bits and
346 /// return true.
347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
348                                             TargetLoweringOpt &TLO) const {
349   SelectionDAG &DAG = TLO.DAG;
350   SDLoc DL(Op);
351   unsigned Opcode = Op.getOpcode();
352 
353   // Do target-specific constant optimization.
354   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
355     return TLO.New.getNode();
356 
357   // FIXME: ISD::SELECT, ISD::SELECT_CC
358   switch (Opcode) {
359   default:
360     break;
361   case ISD::XOR:
362   case ISD::AND:
363   case ISD::OR: {
364     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
365     if (!Op1C)
366       return false;
367 
368     // If this is a 'not' op, don't touch it because that's a canonical form.
369     const APInt &C = Op1C->getAPIntValue();
370     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
371       return false;
372 
373     if (!C.isSubsetOf(Demanded)) {
374       EVT VT = Op.getValueType();
375       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
376       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
377       return TLO.CombineTo(Op, NewOp);
378     }
379 
380     break;
381   }
382   }
383 
384   return false;
385 }
386 
387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
389 /// generalized for targets with other types of implicit widening casts.
390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
391                                       const APInt &Demanded,
392                                       TargetLoweringOpt &TLO) const {
393   assert(Op.getNumOperands() == 2 &&
394          "ShrinkDemandedOp only supports binary operators!");
395   assert(Op.getNode()->getNumValues() == 1 &&
396          "ShrinkDemandedOp only supports nodes with one result!");
397 
398   SelectionDAG &DAG = TLO.DAG;
399   SDLoc dl(Op);
400 
401   // Early return, as this function cannot handle vector types.
402   if (Op.getValueType().isVector())
403     return false;
404 
405   // Don't do this if the node has another user, which may require the
406   // full value.
407   if (!Op.getNode()->hasOneUse())
408     return false;
409 
410   // Search for the smallest integer type with free casts to and from
411   // Op's type. For expedience, just check power-of-2 integer types.
412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413   unsigned DemandedSize = Demanded.getActiveBits();
414   unsigned SmallVTBits = DemandedSize;
415   if (!isPowerOf2_32(SmallVTBits))
416     SmallVTBits = NextPowerOf2(SmallVTBits);
417   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
418     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
419     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
420         TLI.isZExtFree(SmallVT, Op.getValueType())) {
421       // We found a type with free casts.
422       SDValue X = DAG.getNode(
423           Op.getOpcode(), dl, SmallVT,
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
425           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
426       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
427       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
428       return TLO.CombineTo(Op, Z);
429     }
430   }
431   return false;
432 }
433 
434 bool
435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
436                                      const APInt &DemandedBits,
437                                      DAGCombinerInfo &DCI,
438                                      TargetLoweringOpt &TLO) const {
439   SDValue Op = User->getOperand(OpIdx);
440   KnownBits Known;
441 
442   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
443     return false;
444 
445 
446   // Old will not always be the same as Op.  For example:
447   //
448   // Demanded = 0xffffff
449   // Op = i64 truncate (i32 and x, 0xffffff)
450   // In this case simplify demand bits will want to replace the 'and' node
451   // with the value 'x', which will give us:
452   // Old = i32 and x, 0xffffff
453   // New = x
454   if (TLO.Old.hasOneUse()) {
455     // For the one use case, we just commit the change.
456     DCI.CommitTargetLoweringOpt(TLO);
457     return true;
458   }
459 
460   // If Old has more than one use then it must be Op, because the
461   // AssumeSingleUse flag is not propogated to recursive calls of
462   // SimplifyDemanded bits, so the only node with multiple use that
463   // it will attempt to combine will be Op.
464   assert(TLO.Old == Op);
465 
466   SmallVector <SDValue, 4> NewOps;
467   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
468     if (i == OpIdx) {
469       NewOps.push_back(TLO.New);
470       continue;
471     }
472     NewOps.push_back(User->getOperand(i));
473   }
474   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
475   // Op has less users now, so we may be able to perform additional combines
476   // with it.
477   DCI.AddToWorklist(Op.getNode());
478   // User's operands have been updated, so we may be able to do new combines
479   // with it.
480   DCI.AddToWorklist(User);
481   return true;
482 }
483 
484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
485                                           DAGCombinerInfo &DCI) const {
486   SelectionDAG &DAG = DCI.DAG;
487   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
488                         !DCI.isBeforeLegalizeOps());
489   KnownBits Known;
490 
491   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
492   if (Simplified) {
493     DCI.AddToWorklist(Op.getNode());
494     DCI.CommitTargetLoweringOpt(TLO);
495   }
496   return Simplified;
497 }
498 
499 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
500 /// result of Op are ever used downstream. If we can use this information to
501 /// simplify Op, create a new simplified DAG node and return true, returning the
502 /// original and new nodes in Old and New. Otherwise, analyze the expression and
503 /// return a mask of Known bits for the expression (used to simplify the
504 /// caller).  The Known bits may only be accurate for those bits in the
505 /// DemandedMask.
506 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
507                                           const APInt &OriginalDemandedBits,
508                                           KnownBits &Known,
509                                           TargetLoweringOpt &TLO,
510                                           unsigned Depth,
511                                           bool AssumeSingleUse) const {
512   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
513   assert(Op.getScalarValueSizeInBits() == BitWidth &&
514          "Mask size mismatches value type size!");
515   APInt DemandedBits = OriginalDemandedBits;
516   SDLoc dl(Op);
517   auto &DL = TLO.DAG.getDataLayout();
518 
519   // Don't know anything.
520   Known = KnownBits(BitWidth);
521 
522   if (Op.getOpcode() == ISD::Constant) {
523     // We know all of the bits for a constant!
524     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
525     Known.Zero = ~Known.One;
526     return false;
527   }
528 
529   // Other users may use these bits.
530   EVT VT = Op.getValueType();
531   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
532     if (Depth != 0) {
533       // If not at the root, Just compute the Known bits to
534       // simplify things downstream.
535       TLO.DAG.computeKnownBits(Op, Known, Depth);
536       return false;
537     }
538     // If this is the root being simplified, allow it to have multiple uses,
539     // just set the DemandedBits to all bits.
540     DemandedBits = APInt::getAllOnesValue(BitWidth);
541   } else if (OriginalDemandedBits == 0) {
542     // Not demanding any bits from Op.
543     if (!Op.isUndef())
544       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
545     return false;
546   } else if (Depth == 6) {        // Limit search depth.
547     return false;
548   }
549 
550   KnownBits Known2, KnownOut;
551   switch (Op.getOpcode()) {
552   case ISD::BUILD_VECTOR:
553     // Collect the known bits that are shared by every constant vector element.
554     Known.Zero.setAllBits(); Known.One.setAllBits();
555     for (SDValue SrcOp : Op->ops()) {
556       if (!isa<ConstantSDNode>(SrcOp)) {
557         // We can only handle all constant values - bail out with no known bits.
558         Known = KnownBits(BitWidth);
559         return false;
560       }
561       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
562       Known2.Zero = ~Known2.One;
563 
564       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
565       if (Known2.One.getBitWidth() != BitWidth) {
566         assert(Known2.getBitWidth() > BitWidth &&
567                "Expected BUILD_VECTOR implicit truncation");
568         Known2 = Known2.trunc(BitWidth);
569       }
570 
571       // Known bits are the values that are shared by every element.
572       // TODO: support per-element known bits.
573       Known.One &= Known2.One;
574       Known.Zero &= Known2.Zero;
575     }
576     return false;   // Don't fall through, will infinitely loop.
577   case ISD::CONCAT_VECTORS:
578     Known.Zero.setAllBits();
579     Known.One.setAllBits();
580     for (SDValue SrcOp : Op->ops()) {
581       if (SimplifyDemandedBits(SrcOp, DemandedBits, Known2, TLO, Depth + 1))
582         return true;
583       // Known bits are the values that are shared by every subvector.
584       Known.One &= Known2.One;
585       Known.Zero &= Known2.Zero;
586     }
587     break;
588   case ISD::AND: {
589     SDValue Op0 = Op.getOperand(0);
590     SDValue Op1 = Op.getOperand(1);
591 
592     // If the RHS is a constant, check to see if the LHS would be zero without
593     // using the bits from the RHS.  Below, we use knowledge about the RHS to
594     // simplify the LHS, here we're using information from the LHS to simplify
595     // the RHS.
596     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
597       KnownBits LHSKnown;
598       // Do not increment Depth here; that can cause an infinite loop.
599       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
600       // If the LHS already has zeros where RHSC does, this 'and' is dead.
601       if ((LHSKnown.Zero & DemandedBits) ==
602           (~RHSC->getAPIntValue() & DemandedBits))
603         return TLO.CombineTo(Op, Op0);
604 
605       // If any of the set bits in the RHS are known zero on the LHS, shrink
606       // the constant.
607       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
608         return true;
609 
610       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
611       // constant, but if this 'and' is only clearing bits that were just set by
612       // the xor, then this 'and' can be eliminated by shrinking the mask of
613       // the xor. For example, for a 32-bit X:
614       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
615       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
616           LHSKnown.One == ~RHSC->getAPIntValue()) {
617         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
618         return TLO.CombineTo(Op, Xor);
619       }
620     }
621 
622     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
623       return true;
624     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
625     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, Known2, TLO,
626                              Depth + 1))
627       return true;
628     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
629 
630     // If all of the demanded bits are known one on one side, return the other.
631     // These bits cannot contribute to the result of the 'and'.
632     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
633       return TLO.CombineTo(Op, Op0);
634     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
635       return TLO.CombineTo(Op, Op1);
636     // If all of the demanded bits in the inputs are known zeros, return zero.
637     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
638       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
639     // If the RHS is a constant, see if we can simplify it.
640     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
641       return true;
642     // If the operation can be done in a smaller type, do so.
643     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
644       return true;
645 
646     // Output known-1 bits are only known if set in both the LHS & RHS.
647     Known.One &= Known2.One;
648     // Output known-0 are known to be clear if zero in either the LHS | RHS.
649     Known.Zero |= Known2.Zero;
650     break;
651   }
652   case ISD::OR: {
653     SDValue Op0 = Op.getOperand(0);
654     SDValue Op1 = Op.getOperand(1);
655 
656     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
657       return true;
658     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
659     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, Known2, TLO, Depth + 1))
660       return true;
661     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
662 
663     // If all of the demanded bits are known zero on one side, return the other.
664     // These bits cannot contribute to the result of the 'or'.
665     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
666       return TLO.CombineTo(Op, Op0);
667     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
668       return TLO.CombineTo(Op, Op1);
669     // If the RHS is a constant, see if we can simplify it.
670     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
671       return true;
672     // If the operation can be done in a smaller type, do so.
673     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
674       return true;
675 
676     // Output known-0 bits are only known if clear in both the LHS & RHS.
677     Known.Zero &= Known2.Zero;
678     // Output known-1 are known to be set if set in either the LHS | RHS.
679     Known.One |= Known2.One;
680     break;
681   }
682   case ISD::XOR: {
683     SDValue Op0 = Op.getOperand(0);
684     SDValue Op1 = Op.getOperand(1);
685 
686     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
687       return true;
688     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
689     if (SimplifyDemandedBits(Op0, DemandedBits, Known2, TLO, Depth + 1))
690       return true;
691     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
692 
693     // If all of the demanded bits are known zero on one side, return the other.
694     // These bits cannot contribute to the result of the 'xor'.
695     if (DemandedBits.isSubsetOf(Known.Zero))
696       return TLO.CombineTo(Op, Op0);
697     if (DemandedBits.isSubsetOf(Known2.Zero))
698       return TLO.CombineTo(Op, Op1);
699     // If the operation can be done in a smaller type, do so.
700     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
701       return true;
702 
703     // If all of the unknown bits are known to be zero on one side or the other
704     // (but not both) turn this into an *inclusive* or.
705     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
706     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
707       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
708 
709     // Output known-0 bits are known if clear or set in both the LHS & RHS.
710     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
711     // Output known-1 are known to be set if set in only one of the LHS, RHS.
712     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
713 
714     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
715       // If one side is a constant, and all of the known set bits on the other
716       // side are also set in the constant, turn this into an AND, as we know
717       // the bits will be cleared.
718       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
719       // NB: it is okay if more bits are known than are requested
720       if (C->getAPIntValue() == Known2.One) {
721         SDValue ANDC =
722             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
723         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
724       }
725 
726       // If the RHS is a constant, see if we can change it. Don't alter a -1
727       // constant because that's a 'not' op, and that is better for combining
728       // and codegen.
729       if (!C->isAllOnesValue()) {
730         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
731           // We're flipping all demanded bits. Flip the undemanded bits too.
732           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
733           return TLO.CombineTo(Op, New);
734         }
735         // If we can't turn this into a 'not', try to shrink the constant.
736         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
737           return true;
738       }
739     }
740 
741     Known = std::move(KnownOut);
742     break;
743   }
744   case ISD::SELECT:
745     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
746                              Depth + 1))
747       return true;
748     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
749                              Depth + 1))
750       return true;
751     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
752     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
753 
754     // If the operands are constants, see if we can simplify them.
755     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
756       return true;
757 
758     // Only known if known in both the LHS and RHS.
759     Known.One &= Known2.One;
760     Known.Zero &= Known2.Zero;
761     break;
762   case ISD::SELECT_CC:
763     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
764                              Depth + 1))
765       return true;
766     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
767                              Depth + 1))
768       return true;
769     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
770     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
771 
772     // If the operands are constants, see if we can simplify them.
773     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
774       return true;
775 
776     // Only known if known in both the LHS and RHS.
777     Known.One &= Known2.One;
778     Known.Zero &= Known2.Zero;
779     break;
780   case ISD::SETCC: {
781     SDValue Op0 = Op.getOperand(0);
782     SDValue Op1 = Op.getOperand(1);
783     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
784     // If (1) we only need the sign-bit, (2) the setcc operands are the same
785     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
786     // -1, we may be able to bypass the setcc.
787     if (DemandedBits.isSignMask() &&
788         Op0.getScalarValueSizeInBits() == BitWidth &&
789         getBooleanContents(VT) ==
790             BooleanContent::ZeroOrNegativeOneBooleanContent) {
791       // If we're testing X < 0, then this compare isn't needed - just use X!
792       // FIXME: We're limiting to integer types here, but this should also work
793       // if we don't care about FP signed-zero. The use of SETLT with FP means
794       // that we don't care about NaNs.
795       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
796           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
797         return TLO.CombineTo(Op, Op0);
798 
799       // TODO: Should we check for other forms of sign-bit comparisons?
800       // Examples: X <= -1, X >= 0
801     }
802     if (getBooleanContents(Op0.getValueType()) ==
803             TargetLowering::ZeroOrOneBooleanContent &&
804         BitWidth > 1)
805       Known.Zero.setBitsFrom(1);
806     break;
807   }
808   case ISD::SHL: {
809     SDValue Op0 = Op.getOperand(0);
810     SDValue Op1 = Op.getOperand(1);
811 
812     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
813       // If the shift count is an invalid immediate, don't do anything.
814       if (SA->getAPIntValue().uge(BitWidth))
815         break;
816 
817       unsigned ShAmt = SA->getZExtValue();
818 
819       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
820       // single shift.  We can do this if the bottom bits (which are shifted
821       // out) are never demanded.
822       if (Op0.getOpcode() == ISD::SRL) {
823         if (ShAmt &&
824             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
825           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
826             if (SA2->getAPIntValue().ult(BitWidth)) {
827               unsigned C1 = SA2->getZExtValue();
828               unsigned Opc = ISD::SHL;
829               int Diff = ShAmt - C1;
830               if (Diff < 0) {
831                 Diff = -Diff;
832                 Opc = ISD::SRL;
833               }
834 
835               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
836               return TLO.CombineTo(
837                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
838             }
839           }
840         }
841       }
842 
843       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), Known, TLO,
844                                Depth + 1))
845         return true;
846 
847       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
848       // are not demanded. This will likely allow the anyext to be folded away.
849       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
850         SDValue InnerOp = Op0.getOperand(0);
851         EVT InnerVT = InnerOp.getValueType();
852         unsigned InnerBits = InnerVT.getScalarSizeInBits();
853         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
854             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
855           EVT ShTy = getShiftAmountTy(InnerVT, DL);
856           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
857             ShTy = InnerVT;
858           SDValue NarrowShl =
859               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
860                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
861           return TLO.CombineTo(
862               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
863         }
864         // Repeat the SHL optimization above in cases where an extension
865         // intervenes: (shl (anyext (shr x, c1)), c2) to
866         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
867         // aren't demanded (as above) and that the shifted upper c1 bits of
868         // x aren't demanded.
869         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
870             InnerOp.hasOneUse()) {
871           if (ConstantSDNode *SA2 =
872                   isConstOrConstSplat(InnerOp.getOperand(1))) {
873             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
874             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
875                 DemandedBits.getActiveBits() <=
876                     (InnerBits - InnerShAmt + ShAmt) &&
877                 DemandedBits.countTrailingZeros() >= ShAmt) {
878               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
879                                                   Op1.getValueType());
880               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
881                                                InnerOp.getOperand(0));
882               return TLO.CombineTo(
883                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
884             }
885           }
886         }
887       }
888 
889       Known.Zero <<= ShAmt;
890       Known.One <<= ShAmt;
891       // low bits known zero.
892       Known.Zero.setLowBits(ShAmt);
893     }
894     break;
895   }
896   case ISD::SRL: {
897     SDValue Op0 = Op.getOperand(0);
898     SDValue Op1 = Op.getOperand(1);
899 
900     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
901       // If the shift count is an invalid immediate, don't do anything.
902       if (SA->getAPIntValue().uge(BitWidth))
903         break;
904 
905       unsigned ShAmt = SA->getZExtValue();
906       APInt InDemandedMask = (DemandedBits << ShAmt);
907 
908       // If the shift is exact, then it does demand the low bits (and knows that
909       // they are zero).
910       if (Op->getFlags().hasExact())
911         InDemandedMask.setLowBits(ShAmt);
912 
913       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
914       // single shift.  We can do this if the top bits (which are shifted out)
915       // are never demanded.
916       if (Op0.getOpcode() == ISD::SHL) {
917         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
918           if (ShAmt &&
919               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
920             if (SA2->getAPIntValue().ult(BitWidth)) {
921               unsigned C1 = SA2->getZExtValue();
922               unsigned Opc = ISD::SRL;
923               int Diff = ShAmt - C1;
924               if (Diff < 0) {
925                 Diff = -Diff;
926                 Opc = ISD::SHL;
927               }
928 
929               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
930               return TLO.CombineTo(
931                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
932             }
933           }
934         }
935       }
936 
937       // Compute the new bits that are at the top now.
938       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
939         return true;
940       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
941       Known.Zero.lshrInPlace(ShAmt);
942       Known.One.lshrInPlace(ShAmt);
943 
944       Known.Zero.setHighBits(ShAmt); // High bits known zero.
945     }
946     break;
947   }
948   case ISD::SRA: {
949     SDValue Op0 = Op.getOperand(0);
950     SDValue Op1 = Op.getOperand(1);
951 
952     // If this is an arithmetic shift right and only the low-bit is set, we can
953     // always convert this into a logical shr, even if the shift amount is
954     // variable.  The low bit of the shift cannot be an input sign bit unless
955     // the shift amount is >= the size of the datatype, which is undefined.
956     if (DemandedBits.isOneValue())
957       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
958 
959     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
960       // If the shift count is an invalid immediate, don't do anything.
961       if (SA->getAPIntValue().uge(BitWidth))
962         break;
963 
964       unsigned ShAmt = SA->getZExtValue();
965       APInt InDemandedMask = (DemandedBits << ShAmt);
966 
967       // If the shift is exact, then it does demand the low bits (and knows that
968       // they are zero).
969       if (Op->getFlags().hasExact())
970         InDemandedMask.setLowBits(ShAmt);
971 
972       // If any of the demanded bits are produced by the sign extension, we also
973       // demand the input sign bit.
974       if (DemandedBits.countLeadingZeros() < ShAmt)
975         InDemandedMask.setSignBit();
976 
977       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
978         return true;
979       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
980       Known.Zero.lshrInPlace(ShAmt);
981       Known.One.lshrInPlace(ShAmt);
982 
983       // If the input sign bit is known to be zero, or if none of the top bits
984       // are demanded, turn this into an unsigned shift right.
985       if (Known.Zero[BitWidth - ShAmt - 1] ||
986           DemandedBits.countLeadingZeros() >= ShAmt) {
987         SDNodeFlags Flags;
988         Flags.setExact(Op->getFlags().hasExact());
989         return TLO.CombineTo(
990             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
991       }
992 
993       int Log2 = DemandedBits.exactLogBase2();
994       if (Log2 >= 0) {
995         // The bit must come from the sign.
996         SDValue NewSA =
997             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
998         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
999       }
1000 
1001       if (Known.One[BitWidth - ShAmt - 1])
1002         // New bits are known one.
1003         Known.One.setHighBits(ShAmt);
1004     }
1005     break;
1006   }
1007   case ISD::SIGN_EXTEND_INREG: {
1008     SDValue Op0 = Op.getOperand(0);
1009     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1010     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1011 
1012     // If we only care about the highest bit, don't bother shifting right.
1013     if (DemandedBits.isSignMask()) {
1014       bool AlreadySignExtended =
1015           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1016       // However if the input is already sign extended we expect the sign
1017       // extension to be dropped altogether later and do not simplify.
1018       if (!AlreadySignExtended) {
1019         // Compute the correct shift amount type, which must be getShiftAmountTy
1020         // for scalar types after legalization.
1021         EVT ShiftAmtTy = VT;
1022         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1023           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1024 
1025         SDValue ShiftAmt =
1026             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1027         return TLO.CombineTo(Op,
1028                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1029       }
1030     }
1031 
1032     // If none of the extended bits are demanded, eliminate the sextinreg.
1033     if (DemandedBits.getActiveBits() <= ExVTBits)
1034       return TLO.CombineTo(Op, Op0);
1035 
1036     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1037 
1038     // Since the sign extended bits are demanded, we know that the sign
1039     // bit is demanded.
1040     InputDemandedBits.setBit(ExVTBits - 1);
1041 
1042     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1043       return true;
1044     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1045 
1046     // If the sign bit of the input is known set or clear, then we know the
1047     // top bits of the result.
1048 
1049     // If the input sign bit is known zero, convert this into a zero extension.
1050     if (Known.Zero[ExVTBits - 1])
1051       return TLO.CombineTo(
1052           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1053 
1054     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1055     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1056       Known.One.setBitsFrom(ExVTBits);
1057       Known.Zero &= Mask;
1058     } else { // Input sign bit unknown
1059       Known.Zero &= Mask;
1060       Known.One &= Mask;
1061     }
1062     break;
1063   }
1064   case ISD::BUILD_PAIR: {
1065     EVT HalfVT = Op.getOperand(0).getValueType();
1066     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1067 
1068     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1069     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1070 
1071     KnownBits KnownLo, KnownHi;
1072 
1073     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1074       return true;
1075 
1076     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1077       return true;
1078 
1079     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1080                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1081 
1082     Known.One = KnownLo.One.zext(BitWidth) |
1083                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1084     break;
1085   }
1086   case ISD::ZERO_EXTEND: {
1087     SDValue Src = Op.getOperand(0);
1088     unsigned InBits = Src.getScalarValueSizeInBits();
1089 
1090     // If none of the top bits are demanded, convert this into an any_extend.
1091     if (DemandedBits.getActiveBits() <= InBits)
1092       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1093 
1094     APInt InDemandedBits = DemandedBits.trunc(InBits);
1095     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1096       return true;
1097     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1098     Known = Known.zext(BitWidth);
1099     Known.Zero.setBitsFrom(InBits);
1100     break;
1101   }
1102   case ISD::SIGN_EXTEND: {
1103     SDValue Src = Op.getOperand(0);
1104     unsigned InBits = Src.getScalarValueSizeInBits();
1105 
1106     // If none of the top bits are demanded, convert this into an any_extend.
1107     if (DemandedBits.getActiveBits() <= InBits)
1108       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1109 
1110     // Since some of the sign extended bits are demanded, we know that the sign
1111     // bit is demanded.
1112     APInt InDemandedBits = DemandedBits.trunc(InBits);
1113     InDemandedBits.setBit(InBits - 1);
1114 
1115     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1116       return true;
1117     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1118     // If the sign bit is known one, the top bits match.
1119     Known = Known.sext(BitWidth);
1120 
1121     // If the sign bit is known zero, convert this to a zero extend.
1122     if (Known.isNonNegative())
1123       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1124     break;
1125   }
1126   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1127     // TODO - merge this with SIGN_EXTEND above?
1128     SDValue Src = Op.getOperand(0);
1129     unsigned InBits = Src.getScalarValueSizeInBits();
1130 
1131     APInt InDemandedBits = DemandedBits.trunc(InBits);
1132 
1133     // If some of the sign extended bits are demanded, we know that the sign
1134     // bit is demanded.
1135     if (InBits < DemandedBits.getActiveBits())
1136       InDemandedBits.setBit(InBits - 1);
1137 
1138     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1139       return true;
1140     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1141     // If the sign bit is known one, the top bits match.
1142     Known = Known.sext(BitWidth);
1143     break;
1144   }
1145   case ISD::ANY_EXTEND: {
1146     SDValue Src = Op.getOperand(0);
1147     unsigned InBits = Src.getScalarValueSizeInBits();
1148     APInt InDemandedBits = DemandedBits.trunc(InBits);
1149     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1150       return true;
1151     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1152     Known = Known.zext(BitWidth);
1153     break;
1154   }
1155   case ISD::TRUNCATE: {
1156     SDValue Src = Op.getOperand(0);
1157 
1158     // Simplify the input, using demanded bit information, and compute the known
1159     // zero/one bits live out.
1160     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1161     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1162     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1163       return true;
1164     Known = Known.trunc(BitWidth);
1165 
1166     // If the input is only used by this truncate, see if we can shrink it based
1167     // on the known demanded bits.
1168     if (Src.getNode()->hasOneUse()) {
1169       switch (Src.getOpcode()) {
1170       default:
1171         break;
1172       case ISD::SRL:
1173         // Shrink SRL by a constant if none of the high bits shifted in are
1174         // demanded.
1175         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1176           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1177           // undesirable.
1178           break;
1179         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1180         if (!ShAmt)
1181           break;
1182         SDValue Shift = Src.getOperand(1);
1183         if (TLO.LegalTypes()) {
1184           uint64_t ShVal = ShAmt->getZExtValue();
1185           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1186         }
1187 
1188         if (ShAmt->getZExtValue() < BitWidth) {
1189           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1190                                                  OperandBitWidth - BitWidth);
1191           HighBits.lshrInPlace(ShAmt->getZExtValue());
1192           HighBits = HighBits.trunc(BitWidth);
1193 
1194           if (!(HighBits & DemandedBits)) {
1195             // None of the shifted in bits are needed.  Add a truncate of the
1196             // shift input, then shift it.
1197             SDValue NewTrunc =
1198                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1199             return TLO.CombineTo(
1200                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1201           }
1202         }
1203         break;
1204       }
1205     }
1206 
1207     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1208     break;
1209   }
1210   case ISD::AssertZext: {
1211     // AssertZext demands all of the high bits, plus any of the low bits
1212     // demanded by its users.
1213     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1214     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1215     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1216                              Known, TLO, Depth+1))
1217       return true;
1218     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1219 
1220     Known.Zero |= ~InMask;
1221     break;
1222   }
1223   case ISD::BITCAST: {
1224     SDValue Src = Op.getOperand(0);
1225     EVT SrcVT = Src.getValueType();
1226     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1227 
1228     // If this is an FP->Int bitcast and if the sign bit is the only
1229     // thing demanded, turn this into a FGETSIGN.
1230     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1231         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1232         SrcVT.isFloatingPoint()) {
1233       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1234       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1235       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1236           SrcVT != MVT::f128) {
1237         // Cannot eliminate/lower SHL for f128 yet.
1238         EVT Ty = OpVTLegal ? VT : MVT::i32;
1239         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1240         // place.  We expect the SHL to be eliminated by other optimizations.
1241         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1242         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1243         if (!OpVTLegal && OpVTSizeInBits > 32)
1244           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1245         unsigned ShVal = Op.getValueSizeInBits() - 1;
1246         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1247         return TLO.CombineTo(Op,
1248                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1249       }
1250     }
1251     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1252     // demanding the element if any bits from it are demanded.
1253     // TODO - bigendian once we have test coverage.
1254     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1255     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1256         (BitWidth % NumSrcEltBits) == 0 &&
1257         TLO.DAG.getDataLayout().isLittleEndian()) {
1258       unsigned Scale = BitWidth / NumSrcEltBits;
1259       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1260         DemandedSubElts = APInt::getNullValue(Scale);
1261         for (unsigned i = 0; i != Scale; ++i) {
1262           unsigned Offset = i * NumSrcEltBits;
1263           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1264           if (!Sub.isNullValue())
1265             DemandedSubElts.setBit(i);
1266         }
1267         return true;
1268       };
1269 
1270       APInt DemandedSubElts;
1271       if (GetDemandedSubMask(DemandedSubElts)) {
1272         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1273         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1274 
1275         APInt KnownUndef, KnownZero;
1276         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1277                                        TLO, Depth + 1))
1278           return true;
1279       }
1280     }
1281     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1282     // recursive call where Known may be useful to the caller.
1283     if (Depth > 0) {
1284       TLO.DAG.computeKnownBits(Op, Known, Depth);
1285       return false;
1286     }
1287     break;
1288   }
1289   case ISD::ADD:
1290   case ISD::MUL:
1291   case ISD::SUB: {
1292     // Add, Sub, and Mul don't demand any bits in positions beyond that
1293     // of the highest bit demanded of them.
1294     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1295     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1296     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1297     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
1298         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
1299         // See if the operation should be performed at a smaller bit width.
1300         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1301       SDNodeFlags Flags = Op.getNode()->getFlags();
1302       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1303         // Disable the nsw and nuw flags. We can no longer guarantee that we
1304         // won't wrap after simplification.
1305         Flags.setNoSignedWrap(false);
1306         Flags.setNoUnsignedWrap(false);
1307         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1308                                         Flags);
1309         return TLO.CombineTo(Op, NewOp);
1310       }
1311       return true;
1312     }
1313 
1314     // If we have a constant operand, we may be able to turn it into -1 if we
1315     // do not demand the high bits. This can make the constant smaller to
1316     // encode, allow more general folding, or match specialized instruction
1317     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1318     // is probably not useful (and could be detrimental).
1319     ConstantSDNode *C = isConstOrConstSplat(Op1);
1320     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1321     if (C && !C->isAllOnesValue() && !C->isOne() &&
1322         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1323       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1324       // We can't guarantee that the new math op doesn't wrap, so explicitly
1325       // clear those flags to prevent folding with a potential existing node
1326       // that has those flags set.
1327       SDNodeFlags Flags;
1328       Flags.setNoSignedWrap(false);
1329       Flags.setNoUnsignedWrap(false);
1330       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1331       return TLO.CombineTo(Op, NewOp);
1332     }
1333 
1334     LLVM_FALLTHROUGH;
1335   }
1336   default:
1337     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1338       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, Known, TLO,
1339                                             Depth))
1340         return true;
1341       break;
1342     }
1343 
1344     // Just use computeKnownBits to compute output bits.
1345     TLO.DAG.computeKnownBits(Op, Known, Depth);
1346     break;
1347   }
1348 
1349   // If we know the value of all of the demanded bits, return this as a
1350   // constant.
1351   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1352     // Avoid folding to a constant if any OpaqueConstant is involved.
1353     const SDNode *N = Op.getNode();
1354     for (SDNodeIterator I = SDNodeIterator::begin(N),
1355                         E = SDNodeIterator::end(N);
1356          I != E; ++I) {
1357       SDNode *Op = *I;
1358       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1359         if (C->isOpaque())
1360           return false;
1361     }
1362     // TODO: Handle float bits as well.
1363     if (VT.isInteger())
1364       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1365   }
1366 
1367   return false;
1368 }
1369 
1370 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1371                                                 const APInt &DemandedElts,
1372                                                 APInt &KnownUndef,
1373                                                 APInt &KnownZero,
1374                                                 DAGCombinerInfo &DCI) const {
1375   SelectionDAG &DAG = DCI.DAG;
1376   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1377                         !DCI.isBeforeLegalizeOps());
1378 
1379   bool Simplified =
1380       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1381   if (Simplified) {
1382     DCI.AddToWorklist(Op.getNode());
1383     DCI.CommitTargetLoweringOpt(TLO);
1384   }
1385   return Simplified;
1386 }
1387 
1388 bool TargetLowering::SimplifyDemandedVectorElts(
1389     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1390     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1391     bool AssumeSingleUse) const {
1392   EVT VT = Op.getValueType();
1393   APInt DemandedElts = DemandedEltMask;
1394   unsigned NumElts = DemandedElts.getBitWidth();
1395   assert(VT.isVector() && "Expected vector op");
1396   assert(VT.getVectorNumElements() == NumElts &&
1397          "Mask size mismatches value type element count!");
1398 
1399   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1400 
1401   // Undef operand.
1402   if (Op.isUndef()) {
1403     KnownUndef.setAllBits();
1404     return false;
1405   }
1406 
1407   // If Op has other users, assume that all elements are needed.
1408   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1409     DemandedElts.setAllBits();
1410 
1411   // Not demanding any elements from Op.
1412   if (DemandedElts == 0) {
1413     KnownUndef.setAllBits();
1414     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1415   }
1416 
1417   // Limit search depth.
1418   if (Depth >= 6)
1419     return false;
1420 
1421   SDLoc DL(Op);
1422   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1423 
1424   switch (Op.getOpcode()) {
1425   case ISD::SCALAR_TO_VECTOR: {
1426     if (!DemandedElts[0]) {
1427       KnownUndef.setAllBits();
1428       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1429     }
1430     KnownUndef.setHighBits(NumElts - 1);
1431     break;
1432   }
1433   case ISD::BITCAST: {
1434     SDValue Src = Op.getOperand(0);
1435     EVT SrcVT = Src.getValueType();
1436 
1437     // We only handle vectors here.
1438     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1439     if (!SrcVT.isVector())
1440       break;
1441 
1442     // Fast handling of 'identity' bitcasts.
1443     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1444     if (NumSrcElts == NumElts)
1445       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1446                                         KnownZero, TLO, Depth + 1);
1447 
1448     APInt SrcZero, SrcUndef;
1449     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1450 
1451     // Bitcast from 'large element' src vector to 'small element' vector, we
1452     // must demand a source element if any DemandedElt maps to it.
1453     if ((NumElts % NumSrcElts) == 0) {
1454       unsigned Scale = NumElts / NumSrcElts;
1455       for (unsigned i = 0; i != NumElts; ++i)
1456         if (DemandedElts[i])
1457           SrcDemandedElts.setBit(i / Scale);
1458 
1459       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1460                                      TLO, Depth + 1))
1461         return true;
1462 
1463       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1464       // of the large element.
1465       // TODO - bigendian once we have test coverage.
1466       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1467         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1468         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1469         for (unsigned i = 0; i != NumElts; ++i)
1470           if (DemandedElts[i]) {
1471             unsigned Ofs = (i % Scale) * EltSizeInBits;
1472             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1473           }
1474 
1475         KnownBits Known;
1476         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1477           return true;
1478       }
1479 
1480       // If the src element is zero/undef then all the output elements will be -
1481       // only demanded elements are guaranteed to be correct.
1482       for (unsigned i = 0; i != NumSrcElts; ++i) {
1483         if (SrcDemandedElts[i]) {
1484           if (SrcZero[i])
1485             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1486           if (SrcUndef[i])
1487             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1488         }
1489       }
1490     }
1491 
1492     // Bitcast from 'small element' src vector to 'large element' vector, we
1493     // demand all smaller source elements covered by the larger demanded element
1494     // of this vector.
1495     if ((NumSrcElts % NumElts) == 0) {
1496       unsigned Scale = NumSrcElts / NumElts;
1497       for (unsigned i = 0; i != NumElts; ++i)
1498         if (DemandedElts[i])
1499           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1500 
1501       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1502                                      TLO, Depth + 1))
1503         return true;
1504 
1505       // If all the src elements covering an output element are zero/undef, then
1506       // the output element will be as well, assuming it was demanded.
1507       for (unsigned i = 0; i != NumElts; ++i) {
1508         if (DemandedElts[i]) {
1509           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1510             KnownZero.setBit(i);
1511           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1512             KnownUndef.setBit(i);
1513         }
1514       }
1515     }
1516     break;
1517   }
1518   case ISD::BUILD_VECTOR: {
1519     // Check all elements and simplify any unused elements with UNDEF.
1520     if (!DemandedElts.isAllOnesValue()) {
1521       // Don't simplify BROADCASTS.
1522       if (llvm::any_of(Op->op_values(),
1523                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1524         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1525         bool Updated = false;
1526         for (unsigned i = 0; i != NumElts; ++i) {
1527           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1528             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1529             KnownUndef.setBit(i);
1530             Updated = true;
1531           }
1532         }
1533         if (Updated)
1534           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1535       }
1536     }
1537     for (unsigned i = 0; i != NumElts; ++i) {
1538       SDValue SrcOp = Op.getOperand(i);
1539       if (SrcOp.isUndef()) {
1540         KnownUndef.setBit(i);
1541       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1542                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1543         KnownZero.setBit(i);
1544       }
1545     }
1546     break;
1547   }
1548   case ISD::CONCAT_VECTORS: {
1549     EVT SubVT = Op.getOperand(0).getValueType();
1550     unsigned NumSubVecs = Op.getNumOperands();
1551     unsigned NumSubElts = SubVT.getVectorNumElements();
1552     for (unsigned i = 0; i != NumSubVecs; ++i) {
1553       SDValue SubOp = Op.getOperand(i);
1554       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1555       APInt SubUndef, SubZero;
1556       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1557                                      Depth + 1))
1558         return true;
1559       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1560       KnownZero.insertBits(SubZero, i * NumSubElts);
1561     }
1562     break;
1563   }
1564   case ISD::INSERT_SUBVECTOR: {
1565     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1566       break;
1567     SDValue Base = Op.getOperand(0);
1568     SDValue Sub = Op.getOperand(1);
1569     EVT SubVT = Sub.getValueType();
1570     unsigned NumSubElts = SubVT.getVectorNumElements();
1571     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1572     if (Idx.ugt(NumElts - NumSubElts))
1573       break;
1574     unsigned SubIdx = Idx.getZExtValue();
1575     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1576     APInt SubUndef, SubZero;
1577     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1578                                    Depth + 1))
1579       return true;
1580     APInt BaseElts = DemandedElts;
1581     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1582     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1583                                    Depth + 1))
1584       return true;
1585     KnownUndef.insertBits(SubUndef, SubIdx);
1586     KnownZero.insertBits(SubZero, SubIdx);
1587     break;
1588   }
1589   case ISD::EXTRACT_SUBVECTOR: {
1590     SDValue Src = Op.getOperand(0);
1591     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1592     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1593     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1594       // Offset the demanded elts by the subvector index.
1595       uint64_t Idx = SubIdx->getZExtValue();
1596       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1597       APInt SrcUndef, SrcZero;
1598       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1599                                      Depth + 1))
1600         return true;
1601       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1602       KnownZero = SrcZero.extractBits(NumElts, Idx);
1603     }
1604     break;
1605   }
1606   case ISD::INSERT_VECTOR_ELT: {
1607     SDValue Vec = Op.getOperand(0);
1608     SDValue Scl = Op.getOperand(1);
1609     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1610 
1611     // For a legal, constant insertion index, if we don't need this insertion
1612     // then strip it, else remove it from the demanded elts.
1613     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1614       unsigned Idx = CIdx->getZExtValue();
1615       if (!DemandedElts[Idx])
1616         return TLO.CombineTo(Op, Vec);
1617 
1618       APInt DemandedVecElts(DemandedElts);
1619       DemandedVecElts.clearBit(Idx);
1620       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1621                                      KnownZero, TLO, Depth + 1))
1622         return true;
1623 
1624       KnownUndef.clearBit(Idx);
1625       if (Scl.isUndef())
1626         KnownUndef.setBit(Idx);
1627 
1628       KnownZero.clearBit(Idx);
1629       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1630         KnownZero.setBit(Idx);
1631       break;
1632     }
1633 
1634     APInt VecUndef, VecZero;
1635     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1636                                    Depth + 1))
1637       return true;
1638     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1639     break;
1640   }
1641   case ISD::VSELECT: {
1642     // Try to transform the select condition based on the current demanded
1643     // elements.
1644     // TODO: If a condition element is undef, we can choose from one arm of the
1645     //       select (and if one arm is undef, then we can propagate that to the
1646     //       result).
1647     // TODO - add support for constant vselect masks (see IR version of this).
1648     APInt UnusedUndef, UnusedZero;
1649     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1650                                    UnusedZero, TLO, Depth + 1))
1651       return true;
1652 
1653     // See if we can simplify either vselect operand.
1654     APInt DemandedLHS(DemandedElts);
1655     APInt DemandedRHS(DemandedElts);
1656     APInt UndefLHS, ZeroLHS;
1657     APInt UndefRHS, ZeroRHS;
1658     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1659                                    ZeroLHS, TLO, Depth + 1))
1660       return true;
1661     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1662                                    ZeroRHS, TLO, Depth + 1))
1663       return true;
1664 
1665     KnownUndef = UndefLHS & UndefRHS;
1666     KnownZero = ZeroLHS & ZeroRHS;
1667     break;
1668   }
1669   case ISD::VECTOR_SHUFFLE: {
1670     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1671 
1672     // Collect demanded elements from shuffle operands..
1673     APInt DemandedLHS(NumElts, 0);
1674     APInt DemandedRHS(NumElts, 0);
1675     for (unsigned i = 0; i != NumElts; ++i) {
1676       int M = ShuffleMask[i];
1677       if (M < 0 || !DemandedElts[i])
1678         continue;
1679       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1680       if (M < (int)NumElts)
1681         DemandedLHS.setBit(M);
1682       else
1683         DemandedRHS.setBit(M - NumElts);
1684     }
1685 
1686     // See if we can simplify either shuffle operand.
1687     APInt UndefLHS, ZeroLHS;
1688     APInt UndefRHS, ZeroRHS;
1689     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1690                                    ZeroLHS, TLO, Depth + 1))
1691       return true;
1692     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1693                                    ZeroRHS, TLO, Depth + 1))
1694       return true;
1695 
1696     // Simplify mask using undef elements from LHS/RHS.
1697     bool Updated = false;
1698     bool IdentityLHS = true, IdentityRHS = true;
1699     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1700     for (unsigned i = 0; i != NumElts; ++i) {
1701       int &M = NewMask[i];
1702       if (M < 0)
1703         continue;
1704       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1705           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1706         Updated = true;
1707         M = -1;
1708       }
1709       IdentityLHS &= (M < 0) || (M == (int)i);
1710       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1711     }
1712 
1713     // Update legal shuffle masks based on demanded elements if it won't reduce
1714     // to Identity which can cause premature removal of the shuffle mask.
1715     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1716         isShuffleMaskLegal(NewMask, VT))
1717       return TLO.CombineTo(Op,
1718                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1719                                                     Op.getOperand(1), NewMask));
1720 
1721     // Propagate undef/zero elements from LHS/RHS.
1722     for (unsigned i = 0; i != NumElts; ++i) {
1723       int M = ShuffleMask[i];
1724       if (M < 0) {
1725         KnownUndef.setBit(i);
1726       } else if (M < (int)NumElts) {
1727         if (UndefLHS[M])
1728           KnownUndef.setBit(i);
1729         if (ZeroLHS[M])
1730           KnownZero.setBit(i);
1731       } else {
1732         if (UndefRHS[M - NumElts])
1733           KnownUndef.setBit(i);
1734         if (ZeroRHS[M - NumElts])
1735           KnownZero.setBit(i);
1736       }
1737     }
1738     break;
1739   }
1740   case ISD::SIGN_EXTEND_VECTOR_INREG:
1741   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1742     APInt SrcUndef, SrcZero;
1743     SDValue Src = Op.getOperand(0);
1744     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1745     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1746     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1747                                    SrcZero, TLO, Depth + 1))
1748       return true;
1749     KnownZero = SrcZero.zextOrTrunc(NumElts);
1750     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1751     break;
1752   }
1753   case ISD::ADD:
1754   case ISD::SUB:
1755   case ISD::FADD:
1756   case ISD::FSUB:
1757   case ISD::FMUL:
1758   case ISD::FDIV:
1759   case ISD::FREM: {
1760     APInt SrcUndef, SrcZero;
1761     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1762                                    SrcZero, TLO, Depth + 1))
1763       return true;
1764     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1765                                    KnownZero, TLO, Depth + 1))
1766       return true;
1767     KnownZero &= SrcZero;
1768     KnownUndef &= SrcUndef;
1769     break;
1770   }
1771   case ISD::TRUNCATE:
1772   case ISD::SIGN_EXTEND:
1773   case ISD::ZERO_EXTEND:
1774     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1775                                    KnownZero, TLO, Depth + 1))
1776       return true;
1777     break;
1778   default: {
1779     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
1780       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1781                                                   KnownZero, TLO, Depth))
1782         return true;
1783     break;
1784   }
1785   }
1786   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1787 
1788   // Constant fold all undef cases.
1789   // TODO: Handle zero cases as well.
1790   if (DemandedElts.isSubsetOf(KnownUndef))
1791     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1792 
1793   return false;
1794 }
1795 
1796 /// Determine which of the bits specified in Mask are known to be either zero or
1797 /// one and return them in the Known.
1798 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1799                                                    KnownBits &Known,
1800                                                    const APInt &DemandedElts,
1801                                                    const SelectionDAG &DAG,
1802                                                    unsigned Depth) const {
1803   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1804           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1805           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1806           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1807          "Should use MaskedValueIsZero if you don't know whether Op"
1808          " is a target node!");
1809   Known.resetAll();
1810 }
1811 
1812 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1813                                                    KnownBits &Known,
1814                                                    const APInt &DemandedElts,
1815                                                    const SelectionDAG &DAG,
1816                                                    unsigned Depth) const {
1817   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1818 
1819   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1820     // The low bits are known zero if the pointer is aligned.
1821     Known.Zero.setLowBits(Log2_32(Align));
1822   }
1823 }
1824 
1825 /// This method can be implemented by targets that want to expose additional
1826 /// information about sign bits to the DAG Combiner.
1827 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1828                                                          const APInt &,
1829                                                          const SelectionDAG &,
1830                                                          unsigned Depth) const {
1831   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1832           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1833           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1834           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1835          "Should use ComputeNumSignBits if you don't know whether Op"
1836          " is a target node!");
1837   return 1;
1838 }
1839 
1840 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1841     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1842     TargetLoweringOpt &TLO, unsigned Depth) const {
1843   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1844           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1845           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1846           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1847          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1848          " is a target node!");
1849   return false;
1850 }
1851 
1852 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1853     SDValue Op, const APInt &DemandedBits, KnownBits &Known,
1854     TargetLoweringOpt &TLO, unsigned Depth) const {
1855   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1856           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1857           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1858           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1859          "Should use SimplifyDemandedBits if you don't know whether Op"
1860          " is a target node!");
1861   EVT VT = Op.getValueType();
1862   APInt DemandedElts = VT.isVector()
1863                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
1864                            : APInt(1, 1);
1865   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
1866   return false;
1867 }
1868 
1869 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
1870                                                   const SelectionDAG &DAG,
1871                                                   bool SNaN,
1872                                                   unsigned Depth) const {
1873   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1874           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1875           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1876           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1877          "Should use isKnownNeverNaN if you don't know whether Op"
1878          " is a target node!");
1879   return false;
1880 }
1881 
1882 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1883 // work with truncating build vectors and vectors with elements of less than
1884 // 8 bits.
1885 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1886   if (!N)
1887     return false;
1888 
1889   APInt CVal;
1890   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1891     CVal = CN->getAPIntValue();
1892   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1893     auto *CN = BV->getConstantSplatNode();
1894     if (!CN)
1895       return false;
1896 
1897     // If this is a truncating build vector, truncate the splat value.
1898     // Otherwise, we may fail to match the expected values below.
1899     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1900     CVal = CN->getAPIntValue();
1901     if (BVEltWidth < CVal.getBitWidth())
1902       CVal = CVal.trunc(BVEltWidth);
1903   } else {
1904     return false;
1905   }
1906 
1907   switch (getBooleanContents(N->getValueType(0))) {
1908   case UndefinedBooleanContent:
1909     return CVal[0];
1910   case ZeroOrOneBooleanContent:
1911     return CVal.isOneValue();
1912   case ZeroOrNegativeOneBooleanContent:
1913     return CVal.isAllOnesValue();
1914   }
1915 
1916   llvm_unreachable("Invalid boolean contents");
1917 }
1918 
1919 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1920   if (!N)
1921     return false;
1922 
1923   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1924   if (!CN) {
1925     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1926     if (!BV)
1927       return false;
1928 
1929     // Only interested in constant splats, we don't care about undef
1930     // elements in identifying boolean constants and getConstantSplatNode
1931     // returns NULL if all ops are undef;
1932     CN = BV->getConstantSplatNode();
1933     if (!CN)
1934       return false;
1935   }
1936 
1937   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1938     return !CN->getAPIntValue()[0];
1939 
1940   return CN->isNullValue();
1941 }
1942 
1943 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1944                                        bool SExt) const {
1945   if (VT == MVT::i1)
1946     return N->isOne();
1947 
1948   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1949   switch (Cnt) {
1950   case TargetLowering::ZeroOrOneBooleanContent:
1951     // An extended value of 1 is always true, unless its original type is i1,
1952     // in which case it will be sign extended to -1.
1953     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1954   case TargetLowering::UndefinedBooleanContent:
1955   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1956     return N->isAllOnesValue() && SExt;
1957   }
1958   llvm_unreachable("Unexpected enumeration.");
1959 }
1960 
1961 /// This helper function of SimplifySetCC tries to optimize the comparison when
1962 /// either operand of the SetCC node is a bitwise-and instruction.
1963 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1964                                              ISD::CondCode Cond,
1965                                              DAGCombinerInfo &DCI,
1966                                              const SDLoc &DL) const {
1967   // Match these patterns in any of their permutations:
1968   // (X & Y) == Y
1969   // (X & Y) != Y
1970   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1971     std::swap(N0, N1);
1972 
1973   EVT OpVT = N0.getValueType();
1974   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1975       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1976     return SDValue();
1977 
1978   SDValue X, Y;
1979   if (N0.getOperand(0) == N1) {
1980     X = N0.getOperand(1);
1981     Y = N0.getOperand(0);
1982   } else if (N0.getOperand(1) == N1) {
1983     X = N0.getOperand(0);
1984     Y = N0.getOperand(1);
1985   } else {
1986     return SDValue();
1987   }
1988 
1989   SelectionDAG &DAG = DCI.DAG;
1990   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1991   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1992     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1993     // Note that where Y is variable and is known to have at most one bit set
1994     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1995     // equivalent when Y == 0.
1996     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1997     if (DCI.isBeforeLegalizeOps() ||
1998         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1999       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2000   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2001     // If the target supports an 'and-not' or 'and-complement' logic operation,
2002     // try to use that to make a comparison operation more efficient.
2003     // But don't do this transform if the mask is a single bit because there are
2004     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2005     // 'rlwinm' on PPC).
2006 
2007     // Bail out if the compare operand that we want to turn into a zero is
2008     // already a zero (otherwise, infinite loop).
2009     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2010     if (YConst && YConst->isNullValue())
2011       return SDValue();
2012 
2013     // Transform this into: ~X & Y == 0.
2014     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2015     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2016     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2017   }
2018 
2019   return SDValue();
2020 }
2021 
2022 /// There are multiple IR patterns that could be checking whether certain
2023 /// truncation of a signed number would be lossy or not. The pattern which is
2024 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2025 /// We are looking for the following pattern: (KeptBits is a constant)
2026 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2027 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2028 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2029 /// We will unfold it into the natural trunc+sext pattern:
2030 ///   ((%x << C) a>> C) dstcond %x
2031 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2032 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2033     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2034     const SDLoc &DL) const {
2035   // We must be comparing with a constant.
2036   ConstantSDNode *C1;
2037   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2038     return SDValue();
2039 
2040   // N0 should be:  add %x, (1 << (KeptBits-1))
2041   if (N0->getOpcode() != ISD::ADD)
2042     return SDValue();
2043 
2044   // And we must be 'add'ing a constant.
2045   ConstantSDNode *C01;
2046   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2047     return SDValue();
2048 
2049   SDValue X = N0->getOperand(0);
2050   EVT XVT = X.getValueType();
2051 
2052   // Validate constants ...
2053 
2054   APInt I1 = C1->getAPIntValue();
2055 
2056   ISD::CondCode NewCond;
2057   if (Cond == ISD::CondCode::SETULT) {
2058     NewCond = ISD::CondCode::SETEQ;
2059   } else if (Cond == ISD::CondCode::SETULE) {
2060     NewCond = ISD::CondCode::SETEQ;
2061     // But need to 'canonicalize' the constant.
2062     I1 += 1;
2063   } else if (Cond == ISD::CondCode::SETUGT) {
2064     NewCond = ISD::CondCode::SETNE;
2065     // But need to 'canonicalize' the constant.
2066     I1 += 1;
2067   } else if (Cond == ISD::CondCode::SETUGE) {
2068     NewCond = ISD::CondCode::SETNE;
2069   } else
2070     return SDValue();
2071 
2072   APInt I01 = C01->getAPIntValue();
2073 
2074   auto checkConstants = [&I1, &I01]() -> bool {
2075     // Both of them must be power-of-two, and the constant from setcc is bigger.
2076     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2077   };
2078 
2079   if (checkConstants()) {
2080     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2081   } else {
2082     // What if we invert constants? (and the target predicate)
2083     I1.negate();
2084     I01.negate();
2085     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2086     if (!checkConstants())
2087       return SDValue();
2088     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2089   }
2090 
2091   // They are power-of-two, so which bit is set?
2092   const unsigned KeptBits = I1.logBase2();
2093   const unsigned KeptBitsMinusOne = I01.logBase2();
2094 
2095   // Magic!
2096   if (KeptBits != (KeptBitsMinusOne + 1))
2097     return SDValue();
2098   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2099 
2100   // We don't want to do this in every single case.
2101   SelectionDAG &DAG = DCI.DAG;
2102   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2103           XVT, KeptBits))
2104     return SDValue();
2105 
2106   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2107   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2108 
2109   // Unfold into:  ((%x << C) a>> C) cond %x
2110   // Where 'cond' will be either 'eq' or 'ne'.
2111   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2112   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2113   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2114   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2115 
2116   return T2;
2117 }
2118 
2119 /// Try to simplify a setcc built with the specified operands and cc. If it is
2120 /// unable to simplify it, return a null SDValue.
2121 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2122                                       ISD::CondCode Cond, bool foldBooleans,
2123                                       DAGCombinerInfo &DCI,
2124                                       const SDLoc &dl) const {
2125   SelectionDAG &DAG = DCI.DAG;
2126   EVT OpVT = N0.getValueType();
2127 
2128   // These setcc operations always fold.
2129   switch (Cond) {
2130   default: break;
2131   case ISD::SETFALSE:
2132   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2133   case ISD::SETTRUE:
2134   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2135   }
2136 
2137   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2138   // TODO: Handle non-splat vector constants. All undef causes trouble.
2139   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2140   if (isConstOrConstSplat(N0) &&
2141       (DCI.isBeforeLegalizeOps() ||
2142        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2143     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2144 
2145   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2146     const APInt &C1 = N1C->getAPIntValue();
2147 
2148     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2149     // equality comparison, then we're just comparing whether X itself is
2150     // zero.
2151     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2152         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2153         N0.getOperand(1).getOpcode() == ISD::Constant) {
2154       const APInt &ShAmt
2155         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2156       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2157           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2158         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2159           // (srl (ctlz x), 5) == 0  -> X != 0
2160           // (srl (ctlz x), 5) != 1  -> X != 0
2161           Cond = ISD::SETNE;
2162         } else {
2163           // (srl (ctlz x), 5) != 0  -> X == 0
2164           // (srl (ctlz x), 5) == 1  -> X == 0
2165           Cond = ISD::SETEQ;
2166         }
2167         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2168         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2169                             Zero, Cond);
2170       }
2171     }
2172 
2173     SDValue CTPOP = N0;
2174     // Look through truncs that don't change the value of a ctpop.
2175     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2176       CTPOP = N0.getOperand(0);
2177 
2178     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2179         (N0 == CTPOP ||
2180          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2181       EVT CTVT = CTPOP.getValueType();
2182       SDValue CTOp = CTPOP.getOperand(0);
2183 
2184       // (ctpop x) u< 2 -> (x & x-1) == 0
2185       // (ctpop x) u> 1 -> (x & x-1) != 0
2186       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2187         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2188                                   DAG.getConstant(1, dl, CTVT));
2189         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2190         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2191         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2192       }
2193 
2194       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2195     }
2196 
2197     // (zext x) == C --> x == (trunc C)
2198     // (sext x) == C --> x == (trunc C)
2199     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2200         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2201       unsigned MinBits = N0.getValueSizeInBits();
2202       SDValue PreExt;
2203       bool Signed = false;
2204       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2205         // ZExt
2206         MinBits = N0->getOperand(0).getValueSizeInBits();
2207         PreExt = N0->getOperand(0);
2208       } else if (N0->getOpcode() == ISD::AND) {
2209         // DAGCombine turns costly ZExts into ANDs
2210         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2211           if ((C->getAPIntValue()+1).isPowerOf2()) {
2212             MinBits = C->getAPIntValue().countTrailingOnes();
2213             PreExt = N0->getOperand(0);
2214           }
2215       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2216         // SExt
2217         MinBits = N0->getOperand(0).getValueSizeInBits();
2218         PreExt = N0->getOperand(0);
2219         Signed = true;
2220       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2221         // ZEXTLOAD / SEXTLOAD
2222         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2223           MinBits = LN0->getMemoryVT().getSizeInBits();
2224           PreExt = N0;
2225         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2226           Signed = true;
2227           MinBits = LN0->getMemoryVT().getSizeInBits();
2228           PreExt = N0;
2229         }
2230       }
2231 
2232       // Figure out how many bits we need to preserve this constant.
2233       unsigned ReqdBits = Signed ?
2234         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2235         C1.getActiveBits();
2236 
2237       // Make sure we're not losing bits from the constant.
2238       if (MinBits > 0 &&
2239           MinBits < C1.getBitWidth() &&
2240           MinBits >= ReqdBits) {
2241         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2242         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2243           // Will get folded away.
2244           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2245           if (MinBits == 1 && C1 == 1)
2246             // Invert the condition.
2247             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2248                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2249           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2250           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2251         }
2252 
2253         // If truncating the setcc operands is not desirable, we can still
2254         // simplify the expression in some cases:
2255         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2256         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2257         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2258         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2259         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2260         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2261         SDValue TopSetCC = N0->getOperand(0);
2262         unsigned N0Opc = N0->getOpcode();
2263         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2264         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2265             TopSetCC.getOpcode() == ISD::SETCC &&
2266             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2267             (isConstFalseVal(N1C) ||
2268              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2269 
2270           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2271                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2272 
2273           if (!Inverse)
2274             return TopSetCC;
2275 
2276           ISD::CondCode InvCond = ISD::getSetCCInverse(
2277               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2278               TopSetCC.getOperand(0).getValueType().isInteger());
2279           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2280                                       TopSetCC.getOperand(1),
2281                                       InvCond);
2282         }
2283       }
2284     }
2285 
2286     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2287     // equality or unsigned, and all 1 bits of the const are in the same
2288     // partial word, see if we can shorten the load.
2289     if (DCI.isBeforeLegalize() &&
2290         !ISD::isSignedIntSetCC(Cond) &&
2291         N0.getOpcode() == ISD::AND && C1 == 0 &&
2292         N0.getNode()->hasOneUse() &&
2293         isa<LoadSDNode>(N0.getOperand(0)) &&
2294         N0.getOperand(0).getNode()->hasOneUse() &&
2295         isa<ConstantSDNode>(N0.getOperand(1))) {
2296       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2297       APInt bestMask;
2298       unsigned bestWidth = 0, bestOffset = 0;
2299       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2300         unsigned origWidth = N0.getValueSizeInBits();
2301         unsigned maskWidth = origWidth;
2302         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2303         // 8 bits, but have to be careful...
2304         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2305           origWidth = Lod->getMemoryVT().getSizeInBits();
2306         const APInt &Mask =
2307           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2308         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2309           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2310           for (unsigned offset=0; offset<origWidth/width; offset++) {
2311             if (Mask.isSubsetOf(newMask)) {
2312               if (DAG.getDataLayout().isLittleEndian())
2313                 bestOffset = (uint64_t)offset * (width/8);
2314               else
2315                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2316               bestMask = Mask.lshr(offset * (width/8) * 8);
2317               bestWidth = width;
2318               break;
2319             }
2320             newMask <<= width;
2321           }
2322         }
2323       }
2324       if (bestWidth) {
2325         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2326         if (newVT.isRound() &&
2327             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2328           EVT PtrType = Lod->getOperand(1).getValueType();
2329           SDValue Ptr = Lod->getBasePtr();
2330           if (bestOffset != 0)
2331             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2332                               DAG.getConstant(bestOffset, dl, PtrType));
2333           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2334           SDValue NewLoad = DAG.getLoad(
2335               newVT, dl, Lod->getChain(), Ptr,
2336               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2337           return DAG.getSetCC(dl, VT,
2338                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2339                                       DAG.getConstant(bestMask.trunc(bestWidth),
2340                                                       dl, newVT)),
2341                               DAG.getConstant(0LL, dl, newVT), Cond);
2342         }
2343       }
2344     }
2345 
2346     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2347     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2348       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2349 
2350       // If the comparison constant has bits in the upper part, the
2351       // zero-extended value could never match.
2352       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2353                                               C1.getBitWidth() - InSize))) {
2354         switch (Cond) {
2355         case ISD::SETUGT:
2356         case ISD::SETUGE:
2357         case ISD::SETEQ:
2358           return DAG.getConstant(0, dl, VT);
2359         case ISD::SETULT:
2360         case ISD::SETULE:
2361         case ISD::SETNE:
2362           return DAG.getConstant(1, dl, VT);
2363         case ISD::SETGT:
2364         case ISD::SETGE:
2365           // True if the sign bit of C1 is set.
2366           return DAG.getConstant(C1.isNegative(), dl, VT);
2367         case ISD::SETLT:
2368         case ISD::SETLE:
2369           // True if the sign bit of C1 isn't set.
2370           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2371         default:
2372           break;
2373         }
2374       }
2375 
2376       // Otherwise, we can perform the comparison with the low bits.
2377       switch (Cond) {
2378       case ISD::SETEQ:
2379       case ISD::SETNE:
2380       case ISD::SETUGT:
2381       case ISD::SETUGE:
2382       case ISD::SETULT:
2383       case ISD::SETULE: {
2384         EVT newVT = N0.getOperand(0).getValueType();
2385         if (DCI.isBeforeLegalizeOps() ||
2386             (isOperationLegal(ISD::SETCC, newVT) &&
2387              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2388           EVT NewSetCCVT =
2389               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2390           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2391 
2392           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2393                                           NewConst, Cond);
2394           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2395         }
2396         break;
2397       }
2398       default:
2399         break;   // todo, be more careful with signed comparisons
2400       }
2401     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2402                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2403       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2404       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2405       EVT ExtDstTy = N0.getValueType();
2406       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2407 
2408       // If the constant doesn't fit into the number of bits for the source of
2409       // the sign extension, it is impossible for both sides to be equal.
2410       if (C1.getMinSignedBits() > ExtSrcTyBits)
2411         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2412 
2413       SDValue ZextOp;
2414       EVT Op0Ty = N0.getOperand(0).getValueType();
2415       if (Op0Ty == ExtSrcTy) {
2416         ZextOp = N0.getOperand(0);
2417       } else {
2418         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2419         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2420                               DAG.getConstant(Imm, dl, Op0Ty));
2421       }
2422       if (!DCI.isCalledByLegalizer())
2423         DCI.AddToWorklist(ZextOp.getNode());
2424       // Otherwise, make this a use of a zext.
2425       return DAG.getSetCC(dl, VT, ZextOp,
2426                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2427                                                               ExtDstTyBits,
2428                                                               ExtSrcTyBits),
2429                                           dl, ExtDstTy),
2430                           Cond);
2431     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2432                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2433       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2434       if (N0.getOpcode() == ISD::SETCC &&
2435           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2436         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2437         if (TrueWhenTrue)
2438           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2439         // Invert the condition.
2440         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2441         CC = ISD::getSetCCInverse(CC,
2442                                   N0.getOperand(0).getValueType().isInteger());
2443         if (DCI.isBeforeLegalizeOps() ||
2444             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2445           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2446       }
2447 
2448       if ((N0.getOpcode() == ISD::XOR ||
2449            (N0.getOpcode() == ISD::AND &&
2450             N0.getOperand(0).getOpcode() == ISD::XOR &&
2451             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2452           isa<ConstantSDNode>(N0.getOperand(1)) &&
2453           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2454         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2455         // can only do this if the top bits are known zero.
2456         unsigned BitWidth = N0.getValueSizeInBits();
2457         if (DAG.MaskedValueIsZero(N0,
2458                                   APInt::getHighBitsSet(BitWidth,
2459                                                         BitWidth-1))) {
2460           // Okay, get the un-inverted input value.
2461           SDValue Val;
2462           if (N0.getOpcode() == ISD::XOR) {
2463             Val = N0.getOperand(0);
2464           } else {
2465             assert(N0.getOpcode() == ISD::AND &&
2466                     N0.getOperand(0).getOpcode() == ISD::XOR);
2467             // ((X^1)&1)^1 -> X & 1
2468             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2469                               N0.getOperand(0).getOperand(0),
2470                               N0.getOperand(1));
2471           }
2472 
2473           return DAG.getSetCC(dl, VT, Val, N1,
2474                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2475         }
2476       } else if (N1C->isOne() &&
2477                  (VT == MVT::i1 ||
2478                   getBooleanContents(N0->getValueType(0)) ==
2479                       ZeroOrOneBooleanContent)) {
2480         SDValue Op0 = N0;
2481         if (Op0.getOpcode() == ISD::TRUNCATE)
2482           Op0 = Op0.getOperand(0);
2483 
2484         if ((Op0.getOpcode() == ISD::XOR) &&
2485             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2486             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2487           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2488           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2489           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2490                               Cond);
2491         }
2492         if (Op0.getOpcode() == ISD::AND &&
2493             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2494             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2495           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2496           if (Op0.getValueType().bitsGT(VT))
2497             Op0 = DAG.getNode(ISD::AND, dl, VT,
2498                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2499                           DAG.getConstant(1, dl, VT));
2500           else if (Op0.getValueType().bitsLT(VT))
2501             Op0 = DAG.getNode(ISD::AND, dl, VT,
2502                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2503                         DAG.getConstant(1, dl, VT));
2504 
2505           return DAG.getSetCC(dl, VT, Op0,
2506                               DAG.getConstant(0, dl, Op0.getValueType()),
2507                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2508         }
2509         if (Op0.getOpcode() == ISD::AssertZext &&
2510             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2511           return DAG.getSetCC(dl, VT, Op0,
2512                               DAG.getConstant(0, dl, Op0.getValueType()),
2513                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2514       }
2515     }
2516 
2517     if (SDValue V =
2518             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2519       return V;
2520   }
2521 
2522   // These simplifications apply to splat vectors as well.
2523   // TODO: Handle more splat vector cases.
2524   if (auto *N1C = isConstOrConstSplat(N1)) {
2525     const APInt &C1 = N1C->getAPIntValue();
2526 
2527     APInt MinVal, MaxVal;
2528     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2529     if (ISD::isSignedIntSetCC(Cond)) {
2530       MinVal = APInt::getSignedMinValue(OperandBitSize);
2531       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2532     } else {
2533       MinVal = APInt::getMinValue(OperandBitSize);
2534       MaxVal = APInt::getMaxValue(OperandBitSize);
2535     }
2536 
2537     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2538     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2539       // X >= MIN --> true
2540       if (C1 == MinVal)
2541         return DAG.getBoolConstant(true, dl, VT, OpVT);
2542 
2543       if (!VT.isVector()) { // TODO: Support this for vectors.
2544         // X >= C0 --> X > (C0 - 1)
2545         APInt C = C1 - 1;
2546         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2547         if ((DCI.isBeforeLegalizeOps() ||
2548              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2549             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2550                                   isLegalICmpImmediate(C.getSExtValue())))) {
2551           return DAG.getSetCC(dl, VT, N0,
2552                               DAG.getConstant(C, dl, N1.getValueType()),
2553                               NewCC);
2554         }
2555       }
2556     }
2557 
2558     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2559       // X <= MAX --> true
2560       if (C1 == MaxVal)
2561         return DAG.getBoolConstant(true, dl, VT, OpVT);
2562 
2563       // X <= C0 --> X < (C0 + 1)
2564       if (!VT.isVector()) { // TODO: Support this for vectors.
2565         APInt C = C1 + 1;
2566         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2567         if ((DCI.isBeforeLegalizeOps() ||
2568              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2569             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2570                                   isLegalICmpImmediate(C.getSExtValue())))) {
2571           return DAG.getSetCC(dl, VT, N0,
2572                               DAG.getConstant(C, dl, N1.getValueType()),
2573                               NewCC);
2574         }
2575       }
2576     }
2577 
2578     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2579       if (C1 == MinVal)
2580         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2581 
2582       // TODO: Support this for vectors after legalize ops.
2583       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2584         // Canonicalize setlt X, Max --> setne X, Max
2585         if (C1 == MaxVal)
2586           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2587 
2588         // If we have setult X, 1, turn it into seteq X, 0
2589         if (C1 == MinVal+1)
2590           return DAG.getSetCC(dl, VT, N0,
2591                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2592                               ISD::SETEQ);
2593       }
2594     }
2595 
2596     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2597       if (C1 == MaxVal)
2598         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2599 
2600       // TODO: Support this for vectors after legalize ops.
2601       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2602         // Canonicalize setgt X, Min --> setne X, Min
2603         if (C1 == MinVal)
2604           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2605 
2606         // If we have setugt X, Max-1, turn it into seteq X, Max
2607         if (C1 == MaxVal-1)
2608           return DAG.getSetCC(dl, VT, N0,
2609                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2610                               ISD::SETEQ);
2611       }
2612     }
2613 
2614     // If we have "setcc X, C0", check to see if we can shrink the immediate
2615     // by changing cc.
2616     // TODO: Support this for vectors after legalize ops.
2617     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2618       // SETUGT X, SINTMAX  -> SETLT X, 0
2619       if (Cond == ISD::SETUGT &&
2620           C1 == APInt::getSignedMaxValue(OperandBitSize))
2621         return DAG.getSetCC(dl, VT, N0,
2622                             DAG.getConstant(0, dl, N1.getValueType()),
2623                             ISD::SETLT);
2624 
2625       // SETULT X, SINTMIN  -> SETGT X, -1
2626       if (Cond == ISD::SETULT &&
2627           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2628         SDValue ConstMinusOne =
2629             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2630                             N1.getValueType());
2631         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2632       }
2633     }
2634   }
2635 
2636   // Back to non-vector simplifications.
2637   // TODO: Can we do these for vector splats?
2638   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2639     const APInt &C1 = N1C->getAPIntValue();
2640 
2641     // Fold bit comparisons when we can.
2642     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2643         (VT == N0.getValueType() ||
2644          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2645         N0.getOpcode() == ISD::AND) {
2646       auto &DL = DAG.getDataLayout();
2647       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2648         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2649                                        !DCI.isBeforeLegalize());
2650         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2651           // Perform the xform if the AND RHS is a single bit.
2652           if (AndRHS->getAPIntValue().isPowerOf2()) {
2653             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2654                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2655                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2656                                    ShiftTy)));
2657           }
2658         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2659           // (X & 8) == 8  -->  (X & 8) >> 3
2660           // Perform the xform if C1 is a single bit.
2661           if (C1.isPowerOf2()) {
2662             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2663                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2664                                       DAG.getConstant(C1.logBase2(), dl,
2665                                                       ShiftTy)));
2666           }
2667         }
2668       }
2669     }
2670 
2671     if (C1.getMinSignedBits() <= 64 &&
2672         !isLegalICmpImmediate(C1.getSExtValue())) {
2673       // (X & -256) == 256 -> (X >> 8) == 1
2674       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2675           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2676         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2677           const APInt &AndRHSC = AndRHS->getAPIntValue();
2678           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2679             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2680             auto &DL = DAG.getDataLayout();
2681             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2682                                            !DCI.isBeforeLegalize());
2683             EVT CmpTy = N0.getValueType();
2684             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2685                                         DAG.getConstant(ShiftBits, dl,
2686                                                         ShiftTy));
2687             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2688             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2689           }
2690         }
2691       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2692                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2693         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2694         // X <  0x100000000 -> (X >> 32) <  1
2695         // X >= 0x100000000 -> (X >> 32) >= 1
2696         // X <= 0x0ffffffff -> (X >> 32) <  1
2697         // X >  0x0ffffffff -> (X >> 32) >= 1
2698         unsigned ShiftBits;
2699         APInt NewC = C1;
2700         ISD::CondCode NewCond = Cond;
2701         if (AdjOne) {
2702           ShiftBits = C1.countTrailingOnes();
2703           NewC = NewC + 1;
2704           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2705         } else {
2706           ShiftBits = C1.countTrailingZeros();
2707         }
2708         NewC.lshrInPlace(ShiftBits);
2709         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2710           isLegalICmpImmediate(NewC.getSExtValue())) {
2711           auto &DL = DAG.getDataLayout();
2712           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2713                                          !DCI.isBeforeLegalize());
2714           EVT CmpTy = N0.getValueType();
2715           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2716                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2717           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2718           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2719         }
2720       }
2721     }
2722   }
2723 
2724   if (isa<ConstantFPSDNode>(N0.getNode())) {
2725     // Constant fold or commute setcc.
2726     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2727     if (O.getNode()) return O;
2728   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2729     // If the RHS of an FP comparison is a constant, simplify it away in
2730     // some cases.
2731     if (CFP->getValueAPF().isNaN()) {
2732       // If an operand is known to be a nan, we can fold it.
2733       switch (ISD::getUnorderedFlavor(Cond)) {
2734       default: llvm_unreachable("Unknown flavor!");
2735       case 0:  // Known false.
2736         return DAG.getBoolConstant(false, dl, VT, OpVT);
2737       case 1:  // Known true.
2738         return DAG.getBoolConstant(true, dl, VT, OpVT);
2739       case 2:  // Undefined.
2740         return DAG.getUNDEF(VT);
2741       }
2742     }
2743 
2744     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2745     // constant if knowing that the operand is non-nan is enough.  We prefer to
2746     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2747     // materialize 0.0.
2748     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2749       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2750 
2751     // setcc (fneg x), C -> setcc swap(pred) x, -C
2752     if (N0.getOpcode() == ISD::FNEG) {
2753       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2754       if (DCI.isBeforeLegalizeOps() ||
2755           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2756         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2757         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2758       }
2759     }
2760 
2761     // If the condition is not legal, see if we can find an equivalent one
2762     // which is legal.
2763     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2764       // If the comparison was an awkward floating-point == or != and one of
2765       // the comparison operands is infinity or negative infinity, convert the
2766       // condition to a less-awkward <= or >=.
2767       if (CFP->getValueAPF().isInfinity()) {
2768         if (CFP->getValueAPF().isNegative()) {
2769           if (Cond == ISD::SETOEQ &&
2770               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2771             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2772           if (Cond == ISD::SETUEQ &&
2773               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2774             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2775           if (Cond == ISD::SETUNE &&
2776               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2777             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2778           if (Cond == ISD::SETONE &&
2779               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2780             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2781         } else {
2782           if (Cond == ISD::SETOEQ &&
2783               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2784             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2785           if (Cond == ISD::SETUEQ &&
2786               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2787             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2788           if (Cond == ISD::SETUNE &&
2789               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2790             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2791           if (Cond == ISD::SETONE &&
2792               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2793             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2794         }
2795       }
2796     }
2797   }
2798 
2799   if (N0 == N1) {
2800     // The sext(setcc()) => setcc() optimization relies on the appropriate
2801     // constant being emitted.
2802 
2803     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2804 
2805     // We can always fold X == X for integer setcc's.
2806     if (N0.getValueType().isInteger())
2807       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2808 
2809     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2810     if (UOF == 2)   // FP operators that are undefined on NaNs.
2811       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2812     if (UOF == unsigned(EqTrue))
2813       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2814     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2815     // if it is not already.
2816     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2817     if (NewCond != Cond &&
2818         (DCI.isBeforeLegalizeOps() ||
2819          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2820       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2821   }
2822 
2823   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2824       N0.getValueType().isInteger()) {
2825     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2826         N0.getOpcode() == ISD::XOR) {
2827       // Simplify (X+Y) == (X+Z) -->  Y == Z
2828       if (N0.getOpcode() == N1.getOpcode()) {
2829         if (N0.getOperand(0) == N1.getOperand(0))
2830           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2831         if (N0.getOperand(1) == N1.getOperand(1))
2832           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2833         if (isCommutativeBinOp(N0.getOpcode())) {
2834           // If X op Y == Y op X, try other combinations.
2835           if (N0.getOperand(0) == N1.getOperand(1))
2836             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2837                                 Cond);
2838           if (N0.getOperand(1) == N1.getOperand(0))
2839             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2840                                 Cond);
2841         }
2842       }
2843 
2844       // If RHS is a legal immediate value for a compare instruction, we need
2845       // to be careful about increasing register pressure needlessly.
2846       bool LegalRHSImm = false;
2847 
2848       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2849         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2850           // Turn (X+C1) == C2 --> X == C2-C1
2851           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2852             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2853                                 DAG.getConstant(RHSC->getAPIntValue()-
2854                                                 LHSR->getAPIntValue(),
2855                                 dl, N0.getValueType()), Cond);
2856           }
2857 
2858           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2859           if (N0.getOpcode() == ISD::XOR)
2860             // If we know that all of the inverted bits are zero, don't bother
2861             // performing the inversion.
2862             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2863               return
2864                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2865                              DAG.getConstant(LHSR->getAPIntValue() ^
2866                                                RHSC->getAPIntValue(),
2867                                              dl, N0.getValueType()),
2868                              Cond);
2869         }
2870 
2871         // Turn (C1-X) == C2 --> X == C1-C2
2872         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2873           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2874             return
2875               DAG.getSetCC(dl, VT, N0.getOperand(1),
2876                            DAG.getConstant(SUBC->getAPIntValue() -
2877                                              RHSC->getAPIntValue(),
2878                                            dl, N0.getValueType()),
2879                            Cond);
2880           }
2881         }
2882 
2883         // Could RHSC fold directly into a compare?
2884         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2885           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2886       }
2887 
2888       // Simplify (X+Z) == X -->  Z == 0
2889       // Don't do this if X is an immediate that can fold into a cmp
2890       // instruction and X+Z has other uses. It could be an induction variable
2891       // chain, and the transform would increase register pressure.
2892       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2893         if (N0.getOperand(0) == N1)
2894           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2895                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2896         if (N0.getOperand(1) == N1) {
2897           if (isCommutativeBinOp(N0.getOpcode()))
2898             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2899                                 DAG.getConstant(0, dl, N0.getValueType()),
2900                                 Cond);
2901           if (N0.getNode()->hasOneUse()) {
2902             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2903             auto &DL = DAG.getDataLayout();
2904             // (Z-X) == X  --> Z == X<<1
2905             SDValue SH = DAG.getNode(
2906                 ISD::SHL, dl, N1.getValueType(), N1,
2907                 DAG.getConstant(1, dl,
2908                                 getShiftAmountTy(N1.getValueType(), DL,
2909                                                  !DCI.isBeforeLegalize())));
2910             if (!DCI.isCalledByLegalizer())
2911               DCI.AddToWorklist(SH.getNode());
2912             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2913           }
2914         }
2915       }
2916     }
2917 
2918     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2919         N1.getOpcode() == ISD::XOR) {
2920       // Simplify  X == (X+Z) -->  Z == 0
2921       if (N1.getOperand(0) == N0)
2922         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2923                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2924       if (N1.getOperand(1) == N0) {
2925         if (isCommutativeBinOp(N1.getOpcode()))
2926           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2927                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2928         if (N1.getNode()->hasOneUse()) {
2929           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2930           auto &DL = DAG.getDataLayout();
2931           // X == (Z-X)  --> X<<1 == Z
2932           SDValue SH = DAG.getNode(
2933               ISD::SHL, dl, N1.getValueType(), N0,
2934               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
2935                                                       !DCI.isBeforeLegalize())));
2936           if (!DCI.isCalledByLegalizer())
2937             DCI.AddToWorklist(SH.getNode());
2938           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2939         }
2940       }
2941     }
2942 
2943     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2944       return V;
2945   }
2946 
2947   // Fold away ALL boolean setcc's.
2948   SDValue Temp;
2949   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2950     EVT OpVT = N0.getValueType();
2951     switch (Cond) {
2952     default: llvm_unreachable("Unknown integer setcc!");
2953     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2954       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2955       N0 = DAG.getNOT(dl, Temp, OpVT);
2956       if (!DCI.isCalledByLegalizer())
2957         DCI.AddToWorklist(Temp.getNode());
2958       break;
2959     case ISD::SETNE:  // X != Y   -->  (X^Y)
2960       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2961       break;
2962     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2963     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2964       Temp = DAG.getNOT(dl, N0, OpVT);
2965       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2966       if (!DCI.isCalledByLegalizer())
2967         DCI.AddToWorklist(Temp.getNode());
2968       break;
2969     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2970     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2971       Temp = DAG.getNOT(dl, N1, OpVT);
2972       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2973       if (!DCI.isCalledByLegalizer())
2974         DCI.AddToWorklist(Temp.getNode());
2975       break;
2976     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2977     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2978       Temp = DAG.getNOT(dl, N0, OpVT);
2979       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2980       if (!DCI.isCalledByLegalizer())
2981         DCI.AddToWorklist(Temp.getNode());
2982       break;
2983     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2984     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2985       Temp = DAG.getNOT(dl, N1, OpVT);
2986       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2987       break;
2988     }
2989     if (VT.getScalarType() != MVT::i1) {
2990       if (!DCI.isCalledByLegalizer())
2991         DCI.AddToWorklist(N0.getNode());
2992       // FIXME: If running after legalize, we probably can't do this.
2993       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2994       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2995     }
2996     return N0;
2997   }
2998 
2999   // Could not fold it.
3000   return SDValue();
3001 }
3002 
3003 /// Returns true (and the GlobalValue and the offset) if the node is a
3004 /// GlobalAddress + offset.
3005 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3006                                     int64_t &Offset) const {
3007 
3008   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3009 
3010   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3011     GA = GASD->getGlobal();
3012     Offset += GASD->getOffset();
3013     return true;
3014   }
3015 
3016   if (N->getOpcode() == ISD::ADD) {
3017     SDValue N1 = N->getOperand(0);
3018     SDValue N2 = N->getOperand(1);
3019     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3020       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3021         Offset += V->getSExtValue();
3022         return true;
3023       }
3024     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3025       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3026         Offset += V->getSExtValue();
3027         return true;
3028       }
3029     }
3030   }
3031 
3032   return false;
3033 }
3034 
3035 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3036                                           DAGCombinerInfo &DCI) const {
3037   // Default implementation: no optimization.
3038   return SDValue();
3039 }
3040 
3041 //===----------------------------------------------------------------------===//
3042 //  Inline Assembler Implementation Methods
3043 //===----------------------------------------------------------------------===//
3044 
3045 TargetLowering::ConstraintType
3046 TargetLowering::getConstraintType(StringRef Constraint) const {
3047   unsigned S = Constraint.size();
3048 
3049   if (S == 1) {
3050     switch (Constraint[0]) {
3051     default: break;
3052     case 'r': return C_RegisterClass;
3053     case 'm':    // memory
3054     case 'o':    // offsetable
3055     case 'V':    // not offsetable
3056       return C_Memory;
3057     case 'i':    // Simple Integer or Relocatable Constant
3058     case 'n':    // Simple Integer
3059     case 'E':    // Floating Point Constant
3060     case 'F':    // Floating Point Constant
3061     case 's':    // Relocatable Constant
3062     case 'p':    // Address.
3063     case 'X':    // Allow ANY value.
3064     case 'I':    // Target registers.
3065     case 'J':
3066     case 'K':
3067     case 'L':
3068     case 'M':
3069     case 'N':
3070     case 'O':
3071     case 'P':
3072     case '<':
3073     case '>':
3074       return C_Other;
3075     }
3076   }
3077 
3078   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3079     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3080       return C_Memory;
3081     return C_Register;
3082   }
3083   return C_Unknown;
3084 }
3085 
3086 /// Try to replace an X constraint, which matches anything, with another that
3087 /// has more specific requirements based on the type of the corresponding
3088 /// operand.
3089 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3090   if (ConstraintVT.isInteger())
3091     return "r";
3092   if (ConstraintVT.isFloatingPoint())
3093     return "f";      // works for many targets
3094   return nullptr;
3095 }
3096 
3097 /// Lower the specified operand into the Ops vector.
3098 /// If it is invalid, don't add anything to Ops.
3099 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3100                                                   std::string &Constraint,
3101                                                   std::vector<SDValue> &Ops,
3102                                                   SelectionDAG &DAG) const {
3103 
3104   if (Constraint.length() > 1) return;
3105 
3106   char ConstraintLetter = Constraint[0];
3107   switch (ConstraintLetter) {
3108   default: break;
3109   case 'X':     // Allows any operand; labels (basic block) use this.
3110     if (Op.getOpcode() == ISD::BasicBlock) {
3111       Ops.push_back(Op);
3112       return;
3113     }
3114     LLVM_FALLTHROUGH;
3115   case 'i':    // Simple Integer or Relocatable Constant
3116   case 'n':    // Simple Integer
3117   case 's': {  // Relocatable Constant
3118     // These operands are interested in values of the form (GV+C), where C may
3119     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3120     // is possible and fine if either GV or C are missing.
3121     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3122     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3123 
3124     // If we have "(add GV, C)", pull out GV/C
3125     if (Op.getOpcode() == ISD::ADD) {
3126       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3127       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3128       if (!C || !GA) {
3129         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3130         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3131       }
3132       if (!C || !GA) {
3133         C = nullptr;
3134         GA = nullptr;
3135       }
3136     }
3137 
3138     // If we find a valid operand, map to the TargetXXX version so that the
3139     // value itself doesn't get selected.
3140     if (GA) {   // Either &GV   or   &GV+C
3141       if (ConstraintLetter != 'n') {
3142         int64_t Offs = GA->getOffset();
3143         if (C) Offs += C->getZExtValue();
3144         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3145                                                  C ? SDLoc(C) : SDLoc(),
3146                                                  Op.getValueType(), Offs));
3147       }
3148       return;
3149     }
3150     if (C) {   // just C, no GV.
3151       // Simple constants are not allowed for 's'.
3152       if (ConstraintLetter != 's') {
3153         // gcc prints these as sign extended.  Sign extend value to 64 bits
3154         // now; without this it would get ZExt'd later in
3155         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3156         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3157                                             SDLoc(C), MVT::i64));
3158       }
3159       return;
3160     }
3161     break;
3162   }
3163   }
3164 }
3165 
3166 std::pair<unsigned, const TargetRegisterClass *>
3167 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3168                                              StringRef Constraint,
3169                                              MVT VT) const {
3170   if (Constraint.empty() || Constraint[0] != '{')
3171     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3172   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3173 
3174   // Remove the braces from around the name.
3175   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3176 
3177   std::pair<unsigned, const TargetRegisterClass*> R =
3178     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3179 
3180   // Figure out which register class contains this reg.
3181   for (const TargetRegisterClass *RC : RI->regclasses()) {
3182     // If none of the value types for this register class are valid, we
3183     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3184     if (!isLegalRC(*RI, *RC))
3185       continue;
3186 
3187     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3188          I != E; ++I) {
3189       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3190         std::pair<unsigned, const TargetRegisterClass*> S =
3191           std::make_pair(*I, RC);
3192 
3193         // If this register class has the requested value type, return it,
3194         // otherwise keep searching and return the first class found
3195         // if no other is found which explicitly has the requested type.
3196         if (RI->isTypeLegalForClass(*RC, VT))
3197           return S;
3198         if (!R.second)
3199           R = S;
3200       }
3201     }
3202   }
3203 
3204   return R;
3205 }
3206 
3207 //===----------------------------------------------------------------------===//
3208 // Constraint Selection.
3209 
3210 /// Return true of this is an input operand that is a matching constraint like
3211 /// "4".
3212 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3213   assert(!ConstraintCode.empty() && "No known constraint!");
3214   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3215 }
3216 
3217 /// If this is an input matching constraint, this method returns the output
3218 /// operand it matches.
3219 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3220   assert(!ConstraintCode.empty() && "No known constraint!");
3221   return atoi(ConstraintCode.c_str());
3222 }
3223 
3224 /// Split up the constraint string from the inline assembly value into the
3225 /// specific constraints and their prefixes, and also tie in the associated
3226 /// operand values.
3227 /// If this returns an empty vector, and if the constraint string itself
3228 /// isn't empty, there was an error parsing.
3229 TargetLowering::AsmOperandInfoVector
3230 TargetLowering::ParseConstraints(const DataLayout &DL,
3231                                  const TargetRegisterInfo *TRI,
3232                                  ImmutableCallSite CS) const {
3233   /// Information about all of the constraints.
3234   AsmOperandInfoVector ConstraintOperands;
3235   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3236   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3237 
3238   // Do a prepass over the constraints, canonicalizing them, and building up the
3239   // ConstraintOperands list.
3240   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3241   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3242 
3243   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3244     ConstraintOperands.emplace_back(std::move(CI));
3245     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3246 
3247     // Update multiple alternative constraint count.
3248     if (OpInfo.multipleAlternatives.size() > maCount)
3249       maCount = OpInfo.multipleAlternatives.size();
3250 
3251     OpInfo.ConstraintVT = MVT::Other;
3252 
3253     // Compute the value type for each operand.
3254     switch (OpInfo.Type) {
3255     case InlineAsm::isOutput:
3256       // Indirect outputs just consume an argument.
3257       if (OpInfo.isIndirect) {
3258         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3259         break;
3260       }
3261 
3262       // The return value of the call is this value.  As such, there is no
3263       // corresponding argument.
3264       assert(!CS.getType()->isVoidTy() &&
3265              "Bad inline asm!");
3266       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3267         OpInfo.ConstraintVT =
3268             getSimpleValueType(DL, STy->getElementType(ResNo));
3269       } else {
3270         assert(ResNo == 0 && "Asm only has one result!");
3271         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3272       }
3273       ++ResNo;
3274       break;
3275     case InlineAsm::isInput:
3276       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3277       break;
3278     case InlineAsm::isClobber:
3279       // Nothing to do.
3280       break;
3281     }
3282 
3283     if (OpInfo.CallOperandVal) {
3284       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3285       if (OpInfo.isIndirect) {
3286         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3287         if (!PtrTy)
3288           report_fatal_error("Indirect operand for inline asm not a pointer!");
3289         OpTy = PtrTy->getElementType();
3290       }
3291 
3292       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3293       if (StructType *STy = dyn_cast<StructType>(OpTy))
3294         if (STy->getNumElements() == 1)
3295           OpTy = STy->getElementType(0);
3296 
3297       // If OpTy is not a single value, it may be a struct/union that we
3298       // can tile with integers.
3299       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3300         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3301         switch (BitSize) {
3302         default: break;
3303         case 1:
3304         case 8:
3305         case 16:
3306         case 32:
3307         case 64:
3308         case 128:
3309           OpInfo.ConstraintVT =
3310             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3311           break;
3312         }
3313       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3314         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3315         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3316       } else {
3317         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3318       }
3319     }
3320   }
3321 
3322   // If we have multiple alternative constraints, select the best alternative.
3323   if (!ConstraintOperands.empty()) {
3324     if (maCount) {
3325       unsigned bestMAIndex = 0;
3326       int bestWeight = -1;
3327       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3328       int weight = -1;
3329       unsigned maIndex;
3330       // Compute the sums of the weights for each alternative, keeping track
3331       // of the best (highest weight) one so far.
3332       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3333         int weightSum = 0;
3334         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3335             cIndex != eIndex; ++cIndex) {
3336           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3337           if (OpInfo.Type == InlineAsm::isClobber)
3338             continue;
3339 
3340           // If this is an output operand with a matching input operand,
3341           // look up the matching input. If their types mismatch, e.g. one
3342           // is an integer, the other is floating point, or their sizes are
3343           // different, flag it as an maCantMatch.
3344           if (OpInfo.hasMatchingInput()) {
3345             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3346             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3347               if ((OpInfo.ConstraintVT.isInteger() !=
3348                    Input.ConstraintVT.isInteger()) ||
3349                   (OpInfo.ConstraintVT.getSizeInBits() !=
3350                    Input.ConstraintVT.getSizeInBits())) {
3351                 weightSum = -1;  // Can't match.
3352                 break;
3353               }
3354             }
3355           }
3356           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3357           if (weight == -1) {
3358             weightSum = -1;
3359             break;
3360           }
3361           weightSum += weight;
3362         }
3363         // Update best.
3364         if (weightSum > bestWeight) {
3365           bestWeight = weightSum;
3366           bestMAIndex = maIndex;
3367         }
3368       }
3369 
3370       // Now select chosen alternative in each constraint.
3371       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3372           cIndex != eIndex; ++cIndex) {
3373         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3374         if (cInfo.Type == InlineAsm::isClobber)
3375           continue;
3376         cInfo.selectAlternative(bestMAIndex);
3377       }
3378     }
3379   }
3380 
3381   // Check and hook up tied operands, choose constraint code to use.
3382   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3383       cIndex != eIndex; ++cIndex) {
3384     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3385 
3386     // If this is an output operand with a matching input operand, look up the
3387     // matching input. If their types mismatch, e.g. one is an integer, the
3388     // other is floating point, or their sizes are different, flag it as an
3389     // error.
3390     if (OpInfo.hasMatchingInput()) {
3391       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3392 
3393       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3394         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3395             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3396                                          OpInfo.ConstraintVT);
3397         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3398             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3399                                          Input.ConstraintVT);
3400         if ((OpInfo.ConstraintVT.isInteger() !=
3401              Input.ConstraintVT.isInteger()) ||
3402             (MatchRC.second != InputRC.second)) {
3403           report_fatal_error("Unsupported asm: input constraint"
3404                              " with a matching output constraint of"
3405                              " incompatible type!");
3406         }
3407       }
3408     }
3409   }
3410 
3411   return ConstraintOperands;
3412 }
3413 
3414 /// Return an integer indicating how general CT is.
3415 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3416   switch (CT) {
3417   case TargetLowering::C_Other:
3418   case TargetLowering::C_Unknown:
3419     return 0;
3420   case TargetLowering::C_Register:
3421     return 1;
3422   case TargetLowering::C_RegisterClass:
3423     return 2;
3424   case TargetLowering::C_Memory:
3425     return 3;
3426   }
3427   llvm_unreachable("Invalid constraint type");
3428 }
3429 
3430 /// Examine constraint type and operand type and determine a weight value.
3431 /// This object must already have been set up with the operand type
3432 /// and the current alternative constraint selected.
3433 TargetLowering::ConstraintWeight
3434   TargetLowering::getMultipleConstraintMatchWeight(
3435     AsmOperandInfo &info, int maIndex) const {
3436   InlineAsm::ConstraintCodeVector *rCodes;
3437   if (maIndex >= (int)info.multipleAlternatives.size())
3438     rCodes = &info.Codes;
3439   else
3440     rCodes = &info.multipleAlternatives[maIndex].Codes;
3441   ConstraintWeight BestWeight = CW_Invalid;
3442 
3443   // Loop over the options, keeping track of the most general one.
3444   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3445     ConstraintWeight weight =
3446       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3447     if (weight > BestWeight)
3448       BestWeight = weight;
3449   }
3450 
3451   return BestWeight;
3452 }
3453 
3454 /// Examine constraint type and operand type and determine a weight value.
3455 /// This object must already have been set up with the operand type
3456 /// and the current alternative constraint selected.
3457 TargetLowering::ConstraintWeight
3458   TargetLowering::getSingleConstraintMatchWeight(
3459     AsmOperandInfo &info, const char *constraint) const {
3460   ConstraintWeight weight = CW_Invalid;
3461   Value *CallOperandVal = info.CallOperandVal;
3462     // If we don't have a value, we can't do a match,
3463     // but allow it at the lowest weight.
3464   if (!CallOperandVal)
3465     return CW_Default;
3466   // Look at the constraint type.
3467   switch (*constraint) {
3468     case 'i': // immediate integer.
3469     case 'n': // immediate integer with a known value.
3470       if (isa<ConstantInt>(CallOperandVal))
3471         weight = CW_Constant;
3472       break;
3473     case 's': // non-explicit intregal immediate.
3474       if (isa<GlobalValue>(CallOperandVal))
3475         weight = CW_Constant;
3476       break;
3477     case 'E': // immediate float if host format.
3478     case 'F': // immediate float.
3479       if (isa<ConstantFP>(CallOperandVal))
3480         weight = CW_Constant;
3481       break;
3482     case '<': // memory operand with autodecrement.
3483     case '>': // memory operand with autoincrement.
3484     case 'm': // memory operand.
3485     case 'o': // offsettable memory operand
3486     case 'V': // non-offsettable memory operand
3487       weight = CW_Memory;
3488       break;
3489     case 'r': // general register.
3490     case 'g': // general register, memory operand or immediate integer.
3491               // note: Clang converts "g" to "imr".
3492       if (CallOperandVal->getType()->isIntegerTy())
3493         weight = CW_Register;
3494       break;
3495     case 'X': // any operand.
3496     default:
3497       weight = CW_Default;
3498       break;
3499   }
3500   return weight;
3501 }
3502 
3503 /// If there are multiple different constraints that we could pick for this
3504 /// operand (e.g. "imr") try to pick the 'best' one.
3505 /// This is somewhat tricky: constraints fall into four classes:
3506 ///    Other         -> immediates and magic values
3507 ///    Register      -> one specific register
3508 ///    RegisterClass -> a group of regs
3509 ///    Memory        -> memory
3510 /// Ideally, we would pick the most specific constraint possible: if we have
3511 /// something that fits into a register, we would pick it.  The problem here
3512 /// is that if we have something that could either be in a register or in
3513 /// memory that use of the register could cause selection of *other*
3514 /// operands to fail: they might only succeed if we pick memory.  Because of
3515 /// this the heuristic we use is:
3516 ///
3517 ///  1) If there is an 'other' constraint, and if the operand is valid for
3518 ///     that constraint, use it.  This makes us take advantage of 'i'
3519 ///     constraints when available.
3520 ///  2) Otherwise, pick the most general constraint present.  This prefers
3521 ///     'm' over 'r', for example.
3522 ///
3523 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3524                              const TargetLowering &TLI,
3525                              SDValue Op, SelectionDAG *DAG) {
3526   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3527   unsigned BestIdx = 0;
3528   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3529   int BestGenerality = -1;
3530 
3531   // Loop over the options, keeping track of the most general one.
3532   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3533     TargetLowering::ConstraintType CType =
3534       TLI.getConstraintType(OpInfo.Codes[i]);
3535 
3536     // If this is an 'other' constraint, see if the operand is valid for it.
3537     // For example, on X86 we might have an 'rI' constraint.  If the operand
3538     // is an integer in the range [0..31] we want to use I (saving a load
3539     // of a register), otherwise we must use 'r'.
3540     if (CType == TargetLowering::C_Other && Op.getNode()) {
3541       assert(OpInfo.Codes[i].size() == 1 &&
3542              "Unhandled multi-letter 'other' constraint");
3543       std::vector<SDValue> ResultOps;
3544       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3545                                        ResultOps, *DAG);
3546       if (!ResultOps.empty()) {
3547         BestType = CType;
3548         BestIdx = i;
3549         break;
3550       }
3551     }
3552 
3553     // Things with matching constraints can only be registers, per gcc
3554     // documentation.  This mainly affects "g" constraints.
3555     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3556       continue;
3557 
3558     // This constraint letter is more general than the previous one, use it.
3559     int Generality = getConstraintGenerality(CType);
3560     if (Generality > BestGenerality) {
3561       BestType = CType;
3562       BestIdx = i;
3563       BestGenerality = Generality;
3564     }
3565   }
3566 
3567   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3568   OpInfo.ConstraintType = BestType;
3569 }
3570 
3571 /// Determines the constraint code and constraint type to use for the specific
3572 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3573 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3574                                             SDValue Op,
3575                                             SelectionDAG *DAG) const {
3576   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3577 
3578   // Single-letter constraints ('r') are very common.
3579   if (OpInfo.Codes.size() == 1) {
3580     OpInfo.ConstraintCode = OpInfo.Codes[0];
3581     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3582   } else {
3583     ChooseConstraint(OpInfo, *this, Op, DAG);
3584   }
3585 
3586   // 'X' matches anything.
3587   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3588     // Labels and constants are handled elsewhere ('X' is the only thing
3589     // that matches labels).  For Functions, the type here is the type of
3590     // the result, which is not what we want to look at; leave them alone.
3591     Value *v = OpInfo.CallOperandVal;
3592     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3593       OpInfo.CallOperandVal = v;
3594       return;
3595     }
3596 
3597     // Otherwise, try to resolve it to something we know about by looking at
3598     // the actual operand type.
3599     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3600       OpInfo.ConstraintCode = Repl;
3601       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3602     }
3603   }
3604 }
3605 
3606 /// Given an exact SDIV by a constant, create a multiplication
3607 /// with the multiplicative inverse of the constant.
3608 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3609                               const SDLoc &dl, SelectionDAG &DAG,
3610                               SmallVectorImpl<SDNode *> &Created) {
3611   SDValue Op0 = N->getOperand(0);
3612   SDValue Op1 = N->getOperand(1);
3613   EVT VT = N->getValueType(0);
3614   EVT SVT = VT.getScalarType();
3615   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3616   EVT ShSVT = ShVT.getScalarType();
3617 
3618   bool UseSRA = false;
3619   SmallVector<SDValue, 16> Shifts, Factors;
3620 
3621   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3622     if (C->isNullValue())
3623       return false;
3624     APInt Divisor = C->getAPIntValue();
3625     unsigned Shift = Divisor.countTrailingZeros();
3626     if (Shift) {
3627       Divisor.ashrInPlace(Shift);
3628       UseSRA = true;
3629     }
3630     // Calculate the multiplicative inverse, using Newton's method.
3631     APInt t;
3632     APInt Factor = Divisor;
3633     while ((t = Divisor * Factor) != 1)
3634       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3635     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3636     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3637     return true;
3638   };
3639 
3640   // Collect all magic values from the build vector.
3641   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3642     return SDValue();
3643 
3644   SDValue Shift, Factor;
3645   if (VT.isVector()) {
3646     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3647     Factor = DAG.getBuildVector(VT, dl, Factors);
3648   } else {
3649     Shift = Shifts[0];
3650     Factor = Factors[0];
3651   }
3652 
3653   SDValue Res = Op0;
3654 
3655   // Shift the value upfront if it is even, so the LSB is one.
3656   if (UseSRA) {
3657     // TODO: For UDIV use SRL instead of SRA.
3658     SDNodeFlags Flags;
3659     Flags.setExact(true);
3660     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3661     Created.push_back(Res.getNode());
3662   }
3663 
3664   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3665 }
3666 
3667 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3668                                      SelectionDAG &DAG,
3669                                      SmallVectorImpl<SDNode *> &Created) const {
3670   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3672   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3673     return SDValue(N,0); // Lower SDIV as SDIV
3674   return SDValue();
3675 }
3676 
3677 /// Given an ISD::SDIV node expressing a divide by constant,
3678 /// return a DAG expression to select that will generate the same value by
3679 /// multiplying by a magic number.
3680 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3681 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3682                                   bool IsAfterLegalization,
3683                                   SmallVectorImpl<SDNode *> &Created) const {
3684   SDLoc dl(N);
3685   EVT VT = N->getValueType(0);
3686   EVT SVT = VT.getScalarType();
3687   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3688   EVT ShSVT = ShVT.getScalarType();
3689   unsigned EltBits = VT.getScalarSizeInBits();
3690 
3691   // Check to see if we can do this.
3692   // FIXME: We should be more aggressive here.
3693   if (!isTypeLegal(VT))
3694     return SDValue();
3695 
3696   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3697   if (N->getFlags().hasExact())
3698     return BuildExactSDIV(*this, N, dl, DAG, Created);
3699 
3700   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3701 
3702   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3703     if (C->isNullValue())
3704       return false;
3705 
3706     const APInt &Divisor = C->getAPIntValue();
3707     APInt::ms magics = Divisor.magic();
3708     int NumeratorFactor = 0;
3709     int ShiftMask = -1;
3710 
3711     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3712       // If d is +1/-1, we just multiply the numerator by +1/-1.
3713       NumeratorFactor = Divisor.getSExtValue();
3714       magics.m = 0;
3715       magics.s = 0;
3716       ShiftMask = 0;
3717     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3718       // If d > 0 and m < 0, add the numerator.
3719       NumeratorFactor = 1;
3720     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3721       // If d < 0 and m > 0, subtract the numerator.
3722       NumeratorFactor = -1;
3723     }
3724 
3725     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3726     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3727     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3728     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3729     return true;
3730   };
3731 
3732   SDValue N0 = N->getOperand(0);
3733   SDValue N1 = N->getOperand(1);
3734 
3735   // Collect the shifts / magic values from each element.
3736   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3737     return SDValue();
3738 
3739   SDValue MagicFactor, Factor, Shift, ShiftMask;
3740   if (VT.isVector()) {
3741     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3742     Factor = DAG.getBuildVector(VT, dl, Factors);
3743     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3744     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3745   } else {
3746     MagicFactor = MagicFactors[0];
3747     Factor = Factors[0];
3748     Shift = Shifts[0];
3749     ShiftMask = ShiftMasks[0];
3750   }
3751 
3752   // Multiply the numerator (operand 0) by the magic value.
3753   // FIXME: We should support doing a MUL in a wider type.
3754   SDValue Q;
3755   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3756                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3757     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3758   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3759                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3760     SDValue LoHi =
3761         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3762     Q = SDValue(LoHi.getNode(), 1);
3763   } else
3764     return SDValue(); // No mulhs or equivalent.
3765   Created.push_back(Q.getNode());
3766 
3767   // (Optionally) Add/subtract the numerator using Factor.
3768   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3769   Created.push_back(Factor.getNode());
3770   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3771   Created.push_back(Q.getNode());
3772 
3773   // Shift right algebraic by shift value.
3774   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3775   Created.push_back(Q.getNode());
3776 
3777   // Extract the sign bit, mask it and add it to the quotient.
3778   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3779   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3780   Created.push_back(T.getNode());
3781   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3782   Created.push_back(T.getNode());
3783   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3784 }
3785 
3786 /// Given an ISD::UDIV node expressing a divide by constant,
3787 /// return a DAG expression to select that will generate the same value by
3788 /// multiplying by a magic number.
3789 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3790 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3791                                   bool IsAfterLegalization,
3792                                   SmallVectorImpl<SDNode *> &Created) const {
3793   SDLoc dl(N);
3794   EVT VT = N->getValueType(0);
3795   EVT SVT = VT.getScalarType();
3796   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3797   EVT ShSVT = ShVT.getScalarType();
3798   unsigned EltBits = VT.getScalarSizeInBits();
3799 
3800   // Check to see if we can do this.
3801   // FIXME: We should be more aggressive here.
3802   if (!isTypeLegal(VT))
3803     return SDValue();
3804 
3805   bool UseNPQ = false;
3806   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3807 
3808   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3809     if (C->isNullValue())
3810       return false;
3811     // FIXME: We should use a narrower constant when the upper
3812     // bits are known to be zero.
3813     APInt Divisor = C->getAPIntValue();
3814     APInt::mu magics = Divisor.magicu();
3815     unsigned PreShift = 0, PostShift = 0;
3816 
3817     // If the divisor is even, we can avoid using the expensive fixup by
3818     // shifting the divided value upfront.
3819     if (magics.a != 0 && !Divisor[0]) {
3820       PreShift = Divisor.countTrailingZeros();
3821       // Get magic number for the shifted divisor.
3822       magics = Divisor.lshr(PreShift).magicu(PreShift);
3823       assert(magics.a == 0 && "Should use cheap fixup now");
3824     }
3825 
3826     APInt Magic = magics.m;
3827 
3828     unsigned SelNPQ;
3829     if (magics.a == 0 || Divisor.isOneValue()) {
3830       assert(magics.s < Divisor.getBitWidth() &&
3831              "We shouldn't generate an undefined shift!");
3832       PostShift = magics.s;
3833       SelNPQ = false;
3834     } else {
3835       PostShift = magics.s - 1;
3836       SelNPQ = true;
3837     }
3838 
3839     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3840     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3841     NPQFactors.push_back(
3842         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3843                                : APInt::getNullValue(EltBits),
3844                         dl, SVT));
3845     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3846     UseNPQ |= SelNPQ;
3847     return true;
3848   };
3849 
3850   SDValue N0 = N->getOperand(0);
3851   SDValue N1 = N->getOperand(1);
3852 
3853   // Collect the shifts/magic values from each element.
3854   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3855     return SDValue();
3856 
3857   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3858   if (VT.isVector()) {
3859     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3860     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3861     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3862     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
3863   } else {
3864     PreShift = PreShifts[0];
3865     MagicFactor = MagicFactors[0];
3866     PostShift = PostShifts[0];
3867   }
3868 
3869   SDValue Q = N0;
3870   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
3871   Created.push_back(Q.getNode());
3872 
3873   // FIXME: We should support doing a MUL in a wider type.
3874   auto GetMULHU = [&](SDValue X, SDValue Y) {
3875     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
3876                             : isOperationLegalOrCustom(ISD::MULHU, VT))
3877       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
3878     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
3879                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
3880       SDValue LoHi =
3881           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
3882       return SDValue(LoHi.getNode(), 1);
3883     }
3884     return SDValue(); // No mulhu or equivalent
3885   };
3886 
3887   // Multiply the numerator (operand 0) by the magic value.
3888   Q = GetMULHU(Q, MagicFactor);
3889   if (!Q)
3890     return SDValue();
3891 
3892   Created.push_back(Q.getNode());
3893 
3894   if (UseNPQ) {
3895     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
3896     Created.push_back(NPQ.getNode());
3897 
3898     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
3899     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
3900     if (VT.isVector())
3901       NPQ = GetMULHU(NPQ, NPQFactor);
3902     else
3903       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
3904 
3905     Created.push_back(NPQ.getNode());
3906 
3907     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3908     Created.push_back(Q.getNode());
3909   }
3910 
3911   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
3912   Created.push_back(Q.getNode());
3913 
3914   SDValue One = DAG.getConstant(1, dl, VT);
3915   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
3916   return DAG.getSelect(dl, VT, IsOne, N0, Q);
3917 }
3918 
3919 bool TargetLowering::
3920 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3921   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3922     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3923                                 "be a constant integer");
3924     return true;
3925   }
3926 
3927   return false;
3928 }
3929 
3930 //===----------------------------------------------------------------------===//
3931 // Legalization Utilities
3932 //===----------------------------------------------------------------------===//
3933 
3934 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3935                                     SDValue LHS, SDValue RHS,
3936                                     SmallVectorImpl<SDValue> &Result,
3937                                     EVT HiLoVT, SelectionDAG &DAG,
3938                                     MulExpansionKind Kind, SDValue LL,
3939                                     SDValue LH, SDValue RL, SDValue RH) const {
3940   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3941          Opcode == ISD::SMUL_LOHI);
3942 
3943   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3944                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3945   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3946                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3947   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3948                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3949   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3950                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3951 
3952   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3953     return false;
3954 
3955   unsigned OuterBitSize = VT.getScalarSizeInBits();
3956   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3957   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3958   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3959 
3960   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3961   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3962          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3963 
3964   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3965   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3966                           bool Signed) -> bool {
3967     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3968       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3969       Hi = SDValue(Lo.getNode(), 1);
3970       return true;
3971     }
3972     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3973       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3974       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3975       return true;
3976     }
3977     return false;
3978   };
3979 
3980   SDValue Lo, Hi;
3981 
3982   if (!LL.getNode() && !RL.getNode() &&
3983       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3984     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3985     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3986   }
3987 
3988   if (!LL.getNode())
3989     return false;
3990 
3991   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3992   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3993       DAG.MaskedValueIsZero(RHS, HighMask)) {
3994     // The inputs are both zero-extended.
3995     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3996       Result.push_back(Lo);
3997       Result.push_back(Hi);
3998       if (Opcode != ISD::MUL) {
3999         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4000         Result.push_back(Zero);
4001         Result.push_back(Zero);
4002       }
4003       return true;
4004     }
4005   }
4006 
4007   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4008       RHSSB > InnerBitSize) {
4009     // The input values are both sign-extended.
4010     // TODO non-MUL case?
4011     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4012       Result.push_back(Lo);
4013       Result.push_back(Hi);
4014       return true;
4015     }
4016   }
4017 
4018   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4019   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4020   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4021     // FIXME getShiftAmountTy does not always return a sensible result when VT
4022     // is an illegal type, and so the type may be too small to fit the shift
4023     // amount. Override it with i32. The shift will have to be legalized.
4024     ShiftAmountTy = MVT::i32;
4025   }
4026   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4027 
4028   if (!LH.getNode() && !RH.getNode() &&
4029       isOperationLegalOrCustom(ISD::SRL, VT) &&
4030       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4031     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4032     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4033     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4034     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4035   }
4036 
4037   if (!LH.getNode())
4038     return false;
4039 
4040   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4041     return false;
4042 
4043   Result.push_back(Lo);
4044 
4045   if (Opcode == ISD::MUL) {
4046     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4047     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4048     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4049     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4050     Result.push_back(Hi);
4051     return true;
4052   }
4053 
4054   // Compute the full width result.
4055   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4056     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4057     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4058     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4059     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4060   };
4061 
4062   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4063   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4064     return false;
4065 
4066   // This is effectively the add part of a multiply-add of half-sized operands,
4067   // so it cannot overflow.
4068   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4069 
4070   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4071     return false;
4072 
4073   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4074                      Merge(Lo, Hi));
4075 
4076   SDValue Carry = Next.getValue(1);
4077   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4078   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4079 
4080   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4081     return false;
4082 
4083   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4084   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4085                    Carry);
4086   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4087 
4088   if (Opcode == ISD::SMUL_LOHI) {
4089     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4090                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4091     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4092 
4093     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4094                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4095     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4096   }
4097 
4098   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4099   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4100   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4101   return true;
4102 }
4103 
4104 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4105                                SelectionDAG &DAG, MulExpansionKind Kind,
4106                                SDValue LL, SDValue LH, SDValue RL,
4107                                SDValue RH) const {
4108   SmallVector<SDValue, 2> Result;
4109   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4110                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4111                            DAG, Kind, LL, LH, RL, RH);
4112   if (Ok) {
4113     assert(Result.size() == 2);
4114     Lo = Result[0];
4115     Hi = Result[1];
4116   }
4117   return Ok;
4118 }
4119 
4120 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4121                                        SelectionDAG &DAG) const {
4122   EVT VT = Node->getValueType(0);
4123 
4124   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4125                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4126                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4127                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4128     return false;
4129 
4130   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4131   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4132   SDValue X = Node->getOperand(0);
4133   SDValue Y = Node->getOperand(1);
4134   SDValue Z = Node->getOperand(2);
4135 
4136   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4137   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4138   SDLoc DL(SDValue(Node, 0));
4139 
4140   EVT ShVT = Z.getValueType();
4141   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4142   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4143 
4144   SDValue ShAmt;
4145   if (isPowerOf2_32(EltSizeInBits)) {
4146     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4147     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4148   } else {
4149     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4150   }
4151 
4152   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4153   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4154   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4155   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4156 
4157   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4158   // and that is undefined. We must compare and select to avoid UB.
4159   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4160 
4161   // For fshl, 0-shift returns the 1st arg (X).
4162   // For fshr, 0-shift returns the 2nd arg (Y).
4163   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4164   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4165   return true;
4166 }
4167 
4168 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4169                                SelectionDAG &DAG) const {
4170   SDValue Src = Node->getOperand(0);
4171   EVT SrcVT = Src.getValueType();
4172   EVT DstVT = Node->getValueType(0);
4173   SDLoc dl(SDValue(Node, 0));
4174 
4175   // FIXME: Only f32 to i64 conversions are supported.
4176   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4177     return false;
4178 
4179   // Expand f32 -> i64 conversion
4180   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4181   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
4182   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4183   EVT IntVT = SrcVT.changeTypeToInteger();
4184   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4185 
4186   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4187   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4188   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4189   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4190   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4191   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4192 
4193   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4194 
4195   SDValue ExponentBits = DAG.getNode(
4196       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4197       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4198   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4199 
4200   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4201                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4202                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4203   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4204 
4205   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4206                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4207                           DAG.getConstant(0x00800000, dl, IntVT));
4208 
4209   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4210 
4211   R = DAG.getSelectCC(
4212       dl, Exponent, ExponentLoBit,
4213       DAG.getNode(ISD::SHL, dl, DstVT, R,
4214                   DAG.getZExtOrTrunc(
4215                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4216                       dl, IntShVT)),
4217       DAG.getNode(ISD::SRL, dl, DstVT, R,
4218                   DAG.getZExtOrTrunc(
4219                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4220                       dl, IntShVT)),
4221       ISD::SETGT);
4222 
4223   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4224                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4225 
4226   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4227                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4228   return true;
4229 }
4230 
4231 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4232                                       SelectionDAG &DAG) const {
4233   SDLoc dl(SDValue(Node, 0));
4234   SDValue Src = Node->getOperand(0);
4235 
4236   EVT SrcVT = Src.getValueType();
4237   EVT DstVT = Node->getValueType(0);
4238   EVT SetCCVT =
4239       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4240 
4241   // Only expand vector types if we have the appropriate vector bit operations.
4242   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4243                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4244     return false;
4245 
4246   // If the maximum float value is smaller then the signed integer range,
4247   // the destination signmask can't be represented by the float, so we can
4248   // just use FP_TO_SINT directly.
4249   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4250   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4251   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4252   if (APFloat::opOverflow &
4253       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4254     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4255     return true;
4256   }
4257 
4258   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4259   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4260 
4261   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4262   if (Strict) {
4263     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4264     // signmask then offset (the result of which should be fully representable).
4265     // Sel = Src < 0x8000000000000000
4266     // Val = select Sel, Src, Src - 0x8000000000000000
4267     // Ofs = select Sel, 0, 0x8000000000000000
4268     // Result = fp_to_sint(Val) ^ Ofs
4269 
4270     // TODO: Should any fast-math-flags be set for the FSUB?
4271     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4272                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4273     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4274                                 DAG.getConstant(SignMask, dl, DstVT));
4275     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4276                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4277   } else {
4278     // Expand based on maximum range of FP_TO_SINT:
4279     // True = fp_to_sint(Src)
4280     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4281     // Result = select (Src < 0x8000000000000000), True, False
4282 
4283     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4284     // TODO: Should any fast-math-flags be set for the FSUB?
4285     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4286                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4287     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4288                         DAG.getConstant(SignMask, dl, DstVT));
4289     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4290   }
4291   return true;
4292 }
4293 
4294 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4295                                       SelectionDAG &DAG) const {
4296   SDValue Src = Node->getOperand(0);
4297   EVT SrcVT = Src.getValueType();
4298   EVT DstVT = Node->getValueType(0);
4299 
4300   if (SrcVT.getScalarType() != MVT::i64)
4301     return false;
4302 
4303   SDLoc dl(SDValue(Node, 0));
4304   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4305 
4306   if (DstVT.getScalarType() == MVT::f32) {
4307     // Only expand vector types if we have the appropriate vector bit
4308     // operations.
4309     if (SrcVT.isVector() &&
4310         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4311          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4312          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4313          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4314          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4315       return false;
4316 
4317     // For unsigned conversions, convert them to signed conversions using the
4318     // algorithm from the x86_64 __floatundidf in compiler_rt.
4319     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4320 
4321     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4322     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4323     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4324     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4325     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4326 
4327     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4328     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4329 
4330     // TODO: This really should be implemented using a branch rather than a
4331     // select.  We happen to get lucky and machinesink does the right
4332     // thing most of the time.  This would be a good candidate for a
4333     // pseudo-op, or, even better, for whole-function isel.
4334     EVT SetCCVT =
4335         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4336 
4337     SDValue SignBitTest = DAG.getSetCC(
4338         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4339     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4340     return true;
4341   }
4342 
4343   if (DstVT.getScalarType() == MVT::f64) {
4344     // Only expand vector types if we have the appropriate vector bit
4345     // operations.
4346     if (SrcVT.isVector() &&
4347         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4348          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4349          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4350          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4351          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4352       return false;
4353 
4354     // Implementation of unsigned i64 to f64 following the algorithm in
4355     // __floatundidf in compiler_rt. This implementation has the advantage
4356     // of performing rounding correctly, both in the default rounding mode
4357     // and in all alternate rounding modes.
4358     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4359     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4360         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4361     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4362     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4363     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4364 
4365     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4366     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4367     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4368     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4369     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4370     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4371     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4372     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4373     return true;
4374   }
4375 
4376   return false;
4377 }
4378 
4379 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4380                                               SelectionDAG &DAG) const {
4381   SDLoc dl(Node);
4382   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4383     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4384   EVT VT = Node->getValueType(0);
4385   if (isOperationLegalOrCustom(NewOp, VT)) {
4386     SDValue Quiet0 = Node->getOperand(0);
4387     SDValue Quiet1 = Node->getOperand(1);
4388 
4389     if (!Node->getFlags().hasNoNaNs()) {
4390       // Insert canonicalizes if it's possible we need to quiet to get correct
4391       // sNaN behavior.
4392       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4393         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4394                              Node->getFlags());
4395       }
4396       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4397         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4398                              Node->getFlags());
4399       }
4400     }
4401 
4402     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4403   }
4404 
4405   return SDValue();
4406 }
4407 
4408 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4409                                  SelectionDAG &DAG) const {
4410   SDLoc dl(Node);
4411   EVT VT = Node->getValueType(0);
4412   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4413   SDValue Op = Node->getOperand(0);
4414   unsigned Len = VT.getScalarSizeInBits();
4415   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4416 
4417   // TODO: Add support for irregular type lengths.
4418   if (!(Len <= 128 && Len % 8 == 0))
4419     return false;
4420 
4421   // Only expand vector types if we have the appropriate vector bit operations.
4422   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4423                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4424                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4425                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4426                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4427     return false;
4428 
4429   // This is the "best" algorithm from
4430   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4431   SDValue Mask55 =
4432       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4433   SDValue Mask33 =
4434       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4435   SDValue Mask0F =
4436       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4437   SDValue Mask01 =
4438       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4439 
4440   // v = v - ((v >> 1) & 0x55555555...)
4441   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4442                    DAG.getNode(ISD::AND, dl, VT,
4443                                DAG.getNode(ISD::SRL, dl, VT, Op,
4444                                            DAG.getConstant(1, dl, ShVT)),
4445                                Mask55));
4446   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4447   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4448                    DAG.getNode(ISD::AND, dl, VT,
4449                                DAG.getNode(ISD::SRL, dl, VT, Op,
4450                                            DAG.getConstant(2, dl, ShVT)),
4451                                Mask33));
4452   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4453   Op = DAG.getNode(ISD::AND, dl, VT,
4454                    DAG.getNode(ISD::ADD, dl, VT, Op,
4455                                DAG.getNode(ISD::SRL, dl, VT, Op,
4456                                            DAG.getConstant(4, dl, ShVT))),
4457                    Mask0F);
4458   // v = (v * 0x01010101...) >> (Len - 8)
4459   if (Len > 8)
4460     Op =
4461         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4462                     DAG.getConstant(Len - 8, dl, ShVT));
4463 
4464   Result = Op;
4465   return true;
4466 }
4467 
4468 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4469                                 SelectionDAG &DAG) const {
4470   SDLoc dl(Node);
4471   EVT VT = Node->getValueType(0);
4472   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4473   SDValue Op = Node->getOperand(0);
4474   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4475 
4476   // If the non-ZERO_UNDEF version is supported we can use that instead.
4477   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4478       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4479     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4480     return true;
4481   }
4482 
4483   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4484   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4485     EVT SetCCVT =
4486         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4487     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4488     SDValue Zero = DAG.getConstant(0, dl, VT);
4489     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4490     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4491                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4492     return true;
4493   }
4494 
4495   // Only expand vector types if we have the appropriate vector bit operations.
4496   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4497                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4498                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4499                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4500     return false;
4501 
4502   // for now, we do this:
4503   // x = x | (x >> 1);
4504   // x = x | (x >> 2);
4505   // ...
4506   // x = x | (x >>16);
4507   // x = x | (x >>32); // for 64-bit input
4508   // return popcount(~x);
4509   //
4510   // Ref: "Hacker's Delight" by Henry Warren
4511   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4512     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4513     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4514                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4515   }
4516   Op = DAG.getNOT(dl, Op, VT);
4517   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4518   return true;
4519 }
4520 
4521 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4522                                 SelectionDAG &DAG) const {
4523   SDLoc dl(Node);
4524   EVT VT = Node->getValueType(0);
4525   SDValue Op = Node->getOperand(0);
4526   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4527 
4528   // If the non-ZERO_UNDEF version is supported we can use that instead.
4529   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4530       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4531     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4532     return true;
4533   }
4534 
4535   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4536   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4537     EVT SetCCVT =
4538         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4539     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4540     SDValue Zero = DAG.getConstant(0, dl, VT);
4541     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4542     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4543                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4544     return true;
4545   }
4546 
4547   // Only expand vector types if we have the appropriate vector bit operations.
4548   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4549                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4550                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4551                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4552                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4553                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4554     return false;
4555 
4556   // for now, we use: { return popcount(~x & (x - 1)); }
4557   // unless the target has ctlz but not ctpop, in which case we use:
4558   // { return 32 - nlz(~x & (x-1)); }
4559   // Ref: "Hacker's Delight" by Henry Warren
4560   SDValue Tmp = DAG.getNode(
4561       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4562       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4563 
4564   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4565   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4566     Result =
4567         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4568                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4569     return true;
4570   }
4571 
4572   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4573   return true;
4574 }
4575 
4576 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4577                                             SelectionDAG &DAG) const {
4578   SDLoc SL(LD);
4579   SDValue Chain = LD->getChain();
4580   SDValue BasePTR = LD->getBasePtr();
4581   EVT SrcVT = LD->getMemoryVT();
4582   ISD::LoadExtType ExtType = LD->getExtensionType();
4583 
4584   unsigned NumElem = SrcVT.getVectorNumElements();
4585 
4586   EVT SrcEltVT = SrcVT.getScalarType();
4587   EVT DstEltVT = LD->getValueType(0).getScalarType();
4588 
4589   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4590   assert(SrcEltVT.isByteSized());
4591 
4592   SmallVector<SDValue, 8> Vals;
4593   SmallVector<SDValue, 8> LoadChains;
4594 
4595   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4596     SDValue ScalarLoad =
4597         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4598                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4599                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4600                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4601 
4602     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4603 
4604     Vals.push_back(ScalarLoad.getValue(0));
4605     LoadChains.push_back(ScalarLoad.getValue(1));
4606   }
4607 
4608   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4609   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4610 
4611   return DAG.getMergeValues({ Value, NewChain }, SL);
4612 }
4613 
4614 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4615                                              SelectionDAG &DAG) const {
4616   SDLoc SL(ST);
4617 
4618   SDValue Chain = ST->getChain();
4619   SDValue BasePtr = ST->getBasePtr();
4620   SDValue Value = ST->getValue();
4621   EVT StVT = ST->getMemoryVT();
4622 
4623   // The type of the data we want to save
4624   EVT RegVT = Value.getValueType();
4625   EVT RegSclVT = RegVT.getScalarType();
4626 
4627   // The type of data as saved in memory.
4628   EVT MemSclVT = StVT.getScalarType();
4629 
4630   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4631   unsigned NumElem = StVT.getVectorNumElements();
4632 
4633   // A vector must always be stored in memory as-is, i.e. without any padding
4634   // between the elements, since various code depend on it, e.g. in the
4635   // handling of a bitcast of a vector type to int, which may be done with a
4636   // vector store followed by an integer load. A vector that does not have
4637   // elements that are byte-sized must therefore be stored as an integer
4638   // built out of the extracted vector elements.
4639   if (!MemSclVT.isByteSized()) {
4640     unsigned NumBits = StVT.getSizeInBits();
4641     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4642 
4643     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4644 
4645     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4646       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4647                                 DAG.getConstant(Idx, SL, IdxVT));
4648       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4649       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4650       unsigned ShiftIntoIdx =
4651           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4652       SDValue ShiftAmount =
4653           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4654       SDValue ShiftedElt =
4655           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4656       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4657     }
4658 
4659     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4660                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4661                         ST->getAAInfo());
4662   }
4663 
4664   // Store Stride in bytes
4665   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4666   assert (Stride && "Zero stride!");
4667   // Extract each of the elements from the original vector and save them into
4668   // memory individually.
4669   SmallVector<SDValue, 8> Stores;
4670   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4671     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4672                               DAG.getConstant(Idx, SL, IdxVT));
4673 
4674     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4675 
4676     // This scalar TruncStore may be illegal, but we legalize it later.
4677     SDValue Store = DAG.getTruncStore(
4678         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4679         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4680         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4681 
4682     Stores.push_back(Store);
4683   }
4684 
4685   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4686 }
4687 
4688 std::pair<SDValue, SDValue>
4689 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4690   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4691          "unaligned indexed loads not implemented!");
4692   SDValue Chain = LD->getChain();
4693   SDValue Ptr = LD->getBasePtr();
4694   EVT VT = LD->getValueType(0);
4695   EVT LoadedVT = LD->getMemoryVT();
4696   SDLoc dl(LD);
4697   auto &MF = DAG.getMachineFunction();
4698 
4699   if (VT.isFloatingPoint() || VT.isVector()) {
4700     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4701     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4702       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4703           LoadedVT.isVector()) {
4704         // Scalarize the load and let the individual components be handled.
4705         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4706         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4707           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4708         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4709       }
4710 
4711       // Expand to a (misaligned) integer load of the same size,
4712       // then bitconvert to floating point or vector.
4713       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4714                                     LD->getMemOperand());
4715       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4716       if (LoadedVT != VT)
4717         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4718                              ISD::ANY_EXTEND, dl, VT, Result);
4719 
4720       return std::make_pair(Result, newLoad.getValue(1));
4721     }
4722 
4723     // Copy the value to a (aligned) stack slot using (unaligned) integer
4724     // loads and stores, then do a (aligned) load from the stack slot.
4725     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4726     unsigned LoadedBytes = LoadedVT.getStoreSize();
4727     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4728     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4729 
4730     // Make sure the stack slot is also aligned for the register type.
4731     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4732     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4733     SmallVector<SDValue, 8> Stores;
4734     SDValue StackPtr = StackBase;
4735     unsigned Offset = 0;
4736 
4737     EVT PtrVT = Ptr.getValueType();
4738     EVT StackPtrVT = StackPtr.getValueType();
4739 
4740     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4741     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4742 
4743     // Do all but one copies using the full register width.
4744     for (unsigned i = 1; i < NumRegs; i++) {
4745       // Load one integer register's worth from the original location.
4746       SDValue Load = DAG.getLoad(
4747           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4748           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4749           LD->getAAInfo());
4750       // Follow the load with a store to the stack slot.  Remember the store.
4751       Stores.push_back(DAG.getStore(
4752           Load.getValue(1), dl, Load, StackPtr,
4753           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4754       // Increment the pointers.
4755       Offset += RegBytes;
4756 
4757       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4758       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4759     }
4760 
4761     // The last copy may be partial.  Do an extending load.
4762     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4763                                   8 * (LoadedBytes - Offset));
4764     SDValue Load =
4765         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4766                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4767                        MinAlign(LD->getAlignment(), Offset),
4768                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4769     // Follow the load with a store to the stack slot.  Remember the store.
4770     // On big-endian machines this requires a truncating store to ensure
4771     // that the bits end up in the right place.
4772     Stores.push_back(DAG.getTruncStore(
4773         Load.getValue(1), dl, Load, StackPtr,
4774         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4775 
4776     // The order of the stores doesn't matter - say it with a TokenFactor.
4777     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4778 
4779     // Finally, perform the original load only redirected to the stack slot.
4780     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4781                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4782                           LoadedVT);
4783 
4784     // Callers expect a MERGE_VALUES node.
4785     return std::make_pair(Load, TF);
4786   }
4787 
4788   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4789          "Unaligned load of unsupported type.");
4790 
4791   // Compute the new VT that is half the size of the old one.  This is an
4792   // integer MVT.
4793   unsigned NumBits = LoadedVT.getSizeInBits();
4794   EVT NewLoadedVT;
4795   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4796   NumBits >>= 1;
4797 
4798   unsigned Alignment = LD->getAlignment();
4799   unsigned IncrementSize = NumBits / 8;
4800   ISD::LoadExtType HiExtType = LD->getExtensionType();
4801 
4802   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4803   if (HiExtType == ISD::NON_EXTLOAD)
4804     HiExtType = ISD::ZEXTLOAD;
4805 
4806   // Load the value in two parts
4807   SDValue Lo, Hi;
4808   if (DAG.getDataLayout().isLittleEndian()) {
4809     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4810                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4811                         LD->getAAInfo());
4812 
4813     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4814     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
4815                         LD->getPointerInfo().getWithOffset(IncrementSize),
4816                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4817                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4818   } else {
4819     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4820                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4821                         LD->getAAInfo());
4822 
4823     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4824     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
4825                         LD->getPointerInfo().getWithOffset(IncrementSize),
4826                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4827                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4828   }
4829 
4830   // aggregate the two parts
4831   SDValue ShiftAmount =
4832       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
4833                                                     DAG.getDataLayout()));
4834   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
4835   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
4836 
4837   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
4838                              Hi.getValue(1));
4839 
4840   return std::make_pair(Result, TF);
4841 }
4842 
4843 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
4844                                              SelectionDAG &DAG) const {
4845   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
4846          "unaligned indexed stores not implemented!");
4847   SDValue Chain = ST->getChain();
4848   SDValue Ptr = ST->getBasePtr();
4849   SDValue Val = ST->getValue();
4850   EVT VT = Val.getValueType();
4851   int Alignment = ST->getAlignment();
4852   auto &MF = DAG.getMachineFunction();
4853   EVT MemVT = ST->getMemoryVT();
4854 
4855   SDLoc dl(ST);
4856   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
4857     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
4858     if (isTypeLegal(intVT)) {
4859       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
4860           MemVT.isVector()) {
4861         // Scalarize the store and let the individual components be handled.
4862         SDValue Result = scalarizeVectorStore(ST, DAG);
4863 
4864         return Result;
4865       }
4866       // Expand to a bitconvert of the value to the integer type of the
4867       // same size, then a (misaligned) int store.
4868       // FIXME: Does not handle truncating floating point stores!
4869       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
4870       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
4871                             Alignment, ST->getMemOperand()->getFlags());
4872       return Result;
4873     }
4874     // Do a (aligned) store to a stack slot, then copy from the stack slot
4875     // to the final destination using (unaligned) integer loads and stores.
4876     EVT StoredVT = ST->getMemoryVT();
4877     MVT RegVT =
4878       getRegisterType(*DAG.getContext(),
4879                       EVT::getIntegerVT(*DAG.getContext(),
4880                                         StoredVT.getSizeInBits()));
4881     EVT PtrVT = Ptr.getValueType();
4882     unsigned StoredBytes = StoredVT.getStoreSize();
4883     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4884     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
4885 
4886     // Make sure the stack slot is also aligned for the register type.
4887     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
4888     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
4889 
4890     // Perform the original store, only redirected to the stack slot.
4891     SDValue Store = DAG.getTruncStore(
4892         Chain, dl, Val, StackPtr,
4893         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
4894 
4895     EVT StackPtrVT = StackPtr.getValueType();
4896 
4897     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4898     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4899     SmallVector<SDValue, 8> Stores;
4900     unsigned Offset = 0;
4901 
4902     // Do all but one copies using the full register width.
4903     for (unsigned i = 1; i < NumRegs; i++) {
4904       // Load one integer register's worth from the stack slot.
4905       SDValue Load = DAG.getLoad(
4906           RegVT, dl, Store, StackPtr,
4907           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
4908       // Store it to the final location.  Remember the store.
4909       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
4910                                     ST->getPointerInfo().getWithOffset(Offset),
4911                                     MinAlign(ST->getAlignment(), Offset),
4912                                     ST->getMemOperand()->getFlags()));
4913       // Increment the pointers.
4914       Offset += RegBytes;
4915       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4916       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4917     }
4918 
4919     // The last store may be partial.  Do a truncating store.  On big-endian
4920     // machines this requires an extending load from the stack slot to ensure
4921     // that the bits are in the right place.
4922     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4923                                   8 * (StoredBytes - Offset));
4924 
4925     // Load from the stack slot.
4926     SDValue Load = DAG.getExtLoad(
4927         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
4928         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
4929 
4930     Stores.push_back(
4931         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
4932                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
4933                           MinAlign(ST->getAlignment(), Offset),
4934                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
4935     // The order of the stores doesn't matter - say it with a TokenFactor.
4936     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4937     return Result;
4938   }
4939 
4940   assert(ST->getMemoryVT().isInteger() &&
4941          !ST->getMemoryVT().isVector() &&
4942          "Unaligned store of unknown type.");
4943   // Get the half-size VT
4944   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
4945   int NumBits = NewStoredVT.getSizeInBits();
4946   int IncrementSize = NumBits / 8;
4947 
4948   // Divide the stored value in two parts.
4949   SDValue ShiftAmount =
4950       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
4951                                                     DAG.getDataLayout()));
4952   SDValue Lo = Val;
4953   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
4954 
4955   // Store the two parts
4956   SDValue Store1, Store2;
4957   Store1 = DAG.getTruncStore(Chain, dl,
4958                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
4959                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
4960                              ST->getMemOperand()->getFlags());
4961 
4962   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4963   Alignment = MinAlign(Alignment, IncrementSize);
4964   Store2 = DAG.getTruncStore(
4965       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
4966       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
4967       ST->getMemOperand()->getFlags(), ST->getAAInfo());
4968 
4969   SDValue Result =
4970     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
4971   return Result;
4972 }
4973 
4974 SDValue
4975 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
4976                                        const SDLoc &DL, EVT DataVT,
4977                                        SelectionDAG &DAG,
4978                                        bool IsCompressedMemory) const {
4979   SDValue Increment;
4980   EVT AddrVT = Addr.getValueType();
4981   EVT MaskVT = Mask.getValueType();
4982   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
4983          "Incompatible types of Data and Mask");
4984   if (IsCompressedMemory) {
4985     // Incrementing the pointer according to number of '1's in the mask.
4986     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
4987     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
4988     if (MaskIntVT.getSizeInBits() < 32) {
4989       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
4990       MaskIntVT = MVT::i32;
4991     }
4992 
4993     // Count '1's with POPCNT.
4994     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
4995     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
4996     // Scale is an element size in bytes.
4997     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
4998                                     AddrVT);
4999     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5000   } else
5001     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5002 
5003   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5004 }
5005 
5006 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5007                                        SDValue Idx,
5008                                        EVT VecVT,
5009                                        const SDLoc &dl) {
5010   if (isa<ConstantSDNode>(Idx))
5011     return Idx;
5012 
5013   EVT IdxVT = Idx.getValueType();
5014   unsigned NElts = VecVT.getVectorNumElements();
5015   if (isPowerOf2_32(NElts)) {
5016     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5017                                      Log2_32(NElts));
5018     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5019                        DAG.getConstant(Imm, dl, IdxVT));
5020   }
5021 
5022   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5023                      DAG.getConstant(NElts - 1, dl, IdxVT));
5024 }
5025 
5026 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5027                                                 SDValue VecPtr, EVT VecVT,
5028                                                 SDValue Index) const {
5029   SDLoc dl(Index);
5030   // Make sure the index type is big enough to compute in.
5031   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5032 
5033   EVT EltVT = VecVT.getVectorElementType();
5034 
5035   // Calculate the element offset and add it to the pointer.
5036   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5037   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5038          "Converting bits to bytes lost precision");
5039 
5040   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5041 
5042   EVT IdxVT = Index.getValueType();
5043 
5044   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5045                       DAG.getConstant(EltSize, dl, IdxVT));
5046   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5047 }
5048 
5049 //===----------------------------------------------------------------------===//
5050 // Implementation of Emulated TLS Model
5051 //===----------------------------------------------------------------------===//
5052 
5053 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5054                                                 SelectionDAG &DAG) const {
5055   // Access to address of TLS varialbe xyz is lowered to a function call:
5056   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5057   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5058   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5059   SDLoc dl(GA);
5060 
5061   ArgListTy Args;
5062   ArgListEntry Entry;
5063   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5064   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5065   StringRef EmuTlsVarName(NameString);
5066   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5067   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5068   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5069   Entry.Ty = VoidPtrType;
5070   Args.push_back(Entry);
5071 
5072   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5073 
5074   TargetLowering::CallLoweringInfo CLI(DAG);
5075   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5076   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5077   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5078 
5079   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5080   // At last for X86 targets, maybe good for other targets too?
5081   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5082   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5083   MFI.setHasCalls(true);
5084 
5085   assert((GA->getOffset() == 0) &&
5086          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5087   return CallResult.first;
5088 }
5089 
5090 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5091                                                 SelectionDAG &DAG) const {
5092   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5093   if (!isCtlzFast())
5094     return SDValue();
5095   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5096   SDLoc dl(Op);
5097   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5098     if (C->isNullValue() && CC == ISD::SETEQ) {
5099       EVT VT = Op.getOperand(0).getValueType();
5100       SDValue Zext = Op.getOperand(0);
5101       if (VT.bitsLT(MVT::i32)) {
5102         VT = MVT::i32;
5103         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5104       }
5105       unsigned Log2b = Log2_32(VT.getSizeInBits());
5106       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5107       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5108                                 DAG.getConstant(Log2b, dl, MVT::i32));
5109       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5110     }
5111   }
5112   return SDValue();
5113 }
5114 
5115 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction(
5116     SDNode *Node, SelectionDAG &DAG) const {
5117   unsigned Opcode = Node->getOpcode();
5118   unsigned OverflowOp;
5119   switch (Opcode) {
5120   case ISD::SADDSAT:
5121     OverflowOp = ISD::SADDO;
5122     break;
5123   case ISD::UADDSAT:
5124     OverflowOp = ISD::UADDO;
5125     break;
5126   case ISD::SSUBSAT:
5127     OverflowOp = ISD::SSUBO;
5128     break;
5129   case ISD::USUBSAT:
5130     OverflowOp = ISD::USUBO;
5131     break;
5132   default:
5133     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5134                      "addition or subtraction node.");
5135   }
5136   assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands.");
5137 
5138   SDLoc dl(Node);
5139   SDValue LHS = Node->getOperand(0);
5140   SDValue RHS = Node->getOperand(1);
5141   assert(LHS.getValueType().isScalarInteger() &&
5142          "Expected operands to be integers. Vector of int arguments should "
5143          "already be unrolled.");
5144   assert(RHS.getValueType().isScalarInteger() &&
5145          "Expected operands to be integers. Vector of int arguments should "
5146          "already be unrolled.");
5147   assert(LHS.getValueType() == RHS.getValueType() &&
5148          "Expected both operands to be the same type");
5149 
5150   unsigned BitWidth = LHS.getValueSizeInBits();
5151   EVT ResultType = LHS.getValueType();
5152   EVT BoolVT =
5153       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5154   SDValue Result =
5155       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5156   SDValue SumDiff = Result.getValue(0);
5157   SDValue Overflow = Result.getValue(1);
5158   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5159 
5160   if (Opcode == ISD::UADDSAT) {
5161     // Just need to check overflow for SatMax.
5162     APInt MaxVal = APInt::getMaxValue(BitWidth);
5163     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5164     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5165   } else if (Opcode == ISD::USUBSAT) {
5166     // Just need to check overflow for SatMin.
5167     APInt MinVal = APInt::getMinValue(BitWidth);
5168     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5169     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5170   } else {
5171     // SatMax -> Overflow && SumDiff < 0
5172     // SatMin -> Overflow && SumDiff >= 0
5173     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5174     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5175     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5176     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5177     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5178     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5179     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5180   }
5181 }
5182