1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore NoAlias and NonNull because they don't affect the 59 // call sequence. 60 AttributeList CallerAttrs = F.getAttributes(); 61 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 62 .removeAttribute(Attribute::NoAlias) 63 .removeAttribute(Attribute::NonNull) 64 .hasAttributes()) 65 return false; 66 67 // It's not safe to eliminate the sign / zero extension of the return value. 68 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 69 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 70 return false; 71 72 // Check if the only use is a function return node. 73 return isUsedByReturnOnly(Node, Chain); 74 } 75 76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 77 const uint32_t *CallerPreservedMask, 78 const SmallVectorImpl<CCValAssign> &ArgLocs, 79 const SmallVectorImpl<SDValue> &OutVals) const { 80 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 81 const CCValAssign &ArgLoc = ArgLocs[I]; 82 if (!ArgLoc.isRegLoc()) 83 continue; 84 unsigned Reg = ArgLoc.getLocReg(); 85 // Only look at callee saved registers. 86 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 87 continue; 88 // Check that we pass the value used for the caller. 89 // (We look for a CopyFromReg reading a virtual register that is used 90 // for the function live-in value of register Reg) 91 SDValue Value = OutVals[I]; 92 if (Value->getOpcode() != ISD::CopyFromReg) 93 return false; 94 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 95 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 96 return false; 97 } 98 return true; 99 } 100 101 /// Set CallLoweringInfo attribute flags based on a call instruction 102 /// and called function attributes. 103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 104 unsigned ArgIdx) { 105 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 106 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 107 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 108 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 109 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 110 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 111 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 112 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 113 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 114 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 115 Alignment = CS->getParamAlignment(ArgIdx); 116 } 117 118 /// Generate a libcall taking the given operands as arguments and returning a 119 /// result of type RetVT. 120 std::pair<SDValue, SDValue> 121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 122 ArrayRef<SDValue> Ops, bool isSigned, 123 const SDLoc &dl, bool doesNotReturn, 124 bool isReturnValueUsed) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setSExtResult(signExtend) 151 .setZExtResult(!signExtend); 152 return LowerCallTo(CLI); 153 } 154 155 /// Soften the operands of a comparison. This code is shared among BR_CC, 156 /// SELECT_CC, and SETCC handlers. 157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 158 SDValue &NewLHS, SDValue &NewRHS, 159 ISD::CondCode &CCCode, 160 const SDLoc &dl) const { 161 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 162 && "Unsupported setcc type!"); 163 164 // Expand into one or more soft-fp libcall(s). 165 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 166 bool ShouldInvertCC = false; 167 switch (CCCode) { 168 case ISD::SETEQ: 169 case ISD::SETOEQ: 170 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 171 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 172 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 173 break; 174 case ISD::SETNE: 175 case ISD::SETUNE: 176 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 177 (VT == MVT::f64) ? RTLIB::UNE_F64 : 178 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 179 break; 180 case ISD::SETGE: 181 case ISD::SETOGE: 182 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 183 (VT == MVT::f64) ? RTLIB::OGE_F64 : 184 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 185 break; 186 case ISD::SETLT: 187 case ISD::SETOLT: 188 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 189 (VT == MVT::f64) ? RTLIB::OLT_F64 : 190 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 191 break; 192 case ISD::SETLE: 193 case ISD::SETOLE: 194 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 195 (VT == MVT::f64) ? RTLIB::OLE_F64 : 196 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 197 break; 198 case ISD::SETGT: 199 case ISD::SETOGT: 200 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 201 (VT == MVT::f64) ? RTLIB::OGT_F64 : 202 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 203 break; 204 case ISD::SETUO: 205 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 206 (VT == MVT::f64) ? RTLIB::UO_F64 : 207 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 208 break; 209 case ISD::SETO: 210 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 211 (VT == MVT::f64) ? RTLIB::O_F64 : 212 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 213 break; 214 case ISD::SETONE: 215 // SETONE = SETOLT | SETOGT 216 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 217 (VT == MVT::f64) ? RTLIB::OLT_F64 : 218 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 219 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 220 (VT == MVT::f64) ? RTLIB::OGT_F64 : 221 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 222 break; 223 case ISD::SETUEQ: 224 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 225 (VT == MVT::f64) ? RTLIB::UO_F64 : 226 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 227 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 228 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 229 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 230 break; 231 default: 232 // Invert CC for unordered comparisons 233 ShouldInvertCC = true; 234 switch (CCCode) { 235 case ISD::SETULT: 236 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 237 (VT == MVT::f64) ? RTLIB::OGE_F64 : 238 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 239 break; 240 case ISD::SETULE: 241 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 242 (VT == MVT::f64) ? RTLIB::OGT_F64 : 243 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 244 break; 245 case ISD::SETUGT: 246 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 247 (VT == MVT::f64) ? RTLIB::OLE_F64 : 248 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 249 break; 250 case ISD::SETUGE: 251 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 252 (VT == MVT::f64) ? RTLIB::OLT_F64 : 253 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 254 break; 255 default: llvm_unreachable("Do not know how to soften this setcc!"); 256 } 257 } 258 259 // Use the target specific return value for comparions lib calls. 260 EVT RetVT = getCmpLibcallReturnType(); 261 SDValue Ops[2] = {NewLHS, NewRHS}; 262 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 263 dl).first; 264 NewRHS = DAG.getConstant(0, dl, RetVT); 265 266 CCCode = getCmpLibcallCC(LC1); 267 if (ShouldInvertCC) 268 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 269 270 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 271 SDValue Tmp = DAG.getNode( 272 ISD::SETCC, dl, 273 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 274 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 275 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 276 dl).first; 277 NewLHS = DAG.getNode( 278 ISD::SETCC, dl, 279 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 280 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 281 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 282 NewRHS = SDValue(); 283 } 284 } 285 286 /// Return the entry encoding for a jump table in the current function. The 287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 288 unsigned TargetLowering::getJumpTableEncoding() const { 289 // In non-pic modes, just use the address of a block. 290 if (!isPositionIndependent()) 291 return MachineJumpTableInfo::EK_BlockAddress; 292 293 // In PIC mode, if the target supports a GPRel32 directive, use it. 294 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 295 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 296 297 // Otherwise, use a label difference. 298 return MachineJumpTableInfo::EK_LabelDifference32; 299 } 300 301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 302 SelectionDAG &DAG) const { 303 // If our PIC model is GP relative, use the global offset table as the base. 304 unsigned JTEncoding = getJumpTableEncoding(); 305 306 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 307 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 308 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 309 310 return Table; 311 } 312 313 /// This returns the relocation base for the given PIC jumptable, the same as 314 /// getPICJumpTableRelocBase, but as an MCExpr. 315 const MCExpr * 316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 317 unsigned JTI,MCContext &Ctx) const{ 318 // The normal PIC reloc base is the label at the start of the jump table. 319 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 320 } 321 322 bool 323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 324 const TargetMachine &TM = getTargetMachine(); 325 const GlobalValue *GV = GA->getGlobal(); 326 327 // If the address is not even local to this DSO we will have to load it from 328 // a got and then add the offset. 329 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 330 return false; 331 332 // If the code is position independent we will have to add a base register. 333 if (isPositionIndependent()) 334 return false; 335 336 // Otherwise we can do it. 337 return true; 338 } 339 340 //===----------------------------------------------------------------------===// 341 // Optimization Methods 342 //===----------------------------------------------------------------------===// 343 344 /// If the specified instruction has a constant integer operand and there are 345 /// bits set in that constant that are not demanded, then clear those bits and 346 /// return true. 347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 348 TargetLoweringOpt &TLO) const { 349 SelectionDAG &DAG = TLO.DAG; 350 SDLoc DL(Op); 351 unsigned Opcode = Op.getOpcode(); 352 353 // Do target-specific constant optimization. 354 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 355 return TLO.New.getNode(); 356 357 // FIXME: ISD::SELECT, ISD::SELECT_CC 358 switch (Opcode) { 359 default: 360 break; 361 case ISD::XOR: 362 case ISD::AND: 363 case ISD::OR: { 364 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 365 if (!Op1C) 366 return false; 367 368 // If this is a 'not' op, don't touch it because that's a canonical form. 369 const APInt &C = Op1C->getAPIntValue(); 370 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 371 return false; 372 373 if (!C.isSubsetOf(Demanded)) { 374 EVT VT = Op.getValueType(); 375 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 376 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 377 return TLO.CombineTo(Op, NewOp); 378 } 379 380 break; 381 } 382 } 383 384 return false; 385 } 386 387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 389 /// generalized for targets with other types of implicit widening casts. 390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 391 const APInt &Demanded, 392 TargetLoweringOpt &TLO) const { 393 assert(Op.getNumOperands() == 2 && 394 "ShrinkDemandedOp only supports binary operators!"); 395 assert(Op.getNode()->getNumValues() == 1 && 396 "ShrinkDemandedOp only supports nodes with one result!"); 397 398 SelectionDAG &DAG = TLO.DAG; 399 SDLoc dl(Op); 400 401 // Early return, as this function cannot handle vector types. 402 if (Op.getValueType().isVector()) 403 return false; 404 405 // Don't do this if the node has another user, which may require the 406 // full value. 407 if (!Op.getNode()->hasOneUse()) 408 return false; 409 410 // Search for the smallest integer type with free casts to and from 411 // Op's type. For expedience, just check power-of-2 integer types. 412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 413 unsigned DemandedSize = Demanded.getActiveBits(); 414 unsigned SmallVTBits = DemandedSize; 415 if (!isPowerOf2_32(SmallVTBits)) 416 SmallVTBits = NextPowerOf2(SmallVTBits); 417 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 418 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 419 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 420 TLI.isZExtFree(SmallVT, Op.getValueType())) { 421 // We found a type with free casts. 422 SDValue X = DAG.getNode( 423 Op.getOpcode(), dl, SmallVT, 424 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 426 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 427 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 428 return TLO.CombineTo(Op, Z); 429 } 430 } 431 return false; 432 } 433 434 bool 435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 436 const APInt &DemandedBits, 437 DAGCombinerInfo &DCI, 438 TargetLoweringOpt &TLO) const { 439 SDValue Op = User->getOperand(OpIdx); 440 KnownBits Known; 441 442 if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true)) 443 return false; 444 445 446 // Old will not always be the same as Op. For example: 447 // 448 // Demanded = 0xffffff 449 // Op = i64 truncate (i32 and x, 0xffffff) 450 // In this case simplify demand bits will want to replace the 'and' node 451 // with the value 'x', which will give us: 452 // Old = i32 and x, 0xffffff 453 // New = x 454 if (TLO.Old.hasOneUse()) { 455 // For the one use case, we just commit the change. 456 DCI.CommitTargetLoweringOpt(TLO); 457 return true; 458 } 459 460 // If Old has more than one use then it must be Op, because the 461 // AssumeSingleUse flag is not propogated to recursive calls of 462 // SimplifyDemanded bits, so the only node with multiple use that 463 // it will attempt to combine will be Op. 464 assert(TLO.Old == Op); 465 466 SmallVector <SDValue, 4> NewOps; 467 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 468 if (i == OpIdx) { 469 NewOps.push_back(TLO.New); 470 continue; 471 } 472 NewOps.push_back(User->getOperand(i)); 473 } 474 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 475 // Op has less users now, so we may be able to perform additional combines 476 // with it. 477 DCI.AddToWorklist(Op.getNode()); 478 // User's operands have been updated, so we may be able to do new combines 479 // with it. 480 DCI.AddToWorklist(User); 481 return true; 482 } 483 484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 485 DAGCombinerInfo &DCI) const { 486 SelectionDAG &DAG = DCI.DAG; 487 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 488 !DCI.isBeforeLegalizeOps()); 489 KnownBits Known; 490 491 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 492 if (Simplified) { 493 DCI.AddToWorklist(Op.getNode()); 494 DCI.CommitTargetLoweringOpt(TLO); 495 } 496 return Simplified; 497 } 498 499 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 500 /// result of Op are ever used downstream. If we can use this information to 501 /// simplify Op, create a new simplified DAG node and return true, returning the 502 /// original and new nodes in Old and New. Otherwise, analyze the expression and 503 /// return a mask of Known bits for the expression (used to simplify the 504 /// caller). The Known bits may only be accurate for those bits in the 505 /// DemandedMask. 506 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 507 const APInt &OriginalDemandedBits, 508 KnownBits &Known, 509 TargetLoweringOpt &TLO, 510 unsigned Depth, 511 bool AssumeSingleUse) const { 512 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 513 assert(Op.getScalarValueSizeInBits() == BitWidth && 514 "Mask size mismatches value type size!"); 515 APInt DemandedBits = OriginalDemandedBits; 516 SDLoc dl(Op); 517 auto &DL = TLO.DAG.getDataLayout(); 518 519 // Don't know anything. 520 Known = KnownBits(BitWidth); 521 522 if (Op.getOpcode() == ISD::Constant) { 523 // We know all of the bits for a constant! 524 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 525 Known.Zero = ~Known.One; 526 return false; 527 } 528 529 // Other users may use these bits. 530 EVT VT = Op.getValueType(); 531 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 532 if (Depth != 0) { 533 // If not at the root, Just compute the Known bits to 534 // simplify things downstream. 535 TLO.DAG.computeKnownBits(Op, Known, Depth); 536 return false; 537 } 538 // If this is the root being simplified, allow it to have multiple uses, 539 // just set the DemandedBits to all bits. 540 DemandedBits = APInt::getAllOnesValue(BitWidth); 541 } else if (OriginalDemandedBits == 0) { 542 // Not demanding any bits from Op. 543 if (!Op.isUndef()) 544 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 545 return false; 546 } else if (Depth == 6) { // Limit search depth. 547 return false; 548 } 549 550 KnownBits Known2, KnownOut; 551 switch (Op.getOpcode()) { 552 case ISD::BUILD_VECTOR: 553 // Collect the known bits that are shared by every constant vector element. 554 Known.Zero.setAllBits(); Known.One.setAllBits(); 555 for (SDValue SrcOp : Op->ops()) { 556 if (!isa<ConstantSDNode>(SrcOp)) { 557 // We can only handle all constant values - bail out with no known bits. 558 Known = KnownBits(BitWidth); 559 return false; 560 } 561 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 562 Known2.Zero = ~Known2.One; 563 564 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 565 if (Known2.One.getBitWidth() != BitWidth) { 566 assert(Known2.getBitWidth() > BitWidth && 567 "Expected BUILD_VECTOR implicit truncation"); 568 Known2 = Known2.trunc(BitWidth); 569 } 570 571 // Known bits are the values that are shared by every element. 572 // TODO: support per-element known bits. 573 Known.One &= Known2.One; 574 Known.Zero &= Known2.Zero; 575 } 576 return false; // Don't fall through, will infinitely loop. 577 case ISD::CONCAT_VECTORS: 578 Known.Zero.setAllBits(); 579 Known.One.setAllBits(); 580 for (SDValue SrcOp : Op->ops()) { 581 if (SimplifyDemandedBits(SrcOp, DemandedBits, Known2, TLO, Depth + 1)) 582 return true; 583 // Known bits are the values that are shared by every subvector. 584 Known.One &= Known2.One; 585 Known.Zero &= Known2.Zero; 586 } 587 break; 588 case ISD::AND: { 589 SDValue Op0 = Op.getOperand(0); 590 SDValue Op1 = Op.getOperand(1); 591 592 // If the RHS is a constant, check to see if the LHS would be zero without 593 // using the bits from the RHS. Below, we use knowledge about the RHS to 594 // simplify the LHS, here we're using information from the LHS to simplify 595 // the RHS. 596 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 597 KnownBits LHSKnown; 598 // Do not increment Depth here; that can cause an infinite loop. 599 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 600 // If the LHS already has zeros where RHSC does, this 'and' is dead. 601 if ((LHSKnown.Zero & DemandedBits) == 602 (~RHSC->getAPIntValue() & DemandedBits)) 603 return TLO.CombineTo(Op, Op0); 604 605 // If any of the set bits in the RHS are known zero on the LHS, shrink 606 // the constant. 607 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 608 return true; 609 610 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 611 // constant, but if this 'and' is only clearing bits that were just set by 612 // the xor, then this 'and' can be eliminated by shrinking the mask of 613 // the xor. For example, for a 32-bit X: 614 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 615 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 616 LHSKnown.One == ~RHSC->getAPIntValue()) { 617 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 618 return TLO.CombineTo(Op, Xor); 619 } 620 } 621 622 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 623 return true; 624 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 625 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, Known2, TLO, 626 Depth + 1)) 627 return true; 628 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 629 630 // If all of the demanded bits are known one on one side, return the other. 631 // These bits cannot contribute to the result of the 'and'. 632 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 633 return TLO.CombineTo(Op, Op0); 634 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 635 return TLO.CombineTo(Op, Op1); 636 // If all of the demanded bits in the inputs are known zeros, return zero. 637 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 638 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 639 // If the RHS is a constant, see if we can simplify it. 640 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 641 return true; 642 // If the operation can be done in a smaller type, do so. 643 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 644 return true; 645 646 // Output known-1 bits are only known if set in both the LHS & RHS. 647 Known.One &= Known2.One; 648 // Output known-0 are known to be clear if zero in either the LHS | RHS. 649 Known.Zero |= Known2.Zero; 650 break; 651 } 652 case ISD::OR: { 653 SDValue Op0 = Op.getOperand(0); 654 SDValue Op1 = Op.getOperand(1); 655 656 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 657 return true; 658 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 659 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, Known2, TLO, Depth + 1)) 660 return true; 661 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 662 663 // If all of the demanded bits are known zero on one side, return the other. 664 // These bits cannot contribute to the result of the 'or'. 665 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 666 return TLO.CombineTo(Op, Op0); 667 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 668 return TLO.CombineTo(Op, Op1); 669 // If the RHS is a constant, see if we can simplify it. 670 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 671 return true; 672 // If the operation can be done in a smaller type, do so. 673 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 674 return true; 675 676 // Output known-0 bits are only known if clear in both the LHS & RHS. 677 Known.Zero &= Known2.Zero; 678 // Output known-1 are known to be set if set in either the LHS | RHS. 679 Known.One |= Known2.One; 680 break; 681 } 682 case ISD::XOR: { 683 SDValue Op0 = Op.getOperand(0); 684 SDValue Op1 = Op.getOperand(1); 685 686 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 687 return true; 688 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 689 if (SimplifyDemandedBits(Op0, DemandedBits, Known2, TLO, Depth + 1)) 690 return true; 691 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 692 693 // If all of the demanded bits are known zero on one side, return the other. 694 // These bits cannot contribute to the result of the 'xor'. 695 if (DemandedBits.isSubsetOf(Known.Zero)) 696 return TLO.CombineTo(Op, Op0); 697 if (DemandedBits.isSubsetOf(Known2.Zero)) 698 return TLO.CombineTo(Op, Op1); 699 // If the operation can be done in a smaller type, do so. 700 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 701 return true; 702 703 // If all of the unknown bits are known to be zero on one side or the other 704 // (but not both) turn this into an *inclusive* or. 705 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 706 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 707 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 708 709 // Output known-0 bits are known if clear or set in both the LHS & RHS. 710 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 711 // Output known-1 are known to be set if set in only one of the LHS, RHS. 712 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 713 714 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 715 // If one side is a constant, and all of the known set bits on the other 716 // side are also set in the constant, turn this into an AND, as we know 717 // the bits will be cleared. 718 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 719 // NB: it is okay if more bits are known than are requested 720 if (C->getAPIntValue() == Known2.One) { 721 SDValue ANDC = 722 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 723 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 724 } 725 726 // If the RHS is a constant, see if we can change it. Don't alter a -1 727 // constant because that's a 'not' op, and that is better for combining 728 // and codegen. 729 if (!C->isAllOnesValue()) { 730 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 731 // We're flipping all demanded bits. Flip the undemanded bits too. 732 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 733 return TLO.CombineTo(Op, New); 734 } 735 // If we can't turn this into a 'not', try to shrink the constant. 736 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 737 return true; 738 } 739 } 740 741 Known = std::move(KnownOut); 742 break; 743 } 744 case ISD::SELECT: 745 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 746 Depth + 1)) 747 return true; 748 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 749 Depth + 1)) 750 return true; 751 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 752 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 753 754 // If the operands are constants, see if we can simplify them. 755 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 756 return true; 757 758 // Only known if known in both the LHS and RHS. 759 Known.One &= Known2.One; 760 Known.Zero &= Known2.Zero; 761 break; 762 case ISD::SELECT_CC: 763 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 764 Depth + 1)) 765 return true; 766 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 767 Depth + 1)) 768 return true; 769 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 770 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 771 772 // If the operands are constants, see if we can simplify them. 773 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 774 return true; 775 776 // Only known if known in both the LHS and RHS. 777 Known.One &= Known2.One; 778 Known.Zero &= Known2.Zero; 779 break; 780 case ISD::SETCC: { 781 SDValue Op0 = Op.getOperand(0); 782 SDValue Op1 = Op.getOperand(1); 783 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 784 // If (1) we only need the sign-bit, (2) the setcc operands are the same 785 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 786 // -1, we may be able to bypass the setcc. 787 if (DemandedBits.isSignMask() && 788 Op0.getScalarValueSizeInBits() == BitWidth && 789 getBooleanContents(VT) == 790 BooleanContent::ZeroOrNegativeOneBooleanContent) { 791 // If we're testing X < 0, then this compare isn't needed - just use X! 792 // FIXME: We're limiting to integer types here, but this should also work 793 // if we don't care about FP signed-zero. The use of SETLT with FP means 794 // that we don't care about NaNs. 795 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 796 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 797 return TLO.CombineTo(Op, Op0); 798 799 // TODO: Should we check for other forms of sign-bit comparisons? 800 // Examples: X <= -1, X >= 0 801 } 802 if (getBooleanContents(Op0.getValueType()) == 803 TargetLowering::ZeroOrOneBooleanContent && 804 BitWidth > 1) 805 Known.Zero.setBitsFrom(1); 806 break; 807 } 808 case ISD::SHL: { 809 SDValue Op0 = Op.getOperand(0); 810 SDValue Op1 = Op.getOperand(1); 811 812 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 813 // If the shift count is an invalid immediate, don't do anything. 814 if (SA->getAPIntValue().uge(BitWidth)) 815 break; 816 817 unsigned ShAmt = SA->getZExtValue(); 818 819 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 820 // single shift. We can do this if the bottom bits (which are shifted 821 // out) are never demanded. 822 if (Op0.getOpcode() == ISD::SRL) { 823 if (ShAmt && 824 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 825 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 826 if (SA2->getAPIntValue().ult(BitWidth)) { 827 unsigned C1 = SA2->getZExtValue(); 828 unsigned Opc = ISD::SHL; 829 int Diff = ShAmt - C1; 830 if (Diff < 0) { 831 Diff = -Diff; 832 Opc = ISD::SRL; 833 } 834 835 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 836 return TLO.CombineTo( 837 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 838 } 839 } 840 } 841 } 842 843 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), Known, TLO, 844 Depth + 1)) 845 return true; 846 847 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 848 // are not demanded. This will likely allow the anyext to be folded away. 849 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 850 SDValue InnerOp = Op0.getOperand(0); 851 EVT InnerVT = InnerOp.getValueType(); 852 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 853 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 854 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 855 EVT ShTy = getShiftAmountTy(InnerVT, DL); 856 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 857 ShTy = InnerVT; 858 SDValue NarrowShl = 859 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 860 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 861 return TLO.CombineTo( 862 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 863 } 864 // Repeat the SHL optimization above in cases where an extension 865 // intervenes: (shl (anyext (shr x, c1)), c2) to 866 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 867 // aren't demanded (as above) and that the shifted upper c1 bits of 868 // x aren't demanded. 869 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 870 InnerOp.hasOneUse()) { 871 if (ConstantSDNode *SA2 = 872 isConstOrConstSplat(InnerOp.getOperand(1))) { 873 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 874 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 875 DemandedBits.getActiveBits() <= 876 (InnerBits - InnerShAmt + ShAmt) && 877 DemandedBits.countTrailingZeros() >= ShAmt) { 878 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 879 Op1.getValueType()); 880 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 881 InnerOp.getOperand(0)); 882 return TLO.CombineTo( 883 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 884 } 885 } 886 } 887 } 888 889 Known.Zero <<= ShAmt; 890 Known.One <<= ShAmt; 891 // low bits known zero. 892 Known.Zero.setLowBits(ShAmt); 893 } 894 break; 895 } 896 case ISD::SRL: { 897 SDValue Op0 = Op.getOperand(0); 898 SDValue Op1 = Op.getOperand(1); 899 900 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 901 // If the shift count is an invalid immediate, don't do anything. 902 if (SA->getAPIntValue().uge(BitWidth)) 903 break; 904 905 unsigned ShAmt = SA->getZExtValue(); 906 APInt InDemandedMask = (DemandedBits << ShAmt); 907 908 // If the shift is exact, then it does demand the low bits (and knows that 909 // they are zero). 910 if (Op->getFlags().hasExact()) 911 InDemandedMask.setLowBits(ShAmt); 912 913 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 914 // single shift. We can do this if the top bits (which are shifted out) 915 // are never demanded. 916 if (Op0.getOpcode() == ISD::SHL) { 917 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 918 if (ShAmt && 919 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 920 if (SA2->getAPIntValue().ult(BitWidth)) { 921 unsigned C1 = SA2->getZExtValue(); 922 unsigned Opc = ISD::SRL; 923 int Diff = ShAmt - C1; 924 if (Diff < 0) { 925 Diff = -Diff; 926 Opc = ISD::SHL; 927 } 928 929 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 930 return TLO.CombineTo( 931 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 932 } 933 } 934 } 935 } 936 937 // Compute the new bits that are at the top now. 938 if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1)) 939 return true; 940 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 941 Known.Zero.lshrInPlace(ShAmt); 942 Known.One.lshrInPlace(ShAmt); 943 944 Known.Zero.setHighBits(ShAmt); // High bits known zero. 945 } 946 break; 947 } 948 case ISD::SRA: { 949 SDValue Op0 = Op.getOperand(0); 950 SDValue Op1 = Op.getOperand(1); 951 952 // If this is an arithmetic shift right and only the low-bit is set, we can 953 // always convert this into a logical shr, even if the shift amount is 954 // variable. The low bit of the shift cannot be an input sign bit unless 955 // the shift amount is >= the size of the datatype, which is undefined. 956 if (DemandedBits.isOneValue()) 957 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 958 959 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 960 // If the shift count is an invalid immediate, don't do anything. 961 if (SA->getAPIntValue().uge(BitWidth)) 962 break; 963 964 unsigned ShAmt = SA->getZExtValue(); 965 APInt InDemandedMask = (DemandedBits << ShAmt); 966 967 // If the shift is exact, then it does demand the low bits (and knows that 968 // they are zero). 969 if (Op->getFlags().hasExact()) 970 InDemandedMask.setLowBits(ShAmt); 971 972 // If any of the demanded bits are produced by the sign extension, we also 973 // demand the input sign bit. 974 if (DemandedBits.countLeadingZeros() < ShAmt) 975 InDemandedMask.setSignBit(); 976 977 if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1)) 978 return true; 979 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 980 Known.Zero.lshrInPlace(ShAmt); 981 Known.One.lshrInPlace(ShAmt); 982 983 // If the input sign bit is known to be zero, or if none of the top bits 984 // are demanded, turn this into an unsigned shift right. 985 if (Known.Zero[BitWidth - ShAmt - 1] || 986 DemandedBits.countLeadingZeros() >= ShAmt) { 987 SDNodeFlags Flags; 988 Flags.setExact(Op->getFlags().hasExact()); 989 return TLO.CombineTo( 990 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 991 } 992 993 int Log2 = DemandedBits.exactLogBase2(); 994 if (Log2 >= 0) { 995 // The bit must come from the sign. 996 SDValue NewSA = 997 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 998 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 999 } 1000 1001 if (Known.One[BitWidth - ShAmt - 1]) 1002 // New bits are known one. 1003 Known.One.setHighBits(ShAmt); 1004 } 1005 break; 1006 } 1007 case ISD::SIGN_EXTEND_INREG: { 1008 SDValue Op0 = Op.getOperand(0); 1009 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1010 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1011 1012 // If we only care about the highest bit, don't bother shifting right. 1013 if (DemandedBits.isSignMask()) { 1014 bool AlreadySignExtended = 1015 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1016 // However if the input is already sign extended we expect the sign 1017 // extension to be dropped altogether later and do not simplify. 1018 if (!AlreadySignExtended) { 1019 // Compute the correct shift amount type, which must be getShiftAmountTy 1020 // for scalar types after legalization. 1021 EVT ShiftAmtTy = VT; 1022 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1023 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1024 1025 SDValue ShiftAmt = 1026 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1027 return TLO.CombineTo(Op, 1028 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1029 } 1030 } 1031 1032 // If none of the extended bits are demanded, eliminate the sextinreg. 1033 if (DemandedBits.getActiveBits() <= ExVTBits) 1034 return TLO.CombineTo(Op, Op0); 1035 1036 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1037 1038 // Since the sign extended bits are demanded, we know that the sign 1039 // bit is demanded. 1040 InputDemandedBits.setBit(ExVTBits - 1); 1041 1042 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1043 return true; 1044 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1045 1046 // If the sign bit of the input is known set or clear, then we know the 1047 // top bits of the result. 1048 1049 // If the input sign bit is known zero, convert this into a zero extension. 1050 if (Known.Zero[ExVTBits - 1]) 1051 return TLO.CombineTo( 1052 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1053 1054 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1055 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1056 Known.One.setBitsFrom(ExVTBits); 1057 Known.Zero &= Mask; 1058 } else { // Input sign bit unknown 1059 Known.Zero &= Mask; 1060 Known.One &= Mask; 1061 } 1062 break; 1063 } 1064 case ISD::BUILD_PAIR: { 1065 EVT HalfVT = Op.getOperand(0).getValueType(); 1066 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1067 1068 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1069 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1070 1071 KnownBits KnownLo, KnownHi; 1072 1073 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1074 return true; 1075 1076 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1077 return true; 1078 1079 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1080 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1081 1082 Known.One = KnownLo.One.zext(BitWidth) | 1083 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1084 break; 1085 } 1086 case ISD::ZERO_EXTEND: { 1087 SDValue Src = Op.getOperand(0); 1088 unsigned InBits = Src.getScalarValueSizeInBits(); 1089 1090 // If none of the top bits are demanded, convert this into an any_extend. 1091 if (DemandedBits.getActiveBits() <= InBits) 1092 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1093 1094 APInt InDemandedBits = DemandedBits.trunc(InBits); 1095 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) 1096 return true; 1097 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1098 Known = Known.zext(BitWidth); 1099 Known.Zero.setBitsFrom(InBits); 1100 break; 1101 } 1102 case ISD::SIGN_EXTEND: { 1103 SDValue Src = Op.getOperand(0); 1104 unsigned InBits = Src.getScalarValueSizeInBits(); 1105 1106 // If none of the top bits are demanded, convert this into an any_extend. 1107 if (DemandedBits.getActiveBits() <= InBits) 1108 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1109 1110 // Since some of the sign extended bits are demanded, we know that the sign 1111 // bit is demanded. 1112 APInt InDemandedBits = DemandedBits.trunc(InBits); 1113 InDemandedBits.setBit(InBits - 1); 1114 1115 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1116 return true; 1117 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1118 // If the sign bit is known one, the top bits match. 1119 Known = Known.sext(BitWidth); 1120 1121 // If the sign bit is known zero, convert this to a zero extend. 1122 if (Known.isNonNegative()) 1123 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1124 break; 1125 } 1126 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1127 // TODO - merge this with SIGN_EXTEND above? 1128 SDValue Src = Op.getOperand(0); 1129 unsigned InBits = Src.getScalarValueSizeInBits(); 1130 1131 APInt InDemandedBits = DemandedBits.trunc(InBits); 1132 1133 // If some of the sign extended bits are demanded, we know that the sign 1134 // bit is demanded. 1135 if (InBits < DemandedBits.getActiveBits()) 1136 InDemandedBits.setBit(InBits - 1); 1137 1138 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1139 return true; 1140 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1141 // If the sign bit is known one, the top bits match. 1142 Known = Known.sext(BitWidth); 1143 break; 1144 } 1145 case ISD::ANY_EXTEND: { 1146 SDValue Src = Op.getOperand(0); 1147 unsigned InBits = Src.getScalarValueSizeInBits(); 1148 APInt InDemandedBits = DemandedBits.trunc(InBits); 1149 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) 1150 return true; 1151 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1152 Known = Known.zext(BitWidth); 1153 break; 1154 } 1155 case ISD::TRUNCATE: { 1156 SDValue Src = Op.getOperand(0); 1157 1158 // Simplify the input, using demanded bit information, and compute the known 1159 // zero/one bits live out. 1160 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1161 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1162 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1163 return true; 1164 Known = Known.trunc(BitWidth); 1165 1166 // If the input is only used by this truncate, see if we can shrink it based 1167 // on the known demanded bits. 1168 if (Src.getNode()->hasOneUse()) { 1169 switch (Src.getOpcode()) { 1170 default: 1171 break; 1172 case ISD::SRL: 1173 // Shrink SRL by a constant if none of the high bits shifted in are 1174 // demanded. 1175 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1176 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1177 // undesirable. 1178 break; 1179 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1180 if (!ShAmt) 1181 break; 1182 SDValue Shift = Src.getOperand(1); 1183 if (TLO.LegalTypes()) { 1184 uint64_t ShVal = ShAmt->getZExtValue(); 1185 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1186 } 1187 1188 if (ShAmt->getZExtValue() < BitWidth) { 1189 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1190 OperandBitWidth - BitWidth); 1191 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1192 HighBits = HighBits.trunc(BitWidth); 1193 1194 if (!(HighBits & DemandedBits)) { 1195 // None of the shifted in bits are needed. Add a truncate of the 1196 // shift input, then shift it. 1197 SDValue NewTrunc = 1198 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1199 return TLO.CombineTo( 1200 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1201 } 1202 } 1203 break; 1204 } 1205 } 1206 1207 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1208 break; 1209 } 1210 case ISD::AssertZext: { 1211 // AssertZext demands all of the high bits, plus any of the low bits 1212 // demanded by its users. 1213 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1214 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1215 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, 1216 Known, TLO, Depth+1)) 1217 return true; 1218 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1219 1220 Known.Zero |= ~InMask; 1221 break; 1222 } 1223 case ISD::BITCAST: { 1224 SDValue Src = Op.getOperand(0); 1225 EVT SrcVT = Src.getValueType(); 1226 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1227 1228 // If this is an FP->Int bitcast and if the sign bit is the only 1229 // thing demanded, turn this into a FGETSIGN. 1230 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1231 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1232 SrcVT.isFloatingPoint()) { 1233 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1234 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1235 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1236 SrcVT != MVT::f128) { 1237 // Cannot eliminate/lower SHL for f128 yet. 1238 EVT Ty = OpVTLegal ? VT : MVT::i32; 1239 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1240 // place. We expect the SHL to be eliminated by other optimizations. 1241 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1242 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1243 if (!OpVTLegal && OpVTSizeInBits > 32) 1244 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1245 unsigned ShVal = Op.getValueSizeInBits() - 1; 1246 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1247 return TLO.CombineTo(Op, 1248 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1249 } 1250 } 1251 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1252 // demanding the element if any bits from it are demanded. 1253 // TODO - bigendian once we have test coverage. 1254 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1255 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1256 (BitWidth % NumSrcEltBits) == 0 && 1257 TLO.DAG.getDataLayout().isLittleEndian()) { 1258 unsigned Scale = BitWidth / NumSrcEltBits; 1259 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1260 DemandedSubElts = APInt::getNullValue(Scale); 1261 for (unsigned i = 0; i != Scale; ++i) { 1262 unsigned Offset = i * NumSrcEltBits; 1263 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1264 if (!Sub.isNullValue()) 1265 DemandedSubElts.setBit(i); 1266 } 1267 return true; 1268 }; 1269 1270 APInt DemandedSubElts; 1271 if (GetDemandedSubMask(DemandedSubElts)) { 1272 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1273 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1274 1275 APInt KnownUndef, KnownZero; 1276 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1277 TLO, Depth + 1)) 1278 return true; 1279 } 1280 } 1281 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1282 // recursive call where Known may be useful to the caller. 1283 if (Depth > 0) { 1284 TLO.DAG.computeKnownBits(Op, Known, Depth); 1285 return false; 1286 } 1287 break; 1288 } 1289 case ISD::ADD: 1290 case ISD::MUL: 1291 case ISD::SUB: { 1292 // Add, Sub, and Mul don't demand any bits in positions beyond that 1293 // of the highest bit demanded of them. 1294 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1295 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1296 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1297 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1298 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1299 // See if the operation should be performed at a smaller bit width. 1300 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1301 SDNodeFlags Flags = Op.getNode()->getFlags(); 1302 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1303 // Disable the nsw and nuw flags. We can no longer guarantee that we 1304 // won't wrap after simplification. 1305 Flags.setNoSignedWrap(false); 1306 Flags.setNoUnsignedWrap(false); 1307 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1308 Flags); 1309 return TLO.CombineTo(Op, NewOp); 1310 } 1311 return true; 1312 } 1313 1314 // If we have a constant operand, we may be able to turn it into -1 if we 1315 // do not demand the high bits. This can make the constant smaller to 1316 // encode, allow more general folding, or match specialized instruction 1317 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1318 // is probably not useful (and could be detrimental). 1319 ConstantSDNode *C = isConstOrConstSplat(Op1); 1320 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1321 if (C && !C->isAllOnesValue() && !C->isOne() && 1322 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1323 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1324 // We can't guarantee that the new math op doesn't wrap, so explicitly 1325 // clear those flags to prevent folding with a potential existing node 1326 // that has those flags set. 1327 SDNodeFlags Flags; 1328 Flags.setNoSignedWrap(false); 1329 Flags.setNoUnsignedWrap(false); 1330 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1331 return TLO.CombineTo(Op, NewOp); 1332 } 1333 1334 LLVM_FALLTHROUGH; 1335 } 1336 default: 1337 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1338 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, Known, TLO, 1339 Depth)) 1340 return true; 1341 break; 1342 } 1343 1344 // Just use computeKnownBits to compute output bits. 1345 TLO.DAG.computeKnownBits(Op, Known, Depth); 1346 break; 1347 } 1348 1349 // If we know the value of all of the demanded bits, return this as a 1350 // constant. 1351 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1352 // Avoid folding to a constant if any OpaqueConstant is involved. 1353 const SDNode *N = Op.getNode(); 1354 for (SDNodeIterator I = SDNodeIterator::begin(N), 1355 E = SDNodeIterator::end(N); 1356 I != E; ++I) { 1357 SDNode *Op = *I; 1358 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1359 if (C->isOpaque()) 1360 return false; 1361 } 1362 // TODO: Handle float bits as well. 1363 if (VT.isInteger()) 1364 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1365 } 1366 1367 return false; 1368 } 1369 1370 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1371 const APInt &DemandedElts, 1372 APInt &KnownUndef, 1373 APInt &KnownZero, 1374 DAGCombinerInfo &DCI) const { 1375 SelectionDAG &DAG = DCI.DAG; 1376 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1377 !DCI.isBeforeLegalizeOps()); 1378 1379 bool Simplified = 1380 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1381 if (Simplified) { 1382 DCI.AddToWorklist(Op.getNode()); 1383 DCI.CommitTargetLoweringOpt(TLO); 1384 } 1385 return Simplified; 1386 } 1387 1388 bool TargetLowering::SimplifyDemandedVectorElts( 1389 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1390 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1391 bool AssumeSingleUse) const { 1392 EVT VT = Op.getValueType(); 1393 APInt DemandedElts = DemandedEltMask; 1394 unsigned NumElts = DemandedElts.getBitWidth(); 1395 assert(VT.isVector() && "Expected vector op"); 1396 assert(VT.getVectorNumElements() == NumElts && 1397 "Mask size mismatches value type element count!"); 1398 1399 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1400 1401 // Undef operand. 1402 if (Op.isUndef()) { 1403 KnownUndef.setAllBits(); 1404 return false; 1405 } 1406 1407 // If Op has other users, assume that all elements are needed. 1408 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1409 DemandedElts.setAllBits(); 1410 1411 // Not demanding any elements from Op. 1412 if (DemandedElts == 0) { 1413 KnownUndef.setAllBits(); 1414 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1415 } 1416 1417 // Limit search depth. 1418 if (Depth >= 6) 1419 return false; 1420 1421 SDLoc DL(Op); 1422 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1423 1424 switch (Op.getOpcode()) { 1425 case ISD::SCALAR_TO_VECTOR: { 1426 if (!DemandedElts[0]) { 1427 KnownUndef.setAllBits(); 1428 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1429 } 1430 KnownUndef.setHighBits(NumElts - 1); 1431 break; 1432 } 1433 case ISD::BITCAST: { 1434 SDValue Src = Op.getOperand(0); 1435 EVT SrcVT = Src.getValueType(); 1436 1437 // We only handle vectors here. 1438 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1439 if (!SrcVT.isVector()) 1440 break; 1441 1442 // Fast handling of 'identity' bitcasts. 1443 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1444 if (NumSrcElts == NumElts) 1445 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1446 KnownZero, TLO, Depth + 1); 1447 1448 APInt SrcZero, SrcUndef; 1449 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1450 1451 // Bitcast from 'large element' src vector to 'small element' vector, we 1452 // must demand a source element if any DemandedElt maps to it. 1453 if ((NumElts % NumSrcElts) == 0) { 1454 unsigned Scale = NumElts / NumSrcElts; 1455 for (unsigned i = 0; i != NumElts; ++i) 1456 if (DemandedElts[i]) 1457 SrcDemandedElts.setBit(i / Scale); 1458 1459 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1460 TLO, Depth + 1)) 1461 return true; 1462 1463 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1464 // of the large element. 1465 // TODO - bigendian once we have test coverage. 1466 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1467 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1468 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1469 for (unsigned i = 0; i != NumElts; ++i) 1470 if (DemandedElts[i]) { 1471 unsigned Ofs = (i % Scale) * EltSizeInBits; 1472 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1473 } 1474 1475 KnownBits Known; 1476 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1477 return true; 1478 } 1479 1480 // If the src element is zero/undef then all the output elements will be - 1481 // only demanded elements are guaranteed to be correct. 1482 for (unsigned i = 0; i != NumSrcElts; ++i) { 1483 if (SrcDemandedElts[i]) { 1484 if (SrcZero[i]) 1485 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1486 if (SrcUndef[i]) 1487 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1488 } 1489 } 1490 } 1491 1492 // Bitcast from 'small element' src vector to 'large element' vector, we 1493 // demand all smaller source elements covered by the larger demanded element 1494 // of this vector. 1495 if ((NumSrcElts % NumElts) == 0) { 1496 unsigned Scale = NumSrcElts / NumElts; 1497 for (unsigned i = 0; i != NumElts; ++i) 1498 if (DemandedElts[i]) 1499 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1500 1501 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1502 TLO, Depth + 1)) 1503 return true; 1504 1505 // If all the src elements covering an output element are zero/undef, then 1506 // the output element will be as well, assuming it was demanded. 1507 for (unsigned i = 0; i != NumElts; ++i) { 1508 if (DemandedElts[i]) { 1509 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1510 KnownZero.setBit(i); 1511 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1512 KnownUndef.setBit(i); 1513 } 1514 } 1515 } 1516 break; 1517 } 1518 case ISD::BUILD_VECTOR: { 1519 // Check all elements and simplify any unused elements with UNDEF. 1520 if (!DemandedElts.isAllOnesValue()) { 1521 // Don't simplify BROADCASTS. 1522 if (llvm::any_of(Op->op_values(), 1523 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1524 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1525 bool Updated = false; 1526 for (unsigned i = 0; i != NumElts; ++i) { 1527 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1528 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1529 KnownUndef.setBit(i); 1530 Updated = true; 1531 } 1532 } 1533 if (Updated) 1534 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1535 } 1536 } 1537 for (unsigned i = 0; i != NumElts; ++i) { 1538 SDValue SrcOp = Op.getOperand(i); 1539 if (SrcOp.isUndef()) { 1540 KnownUndef.setBit(i); 1541 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1542 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1543 KnownZero.setBit(i); 1544 } 1545 } 1546 break; 1547 } 1548 case ISD::CONCAT_VECTORS: { 1549 EVT SubVT = Op.getOperand(0).getValueType(); 1550 unsigned NumSubVecs = Op.getNumOperands(); 1551 unsigned NumSubElts = SubVT.getVectorNumElements(); 1552 for (unsigned i = 0; i != NumSubVecs; ++i) { 1553 SDValue SubOp = Op.getOperand(i); 1554 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1555 APInt SubUndef, SubZero; 1556 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1557 Depth + 1)) 1558 return true; 1559 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1560 KnownZero.insertBits(SubZero, i * NumSubElts); 1561 } 1562 break; 1563 } 1564 case ISD::INSERT_SUBVECTOR: { 1565 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1566 break; 1567 SDValue Base = Op.getOperand(0); 1568 SDValue Sub = Op.getOperand(1); 1569 EVT SubVT = Sub.getValueType(); 1570 unsigned NumSubElts = SubVT.getVectorNumElements(); 1571 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1572 if (Idx.ugt(NumElts - NumSubElts)) 1573 break; 1574 unsigned SubIdx = Idx.getZExtValue(); 1575 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1576 APInt SubUndef, SubZero; 1577 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1578 Depth + 1)) 1579 return true; 1580 APInt BaseElts = DemandedElts; 1581 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1582 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1583 Depth + 1)) 1584 return true; 1585 KnownUndef.insertBits(SubUndef, SubIdx); 1586 KnownZero.insertBits(SubZero, SubIdx); 1587 break; 1588 } 1589 case ISD::EXTRACT_SUBVECTOR: { 1590 SDValue Src = Op.getOperand(0); 1591 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1593 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1594 // Offset the demanded elts by the subvector index. 1595 uint64_t Idx = SubIdx->getZExtValue(); 1596 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1597 APInt SrcUndef, SrcZero; 1598 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1599 Depth + 1)) 1600 return true; 1601 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1602 KnownZero = SrcZero.extractBits(NumElts, Idx); 1603 } 1604 break; 1605 } 1606 case ISD::INSERT_VECTOR_ELT: { 1607 SDValue Vec = Op.getOperand(0); 1608 SDValue Scl = Op.getOperand(1); 1609 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1610 1611 // For a legal, constant insertion index, if we don't need this insertion 1612 // then strip it, else remove it from the demanded elts. 1613 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1614 unsigned Idx = CIdx->getZExtValue(); 1615 if (!DemandedElts[Idx]) 1616 return TLO.CombineTo(Op, Vec); 1617 1618 APInt DemandedVecElts(DemandedElts); 1619 DemandedVecElts.clearBit(Idx); 1620 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1621 KnownZero, TLO, Depth + 1)) 1622 return true; 1623 1624 KnownUndef.clearBit(Idx); 1625 if (Scl.isUndef()) 1626 KnownUndef.setBit(Idx); 1627 1628 KnownZero.clearBit(Idx); 1629 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1630 KnownZero.setBit(Idx); 1631 break; 1632 } 1633 1634 APInt VecUndef, VecZero; 1635 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1636 Depth + 1)) 1637 return true; 1638 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1639 break; 1640 } 1641 case ISD::VSELECT: { 1642 // Try to transform the select condition based on the current demanded 1643 // elements. 1644 // TODO: If a condition element is undef, we can choose from one arm of the 1645 // select (and if one arm is undef, then we can propagate that to the 1646 // result). 1647 // TODO - add support for constant vselect masks (see IR version of this). 1648 APInt UnusedUndef, UnusedZero; 1649 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1650 UnusedZero, TLO, Depth + 1)) 1651 return true; 1652 1653 // See if we can simplify either vselect operand. 1654 APInt DemandedLHS(DemandedElts); 1655 APInt DemandedRHS(DemandedElts); 1656 APInt UndefLHS, ZeroLHS; 1657 APInt UndefRHS, ZeroRHS; 1658 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1659 ZeroLHS, TLO, Depth + 1)) 1660 return true; 1661 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1662 ZeroRHS, TLO, Depth + 1)) 1663 return true; 1664 1665 KnownUndef = UndefLHS & UndefRHS; 1666 KnownZero = ZeroLHS & ZeroRHS; 1667 break; 1668 } 1669 case ISD::VECTOR_SHUFFLE: { 1670 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1671 1672 // Collect demanded elements from shuffle operands.. 1673 APInt DemandedLHS(NumElts, 0); 1674 APInt DemandedRHS(NumElts, 0); 1675 for (unsigned i = 0; i != NumElts; ++i) { 1676 int M = ShuffleMask[i]; 1677 if (M < 0 || !DemandedElts[i]) 1678 continue; 1679 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1680 if (M < (int)NumElts) 1681 DemandedLHS.setBit(M); 1682 else 1683 DemandedRHS.setBit(M - NumElts); 1684 } 1685 1686 // See if we can simplify either shuffle operand. 1687 APInt UndefLHS, ZeroLHS; 1688 APInt UndefRHS, ZeroRHS; 1689 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1690 ZeroLHS, TLO, Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1693 ZeroRHS, TLO, Depth + 1)) 1694 return true; 1695 1696 // Simplify mask using undef elements from LHS/RHS. 1697 bool Updated = false; 1698 bool IdentityLHS = true, IdentityRHS = true; 1699 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1700 for (unsigned i = 0; i != NumElts; ++i) { 1701 int &M = NewMask[i]; 1702 if (M < 0) 1703 continue; 1704 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1705 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1706 Updated = true; 1707 M = -1; 1708 } 1709 IdentityLHS &= (M < 0) || (M == (int)i); 1710 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1711 } 1712 1713 // Update legal shuffle masks based on demanded elements if it won't reduce 1714 // to Identity which can cause premature removal of the shuffle mask. 1715 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1716 isShuffleMaskLegal(NewMask, VT)) 1717 return TLO.CombineTo(Op, 1718 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1719 Op.getOperand(1), NewMask)); 1720 1721 // Propagate undef/zero elements from LHS/RHS. 1722 for (unsigned i = 0; i != NumElts; ++i) { 1723 int M = ShuffleMask[i]; 1724 if (M < 0) { 1725 KnownUndef.setBit(i); 1726 } else if (M < (int)NumElts) { 1727 if (UndefLHS[M]) 1728 KnownUndef.setBit(i); 1729 if (ZeroLHS[M]) 1730 KnownZero.setBit(i); 1731 } else { 1732 if (UndefRHS[M - NumElts]) 1733 KnownUndef.setBit(i); 1734 if (ZeroRHS[M - NumElts]) 1735 KnownZero.setBit(i); 1736 } 1737 } 1738 break; 1739 } 1740 case ISD::SIGN_EXTEND_VECTOR_INREG: 1741 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1742 APInt SrcUndef, SrcZero; 1743 SDValue Src = Op.getOperand(0); 1744 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1745 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1746 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, 1747 SrcZero, TLO, Depth + 1)) 1748 return true; 1749 KnownZero = SrcZero.zextOrTrunc(NumElts); 1750 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1751 break; 1752 } 1753 case ISD::ADD: 1754 case ISD::SUB: 1755 case ISD::FADD: 1756 case ISD::FSUB: 1757 case ISD::FMUL: 1758 case ISD::FDIV: 1759 case ISD::FREM: { 1760 APInt SrcUndef, SrcZero; 1761 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1762 SrcZero, TLO, Depth + 1)) 1763 return true; 1764 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1765 KnownZero, TLO, Depth + 1)) 1766 return true; 1767 KnownZero &= SrcZero; 1768 KnownUndef &= SrcUndef; 1769 break; 1770 } 1771 case ISD::TRUNCATE: 1772 case ISD::SIGN_EXTEND: 1773 case ISD::ZERO_EXTEND: 1774 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1775 KnownZero, TLO, Depth + 1)) 1776 return true; 1777 break; 1778 default: { 1779 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1780 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1781 KnownZero, TLO, Depth)) 1782 return true; 1783 break; 1784 } 1785 } 1786 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1787 1788 // Constant fold all undef cases. 1789 // TODO: Handle zero cases as well. 1790 if (DemandedElts.isSubsetOf(KnownUndef)) 1791 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1792 1793 return false; 1794 } 1795 1796 /// Determine which of the bits specified in Mask are known to be either zero or 1797 /// one and return them in the Known. 1798 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1799 KnownBits &Known, 1800 const APInt &DemandedElts, 1801 const SelectionDAG &DAG, 1802 unsigned Depth) const { 1803 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1804 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1805 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1806 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1807 "Should use MaskedValueIsZero if you don't know whether Op" 1808 " is a target node!"); 1809 Known.resetAll(); 1810 } 1811 1812 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1813 KnownBits &Known, 1814 const APInt &DemandedElts, 1815 const SelectionDAG &DAG, 1816 unsigned Depth) const { 1817 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1818 1819 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1820 // The low bits are known zero if the pointer is aligned. 1821 Known.Zero.setLowBits(Log2_32(Align)); 1822 } 1823 } 1824 1825 /// This method can be implemented by targets that want to expose additional 1826 /// information about sign bits to the DAG Combiner. 1827 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1828 const APInt &, 1829 const SelectionDAG &, 1830 unsigned Depth) const { 1831 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1832 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1833 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1834 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1835 "Should use ComputeNumSignBits if you don't know whether Op" 1836 " is a target node!"); 1837 return 1; 1838 } 1839 1840 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1841 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1842 TargetLoweringOpt &TLO, unsigned Depth) const { 1843 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1844 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1845 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1846 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1847 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1848 " is a target node!"); 1849 return false; 1850 } 1851 1852 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 1853 SDValue Op, const APInt &DemandedBits, KnownBits &Known, 1854 TargetLoweringOpt &TLO, unsigned Depth) const { 1855 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1856 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1857 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1858 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1859 "Should use SimplifyDemandedBits if you don't know whether Op" 1860 " is a target node!"); 1861 EVT VT = Op.getValueType(); 1862 APInt DemandedElts = VT.isVector() 1863 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1864 : APInt(1, 1); 1865 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 1866 return false; 1867 } 1868 1869 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 1870 const SelectionDAG &DAG, 1871 bool SNaN, 1872 unsigned Depth) const { 1873 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1874 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1875 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1876 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1877 "Should use isKnownNeverNaN if you don't know whether Op" 1878 " is a target node!"); 1879 return false; 1880 } 1881 1882 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1883 // work with truncating build vectors and vectors with elements of less than 1884 // 8 bits. 1885 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1886 if (!N) 1887 return false; 1888 1889 APInt CVal; 1890 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1891 CVal = CN->getAPIntValue(); 1892 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1893 auto *CN = BV->getConstantSplatNode(); 1894 if (!CN) 1895 return false; 1896 1897 // If this is a truncating build vector, truncate the splat value. 1898 // Otherwise, we may fail to match the expected values below. 1899 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1900 CVal = CN->getAPIntValue(); 1901 if (BVEltWidth < CVal.getBitWidth()) 1902 CVal = CVal.trunc(BVEltWidth); 1903 } else { 1904 return false; 1905 } 1906 1907 switch (getBooleanContents(N->getValueType(0))) { 1908 case UndefinedBooleanContent: 1909 return CVal[0]; 1910 case ZeroOrOneBooleanContent: 1911 return CVal.isOneValue(); 1912 case ZeroOrNegativeOneBooleanContent: 1913 return CVal.isAllOnesValue(); 1914 } 1915 1916 llvm_unreachable("Invalid boolean contents"); 1917 } 1918 1919 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1920 if (!N) 1921 return false; 1922 1923 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1924 if (!CN) { 1925 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1926 if (!BV) 1927 return false; 1928 1929 // Only interested in constant splats, we don't care about undef 1930 // elements in identifying boolean constants and getConstantSplatNode 1931 // returns NULL if all ops are undef; 1932 CN = BV->getConstantSplatNode(); 1933 if (!CN) 1934 return false; 1935 } 1936 1937 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1938 return !CN->getAPIntValue()[0]; 1939 1940 return CN->isNullValue(); 1941 } 1942 1943 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1944 bool SExt) const { 1945 if (VT == MVT::i1) 1946 return N->isOne(); 1947 1948 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1949 switch (Cnt) { 1950 case TargetLowering::ZeroOrOneBooleanContent: 1951 // An extended value of 1 is always true, unless its original type is i1, 1952 // in which case it will be sign extended to -1. 1953 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1954 case TargetLowering::UndefinedBooleanContent: 1955 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1956 return N->isAllOnesValue() && SExt; 1957 } 1958 llvm_unreachable("Unexpected enumeration."); 1959 } 1960 1961 /// This helper function of SimplifySetCC tries to optimize the comparison when 1962 /// either operand of the SetCC node is a bitwise-and instruction. 1963 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1964 ISD::CondCode Cond, 1965 DAGCombinerInfo &DCI, 1966 const SDLoc &DL) const { 1967 // Match these patterns in any of their permutations: 1968 // (X & Y) == Y 1969 // (X & Y) != Y 1970 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1971 std::swap(N0, N1); 1972 1973 EVT OpVT = N0.getValueType(); 1974 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1975 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1976 return SDValue(); 1977 1978 SDValue X, Y; 1979 if (N0.getOperand(0) == N1) { 1980 X = N0.getOperand(1); 1981 Y = N0.getOperand(0); 1982 } else if (N0.getOperand(1) == N1) { 1983 X = N0.getOperand(0); 1984 Y = N0.getOperand(1); 1985 } else { 1986 return SDValue(); 1987 } 1988 1989 SelectionDAG &DAG = DCI.DAG; 1990 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1991 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1992 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1993 // Note that where Y is variable and is known to have at most one bit set 1994 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1995 // equivalent when Y == 0. 1996 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1997 if (DCI.isBeforeLegalizeOps() || 1998 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1999 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2000 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2001 // If the target supports an 'and-not' or 'and-complement' logic operation, 2002 // try to use that to make a comparison operation more efficient. 2003 // But don't do this transform if the mask is a single bit because there are 2004 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2005 // 'rlwinm' on PPC). 2006 2007 // Bail out if the compare operand that we want to turn into a zero is 2008 // already a zero (otherwise, infinite loop). 2009 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2010 if (YConst && YConst->isNullValue()) 2011 return SDValue(); 2012 2013 // Transform this into: ~X & Y == 0. 2014 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2015 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2016 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2017 } 2018 2019 return SDValue(); 2020 } 2021 2022 /// There are multiple IR patterns that could be checking whether certain 2023 /// truncation of a signed number would be lossy or not. The pattern which is 2024 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2025 /// We are looking for the following pattern: (KeptBits is a constant) 2026 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2027 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2028 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2029 /// We will unfold it into the natural trunc+sext pattern: 2030 /// ((%x << C) a>> C) dstcond %x 2031 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2032 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2033 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2034 const SDLoc &DL) const { 2035 // We must be comparing with a constant. 2036 ConstantSDNode *C1; 2037 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2038 return SDValue(); 2039 2040 // N0 should be: add %x, (1 << (KeptBits-1)) 2041 if (N0->getOpcode() != ISD::ADD) 2042 return SDValue(); 2043 2044 // And we must be 'add'ing a constant. 2045 ConstantSDNode *C01; 2046 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2047 return SDValue(); 2048 2049 SDValue X = N0->getOperand(0); 2050 EVT XVT = X.getValueType(); 2051 2052 // Validate constants ... 2053 2054 APInt I1 = C1->getAPIntValue(); 2055 2056 ISD::CondCode NewCond; 2057 if (Cond == ISD::CondCode::SETULT) { 2058 NewCond = ISD::CondCode::SETEQ; 2059 } else if (Cond == ISD::CondCode::SETULE) { 2060 NewCond = ISD::CondCode::SETEQ; 2061 // But need to 'canonicalize' the constant. 2062 I1 += 1; 2063 } else if (Cond == ISD::CondCode::SETUGT) { 2064 NewCond = ISD::CondCode::SETNE; 2065 // But need to 'canonicalize' the constant. 2066 I1 += 1; 2067 } else if (Cond == ISD::CondCode::SETUGE) { 2068 NewCond = ISD::CondCode::SETNE; 2069 } else 2070 return SDValue(); 2071 2072 APInt I01 = C01->getAPIntValue(); 2073 2074 auto checkConstants = [&I1, &I01]() -> bool { 2075 // Both of them must be power-of-two, and the constant from setcc is bigger. 2076 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2077 }; 2078 2079 if (checkConstants()) { 2080 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2081 } else { 2082 // What if we invert constants? (and the target predicate) 2083 I1.negate(); 2084 I01.negate(); 2085 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2086 if (!checkConstants()) 2087 return SDValue(); 2088 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2089 } 2090 2091 // They are power-of-two, so which bit is set? 2092 const unsigned KeptBits = I1.logBase2(); 2093 const unsigned KeptBitsMinusOne = I01.logBase2(); 2094 2095 // Magic! 2096 if (KeptBits != (KeptBitsMinusOne + 1)) 2097 return SDValue(); 2098 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2099 2100 // We don't want to do this in every single case. 2101 SelectionDAG &DAG = DCI.DAG; 2102 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2103 XVT, KeptBits)) 2104 return SDValue(); 2105 2106 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2107 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2108 2109 // Unfold into: ((%x << C) a>> C) cond %x 2110 // Where 'cond' will be either 'eq' or 'ne'. 2111 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2112 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2113 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2114 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2115 2116 return T2; 2117 } 2118 2119 /// Try to simplify a setcc built with the specified operands and cc. If it is 2120 /// unable to simplify it, return a null SDValue. 2121 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2122 ISD::CondCode Cond, bool foldBooleans, 2123 DAGCombinerInfo &DCI, 2124 const SDLoc &dl) const { 2125 SelectionDAG &DAG = DCI.DAG; 2126 EVT OpVT = N0.getValueType(); 2127 2128 // These setcc operations always fold. 2129 switch (Cond) { 2130 default: break; 2131 case ISD::SETFALSE: 2132 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 2133 case ISD::SETTRUE: 2134 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 2135 } 2136 2137 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2138 // TODO: Handle non-splat vector constants. All undef causes trouble. 2139 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2140 if (isConstOrConstSplat(N0) && 2141 (DCI.isBeforeLegalizeOps() || 2142 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2143 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2144 2145 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2146 const APInt &C1 = N1C->getAPIntValue(); 2147 2148 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2149 // equality comparison, then we're just comparing whether X itself is 2150 // zero. 2151 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2152 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2153 N0.getOperand(1).getOpcode() == ISD::Constant) { 2154 const APInt &ShAmt 2155 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2156 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2157 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2158 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2159 // (srl (ctlz x), 5) == 0 -> X != 0 2160 // (srl (ctlz x), 5) != 1 -> X != 0 2161 Cond = ISD::SETNE; 2162 } else { 2163 // (srl (ctlz x), 5) != 0 -> X == 0 2164 // (srl (ctlz x), 5) == 1 -> X == 0 2165 Cond = ISD::SETEQ; 2166 } 2167 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2168 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2169 Zero, Cond); 2170 } 2171 } 2172 2173 SDValue CTPOP = N0; 2174 // Look through truncs that don't change the value of a ctpop. 2175 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2176 CTPOP = N0.getOperand(0); 2177 2178 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2179 (N0 == CTPOP || 2180 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2181 EVT CTVT = CTPOP.getValueType(); 2182 SDValue CTOp = CTPOP.getOperand(0); 2183 2184 // (ctpop x) u< 2 -> (x & x-1) == 0 2185 // (ctpop x) u> 1 -> (x & x-1) != 0 2186 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2187 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2188 DAG.getConstant(1, dl, CTVT)); 2189 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2190 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2191 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2192 } 2193 2194 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2195 } 2196 2197 // (zext x) == C --> x == (trunc C) 2198 // (sext x) == C --> x == (trunc C) 2199 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2200 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2201 unsigned MinBits = N0.getValueSizeInBits(); 2202 SDValue PreExt; 2203 bool Signed = false; 2204 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2205 // ZExt 2206 MinBits = N0->getOperand(0).getValueSizeInBits(); 2207 PreExt = N0->getOperand(0); 2208 } else if (N0->getOpcode() == ISD::AND) { 2209 // DAGCombine turns costly ZExts into ANDs 2210 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2211 if ((C->getAPIntValue()+1).isPowerOf2()) { 2212 MinBits = C->getAPIntValue().countTrailingOnes(); 2213 PreExt = N0->getOperand(0); 2214 } 2215 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2216 // SExt 2217 MinBits = N0->getOperand(0).getValueSizeInBits(); 2218 PreExt = N0->getOperand(0); 2219 Signed = true; 2220 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2221 // ZEXTLOAD / SEXTLOAD 2222 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2223 MinBits = LN0->getMemoryVT().getSizeInBits(); 2224 PreExt = N0; 2225 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2226 Signed = true; 2227 MinBits = LN0->getMemoryVT().getSizeInBits(); 2228 PreExt = N0; 2229 } 2230 } 2231 2232 // Figure out how many bits we need to preserve this constant. 2233 unsigned ReqdBits = Signed ? 2234 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2235 C1.getActiveBits(); 2236 2237 // Make sure we're not losing bits from the constant. 2238 if (MinBits > 0 && 2239 MinBits < C1.getBitWidth() && 2240 MinBits >= ReqdBits) { 2241 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2242 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2243 // Will get folded away. 2244 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2245 if (MinBits == 1 && C1 == 1) 2246 // Invert the condition. 2247 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2248 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2249 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2250 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2251 } 2252 2253 // If truncating the setcc operands is not desirable, we can still 2254 // simplify the expression in some cases: 2255 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2256 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2257 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2258 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2259 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2260 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2261 SDValue TopSetCC = N0->getOperand(0); 2262 unsigned N0Opc = N0->getOpcode(); 2263 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2264 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2265 TopSetCC.getOpcode() == ISD::SETCC && 2266 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2267 (isConstFalseVal(N1C) || 2268 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2269 2270 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2271 (!N1C->isNullValue() && Cond == ISD::SETNE); 2272 2273 if (!Inverse) 2274 return TopSetCC; 2275 2276 ISD::CondCode InvCond = ISD::getSetCCInverse( 2277 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2278 TopSetCC.getOperand(0).getValueType().isInteger()); 2279 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2280 TopSetCC.getOperand(1), 2281 InvCond); 2282 } 2283 } 2284 } 2285 2286 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2287 // equality or unsigned, and all 1 bits of the const are in the same 2288 // partial word, see if we can shorten the load. 2289 if (DCI.isBeforeLegalize() && 2290 !ISD::isSignedIntSetCC(Cond) && 2291 N0.getOpcode() == ISD::AND && C1 == 0 && 2292 N0.getNode()->hasOneUse() && 2293 isa<LoadSDNode>(N0.getOperand(0)) && 2294 N0.getOperand(0).getNode()->hasOneUse() && 2295 isa<ConstantSDNode>(N0.getOperand(1))) { 2296 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2297 APInt bestMask; 2298 unsigned bestWidth = 0, bestOffset = 0; 2299 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2300 unsigned origWidth = N0.getValueSizeInBits(); 2301 unsigned maskWidth = origWidth; 2302 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2303 // 8 bits, but have to be careful... 2304 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2305 origWidth = Lod->getMemoryVT().getSizeInBits(); 2306 const APInt &Mask = 2307 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2308 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2309 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2310 for (unsigned offset=0; offset<origWidth/width; offset++) { 2311 if (Mask.isSubsetOf(newMask)) { 2312 if (DAG.getDataLayout().isLittleEndian()) 2313 bestOffset = (uint64_t)offset * (width/8); 2314 else 2315 bestOffset = (origWidth/width - offset - 1) * (width/8); 2316 bestMask = Mask.lshr(offset * (width/8) * 8); 2317 bestWidth = width; 2318 break; 2319 } 2320 newMask <<= width; 2321 } 2322 } 2323 } 2324 if (bestWidth) { 2325 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2326 if (newVT.isRound() && 2327 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2328 EVT PtrType = Lod->getOperand(1).getValueType(); 2329 SDValue Ptr = Lod->getBasePtr(); 2330 if (bestOffset != 0) 2331 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2332 DAG.getConstant(bestOffset, dl, PtrType)); 2333 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2334 SDValue NewLoad = DAG.getLoad( 2335 newVT, dl, Lod->getChain(), Ptr, 2336 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2337 return DAG.getSetCC(dl, VT, 2338 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2339 DAG.getConstant(bestMask.trunc(bestWidth), 2340 dl, newVT)), 2341 DAG.getConstant(0LL, dl, newVT), Cond); 2342 } 2343 } 2344 } 2345 2346 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2347 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2348 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2349 2350 // If the comparison constant has bits in the upper part, the 2351 // zero-extended value could never match. 2352 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2353 C1.getBitWidth() - InSize))) { 2354 switch (Cond) { 2355 case ISD::SETUGT: 2356 case ISD::SETUGE: 2357 case ISD::SETEQ: 2358 return DAG.getConstant(0, dl, VT); 2359 case ISD::SETULT: 2360 case ISD::SETULE: 2361 case ISD::SETNE: 2362 return DAG.getConstant(1, dl, VT); 2363 case ISD::SETGT: 2364 case ISD::SETGE: 2365 // True if the sign bit of C1 is set. 2366 return DAG.getConstant(C1.isNegative(), dl, VT); 2367 case ISD::SETLT: 2368 case ISD::SETLE: 2369 // True if the sign bit of C1 isn't set. 2370 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2371 default: 2372 break; 2373 } 2374 } 2375 2376 // Otherwise, we can perform the comparison with the low bits. 2377 switch (Cond) { 2378 case ISD::SETEQ: 2379 case ISD::SETNE: 2380 case ISD::SETUGT: 2381 case ISD::SETUGE: 2382 case ISD::SETULT: 2383 case ISD::SETULE: { 2384 EVT newVT = N0.getOperand(0).getValueType(); 2385 if (DCI.isBeforeLegalizeOps() || 2386 (isOperationLegal(ISD::SETCC, newVT) && 2387 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2388 EVT NewSetCCVT = 2389 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2390 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2391 2392 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2393 NewConst, Cond); 2394 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2395 } 2396 break; 2397 } 2398 default: 2399 break; // todo, be more careful with signed comparisons 2400 } 2401 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2402 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2403 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2404 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2405 EVT ExtDstTy = N0.getValueType(); 2406 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2407 2408 // If the constant doesn't fit into the number of bits for the source of 2409 // the sign extension, it is impossible for both sides to be equal. 2410 if (C1.getMinSignedBits() > ExtSrcTyBits) 2411 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2412 2413 SDValue ZextOp; 2414 EVT Op0Ty = N0.getOperand(0).getValueType(); 2415 if (Op0Ty == ExtSrcTy) { 2416 ZextOp = N0.getOperand(0); 2417 } else { 2418 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2419 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2420 DAG.getConstant(Imm, dl, Op0Ty)); 2421 } 2422 if (!DCI.isCalledByLegalizer()) 2423 DCI.AddToWorklist(ZextOp.getNode()); 2424 // Otherwise, make this a use of a zext. 2425 return DAG.getSetCC(dl, VT, ZextOp, 2426 DAG.getConstant(C1 & APInt::getLowBitsSet( 2427 ExtDstTyBits, 2428 ExtSrcTyBits), 2429 dl, ExtDstTy), 2430 Cond); 2431 } else if ((N1C->isNullValue() || N1C->isOne()) && 2432 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2433 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2434 if (N0.getOpcode() == ISD::SETCC && 2435 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2436 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2437 if (TrueWhenTrue) 2438 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2439 // Invert the condition. 2440 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2441 CC = ISD::getSetCCInverse(CC, 2442 N0.getOperand(0).getValueType().isInteger()); 2443 if (DCI.isBeforeLegalizeOps() || 2444 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2445 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2446 } 2447 2448 if ((N0.getOpcode() == ISD::XOR || 2449 (N0.getOpcode() == ISD::AND && 2450 N0.getOperand(0).getOpcode() == ISD::XOR && 2451 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2452 isa<ConstantSDNode>(N0.getOperand(1)) && 2453 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2454 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2455 // can only do this if the top bits are known zero. 2456 unsigned BitWidth = N0.getValueSizeInBits(); 2457 if (DAG.MaskedValueIsZero(N0, 2458 APInt::getHighBitsSet(BitWidth, 2459 BitWidth-1))) { 2460 // Okay, get the un-inverted input value. 2461 SDValue Val; 2462 if (N0.getOpcode() == ISD::XOR) { 2463 Val = N0.getOperand(0); 2464 } else { 2465 assert(N0.getOpcode() == ISD::AND && 2466 N0.getOperand(0).getOpcode() == ISD::XOR); 2467 // ((X^1)&1)^1 -> X & 1 2468 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2469 N0.getOperand(0).getOperand(0), 2470 N0.getOperand(1)); 2471 } 2472 2473 return DAG.getSetCC(dl, VT, Val, N1, 2474 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2475 } 2476 } else if (N1C->isOne() && 2477 (VT == MVT::i1 || 2478 getBooleanContents(N0->getValueType(0)) == 2479 ZeroOrOneBooleanContent)) { 2480 SDValue Op0 = N0; 2481 if (Op0.getOpcode() == ISD::TRUNCATE) 2482 Op0 = Op0.getOperand(0); 2483 2484 if ((Op0.getOpcode() == ISD::XOR) && 2485 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2486 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2487 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2488 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2489 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2490 Cond); 2491 } 2492 if (Op0.getOpcode() == ISD::AND && 2493 isa<ConstantSDNode>(Op0.getOperand(1)) && 2494 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2495 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2496 if (Op0.getValueType().bitsGT(VT)) 2497 Op0 = DAG.getNode(ISD::AND, dl, VT, 2498 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2499 DAG.getConstant(1, dl, VT)); 2500 else if (Op0.getValueType().bitsLT(VT)) 2501 Op0 = DAG.getNode(ISD::AND, dl, VT, 2502 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2503 DAG.getConstant(1, dl, VT)); 2504 2505 return DAG.getSetCC(dl, VT, Op0, 2506 DAG.getConstant(0, dl, Op0.getValueType()), 2507 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2508 } 2509 if (Op0.getOpcode() == ISD::AssertZext && 2510 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2511 return DAG.getSetCC(dl, VT, Op0, 2512 DAG.getConstant(0, dl, Op0.getValueType()), 2513 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2514 } 2515 } 2516 2517 if (SDValue V = 2518 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2519 return V; 2520 } 2521 2522 // These simplifications apply to splat vectors as well. 2523 // TODO: Handle more splat vector cases. 2524 if (auto *N1C = isConstOrConstSplat(N1)) { 2525 const APInt &C1 = N1C->getAPIntValue(); 2526 2527 APInt MinVal, MaxVal; 2528 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2529 if (ISD::isSignedIntSetCC(Cond)) { 2530 MinVal = APInt::getSignedMinValue(OperandBitSize); 2531 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2532 } else { 2533 MinVal = APInt::getMinValue(OperandBitSize); 2534 MaxVal = APInt::getMaxValue(OperandBitSize); 2535 } 2536 2537 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2538 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2539 // X >= MIN --> true 2540 if (C1 == MinVal) 2541 return DAG.getBoolConstant(true, dl, VT, OpVT); 2542 2543 if (!VT.isVector()) { // TODO: Support this for vectors. 2544 // X >= C0 --> X > (C0 - 1) 2545 APInt C = C1 - 1; 2546 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2547 if ((DCI.isBeforeLegalizeOps() || 2548 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2549 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2550 isLegalICmpImmediate(C.getSExtValue())))) { 2551 return DAG.getSetCC(dl, VT, N0, 2552 DAG.getConstant(C, dl, N1.getValueType()), 2553 NewCC); 2554 } 2555 } 2556 } 2557 2558 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2559 // X <= MAX --> true 2560 if (C1 == MaxVal) 2561 return DAG.getBoolConstant(true, dl, VT, OpVT); 2562 2563 // X <= C0 --> X < (C0 + 1) 2564 if (!VT.isVector()) { // TODO: Support this for vectors. 2565 APInt C = C1 + 1; 2566 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2567 if ((DCI.isBeforeLegalizeOps() || 2568 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2569 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2570 isLegalICmpImmediate(C.getSExtValue())))) { 2571 return DAG.getSetCC(dl, VT, N0, 2572 DAG.getConstant(C, dl, N1.getValueType()), 2573 NewCC); 2574 } 2575 } 2576 } 2577 2578 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2579 if (C1 == MinVal) 2580 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2581 2582 // TODO: Support this for vectors after legalize ops. 2583 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2584 // Canonicalize setlt X, Max --> setne X, Max 2585 if (C1 == MaxVal) 2586 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2587 2588 // If we have setult X, 1, turn it into seteq X, 0 2589 if (C1 == MinVal+1) 2590 return DAG.getSetCC(dl, VT, N0, 2591 DAG.getConstant(MinVal, dl, N0.getValueType()), 2592 ISD::SETEQ); 2593 } 2594 } 2595 2596 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2597 if (C1 == MaxVal) 2598 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2599 2600 // TODO: Support this for vectors after legalize ops. 2601 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2602 // Canonicalize setgt X, Min --> setne X, Min 2603 if (C1 == MinVal) 2604 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2605 2606 // If we have setugt X, Max-1, turn it into seteq X, Max 2607 if (C1 == MaxVal-1) 2608 return DAG.getSetCC(dl, VT, N0, 2609 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2610 ISD::SETEQ); 2611 } 2612 } 2613 2614 // If we have "setcc X, C0", check to see if we can shrink the immediate 2615 // by changing cc. 2616 // TODO: Support this for vectors after legalize ops. 2617 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2618 // SETUGT X, SINTMAX -> SETLT X, 0 2619 if (Cond == ISD::SETUGT && 2620 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2621 return DAG.getSetCC(dl, VT, N0, 2622 DAG.getConstant(0, dl, N1.getValueType()), 2623 ISD::SETLT); 2624 2625 // SETULT X, SINTMIN -> SETGT X, -1 2626 if (Cond == ISD::SETULT && 2627 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2628 SDValue ConstMinusOne = 2629 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2630 N1.getValueType()); 2631 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2632 } 2633 } 2634 } 2635 2636 // Back to non-vector simplifications. 2637 // TODO: Can we do these for vector splats? 2638 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2639 const APInt &C1 = N1C->getAPIntValue(); 2640 2641 // Fold bit comparisons when we can. 2642 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2643 (VT == N0.getValueType() || 2644 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2645 N0.getOpcode() == ISD::AND) { 2646 auto &DL = DAG.getDataLayout(); 2647 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2648 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2649 !DCI.isBeforeLegalize()); 2650 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2651 // Perform the xform if the AND RHS is a single bit. 2652 if (AndRHS->getAPIntValue().isPowerOf2()) { 2653 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2654 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2655 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2656 ShiftTy))); 2657 } 2658 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2659 // (X & 8) == 8 --> (X & 8) >> 3 2660 // Perform the xform if C1 is a single bit. 2661 if (C1.isPowerOf2()) { 2662 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2663 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2664 DAG.getConstant(C1.logBase2(), dl, 2665 ShiftTy))); 2666 } 2667 } 2668 } 2669 } 2670 2671 if (C1.getMinSignedBits() <= 64 && 2672 !isLegalICmpImmediate(C1.getSExtValue())) { 2673 // (X & -256) == 256 -> (X >> 8) == 1 2674 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2675 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2676 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2677 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2678 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2679 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2680 auto &DL = DAG.getDataLayout(); 2681 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2682 !DCI.isBeforeLegalize()); 2683 EVT CmpTy = N0.getValueType(); 2684 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2685 DAG.getConstant(ShiftBits, dl, 2686 ShiftTy)); 2687 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2688 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2689 } 2690 } 2691 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2692 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2693 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2694 // X < 0x100000000 -> (X >> 32) < 1 2695 // X >= 0x100000000 -> (X >> 32) >= 1 2696 // X <= 0x0ffffffff -> (X >> 32) < 1 2697 // X > 0x0ffffffff -> (X >> 32) >= 1 2698 unsigned ShiftBits; 2699 APInt NewC = C1; 2700 ISD::CondCode NewCond = Cond; 2701 if (AdjOne) { 2702 ShiftBits = C1.countTrailingOnes(); 2703 NewC = NewC + 1; 2704 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2705 } else { 2706 ShiftBits = C1.countTrailingZeros(); 2707 } 2708 NewC.lshrInPlace(ShiftBits); 2709 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2710 isLegalICmpImmediate(NewC.getSExtValue())) { 2711 auto &DL = DAG.getDataLayout(); 2712 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2713 !DCI.isBeforeLegalize()); 2714 EVT CmpTy = N0.getValueType(); 2715 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2716 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2717 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2718 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2719 } 2720 } 2721 } 2722 } 2723 2724 if (isa<ConstantFPSDNode>(N0.getNode())) { 2725 // Constant fold or commute setcc. 2726 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2727 if (O.getNode()) return O; 2728 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2729 // If the RHS of an FP comparison is a constant, simplify it away in 2730 // some cases. 2731 if (CFP->getValueAPF().isNaN()) { 2732 // If an operand is known to be a nan, we can fold it. 2733 switch (ISD::getUnorderedFlavor(Cond)) { 2734 default: llvm_unreachable("Unknown flavor!"); 2735 case 0: // Known false. 2736 return DAG.getBoolConstant(false, dl, VT, OpVT); 2737 case 1: // Known true. 2738 return DAG.getBoolConstant(true, dl, VT, OpVT); 2739 case 2: // Undefined. 2740 return DAG.getUNDEF(VT); 2741 } 2742 } 2743 2744 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2745 // constant if knowing that the operand is non-nan is enough. We prefer to 2746 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2747 // materialize 0.0. 2748 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2749 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2750 2751 // setcc (fneg x), C -> setcc swap(pred) x, -C 2752 if (N0.getOpcode() == ISD::FNEG) { 2753 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2754 if (DCI.isBeforeLegalizeOps() || 2755 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2756 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2757 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2758 } 2759 } 2760 2761 // If the condition is not legal, see if we can find an equivalent one 2762 // which is legal. 2763 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2764 // If the comparison was an awkward floating-point == or != and one of 2765 // the comparison operands is infinity or negative infinity, convert the 2766 // condition to a less-awkward <= or >=. 2767 if (CFP->getValueAPF().isInfinity()) { 2768 if (CFP->getValueAPF().isNegative()) { 2769 if (Cond == ISD::SETOEQ && 2770 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2771 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2772 if (Cond == ISD::SETUEQ && 2773 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2774 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2775 if (Cond == ISD::SETUNE && 2776 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2777 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2778 if (Cond == ISD::SETONE && 2779 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2780 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2781 } else { 2782 if (Cond == ISD::SETOEQ && 2783 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2784 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2785 if (Cond == ISD::SETUEQ && 2786 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2787 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2788 if (Cond == ISD::SETUNE && 2789 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2790 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2791 if (Cond == ISD::SETONE && 2792 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2793 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2794 } 2795 } 2796 } 2797 } 2798 2799 if (N0 == N1) { 2800 // The sext(setcc()) => setcc() optimization relies on the appropriate 2801 // constant being emitted. 2802 2803 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2804 2805 // We can always fold X == X for integer setcc's. 2806 if (N0.getValueType().isInteger()) 2807 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2808 2809 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2810 if (UOF == 2) // FP operators that are undefined on NaNs. 2811 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2812 if (UOF == unsigned(EqTrue)) 2813 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2814 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2815 // if it is not already. 2816 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2817 if (NewCond != Cond && 2818 (DCI.isBeforeLegalizeOps() || 2819 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2820 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2821 } 2822 2823 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2824 N0.getValueType().isInteger()) { 2825 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2826 N0.getOpcode() == ISD::XOR) { 2827 // Simplify (X+Y) == (X+Z) --> Y == Z 2828 if (N0.getOpcode() == N1.getOpcode()) { 2829 if (N0.getOperand(0) == N1.getOperand(0)) 2830 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2831 if (N0.getOperand(1) == N1.getOperand(1)) 2832 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2833 if (isCommutativeBinOp(N0.getOpcode())) { 2834 // If X op Y == Y op X, try other combinations. 2835 if (N0.getOperand(0) == N1.getOperand(1)) 2836 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2837 Cond); 2838 if (N0.getOperand(1) == N1.getOperand(0)) 2839 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2840 Cond); 2841 } 2842 } 2843 2844 // If RHS is a legal immediate value for a compare instruction, we need 2845 // to be careful about increasing register pressure needlessly. 2846 bool LegalRHSImm = false; 2847 2848 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2849 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2850 // Turn (X+C1) == C2 --> X == C2-C1 2851 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2852 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2853 DAG.getConstant(RHSC->getAPIntValue()- 2854 LHSR->getAPIntValue(), 2855 dl, N0.getValueType()), Cond); 2856 } 2857 2858 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2859 if (N0.getOpcode() == ISD::XOR) 2860 // If we know that all of the inverted bits are zero, don't bother 2861 // performing the inversion. 2862 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2863 return 2864 DAG.getSetCC(dl, VT, N0.getOperand(0), 2865 DAG.getConstant(LHSR->getAPIntValue() ^ 2866 RHSC->getAPIntValue(), 2867 dl, N0.getValueType()), 2868 Cond); 2869 } 2870 2871 // Turn (C1-X) == C2 --> X == C1-C2 2872 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2873 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2874 return 2875 DAG.getSetCC(dl, VT, N0.getOperand(1), 2876 DAG.getConstant(SUBC->getAPIntValue() - 2877 RHSC->getAPIntValue(), 2878 dl, N0.getValueType()), 2879 Cond); 2880 } 2881 } 2882 2883 // Could RHSC fold directly into a compare? 2884 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2885 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2886 } 2887 2888 // Simplify (X+Z) == X --> Z == 0 2889 // Don't do this if X is an immediate that can fold into a cmp 2890 // instruction and X+Z has other uses. It could be an induction variable 2891 // chain, and the transform would increase register pressure. 2892 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2893 if (N0.getOperand(0) == N1) 2894 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2895 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2896 if (N0.getOperand(1) == N1) { 2897 if (isCommutativeBinOp(N0.getOpcode())) 2898 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2899 DAG.getConstant(0, dl, N0.getValueType()), 2900 Cond); 2901 if (N0.getNode()->hasOneUse()) { 2902 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2903 auto &DL = DAG.getDataLayout(); 2904 // (Z-X) == X --> Z == X<<1 2905 SDValue SH = DAG.getNode( 2906 ISD::SHL, dl, N1.getValueType(), N1, 2907 DAG.getConstant(1, dl, 2908 getShiftAmountTy(N1.getValueType(), DL, 2909 !DCI.isBeforeLegalize()))); 2910 if (!DCI.isCalledByLegalizer()) 2911 DCI.AddToWorklist(SH.getNode()); 2912 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2913 } 2914 } 2915 } 2916 } 2917 2918 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2919 N1.getOpcode() == ISD::XOR) { 2920 // Simplify X == (X+Z) --> Z == 0 2921 if (N1.getOperand(0) == N0) 2922 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2923 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2924 if (N1.getOperand(1) == N0) { 2925 if (isCommutativeBinOp(N1.getOpcode())) 2926 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2927 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2928 if (N1.getNode()->hasOneUse()) { 2929 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2930 auto &DL = DAG.getDataLayout(); 2931 // X == (Z-X) --> X<<1 == Z 2932 SDValue SH = DAG.getNode( 2933 ISD::SHL, dl, N1.getValueType(), N0, 2934 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2935 !DCI.isBeforeLegalize()))); 2936 if (!DCI.isCalledByLegalizer()) 2937 DCI.AddToWorklist(SH.getNode()); 2938 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2939 } 2940 } 2941 } 2942 2943 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2944 return V; 2945 } 2946 2947 // Fold away ALL boolean setcc's. 2948 SDValue Temp; 2949 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2950 EVT OpVT = N0.getValueType(); 2951 switch (Cond) { 2952 default: llvm_unreachable("Unknown integer setcc!"); 2953 case ISD::SETEQ: // X == Y -> ~(X^Y) 2954 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2955 N0 = DAG.getNOT(dl, Temp, OpVT); 2956 if (!DCI.isCalledByLegalizer()) 2957 DCI.AddToWorklist(Temp.getNode()); 2958 break; 2959 case ISD::SETNE: // X != Y --> (X^Y) 2960 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2961 break; 2962 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2963 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2964 Temp = DAG.getNOT(dl, N0, OpVT); 2965 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2966 if (!DCI.isCalledByLegalizer()) 2967 DCI.AddToWorklist(Temp.getNode()); 2968 break; 2969 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2970 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2971 Temp = DAG.getNOT(dl, N1, OpVT); 2972 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2973 if (!DCI.isCalledByLegalizer()) 2974 DCI.AddToWorklist(Temp.getNode()); 2975 break; 2976 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2977 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2978 Temp = DAG.getNOT(dl, N0, OpVT); 2979 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2980 if (!DCI.isCalledByLegalizer()) 2981 DCI.AddToWorklist(Temp.getNode()); 2982 break; 2983 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2984 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2985 Temp = DAG.getNOT(dl, N1, OpVT); 2986 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2987 break; 2988 } 2989 if (VT.getScalarType() != MVT::i1) { 2990 if (!DCI.isCalledByLegalizer()) 2991 DCI.AddToWorklist(N0.getNode()); 2992 // FIXME: If running after legalize, we probably can't do this. 2993 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2994 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2995 } 2996 return N0; 2997 } 2998 2999 // Could not fold it. 3000 return SDValue(); 3001 } 3002 3003 /// Returns true (and the GlobalValue and the offset) if the node is a 3004 /// GlobalAddress + offset. 3005 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3006 int64_t &Offset) const { 3007 3008 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3009 3010 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3011 GA = GASD->getGlobal(); 3012 Offset += GASD->getOffset(); 3013 return true; 3014 } 3015 3016 if (N->getOpcode() == ISD::ADD) { 3017 SDValue N1 = N->getOperand(0); 3018 SDValue N2 = N->getOperand(1); 3019 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3020 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3021 Offset += V->getSExtValue(); 3022 return true; 3023 } 3024 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3025 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3026 Offset += V->getSExtValue(); 3027 return true; 3028 } 3029 } 3030 } 3031 3032 return false; 3033 } 3034 3035 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3036 DAGCombinerInfo &DCI) const { 3037 // Default implementation: no optimization. 3038 return SDValue(); 3039 } 3040 3041 //===----------------------------------------------------------------------===// 3042 // Inline Assembler Implementation Methods 3043 //===----------------------------------------------------------------------===// 3044 3045 TargetLowering::ConstraintType 3046 TargetLowering::getConstraintType(StringRef Constraint) const { 3047 unsigned S = Constraint.size(); 3048 3049 if (S == 1) { 3050 switch (Constraint[0]) { 3051 default: break; 3052 case 'r': return C_RegisterClass; 3053 case 'm': // memory 3054 case 'o': // offsetable 3055 case 'V': // not offsetable 3056 return C_Memory; 3057 case 'i': // Simple Integer or Relocatable Constant 3058 case 'n': // Simple Integer 3059 case 'E': // Floating Point Constant 3060 case 'F': // Floating Point Constant 3061 case 's': // Relocatable Constant 3062 case 'p': // Address. 3063 case 'X': // Allow ANY value. 3064 case 'I': // Target registers. 3065 case 'J': 3066 case 'K': 3067 case 'L': 3068 case 'M': 3069 case 'N': 3070 case 'O': 3071 case 'P': 3072 case '<': 3073 case '>': 3074 return C_Other; 3075 } 3076 } 3077 3078 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 3079 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3080 return C_Memory; 3081 return C_Register; 3082 } 3083 return C_Unknown; 3084 } 3085 3086 /// Try to replace an X constraint, which matches anything, with another that 3087 /// has more specific requirements based on the type of the corresponding 3088 /// operand. 3089 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 3090 if (ConstraintVT.isInteger()) 3091 return "r"; 3092 if (ConstraintVT.isFloatingPoint()) 3093 return "f"; // works for many targets 3094 return nullptr; 3095 } 3096 3097 /// Lower the specified operand into the Ops vector. 3098 /// If it is invalid, don't add anything to Ops. 3099 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3100 std::string &Constraint, 3101 std::vector<SDValue> &Ops, 3102 SelectionDAG &DAG) const { 3103 3104 if (Constraint.length() > 1) return; 3105 3106 char ConstraintLetter = Constraint[0]; 3107 switch (ConstraintLetter) { 3108 default: break; 3109 case 'X': // Allows any operand; labels (basic block) use this. 3110 if (Op.getOpcode() == ISD::BasicBlock) { 3111 Ops.push_back(Op); 3112 return; 3113 } 3114 LLVM_FALLTHROUGH; 3115 case 'i': // Simple Integer or Relocatable Constant 3116 case 'n': // Simple Integer 3117 case 's': { // Relocatable Constant 3118 // These operands are interested in values of the form (GV+C), where C may 3119 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3120 // is possible and fine if either GV or C are missing. 3121 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3122 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3123 3124 // If we have "(add GV, C)", pull out GV/C 3125 if (Op.getOpcode() == ISD::ADD) { 3126 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3127 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3128 if (!C || !GA) { 3129 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3130 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3131 } 3132 if (!C || !GA) { 3133 C = nullptr; 3134 GA = nullptr; 3135 } 3136 } 3137 3138 // If we find a valid operand, map to the TargetXXX version so that the 3139 // value itself doesn't get selected. 3140 if (GA) { // Either &GV or &GV+C 3141 if (ConstraintLetter != 'n') { 3142 int64_t Offs = GA->getOffset(); 3143 if (C) Offs += C->getZExtValue(); 3144 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3145 C ? SDLoc(C) : SDLoc(), 3146 Op.getValueType(), Offs)); 3147 } 3148 return; 3149 } 3150 if (C) { // just C, no GV. 3151 // Simple constants are not allowed for 's'. 3152 if (ConstraintLetter != 's') { 3153 // gcc prints these as sign extended. Sign extend value to 64 bits 3154 // now; without this it would get ZExt'd later in 3155 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3156 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3157 SDLoc(C), MVT::i64)); 3158 } 3159 return; 3160 } 3161 break; 3162 } 3163 } 3164 } 3165 3166 std::pair<unsigned, const TargetRegisterClass *> 3167 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3168 StringRef Constraint, 3169 MVT VT) const { 3170 if (Constraint.empty() || Constraint[0] != '{') 3171 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 3172 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 3173 3174 // Remove the braces from around the name. 3175 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 3176 3177 std::pair<unsigned, const TargetRegisterClass*> R = 3178 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 3179 3180 // Figure out which register class contains this reg. 3181 for (const TargetRegisterClass *RC : RI->regclasses()) { 3182 // If none of the value types for this register class are valid, we 3183 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3184 if (!isLegalRC(*RI, *RC)) 3185 continue; 3186 3187 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3188 I != E; ++I) { 3189 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3190 std::pair<unsigned, const TargetRegisterClass*> S = 3191 std::make_pair(*I, RC); 3192 3193 // If this register class has the requested value type, return it, 3194 // otherwise keep searching and return the first class found 3195 // if no other is found which explicitly has the requested type. 3196 if (RI->isTypeLegalForClass(*RC, VT)) 3197 return S; 3198 if (!R.second) 3199 R = S; 3200 } 3201 } 3202 } 3203 3204 return R; 3205 } 3206 3207 //===----------------------------------------------------------------------===// 3208 // Constraint Selection. 3209 3210 /// Return true of this is an input operand that is a matching constraint like 3211 /// "4". 3212 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3213 assert(!ConstraintCode.empty() && "No known constraint!"); 3214 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3215 } 3216 3217 /// If this is an input matching constraint, this method returns the output 3218 /// operand it matches. 3219 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3220 assert(!ConstraintCode.empty() && "No known constraint!"); 3221 return atoi(ConstraintCode.c_str()); 3222 } 3223 3224 /// Split up the constraint string from the inline assembly value into the 3225 /// specific constraints and their prefixes, and also tie in the associated 3226 /// operand values. 3227 /// If this returns an empty vector, and if the constraint string itself 3228 /// isn't empty, there was an error parsing. 3229 TargetLowering::AsmOperandInfoVector 3230 TargetLowering::ParseConstraints(const DataLayout &DL, 3231 const TargetRegisterInfo *TRI, 3232 ImmutableCallSite CS) const { 3233 /// Information about all of the constraints. 3234 AsmOperandInfoVector ConstraintOperands; 3235 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3236 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3237 3238 // Do a prepass over the constraints, canonicalizing them, and building up the 3239 // ConstraintOperands list. 3240 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3241 unsigned ResNo = 0; // ResNo - The result number of the next output. 3242 3243 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3244 ConstraintOperands.emplace_back(std::move(CI)); 3245 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3246 3247 // Update multiple alternative constraint count. 3248 if (OpInfo.multipleAlternatives.size() > maCount) 3249 maCount = OpInfo.multipleAlternatives.size(); 3250 3251 OpInfo.ConstraintVT = MVT::Other; 3252 3253 // Compute the value type for each operand. 3254 switch (OpInfo.Type) { 3255 case InlineAsm::isOutput: 3256 // Indirect outputs just consume an argument. 3257 if (OpInfo.isIndirect) { 3258 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3259 break; 3260 } 3261 3262 // The return value of the call is this value. As such, there is no 3263 // corresponding argument. 3264 assert(!CS.getType()->isVoidTy() && 3265 "Bad inline asm!"); 3266 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3267 OpInfo.ConstraintVT = 3268 getSimpleValueType(DL, STy->getElementType(ResNo)); 3269 } else { 3270 assert(ResNo == 0 && "Asm only has one result!"); 3271 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3272 } 3273 ++ResNo; 3274 break; 3275 case InlineAsm::isInput: 3276 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3277 break; 3278 case InlineAsm::isClobber: 3279 // Nothing to do. 3280 break; 3281 } 3282 3283 if (OpInfo.CallOperandVal) { 3284 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3285 if (OpInfo.isIndirect) { 3286 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3287 if (!PtrTy) 3288 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3289 OpTy = PtrTy->getElementType(); 3290 } 3291 3292 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3293 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3294 if (STy->getNumElements() == 1) 3295 OpTy = STy->getElementType(0); 3296 3297 // If OpTy is not a single value, it may be a struct/union that we 3298 // can tile with integers. 3299 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3300 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3301 switch (BitSize) { 3302 default: break; 3303 case 1: 3304 case 8: 3305 case 16: 3306 case 32: 3307 case 64: 3308 case 128: 3309 OpInfo.ConstraintVT = 3310 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3311 break; 3312 } 3313 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3314 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3315 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3316 } else { 3317 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3318 } 3319 } 3320 } 3321 3322 // If we have multiple alternative constraints, select the best alternative. 3323 if (!ConstraintOperands.empty()) { 3324 if (maCount) { 3325 unsigned bestMAIndex = 0; 3326 int bestWeight = -1; 3327 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3328 int weight = -1; 3329 unsigned maIndex; 3330 // Compute the sums of the weights for each alternative, keeping track 3331 // of the best (highest weight) one so far. 3332 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3333 int weightSum = 0; 3334 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3335 cIndex != eIndex; ++cIndex) { 3336 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3337 if (OpInfo.Type == InlineAsm::isClobber) 3338 continue; 3339 3340 // If this is an output operand with a matching input operand, 3341 // look up the matching input. If their types mismatch, e.g. one 3342 // is an integer, the other is floating point, or their sizes are 3343 // different, flag it as an maCantMatch. 3344 if (OpInfo.hasMatchingInput()) { 3345 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3346 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3347 if ((OpInfo.ConstraintVT.isInteger() != 3348 Input.ConstraintVT.isInteger()) || 3349 (OpInfo.ConstraintVT.getSizeInBits() != 3350 Input.ConstraintVT.getSizeInBits())) { 3351 weightSum = -1; // Can't match. 3352 break; 3353 } 3354 } 3355 } 3356 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3357 if (weight == -1) { 3358 weightSum = -1; 3359 break; 3360 } 3361 weightSum += weight; 3362 } 3363 // Update best. 3364 if (weightSum > bestWeight) { 3365 bestWeight = weightSum; 3366 bestMAIndex = maIndex; 3367 } 3368 } 3369 3370 // Now select chosen alternative in each constraint. 3371 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3372 cIndex != eIndex; ++cIndex) { 3373 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3374 if (cInfo.Type == InlineAsm::isClobber) 3375 continue; 3376 cInfo.selectAlternative(bestMAIndex); 3377 } 3378 } 3379 } 3380 3381 // Check and hook up tied operands, choose constraint code to use. 3382 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3383 cIndex != eIndex; ++cIndex) { 3384 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3385 3386 // If this is an output operand with a matching input operand, look up the 3387 // matching input. If their types mismatch, e.g. one is an integer, the 3388 // other is floating point, or their sizes are different, flag it as an 3389 // error. 3390 if (OpInfo.hasMatchingInput()) { 3391 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3392 3393 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3394 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3395 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3396 OpInfo.ConstraintVT); 3397 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3398 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3399 Input.ConstraintVT); 3400 if ((OpInfo.ConstraintVT.isInteger() != 3401 Input.ConstraintVT.isInteger()) || 3402 (MatchRC.second != InputRC.second)) { 3403 report_fatal_error("Unsupported asm: input constraint" 3404 " with a matching output constraint of" 3405 " incompatible type!"); 3406 } 3407 } 3408 } 3409 } 3410 3411 return ConstraintOperands; 3412 } 3413 3414 /// Return an integer indicating how general CT is. 3415 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3416 switch (CT) { 3417 case TargetLowering::C_Other: 3418 case TargetLowering::C_Unknown: 3419 return 0; 3420 case TargetLowering::C_Register: 3421 return 1; 3422 case TargetLowering::C_RegisterClass: 3423 return 2; 3424 case TargetLowering::C_Memory: 3425 return 3; 3426 } 3427 llvm_unreachable("Invalid constraint type"); 3428 } 3429 3430 /// Examine constraint type and operand type and determine a weight value. 3431 /// This object must already have been set up with the operand type 3432 /// and the current alternative constraint selected. 3433 TargetLowering::ConstraintWeight 3434 TargetLowering::getMultipleConstraintMatchWeight( 3435 AsmOperandInfo &info, int maIndex) const { 3436 InlineAsm::ConstraintCodeVector *rCodes; 3437 if (maIndex >= (int)info.multipleAlternatives.size()) 3438 rCodes = &info.Codes; 3439 else 3440 rCodes = &info.multipleAlternatives[maIndex].Codes; 3441 ConstraintWeight BestWeight = CW_Invalid; 3442 3443 // Loop over the options, keeping track of the most general one. 3444 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3445 ConstraintWeight weight = 3446 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3447 if (weight > BestWeight) 3448 BestWeight = weight; 3449 } 3450 3451 return BestWeight; 3452 } 3453 3454 /// Examine constraint type and operand type and determine a weight value. 3455 /// This object must already have been set up with the operand type 3456 /// and the current alternative constraint selected. 3457 TargetLowering::ConstraintWeight 3458 TargetLowering::getSingleConstraintMatchWeight( 3459 AsmOperandInfo &info, const char *constraint) const { 3460 ConstraintWeight weight = CW_Invalid; 3461 Value *CallOperandVal = info.CallOperandVal; 3462 // If we don't have a value, we can't do a match, 3463 // but allow it at the lowest weight. 3464 if (!CallOperandVal) 3465 return CW_Default; 3466 // Look at the constraint type. 3467 switch (*constraint) { 3468 case 'i': // immediate integer. 3469 case 'n': // immediate integer with a known value. 3470 if (isa<ConstantInt>(CallOperandVal)) 3471 weight = CW_Constant; 3472 break; 3473 case 's': // non-explicit intregal immediate. 3474 if (isa<GlobalValue>(CallOperandVal)) 3475 weight = CW_Constant; 3476 break; 3477 case 'E': // immediate float if host format. 3478 case 'F': // immediate float. 3479 if (isa<ConstantFP>(CallOperandVal)) 3480 weight = CW_Constant; 3481 break; 3482 case '<': // memory operand with autodecrement. 3483 case '>': // memory operand with autoincrement. 3484 case 'm': // memory operand. 3485 case 'o': // offsettable memory operand 3486 case 'V': // non-offsettable memory operand 3487 weight = CW_Memory; 3488 break; 3489 case 'r': // general register. 3490 case 'g': // general register, memory operand or immediate integer. 3491 // note: Clang converts "g" to "imr". 3492 if (CallOperandVal->getType()->isIntegerTy()) 3493 weight = CW_Register; 3494 break; 3495 case 'X': // any operand. 3496 default: 3497 weight = CW_Default; 3498 break; 3499 } 3500 return weight; 3501 } 3502 3503 /// If there are multiple different constraints that we could pick for this 3504 /// operand (e.g. "imr") try to pick the 'best' one. 3505 /// This is somewhat tricky: constraints fall into four classes: 3506 /// Other -> immediates and magic values 3507 /// Register -> one specific register 3508 /// RegisterClass -> a group of regs 3509 /// Memory -> memory 3510 /// Ideally, we would pick the most specific constraint possible: if we have 3511 /// something that fits into a register, we would pick it. The problem here 3512 /// is that if we have something that could either be in a register or in 3513 /// memory that use of the register could cause selection of *other* 3514 /// operands to fail: they might only succeed if we pick memory. Because of 3515 /// this the heuristic we use is: 3516 /// 3517 /// 1) If there is an 'other' constraint, and if the operand is valid for 3518 /// that constraint, use it. This makes us take advantage of 'i' 3519 /// constraints when available. 3520 /// 2) Otherwise, pick the most general constraint present. This prefers 3521 /// 'm' over 'r', for example. 3522 /// 3523 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3524 const TargetLowering &TLI, 3525 SDValue Op, SelectionDAG *DAG) { 3526 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3527 unsigned BestIdx = 0; 3528 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3529 int BestGenerality = -1; 3530 3531 // Loop over the options, keeping track of the most general one. 3532 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3533 TargetLowering::ConstraintType CType = 3534 TLI.getConstraintType(OpInfo.Codes[i]); 3535 3536 // If this is an 'other' constraint, see if the operand is valid for it. 3537 // For example, on X86 we might have an 'rI' constraint. If the operand 3538 // is an integer in the range [0..31] we want to use I (saving a load 3539 // of a register), otherwise we must use 'r'. 3540 if (CType == TargetLowering::C_Other && Op.getNode()) { 3541 assert(OpInfo.Codes[i].size() == 1 && 3542 "Unhandled multi-letter 'other' constraint"); 3543 std::vector<SDValue> ResultOps; 3544 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3545 ResultOps, *DAG); 3546 if (!ResultOps.empty()) { 3547 BestType = CType; 3548 BestIdx = i; 3549 break; 3550 } 3551 } 3552 3553 // Things with matching constraints can only be registers, per gcc 3554 // documentation. This mainly affects "g" constraints. 3555 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3556 continue; 3557 3558 // This constraint letter is more general than the previous one, use it. 3559 int Generality = getConstraintGenerality(CType); 3560 if (Generality > BestGenerality) { 3561 BestType = CType; 3562 BestIdx = i; 3563 BestGenerality = Generality; 3564 } 3565 } 3566 3567 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3568 OpInfo.ConstraintType = BestType; 3569 } 3570 3571 /// Determines the constraint code and constraint type to use for the specific 3572 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3573 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3574 SDValue Op, 3575 SelectionDAG *DAG) const { 3576 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3577 3578 // Single-letter constraints ('r') are very common. 3579 if (OpInfo.Codes.size() == 1) { 3580 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3581 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3582 } else { 3583 ChooseConstraint(OpInfo, *this, Op, DAG); 3584 } 3585 3586 // 'X' matches anything. 3587 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3588 // Labels and constants are handled elsewhere ('X' is the only thing 3589 // that matches labels). For Functions, the type here is the type of 3590 // the result, which is not what we want to look at; leave them alone. 3591 Value *v = OpInfo.CallOperandVal; 3592 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3593 OpInfo.CallOperandVal = v; 3594 return; 3595 } 3596 3597 // Otherwise, try to resolve it to something we know about by looking at 3598 // the actual operand type. 3599 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3600 OpInfo.ConstraintCode = Repl; 3601 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3602 } 3603 } 3604 } 3605 3606 /// Given an exact SDIV by a constant, create a multiplication 3607 /// with the multiplicative inverse of the constant. 3608 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3609 const SDLoc &dl, SelectionDAG &DAG, 3610 SmallVectorImpl<SDNode *> &Created) { 3611 SDValue Op0 = N->getOperand(0); 3612 SDValue Op1 = N->getOperand(1); 3613 EVT VT = N->getValueType(0); 3614 EVT SVT = VT.getScalarType(); 3615 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3616 EVT ShSVT = ShVT.getScalarType(); 3617 3618 bool UseSRA = false; 3619 SmallVector<SDValue, 16> Shifts, Factors; 3620 3621 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3622 if (C->isNullValue()) 3623 return false; 3624 APInt Divisor = C->getAPIntValue(); 3625 unsigned Shift = Divisor.countTrailingZeros(); 3626 if (Shift) { 3627 Divisor.ashrInPlace(Shift); 3628 UseSRA = true; 3629 } 3630 // Calculate the multiplicative inverse, using Newton's method. 3631 APInt t; 3632 APInt Factor = Divisor; 3633 while ((t = Divisor * Factor) != 1) 3634 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3635 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3636 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3637 return true; 3638 }; 3639 3640 // Collect all magic values from the build vector. 3641 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3642 return SDValue(); 3643 3644 SDValue Shift, Factor; 3645 if (VT.isVector()) { 3646 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3647 Factor = DAG.getBuildVector(VT, dl, Factors); 3648 } else { 3649 Shift = Shifts[0]; 3650 Factor = Factors[0]; 3651 } 3652 3653 SDValue Res = Op0; 3654 3655 // Shift the value upfront if it is even, so the LSB is one. 3656 if (UseSRA) { 3657 // TODO: For UDIV use SRL instead of SRA. 3658 SDNodeFlags Flags; 3659 Flags.setExact(true); 3660 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3661 Created.push_back(Res.getNode()); 3662 } 3663 3664 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3665 } 3666 3667 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3668 SelectionDAG &DAG, 3669 SmallVectorImpl<SDNode *> &Created) const { 3670 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3672 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3673 return SDValue(N,0); // Lower SDIV as SDIV 3674 return SDValue(); 3675 } 3676 3677 /// Given an ISD::SDIV node expressing a divide by constant, 3678 /// return a DAG expression to select that will generate the same value by 3679 /// multiplying by a magic number. 3680 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3681 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3682 bool IsAfterLegalization, 3683 SmallVectorImpl<SDNode *> &Created) const { 3684 SDLoc dl(N); 3685 EVT VT = N->getValueType(0); 3686 EVT SVT = VT.getScalarType(); 3687 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3688 EVT ShSVT = ShVT.getScalarType(); 3689 unsigned EltBits = VT.getScalarSizeInBits(); 3690 3691 // Check to see if we can do this. 3692 // FIXME: We should be more aggressive here. 3693 if (!isTypeLegal(VT)) 3694 return SDValue(); 3695 3696 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3697 if (N->getFlags().hasExact()) 3698 return BuildExactSDIV(*this, N, dl, DAG, Created); 3699 3700 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3701 3702 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3703 if (C->isNullValue()) 3704 return false; 3705 3706 const APInt &Divisor = C->getAPIntValue(); 3707 APInt::ms magics = Divisor.magic(); 3708 int NumeratorFactor = 0; 3709 int ShiftMask = -1; 3710 3711 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3712 // If d is +1/-1, we just multiply the numerator by +1/-1. 3713 NumeratorFactor = Divisor.getSExtValue(); 3714 magics.m = 0; 3715 magics.s = 0; 3716 ShiftMask = 0; 3717 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3718 // If d > 0 and m < 0, add the numerator. 3719 NumeratorFactor = 1; 3720 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3721 // If d < 0 and m > 0, subtract the numerator. 3722 NumeratorFactor = -1; 3723 } 3724 3725 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3726 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3727 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3728 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3729 return true; 3730 }; 3731 3732 SDValue N0 = N->getOperand(0); 3733 SDValue N1 = N->getOperand(1); 3734 3735 // Collect the shifts / magic values from each element. 3736 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3737 return SDValue(); 3738 3739 SDValue MagicFactor, Factor, Shift, ShiftMask; 3740 if (VT.isVector()) { 3741 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3742 Factor = DAG.getBuildVector(VT, dl, Factors); 3743 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3744 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3745 } else { 3746 MagicFactor = MagicFactors[0]; 3747 Factor = Factors[0]; 3748 Shift = Shifts[0]; 3749 ShiftMask = ShiftMasks[0]; 3750 } 3751 3752 // Multiply the numerator (operand 0) by the magic value. 3753 // FIXME: We should support doing a MUL in a wider type. 3754 SDValue Q; 3755 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3756 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3757 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3758 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3759 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3760 SDValue LoHi = 3761 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3762 Q = SDValue(LoHi.getNode(), 1); 3763 } else 3764 return SDValue(); // No mulhs or equivalent. 3765 Created.push_back(Q.getNode()); 3766 3767 // (Optionally) Add/subtract the numerator using Factor. 3768 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3769 Created.push_back(Factor.getNode()); 3770 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3771 Created.push_back(Q.getNode()); 3772 3773 // Shift right algebraic by shift value. 3774 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3775 Created.push_back(Q.getNode()); 3776 3777 // Extract the sign bit, mask it and add it to the quotient. 3778 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3779 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3780 Created.push_back(T.getNode()); 3781 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3782 Created.push_back(T.getNode()); 3783 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3784 } 3785 3786 /// Given an ISD::UDIV node expressing a divide by constant, 3787 /// return a DAG expression to select that will generate the same value by 3788 /// multiplying by a magic number. 3789 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3790 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3791 bool IsAfterLegalization, 3792 SmallVectorImpl<SDNode *> &Created) const { 3793 SDLoc dl(N); 3794 EVT VT = N->getValueType(0); 3795 EVT SVT = VT.getScalarType(); 3796 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3797 EVT ShSVT = ShVT.getScalarType(); 3798 unsigned EltBits = VT.getScalarSizeInBits(); 3799 3800 // Check to see if we can do this. 3801 // FIXME: We should be more aggressive here. 3802 if (!isTypeLegal(VT)) 3803 return SDValue(); 3804 3805 bool UseNPQ = false; 3806 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 3807 3808 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 3809 if (C->isNullValue()) 3810 return false; 3811 // FIXME: We should use a narrower constant when the upper 3812 // bits are known to be zero. 3813 APInt Divisor = C->getAPIntValue(); 3814 APInt::mu magics = Divisor.magicu(); 3815 unsigned PreShift = 0, PostShift = 0; 3816 3817 // If the divisor is even, we can avoid using the expensive fixup by 3818 // shifting the divided value upfront. 3819 if (magics.a != 0 && !Divisor[0]) { 3820 PreShift = Divisor.countTrailingZeros(); 3821 // Get magic number for the shifted divisor. 3822 magics = Divisor.lshr(PreShift).magicu(PreShift); 3823 assert(magics.a == 0 && "Should use cheap fixup now"); 3824 } 3825 3826 APInt Magic = magics.m; 3827 3828 unsigned SelNPQ; 3829 if (magics.a == 0 || Divisor.isOneValue()) { 3830 assert(magics.s < Divisor.getBitWidth() && 3831 "We shouldn't generate an undefined shift!"); 3832 PostShift = magics.s; 3833 SelNPQ = false; 3834 } else { 3835 PostShift = magics.s - 1; 3836 SelNPQ = true; 3837 } 3838 3839 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 3840 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 3841 NPQFactors.push_back( 3842 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 3843 : APInt::getNullValue(EltBits), 3844 dl, SVT)); 3845 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 3846 UseNPQ |= SelNPQ; 3847 return true; 3848 }; 3849 3850 SDValue N0 = N->getOperand(0); 3851 SDValue N1 = N->getOperand(1); 3852 3853 // Collect the shifts/magic values from each element. 3854 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 3855 return SDValue(); 3856 3857 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 3858 if (VT.isVector()) { 3859 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 3860 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3861 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 3862 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 3863 } else { 3864 PreShift = PreShifts[0]; 3865 MagicFactor = MagicFactors[0]; 3866 PostShift = PostShifts[0]; 3867 } 3868 3869 SDValue Q = N0; 3870 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 3871 Created.push_back(Q.getNode()); 3872 3873 // FIXME: We should support doing a MUL in a wider type. 3874 auto GetMULHU = [&](SDValue X, SDValue Y) { 3875 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 3876 : isOperationLegalOrCustom(ISD::MULHU, VT)) 3877 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 3878 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 3879 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3880 SDValue LoHi = 3881 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 3882 return SDValue(LoHi.getNode(), 1); 3883 } 3884 return SDValue(); // No mulhu or equivalent 3885 }; 3886 3887 // Multiply the numerator (operand 0) by the magic value. 3888 Q = GetMULHU(Q, MagicFactor); 3889 if (!Q) 3890 return SDValue(); 3891 3892 Created.push_back(Q.getNode()); 3893 3894 if (UseNPQ) { 3895 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 3896 Created.push_back(NPQ.getNode()); 3897 3898 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 3899 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 3900 if (VT.isVector()) 3901 NPQ = GetMULHU(NPQ, NPQFactor); 3902 else 3903 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 3904 3905 Created.push_back(NPQ.getNode()); 3906 3907 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3908 Created.push_back(Q.getNode()); 3909 } 3910 3911 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 3912 Created.push_back(Q.getNode()); 3913 3914 SDValue One = DAG.getConstant(1, dl, VT); 3915 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 3916 return DAG.getSelect(dl, VT, IsOne, N0, Q); 3917 } 3918 3919 bool TargetLowering:: 3920 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3921 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3922 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3923 "be a constant integer"); 3924 return true; 3925 } 3926 3927 return false; 3928 } 3929 3930 //===----------------------------------------------------------------------===// 3931 // Legalization Utilities 3932 //===----------------------------------------------------------------------===// 3933 3934 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3935 SDValue LHS, SDValue RHS, 3936 SmallVectorImpl<SDValue> &Result, 3937 EVT HiLoVT, SelectionDAG &DAG, 3938 MulExpansionKind Kind, SDValue LL, 3939 SDValue LH, SDValue RL, SDValue RH) const { 3940 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3941 Opcode == ISD::SMUL_LOHI); 3942 3943 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3944 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3945 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3946 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3947 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3948 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3949 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3950 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3951 3952 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3953 return false; 3954 3955 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3956 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3957 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3958 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3959 3960 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3961 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3962 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3963 3964 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3965 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3966 bool Signed) -> bool { 3967 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3968 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3969 Hi = SDValue(Lo.getNode(), 1); 3970 return true; 3971 } 3972 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3973 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3974 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3975 return true; 3976 } 3977 return false; 3978 }; 3979 3980 SDValue Lo, Hi; 3981 3982 if (!LL.getNode() && !RL.getNode() && 3983 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3984 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3985 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3986 } 3987 3988 if (!LL.getNode()) 3989 return false; 3990 3991 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3992 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3993 DAG.MaskedValueIsZero(RHS, HighMask)) { 3994 // The inputs are both zero-extended. 3995 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3996 Result.push_back(Lo); 3997 Result.push_back(Hi); 3998 if (Opcode != ISD::MUL) { 3999 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4000 Result.push_back(Zero); 4001 Result.push_back(Zero); 4002 } 4003 return true; 4004 } 4005 } 4006 4007 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4008 RHSSB > InnerBitSize) { 4009 // The input values are both sign-extended. 4010 // TODO non-MUL case? 4011 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4012 Result.push_back(Lo); 4013 Result.push_back(Hi); 4014 return true; 4015 } 4016 } 4017 4018 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4019 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4020 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4021 // FIXME getShiftAmountTy does not always return a sensible result when VT 4022 // is an illegal type, and so the type may be too small to fit the shift 4023 // amount. Override it with i32. The shift will have to be legalized. 4024 ShiftAmountTy = MVT::i32; 4025 } 4026 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4027 4028 if (!LH.getNode() && !RH.getNode() && 4029 isOperationLegalOrCustom(ISD::SRL, VT) && 4030 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4031 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4032 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4033 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4034 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4035 } 4036 4037 if (!LH.getNode()) 4038 return false; 4039 4040 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4041 return false; 4042 4043 Result.push_back(Lo); 4044 4045 if (Opcode == ISD::MUL) { 4046 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4047 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4048 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4049 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4050 Result.push_back(Hi); 4051 return true; 4052 } 4053 4054 // Compute the full width result. 4055 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4056 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4057 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4058 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4059 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4060 }; 4061 4062 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4063 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4064 return false; 4065 4066 // This is effectively the add part of a multiply-add of half-sized operands, 4067 // so it cannot overflow. 4068 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4069 4070 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4071 return false; 4072 4073 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4074 Merge(Lo, Hi)); 4075 4076 SDValue Carry = Next.getValue(1); 4077 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4078 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4079 4080 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4081 return false; 4082 4083 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4084 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4085 Carry); 4086 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4087 4088 if (Opcode == ISD::SMUL_LOHI) { 4089 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4090 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4091 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4092 4093 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4094 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4095 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4096 } 4097 4098 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4099 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4100 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4101 return true; 4102 } 4103 4104 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4105 SelectionDAG &DAG, MulExpansionKind Kind, 4106 SDValue LL, SDValue LH, SDValue RL, 4107 SDValue RH) const { 4108 SmallVector<SDValue, 2> Result; 4109 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4110 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4111 DAG, Kind, LL, LH, RL, RH); 4112 if (Ok) { 4113 assert(Result.size() == 2); 4114 Lo = Result[0]; 4115 Hi = Result[1]; 4116 } 4117 return Ok; 4118 } 4119 4120 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4121 SelectionDAG &DAG) const { 4122 EVT VT = Node->getValueType(0); 4123 4124 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4125 !isOperationLegalOrCustom(ISD::SRL, VT) || 4126 !isOperationLegalOrCustom(ISD::SUB, VT) || 4127 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4128 return false; 4129 4130 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4131 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4132 SDValue X = Node->getOperand(0); 4133 SDValue Y = Node->getOperand(1); 4134 SDValue Z = Node->getOperand(2); 4135 4136 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4137 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4138 SDLoc DL(SDValue(Node, 0)); 4139 4140 EVT ShVT = Z.getValueType(); 4141 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4142 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4143 4144 SDValue ShAmt; 4145 if (isPowerOf2_32(EltSizeInBits)) { 4146 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4147 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4148 } else { 4149 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4150 } 4151 4152 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4153 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4154 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4155 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4156 4157 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4158 // and that is undefined. We must compare and select to avoid UB. 4159 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4160 4161 // For fshl, 0-shift returns the 1st arg (X). 4162 // For fshr, 0-shift returns the 2nd arg (Y). 4163 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4164 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4165 return true; 4166 } 4167 4168 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4169 SelectionDAG &DAG) const { 4170 SDValue Src = Node->getOperand(0); 4171 EVT SrcVT = Src.getValueType(); 4172 EVT DstVT = Node->getValueType(0); 4173 SDLoc dl(SDValue(Node, 0)); 4174 4175 // FIXME: Only f32 to i64 conversions are supported. 4176 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4177 return false; 4178 4179 // Expand f32 -> i64 conversion 4180 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4181 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 4182 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4183 EVT IntVT = SrcVT.changeTypeToInteger(); 4184 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4185 4186 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4187 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4188 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4189 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4190 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4191 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4192 4193 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4194 4195 SDValue ExponentBits = DAG.getNode( 4196 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4197 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4198 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4199 4200 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4201 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4202 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4203 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4204 4205 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4206 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4207 DAG.getConstant(0x00800000, dl, IntVT)); 4208 4209 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4210 4211 R = DAG.getSelectCC( 4212 dl, Exponent, ExponentLoBit, 4213 DAG.getNode(ISD::SHL, dl, DstVT, R, 4214 DAG.getZExtOrTrunc( 4215 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4216 dl, IntShVT)), 4217 DAG.getNode(ISD::SRL, dl, DstVT, R, 4218 DAG.getZExtOrTrunc( 4219 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4220 dl, IntShVT)), 4221 ISD::SETGT); 4222 4223 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4224 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4225 4226 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4227 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4228 return true; 4229 } 4230 4231 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4232 SelectionDAG &DAG) const { 4233 SDLoc dl(SDValue(Node, 0)); 4234 SDValue Src = Node->getOperand(0); 4235 4236 EVT SrcVT = Src.getValueType(); 4237 EVT DstVT = Node->getValueType(0); 4238 EVT SetCCVT = 4239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4240 4241 // Only expand vector types if we have the appropriate vector bit operations. 4242 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4243 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4244 return false; 4245 4246 // If the maximum float value is smaller then the signed integer range, 4247 // the destination signmask can't be represented by the float, so we can 4248 // just use FP_TO_SINT directly. 4249 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4250 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4251 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4252 if (APFloat::opOverflow & 4253 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4254 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4255 return true; 4256 } 4257 4258 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4259 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4260 4261 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4262 if (Strict) { 4263 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4264 // signmask then offset (the result of which should be fully representable). 4265 // Sel = Src < 0x8000000000000000 4266 // Val = select Sel, Src, Src - 0x8000000000000000 4267 // Ofs = select Sel, 0, 0x8000000000000000 4268 // Result = fp_to_sint(Val) ^ Ofs 4269 4270 // TODO: Should any fast-math-flags be set for the FSUB? 4271 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4272 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4273 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4274 DAG.getConstant(SignMask, dl, DstVT)); 4275 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4276 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4277 } else { 4278 // Expand based on maximum range of FP_TO_SINT: 4279 // True = fp_to_sint(Src) 4280 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4281 // Result = select (Src < 0x8000000000000000), True, False 4282 4283 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4284 // TODO: Should any fast-math-flags be set for the FSUB? 4285 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4286 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4287 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4288 DAG.getConstant(SignMask, dl, DstVT)); 4289 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4290 } 4291 return true; 4292 } 4293 4294 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4295 SelectionDAG &DAG) const { 4296 SDValue Src = Node->getOperand(0); 4297 EVT SrcVT = Src.getValueType(); 4298 EVT DstVT = Node->getValueType(0); 4299 4300 if (SrcVT.getScalarType() != MVT::i64) 4301 return false; 4302 4303 SDLoc dl(SDValue(Node, 0)); 4304 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4305 4306 if (DstVT.getScalarType() == MVT::f32) { 4307 // Only expand vector types if we have the appropriate vector bit 4308 // operations. 4309 if (SrcVT.isVector() && 4310 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4311 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4312 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4313 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4314 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4315 return false; 4316 4317 // For unsigned conversions, convert them to signed conversions using the 4318 // algorithm from the x86_64 __floatundidf in compiler_rt. 4319 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4320 4321 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4322 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4323 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4324 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4325 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4326 4327 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4328 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4329 4330 // TODO: This really should be implemented using a branch rather than a 4331 // select. We happen to get lucky and machinesink does the right 4332 // thing most of the time. This would be a good candidate for a 4333 // pseudo-op, or, even better, for whole-function isel. 4334 EVT SetCCVT = 4335 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4336 4337 SDValue SignBitTest = DAG.getSetCC( 4338 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4339 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4340 return true; 4341 } 4342 4343 if (DstVT.getScalarType() == MVT::f64) { 4344 // Only expand vector types if we have the appropriate vector bit 4345 // operations. 4346 if (SrcVT.isVector() && 4347 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4348 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4349 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4350 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4351 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4352 return false; 4353 4354 // Implementation of unsigned i64 to f64 following the algorithm in 4355 // __floatundidf in compiler_rt. This implementation has the advantage 4356 // of performing rounding correctly, both in the default rounding mode 4357 // and in all alternate rounding modes. 4358 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4359 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4360 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4361 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4362 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4363 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4364 4365 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4366 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4367 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4368 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4369 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4370 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4371 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4372 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4373 return true; 4374 } 4375 4376 return false; 4377 } 4378 4379 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4380 SelectionDAG &DAG) const { 4381 SDLoc dl(Node); 4382 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4383 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4384 EVT VT = Node->getValueType(0); 4385 if (isOperationLegalOrCustom(NewOp, VT)) { 4386 SDValue Quiet0 = Node->getOperand(0); 4387 SDValue Quiet1 = Node->getOperand(1); 4388 4389 if (!Node->getFlags().hasNoNaNs()) { 4390 // Insert canonicalizes if it's possible we need to quiet to get correct 4391 // sNaN behavior. 4392 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4393 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4394 Node->getFlags()); 4395 } 4396 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4397 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4398 Node->getFlags()); 4399 } 4400 } 4401 4402 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4403 } 4404 4405 return SDValue(); 4406 } 4407 4408 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4409 SelectionDAG &DAG) const { 4410 SDLoc dl(Node); 4411 EVT VT = Node->getValueType(0); 4412 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4413 SDValue Op = Node->getOperand(0); 4414 unsigned Len = VT.getScalarSizeInBits(); 4415 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4416 4417 // TODO: Add support for irregular type lengths. 4418 if (!(Len <= 128 && Len % 8 == 0)) 4419 return false; 4420 4421 // Only expand vector types if we have the appropriate vector bit operations. 4422 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4423 !isOperationLegalOrCustom(ISD::SUB, VT) || 4424 !isOperationLegalOrCustom(ISD::SRL, VT) || 4425 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4426 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4427 return false; 4428 4429 // This is the "best" algorithm from 4430 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4431 SDValue Mask55 = 4432 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4433 SDValue Mask33 = 4434 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4435 SDValue Mask0F = 4436 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4437 SDValue Mask01 = 4438 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4439 4440 // v = v - ((v >> 1) & 0x55555555...) 4441 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4442 DAG.getNode(ISD::AND, dl, VT, 4443 DAG.getNode(ISD::SRL, dl, VT, Op, 4444 DAG.getConstant(1, dl, ShVT)), 4445 Mask55)); 4446 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4447 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4448 DAG.getNode(ISD::AND, dl, VT, 4449 DAG.getNode(ISD::SRL, dl, VT, Op, 4450 DAG.getConstant(2, dl, ShVT)), 4451 Mask33)); 4452 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4453 Op = DAG.getNode(ISD::AND, dl, VT, 4454 DAG.getNode(ISD::ADD, dl, VT, Op, 4455 DAG.getNode(ISD::SRL, dl, VT, Op, 4456 DAG.getConstant(4, dl, ShVT))), 4457 Mask0F); 4458 // v = (v * 0x01010101...) >> (Len - 8) 4459 if (Len > 8) 4460 Op = 4461 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4462 DAG.getConstant(Len - 8, dl, ShVT)); 4463 4464 Result = Op; 4465 return true; 4466 } 4467 4468 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4469 SelectionDAG &DAG) const { 4470 SDLoc dl(Node); 4471 EVT VT = Node->getValueType(0); 4472 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4473 SDValue Op = Node->getOperand(0); 4474 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4475 4476 // If the non-ZERO_UNDEF version is supported we can use that instead. 4477 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4478 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4479 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4480 return true; 4481 } 4482 4483 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4484 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4485 EVT SetCCVT = 4486 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4487 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4488 SDValue Zero = DAG.getConstant(0, dl, VT); 4489 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4490 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4491 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4492 return true; 4493 } 4494 4495 // Only expand vector types if we have the appropriate vector bit operations. 4496 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4497 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4498 !isOperationLegalOrCustom(ISD::SRL, VT) || 4499 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4500 return false; 4501 4502 // for now, we do this: 4503 // x = x | (x >> 1); 4504 // x = x | (x >> 2); 4505 // ... 4506 // x = x | (x >>16); 4507 // x = x | (x >>32); // for 64-bit input 4508 // return popcount(~x); 4509 // 4510 // Ref: "Hacker's Delight" by Henry Warren 4511 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4512 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4513 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4514 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4515 } 4516 Op = DAG.getNOT(dl, Op, VT); 4517 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4518 return true; 4519 } 4520 4521 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4522 SelectionDAG &DAG) const { 4523 SDLoc dl(Node); 4524 EVT VT = Node->getValueType(0); 4525 SDValue Op = Node->getOperand(0); 4526 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4527 4528 // If the non-ZERO_UNDEF version is supported we can use that instead. 4529 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4530 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4531 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4532 return true; 4533 } 4534 4535 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4536 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4537 EVT SetCCVT = 4538 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4539 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4540 SDValue Zero = DAG.getConstant(0, dl, VT); 4541 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4542 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4543 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4544 return true; 4545 } 4546 4547 // Only expand vector types if we have the appropriate vector bit operations. 4548 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4549 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4550 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4551 !isOperationLegalOrCustom(ISD::SUB, VT) || 4552 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4553 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4554 return false; 4555 4556 // for now, we use: { return popcount(~x & (x - 1)); } 4557 // unless the target has ctlz but not ctpop, in which case we use: 4558 // { return 32 - nlz(~x & (x-1)); } 4559 // Ref: "Hacker's Delight" by Henry Warren 4560 SDValue Tmp = DAG.getNode( 4561 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4562 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4563 4564 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4565 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4566 Result = 4567 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4568 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4569 return true; 4570 } 4571 4572 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4573 return true; 4574 } 4575 4576 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4577 SelectionDAG &DAG) const { 4578 SDLoc SL(LD); 4579 SDValue Chain = LD->getChain(); 4580 SDValue BasePTR = LD->getBasePtr(); 4581 EVT SrcVT = LD->getMemoryVT(); 4582 ISD::LoadExtType ExtType = LD->getExtensionType(); 4583 4584 unsigned NumElem = SrcVT.getVectorNumElements(); 4585 4586 EVT SrcEltVT = SrcVT.getScalarType(); 4587 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4588 4589 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4590 assert(SrcEltVT.isByteSized()); 4591 4592 SmallVector<SDValue, 8> Vals; 4593 SmallVector<SDValue, 8> LoadChains; 4594 4595 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4596 SDValue ScalarLoad = 4597 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4598 LD->getPointerInfo().getWithOffset(Idx * Stride), 4599 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4600 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4601 4602 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4603 4604 Vals.push_back(ScalarLoad.getValue(0)); 4605 LoadChains.push_back(ScalarLoad.getValue(1)); 4606 } 4607 4608 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4609 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4610 4611 return DAG.getMergeValues({ Value, NewChain }, SL); 4612 } 4613 4614 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4615 SelectionDAG &DAG) const { 4616 SDLoc SL(ST); 4617 4618 SDValue Chain = ST->getChain(); 4619 SDValue BasePtr = ST->getBasePtr(); 4620 SDValue Value = ST->getValue(); 4621 EVT StVT = ST->getMemoryVT(); 4622 4623 // The type of the data we want to save 4624 EVT RegVT = Value.getValueType(); 4625 EVT RegSclVT = RegVT.getScalarType(); 4626 4627 // The type of data as saved in memory. 4628 EVT MemSclVT = StVT.getScalarType(); 4629 4630 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4631 unsigned NumElem = StVT.getVectorNumElements(); 4632 4633 // A vector must always be stored in memory as-is, i.e. without any padding 4634 // between the elements, since various code depend on it, e.g. in the 4635 // handling of a bitcast of a vector type to int, which may be done with a 4636 // vector store followed by an integer load. A vector that does not have 4637 // elements that are byte-sized must therefore be stored as an integer 4638 // built out of the extracted vector elements. 4639 if (!MemSclVT.isByteSized()) { 4640 unsigned NumBits = StVT.getSizeInBits(); 4641 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4642 4643 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4644 4645 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4646 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4647 DAG.getConstant(Idx, SL, IdxVT)); 4648 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4649 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4650 unsigned ShiftIntoIdx = 4651 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4652 SDValue ShiftAmount = 4653 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4654 SDValue ShiftedElt = 4655 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4656 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4657 } 4658 4659 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4660 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4661 ST->getAAInfo()); 4662 } 4663 4664 // Store Stride in bytes 4665 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4666 assert (Stride && "Zero stride!"); 4667 // Extract each of the elements from the original vector and save them into 4668 // memory individually. 4669 SmallVector<SDValue, 8> Stores; 4670 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4671 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4672 DAG.getConstant(Idx, SL, IdxVT)); 4673 4674 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4675 4676 // This scalar TruncStore may be illegal, but we legalize it later. 4677 SDValue Store = DAG.getTruncStore( 4678 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4679 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4680 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4681 4682 Stores.push_back(Store); 4683 } 4684 4685 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4686 } 4687 4688 std::pair<SDValue, SDValue> 4689 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4690 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4691 "unaligned indexed loads not implemented!"); 4692 SDValue Chain = LD->getChain(); 4693 SDValue Ptr = LD->getBasePtr(); 4694 EVT VT = LD->getValueType(0); 4695 EVT LoadedVT = LD->getMemoryVT(); 4696 SDLoc dl(LD); 4697 auto &MF = DAG.getMachineFunction(); 4698 4699 if (VT.isFloatingPoint() || VT.isVector()) { 4700 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4701 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4702 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4703 LoadedVT.isVector()) { 4704 // Scalarize the load and let the individual components be handled. 4705 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4706 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4707 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4708 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4709 } 4710 4711 // Expand to a (misaligned) integer load of the same size, 4712 // then bitconvert to floating point or vector. 4713 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4714 LD->getMemOperand()); 4715 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4716 if (LoadedVT != VT) 4717 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4718 ISD::ANY_EXTEND, dl, VT, Result); 4719 4720 return std::make_pair(Result, newLoad.getValue(1)); 4721 } 4722 4723 // Copy the value to a (aligned) stack slot using (unaligned) integer 4724 // loads and stores, then do a (aligned) load from the stack slot. 4725 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4726 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4727 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4728 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4729 4730 // Make sure the stack slot is also aligned for the register type. 4731 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4732 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4733 SmallVector<SDValue, 8> Stores; 4734 SDValue StackPtr = StackBase; 4735 unsigned Offset = 0; 4736 4737 EVT PtrVT = Ptr.getValueType(); 4738 EVT StackPtrVT = StackPtr.getValueType(); 4739 4740 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4741 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4742 4743 // Do all but one copies using the full register width. 4744 for (unsigned i = 1; i < NumRegs; i++) { 4745 // Load one integer register's worth from the original location. 4746 SDValue Load = DAG.getLoad( 4747 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 4748 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 4749 LD->getAAInfo()); 4750 // Follow the load with a store to the stack slot. Remember the store. 4751 Stores.push_back(DAG.getStore( 4752 Load.getValue(1), dl, Load, StackPtr, 4753 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 4754 // Increment the pointers. 4755 Offset += RegBytes; 4756 4757 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4758 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4759 } 4760 4761 // The last copy may be partial. Do an extending load. 4762 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4763 8 * (LoadedBytes - Offset)); 4764 SDValue Load = 4765 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 4766 LD->getPointerInfo().getWithOffset(Offset), MemVT, 4767 MinAlign(LD->getAlignment(), Offset), 4768 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4769 // Follow the load with a store to the stack slot. Remember the store. 4770 // On big-endian machines this requires a truncating store to ensure 4771 // that the bits end up in the right place. 4772 Stores.push_back(DAG.getTruncStore( 4773 Load.getValue(1), dl, Load, StackPtr, 4774 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 4775 4776 // The order of the stores doesn't matter - say it with a TokenFactor. 4777 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4778 4779 // Finally, perform the original load only redirected to the stack slot. 4780 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 4781 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 4782 LoadedVT); 4783 4784 // Callers expect a MERGE_VALUES node. 4785 return std::make_pair(Load, TF); 4786 } 4787 4788 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 4789 "Unaligned load of unsupported type."); 4790 4791 // Compute the new VT that is half the size of the old one. This is an 4792 // integer MVT. 4793 unsigned NumBits = LoadedVT.getSizeInBits(); 4794 EVT NewLoadedVT; 4795 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 4796 NumBits >>= 1; 4797 4798 unsigned Alignment = LD->getAlignment(); 4799 unsigned IncrementSize = NumBits / 8; 4800 ISD::LoadExtType HiExtType = LD->getExtensionType(); 4801 4802 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 4803 if (HiExtType == ISD::NON_EXTLOAD) 4804 HiExtType = ISD::ZEXTLOAD; 4805 4806 // Load the value in two parts 4807 SDValue Lo, Hi; 4808 if (DAG.getDataLayout().isLittleEndian()) { 4809 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4810 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4811 LD->getAAInfo()); 4812 4813 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4814 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 4815 LD->getPointerInfo().getWithOffset(IncrementSize), 4816 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4817 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4818 } else { 4819 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4820 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4821 LD->getAAInfo()); 4822 4823 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4824 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4825 LD->getPointerInfo().getWithOffset(IncrementSize), 4826 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4827 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4828 } 4829 4830 // aggregate the two parts 4831 SDValue ShiftAmount = 4832 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4833 DAG.getDataLayout())); 4834 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4835 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4836 4837 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 4838 Hi.getValue(1)); 4839 4840 return std::make_pair(Result, TF); 4841 } 4842 4843 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 4844 SelectionDAG &DAG) const { 4845 assert(ST->getAddressingMode() == ISD::UNINDEXED && 4846 "unaligned indexed stores not implemented!"); 4847 SDValue Chain = ST->getChain(); 4848 SDValue Ptr = ST->getBasePtr(); 4849 SDValue Val = ST->getValue(); 4850 EVT VT = Val.getValueType(); 4851 int Alignment = ST->getAlignment(); 4852 auto &MF = DAG.getMachineFunction(); 4853 EVT MemVT = ST->getMemoryVT(); 4854 4855 SDLoc dl(ST); 4856 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 4857 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 4858 if (isTypeLegal(intVT)) { 4859 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 4860 MemVT.isVector()) { 4861 // Scalarize the store and let the individual components be handled. 4862 SDValue Result = scalarizeVectorStore(ST, DAG); 4863 4864 return Result; 4865 } 4866 // Expand to a bitconvert of the value to the integer type of the 4867 // same size, then a (misaligned) int store. 4868 // FIXME: Does not handle truncating floating point stores! 4869 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 4870 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 4871 Alignment, ST->getMemOperand()->getFlags()); 4872 return Result; 4873 } 4874 // Do a (aligned) store to a stack slot, then copy from the stack slot 4875 // to the final destination using (unaligned) integer loads and stores. 4876 EVT StoredVT = ST->getMemoryVT(); 4877 MVT RegVT = 4878 getRegisterType(*DAG.getContext(), 4879 EVT::getIntegerVT(*DAG.getContext(), 4880 StoredVT.getSizeInBits())); 4881 EVT PtrVT = Ptr.getValueType(); 4882 unsigned StoredBytes = StoredVT.getStoreSize(); 4883 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4884 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 4885 4886 // Make sure the stack slot is also aligned for the register type. 4887 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4888 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4889 4890 // Perform the original store, only redirected to the stack slot. 4891 SDValue Store = DAG.getTruncStore( 4892 Chain, dl, Val, StackPtr, 4893 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4894 4895 EVT StackPtrVT = StackPtr.getValueType(); 4896 4897 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4898 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4899 SmallVector<SDValue, 8> Stores; 4900 unsigned Offset = 0; 4901 4902 // Do all but one copies using the full register width. 4903 for (unsigned i = 1; i < NumRegs; i++) { 4904 // Load one integer register's worth from the stack slot. 4905 SDValue Load = DAG.getLoad( 4906 RegVT, dl, Store, StackPtr, 4907 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4908 // Store it to the final location. Remember the store. 4909 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4910 ST->getPointerInfo().getWithOffset(Offset), 4911 MinAlign(ST->getAlignment(), Offset), 4912 ST->getMemOperand()->getFlags())); 4913 // Increment the pointers. 4914 Offset += RegBytes; 4915 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4916 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4917 } 4918 4919 // The last store may be partial. Do a truncating store. On big-endian 4920 // machines this requires an extending load from the stack slot to ensure 4921 // that the bits are in the right place. 4922 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4923 8 * (StoredBytes - Offset)); 4924 4925 // Load from the stack slot. 4926 SDValue Load = DAG.getExtLoad( 4927 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4928 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4929 4930 Stores.push_back( 4931 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4932 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4933 MinAlign(ST->getAlignment(), Offset), 4934 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4935 // The order of the stores doesn't matter - say it with a TokenFactor. 4936 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4937 return Result; 4938 } 4939 4940 assert(ST->getMemoryVT().isInteger() && 4941 !ST->getMemoryVT().isVector() && 4942 "Unaligned store of unknown type."); 4943 // Get the half-size VT 4944 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4945 int NumBits = NewStoredVT.getSizeInBits(); 4946 int IncrementSize = NumBits / 8; 4947 4948 // Divide the stored value in two parts. 4949 SDValue ShiftAmount = 4950 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4951 DAG.getDataLayout())); 4952 SDValue Lo = Val; 4953 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4954 4955 // Store the two parts 4956 SDValue Store1, Store2; 4957 Store1 = DAG.getTruncStore(Chain, dl, 4958 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4959 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4960 ST->getMemOperand()->getFlags()); 4961 4962 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4963 Alignment = MinAlign(Alignment, IncrementSize); 4964 Store2 = DAG.getTruncStore( 4965 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4966 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4967 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4968 4969 SDValue Result = 4970 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4971 return Result; 4972 } 4973 4974 SDValue 4975 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4976 const SDLoc &DL, EVT DataVT, 4977 SelectionDAG &DAG, 4978 bool IsCompressedMemory) const { 4979 SDValue Increment; 4980 EVT AddrVT = Addr.getValueType(); 4981 EVT MaskVT = Mask.getValueType(); 4982 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4983 "Incompatible types of Data and Mask"); 4984 if (IsCompressedMemory) { 4985 // Incrementing the pointer according to number of '1's in the mask. 4986 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4987 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4988 if (MaskIntVT.getSizeInBits() < 32) { 4989 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4990 MaskIntVT = MVT::i32; 4991 } 4992 4993 // Count '1's with POPCNT. 4994 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4995 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4996 // Scale is an element size in bytes. 4997 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4998 AddrVT); 4999 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5000 } else 5001 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5002 5003 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5004 } 5005 5006 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5007 SDValue Idx, 5008 EVT VecVT, 5009 const SDLoc &dl) { 5010 if (isa<ConstantSDNode>(Idx)) 5011 return Idx; 5012 5013 EVT IdxVT = Idx.getValueType(); 5014 unsigned NElts = VecVT.getVectorNumElements(); 5015 if (isPowerOf2_32(NElts)) { 5016 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5017 Log2_32(NElts)); 5018 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5019 DAG.getConstant(Imm, dl, IdxVT)); 5020 } 5021 5022 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5023 DAG.getConstant(NElts - 1, dl, IdxVT)); 5024 } 5025 5026 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5027 SDValue VecPtr, EVT VecVT, 5028 SDValue Index) const { 5029 SDLoc dl(Index); 5030 // Make sure the index type is big enough to compute in. 5031 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5032 5033 EVT EltVT = VecVT.getVectorElementType(); 5034 5035 // Calculate the element offset and add it to the pointer. 5036 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5037 assert(EltSize * 8 == EltVT.getSizeInBits() && 5038 "Converting bits to bytes lost precision"); 5039 5040 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5041 5042 EVT IdxVT = Index.getValueType(); 5043 5044 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5045 DAG.getConstant(EltSize, dl, IdxVT)); 5046 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5047 } 5048 5049 //===----------------------------------------------------------------------===// 5050 // Implementation of Emulated TLS Model 5051 //===----------------------------------------------------------------------===// 5052 5053 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5054 SelectionDAG &DAG) const { 5055 // Access to address of TLS varialbe xyz is lowered to a function call: 5056 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5057 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5058 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5059 SDLoc dl(GA); 5060 5061 ArgListTy Args; 5062 ArgListEntry Entry; 5063 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5064 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5065 StringRef EmuTlsVarName(NameString); 5066 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5067 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5068 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5069 Entry.Ty = VoidPtrType; 5070 Args.push_back(Entry); 5071 5072 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5073 5074 TargetLowering::CallLoweringInfo CLI(DAG); 5075 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5076 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5077 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5078 5079 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5080 // At last for X86 targets, maybe good for other targets too? 5081 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5082 MFI.setAdjustsStack(true); // Is this only for X86 target? 5083 MFI.setHasCalls(true); 5084 5085 assert((GA->getOffset() == 0) && 5086 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5087 return CallResult.first; 5088 } 5089 5090 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5091 SelectionDAG &DAG) const { 5092 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5093 if (!isCtlzFast()) 5094 return SDValue(); 5095 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5096 SDLoc dl(Op); 5097 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5098 if (C->isNullValue() && CC == ISD::SETEQ) { 5099 EVT VT = Op.getOperand(0).getValueType(); 5100 SDValue Zext = Op.getOperand(0); 5101 if (VT.bitsLT(MVT::i32)) { 5102 VT = MVT::i32; 5103 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5104 } 5105 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5106 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5107 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5108 DAG.getConstant(Log2b, dl, MVT::i32)); 5109 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5110 } 5111 } 5112 return SDValue(); 5113 } 5114 5115 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction( 5116 SDNode *Node, SelectionDAG &DAG) const { 5117 unsigned Opcode = Node->getOpcode(); 5118 unsigned OverflowOp; 5119 switch (Opcode) { 5120 case ISD::SADDSAT: 5121 OverflowOp = ISD::SADDO; 5122 break; 5123 case ISD::UADDSAT: 5124 OverflowOp = ISD::UADDO; 5125 break; 5126 case ISD::SSUBSAT: 5127 OverflowOp = ISD::SSUBO; 5128 break; 5129 case ISD::USUBSAT: 5130 OverflowOp = ISD::USUBO; 5131 break; 5132 default: 5133 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5134 "addition or subtraction node."); 5135 } 5136 assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands."); 5137 5138 SDLoc dl(Node); 5139 SDValue LHS = Node->getOperand(0); 5140 SDValue RHS = Node->getOperand(1); 5141 assert(LHS.getValueType().isScalarInteger() && 5142 "Expected operands to be integers. Vector of int arguments should " 5143 "already be unrolled."); 5144 assert(RHS.getValueType().isScalarInteger() && 5145 "Expected operands to be integers. Vector of int arguments should " 5146 "already be unrolled."); 5147 assert(LHS.getValueType() == RHS.getValueType() && 5148 "Expected both operands to be the same type"); 5149 5150 unsigned BitWidth = LHS.getValueSizeInBits(); 5151 EVT ResultType = LHS.getValueType(); 5152 EVT BoolVT = 5153 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType); 5154 SDValue Result = 5155 DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS); 5156 SDValue SumDiff = Result.getValue(0); 5157 SDValue Overflow = Result.getValue(1); 5158 SDValue Zero = DAG.getConstant(0, dl, ResultType); 5159 5160 if (Opcode == ISD::UADDSAT) { 5161 // Just need to check overflow for SatMax. 5162 APInt MaxVal = APInt::getMaxValue(BitWidth); 5163 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5164 return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff); 5165 } else if (Opcode == ISD::USUBSAT) { 5166 // Just need to check overflow for SatMin. 5167 APInt MinVal = APInt::getMinValue(BitWidth); 5168 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5169 return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff); 5170 } else { 5171 // SatMax -> Overflow && SumDiff < 0 5172 // SatMin -> Overflow && SumDiff >= 0 5173 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5174 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5175 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5176 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5177 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5178 Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin); 5179 return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff); 5180 } 5181 } 5182