1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1366     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1367     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1368         (Op0.getOperand(0).isUndef() ||
1369          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1370         Op0->hasOneUse()) {
1371       unsigned NumSubElts =
1372           Op0.getOperand(1).getValueType().getVectorNumElements();
1373       unsigned SubIdx = Op0.getConstantOperandVal(2);
1374       APInt DemandedSub =
1375           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1376       KnownBits KnownSubMask =
1377           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1378       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1379         SDValue NewAnd =
1380             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1381         SDValue NewInsert =
1382             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1383                             Op0.getOperand(1), Op0.getOperand(2));
1384         return TLO.CombineTo(Op, NewInsert);
1385       }
1386     }
1387 
1388     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1393                              Known2, TLO, Depth + 1))
1394       return true;
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // If all of the demanded bits are known one on one side, return the other.
1398     // These bits cannot contribute to the result of the 'and'.
1399     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1400       return TLO.CombineTo(Op, Op0);
1401     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1402       return TLO.CombineTo(Op, Op1);
1403     // If all of the demanded bits in the inputs are known zeros, return zero.
1404     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1405       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1406     // If the RHS is a constant, see if we can simplify it.
1407     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1408                                TLO))
1409       return true;
1410     // If the operation can be done in a smaller type, do so.
1411     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1412       return true;
1413 
1414     // Attempt to avoid multi-use ops if we don't need anything from them.
1415     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1416       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1417           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1418       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1419           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1420       if (DemandedOp0 || DemandedOp1) {
1421         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1422         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1423         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1424         return TLO.CombineTo(Op, NewOp);
1425       }
1426     }
1427 
1428     Known &= Known2;
1429     break;
1430   }
1431   case ISD::OR: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434 
1435     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1436                              Depth + 1))
1437       return true;
1438     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1439     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1440                              Known2, TLO, Depth + 1))
1441       return true;
1442     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1443 
1444     // If all of the demanded bits are known zero on one side, return the other.
1445     // These bits cannot contribute to the result of the 'or'.
1446     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1447       return TLO.CombineTo(Op, Op0);
1448     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1449       return TLO.CombineTo(Op, Op1);
1450     // If the RHS is a constant, see if we can simplify it.
1451     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1452       return true;
1453     // If the operation can be done in a smaller type, do so.
1454     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1455       return true;
1456 
1457     // Attempt to avoid multi-use ops if we don't need anything from them.
1458     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1459       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1460           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1461       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1462           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1463       if (DemandedOp0 || DemandedOp1) {
1464         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1465         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1466         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1467         return TLO.CombineTo(Op, NewOp);
1468       }
1469     }
1470 
1471     Known |= Known2;
1472     break;
1473   }
1474   case ISD::XOR: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477 
1478     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1479                              Depth + 1))
1480       return true;
1481     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1482     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1483                              Depth + 1))
1484       return true;
1485     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1486 
1487     // If all of the demanded bits are known zero on one side, return the other.
1488     // These bits cannot contribute to the result of the 'xor'.
1489     if (DemandedBits.isSubsetOf(Known.Zero))
1490       return TLO.CombineTo(Op, Op0);
1491     if (DemandedBits.isSubsetOf(Known2.Zero))
1492       return TLO.CombineTo(Op, Op1);
1493     // If the operation can be done in a smaller type, do so.
1494     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1495       return true;
1496 
1497     // If all of the unknown bits are known to be zero on one side or the other
1498     // turn this into an *inclusive* or.
1499     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1500     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1501       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1502 
1503     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1504     if (C) {
1505       // If one side is a constant, and all of the set bits in the constant are
1506       // also known set on the other side, turn this into an AND, as we know
1507       // the bits will be cleared.
1508       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1509       // NB: it is okay if more bits are known than are requested
1510       if (C->getAPIntValue() == Known2.One) {
1511         SDValue ANDC =
1512             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1513         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1514       }
1515 
1516       // If the RHS is a constant, see if we can change it. Don't alter a -1
1517       // constant because that's a 'not' op, and that is better for combining
1518       // and codegen.
1519       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1520         // We're flipping all demanded bits. Flip the undemanded bits too.
1521         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1522         return TLO.CombineTo(Op, New);
1523       }
1524     }
1525 
1526     // If we can't turn this into a 'not', try to shrink the constant.
1527     if (!C || !C->isAllOnes())
1528       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1529         return true;
1530 
1531     // Attempt to avoid multi-use ops if we don't need anything from them.
1532     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1533       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1534           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1535       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1536           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1537       if (DemandedOp0 || DemandedOp1) {
1538         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1539         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1540         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1541         return TLO.CombineTo(Op, NewOp);
1542       }
1543     }
1544 
1545     Known ^= Known2;
1546     break;
1547   }
1548   case ISD::SELECT:
1549     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1550                              Depth + 1))
1551       return true;
1552     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1553                              Depth + 1))
1554       return true;
1555     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1556     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1557 
1558     // If the operands are constants, see if we can simplify them.
1559     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1560       return true;
1561 
1562     // Only known if known in both the LHS and RHS.
1563     Known = KnownBits::commonBits(Known, Known2);
1564     break;
1565   case ISD::VSELECT:
1566     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1567                              Known, TLO, Depth + 1))
1568       return true;
1569     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1570                              Known2, TLO, Depth + 1))
1571       return true;
1572     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1573     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1574 
1575     // Only known if known in both the LHS and RHS.
1576     Known = KnownBits::commonBits(Known, Known2);
1577     break;
1578   case ISD::SELECT_CC:
1579     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1580                              Depth + 1))
1581       return true;
1582     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1583                              Depth + 1))
1584       return true;
1585     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1586     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1587 
1588     // If the operands are constants, see if we can simplify them.
1589     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1590       return true;
1591 
1592     // Only known if known in both the LHS and RHS.
1593     Known = KnownBits::commonBits(Known, Known2);
1594     break;
1595   case ISD::SETCC: {
1596     SDValue Op0 = Op.getOperand(0);
1597     SDValue Op1 = Op.getOperand(1);
1598     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1599     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1600     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1601     // -1, we may be able to bypass the setcc.
1602     if (DemandedBits.isSignMask() &&
1603         Op0.getScalarValueSizeInBits() == BitWidth &&
1604         getBooleanContents(Op0.getValueType()) ==
1605             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1606       // If we're testing X < 0, then this compare isn't needed - just use X!
1607       // FIXME: We're limiting to integer types here, but this should also work
1608       // if we don't care about FP signed-zero. The use of SETLT with FP means
1609       // that we don't care about NaNs.
1610       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1611           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       // TODO: Should we check for other forms of sign-bit comparisons?
1615       // Examples: X <= -1, X >= 0
1616     }
1617     if (getBooleanContents(Op0.getValueType()) ==
1618             TargetLowering::ZeroOrOneBooleanContent &&
1619         BitWidth > 1)
1620       Known.Zero.setBitsFrom(1);
1621     break;
1622   }
1623   case ISD::SHL: {
1624     SDValue Op0 = Op.getOperand(0);
1625     SDValue Op1 = Op.getOperand(1);
1626     EVT ShiftVT = Op1.getValueType();
1627 
1628     if (const APInt *SA =
1629             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1630       unsigned ShAmt = SA->getZExtValue();
1631       if (ShAmt == 0)
1632         return TLO.CombineTo(Op, Op0);
1633 
1634       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1635       // single shift.  We can do this if the bottom bits (which are shifted
1636       // out) are never demanded.
1637       // TODO - support non-uniform vector amounts.
1638       if (Op0.getOpcode() == ISD::SRL) {
1639         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1640           if (const APInt *SA2 =
1641                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1642             unsigned C1 = SA2->getZExtValue();
1643             unsigned Opc = ISD::SHL;
1644             int Diff = ShAmt - C1;
1645             if (Diff < 0) {
1646               Diff = -Diff;
1647               Opc = ISD::SRL;
1648             }
1649             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1650             return TLO.CombineTo(
1651                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1652           }
1653         }
1654       }
1655 
1656       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1657       // are not demanded. This will likely allow the anyext to be folded away.
1658       // TODO - support non-uniform vector amounts.
1659       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1660         SDValue InnerOp = Op0.getOperand(0);
1661         EVT InnerVT = InnerOp.getValueType();
1662         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1663         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1664             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1665           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1666           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1667             ShTy = InnerVT;
1668           SDValue NarrowShl =
1669               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1670                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1671           return TLO.CombineTo(
1672               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1673         }
1674 
1675         // Repeat the SHL optimization above in cases where an extension
1676         // intervenes: (shl (anyext (shr x, c1)), c2) to
1677         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1678         // aren't demanded (as above) and that the shifted upper c1 bits of
1679         // x aren't demanded.
1680         // TODO - support non-uniform vector amounts.
1681         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1682             InnerOp.hasOneUse()) {
1683           if (const APInt *SA2 =
1684                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1685             unsigned InnerShAmt = SA2->getZExtValue();
1686             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1687                 DemandedBits.getActiveBits() <=
1688                     (InnerBits - InnerShAmt + ShAmt) &&
1689                 DemandedBits.countTrailingZeros() >= ShAmt) {
1690               SDValue NewSA =
1691                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1692               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1693                                                InnerOp.getOperand(0));
1694               return TLO.CombineTo(
1695                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1696             }
1697           }
1698         }
1699       }
1700 
1701       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1702       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706       Known.Zero <<= ShAmt;
1707       Known.One <<= ShAmt;
1708       // low bits known zero.
1709       Known.Zero.setLowBits(ShAmt);
1710 
1711       // Attempt to avoid multi-use ops if we don't need anything from them.
1712       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1713         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1714             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1715         if (DemandedOp0) {
1716           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1717           return TLO.CombineTo(Op, NewOp);
1718         }
1719       }
1720 
1721       // Try shrinking the operation as long as the shift amount will still be
1722       // in range.
1723       if ((ShAmt < DemandedBits.getActiveBits()) &&
1724           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1725         return true;
1726     } else {
1727       // This is a variable shift, so we can't shift the demand mask by a known
1728       // amount. But if we are not demanding high bits, then we are not
1729       // demanding those bits from the pre-shifted operand either.
1730       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1731         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1732         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1733                                  Depth + 1)) {
1734           SDNodeFlags Flags = Op.getNode()->getFlags();
1735           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1736             // Disable the nsw and nuw flags. We can no longer guarantee that we
1737             // won't wrap after simplification.
1738             Flags.setNoSignedWrap(false);
1739             Flags.setNoUnsignedWrap(false);
1740             Op->setFlags(Flags);
1741           }
1742           return true;
1743         }
1744         Known.resetAll();
1745       }
1746     }
1747 
1748     // If we are only demanding sign bits then we can use the shift source
1749     // directly.
1750     if (const APInt *MaxSA =
1751             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1752       unsigned ShAmt = MaxSA->getZExtValue();
1753       unsigned NumSignBits =
1754           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1755       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1756       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1757         return TLO.CombineTo(Op, Op0);
1758     }
1759     break;
1760   }
1761   case ISD::SRL: {
1762     SDValue Op0 = Op.getOperand(0);
1763     SDValue Op1 = Op.getOperand(1);
1764     EVT ShiftVT = Op1.getValueType();
1765 
1766     // Try to match AVG patterns.
1767     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1768                                         DemandedElts, Depth + 1))
1769       return TLO.CombineTo(Op, AVG);
1770 
1771     if (const APInt *SA =
1772             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1773       unsigned ShAmt = SA->getZExtValue();
1774       if (ShAmt == 0)
1775         return TLO.CombineTo(Op, Op0);
1776 
1777       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1778       // single shift.  We can do this if the top bits (which are shifted out)
1779       // are never demanded.
1780       // TODO - support non-uniform vector amounts.
1781       if (Op0.getOpcode() == ISD::SHL) {
1782         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1783           if (const APInt *SA2 =
1784                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1785             unsigned C1 = SA2->getZExtValue();
1786             unsigned Opc = ISD::SRL;
1787             int Diff = ShAmt - C1;
1788             if (Diff < 0) {
1789               Diff = -Diff;
1790               Opc = ISD::SHL;
1791             }
1792             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1793             return TLO.CombineTo(
1794                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1795           }
1796         }
1797       }
1798 
1799       APInt InDemandedMask = (DemandedBits << ShAmt);
1800 
1801       // If the shift is exact, then it does demand the low bits (and knows that
1802       // they are zero).
1803       if (Op->getFlags().hasExact())
1804         InDemandedMask.setLowBits(ShAmt);
1805 
1806       // Compute the new bits that are at the top now.
1807       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1808                                Depth + 1))
1809         return true;
1810       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1811       Known.Zero.lshrInPlace(ShAmt);
1812       Known.One.lshrInPlace(ShAmt);
1813       // High bits known zero.
1814       Known.Zero.setHighBits(ShAmt);
1815     }
1816     break;
1817   }
1818   case ISD::SRA: {
1819     SDValue Op0 = Op.getOperand(0);
1820     SDValue Op1 = Op.getOperand(1);
1821     EVT ShiftVT = Op1.getValueType();
1822 
1823     // If we only want bits that already match the signbit then we don't need
1824     // to shift.
1825     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1826     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1827         NumHiDemandedBits)
1828       return TLO.CombineTo(Op, Op0);
1829 
1830     // If this is an arithmetic shift right and only the low-bit is set, we can
1831     // always convert this into a logical shr, even if the shift amount is
1832     // variable.  The low bit of the shift cannot be an input sign bit unless
1833     // the shift amount is >= the size of the datatype, which is undefined.
1834     if (DemandedBits.isOne())
1835       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1836 
1837     // Try to match AVG patterns.
1838     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1839                                         DemandedElts, Depth + 1))
1840       return TLO.CombineTo(Op, AVG);
1841 
1842     if (const APInt *SA =
1843             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1844       unsigned ShAmt = SA->getZExtValue();
1845       if (ShAmt == 0)
1846         return TLO.CombineTo(Op, Op0);
1847 
1848       APInt InDemandedMask = (DemandedBits << ShAmt);
1849 
1850       // If the shift is exact, then it does demand the low bits (and knows that
1851       // they are zero).
1852       if (Op->getFlags().hasExact())
1853         InDemandedMask.setLowBits(ShAmt);
1854 
1855       // If any of the demanded bits are produced by the sign extension, we also
1856       // demand the input sign bit.
1857       if (DemandedBits.countLeadingZeros() < ShAmt)
1858         InDemandedMask.setSignBit();
1859 
1860       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1861                                Depth + 1))
1862         return true;
1863       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1864       Known.Zero.lshrInPlace(ShAmt);
1865       Known.One.lshrInPlace(ShAmt);
1866 
1867       // If the input sign bit is known to be zero, or if none of the top bits
1868       // are demanded, turn this into an unsigned shift right.
1869       if (Known.Zero[BitWidth - ShAmt - 1] ||
1870           DemandedBits.countLeadingZeros() >= ShAmt) {
1871         SDNodeFlags Flags;
1872         Flags.setExact(Op->getFlags().hasExact());
1873         return TLO.CombineTo(
1874             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1875       }
1876 
1877       int Log2 = DemandedBits.exactLogBase2();
1878       if (Log2 >= 0) {
1879         // The bit must come from the sign.
1880         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1881         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1882       }
1883 
1884       if (Known.One[BitWidth - ShAmt - 1])
1885         // New bits are known one.
1886         Known.One.setHighBits(ShAmt);
1887 
1888       // Attempt to avoid multi-use ops if we don't need anything from them.
1889       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1890         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1891             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1892         if (DemandedOp0) {
1893           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1894           return TLO.CombineTo(Op, NewOp);
1895         }
1896       }
1897     }
1898     break;
1899   }
1900   case ISD::FSHL:
1901   case ISD::FSHR: {
1902     SDValue Op0 = Op.getOperand(0);
1903     SDValue Op1 = Op.getOperand(1);
1904     SDValue Op2 = Op.getOperand(2);
1905     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1906 
1907     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1908       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1909 
1910       // For fshl, 0-shift returns the 1st arg.
1911       // For fshr, 0-shift returns the 2nd arg.
1912       if (Amt == 0) {
1913         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1914                                  Known, TLO, Depth + 1))
1915           return true;
1916         break;
1917       }
1918 
1919       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1920       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1921       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1922       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1923       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1924                                Depth + 1))
1925         return true;
1926       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1927                                Depth + 1))
1928         return true;
1929 
1930       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1931       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1932       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1933       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1934       Known.One |= Known2.One;
1935       Known.Zero |= Known2.Zero;
1936 
1937       // Attempt to avoid multi-use ops if we don't need anything from them.
1938       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1939           !DemandedElts.isAllOnes()) {
1940         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1941             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1942         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1943             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1944         if (DemandedOp0 || DemandedOp1) {
1945           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1946           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1947           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1948                                           DemandedOp1, Op2);
1949           return TLO.CombineTo(Op, NewOp);
1950         }
1951       }
1952     }
1953 
1954     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1955     if (isPowerOf2_32(BitWidth)) {
1956       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1957       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1958                                Known2, TLO, Depth + 1))
1959         return true;
1960     }
1961     break;
1962   }
1963   case ISD::ROTL:
1964   case ISD::ROTR: {
1965     SDValue Op0 = Op.getOperand(0);
1966     SDValue Op1 = Op.getOperand(1);
1967     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1968 
1969     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1970     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1971       return TLO.CombineTo(Op, Op0);
1972 
1973     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1974       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1975       unsigned RevAmt = BitWidth - Amt;
1976 
1977       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1978       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1979       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1980       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1981                                Depth + 1))
1982         return true;
1983 
1984       // rot*(x, 0) --> x
1985       if (Amt == 0)
1986         return TLO.CombineTo(Op, Op0);
1987 
1988       // See if we don't demand either half of the rotated bits.
1989       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1990           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1991         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1992         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1993       }
1994       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1995           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1996         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1997         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1998       }
1999     }
2000 
2001     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2002     if (isPowerOf2_32(BitWidth)) {
2003       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2004       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2005                                Depth + 1))
2006         return true;
2007     }
2008     break;
2009   }
2010   case ISD::UMIN: {
2011     // Check if one arg is always less than (or equal) to the other arg.
2012     SDValue Op0 = Op.getOperand(0);
2013     SDValue Op1 = Op.getOperand(1);
2014     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2015     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2016     Known = KnownBits::umin(Known0, Known1);
2017     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2018       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2019     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2020       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2021     break;
2022   }
2023   case ISD::UMAX: {
2024     // Check if one arg is always greater than (or equal) to the other arg.
2025     SDValue Op0 = Op.getOperand(0);
2026     SDValue Op1 = Op.getOperand(1);
2027     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2028     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2029     Known = KnownBits::umax(Known0, Known1);
2030     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2031       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2032     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2033       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2034     break;
2035   }
2036   case ISD::BITREVERSE: {
2037     SDValue Src = Op.getOperand(0);
2038     APInt DemandedSrcBits = DemandedBits.reverseBits();
2039     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2040                              Depth + 1))
2041       return true;
2042     Known.One = Known2.One.reverseBits();
2043     Known.Zero = Known2.Zero.reverseBits();
2044     break;
2045   }
2046   case ISD::BSWAP: {
2047     SDValue Src = Op.getOperand(0);
2048 
2049     // If the only bits demanded come from one byte of the bswap result,
2050     // just shift the input byte into position to eliminate the bswap.
2051     unsigned NLZ = DemandedBits.countLeadingZeros();
2052     unsigned NTZ = DemandedBits.countTrailingZeros();
2053 
2054     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2055     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2056     // have 14 leading zeros, round to 8.
2057     NLZ = alignDown(NLZ, 8);
2058     NTZ = alignDown(NTZ, 8);
2059     // If we need exactly one byte, we can do this transformation.
2060     if (BitWidth - NLZ - NTZ == 8) {
2061       // Replace this with either a left or right shift to get the byte into
2062       // the right place.
2063       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2064       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2065         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2066         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2067         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2068         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2069         return TLO.CombineTo(Op, NewOp);
2070       }
2071     }
2072 
2073     APInt DemandedSrcBits = DemandedBits.byteSwap();
2074     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2075                              Depth + 1))
2076       return true;
2077     Known.One = Known2.One.byteSwap();
2078     Known.Zero = Known2.Zero.byteSwap();
2079     break;
2080   }
2081   case ISD::CTPOP: {
2082     // If only 1 bit is demanded, replace with PARITY as long as we're before
2083     // op legalization.
2084     // FIXME: Limit to scalars for now.
2085     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2086       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2087                                                Op.getOperand(0)));
2088 
2089     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2090     break;
2091   }
2092   case ISD::SIGN_EXTEND_INREG: {
2093     SDValue Op0 = Op.getOperand(0);
2094     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2095     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2096 
2097     // If we only care about the highest bit, don't bother shifting right.
2098     if (DemandedBits.isSignMask()) {
2099       unsigned MinSignedBits =
2100           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2101       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2102       // However if the input is already sign extended we expect the sign
2103       // extension to be dropped altogether later and do not simplify.
2104       if (!AlreadySignExtended) {
2105         // Compute the correct shift amount type, which must be getShiftAmountTy
2106         // for scalar types after legalization.
2107         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2108                                                getShiftAmountTy(VT, DL));
2109         return TLO.CombineTo(Op,
2110                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2111       }
2112     }
2113 
2114     // If none of the extended bits are demanded, eliminate the sextinreg.
2115     if (DemandedBits.getActiveBits() <= ExVTBits)
2116       return TLO.CombineTo(Op, Op0);
2117 
2118     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2119 
2120     // Since the sign extended bits are demanded, we know that the sign
2121     // bit is demanded.
2122     InputDemandedBits.setBit(ExVTBits - 1);
2123 
2124     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2125                              Depth + 1))
2126       return true;
2127     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2128 
2129     // If the sign bit of the input is known set or clear, then we know the
2130     // top bits of the result.
2131 
2132     // If the input sign bit is known zero, convert this into a zero extension.
2133     if (Known.Zero[ExVTBits - 1])
2134       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2135 
2136     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2137     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2138       Known.One.setBitsFrom(ExVTBits);
2139       Known.Zero &= Mask;
2140     } else { // Input sign bit unknown
2141       Known.Zero &= Mask;
2142       Known.One &= Mask;
2143     }
2144     break;
2145   }
2146   case ISD::BUILD_PAIR: {
2147     EVT HalfVT = Op.getOperand(0).getValueType();
2148     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2149 
2150     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2151     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2152 
2153     KnownBits KnownLo, KnownHi;
2154 
2155     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2156       return true;
2157 
2158     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2159       return true;
2160 
2161     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2162                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2163 
2164     Known.One = KnownLo.One.zext(BitWidth) |
2165                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2166     break;
2167   }
2168   case ISD::ZERO_EXTEND:
2169   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2170     SDValue Src = Op.getOperand(0);
2171     EVT SrcVT = Src.getValueType();
2172     unsigned InBits = SrcVT.getScalarSizeInBits();
2173     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2174     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2175 
2176     // If none of the top bits are demanded, convert this into an any_extend.
2177     if (DemandedBits.getActiveBits() <= InBits) {
2178       // If we only need the non-extended bits of the bottom element
2179       // then we can just bitcast to the result.
2180       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2181           VT.getSizeInBits() == SrcVT.getSizeInBits())
2182         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2183 
2184       unsigned Opc =
2185           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2186       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2187         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2188     }
2189 
2190     APInt InDemandedBits = DemandedBits.trunc(InBits);
2191     APInt InDemandedElts = DemandedElts.zext(InElts);
2192     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2193                              Depth + 1))
2194       return true;
2195     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2196     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2197     Known = Known.zext(BitWidth);
2198 
2199     // Attempt to avoid multi-use ops if we don't need anything from them.
2200     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2201             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2202       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2203     break;
2204   }
2205   case ISD::SIGN_EXTEND:
2206   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2207     SDValue Src = Op.getOperand(0);
2208     EVT SrcVT = Src.getValueType();
2209     unsigned InBits = SrcVT.getScalarSizeInBits();
2210     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2211     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2212 
2213     // If none of the top bits are demanded, convert this into an any_extend.
2214     if (DemandedBits.getActiveBits() <= InBits) {
2215       // If we only need the non-extended bits of the bottom element
2216       // then we can just bitcast to the result.
2217       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2218           VT.getSizeInBits() == SrcVT.getSizeInBits())
2219         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2220 
2221       unsigned Opc =
2222           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2223       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2224         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2225     }
2226 
2227     APInt InDemandedBits = DemandedBits.trunc(InBits);
2228     APInt InDemandedElts = DemandedElts.zext(InElts);
2229 
2230     // Since some of the sign extended bits are demanded, we know that the sign
2231     // bit is demanded.
2232     InDemandedBits.setBit(InBits - 1);
2233 
2234     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2235                              Depth + 1))
2236       return true;
2237     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2238     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2239 
2240     // If the sign bit is known one, the top bits match.
2241     Known = Known.sext(BitWidth);
2242 
2243     // If the sign bit is known zero, convert this to a zero extend.
2244     if (Known.isNonNegative()) {
2245       unsigned Opc =
2246           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2247       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2248         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2249     }
2250 
2251     // Attempt to avoid multi-use ops if we don't need anything from them.
2252     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2253             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2254       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2255     break;
2256   }
2257   case ISD::ANY_EXTEND:
2258   case ISD::ANY_EXTEND_VECTOR_INREG: {
2259     SDValue Src = Op.getOperand(0);
2260     EVT SrcVT = Src.getValueType();
2261     unsigned InBits = SrcVT.getScalarSizeInBits();
2262     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2263     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2264 
2265     // If we only need the bottom element then we can just bitcast.
2266     // TODO: Handle ANY_EXTEND?
2267     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2268         VT.getSizeInBits() == SrcVT.getSizeInBits())
2269       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2270 
2271     APInt InDemandedBits = DemandedBits.trunc(InBits);
2272     APInt InDemandedElts = DemandedElts.zext(InElts);
2273     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2274                              Depth + 1))
2275       return true;
2276     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2277     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2278     Known = Known.anyext(BitWidth);
2279 
2280     // Attempt to avoid multi-use ops if we don't need anything from them.
2281     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2282             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2283       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2284     break;
2285   }
2286   case ISD::TRUNCATE: {
2287     SDValue Src = Op.getOperand(0);
2288 
2289     // Simplify the input, using demanded bit information, and compute the known
2290     // zero/one bits live out.
2291     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2292     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2293     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2294                              Depth + 1))
2295       return true;
2296     Known = Known.trunc(BitWidth);
2297 
2298     // Attempt to avoid multi-use ops if we don't need anything from them.
2299     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2300             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2302 
2303     // If the input is only used by this truncate, see if we can shrink it based
2304     // on the known demanded bits.
2305     if (Src.getNode()->hasOneUse()) {
2306       switch (Src.getOpcode()) {
2307       default:
2308         break;
2309       case ISD::SRL:
2310         // Shrink SRL by a constant if none of the high bits shifted in are
2311         // demanded.
2312         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2313           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2314           // undesirable.
2315           break;
2316 
2317         const APInt *ShAmtC =
2318             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2319         if (!ShAmtC || ShAmtC->uge(BitWidth))
2320           break;
2321         uint64_t ShVal = ShAmtC->getZExtValue();
2322 
2323         APInt HighBits =
2324             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2325         HighBits.lshrInPlace(ShVal);
2326         HighBits = HighBits.trunc(BitWidth);
2327 
2328         if (!(HighBits & DemandedBits)) {
2329           // None of the shifted in bits are needed.  Add a truncate of the
2330           // shift input, then shift it.
2331           SDValue NewShAmt = TLO.DAG.getConstant(
2332               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2333           SDValue NewTrunc =
2334               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2335           return TLO.CombineTo(
2336               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2337         }
2338         break;
2339       }
2340     }
2341 
2342     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2343     break;
2344   }
2345   case ISD::AssertZext: {
2346     // AssertZext demands all of the high bits, plus any of the low bits
2347     // demanded by its users.
2348     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2349     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2350     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2351                              TLO, Depth + 1))
2352       return true;
2353     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2354 
2355     Known.Zero |= ~InMask;
2356     break;
2357   }
2358   case ISD::EXTRACT_VECTOR_ELT: {
2359     SDValue Src = Op.getOperand(0);
2360     SDValue Idx = Op.getOperand(1);
2361     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2362     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2363 
2364     if (SrcEltCnt.isScalable())
2365       return false;
2366 
2367     // Demand the bits from every vector element without a constant index.
2368     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2369     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2370     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2371       if (CIdx->getAPIntValue().ult(NumSrcElts))
2372         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2373 
2374     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2375     // anything about the extended bits.
2376     APInt DemandedSrcBits = DemandedBits;
2377     if (BitWidth > EltBitWidth)
2378       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2379 
2380     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2381                              Depth + 1))
2382       return true;
2383 
2384     // Attempt to avoid multi-use ops if we don't need anything from them.
2385     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2386       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2387               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2388         SDValue NewOp =
2389             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2390         return TLO.CombineTo(Op, NewOp);
2391       }
2392     }
2393 
2394     Known = Known2;
2395     if (BitWidth > EltBitWidth)
2396       Known = Known.anyext(BitWidth);
2397     break;
2398   }
2399   case ISD::BITCAST: {
2400     SDValue Src = Op.getOperand(0);
2401     EVT SrcVT = Src.getValueType();
2402     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2403 
2404     // If this is an FP->Int bitcast and if the sign bit is the only
2405     // thing demanded, turn this into a FGETSIGN.
2406     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2407         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2408         SrcVT.isFloatingPoint()) {
2409       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2410       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2411       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2412           SrcVT != MVT::f128) {
2413         // Cannot eliminate/lower SHL for f128 yet.
2414         EVT Ty = OpVTLegal ? VT : MVT::i32;
2415         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2416         // place.  We expect the SHL to be eliminated by other optimizations.
2417         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2418         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2419         if (!OpVTLegal && OpVTSizeInBits > 32)
2420           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2421         unsigned ShVal = Op.getValueSizeInBits() - 1;
2422         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2423         return TLO.CombineTo(Op,
2424                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2425       }
2426     }
2427 
2428     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2429     // Demand the elt/bit if any of the original elts/bits are demanded.
2430     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2431       unsigned Scale = BitWidth / NumSrcEltBits;
2432       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2433       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2434       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2435       for (unsigned i = 0; i != Scale; ++i) {
2436         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2437         unsigned BitOffset = EltOffset * NumSrcEltBits;
2438         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2439         if (!Sub.isZero()) {
2440           DemandedSrcBits |= Sub;
2441           for (unsigned j = 0; j != NumElts; ++j)
2442             if (DemandedElts[j])
2443               DemandedSrcElts.setBit((j * Scale) + i);
2444         }
2445       }
2446 
2447       APInt KnownSrcUndef, KnownSrcZero;
2448       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2449                                      KnownSrcZero, TLO, Depth + 1))
2450         return true;
2451 
2452       KnownBits KnownSrcBits;
2453       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2454                                KnownSrcBits, TLO, Depth + 1))
2455         return true;
2456     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2457       // TODO - bigendian once we have test coverage.
2458       unsigned Scale = NumSrcEltBits / BitWidth;
2459       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2460       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2461       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2462       for (unsigned i = 0; i != NumElts; ++i)
2463         if (DemandedElts[i]) {
2464           unsigned Offset = (i % Scale) * BitWidth;
2465           DemandedSrcBits.insertBits(DemandedBits, Offset);
2466           DemandedSrcElts.setBit(i / Scale);
2467         }
2468 
2469       if (SrcVT.isVector()) {
2470         APInt KnownSrcUndef, KnownSrcZero;
2471         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2472                                        KnownSrcZero, TLO, Depth + 1))
2473           return true;
2474       }
2475 
2476       KnownBits KnownSrcBits;
2477       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2478                                KnownSrcBits, TLO, Depth + 1))
2479         return true;
2480     }
2481 
2482     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2483     // recursive call where Known may be useful to the caller.
2484     if (Depth > 0) {
2485       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2486       return false;
2487     }
2488     break;
2489   }
2490   case ISD::MUL:
2491     if (DemandedBits.isPowerOf2()) {
2492       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2493       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2494       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2495       unsigned CTZ = DemandedBits.countTrailingZeros();
2496       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2497       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2498         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2499         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2500         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2501         return TLO.CombineTo(Op, Shl);
2502       }
2503     }
2504     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2505     // X * X is odd iff X is odd.
2506     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2507     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2508       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2509       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2510       return TLO.CombineTo(Op, And1);
2511     }
2512     LLVM_FALLTHROUGH;
2513   case ISD::ADD:
2514   case ISD::SUB: {
2515     // Add, Sub, and Mul don't demand any bits in positions beyond that
2516     // of the highest bit demanded of them.
2517     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2518     SDNodeFlags Flags = Op.getNode()->getFlags();
2519     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2520     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2521     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2522                              Depth + 1) ||
2523         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2524                              Depth + 1) ||
2525         // See if the operation should be performed at a smaller bit width.
2526         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2527       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2528         // Disable the nsw and nuw flags. We can no longer guarantee that we
2529         // won't wrap after simplification.
2530         Flags.setNoSignedWrap(false);
2531         Flags.setNoUnsignedWrap(false);
2532         Op->setFlags(Flags);
2533       }
2534       return true;
2535     }
2536 
2537     // Attempt to avoid multi-use ops if we don't need anything from them.
2538     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2539       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2540           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2541       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2542           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2543       if (DemandedOp0 || DemandedOp1) {
2544         Flags.setNoSignedWrap(false);
2545         Flags.setNoUnsignedWrap(false);
2546         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2547         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2548         SDValue NewOp =
2549             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2550         return TLO.CombineTo(Op, NewOp);
2551       }
2552     }
2553 
2554     // If we have a constant operand, we may be able to turn it into -1 if we
2555     // do not demand the high bits. This can make the constant smaller to
2556     // encode, allow more general folding, or match specialized instruction
2557     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2558     // is probably not useful (and could be detrimental).
2559     ConstantSDNode *C = isConstOrConstSplat(Op1);
2560     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2561     if (C && !C->isAllOnes() && !C->isOne() &&
2562         (C->getAPIntValue() | HighMask).isAllOnes()) {
2563       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2564       // Disable the nsw and nuw flags. We can no longer guarantee that we
2565       // won't wrap after simplification.
2566       Flags.setNoSignedWrap(false);
2567       Flags.setNoUnsignedWrap(false);
2568       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2569       return TLO.CombineTo(Op, NewOp);
2570     }
2571 
2572     // Match a multiply with a disguised negated-power-of-2 and convert to a
2573     // an equivalent shift-left amount.
2574     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2575     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2576       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2577         return 0;
2578 
2579       // Don't touch opaque constants. Also, ignore zero and power-of-2
2580       // multiplies. Those will get folded later.
2581       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2582       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2583           !MulC->getAPIntValue().isPowerOf2()) {
2584         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2585         if (UnmaskedC.isNegatedPowerOf2())
2586           return (-UnmaskedC).logBase2();
2587       }
2588       return 0;
2589     };
2590 
2591     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2592       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2593       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2594       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2595       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2596       return TLO.CombineTo(Op, Res);
2597     };
2598 
2599     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2600       if (Op.getOpcode() == ISD::ADD) {
2601         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2602         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2603           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2604         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2605         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2606           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2607       }
2608       if (Op.getOpcode() == ISD::SUB) {
2609         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2610         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2611           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2612       }
2613     }
2614 
2615     LLVM_FALLTHROUGH;
2616   }
2617   default:
2618     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2619       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2620                                             Known, TLO, Depth))
2621         return true;
2622       break;
2623     }
2624 
2625     // Just use computeKnownBits to compute output bits.
2626     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2627     break;
2628   }
2629 
2630   // If we know the value of all of the demanded bits, return this as a
2631   // constant.
2632   if (!isTargetCanonicalConstantNode(Op) &&
2633       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2634     // Avoid folding to a constant if any OpaqueConstant is involved.
2635     const SDNode *N = Op.getNode();
2636     for (SDNode *Op :
2637          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2638       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2639         if (C->isOpaque())
2640           return false;
2641     }
2642     if (VT.isInteger())
2643       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2644     if (VT.isFloatingPoint())
2645       return TLO.CombineTo(
2646           Op,
2647           TLO.DAG.getConstantFP(
2648               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2649   }
2650 
2651   return false;
2652 }
2653 
2654 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2655                                                 const APInt &DemandedElts,
2656                                                 DAGCombinerInfo &DCI) const {
2657   SelectionDAG &DAG = DCI.DAG;
2658   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2659                         !DCI.isBeforeLegalizeOps());
2660 
2661   APInt KnownUndef, KnownZero;
2662   bool Simplified =
2663       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2664   if (Simplified) {
2665     DCI.AddToWorklist(Op.getNode());
2666     DCI.CommitTargetLoweringOpt(TLO);
2667   }
2668 
2669   return Simplified;
2670 }
2671 
2672 /// Given a vector binary operation and known undefined elements for each input
2673 /// operand, compute whether each element of the output is undefined.
2674 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2675                                          const APInt &UndefOp0,
2676                                          const APInt &UndefOp1) {
2677   EVT VT = BO.getValueType();
2678   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2679          "Vector binop only");
2680 
2681   EVT EltVT = VT.getVectorElementType();
2682   unsigned NumElts = VT.getVectorNumElements();
2683   assert(UndefOp0.getBitWidth() == NumElts &&
2684          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2685 
2686   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2687                                    const APInt &UndefVals) {
2688     if (UndefVals[Index])
2689       return DAG.getUNDEF(EltVT);
2690 
2691     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2692       // Try hard to make sure that the getNode() call is not creating temporary
2693       // nodes. Ignore opaque integers because they do not constant fold.
2694       SDValue Elt = BV->getOperand(Index);
2695       auto *C = dyn_cast<ConstantSDNode>(Elt);
2696       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2697         return Elt;
2698     }
2699 
2700     return SDValue();
2701   };
2702 
2703   APInt KnownUndef = APInt::getZero(NumElts);
2704   for (unsigned i = 0; i != NumElts; ++i) {
2705     // If both inputs for this element are either constant or undef and match
2706     // the element type, compute the constant/undef result for this element of
2707     // the vector.
2708     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2709     // not handle FP constants. The code within getNode() should be refactored
2710     // to avoid the danger of creating a bogus temporary node here.
2711     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2712     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2713     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2714       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2715         KnownUndef.setBit(i);
2716   }
2717   return KnownUndef;
2718 }
2719 
2720 bool TargetLowering::SimplifyDemandedVectorElts(
2721     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2722     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2723     bool AssumeSingleUse) const {
2724   EVT VT = Op.getValueType();
2725   unsigned Opcode = Op.getOpcode();
2726   APInt DemandedElts = OriginalDemandedElts;
2727   unsigned NumElts = DemandedElts.getBitWidth();
2728   assert(VT.isVector() && "Expected vector op");
2729 
2730   KnownUndef = KnownZero = APInt::getZero(NumElts);
2731 
2732   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2733   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2734     return false;
2735 
2736   // TODO: For now we assume we know nothing about scalable vectors.
2737   if (VT.isScalableVector())
2738     return false;
2739 
2740   assert(VT.getVectorNumElements() == NumElts &&
2741          "Mask size mismatches value type element count!");
2742 
2743   // Undef operand.
2744   if (Op.isUndef()) {
2745     KnownUndef.setAllBits();
2746     return false;
2747   }
2748 
2749   // If Op has other users, assume that all elements are needed.
2750   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2751     DemandedElts.setAllBits();
2752 
2753   // Not demanding any elements from Op.
2754   if (DemandedElts == 0) {
2755     KnownUndef.setAllBits();
2756     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2757   }
2758 
2759   // Limit search depth.
2760   if (Depth >= SelectionDAG::MaxRecursionDepth)
2761     return false;
2762 
2763   SDLoc DL(Op);
2764   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2765   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2766 
2767   // Helper for demanding the specified elements and all the bits of both binary
2768   // operands.
2769   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2770     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2771                                                            TLO.DAG, Depth + 1);
2772     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2773                                                            TLO.DAG, Depth + 1);
2774     if (NewOp0 || NewOp1) {
2775       SDValue NewOp = TLO.DAG.getNode(
2776           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2777       return TLO.CombineTo(Op, NewOp);
2778     }
2779     return false;
2780   };
2781 
2782   switch (Opcode) {
2783   case ISD::SCALAR_TO_VECTOR: {
2784     if (!DemandedElts[0]) {
2785       KnownUndef.setAllBits();
2786       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2787     }
2788     SDValue ScalarSrc = Op.getOperand(0);
2789     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2790       SDValue Src = ScalarSrc.getOperand(0);
2791       SDValue Idx = ScalarSrc.getOperand(1);
2792       EVT SrcVT = Src.getValueType();
2793 
2794       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2795 
2796       if (SrcEltCnt.isScalable())
2797         return false;
2798 
2799       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2800       if (isNullConstant(Idx)) {
2801         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2802         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2803         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2804         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2805                                        TLO, Depth + 1))
2806           return true;
2807       }
2808     }
2809     KnownUndef.setHighBits(NumElts - 1);
2810     break;
2811   }
2812   case ISD::BITCAST: {
2813     SDValue Src = Op.getOperand(0);
2814     EVT SrcVT = Src.getValueType();
2815 
2816     // We only handle vectors here.
2817     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2818     if (!SrcVT.isVector())
2819       break;
2820 
2821     // Fast handling of 'identity' bitcasts.
2822     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2823     if (NumSrcElts == NumElts)
2824       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2825                                         KnownZero, TLO, Depth + 1);
2826 
2827     APInt SrcDemandedElts, SrcZero, SrcUndef;
2828 
2829     // Bitcast from 'large element' src vector to 'small element' vector, we
2830     // must demand a source element if any DemandedElt maps to it.
2831     if ((NumElts % NumSrcElts) == 0) {
2832       unsigned Scale = NumElts / NumSrcElts;
2833       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2834       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2835                                      TLO, Depth + 1))
2836         return true;
2837 
2838       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2839       // of the large element.
2840       // TODO - bigendian once we have test coverage.
2841       if (IsLE) {
2842         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2843         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2844         for (unsigned i = 0; i != NumElts; ++i)
2845           if (DemandedElts[i]) {
2846             unsigned Ofs = (i % Scale) * EltSizeInBits;
2847             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2848           }
2849 
2850         KnownBits Known;
2851         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2852                                  TLO, Depth + 1))
2853           return true;
2854 
2855         // The bitcast has split each wide element into a number of
2856         // narrow subelements. We have just computed the Known bits
2857         // for wide elements. See if element splitting results in
2858         // some subelements being zero. Only for demanded elements!
2859         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2860           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2861                    .isAllOnes())
2862             continue;
2863           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2864             unsigned Elt = Scale * SrcElt + SubElt;
2865             if (DemandedElts[Elt])
2866               KnownZero.setBit(Elt);
2867           }
2868         }
2869       }
2870 
2871       // If the src element is zero/undef then all the output elements will be -
2872       // only demanded elements are guaranteed to be correct.
2873       for (unsigned i = 0; i != NumSrcElts; ++i) {
2874         if (SrcDemandedElts[i]) {
2875           if (SrcZero[i])
2876             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2877           if (SrcUndef[i])
2878             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2879         }
2880       }
2881     }
2882 
2883     // Bitcast from 'small element' src vector to 'large element' vector, we
2884     // demand all smaller source elements covered by the larger demanded element
2885     // of this vector.
2886     if ((NumSrcElts % NumElts) == 0) {
2887       unsigned Scale = NumSrcElts / NumElts;
2888       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2889       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2890                                      TLO, Depth + 1))
2891         return true;
2892 
2893       // If all the src elements covering an output element are zero/undef, then
2894       // the output element will be as well, assuming it was demanded.
2895       for (unsigned i = 0; i != NumElts; ++i) {
2896         if (DemandedElts[i]) {
2897           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2898             KnownZero.setBit(i);
2899           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2900             KnownUndef.setBit(i);
2901         }
2902       }
2903     }
2904     break;
2905   }
2906   case ISD::BUILD_VECTOR: {
2907     // Check all elements and simplify any unused elements with UNDEF.
2908     if (!DemandedElts.isAllOnes()) {
2909       // Don't simplify BROADCASTS.
2910       if (llvm::any_of(Op->op_values(),
2911                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2912         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2913         bool Updated = false;
2914         for (unsigned i = 0; i != NumElts; ++i) {
2915           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2916             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2917             KnownUndef.setBit(i);
2918             Updated = true;
2919           }
2920         }
2921         if (Updated)
2922           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2923       }
2924     }
2925     for (unsigned i = 0; i != NumElts; ++i) {
2926       SDValue SrcOp = Op.getOperand(i);
2927       if (SrcOp.isUndef()) {
2928         KnownUndef.setBit(i);
2929       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2930                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2931         KnownZero.setBit(i);
2932       }
2933     }
2934     break;
2935   }
2936   case ISD::CONCAT_VECTORS: {
2937     EVT SubVT = Op.getOperand(0).getValueType();
2938     unsigned NumSubVecs = Op.getNumOperands();
2939     unsigned NumSubElts = SubVT.getVectorNumElements();
2940     for (unsigned i = 0; i != NumSubVecs; ++i) {
2941       SDValue SubOp = Op.getOperand(i);
2942       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2943       APInt SubUndef, SubZero;
2944       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2945                                      Depth + 1))
2946         return true;
2947       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2948       KnownZero.insertBits(SubZero, i * NumSubElts);
2949     }
2950 
2951     // Attempt to avoid multi-use ops if we don't need anything from them.
2952     if (!DemandedElts.isAllOnes()) {
2953       bool FoundNewSub = false;
2954       SmallVector<SDValue, 2> DemandedSubOps;
2955       for (unsigned i = 0; i != NumSubVecs; ++i) {
2956         SDValue SubOp = Op.getOperand(i);
2957         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2958         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2959             SubOp, SubElts, TLO.DAG, Depth + 1);
2960         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2961         FoundNewSub = NewSubOp ? true : FoundNewSub;
2962       }
2963       if (FoundNewSub) {
2964         SDValue NewOp =
2965             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2966         return TLO.CombineTo(Op, NewOp);
2967       }
2968     }
2969     break;
2970   }
2971   case ISD::INSERT_SUBVECTOR: {
2972     // Demand any elements from the subvector and the remainder from the src its
2973     // inserted into.
2974     SDValue Src = Op.getOperand(0);
2975     SDValue Sub = Op.getOperand(1);
2976     uint64_t Idx = Op.getConstantOperandVal(2);
2977     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2978     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2979     APInt DemandedSrcElts = DemandedElts;
2980     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2981 
2982     APInt SubUndef, SubZero;
2983     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2984                                    Depth + 1))
2985       return true;
2986 
2987     // If none of the src operand elements are demanded, replace it with undef.
2988     if (!DemandedSrcElts && !Src.isUndef())
2989       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2990                                                TLO.DAG.getUNDEF(VT), Sub,
2991                                                Op.getOperand(2)));
2992 
2993     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2994                                    TLO, Depth + 1))
2995       return true;
2996     KnownUndef.insertBits(SubUndef, Idx);
2997     KnownZero.insertBits(SubZero, Idx);
2998 
2999     // Attempt to avoid multi-use ops if we don't need anything from them.
3000     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3001       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3002           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3003       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3004           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3005       if (NewSrc || NewSub) {
3006         NewSrc = NewSrc ? NewSrc : Src;
3007         NewSub = NewSub ? NewSub : Sub;
3008         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3009                                         NewSub, Op.getOperand(2));
3010         return TLO.CombineTo(Op, NewOp);
3011       }
3012     }
3013     break;
3014   }
3015   case ISD::EXTRACT_SUBVECTOR: {
3016     // Offset the demanded elts by the subvector index.
3017     SDValue Src = Op.getOperand(0);
3018     if (Src.getValueType().isScalableVector())
3019       break;
3020     uint64_t Idx = Op.getConstantOperandVal(1);
3021     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3022     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3023 
3024     APInt SrcUndef, SrcZero;
3025     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3026                                    Depth + 1))
3027       return true;
3028     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3029     KnownZero = SrcZero.extractBits(NumElts, Idx);
3030 
3031     // Attempt to avoid multi-use ops if we don't need anything from them.
3032     if (!DemandedElts.isAllOnes()) {
3033       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3034           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3035       if (NewSrc) {
3036         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3037                                         Op.getOperand(1));
3038         return TLO.CombineTo(Op, NewOp);
3039       }
3040     }
3041     break;
3042   }
3043   case ISD::INSERT_VECTOR_ELT: {
3044     SDValue Vec = Op.getOperand(0);
3045     SDValue Scl = Op.getOperand(1);
3046     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3047 
3048     // For a legal, constant insertion index, if we don't need this insertion
3049     // then strip it, else remove it from the demanded elts.
3050     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3051       unsigned Idx = CIdx->getZExtValue();
3052       if (!DemandedElts[Idx])
3053         return TLO.CombineTo(Op, Vec);
3054 
3055       APInt DemandedVecElts(DemandedElts);
3056       DemandedVecElts.clearBit(Idx);
3057       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3058                                      KnownZero, TLO, Depth + 1))
3059         return true;
3060 
3061       KnownUndef.setBitVal(Idx, Scl.isUndef());
3062 
3063       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3064       break;
3065     }
3066 
3067     APInt VecUndef, VecZero;
3068     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3069                                    Depth + 1))
3070       return true;
3071     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3072     break;
3073   }
3074   case ISD::VSELECT: {
3075     SDValue Sel = Op.getOperand(0);
3076     SDValue LHS = Op.getOperand(1);
3077     SDValue RHS = Op.getOperand(2);
3078 
3079     // Try to transform the select condition based on the current demanded
3080     // elements.
3081     APInt UndefSel, UndefZero;
3082     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3083                                    Depth + 1))
3084       return true;
3085 
3086     // See if we can simplify either vselect operand.
3087     APInt DemandedLHS(DemandedElts);
3088     APInt DemandedRHS(DemandedElts);
3089     APInt UndefLHS, ZeroLHS;
3090     APInt UndefRHS, ZeroRHS;
3091     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3092                                    Depth + 1))
3093       return true;
3094     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3095                                    Depth + 1))
3096       return true;
3097 
3098     KnownUndef = UndefLHS & UndefRHS;
3099     KnownZero = ZeroLHS & ZeroRHS;
3100 
3101     // If we know that the selected element is always zero, we don't need the
3102     // select value element.
3103     APInt DemandedSel = DemandedElts & ~KnownZero;
3104     if (DemandedSel != DemandedElts)
3105       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3106                                      Depth + 1))
3107         return true;
3108 
3109     break;
3110   }
3111   case ISD::VECTOR_SHUFFLE: {
3112     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3113 
3114     // Collect demanded elements from shuffle operands..
3115     APInt DemandedLHS(NumElts, 0);
3116     APInt DemandedRHS(NumElts, 0);
3117     for (unsigned i = 0; i != NumElts; ++i) {
3118       int M = ShuffleMask[i];
3119       if (M < 0 || !DemandedElts[i])
3120         continue;
3121       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3122       if (M < (int)NumElts)
3123         DemandedLHS.setBit(M);
3124       else
3125         DemandedRHS.setBit(M - NumElts);
3126     }
3127 
3128     // See if we can simplify either shuffle operand.
3129     APInt UndefLHS, ZeroLHS;
3130     APInt UndefRHS, ZeroRHS;
3131     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3132                                    ZeroLHS, TLO, Depth + 1))
3133       return true;
3134     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3135                                    ZeroRHS, TLO, Depth + 1))
3136       return true;
3137 
3138     // Simplify mask using undef elements from LHS/RHS.
3139     bool Updated = false;
3140     bool IdentityLHS = true, IdentityRHS = true;
3141     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3142     for (unsigned i = 0; i != NumElts; ++i) {
3143       int &M = NewMask[i];
3144       if (M < 0)
3145         continue;
3146       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3147           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3148         Updated = true;
3149         M = -1;
3150       }
3151       IdentityLHS &= (M < 0) || (M == (int)i);
3152       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3153     }
3154 
3155     // Update legal shuffle masks based on demanded elements if it won't reduce
3156     // to Identity which can cause premature removal of the shuffle mask.
3157     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3158       SDValue LegalShuffle =
3159           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3160                                   NewMask, TLO.DAG);
3161       if (LegalShuffle)
3162         return TLO.CombineTo(Op, LegalShuffle);
3163     }
3164 
3165     // Propagate undef/zero elements from LHS/RHS.
3166     for (unsigned i = 0; i != NumElts; ++i) {
3167       int M = ShuffleMask[i];
3168       if (M < 0) {
3169         KnownUndef.setBit(i);
3170       } else if (M < (int)NumElts) {
3171         if (UndefLHS[M])
3172           KnownUndef.setBit(i);
3173         if (ZeroLHS[M])
3174           KnownZero.setBit(i);
3175       } else {
3176         if (UndefRHS[M - NumElts])
3177           KnownUndef.setBit(i);
3178         if (ZeroRHS[M - NumElts])
3179           KnownZero.setBit(i);
3180       }
3181     }
3182     break;
3183   }
3184   case ISD::ANY_EXTEND_VECTOR_INREG:
3185   case ISD::SIGN_EXTEND_VECTOR_INREG:
3186   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3187     APInt SrcUndef, SrcZero;
3188     SDValue Src = Op.getOperand(0);
3189     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3190     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3191     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3192                                    Depth + 1))
3193       return true;
3194     KnownZero = SrcZero.zextOrTrunc(NumElts);
3195     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3196 
3197     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3198         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3199         DemandedSrcElts == 1) {
3200       // aext - if we just need the bottom element then we can bitcast.
3201       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3202     }
3203 
3204     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3205       // zext(undef) upper bits are guaranteed to be zero.
3206       if (DemandedElts.isSubsetOf(KnownUndef))
3207         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3208       KnownUndef.clearAllBits();
3209 
3210       // zext - if we just need the bottom element then we can mask:
3211       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3212       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3213           Op->isOnlyUserOf(Src.getNode()) &&
3214           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3215         SDLoc DL(Op);
3216         EVT SrcVT = Src.getValueType();
3217         EVT SrcSVT = SrcVT.getScalarType();
3218         SmallVector<SDValue> MaskElts;
3219         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3220         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3221         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3222         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3223                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3224           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3225           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3226         }
3227       }
3228     }
3229     break;
3230   }
3231 
3232   // TODO: There are more binop opcodes that could be handled here - MIN,
3233   // MAX, saturated math, etc.
3234   case ISD::ADD: {
3235     SDValue Op0 = Op.getOperand(0);
3236     SDValue Op1 = Op.getOperand(1);
3237     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3238       APInt UndefLHS, ZeroLHS;
3239       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3240                                      Depth + 1, /*AssumeSingleUse*/ true))
3241         return true;
3242     }
3243     LLVM_FALLTHROUGH;
3244   }
3245   case ISD::OR:
3246   case ISD::XOR:
3247   case ISD::SUB:
3248   case ISD::FADD:
3249   case ISD::FSUB:
3250   case ISD::FMUL:
3251   case ISD::FDIV:
3252   case ISD::FREM: {
3253     SDValue Op0 = Op.getOperand(0);
3254     SDValue Op1 = Op.getOperand(1);
3255 
3256     APInt UndefRHS, ZeroRHS;
3257     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3258                                    Depth + 1))
3259       return true;
3260     APInt UndefLHS, ZeroLHS;
3261     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3262                                    Depth + 1))
3263       return true;
3264 
3265     KnownZero = ZeroLHS & ZeroRHS;
3266     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3267 
3268     // Attempt to avoid multi-use ops if we don't need anything from them.
3269     // TODO - use KnownUndef to relax the demandedelts?
3270     if (!DemandedElts.isAllOnes())
3271       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3272         return true;
3273     break;
3274   }
3275   case ISD::SHL:
3276   case ISD::SRL:
3277   case ISD::SRA:
3278   case ISD::ROTL:
3279   case ISD::ROTR: {
3280     SDValue Op0 = Op.getOperand(0);
3281     SDValue Op1 = Op.getOperand(1);
3282 
3283     APInt UndefRHS, ZeroRHS;
3284     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3285                                    Depth + 1))
3286       return true;
3287     APInt UndefLHS, ZeroLHS;
3288     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3289                                    Depth + 1))
3290       return true;
3291 
3292     KnownZero = ZeroLHS;
3293     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3294 
3295     // Attempt to avoid multi-use ops if we don't need anything from them.
3296     // TODO - use KnownUndef to relax the demandedelts?
3297     if (!DemandedElts.isAllOnes())
3298       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3299         return true;
3300     break;
3301   }
3302   case ISD::MUL:
3303   case ISD::AND: {
3304     SDValue Op0 = Op.getOperand(0);
3305     SDValue Op1 = Op.getOperand(1);
3306 
3307     APInt SrcUndef, SrcZero;
3308     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3309                                    Depth + 1))
3310       return true;
3311     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3312                                    TLO, Depth + 1))
3313       return true;
3314 
3315     // If either side has a zero element, then the result element is zero, even
3316     // if the other is an UNDEF.
3317     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3318     // and then handle 'and' nodes with the rest of the binop opcodes.
3319     KnownZero |= SrcZero;
3320     KnownUndef &= SrcUndef;
3321     KnownUndef &= ~KnownZero;
3322 
3323     // Attempt to avoid multi-use ops if we don't need anything from them.
3324     // TODO - use KnownUndef to relax the demandedelts?
3325     if (!DemandedElts.isAllOnes())
3326       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3327         return true;
3328     break;
3329   }
3330   case ISD::TRUNCATE:
3331   case ISD::SIGN_EXTEND:
3332   case ISD::ZERO_EXTEND:
3333     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3334                                    KnownZero, TLO, Depth + 1))
3335       return true;
3336 
3337     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3338       // zext(undef) upper bits are guaranteed to be zero.
3339       if (DemandedElts.isSubsetOf(KnownUndef))
3340         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3341       KnownUndef.clearAllBits();
3342     }
3343     break;
3344   default: {
3345     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3346       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3347                                                   KnownZero, TLO, Depth))
3348         return true;
3349     } else {
3350       KnownBits Known;
3351       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3352       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3353                                TLO, Depth, AssumeSingleUse))
3354         return true;
3355     }
3356     break;
3357   }
3358   }
3359   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3360 
3361   // Constant fold all undef cases.
3362   // TODO: Handle zero cases as well.
3363   if (DemandedElts.isSubsetOf(KnownUndef))
3364     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3365 
3366   return false;
3367 }
3368 
3369 /// Determine which of the bits specified in Mask are known to be either zero or
3370 /// one and return them in the Known.
3371 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3372                                                    KnownBits &Known,
3373                                                    const APInt &DemandedElts,
3374                                                    const SelectionDAG &DAG,
3375                                                    unsigned Depth) const {
3376   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3377           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3378           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3379           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3380          "Should use MaskedValueIsZero if you don't know whether Op"
3381          " is a target node!");
3382   Known.resetAll();
3383 }
3384 
3385 void TargetLowering::computeKnownBitsForTargetInstr(
3386     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3387     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3388     unsigned Depth) const {
3389   Known.resetAll();
3390 }
3391 
3392 void TargetLowering::computeKnownBitsForFrameIndex(
3393   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3394   // The low bits are known zero if the pointer is aligned.
3395   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3396 }
3397 
3398 Align TargetLowering::computeKnownAlignForTargetInstr(
3399   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3400   unsigned Depth) const {
3401   return Align(1);
3402 }
3403 
3404 /// This method can be implemented by targets that want to expose additional
3405 /// information about sign bits to the DAG Combiner.
3406 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3407                                                          const APInt &,
3408                                                          const SelectionDAG &,
3409                                                          unsigned Depth) const {
3410   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3411           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3412           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3413           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3414          "Should use ComputeNumSignBits if you don't know whether Op"
3415          " is a target node!");
3416   return 1;
3417 }
3418 
3419 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3420   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3421   const MachineRegisterInfo &MRI, unsigned Depth) const {
3422   return 1;
3423 }
3424 
3425 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3426     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3427     TargetLoweringOpt &TLO, unsigned Depth) const {
3428   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3429           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3430           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3431           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3432          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3433          " is a target node!");
3434   return false;
3435 }
3436 
3437 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3438     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3439     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3440   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3441           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3442           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3443           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3444          "Should use SimplifyDemandedBits if you don't know whether Op"
3445          " is a target node!");
3446   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3447   return false;
3448 }
3449 
3450 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3451     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3452     SelectionDAG &DAG, unsigned Depth) const {
3453   assert(
3454       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3455        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3456        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3457        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3458       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3459       " is a target node!");
3460   return SDValue();
3461 }
3462 
3463 SDValue
3464 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3465                                         SDValue N1, MutableArrayRef<int> Mask,
3466                                         SelectionDAG &DAG) const {
3467   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3468   if (!LegalMask) {
3469     std::swap(N0, N1);
3470     ShuffleVectorSDNode::commuteMask(Mask);
3471     LegalMask = isShuffleMaskLegal(Mask, VT);
3472   }
3473 
3474   if (!LegalMask)
3475     return SDValue();
3476 
3477   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3478 }
3479 
3480 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3481   return nullptr;
3482 }
3483 
3484 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3485     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3486     bool PoisonOnly, unsigned Depth) const {
3487   assert(
3488       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3489        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3490        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3491        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3492       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3493       " is a target node!");
3494   return false;
3495 }
3496 
3497 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3498                                                   const SelectionDAG &DAG,
3499                                                   bool SNaN,
3500                                                   unsigned Depth) const {
3501   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3502           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3503           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3504           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3505          "Should use isKnownNeverNaN if you don't know whether Op"
3506          " is a target node!");
3507   return false;
3508 }
3509 
3510 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3511                                                const APInt &DemandedElts,
3512                                                APInt &UndefElts,
3513                                                unsigned Depth) const {
3514   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3515           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3516           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3517           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3518          "Should use isSplatValue if you don't know whether Op"
3519          " is a target node!");
3520   return false;
3521 }
3522 
3523 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3524 // work with truncating build vectors and vectors with elements of less than
3525 // 8 bits.
3526 bool TargetLowering::isConstTrueVal(SDValue N) const {
3527   if (!N)
3528     return false;
3529 
3530   unsigned EltWidth;
3531   APInt CVal;
3532   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3533                                                /*AllowTruncation=*/true)) {
3534     CVal = CN->getAPIntValue();
3535     EltWidth = N.getValueType().getScalarSizeInBits();
3536   } else
3537     return false;
3538 
3539   // If this is a truncating splat, truncate the splat value.
3540   // Otherwise, we may fail to match the expected values below.
3541   if (EltWidth < CVal.getBitWidth())
3542     CVal = CVal.trunc(EltWidth);
3543 
3544   switch (getBooleanContents(N.getValueType())) {
3545   case UndefinedBooleanContent:
3546     return CVal[0];
3547   case ZeroOrOneBooleanContent:
3548     return CVal.isOne();
3549   case ZeroOrNegativeOneBooleanContent:
3550     return CVal.isAllOnes();
3551   }
3552 
3553   llvm_unreachable("Invalid boolean contents");
3554 }
3555 
3556 bool TargetLowering::isConstFalseVal(SDValue N) const {
3557   if (!N)
3558     return false;
3559 
3560   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3561   if (!CN) {
3562     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3563     if (!BV)
3564       return false;
3565 
3566     // Only interested in constant splats, we don't care about undef
3567     // elements in identifying boolean constants and getConstantSplatNode
3568     // returns NULL if all ops are undef;
3569     CN = BV->getConstantSplatNode();
3570     if (!CN)
3571       return false;
3572   }
3573 
3574   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3575     return !CN->getAPIntValue()[0];
3576 
3577   return CN->isZero();
3578 }
3579 
3580 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3581                                        bool SExt) const {
3582   if (VT == MVT::i1)
3583     return N->isOne();
3584 
3585   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3586   switch (Cnt) {
3587   case TargetLowering::ZeroOrOneBooleanContent:
3588     // An extended value of 1 is always true, unless its original type is i1,
3589     // in which case it will be sign extended to -1.
3590     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3591   case TargetLowering::UndefinedBooleanContent:
3592   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3593     return N->isAllOnes() && SExt;
3594   }
3595   llvm_unreachable("Unexpected enumeration.");
3596 }
3597 
3598 /// This helper function of SimplifySetCC tries to optimize the comparison when
3599 /// either operand of the SetCC node is a bitwise-and instruction.
3600 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3601                                          ISD::CondCode Cond, const SDLoc &DL,
3602                                          DAGCombinerInfo &DCI) const {
3603   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3604     std::swap(N0, N1);
3605 
3606   SelectionDAG &DAG = DCI.DAG;
3607   EVT OpVT = N0.getValueType();
3608   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3609       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3610     return SDValue();
3611 
3612   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3613   // iff everything but LSB is known zero:
3614   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3615       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3616        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3617     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3618     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3619     if (DAG.MaskedValueIsZero(N0, UpperBits))
3620       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3621   }
3622 
3623   // Match these patterns in any of their permutations:
3624   // (X & Y) == Y
3625   // (X & Y) != Y
3626   SDValue X, Y;
3627   if (N0.getOperand(0) == N1) {
3628     X = N0.getOperand(1);
3629     Y = N0.getOperand(0);
3630   } else if (N0.getOperand(1) == N1) {
3631     X = N0.getOperand(0);
3632     Y = N0.getOperand(1);
3633   } else {
3634     return SDValue();
3635   }
3636 
3637   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3638   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3639     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3640     // Note that where Y is variable and is known to have at most one bit set
3641     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3642     // equivalent when Y == 0.
3643     assert(OpVT.isInteger());
3644     Cond = ISD::getSetCCInverse(Cond, OpVT);
3645     if (DCI.isBeforeLegalizeOps() ||
3646         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3647       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3648   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3649     // If the target supports an 'and-not' or 'and-complement' logic operation,
3650     // try to use that to make a comparison operation more efficient.
3651     // But don't do this transform if the mask is a single bit because there are
3652     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3653     // 'rlwinm' on PPC).
3654 
3655     // Bail out if the compare operand that we want to turn into a zero is
3656     // already a zero (otherwise, infinite loop).
3657     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3658     if (YConst && YConst->isZero())
3659       return SDValue();
3660 
3661     // Transform this into: ~X & Y == 0.
3662     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3663     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3664     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3665   }
3666 
3667   return SDValue();
3668 }
3669 
3670 /// There are multiple IR patterns that could be checking whether certain
3671 /// truncation of a signed number would be lossy or not. The pattern which is
3672 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3673 /// We are looking for the following pattern: (KeptBits is a constant)
3674 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3675 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3676 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3677 /// We will unfold it into the natural trunc+sext pattern:
3678 ///   ((%x << C) a>> C) dstcond %x
3679 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3680 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3681     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3682     const SDLoc &DL) const {
3683   // We must be comparing with a constant.
3684   ConstantSDNode *C1;
3685   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3686     return SDValue();
3687 
3688   // N0 should be:  add %x, (1 << (KeptBits-1))
3689   if (N0->getOpcode() != ISD::ADD)
3690     return SDValue();
3691 
3692   // And we must be 'add'ing a constant.
3693   ConstantSDNode *C01;
3694   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3695     return SDValue();
3696 
3697   SDValue X = N0->getOperand(0);
3698   EVT XVT = X.getValueType();
3699 
3700   // Validate constants ...
3701 
3702   APInt I1 = C1->getAPIntValue();
3703 
3704   ISD::CondCode NewCond;
3705   if (Cond == ISD::CondCode::SETULT) {
3706     NewCond = ISD::CondCode::SETEQ;
3707   } else if (Cond == ISD::CondCode::SETULE) {
3708     NewCond = ISD::CondCode::SETEQ;
3709     // But need to 'canonicalize' the constant.
3710     I1 += 1;
3711   } else if (Cond == ISD::CondCode::SETUGT) {
3712     NewCond = ISD::CondCode::SETNE;
3713     // But need to 'canonicalize' the constant.
3714     I1 += 1;
3715   } else if (Cond == ISD::CondCode::SETUGE) {
3716     NewCond = ISD::CondCode::SETNE;
3717   } else
3718     return SDValue();
3719 
3720   APInt I01 = C01->getAPIntValue();
3721 
3722   auto checkConstants = [&I1, &I01]() -> bool {
3723     // Both of them must be power-of-two, and the constant from setcc is bigger.
3724     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3725   };
3726 
3727   if (checkConstants()) {
3728     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3729   } else {
3730     // What if we invert constants? (and the target predicate)
3731     I1.negate();
3732     I01.negate();
3733     assert(XVT.isInteger());
3734     NewCond = getSetCCInverse(NewCond, XVT);
3735     if (!checkConstants())
3736       return SDValue();
3737     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3738   }
3739 
3740   // They are power-of-two, so which bit is set?
3741   const unsigned KeptBits = I1.logBase2();
3742   const unsigned KeptBitsMinusOne = I01.logBase2();
3743 
3744   // Magic!
3745   if (KeptBits != (KeptBitsMinusOne + 1))
3746     return SDValue();
3747   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3748 
3749   // We don't want to do this in every single case.
3750   SelectionDAG &DAG = DCI.DAG;
3751   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3752           XVT, KeptBits))
3753     return SDValue();
3754 
3755   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3756   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3757 
3758   // Unfold into:  ((%x << C) a>> C) cond %x
3759   // Where 'cond' will be either 'eq' or 'ne'.
3760   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3761   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3762   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3763   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3764 
3765   return T2;
3766 }
3767 
3768 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3769 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3770     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3771     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3772   assert(isConstOrConstSplat(N1C) &&
3773          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3774          "Should be a comparison with 0.");
3775   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3776          "Valid only for [in]equality comparisons.");
3777 
3778   unsigned NewShiftOpcode;
3779   SDValue X, C, Y;
3780 
3781   SelectionDAG &DAG = DCI.DAG;
3782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3783 
3784   // Look for '(C l>>/<< Y)'.
3785   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3786     // The shift should be one-use.
3787     if (!V.hasOneUse())
3788       return false;
3789     unsigned OldShiftOpcode = V.getOpcode();
3790     switch (OldShiftOpcode) {
3791     case ISD::SHL:
3792       NewShiftOpcode = ISD::SRL;
3793       break;
3794     case ISD::SRL:
3795       NewShiftOpcode = ISD::SHL;
3796       break;
3797     default:
3798       return false; // must be a logical shift.
3799     }
3800     // We should be shifting a constant.
3801     // FIXME: best to use isConstantOrConstantVector().
3802     C = V.getOperand(0);
3803     ConstantSDNode *CC =
3804         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3805     if (!CC)
3806       return false;
3807     Y = V.getOperand(1);
3808 
3809     ConstantSDNode *XC =
3810         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3811     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3812         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3813   };
3814 
3815   // LHS of comparison should be an one-use 'and'.
3816   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3817     return SDValue();
3818 
3819   X = N0.getOperand(0);
3820   SDValue Mask = N0.getOperand(1);
3821 
3822   // 'and' is commutative!
3823   if (!Match(Mask)) {
3824     std::swap(X, Mask);
3825     if (!Match(Mask))
3826       return SDValue();
3827   }
3828 
3829   EVT VT = X.getValueType();
3830 
3831   // Produce:
3832   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3833   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3834   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3835   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3836   return T2;
3837 }
3838 
3839 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3840 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3841 /// handle the commuted versions of these patterns.
3842 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3843                                            ISD::CondCode Cond, const SDLoc &DL,
3844                                            DAGCombinerInfo &DCI) const {
3845   unsigned BOpcode = N0.getOpcode();
3846   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3847          "Unexpected binop");
3848   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3849 
3850   // (X + Y) == X --> Y == 0
3851   // (X - Y) == X --> Y == 0
3852   // (X ^ Y) == X --> Y == 0
3853   SelectionDAG &DAG = DCI.DAG;
3854   EVT OpVT = N0.getValueType();
3855   SDValue X = N0.getOperand(0);
3856   SDValue Y = N0.getOperand(1);
3857   if (X == N1)
3858     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3859 
3860   if (Y != N1)
3861     return SDValue();
3862 
3863   // (X + Y) == Y --> X == 0
3864   // (X ^ Y) == Y --> X == 0
3865   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3866     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3867 
3868   // The shift would not be valid if the operands are boolean (i1).
3869   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3870     return SDValue();
3871 
3872   // (X - Y) == Y --> X == Y << 1
3873   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3874                                  !DCI.isBeforeLegalize());
3875   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3876   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3877   if (!DCI.isCalledByLegalizer())
3878     DCI.AddToWorklist(YShl1.getNode());
3879   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3880 }
3881 
3882 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3883                                       SDValue N0, const APInt &C1,
3884                                       ISD::CondCode Cond, const SDLoc &dl,
3885                                       SelectionDAG &DAG) {
3886   // Look through truncs that don't change the value of a ctpop.
3887   // FIXME: Add vector support? Need to be careful with setcc result type below.
3888   SDValue CTPOP = N0;
3889   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3890       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3891     CTPOP = N0.getOperand(0);
3892 
3893   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3894     return SDValue();
3895 
3896   EVT CTVT = CTPOP.getValueType();
3897   SDValue CTOp = CTPOP.getOperand(0);
3898 
3899   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3900   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3901   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3902     return SDValue();
3903 
3904   // (ctpop x) u< 2 -> (x & x-1) == 0
3905   // (ctpop x) u> 1 -> (x & x-1) != 0
3906   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3907     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3908     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3909       return SDValue();
3910     if (C1 == 0 && (Cond == ISD::SETULT))
3911       return SDValue(); // This is handled elsewhere.
3912 
3913     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3914 
3915     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3916     SDValue Result = CTOp;
3917     for (unsigned i = 0; i < Passes; i++) {
3918       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3919       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3920     }
3921     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3922     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3923   }
3924 
3925   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3926   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3927     // For scalars, keep CTPOP if it is legal or custom.
3928     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3929       return SDValue();
3930     // This is based on X86's custom lowering for CTPOP which produces more
3931     // instructions than the expansion here.
3932 
3933     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3934     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3935     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3936     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3937     assert(CTVT.isInteger());
3938     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3939     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3940     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3941     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3942     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3943     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3944     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3945   }
3946 
3947   return SDValue();
3948 }
3949 
3950 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3951                                    ISD::CondCode Cond, const SDLoc &dl,
3952                                    SelectionDAG &DAG) {
3953   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3954     return SDValue();
3955 
3956   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3957   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3958     return SDValue();
3959 
3960   auto getRotateSource = [](SDValue X) {
3961     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3962       return X.getOperand(0);
3963     return SDValue();
3964   };
3965 
3966   // Peek through a rotated value compared against 0 or -1:
3967   // (rot X, Y) == 0/-1 --> X == 0/-1
3968   // (rot X, Y) != 0/-1 --> X != 0/-1
3969   if (SDValue R = getRotateSource(N0))
3970     return DAG.getSetCC(dl, VT, R, N1, Cond);
3971 
3972   // Peek through an 'or' of a rotated value compared against 0:
3973   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3974   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3975   //
3976   // TODO: Add the 'and' with -1 sibling.
3977   // TODO: Recurse through a series of 'or' ops to find the rotate.
3978   EVT OpVT = N0.getValueType();
3979   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3980     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3981       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3982       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3983     }
3984     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3985       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3986       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3987     }
3988   }
3989 
3990   return SDValue();
3991 }
3992 
3993 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3994                                         ISD::CondCode Cond, const SDLoc &dl,
3995                                         SelectionDAG &DAG) {
3996   // If we are testing for all-bits-clear, we might be able to do that with
3997   // less shifting since bit-order does not matter.
3998   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3999     return SDValue();
4000 
4001   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4002   if (!C1 || !C1->isZero())
4003     return SDValue();
4004 
4005   if (!N0.hasOneUse() ||
4006       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4007     return SDValue();
4008 
4009   unsigned BitWidth = N0.getScalarValueSizeInBits();
4010   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4011   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4012     return SDValue();
4013 
4014   // Canonicalize fshr as fshl to reduce pattern-matching.
4015   unsigned ShAmt = ShAmtC->getZExtValue();
4016   if (N0.getOpcode() == ISD::FSHR)
4017     ShAmt = BitWidth - ShAmt;
4018 
4019   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4020   SDValue X, Y;
4021   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4022     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4023       return false;
4024     if (Or.getOperand(0) == Other) {
4025       X = Or.getOperand(0);
4026       Y = Or.getOperand(1);
4027       return true;
4028     }
4029     if (Or.getOperand(1) == Other) {
4030       X = Or.getOperand(1);
4031       Y = Or.getOperand(0);
4032       return true;
4033     }
4034     return false;
4035   };
4036 
4037   EVT OpVT = N0.getValueType();
4038   EVT ShAmtVT = N0.getOperand(2).getValueType();
4039   SDValue F0 = N0.getOperand(0);
4040   SDValue F1 = N0.getOperand(1);
4041   if (matchOr(F0, F1)) {
4042     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4043     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4044     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4045     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4046     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4047   }
4048   if (matchOr(F1, F0)) {
4049     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4050     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4051     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4052     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4053     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4054   }
4055 
4056   return SDValue();
4057 }
4058 
4059 /// Try to simplify a setcc built with the specified operands and cc. If it is
4060 /// unable to simplify it, return a null SDValue.
4061 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4062                                       ISD::CondCode Cond, bool foldBooleans,
4063                                       DAGCombinerInfo &DCI,
4064                                       const SDLoc &dl) const {
4065   SelectionDAG &DAG = DCI.DAG;
4066   const DataLayout &Layout = DAG.getDataLayout();
4067   EVT OpVT = N0.getValueType();
4068 
4069   // Constant fold or commute setcc.
4070   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4071     return Fold;
4072 
4073   bool N0ConstOrSplat =
4074       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4075   bool N1ConstOrSplat =
4076       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4077 
4078   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4079   // TODO: Handle non-splat vector constants. All undef causes trouble.
4080   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4081   // infinite loop here when we encounter one.
4082   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4083   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4084       (DCI.isBeforeLegalizeOps() ||
4085        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4086     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4087 
4088   // If we have a subtract with the same 2 non-constant operands as this setcc
4089   // -- but in reverse order -- then try to commute the operands of this setcc
4090   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4091   // instruction on some targets.
4092   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4093       (DCI.isBeforeLegalizeOps() ||
4094        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4095       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4096       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4097     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4098 
4099   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4100     return V;
4101 
4102   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4103     return V;
4104 
4105   if (auto *N1C = isConstOrConstSplat(N1)) {
4106     const APInt &C1 = N1C->getAPIntValue();
4107 
4108     // Optimize some CTPOP cases.
4109     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4110       return V;
4111 
4112     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4113     // equality comparison, then we're just comparing whether X itself is
4114     // zero.
4115     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4116         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4117         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4118       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4119         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4120             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4121           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4122             // (srl (ctlz x), 5) == 0  -> X != 0
4123             // (srl (ctlz x), 5) != 1  -> X != 0
4124             Cond = ISD::SETNE;
4125           } else {
4126             // (srl (ctlz x), 5) != 0  -> X == 0
4127             // (srl (ctlz x), 5) == 1  -> X == 0
4128             Cond = ISD::SETEQ;
4129           }
4130           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4131           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4132                               Cond);
4133         }
4134       }
4135     }
4136   }
4137 
4138   // FIXME: Support vectors.
4139   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4140     const APInt &C1 = N1C->getAPIntValue();
4141 
4142     // (zext x) == C --> x == (trunc C)
4143     // (sext x) == C --> x == (trunc C)
4144     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4145         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4146       unsigned MinBits = N0.getValueSizeInBits();
4147       SDValue PreExt;
4148       bool Signed = false;
4149       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4150         // ZExt
4151         MinBits = N0->getOperand(0).getValueSizeInBits();
4152         PreExt = N0->getOperand(0);
4153       } else if (N0->getOpcode() == ISD::AND) {
4154         // DAGCombine turns costly ZExts into ANDs
4155         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4156           if ((C->getAPIntValue()+1).isPowerOf2()) {
4157             MinBits = C->getAPIntValue().countTrailingOnes();
4158             PreExt = N0->getOperand(0);
4159           }
4160       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4161         // SExt
4162         MinBits = N0->getOperand(0).getValueSizeInBits();
4163         PreExt = N0->getOperand(0);
4164         Signed = true;
4165       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4166         // ZEXTLOAD / SEXTLOAD
4167         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4168           MinBits = LN0->getMemoryVT().getSizeInBits();
4169           PreExt = N0;
4170         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4171           Signed = true;
4172           MinBits = LN0->getMemoryVT().getSizeInBits();
4173           PreExt = N0;
4174         }
4175       }
4176 
4177       // Figure out how many bits we need to preserve this constant.
4178       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4179 
4180       // Make sure we're not losing bits from the constant.
4181       if (MinBits > 0 &&
4182           MinBits < C1.getBitWidth() &&
4183           MinBits >= ReqdBits) {
4184         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4185         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4186           // Will get folded away.
4187           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4188           if (MinBits == 1 && C1 == 1)
4189             // Invert the condition.
4190             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4191                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4192           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4193           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4194         }
4195 
4196         // If truncating the setcc operands is not desirable, we can still
4197         // simplify the expression in some cases:
4198         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4199         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4200         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4201         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4202         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4203         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4204         SDValue TopSetCC = N0->getOperand(0);
4205         unsigned N0Opc = N0->getOpcode();
4206         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4207         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4208             TopSetCC.getOpcode() == ISD::SETCC &&
4209             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4210             (isConstFalseVal(N1) ||
4211              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4212 
4213           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4214                          (!N1C->isZero() && Cond == ISD::SETNE);
4215 
4216           if (!Inverse)
4217             return TopSetCC;
4218 
4219           ISD::CondCode InvCond = ISD::getSetCCInverse(
4220               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4221               TopSetCC.getOperand(0).getValueType());
4222           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4223                                       TopSetCC.getOperand(1),
4224                                       InvCond);
4225         }
4226       }
4227     }
4228 
4229     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4230     // equality or unsigned, and all 1 bits of the const are in the same
4231     // partial word, see if we can shorten the load.
4232     if (DCI.isBeforeLegalize() &&
4233         !ISD::isSignedIntSetCC(Cond) &&
4234         N0.getOpcode() == ISD::AND && C1 == 0 &&
4235         N0.getNode()->hasOneUse() &&
4236         isa<LoadSDNode>(N0.getOperand(0)) &&
4237         N0.getOperand(0).getNode()->hasOneUse() &&
4238         isa<ConstantSDNode>(N0.getOperand(1))) {
4239       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4240       APInt bestMask;
4241       unsigned bestWidth = 0, bestOffset = 0;
4242       if (Lod->isSimple() && Lod->isUnindexed()) {
4243         unsigned origWidth = N0.getValueSizeInBits();
4244         unsigned maskWidth = origWidth;
4245         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4246         // 8 bits, but have to be careful...
4247         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4248           origWidth = Lod->getMemoryVT().getSizeInBits();
4249         const APInt &Mask = N0.getConstantOperandAPInt(1);
4250         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4251           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4252           for (unsigned offset=0; offset<origWidth/width; offset++) {
4253             if (Mask.isSubsetOf(newMask)) {
4254               if (Layout.isLittleEndian())
4255                 bestOffset = (uint64_t)offset * (width/8);
4256               else
4257                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4258               bestMask = Mask.lshr(offset * (width/8) * 8);
4259               bestWidth = width;
4260               break;
4261             }
4262             newMask <<= width;
4263           }
4264         }
4265       }
4266       if (bestWidth) {
4267         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4268         if (newVT.isRound() &&
4269             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4270           SDValue Ptr = Lod->getBasePtr();
4271           if (bestOffset != 0)
4272             Ptr =
4273                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4274           SDValue NewLoad =
4275               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4276                           Lod->getPointerInfo().getWithOffset(bestOffset),
4277                           Lod->getOriginalAlign());
4278           return DAG.getSetCC(dl, VT,
4279                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4280                                       DAG.getConstant(bestMask.trunc(bestWidth),
4281                                                       dl, newVT)),
4282                               DAG.getConstant(0LL, dl, newVT), Cond);
4283         }
4284       }
4285     }
4286 
4287     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4288     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4289       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4290 
4291       // If the comparison constant has bits in the upper part, the
4292       // zero-extended value could never match.
4293       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4294                                               C1.getBitWidth() - InSize))) {
4295         switch (Cond) {
4296         case ISD::SETUGT:
4297         case ISD::SETUGE:
4298         case ISD::SETEQ:
4299           return DAG.getConstant(0, dl, VT);
4300         case ISD::SETULT:
4301         case ISD::SETULE:
4302         case ISD::SETNE:
4303           return DAG.getConstant(1, dl, VT);
4304         case ISD::SETGT:
4305         case ISD::SETGE:
4306           // True if the sign bit of C1 is set.
4307           return DAG.getConstant(C1.isNegative(), dl, VT);
4308         case ISD::SETLT:
4309         case ISD::SETLE:
4310           // True if the sign bit of C1 isn't set.
4311           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4312         default:
4313           break;
4314         }
4315       }
4316 
4317       // Otherwise, we can perform the comparison with the low bits.
4318       switch (Cond) {
4319       case ISD::SETEQ:
4320       case ISD::SETNE:
4321       case ISD::SETUGT:
4322       case ISD::SETUGE:
4323       case ISD::SETULT:
4324       case ISD::SETULE: {
4325         EVT newVT = N0.getOperand(0).getValueType();
4326         if (DCI.isBeforeLegalizeOps() ||
4327             (isOperationLegal(ISD::SETCC, newVT) &&
4328              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4329           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4330           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4331 
4332           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4333                                           NewConst, Cond);
4334           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4335         }
4336         break;
4337       }
4338       default:
4339         break; // todo, be more careful with signed comparisons
4340       }
4341     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4342                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4343                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4344                                       OpVT)) {
4345       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4346       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4347       EVT ExtDstTy = N0.getValueType();
4348       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4349 
4350       // If the constant doesn't fit into the number of bits for the source of
4351       // the sign extension, it is impossible for both sides to be equal.
4352       if (C1.getMinSignedBits() > ExtSrcTyBits)
4353         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4354 
4355       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4356              ExtDstTy != ExtSrcTy && "Unexpected types!");
4357       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4358       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4359                                    DAG.getConstant(Imm, dl, ExtDstTy));
4360       if (!DCI.isCalledByLegalizer())
4361         DCI.AddToWorklist(ZextOp.getNode());
4362       // Otherwise, make this a use of a zext.
4363       return DAG.getSetCC(dl, VT, ZextOp,
4364                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4365     } else if ((N1C->isZero() || N1C->isOne()) &&
4366                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4367       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4368       if (N0.getOpcode() == ISD::SETCC &&
4369           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4370           (N0.getValueType() == MVT::i1 ||
4371            getBooleanContents(N0.getOperand(0).getValueType()) ==
4372                        ZeroOrOneBooleanContent)) {
4373         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4374         if (TrueWhenTrue)
4375           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4376         // Invert the condition.
4377         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4378         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4379         if (DCI.isBeforeLegalizeOps() ||
4380             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4381           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4382       }
4383 
4384       if ((N0.getOpcode() == ISD::XOR ||
4385            (N0.getOpcode() == ISD::AND &&
4386             N0.getOperand(0).getOpcode() == ISD::XOR &&
4387             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4388           isOneConstant(N0.getOperand(1))) {
4389         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4390         // can only do this if the top bits are known zero.
4391         unsigned BitWidth = N0.getValueSizeInBits();
4392         if (DAG.MaskedValueIsZero(N0,
4393                                   APInt::getHighBitsSet(BitWidth,
4394                                                         BitWidth-1))) {
4395           // Okay, get the un-inverted input value.
4396           SDValue Val;
4397           if (N0.getOpcode() == ISD::XOR) {
4398             Val = N0.getOperand(0);
4399           } else {
4400             assert(N0.getOpcode() == ISD::AND &&
4401                     N0.getOperand(0).getOpcode() == ISD::XOR);
4402             // ((X^1)&1)^1 -> X & 1
4403             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4404                               N0.getOperand(0).getOperand(0),
4405                               N0.getOperand(1));
4406           }
4407 
4408           return DAG.getSetCC(dl, VT, Val, N1,
4409                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4410         }
4411       } else if (N1C->isOne()) {
4412         SDValue Op0 = N0;
4413         if (Op0.getOpcode() == ISD::TRUNCATE)
4414           Op0 = Op0.getOperand(0);
4415 
4416         if ((Op0.getOpcode() == ISD::XOR) &&
4417             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4418             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4419           SDValue XorLHS = Op0.getOperand(0);
4420           SDValue XorRHS = Op0.getOperand(1);
4421           // Ensure that the input setccs return an i1 type or 0/1 value.
4422           if (Op0.getValueType() == MVT::i1 ||
4423               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4424                       ZeroOrOneBooleanContent &&
4425                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4426                         ZeroOrOneBooleanContent)) {
4427             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4428             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4429             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4430           }
4431         }
4432         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4433           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4434           if (Op0.getValueType().bitsGT(VT))
4435             Op0 = DAG.getNode(ISD::AND, dl, VT,
4436                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4437                           DAG.getConstant(1, dl, VT));
4438           else if (Op0.getValueType().bitsLT(VT))
4439             Op0 = DAG.getNode(ISD::AND, dl, VT,
4440                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4441                         DAG.getConstant(1, dl, VT));
4442 
4443           return DAG.getSetCC(dl, VT, Op0,
4444                               DAG.getConstant(0, dl, Op0.getValueType()),
4445                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4446         }
4447         if (Op0.getOpcode() == ISD::AssertZext &&
4448             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4449           return DAG.getSetCC(dl, VT, Op0,
4450                               DAG.getConstant(0, dl, Op0.getValueType()),
4451                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4452       }
4453     }
4454 
4455     // Given:
4456     //   icmp eq/ne (urem %x, %y), 0
4457     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4458     //   icmp eq/ne %x, 0
4459     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4460         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4461       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4462       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4463       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4464         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4465     }
4466 
4467     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4468     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4469     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4470         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4471         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4472         N1C && N1C->isAllOnes()) {
4473       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4474                           DAG.getConstant(0, dl, OpVT),
4475                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4476     }
4477 
4478     if (SDValue V =
4479             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4480       return V;
4481   }
4482 
4483   // These simplifications apply to splat vectors as well.
4484   // TODO: Handle more splat vector cases.
4485   if (auto *N1C = isConstOrConstSplat(N1)) {
4486     const APInt &C1 = N1C->getAPIntValue();
4487 
4488     APInt MinVal, MaxVal;
4489     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4490     if (ISD::isSignedIntSetCC(Cond)) {
4491       MinVal = APInt::getSignedMinValue(OperandBitSize);
4492       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4493     } else {
4494       MinVal = APInt::getMinValue(OperandBitSize);
4495       MaxVal = APInt::getMaxValue(OperandBitSize);
4496     }
4497 
4498     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4499     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4500       // X >= MIN --> true
4501       if (C1 == MinVal)
4502         return DAG.getBoolConstant(true, dl, VT, OpVT);
4503 
4504       if (!VT.isVector()) { // TODO: Support this for vectors.
4505         // X >= C0 --> X > (C0 - 1)
4506         APInt C = C1 - 1;
4507         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4508         if ((DCI.isBeforeLegalizeOps() ||
4509              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4510             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4511                                   isLegalICmpImmediate(C.getSExtValue())))) {
4512           return DAG.getSetCC(dl, VT, N0,
4513                               DAG.getConstant(C, dl, N1.getValueType()),
4514                               NewCC);
4515         }
4516       }
4517     }
4518 
4519     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4520       // X <= MAX --> true
4521       if (C1 == MaxVal)
4522         return DAG.getBoolConstant(true, dl, VT, OpVT);
4523 
4524       // X <= C0 --> X < (C0 + 1)
4525       if (!VT.isVector()) { // TODO: Support this for vectors.
4526         APInt C = C1 + 1;
4527         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4528         if ((DCI.isBeforeLegalizeOps() ||
4529              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4530             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4531                                   isLegalICmpImmediate(C.getSExtValue())))) {
4532           return DAG.getSetCC(dl, VT, N0,
4533                               DAG.getConstant(C, dl, N1.getValueType()),
4534                               NewCC);
4535         }
4536       }
4537     }
4538 
4539     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4540       if (C1 == MinVal)
4541         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4542 
4543       // TODO: Support this for vectors after legalize ops.
4544       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4545         // Canonicalize setlt X, Max --> setne X, Max
4546         if (C1 == MaxVal)
4547           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4548 
4549         // If we have setult X, 1, turn it into seteq X, 0
4550         if (C1 == MinVal+1)
4551           return DAG.getSetCC(dl, VT, N0,
4552                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4553                               ISD::SETEQ);
4554       }
4555     }
4556 
4557     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4558       if (C1 == MaxVal)
4559         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4560 
4561       // TODO: Support this for vectors after legalize ops.
4562       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4563         // Canonicalize setgt X, Min --> setne X, Min
4564         if (C1 == MinVal)
4565           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4566 
4567         // If we have setugt X, Max-1, turn it into seteq X, Max
4568         if (C1 == MaxVal-1)
4569           return DAG.getSetCC(dl, VT, N0,
4570                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4571                               ISD::SETEQ);
4572       }
4573     }
4574 
4575     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4576       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4577       if (C1.isZero())
4578         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4579                 VT, N0, N1, Cond, DCI, dl))
4580           return CC;
4581 
4582       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4583       // For example, when high 32-bits of i64 X are known clear:
4584       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4585       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4586       bool CmpZero = N1C->getAPIntValue().isZero();
4587       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4588       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4589         // Match or(lo,shl(hi,bw/2)) pattern.
4590         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4591           unsigned EltBits = V.getScalarValueSizeInBits();
4592           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4593             return false;
4594           SDValue LHS = V.getOperand(0);
4595           SDValue RHS = V.getOperand(1);
4596           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4597           // Unshifted element must have zero upperbits.
4598           if (RHS.getOpcode() == ISD::SHL &&
4599               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4600               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4601               DAG.MaskedValueIsZero(LHS, HiBits)) {
4602             Lo = LHS;
4603             Hi = RHS.getOperand(0);
4604             return true;
4605           }
4606           if (LHS.getOpcode() == ISD::SHL &&
4607               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4608               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4609               DAG.MaskedValueIsZero(RHS, HiBits)) {
4610             Lo = RHS;
4611             Hi = LHS.getOperand(0);
4612             return true;
4613           }
4614           return false;
4615         };
4616 
4617         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4618           unsigned EltBits = N0.getScalarValueSizeInBits();
4619           unsigned HalfBits = EltBits / 2;
4620           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4621           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4622           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4623           SDValue NewN0 =
4624               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4625           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4626           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4627         };
4628 
4629         SDValue Lo, Hi;
4630         if (IsConcat(N0, Lo, Hi))
4631           return MergeConcat(Lo, Hi);
4632 
4633         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4634           SDValue Lo0, Lo1, Hi0, Hi1;
4635           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4636               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4637             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4638                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4639           }
4640         }
4641       }
4642     }
4643 
4644     // If we have "setcc X, C0", check to see if we can shrink the immediate
4645     // by changing cc.
4646     // TODO: Support this for vectors after legalize ops.
4647     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4648       // SETUGT X, SINTMAX  -> SETLT X, 0
4649       // SETUGE X, SINTMIN -> SETLT X, 0
4650       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4651           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4652         return DAG.getSetCC(dl, VT, N0,
4653                             DAG.getConstant(0, dl, N1.getValueType()),
4654                             ISD::SETLT);
4655 
4656       // SETULT X, SINTMIN  -> SETGT X, -1
4657       // SETULE X, SINTMAX  -> SETGT X, -1
4658       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4659           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4660         return DAG.getSetCC(dl, VT, N0,
4661                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4662                             ISD::SETGT);
4663     }
4664   }
4665 
4666   // Back to non-vector simplifications.
4667   // TODO: Can we do these for vector splats?
4668   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4669     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670     const APInt &C1 = N1C->getAPIntValue();
4671     EVT ShValTy = N0.getValueType();
4672 
4673     // Fold bit comparisons when we can. This will result in an
4674     // incorrect value when boolean false is negative one, unless
4675     // the bitsize is 1 in which case the false value is the same
4676     // in practice regardless of the representation.
4677     if ((VT.getSizeInBits() == 1 ||
4678          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4679         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4680         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4681         N0.getOpcode() == ISD::AND) {
4682       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4683         EVT ShiftTy =
4684             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4685         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4686           // Perform the xform if the AND RHS is a single bit.
4687           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4688           if (AndRHS->getAPIntValue().isPowerOf2() &&
4689               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4690             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4691                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4692                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4693           }
4694         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4695           // (X & 8) == 8  -->  (X & 8) >> 3
4696           // Perform the xform if C1 is a single bit.
4697           unsigned ShCt = C1.logBase2();
4698           if (C1.isPowerOf2() &&
4699               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4700             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4701                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4702                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4703           }
4704         }
4705       }
4706     }
4707 
4708     if (C1.getMinSignedBits() <= 64 &&
4709         !isLegalICmpImmediate(C1.getSExtValue())) {
4710       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4711       // (X & -256) == 256 -> (X >> 8) == 1
4712       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4713           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4714         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4715           const APInt &AndRHSC = AndRHS->getAPIntValue();
4716           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4717             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4718             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4719               SDValue Shift =
4720                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4721                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4722               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4723               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4724             }
4725           }
4726         }
4727       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4728                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4729         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4730         // X <  0x100000000 -> (X >> 32) <  1
4731         // X >= 0x100000000 -> (X >> 32) >= 1
4732         // X <= 0x0ffffffff -> (X >> 32) <  1
4733         // X >  0x0ffffffff -> (X >> 32) >= 1
4734         unsigned ShiftBits;
4735         APInt NewC = C1;
4736         ISD::CondCode NewCond = Cond;
4737         if (AdjOne) {
4738           ShiftBits = C1.countTrailingOnes();
4739           NewC = NewC + 1;
4740           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4741         } else {
4742           ShiftBits = C1.countTrailingZeros();
4743         }
4744         NewC.lshrInPlace(ShiftBits);
4745         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4746             isLegalICmpImmediate(NewC.getSExtValue()) &&
4747             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4748           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4749                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4750           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4751           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4752         }
4753       }
4754     }
4755   }
4756 
4757   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4758     auto *CFP = cast<ConstantFPSDNode>(N1);
4759     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4760 
4761     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4762     // constant if knowing that the operand is non-nan is enough.  We prefer to
4763     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4764     // materialize 0.0.
4765     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4766       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4767 
4768     // setcc (fneg x), C -> setcc swap(pred) x, -C
4769     if (N0.getOpcode() == ISD::FNEG) {
4770       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4771       if (DCI.isBeforeLegalizeOps() ||
4772           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4773         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4774         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4775       }
4776     }
4777 
4778     // If the condition is not legal, see if we can find an equivalent one
4779     // which is legal.
4780     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4781       // If the comparison was an awkward floating-point == or != and one of
4782       // the comparison operands is infinity or negative infinity, convert the
4783       // condition to a less-awkward <= or >=.
4784       if (CFP->getValueAPF().isInfinity()) {
4785         bool IsNegInf = CFP->getValueAPF().isNegative();
4786         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4787         switch (Cond) {
4788         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4789         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4790         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4791         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4792         default: break;
4793         }
4794         if (NewCond != ISD::SETCC_INVALID &&
4795             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4796           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4797       }
4798     }
4799   }
4800 
4801   if (N0 == N1) {
4802     // The sext(setcc()) => setcc() optimization relies on the appropriate
4803     // constant being emitted.
4804     assert(!N0.getValueType().isInteger() &&
4805            "Integer types should be handled by FoldSetCC");
4806 
4807     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4808     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4809     if (UOF == 2) // FP operators that are undefined on NaNs.
4810       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4811     if (UOF == unsigned(EqTrue))
4812       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4813     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4814     // if it is not already.
4815     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4816     if (NewCond != Cond &&
4817         (DCI.isBeforeLegalizeOps() ||
4818                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4819       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4820   }
4821 
4822   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4823       N0.getValueType().isInteger()) {
4824     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4825         N0.getOpcode() == ISD::XOR) {
4826       // Simplify (X+Y) == (X+Z) -->  Y == Z
4827       if (N0.getOpcode() == N1.getOpcode()) {
4828         if (N0.getOperand(0) == N1.getOperand(0))
4829           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4830         if (N0.getOperand(1) == N1.getOperand(1))
4831           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4832         if (isCommutativeBinOp(N0.getOpcode())) {
4833           // If X op Y == Y op X, try other combinations.
4834           if (N0.getOperand(0) == N1.getOperand(1))
4835             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4836                                 Cond);
4837           if (N0.getOperand(1) == N1.getOperand(0))
4838             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4839                                 Cond);
4840         }
4841       }
4842 
4843       // If RHS is a legal immediate value for a compare instruction, we need
4844       // to be careful about increasing register pressure needlessly.
4845       bool LegalRHSImm = false;
4846 
4847       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4848         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4849           // Turn (X+C1) == C2 --> X == C2-C1
4850           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4851             return DAG.getSetCC(
4852                 dl, VT, N0.getOperand(0),
4853                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4854                                 dl, N0.getValueType()),
4855                 Cond);
4856 
4857           // Turn (X^C1) == C2 --> X == C1^C2
4858           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4859             return DAG.getSetCC(
4860                 dl, VT, N0.getOperand(0),
4861                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4862                                 dl, N0.getValueType()),
4863                 Cond);
4864         }
4865 
4866         // Turn (C1-X) == C2 --> X == C1-C2
4867         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4868           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4869             return DAG.getSetCC(
4870                 dl, VT, N0.getOperand(1),
4871                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4872                                 dl, N0.getValueType()),
4873                 Cond);
4874 
4875         // Could RHSC fold directly into a compare?
4876         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4877           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4878       }
4879 
4880       // (X+Y) == X --> Y == 0 and similar folds.
4881       // Don't do this if X is an immediate that can fold into a cmp
4882       // instruction and X+Y has other uses. It could be an induction variable
4883       // chain, and the transform would increase register pressure.
4884       if (!LegalRHSImm || N0.hasOneUse())
4885         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4886           return V;
4887     }
4888 
4889     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4890         N1.getOpcode() == ISD::XOR)
4891       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4892         return V;
4893 
4894     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4895       return V;
4896   }
4897 
4898   // Fold remainder of division by a constant.
4899   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4900       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4901     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4902 
4903     // When division is cheap or optimizing for minimum size,
4904     // fall through to DIVREM creation by skipping this fold.
4905     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4906       if (N0.getOpcode() == ISD::UREM) {
4907         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4908           return Folded;
4909       } else if (N0.getOpcode() == ISD::SREM) {
4910         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4911           return Folded;
4912       }
4913     }
4914   }
4915 
4916   // Fold away ALL boolean setcc's.
4917   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4918     SDValue Temp;
4919     switch (Cond) {
4920     default: llvm_unreachable("Unknown integer setcc!");
4921     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4922       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4923       N0 = DAG.getNOT(dl, Temp, OpVT);
4924       if (!DCI.isCalledByLegalizer())
4925         DCI.AddToWorklist(Temp.getNode());
4926       break;
4927     case ISD::SETNE:  // X != Y   -->  (X^Y)
4928       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4929       break;
4930     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4931     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4932       Temp = DAG.getNOT(dl, N0, OpVT);
4933       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4934       if (!DCI.isCalledByLegalizer())
4935         DCI.AddToWorklist(Temp.getNode());
4936       break;
4937     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4938     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4939       Temp = DAG.getNOT(dl, N1, OpVT);
4940       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4941       if (!DCI.isCalledByLegalizer())
4942         DCI.AddToWorklist(Temp.getNode());
4943       break;
4944     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4945     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4946       Temp = DAG.getNOT(dl, N0, OpVT);
4947       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4948       if (!DCI.isCalledByLegalizer())
4949         DCI.AddToWorklist(Temp.getNode());
4950       break;
4951     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4952     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4953       Temp = DAG.getNOT(dl, N1, OpVT);
4954       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4955       break;
4956     }
4957     if (VT.getScalarType() != MVT::i1) {
4958       if (!DCI.isCalledByLegalizer())
4959         DCI.AddToWorklist(N0.getNode());
4960       // FIXME: If running after legalize, we probably can't do this.
4961       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4962       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4963     }
4964     return N0;
4965   }
4966 
4967   // Could not fold it.
4968   return SDValue();
4969 }
4970 
4971 /// Returns true (and the GlobalValue and the offset) if the node is a
4972 /// GlobalAddress + offset.
4973 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4974                                     int64_t &Offset) const {
4975 
4976   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4977 
4978   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4979     GA = GASD->getGlobal();
4980     Offset += GASD->getOffset();
4981     return true;
4982   }
4983 
4984   if (N->getOpcode() == ISD::ADD) {
4985     SDValue N1 = N->getOperand(0);
4986     SDValue N2 = N->getOperand(1);
4987     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4988       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4989         Offset += V->getSExtValue();
4990         return true;
4991       }
4992     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4993       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4994         Offset += V->getSExtValue();
4995         return true;
4996       }
4997     }
4998   }
4999 
5000   return false;
5001 }
5002 
5003 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5004                                           DAGCombinerInfo &DCI) const {
5005   // Default implementation: no optimization.
5006   return SDValue();
5007 }
5008 
5009 //===----------------------------------------------------------------------===//
5010 //  Inline Assembler Implementation Methods
5011 //===----------------------------------------------------------------------===//
5012 
5013 TargetLowering::ConstraintType
5014 TargetLowering::getConstraintType(StringRef Constraint) const {
5015   unsigned S = Constraint.size();
5016 
5017   if (S == 1) {
5018     switch (Constraint[0]) {
5019     default: break;
5020     case 'r':
5021       return C_RegisterClass;
5022     case 'm': // memory
5023     case 'o': // offsetable
5024     case 'V': // not offsetable
5025       return C_Memory;
5026     case 'p': // Address.
5027       return C_Address;
5028     case 'n': // Simple Integer
5029     case 'E': // Floating Point Constant
5030     case 'F': // Floating Point Constant
5031       return C_Immediate;
5032     case 'i': // Simple Integer or Relocatable Constant
5033     case 's': // Relocatable Constant
5034     case 'X': // Allow ANY value.
5035     case 'I': // Target registers.
5036     case 'J':
5037     case 'K':
5038     case 'L':
5039     case 'M':
5040     case 'N':
5041     case 'O':
5042     case 'P':
5043     case '<':
5044     case '>':
5045       return C_Other;
5046     }
5047   }
5048 
5049   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5050     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5051       return C_Memory;
5052     return C_Register;
5053   }
5054   return C_Unknown;
5055 }
5056 
5057 /// Try to replace an X constraint, which matches anything, with another that
5058 /// has more specific requirements based on the type of the corresponding
5059 /// operand.
5060 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5061   if (ConstraintVT.isInteger())
5062     return "r";
5063   if (ConstraintVT.isFloatingPoint())
5064     return "f"; // works for many targets
5065   return nullptr;
5066 }
5067 
5068 SDValue TargetLowering::LowerAsmOutputForConstraint(
5069     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5070     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5071   return SDValue();
5072 }
5073 
5074 /// Lower the specified operand into the Ops vector.
5075 /// If it is invalid, don't add anything to Ops.
5076 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5077                                                   std::string &Constraint,
5078                                                   std::vector<SDValue> &Ops,
5079                                                   SelectionDAG &DAG) const {
5080 
5081   if (Constraint.length() > 1) return;
5082 
5083   char ConstraintLetter = Constraint[0];
5084   switch (ConstraintLetter) {
5085   default: break;
5086   case 'X':    // Allows any operand
5087   case 'i':    // Simple Integer or Relocatable Constant
5088   case 'n':    // Simple Integer
5089   case 's': {  // Relocatable Constant
5090 
5091     ConstantSDNode *C;
5092     uint64_t Offset = 0;
5093 
5094     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5095     // etc., since getelementpointer is variadic. We can't use
5096     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5097     // while in this case the GA may be furthest from the root node which is
5098     // likely an ISD::ADD.
5099     while (true) {
5100       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5101         // gcc prints these as sign extended.  Sign extend value to 64 bits
5102         // now; without this it would get ZExt'd later in
5103         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5104         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5105         BooleanContent BCont = getBooleanContents(MVT::i64);
5106         ISD::NodeType ExtOpc =
5107             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5108         int64_t ExtVal =
5109             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5110         Ops.push_back(
5111             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5112         return;
5113       }
5114       if (ConstraintLetter != 'n') {
5115         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5116           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5117                                                    GA->getValueType(0),
5118                                                    Offset + GA->getOffset()));
5119           return;
5120         }
5121         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5122           Ops.push_back(DAG.getTargetBlockAddress(
5123               BA->getBlockAddress(), BA->getValueType(0),
5124               Offset + BA->getOffset(), BA->getTargetFlags()));
5125           return;
5126         }
5127         if (isa<BasicBlockSDNode>(Op)) {
5128           Ops.push_back(Op);
5129           return;
5130         }
5131       }
5132       const unsigned OpCode = Op.getOpcode();
5133       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5134         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5135           Op = Op.getOperand(1);
5136         // Subtraction is not commutative.
5137         else if (OpCode == ISD::ADD &&
5138                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5139           Op = Op.getOperand(0);
5140         else
5141           return;
5142         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5143         continue;
5144       }
5145       return;
5146     }
5147     break;
5148   }
5149   }
5150 }
5151 
5152 std::pair<unsigned, const TargetRegisterClass *>
5153 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5154                                              StringRef Constraint,
5155                                              MVT VT) const {
5156   if (Constraint.empty() || Constraint[0] != '{')
5157     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5158   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5159 
5160   // Remove the braces from around the name.
5161   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5162 
5163   std::pair<unsigned, const TargetRegisterClass *> R =
5164       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5165 
5166   // Figure out which register class contains this reg.
5167   for (const TargetRegisterClass *RC : RI->regclasses()) {
5168     // If none of the value types for this register class are valid, we
5169     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5170     if (!isLegalRC(*RI, *RC))
5171       continue;
5172 
5173     for (const MCPhysReg &PR : *RC) {
5174       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5175         std::pair<unsigned, const TargetRegisterClass *> S =
5176             std::make_pair(PR, RC);
5177 
5178         // If this register class has the requested value type, return it,
5179         // otherwise keep searching and return the first class found
5180         // if no other is found which explicitly has the requested type.
5181         if (RI->isTypeLegalForClass(*RC, VT))
5182           return S;
5183         if (!R.second)
5184           R = S;
5185       }
5186     }
5187   }
5188 
5189   return R;
5190 }
5191 
5192 //===----------------------------------------------------------------------===//
5193 // Constraint Selection.
5194 
5195 /// Return true of this is an input operand that is a matching constraint like
5196 /// "4".
5197 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5198   assert(!ConstraintCode.empty() && "No known constraint!");
5199   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5200 }
5201 
5202 /// If this is an input matching constraint, this method returns the output
5203 /// operand it matches.
5204 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5205   assert(!ConstraintCode.empty() && "No known constraint!");
5206   return atoi(ConstraintCode.c_str());
5207 }
5208 
5209 /// Split up the constraint string from the inline assembly value into the
5210 /// specific constraints and their prefixes, and also tie in the associated
5211 /// operand values.
5212 /// If this returns an empty vector, and if the constraint string itself
5213 /// isn't empty, there was an error parsing.
5214 TargetLowering::AsmOperandInfoVector
5215 TargetLowering::ParseConstraints(const DataLayout &DL,
5216                                  const TargetRegisterInfo *TRI,
5217                                  const CallBase &Call) const {
5218   /// Information about all of the constraints.
5219   AsmOperandInfoVector ConstraintOperands;
5220   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5221   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5222 
5223   // Do a prepass over the constraints, canonicalizing them, and building up the
5224   // ConstraintOperands list.
5225   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5226   unsigned ResNo = 0; // ResNo - The result number of the next output.
5227   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5228 
5229   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5230     ConstraintOperands.emplace_back(std::move(CI));
5231     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5232 
5233     // Update multiple alternative constraint count.
5234     if (OpInfo.multipleAlternatives.size() > maCount)
5235       maCount = OpInfo.multipleAlternatives.size();
5236 
5237     OpInfo.ConstraintVT = MVT::Other;
5238 
5239     // Compute the value type for each operand.
5240     switch (OpInfo.Type) {
5241     case InlineAsm::isOutput:
5242       // Indirect outputs just consume an argument.
5243       if (OpInfo.isIndirect) {
5244         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5245         break;
5246       }
5247 
5248       // The return value of the call is this value.  As such, there is no
5249       // corresponding argument.
5250       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5251       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5252         OpInfo.ConstraintVT =
5253             getSimpleValueType(DL, STy->getElementType(ResNo));
5254       } else {
5255         assert(ResNo == 0 && "Asm only has one result!");
5256         OpInfo.ConstraintVT =
5257             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5258       }
5259       ++ResNo;
5260       break;
5261     case InlineAsm::isInput:
5262       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5263       break;
5264     case InlineAsm::isLabel:
5265       OpInfo.CallOperandVal =
5266           cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5267       OpInfo.ConstraintVT =
5268           getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5269               .getSimpleVT();
5270       ++LabelNo;
5271       continue;
5272     case InlineAsm::isClobber:
5273       // Nothing to do.
5274       break;
5275     }
5276 
5277     if (OpInfo.CallOperandVal) {
5278       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5279       if (OpInfo.isIndirect) {
5280         OpTy = Call.getParamElementType(ArgNo);
5281         assert(OpTy && "Indirect operand must have elementtype attribute");
5282       }
5283 
5284       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5285       if (StructType *STy = dyn_cast<StructType>(OpTy))
5286         if (STy->getNumElements() == 1)
5287           OpTy = STy->getElementType(0);
5288 
5289       // If OpTy is not a single value, it may be a struct/union that we
5290       // can tile with integers.
5291       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5292         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5293         switch (BitSize) {
5294         default: break;
5295         case 1:
5296         case 8:
5297         case 16:
5298         case 32:
5299         case 64:
5300         case 128:
5301           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5302           break;
5303         }
5304       }
5305 
5306       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5307       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5308       ArgNo++;
5309     }
5310   }
5311 
5312   // If we have multiple alternative constraints, select the best alternative.
5313   if (!ConstraintOperands.empty()) {
5314     if (maCount) {
5315       unsigned bestMAIndex = 0;
5316       int bestWeight = -1;
5317       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5318       int weight = -1;
5319       unsigned maIndex;
5320       // Compute the sums of the weights for each alternative, keeping track
5321       // of the best (highest weight) one so far.
5322       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5323         int weightSum = 0;
5324         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5325              cIndex != eIndex; ++cIndex) {
5326           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5327           if (OpInfo.Type == InlineAsm::isClobber)
5328             continue;
5329 
5330           // If this is an output operand with a matching input operand,
5331           // look up the matching input. If their types mismatch, e.g. one
5332           // is an integer, the other is floating point, or their sizes are
5333           // different, flag it as an maCantMatch.
5334           if (OpInfo.hasMatchingInput()) {
5335             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5336             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5337               if ((OpInfo.ConstraintVT.isInteger() !=
5338                    Input.ConstraintVT.isInteger()) ||
5339                   (OpInfo.ConstraintVT.getSizeInBits() !=
5340                    Input.ConstraintVT.getSizeInBits())) {
5341                 weightSum = -1; // Can't match.
5342                 break;
5343               }
5344             }
5345           }
5346           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5347           if (weight == -1) {
5348             weightSum = -1;
5349             break;
5350           }
5351           weightSum += weight;
5352         }
5353         // Update best.
5354         if (weightSum > bestWeight) {
5355           bestWeight = weightSum;
5356           bestMAIndex = maIndex;
5357         }
5358       }
5359 
5360       // Now select chosen alternative in each constraint.
5361       for (AsmOperandInfo &cInfo : ConstraintOperands)
5362         if (cInfo.Type != InlineAsm::isClobber)
5363           cInfo.selectAlternative(bestMAIndex);
5364     }
5365   }
5366 
5367   // Check and hook up tied operands, choose constraint code to use.
5368   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5369        cIndex != eIndex; ++cIndex) {
5370     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5371 
5372     // If this is an output operand with a matching input operand, look up the
5373     // matching input. If their types mismatch, e.g. one is an integer, the
5374     // other is floating point, or their sizes are different, flag it as an
5375     // error.
5376     if (OpInfo.hasMatchingInput()) {
5377       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5378 
5379       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5380         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5381             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5382                                          OpInfo.ConstraintVT);
5383         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5384             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5385                                          Input.ConstraintVT);
5386         if ((OpInfo.ConstraintVT.isInteger() !=
5387              Input.ConstraintVT.isInteger()) ||
5388             (MatchRC.second != InputRC.second)) {
5389           report_fatal_error("Unsupported asm: input constraint"
5390                              " with a matching output constraint of"
5391                              " incompatible type!");
5392         }
5393       }
5394     }
5395   }
5396 
5397   return ConstraintOperands;
5398 }
5399 
5400 /// Return an integer indicating how general CT is.
5401 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5402   switch (CT) {
5403   case TargetLowering::C_Immediate:
5404   case TargetLowering::C_Other:
5405   case TargetLowering::C_Unknown:
5406     return 0;
5407   case TargetLowering::C_Register:
5408     return 1;
5409   case TargetLowering::C_RegisterClass:
5410     return 2;
5411   case TargetLowering::C_Memory:
5412   case TargetLowering::C_Address:
5413     return 3;
5414   }
5415   llvm_unreachable("Invalid constraint type");
5416 }
5417 
5418 /// Examine constraint type and operand type and determine a weight value.
5419 /// This object must already have been set up with the operand type
5420 /// and the current alternative constraint selected.
5421 TargetLowering::ConstraintWeight
5422   TargetLowering::getMultipleConstraintMatchWeight(
5423     AsmOperandInfo &info, int maIndex) const {
5424   InlineAsm::ConstraintCodeVector *rCodes;
5425   if (maIndex >= (int)info.multipleAlternatives.size())
5426     rCodes = &info.Codes;
5427   else
5428     rCodes = &info.multipleAlternatives[maIndex].Codes;
5429   ConstraintWeight BestWeight = CW_Invalid;
5430 
5431   // Loop over the options, keeping track of the most general one.
5432   for (const std::string &rCode : *rCodes) {
5433     ConstraintWeight weight =
5434         getSingleConstraintMatchWeight(info, rCode.c_str());
5435     if (weight > BestWeight)
5436       BestWeight = weight;
5437   }
5438 
5439   return BestWeight;
5440 }
5441 
5442 /// Examine constraint type and operand type and determine a weight value.
5443 /// This object must already have been set up with the operand type
5444 /// and the current alternative constraint selected.
5445 TargetLowering::ConstraintWeight
5446   TargetLowering::getSingleConstraintMatchWeight(
5447     AsmOperandInfo &info, const char *constraint) const {
5448   ConstraintWeight weight = CW_Invalid;
5449   Value *CallOperandVal = info.CallOperandVal;
5450     // If we don't have a value, we can't do a match,
5451     // but allow it at the lowest weight.
5452   if (!CallOperandVal)
5453     return CW_Default;
5454   // Look at the constraint type.
5455   switch (*constraint) {
5456     case 'i': // immediate integer.
5457     case 'n': // immediate integer with a known value.
5458       if (isa<ConstantInt>(CallOperandVal))
5459         weight = CW_Constant;
5460       break;
5461     case 's': // non-explicit intregal immediate.
5462       if (isa<GlobalValue>(CallOperandVal))
5463         weight = CW_Constant;
5464       break;
5465     case 'E': // immediate float if host format.
5466     case 'F': // immediate float.
5467       if (isa<ConstantFP>(CallOperandVal))
5468         weight = CW_Constant;
5469       break;
5470     case '<': // memory operand with autodecrement.
5471     case '>': // memory operand with autoincrement.
5472     case 'm': // memory operand.
5473     case 'o': // offsettable memory operand
5474     case 'V': // non-offsettable memory operand
5475       weight = CW_Memory;
5476       break;
5477     case 'r': // general register.
5478     case 'g': // general register, memory operand or immediate integer.
5479               // note: Clang converts "g" to "imr".
5480       if (CallOperandVal->getType()->isIntegerTy())
5481         weight = CW_Register;
5482       break;
5483     case 'X': // any operand.
5484   default:
5485     weight = CW_Default;
5486     break;
5487   }
5488   return weight;
5489 }
5490 
5491 /// If there are multiple different constraints that we could pick for this
5492 /// operand (e.g. "imr") try to pick the 'best' one.
5493 /// This is somewhat tricky: constraints fall into four classes:
5494 ///    Other         -> immediates and magic values
5495 ///    Register      -> one specific register
5496 ///    RegisterClass -> a group of regs
5497 ///    Memory        -> memory
5498 /// Ideally, we would pick the most specific constraint possible: if we have
5499 /// something that fits into a register, we would pick it.  The problem here
5500 /// is that if we have something that could either be in a register or in
5501 /// memory that use of the register could cause selection of *other*
5502 /// operands to fail: they might only succeed if we pick memory.  Because of
5503 /// this the heuristic we use is:
5504 ///
5505 ///  1) If there is an 'other' constraint, and if the operand is valid for
5506 ///     that constraint, use it.  This makes us take advantage of 'i'
5507 ///     constraints when available.
5508 ///  2) Otherwise, pick the most general constraint present.  This prefers
5509 ///     'm' over 'r', for example.
5510 ///
5511 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5512                              const TargetLowering &TLI,
5513                              SDValue Op, SelectionDAG *DAG) {
5514   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5515   unsigned BestIdx = 0;
5516   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5517   int BestGenerality = -1;
5518 
5519   // Loop over the options, keeping track of the most general one.
5520   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5521     TargetLowering::ConstraintType CType =
5522       TLI.getConstraintType(OpInfo.Codes[i]);
5523 
5524     // Indirect 'other' or 'immediate' constraints are not allowed.
5525     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5526                                CType == TargetLowering::C_Register ||
5527                                CType == TargetLowering::C_RegisterClass))
5528       continue;
5529 
5530     // If this is an 'other' or 'immediate' constraint, see if the operand is
5531     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5532     // the operand is an integer in the range [0..31] we want to use I (saving a
5533     // load of a register), otherwise we must use 'r'.
5534     if ((CType == TargetLowering::C_Other ||
5535          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5536       assert(OpInfo.Codes[i].size() == 1 &&
5537              "Unhandled multi-letter 'other' constraint");
5538       std::vector<SDValue> ResultOps;
5539       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5540                                        ResultOps, *DAG);
5541       if (!ResultOps.empty()) {
5542         BestType = CType;
5543         BestIdx = i;
5544         break;
5545       }
5546     }
5547 
5548     // Things with matching constraints can only be registers, per gcc
5549     // documentation.  This mainly affects "g" constraints.
5550     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5551       continue;
5552 
5553     // This constraint letter is more general than the previous one, use it.
5554     int Generality = getConstraintGenerality(CType);
5555     if (Generality > BestGenerality) {
5556       BestType = CType;
5557       BestIdx = i;
5558       BestGenerality = Generality;
5559     }
5560   }
5561 
5562   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5563   OpInfo.ConstraintType = BestType;
5564 }
5565 
5566 /// Determines the constraint code and constraint type to use for the specific
5567 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5568 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5569                                             SDValue Op,
5570                                             SelectionDAG *DAG) const {
5571   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5572 
5573   // Single-letter constraints ('r') are very common.
5574   if (OpInfo.Codes.size() == 1) {
5575     OpInfo.ConstraintCode = OpInfo.Codes[0];
5576     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5577   } else {
5578     ChooseConstraint(OpInfo, *this, Op, DAG);
5579   }
5580 
5581   // 'X' matches anything.
5582   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5583     // Constants are handled elsewhere.  For Functions, the type here is the
5584     // type of the result, which is not what we want to look at; leave them
5585     // alone.
5586     Value *v = OpInfo.CallOperandVal;
5587     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5588       return;
5589     }
5590 
5591     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5592       OpInfo.ConstraintCode = "i";
5593       return;
5594     }
5595 
5596     // Otherwise, try to resolve it to something we know about by looking at
5597     // the actual operand type.
5598     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5599       OpInfo.ConstraintCode = Repl;
5600       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5601     }
5602   }
5603 }
5604 
5605 /// Given an exact SDIV by a constant, create a multiplication
5606 /// with the multiplicative inverse of the constant.
5607 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5608                               const SDLoc &dl, SelectionDAG &DAG,
5609                               SmallVectorImpl<SDNode *> &Created) {
5610   SDValue Op0 = N->getOperand(0);
5611   SDValue Op1 = N->getOperand(1);
5612   EVT VT = N->getValueType(0);
5613   EVT SVT = VT.getScalarType();
5614   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5615   EVT ShSVT = ShVT.getScalarType();
5616 
5617   bool UseSRA = false;
5618   SmallVector<SDValue, 16> Shifts, Factors;
5619 
5620   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5621     if (C->isZero())
5622       return false;
5623     APInt Divisor = C->getAPIntValue();
5624     unsigned Shift = Divisor.countTrailingZeros();
5625     if (Shift) {
5626       Divisor.ashrInPlace(Shift);
5627       UseSRA = true;
5628     }
5629     // Calculate the multiplicative inverse, using Newton's method.
5630     APInt t;
5631     APInt Factor = Divisor;
5632     while ((t = Divisor * Factor) != 1)
5633       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5634     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5635     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5636     return true;
5637   };
5638 
5639   // Collect all magic values from the build vector.
5640   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5641     return SDValue();
5642 
5643   SDValue Shift, Factor;
5644   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5645     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5646     Factor = DAG.getBuildVector(VT, dl, Factors);
5647   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5648     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5649            "Expected matchUnaryPredicate to return one element for scalable "
5650            "vectors");
5651     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5652     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5653   } else {
5654     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5655     Shift = Shifts[0];
5656     Factor = Factors[0];
5657   }
5658 
5659   SDValue Res = Op0;
5660 
5661   // Shift the value upfront if it is even, so the LSB is one.
5662   if (UseSRA) {
5663     // TODO: For UDIV use SRL instead of SRA.
5664     SDNodeFlags Flags;
5665     Flags.setExact(true);
5666     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5667     Created.push_back(Res.getNode());
5668   }
5669 
5670   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5671 }
5672 
5673 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5674                               SelectionDAG &DAG,
5675                               SmallVectorImpl<SDNode *> &Created) const {
5676   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5678   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5679     return SDValue(N, 0); // Lower SDIV as SDIV
5680   return SDValue();
5681 }
5682 
5683 SDValue
5684 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5685                               SelectionDAG &DAG,
5686                               SmallVectorImpl<SDNode *> &Created) const {
5687   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5689   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5690     return SDValue(N, 0); // Lower SREM as SREM
5691   return SDValue();
5692 }
5693 
5694 /// Given an ISD::SDIV node expressing a divide by constant,
5695 /// return a DAG expression to select that will generate the same value by
5696 /// multiplying by a magic number.
5697 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5698 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5699                                   bool IsAfterLegalization,
5700                                   SmallVectorImpl<SDNode *> &Created) const {
5701   SDLoc dl(N);
5702   EVT VT = N->getValueType(0);
5703   EVT SVT = VT.getScalarType();
5704   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5705   EVT ShSVT = ShVT.getScalarType();
5706   unsigned EltBits = VT.getScalarSizeInBits();
5707   EVT MulVT;
5708 
5709   // Check to see if we can do this.
5710   // FIXME: We should be more aggressive here.
5711   if (!isTypeLegal(VT)) {
5712     // Limit this to simple scalars for now.
5713     if (VT.isVector() || !VT.isSimple())
5714       return SDValue();
5715 
5716     // If this type will be promoted to a large enough type with a legal
5717     // multiply operation, we can go ahead and do this transform.
5718     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5719       return SDValue();
5720 
5721     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5722     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5723         !isOperationLegal(ISD::MUL, MulVT))
5724       return SDValue();
5725   }
5726 
5727   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5728   if (N->getFlags().hasExact())
5729     return BuildExactSDIV(*this, N, dl, DAG, Created);
5730 
5731   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5732 
5733   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5734     if (C->isZero())
5735       return false;
5736 
5737     const APInt &Divisor = C->getAPIntValue();
5738     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5739     int NumeratorFactor = 0;
5740     int ShiftMask = -1;
5741 
5742     if (Divisor.isOne() || Divisor.isAllOnes()) {
5743       // If d is +1/-1, we just multiply the numerator by +1/-1.
5744       NumeratorFactor = Divisor.getSExtValue();
5745       magics.Magic = 0;
5746       magics.ShiftAmount = 0;
5747       ShiftMask = 0;
5748     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5749       // If d > 0 and m < 0, add the numerator.
5750       NumeratorFactor = 1;
5751     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5752       // If d < 0 and m > 0, subtract the numerator.
5753       NumeratorFactor = -1;
5754     }
5755 
5756     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5757     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5758     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5759     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5760     return true;
5761   };
5762 
5763   SDValue N0 = N->getOperand(0);
5764   SDValue N1 = N->getOperand(1);
5765 
5766   // Collect the shifts / magic values from each element.
5767   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5768     return SDValue();
5769 
5770   SDValue MagicFactor, Factor, Shift, ShiftMask;
5771   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5772     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5773     Factor = DAG.getBuildVector(VT, dl, Factors);
5774     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5775     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5776   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5777     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5778            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5779            "Expected matchUnaryPredicate to return one element for scalable "
5780            "vectors");
5781     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5782     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5783     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5784     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5785   } else {
5786     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5787     MagicFactor = MagicFactors[0];
5788     Factor = Factors[0];
5789     Shift = Shifts[0];
5790     ShiftMask = ShiftMasks[0];
5791   }
5792 
5793   // Multiply the numerator (operand 0) by the magic value.
5794   // FIXME: We should support doing a MUL in a wider type.
5795   auto GetMULHS = [&](SDValue X, SDValue Y) {
5796     // If the type isn't legal, use a wider mul of the the type calculated
5797     // earlier.
5798     if (!isTypeLegal(VT)) {
5799       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5800       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5801       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5802       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5803                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5804       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5805     }
5806 
5807     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5808       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5809     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5810       SDValue LoHi =
5811           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5812       return SDValue(LoHi.getNode(), 1);
5813     }
5814     return SDValue();
5815   };
5816 
5817   SDValue Q = GetMULHS(N0, MagicFactor);
5818   if (!Q)
5819     return SDValue();
5820 
5821   Created.push_back(Q.getNode());
5822 
5823   // (Optionally) Add/subtract the numerator using Factor.
5824   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5825   Created.push_back(Factor.getNode());
5826   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5827   Created.push_back(Q.getNode());
5828 
5829   // Shift right algebraic by shift value.
5830   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5831   Created.push_back(Q.getNode());
5832 
5833   // Extract the sign bit, mask it and add it to the quotient.
5834   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5835   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5836   Created.push_back(T.getNode());
5837   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5838   Created.push_back(T.getNode());
5839   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5840 }
5841 
5842 /// Given an ISD::UDIV node expressing a divide by constant,
5843 /// return a DAG expression to select that will generate the same value by
5844 /// multiplying by a magic number.
5845 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5846 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5847                                   bool IsAfterLegalization,
5848                                   SmallVectorImpl<SDNode *> &Created) const {
5849   SDLoc dl(N);
5850   EVT VT = N->getValueType(0);
5851   EVT SVT = VT.getScalarType();
5852   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5853   EVT ShSVT = ShVT.getScalarType();
5854   unsigned EltBits = VT.getScalarSizeInBits();
5855   EVT MulVT;
5856 
5857   // Check to see if we can do this.
5858   // FIXME: We should be more aggressive here.
5859   if (!isTypeLegal(VT)) {
5860     // Limit this to simple scalars for now.
5861     if (VT.isVector() || !VT.isSimple())
5862       return SDValue();
5863 
5864     // If this type will be promoted to a large enough type with a legal
5865     // multiply operation, we can go ahead and do this transform.
5866     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5867       return SDValue();
5868 
5869     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5870     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5871         !isOperationLegal(ISD::MUL, MulVT))
5872       return SDValue();
5873   }
5874 
5875   bool UseNPQ = false;
5876   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5877 
5878   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5879     if (C->isZero())
5880       return false;
5881     // FIXME: We should use a narrower constant when the upper
5882     // bits are known to be zero.
5883     const APInt& Divisor = C->getAPIntValue();
5884     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5885     unsigned PreShift = 0, PostShift = 0;
5886 
5887     // If the divisor is even, we can avoid using the expensive fixup by
5888     // shifting the divided value upfront.
5889     if (magics.IsAdd != 0 && !Divisor[0]) {
5890       PreShift = Divisor.countTrailingZeros();
5891       // Get magic number for the shifted divisor.
5892       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5893       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5894     }
5895 
5896     APInt Magic = magics.Magic;
5897 
5898     unsigned SelNPQ;
5899     if (magics.IsAdd == 0 || Divisor.isOne()) {
5900       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5901              "We shouldn't generate an undefined shift!");
5902       PostShift = magics.ShiftAmount;
5903       SelNPQ = false;
5904     } else {
5905       PostShift = magics.ShiftAmount - 1;
5906       SelNPQ = true;
5907     }
5908 
5909     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5910     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5911     NPQFactors.push_back(
5912         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5913                                : APInt::getZero(EltBits),
5914                         dl, SVT));
5915     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5916     UseNPQ |= SelNPQ;
5917     return true;
5918   };
5919 
5920   SDValue N0 = N->getOperand(0);
5921   SDValue N1 = N->getOperand(1);
5922 
5923   // Collect the shifts/magic values from each element.
5924   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5925     return SDValue();
5926 
5927   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5928   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5929     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5930     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5931     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5932     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5933   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5934     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5935            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5936            "Expected matchUnaryPredicate to return one for scalable vectors");
5937     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5938     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5939     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5940     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5941   } else {
5942     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5943     PreShift = PreShifts[0];
5944     MagicFactor = MagicFactors[0];
5945     PostShift = PostShifts[0];
5946   }
5947 
5948   SDValue Q = N0;
5949   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5950   Created.push_back(Q.getNode());
5951 
5952   // FIXME: We should support doing a MUL in a wider type.
5953   auto GetMULHU = [&](SDValue X, SDValue Y) {
5954     // If the type isn't legal, use a wider mul of the the type calculated
5955     // earlier.
5956     if (!isTypeLegal(VT)) {
5957       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5958       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5959       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5960       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5961                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5962       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5963     }
5964 
5965     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5966       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5967     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5968       SDValue LoHi =
5969           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5970       return SDValue(LoHi.getNode(), 1);
5971     }
5972     return SDValue(); // No mulhu or equivalent
5973   };
5974 
5975   // Multiply the numerator (operand 0) by the magic value.
5976   Q = GetMULHU(Q, MagicFactor);
5977   if (!Q)
5978     return SDValue();
5979 
5980   Created.push_back(Q.getNode());
5981 
5982   if (UseNPQ) {
5983     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5984     Created.push_back(NPQ.getNode());
5985 
5986     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5987     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5988     if (VT.isVector())
5989       NPQ = GetMULHU(NPQ, NPQFactor);
5990     else
5991       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5992 
5993     Created.push_back(NPQ.getNode());
5994 
5995     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5996     Created.push_back(Q.getNode());
5997   }
5998 
5999   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6000   Created.push_back(Q.getNode());
6001 
6002   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6003 
6004   SDValue One = DAG.getConstant(1, dl, VT);
6005   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6006   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6007 }
6008 
6009 /// If all values in Values that *don't* match the predicate are same 'splat'
6010 /// value, then replace all values with that splat value.
6011 /// Else, if AlternativeReplacement was provided, then replace all values that
6012 /// do match predicate with AlternativeReplacement value.
6013 static void
6014 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6015                           std::function<bool(SDValue)> Predicate,
6016                           SDValue AlternativeReplacement = SDValue()) {
6017   SDValue Replacement;
6018   // Is there a value for which the Predicate does *NOT* match? What is it?
6019   auto SplatValue = llvm::find_if_not(Values, Predicate);
6020   if (SplatValue != Values.end()) {
6021     // Does Values consist only of SplatValue's and values matching Predicate?
6022     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6023           return Value == *SplatValue || Predicate(Value);
6024         })) // Then we shall replace values matching predicate with SplatValue.
6025       Replacement = *SplatValue;
6026   }
6027   if (!Replacement) {
6028     // Oops, we did not find the "baseline" splat value.
6029     if (!AlternativeReplacement)
6030       return; // Nothing to do.
6031     // Let's replace with provided value then.
6032     Replacement = AlternativeReplacement;
6033   }
6034   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6035 }
6036 
6037 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6038 /// where the divisor is constant and the comparison target is zero,
6039 /// return a DAG expression that will generate the same comparison result
6040 /// using only multiplications, additions and shifts/rotations.
6041 /// Ref: "Hacker's Delight" 10-17.
6042 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6043                                         SDValue CompTargetNode,
6044                                         ISD::CondCode Cond,
6045                                         DAGCombinerInfo &DCI,
6046                                         const SDLoc &DL) const {
6047   SmallVector<SDNode *, 5> Built;
6048   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6049                                          DCI, DL, Built)) {
6050     for (SDNode *N : Built)
6051       DCI.AddToWorklist(N);
6052     return Folded;
6053   }
6054 
6055   return SDValue();
6056 }
6057 
6058 SDValue
6059 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6060                                   SDValue CompTargetNode, ISD::CondCode Cond,
6061                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6062                                   SmallVectorImpl<SDNode *> &Created) const {
6063   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6064   // - D must be constant, with D = D0 * 2^K where D0 is odd
6065   // - P is the multiplicative inverse of D0 modulo 2^W
6066   // - Q = floor(((2^W) - 1) / D)
6067   // where W is the width of the common type of N and D.
6068   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6069          "Only applicable for (in)equality comparisons.");
6070 
6071   SelectionDAG &DAG = DCI.DAG;
6072 
6073   EVT VT = REMNode.getValueType();
6074   EVT SVT = VT.getScalarType();
6075   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6076   EVT ShSVT = ShVT.getScalarType();
6077 
6078   // If MUL is unavailable, we cannot proceed in any case.
6079   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6080     return SDValue();
6081 
6082   bool ComparingWithAllZeros = true;
6083   bool AllComparisonsWithNonZerosAreTautological = true;
6084   bool HadTautologicalLanes = false;
6085   bool AllLanesAreTautological = true;
6086   bool HadEvenDivisor = false;
6087   bool AllDivisorsArePowerOfTwo = true;
6088   bool HadTautologicalInvertedLanes = false;
6089   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6090 
6091   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6092     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6093     if (CDiv->isZero())
6094       return false;
6095 
6096     const APInt &D = CDiv->getAPIntValue();
6097     const APInt &Cmp = CCmp->getAPIntValue();
6098 
6099     ComparingWithAllZeros &= Cmp.isZero();
6100 
6101     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6102     // if C2 is not less than C1, the comparison is always false.
6103     // But we will only be able to produce the comparison that will give the
6104     // opposive tautological answer. So this lane would need to be fixed up.
6105     bool TautologicalInvertedLane = D.ule(Cmp);
6106     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6107 
6108     // If all lanes are tautological (either all divisors are ones, or divisor
6109     // is not greater than the constant we are comparing with),
6110     // we will prefer to avoid the fold.
6111     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6112     HadTautologicalLanes |= TautologicalLane;
6113     AllLanesAreTautological &= TautologicalLane;
6114 
6115     // If we are comparing with non-zero, we need'll need  to subtract said
6116     // comparison value from the LHS. But there is no point in doing that if
6117     // every lane where we are comparing with non-zero is tautological..
6118     if (!Cmp.isZero())
6119       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6120 
6121     // Decompose D into D0 * 2^K
6122     unsigned K = D.countTrailingZeros();
6123     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6124     APInt D0 = D.lshr(K);
6125 
6126     // D is even if it has trailing zeros.
6127     HadEvenDivisor |= (K != 0);
6128     // D is a power-of-two if D0 is one.
6129     // If all divisors are power-of-two, we will prefer to avoid the fold.
6130     AllDivisorsArePowerOfTwo &= D0.isOne();
6131 
6132     // P = inv(D0, 2^W)
6133     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6134     unsigned W = D.getBitWidth();
6135     APInt P = D0.zext(W + 1)
6136                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6137                   .trunc(W);
6138     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6139     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6140 
6141     // Q = floor((2^W - 1) u/ D)
6142     // R = ((2^W - 1) u% D)
6143     APInt Q, R;
6144     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6145 
6146     // If we are comparing with zero, then that comparison constant is okay,
6147     // else it may need to be one less than that.
6148     if (Cmp.ugt(R))
6149       Q -= 1;
6150 
6151     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6152            "We are expecting that K is always less than all-ones for ShSVT");
6153 
6154     // If the lane is tautological the result can be constant-folded.
6155     if (TautologicalLane) {
6156       // Set P and K amount to a bogus values so we can try to splat them.
6157       P = 0;
6158       K = -1;
6159       // And ensure that comparison constant is tautological,
6160       // it will always compare true/false.
6161       Q = -1;
6162     }
6163 
6164     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6165     KAmts.push_back(
6166         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6167     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6168     return true;
6169   };
6170 
6171   SDValue N = REMNode.getOperand(0);
6172   SDValue D = REMNode.getOperand(1);
6173 
6174   // Collect the values from each element.
6175   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6176     return SDValue();
6177 
6178   // If all lanes are tautological, the result can be constant-folded.
6179   if (AllLanesAreTautological)
6180     return SDValue();
6181 
6182   // If this is a urem by a powers-of-two, avoid the fold since it can be
6183   // best implemented as a bit test.
6184   if (AllDivisorsArePowerOfTwo)
6185     return SDValue();
6186 
6187   SDValue PVal, KVal, QVal;
6188   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6189     if (HadTautologicalLanes) {
6190       // Try to turn PAmts into a splat, since we don't care about the values
6191       // that are currently '0'. If we can't, just keep '0'`s.
6192       turnVectorIntoSplatVector(PAmts, isNullConstant);
6193       // Try to turn KAmts into a splat, since we don't care about the values
6194       // that are currently '-1'. If we can't, change them to '0'`s.
6195       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6196                                 DAG.getConstant(0, DL, ShSVT));
6197     }
6198 
6199     PVal = DAG.getBuildVector(VT, DL, PAmts);
6200     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6201     QVal = DAG.getBuildVector(VT, DL, QAmts);
6202   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6203     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6204            "Expected matchBinaryPredicate to return one element for "
6205            "SPLAT_VECTORs");
6206     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6207     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6208     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6209   } else {
6210     PVal = PAmts[0];
6211     KVal = KAmts[0];
6212     QVal = QAmts[0];
6213   }
6214 
6215   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6216     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6217       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6218     assert(CompTargetNode.getValueType() == N.getValueType() &&
6219            "Expecting that the types on LHS and RHS of comparisons match.");
6220     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6221   }
6222 
6223   // (mul N, P)
6224   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6225   Created.push_back(Op0.getNode());
6226 
6227   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6228   // divisors as a performance improvement, since rotating by 0 is a no-op.
6229   if (HadEvenDivisor) {
6230     // We need ROTR to do this.
6231     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6232       return SDValue();
6233     // UREM: (rotr (mul N, P), K)
6234     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6235     Created.push_back(Op0.getNode());
6236   }
6237 
6238   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6239   SDValue NewCC =
6240       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6241                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6242   if (!HadTautologicalInvertedLanes)
6243     return NewCC;
6244 
6245   // If any lanes previously compared always-false, the NewCC will give
6246   // always-true result for them, so we need to fixup those lanes.
6247   // Or the other way around for inequality predicate.
6248   assert(VT.isVector() && "Can/should only get here for vectors.");
6249   Created.push_back(NewCC.getNode());
6250 
6251   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6252   // if C2 is not less than C1, the comparison is always false.
6253   // But we have produced the comparison that will give the
6254   // opposive tautological answer. So these lanes would need to be fixed up.
6255   SDValue TautologicalInvertedChannels =
6256       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6257   Created.push_back(TautologicalInvertedChannels.getNode());
6258 
6259   // NOTE: we avoid letting illegal types through even if we're before legalize
6260   // ops – legalization has a hard time producing good code for this.
6261   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6262     // If we have a vector select, let's replace the comparison results in the
6263     // affected lanes with the correct tautological result.
6264     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6265                                               DL, SETCCVT, SETCCVT);
6266     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6267                        Replacement, NewCC);
6268   }
6269 
6270   // Else, we can just invert the comparison result in the appropriate lanes.
6271   //
6272   // NOTE: see the note above VSELECT above.
6273   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6274     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6275                        TautologicalInvertedChannels);
6276 
6277   return SDValue(); // Don't know how to lower.
6278 }
6279 
6280 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6281 /// where the divisor is constant and the comparison target is zero,
6282 /// return a DAG expression that will generate the same comparison result
6283 /// using only multiplications, additions and shifts/rotations.
6284 /// Ref: "Hacker's Delight" 10-17.
6285 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6286                                         SDValue CompTargetNode,
6287                                         ISD::CondCode Cond,
6288                                         DAGCombinerInfo &DCI,
6289                                         const SDLoc &DL) const {
6290   SmallVector<SDNode *, 7> Built;
6291   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6292                                          DCI, DL, Built)) {
6293     assert(Built.size() <= 7 && "Max size prediction failed.");
6294     for (SDNode *N : Built)
6295       DCI.AddToWorklist(N);
6296     return Folded;
6297   }
6298 
6299   return SDValue();
6300 }
6301 
6302 SDValue
6303 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6304                                   SDValue CompTargetNode, ISD::CondCode Cond,
6305                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6306                                   SmallVectorImpl<SDNode *> &Created) const {
6307   // Fold:
6308   //   (seteq/ne (srem N, D), 0)
6309   // To:
6310   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6311   //
6312   // - D must be constant, with D = D0 * 2^K where D0 is odd
6313   // - P is the multiplicative inverse of D0 modulo 2^W
6314   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6315   // - Q = floor((2 * A) / (2^K))
6316   // where W is the width of the common type of N and D.
6317   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6318          "Only applicable for (in)equality comparisons.");
6319 
6320   SelectionDAG &DAG = DCI.DAG;
6321 
6322   EVT VT = REMNode.getValueType();
6323   EVT SVT = VT.getScalarType();
6324   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6325   EVT ShSVT = ShVT.getScalarType();
6326 
6327   // If we are after ops legalization, and MUL is unavailable, we can not
6328   // proceed.
6329   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6330     return SDValue();
6331 
6332   // TODO: Could support comparing with non-zero too.
6333   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6334   if (!CompTarget || !CompTarget->isZero())
6335     return SDValue();
6336 
6337   bool HadIntMinDivisor = false;
6338   bool HadOneDivisor = false;
6339   bool AllDivisorsAreOnes = true;
6340   bool HadEvenDivisor = false;
6341   bool NeedToApplyOffset = false;
6342   bool AllDivisorsArePowerOfTwo = true;
6343   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6344 
6345   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6346     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6347     if (C->isZero())
6348       return false;
6349 
6350     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6351 
6352     // WARNING: this fold is only valid for positive divisors!
6353     APInt D = C->getAPIntValue();
6354     if (D.isNegative())
6355       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6356 
6357     HadIntMinDivisor |= D.isMinSignedValue();
6358 
6359     // If all divisors are ones, we will prefer to avoid the fold.
6360     HadOneDivisor |= D.isOne();
6361     AllDivisorsAreOnes &= D.isOne();
6362 
6363     // Decompose D into D0 * 2^K
6364     unsigned K = D.countTrailingZeros();
6365     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6366     APInt D0 = D.lshr(K);
6367 
6368     if (!D.isMinSignedValue()) {
6369       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6370       // we don't care about this lane in this fold, we'll special-handle it.
6371       HadEvenDivisor |= (K != 0);
6372     }
6373 
6374     // D is a power-of-two if D0 is one. This includes INT_MIN.
6375     // If all divisors are power-of-two, we will prefer to avoid the fold.
6376     AllDivisorsArePowerOfTwo &= D0.isOne();
6377 
6378     // P = inv(D0, 2^W)
6379     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6380     unsigned W = D.getBitWidth();
6381     APInt P = D0.zext(W + 1)
6382                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6383                   .trunc(W);
6384     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6385     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6386 
6387     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6388     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6389     A.clearLowBits(K);
6390 
6391     if (!D.isMinSignedValue()) {
6392       // If divisor INT_MIN, then we don't care about this lane in this fold,
6393       // we'll special-handle it.
6394       NeedToApplyOffset |= A != 0;
6395     }
6396 
6397     // Q = floor((2 * A) / (2^K))
6398     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6399 
6400     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6401            "We are expecting that A is always less than all-ones for SVT");
6402     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6403            "We are expecting that K is always less than all-ones for ShSVT");
6404 
6405     // If the divisor is 1 the result can be constant-folded. Likewise, we
6406     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6407     if (D.isOne()) {
6408       // Set P, A and K to a bogus values so we can try to splat them.
6409       P = 0;
6410       A = -1;
6411       K = -1;
6412 
6413       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6414       Q = -1;
6415     }
6416 
6417     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6418     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6419     KAmts.push_back(
6420         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6421     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6422     return true;
6423   };
6424 
6425   SDValue N = REMNode.getOperand(0);
6426   SDValue D = REMNode.getOperand(1);
6427 
6428   // Collect the values from each element.
6429   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6430     return SDValue();
6431 
6432   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6433   if (AllDivisorsAreOnes)
6434     return SDValue();
6435 
6436   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6437   // since it can be best implemented as a bit test.
6438   if (AllDivisorsArePowerOfTwo)
6439     return SDValue();
6440 
6441   SDValue PVal, AVal, KVal, QVal;
6442   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6443     if (HadOneDivisor) {
6444       // Try to turn PAmts into a splat, since we don't care about the values
6445       // that are currently '0'. If we can't, just keep '0'`s.
6446       turnVectorIntoSplatVector(PAmts, isNullConstant);
6447       // Try to turn AAmts into a splat, since we don't care about the
6448       // values that are currently '-1'. If we can't, change them to '0'`s.
6449       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6450                                 DAG.getConstant(0, DL, SVT));
6451       // Try to turn KAmts into a splat, since we don't care about the values
6452       // that are currently '-1'. If we can't, change them to '0'`s.
6453       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6454                                 DAG.getConstant(0, DL, ShSVT));
6455     }
6456 
6457     PVal = DAG.getBuildVector(VT, DL, PAmts);
6458     AVal = DAG.getBuildVector(VT, DL, AAmts);
6459     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6460     QVal = DAG.getBuildVector(VT, DL, QAmts);
6461   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6462     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6463            QAmts.size() == 1 &&
6464            "Expected matchUnaryPredicate to return one element for scalable "
6465            "vectors");
6466     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6467     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6468     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6469     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6470   } else {
6471     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6472     PVal = PAmts[0];
6473     AVal = AAmts[0];
6474     KVal = KAmts[0];
6475     QVal = QAmts[0];
6476   }
6477 
6478   // (mul N, P)
6479   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6480   Created.push_back(Op0.getNode());
6481 
6482   if (NeedToApplyOffset) {
6483     // We need ADD to do this.
6484     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6485       return SDValue();
6486 
6487     // (add (mul N, P), A)
6488     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6489     Created.push_back(Op0.getNode());
6490   }
6491 
6492   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6493   // divisors as a performance improvement, since rotating by 0 is a no-op.
6494   if (HadEvenDivisor) {
6495     // We need ROTR to do this.
6496     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6497       return SDValue();
6498     // SREM: (rotr (add (mul N, P), A), K)
6499     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6500     Created.push_back(Op0.getNode());
6501   }
6502 
6503   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6504   SDValue Fold =
6505       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6506                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6507 
6508   // If we didn't have lanes with INT_MIN divisor, then we're done.
6509   if (!HadIntMinDivisor)
6510     return Fold;
6511 
6512   // That fold is only valid for positive divisors. Which effectively means,
6513   // it is invalid for INT_MIN divisors. So if we have such a lane,
6514   // we must fix-up results for said lanes.
6515   assert(VT.isVector() && "Can/should only get here for vectors.");
6516 
6517   // NOTE: we avoid letting illegal types through even if we're before legalize
6518   // ops – legalization has a hard time producing good code for the code that
6519   // follows.
6520   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6521       !isOperationLegalOrCustom(ISD::AND, VT) ||
6522       !isOperationLegalOrCustom(Cond, VT) ||
6523       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6524     return SDValue();
6525 
6526   Created.push_back(Fold.getNode());
6527 
6528   SDValue IntMin = DAG.getConstant(
6529       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6530   SDValue IntMax = DAG.getConstant(
6531       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6532   SDValue Zero =
6533       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6534 
6535   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6536   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6537   Created.push_back(DivisorIsIntMin.getNode());
6538 
6539   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6540   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6541   Created.push_back(Masked.getNode());
6542   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6543   Created.push_back(MaskedIsZero.getNode());
6544 
6545   // To produce final result we need to blend 2 vectors: 'SetCC' and
6546   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6547   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6548   // constant-folded, select can get lowered to a shuffle with constant mask.
6549   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6550                                 MaskedIsZero, Fold);
6551 
6552   return Blended;
6553 }
6554 
6555 bool TargetLowering::
6556 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6557   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6558     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6559                                 "be a constant integer");
6560     return true;
6561   }
6562 
6563   return false;
6564 }
6565 
6566 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6567                                          const DenormalMode &Mode) const {
6568   SDLoc DL(Op);
6569   EVT VT = Op.getValueType();
6570   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6571   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6572   // Testing it with denormal inputs to avoid wrong estimate.
6573   if (Mode.Input == DenormalMode::IEEE) {
6574     // This is specifically a check for the handling of denormal inputs,
6575     // not the result.
6576 
6577     // Test = fabs(X) < SmallestNormal
6578     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6579     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6580     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6581     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6582     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6583   }
6584   // Test = X == 0.0
6585   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6586 }
6587 
6588 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6589                                              bool LegalOps, bool OptForSize,
6590                                              NegatibleCost &Cost,
6591                                              unsigned Depth) const {
6592   // fneg is removable even if it has multiple uses.
6593   if (Op.getOpcode() == ISD::FNEG) {
6594     Cost = NegatibleCost::Cheaper;
6595     return Op.getOperand(0);
6596   }
6597 
6598   // Don't recurse exponentially.
6599   if (Depth > SelectionDAG::MaxRecursionDepth)
6600     return SDValue();
6601 
6602   // Pre-increment recursion depth for use in recursive calls.
6603   ++Depth;
6604   const SDNodeFlags Flags = Op->getFlags();
6605   const TargetOptions &Options = DAG.getTarget().Options;
6606   EVT VT = Op.getValueType();
6607   unsigned Opcode = Op.getOpcode();
6608 
6609   // Don't allow anything with multiple uses unless we know it is free.
6610   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6611     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6612                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6613     if (!IsFreeExtend)
6614       return SDValue();
6615   }
6616 
6617   auto RemoveDeadNode = [&](SDValue N) {
6618     if (N && N.getNode()->use_empty())
6619       DAG.RemoveDeadNode(N.getNode());
6620   };
6621 
6622   SDLoc DL(Op);
6623 
6624   // Because getNegatedExpression can delete nodes we need a handle to keep
6625   // temporary nodes alive in case the recursion manages to create an identical
6626   // node.
6627   std::list<HandleSDNode> Handles;
6628 
6629   switch (Opcode) {
6630   case ISD::ConstantFP: {
6631     // Don't invert constant FP values after legalization unless the target says
6632     // the negated constant is legal.
6633     bool IsOpLegal =
6634         isOperationLegal(ISD::ConstantFP, VT) ||
6635         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6636                      OptForSize);
6637 
6638     if (LegalOps && !IsOpLegal)
6639       break;
6640 
6641     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6642     V.changeSign();
6643     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6644 
6645     // If we already have the use of the negated floating constant, it is free
6646     // to negate it even it has multiple uses.
6647     if (!Op.hasOneUse() && CFP.use_empty())
6648       break;
6649     Cost = NegatibleCost::Neutral;
6650     return CFP;
6651   }
6652   case ISD::BUILD_VECTOR: {
6653     // Only permit BUILD_VECTOR of constants.
6654     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6655           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6656         }))
6657       break;
6658 
6659     bool IsOpLegal =
6660         (isOperationLegal(ISD::ConstantFP, VT) &&
6661          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6662         llvm::all_of(Op->op_values(), [&](SDValue N) {
6663           return N.isUndef() ||
6664                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6665                               OptForSize);
6666         });
6667 
6668     if (LegalOps && !IsOpLegal)
6669       break;
6670 
6671     SmallVector<SDValue, 4> Ops;
6672     for (SDValue C : Op->op_values()) {
6673       if (C.isUndef()) {
6674         Ops.push_back(C);
6675         continue;
6676       }
6677       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6678       V.changeSign();
6679       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6680     }
6681     Cost = NegatibleCost::Neutral;
6682     return DAG.getBuildVector(VT, DL, Ops);
6683   }
6684   case ISD::FADD: {
6685     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6686       break;
6687 
6688     // After operation legalization, it might not be legal to create new FSUBs.
6689     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6690       break;
6691     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6692 
6693     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6694     NegatibleCost CostX = NegatibleCost::Expensive;
6695     SDValue NegX =
6696         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6697     // Prevent this node from being deleted by the next call.
6698     if (NegX)
6699       Handles.emplace_back(NegX);
6700 
6701     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6702     NegatibleCost CostY = NegatibleCost::Expensive;
6703     SDValue NegY =
6704         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6705 
6706     // We're done with the handles.
6707     Handles.clear();
6708 
6709     // Negate the X if its cost is less or equal than Y.
6710     if (NegX && (CostX <= CostY)) {
6711       Cost = CostX;
6712       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6713       if (NegY != N)
6714         RemoveDeadNode(NegY);
6715       return N;
6716     }
6717 
6718     // Negate the Y if it is not expensive.
6719     if (NegY) {
6720       Cost = CostY;
6721       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6722       if (NegX != N)
6723         RemoveDeadNode(NegX);
6724       return N;
6725     }
6726     break;
6727   }
6728   case ISD::FSUB: {
6729     // We can't turn -(A-B) into B-A when we honor signed zeros.
6730     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6731       break;
6732 
6733     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6734     // fold (fneg (fsub 0, Y)) -> Y
6735     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6736       if (C->isZero()) {
6737         Cost = NegatibleCost::Cheaper;
6738         return Y;
6739       }
6740 
6741     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6742     Cost = NegatibleCost::Neutral;
6743     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6744   }
6745   case ISD::FMUL:
6746   case ISD::FDIV: {
6747     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6748 
6749     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6750     NegatibleCost CostX = NegatibleCost::Expensive;
6751     SDValue NegX =
6752         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6753     // Prevent this node from being deleted by the next call.
6754     if (NegX)
6755       Handles.emplace_back(NegX);
6756 
6757     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6758     NegatibleCost CostY = NegatibleCost::Expensive;
6759     SDValue NegY =
6760         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6761 
6762     // We're done with the handles.
6763     Handles.clear();
6764 
6765     // Negate the X if its cost is less or equal than Y.
6766     if (NegX && (CostX <= CostY)) {
6767       Cost = CostX;
6768       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6769       if (NegY != N)
6770         RemoveDeadNode(NegY);
6771       return N;
6772     }
6773 
6774     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6775     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6776       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6777         break;
6778 
6779     // Negate the Y if it is not expensive.
6780     if (NegY) {
6781       Cost = CostY;
6782       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6783       if (NegX != N)
6784         RemoveDeadNode(NegX);
6785       return N;
6786     }
6787     break;
6788   }
6789   case ISD::FMA:
6790   case ISD::FMAD: {
6791     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6792       break;
6793 
6794     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6795     NegatibleCost CostZ = NegatibleCost::Expensive;
6796     SDValue NegZ =
6797         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6798     // Give up if fail to negate the Z.
6799     if (!NegZ)
6800       break;
6801 
6802     // Prevent this node from being deleted by the next two calls.
6803     Handles.emplace_back(NegZ);
6804 
6805     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6806     NegatibleCost CostX = NegatibleCost::Expensive;
6807     SDValue NegX =
6808         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6809     // Prevent this node from being deleted by the next call.
6810     if (NegX)
6811       Handles.emplace_back(NegX);
6812 
6813     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6814     NegatibleCost CostY = NegatibleCost::Expensive;
6815     SDValue NegY =
6816         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6817 
6818     // We're done with the handles.
6819     Handles.clear();
6820 
6821     // Negate the X if its cost is less or equal than Y.
6822     if (NegX && (CostX <= CostY)) {
6823       Cost = std::min(CostX, CostZ);
6824       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6825       if (NegY != N)
6826         RemoveDeadNode(NegY);
6827       return N;
6828     }
6829 
6830     // Negate the Y if it is not expensive.
6831     if (NegY) {
6832       Cost = std::min(CostY, CostZ);
6833       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6834       if (NegX != N)
6835         RemoveDeadNode(NegX);
6836       return N;
6837     }
6838     break;
6839   }
6840 
6841   case ISD::FP_EXTEND:
6842   case ISD::FSIN:
6843     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6844                                             OptForSize, Cost, Depth))
6845       return DAG.getNode(Opcode, DL, VT, NegV);
6846     break;
6847   case ISD::FP_ROUND:
6848     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6849                                             OptForSize, Cost, Depth))
6850       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6851     break;
6852   }
6853 
6854   return SDValue();
6855 }
6856 
6857 //===----------------------------------------------------------------------===//
6858 // Legalization Utilities
6859 //===----------------------------------------------------------------------===//
6860 
6861 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6862                                     SDValue LHS, SDValue RHS,
6863                                     SmallVectorImpl<SDValue> &Result,
6864                                     EVT HiLoVT, SelectionDAG &DAG,
6865                                     MulExpansionKind Kind, SDValue LL,
6866                                     SDValue LH, SDValue RL, SDValue RH) const {
6867   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6868          Opcode == ISD::SMUL_LOHI);
6869 
6870   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6871                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6872   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6873                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6874   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6875                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6876   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6877                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6878 
6879   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6880     return false;
6881 
6882   unsigned OuterBitSize = VT.getScalarSizeInBits();
6883   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6884 
6885   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6886   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6887          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6888 
6889   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6890   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6891                           bool Signed) -> bool {
6892     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6893       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6894       Hi = SDValue(Lo.getNode(), 1);
6895       return true;
6896     }
6897     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6898       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6899       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6900       return true;
6901     }
6902     return false;
6903   };
6904 
6905   SDValue Lo, Hi;
6906 
6907   if (!LL.getNode() && !RL.getNode() &&
6908       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6909     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6910     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6911   }
6912 
6913   if (!LL.getNode())
6914     return false;
6915 
6916   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6917   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6918       DAG.MaskedValueIsZero(RHS, HighMask)) {
6919     // The inputs are both zero-extended.
6920     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6921       Result.push_back(Lo);
6922       Result.push_back(Hi);
6923       if (Opcode != ISD::MUL) {
6924         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6925         Result.push_back(Zero);
6926         Result.push_back(Zero);
6927       }
6928       return true;
6929     }
6930   }
6931 
6932   if (!VT.isVector() && Opcode == ISD::MUL &&
6933       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6934       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6935     // The input values are both sign-extended.
6936     // TODO non-MUL case?
6937     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6938       Result.push_back(Lo);
6939       Result.push_back(Hi);
6940       return true;
6941     }
6942   }
6943 
6944   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6945   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6946   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6947 
6948   if (!LH.getNode() && !RH.getNode() &&
6949       isOperationLegalOrCustom(ISD::SRL, VT) &&
6950       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6951     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6952     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6953     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6954     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6955   }
6956 
6957   if (!LH.getNode())
6958     return false;
6959 
6960   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6961     return false;
6962 
6963   Result.push_back(Lo);
6964 
6965   if (Opcode == ISD::MUL) {
6966     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6967     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6968     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6969     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6970     Result.push_back(Hi);
6971     return true;
6972   }
6973 
6974   // Compute the full width result.
6975   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6976     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6977     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6978     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6979     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6980   };
6981 
6982   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6983   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6984     return false;
6985 
6986   // This is effectively the add part of a multiply-add of half-sized operands,
6987   // so it cannot overflow.
6988   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6989 
6990   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6991     return false;
6992 
6993   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6994   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6995 
6996   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6997                   isOperationLegalOrCustom(ISD::ADDE, VT));
6998   if (UseGlue)
6999     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7000                        Merge(Lo, Hi));
7001   else
7002     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7003                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7004 
7005   SDValue Carry = Next.getValue(1);
7006   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7007   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7008 
7009   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7010     return false;
7011 
7012   if (UseGlue)
7013     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7014                      Carry);
7015   else
7016     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7017                      Zero, Carry);
7018 
7019   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7020 
7021   if (Opcode == ISD::SMUL_LOHI) {
7022     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7023                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7024     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7025 
7026     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7027                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7028     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7029   }
7030 
7031   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7032   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7033   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7034   return true;
7035 }
7036 
7037 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7038                                SelectionDAG &DAG, MulExpansionKind Kind,
7039                                SDValue LL, SDValue LH, SDValue RL,
7040                                SDValue RH) const {
7041   SmallVector<SDValue, 2> Result;
7042   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7043                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7044                            DAG, Kind, LL, LH, RL, RH);
7045   if (Ok) {
7046     assert(Result.size() == 2);
7047     Lo = Result[0];
7048     Hi = Result[1];
7049   }
7050   return Ok;
7051 }
7052 
7053 // Check that (every element of) Z is undef or not an exact multiple of BW.
7054 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7055   return ISD::matchUnaryPredicate(
7056       Z,
7057       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7058       true);
7059 }
7060 
7061 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7062                                           SelectionDAG &DAG) const {
7063   EVT VT = Node->getValueType(0);
7064 
7065   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7066                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7067                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7068                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7069     return SDValue();
7070 
7071   SDValue X = Node->getOperand(0);
7072   SDValue Y = Node->getOperand(1);
7073   SDValue Z = Node->getOperand(2);
7074 
7075   unsigned BW = VT.getScalarSizeInBits();
7076   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7077   SDLoc DL(SDValue(Node, 0));
7078 
7079   EVT ShVT = Z.getValueType();
7080 
7081   // If a funnel shift in the other direction is more supported, use it.
7082   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7083   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7084       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7085     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7086       // fshl X, Y, Z -> fshr X, Y, -Z
7087       // fshr X, Y, Z -> fshl X, Y, -Z
7088       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7089       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7090     } else {
7091       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7092       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7093       SDValue One = DAG.getConstant(1, DL, ShVT);
7094       if (IsFSHL) {
7095         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7096         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7097       } else {
7098         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7099         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7100       }
7101       Z = DAG.getNOT(DL, Z, ShVT);
7102     }
7103     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7104   }
7105 
7106   SDValue ShX, ShY;
7107   SDValue ShAmt, InvShAmt;
7108   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7109     // fshl: X << C | Y >> (BW - C)
7110     // fshr: X << (BW - C) | Y >> C
7111     // where C = Z % BW is not zero
7112     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7113     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7114     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7115     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7116     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7117   } else {
7118     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7119     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7120     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7121     if (isPowerOf2_32(BW)) {
7122       // Z % BW -> Z & (BW - 1)
7123       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7124       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7125       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7126     } else {
7127       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7128       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7129       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7130     }
7131 
7132     SDValue One = DAG.getConstant(1, DL, ShVT);
7133     if (IsFSHL) {
7134       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7135       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7136       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7137     } else {
7138       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7139       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7140       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7141     }
7142   }
7143   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7144 }
7145 
7146 // TODO: Merge with expandFunnelShift.
7147 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7148                                   SelectionDAG &DAG) const {
7149   EVT VT = Node->getValueType(0);
7150   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7151   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7152   SDValue Op0 = Node->getOperand(0);
7153   SDValue Op1 = Node->getOperand(1);
7154   SDLoc DL(SDValue(Node, 0));
7155 
7156   EVT ShVT = Op1.getValueType();
7157   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7158 
7159   // If a rotate in the other direction is more supported, use it.
7160   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7161   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7162       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7163     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7164     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7165   }
7166 
7167   if (!AllowVectorOps && VT.isVector() &&
7168       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7169        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7170        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7171        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7172        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7173     return SDValue();
7174 
7175   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7176   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7177   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7178   SDValue ShVal;
7179   SDValue HsVal;
7180   if (isPowerOf2_32(EltSizeInBits)) {
7181     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7182     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7183     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7184     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7185     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7186     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7187     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7188   } else {
7189     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7190     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7191     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7192     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7193     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7194     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7195     SDValue One = DAG.getConstant(1, DL, ShVT);
7196     HsVal =
7197         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7198   }
7199   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7200 }
7201 
7202 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7203                                       SelectionDAG &DAG) const {
7204   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7205   EVT VT = Node->getValueType(0);
7206   unsigned VTBits = VT.getScalarSizeInBits();
7207   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7208 
7209   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7210   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7211   SDValue ShOpLo = Node->getOperand(0);
7212   SDValue ShOpHi = Node->getOperand(1);
7213   SDValue ShAmt = Node->getOperand(2);
7214   EVT ShAmtVT = ShAmt.getValueType();
7215   EVT ShAmtCCVT =
7216       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7217   SDLoc dl(Node);
7218 
7219   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7220   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7221   // away during isel.
7222   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7223                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7224   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7225                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7226                        : DAG.getConstant(0, dl, VT);
7227 
7228   SDValue Tmp2, Tmp3;
7229   if (IsSHL) {
7230     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7231     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7232   } else {
7233     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7234     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7235   }
7236 
7237   // If the shift amount is larger or equal than the width of a part we don't
7238   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7239   // values for large shift amounts.
7240   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7241                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7242   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7243                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7244 
7245   if (IsSHL) {
7246     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7247     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7248   } else {
7249     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7250     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7251   }
7252 }
7253 
7254 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7255                                       SelectionDAG &DAG) const {
7256   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7257   SDValue Src = Node->getOperand(OpNo);
7258   EVT SrcVT = Src.getValueType();
7259   EVT DstVT = Node->getValueType(0);
7260   SDLoc dl(SDValue(Node, 0));
7261 
7262   // FIXME: Only f32 to i64 conversions are supported.
7263   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7264     return false;
7265 
7266   if (Node->isStrictFPOpcode())
7267     // When a NaN is converted to an integer a trap is allowed. We can't
7268     // use this expansion here because it would eliminate that trap. Other
7269     // traps are also allowed and cannot be eliminated. See
7270     // IEEE 754-2008 sec 5.8.
7271     return false;
7272 
7273   // Expand f32 -> i64 conversion
7274   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7275   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7276   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7277   EVT IntVT = SrcVT.changeTypeToInteger();
7278   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7279 
7280   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7281   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7282   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7283   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7284   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7285   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7286 
7287   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7288 
7289   SDValue ExponentBits = DAG.getNode(
7290       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7291       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7292   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7293 
7294   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7295                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7296                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7297   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7298 
7299   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7300                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7301                           DAG.getConstant(0x00800000, dl, IntVT));
7302 
7303   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7304 
7305   R = DAG.getSelectCC(
7306       dl, Exponent, ExponentLoBit,
7307       DAG.getNode(ISD::SHL, dl, DstVT, R,
7308                   DAG.getZExtOrTrunc(
7309                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7310                       dl, IntShVT)),
7311       DAG.getNode(ISD::SRL, dl, DstVT, R,
7312                   DAG.getZExtOrTrunc(
7313                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7314                       dl, IntShVT)),
7315       ISD::SETGT);
7316 
7317   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7318                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7319 
7320   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7321                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7322   return true;
7323 }
7324 
7325 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7326                                       SDValue &Chain,
7327                                       SelectionDAG &DAG) const {
7328   SDLoc dl(SDValue(Node, 0));
7329   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7330   SDValue Src = Node->getOperand(OpNo);
7331 
7332   EVT SrcVT = Src.getValueType();
7333   EVT DstVT = Node->getValueType(0);
7334   EVT SetCCVT =
7335       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7336   EVT DstSetCCVT =
7337       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7338 
7339   // Only expand vector types if we have the appropriate vector bit operations.
7340   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7341                                                    ISD::FP_TO_SINT;
7342   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7343                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7344     return false;
7345 
7346   // If the maximum float value is smaller then the signed integer range,
7347   // the destination signmask can't be represented by the float, so we can
7348   // just use FP_TO_SINT directly.
7349   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7350   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7351   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7352   if (APFloat::opOverflow &
7353       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7354     if (Node->isStrictFPOpcode()) {
7355       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7356                            { Node->getOperand(0), Src });
7357       Chain = Result.getValue(1);
7358     } else
7359       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7360     return true;
7361   }
7362 
7363   // Don't expand it if there isn't cheap fsub instruction.
7364   if (!isOperationLegalOrCustom(
7365           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7366     return false;
7367 
7368   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7369   SDValue Sel;
7370 
7371   if (Node->isStrictFPOpcode()) {
7372     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7373                        Node->getOperand(0), /*IsSignaling*/ true);
7374     Chain = Sel.getValue(1);
7375   } else {
7376     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7377   }
7378 
7379   bool Strict = Node->isStrictFPOpcode() ||
7380                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7381 
7382   if (Strict) {
7383     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7384     // signmask then offset (the result of which should be fully representable).
7385     // Sel = Src < 0x8000000000000000
7386     // FltOfs = select Sel, 0, 0x8000000000000000
7387     // IntOfs = select Sel, 0, 0x8000000000000000
7388     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7389 
7390     // TODO: Should any fast-math-flags be set for the FSUB?
7391     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7392                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7393     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7394     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7395                                    DAG.getConstant(0, dl, DstVT),
7396                                    DAG.getConstant(SignMask, dl, DstVT));
7397     SDValue SInt;
7398     if (Node->isStrictFPOpcode()) {
7399       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7400                                 { Chain, Src, FltOfs });
7401       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7402                          { Val.getValue(1), Val });
7403       Chain = SInt.getValue(1);
7404     } else {
7405       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7406       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7407     }
7408     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7409   } else {
7410     // Expand based on maximum range of FP_TO_SINT:
7411     // True = fp_to_sint(Src)
7412     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7413     // Result = select (Src < 0x8000000000000000), True, False
7414 
7415     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7416     // TODO: Should any fast-math-flags be set for the FSUB?
7417     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7418                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7419     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7420                         DAG.getConstant(SignMask, dl, DstVT));
7421     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7422     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7423   }
7424   return true;
7425 }
7426 
7427 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7428                                       SDValue &Chain,
7429                                       SelectionDAG &DAG) const {
7430   // This transform is not correct for converting 0 when rounding mode is set
7431   // to round toward negative infinity which will produce -0.0. So disable under
7432   // strictfp.
7433   if (Node->isStrictFPOpcode())
7434     return false;
7435 
7436   SDValue Src = Node->getOperand(0);
7437   EVT SrcVT = Src.getValueType();
7438   EVT DstVT = Node->getValueType(0);
7439 
7440   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7441     return false;
7442 
7443   // Only expand vector types if we have the appropriate vector bit operations.
7444   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7445                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7446                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7447                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7448                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7449     return false;
7450 
7451   SDLoc dl(SDValue(Node, 0));
7452   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7453 
7454   // Implementation of unsigned i64 to f64 following the algorithm in
7455   // __floatundidf in compiler_rt.  This implementation performs rounding
7456   // correctly in all rounding modes with the exception of converting 0
7457   // when rounding toward negative infinity. In that case the fsub will produce
7458   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7459   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7460   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7461       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7462   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7463   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7464   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7465 
7466   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7467   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7468   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7469   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7470   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7471   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7472   SDValue HiSub =
7473       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7474   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7475   return true;
7476 }
7477 
7478 SDValue
7479 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7480                                                SelectionDAG &DAG) const {
7481   unsigned Opcode = Node->getOpcode();
7482   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7483           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7484          "Wrong opcode");
7485 
7486   if (Node->getFlags().hasNoNaNs()) {
7487     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7488     SDValue Op1 = Node->getOperand(0);
7489     SDValue Op2 = Node->getOperand(1);
7490     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7491     // Copy FMF flags, but always set the no-signed-zeros flag
7492     // as this is implied by the FMINNUM/FMAXNUM semantics.
7493     SDNodeFlags Flags = Node->getFlags();
7494     Flags.setNoSignedZeros(true);
7495     SelCC->setFlags(Flags);
7496     return SelCC;
7497   }
7498 
7499   return SDValue();
7500 }
7501 
7502 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7503                                               SelectionDAG &DAG) const {
7504   SDLoc dl(Node);
7505   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7506     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7507   EVT VT = Node->getValueType(0);
7508 
7509   if (VT.isScalableVector())
7510     report_fatal_error(
7511         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7512 
7513   if (isOperationLegalOrCustom(NewOp, VT)) {
7514     SDValue Quiet0 = Node->getOperand(0);
7515     SDValue Quiet1 = Node->getOperand(1);
7516 
7517     if (!Node->getFlags().hasNoNaNs()) {
7518       // Insert canonicalizes if it's possible we need to quiet to get correct
7519       // sNaN behavior.
7520       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7521         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7522                              Node->getFlags());
7523       }
7524       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7525         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7526                              Node->getFlags());
7527       }
7528     }
7529 
7530     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7531   }
7532 
7533   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7534   // instead if there are no NaNs.
7535   if (Node->getFlags().hasNoNaNs()) {
7536     unsigned IEEE2018Op =
7537         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7538     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7539       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7540                          Node->getOperand(1), Node->getFlags());
7541     }
7542   }
7543 
7544   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7545     return SelCC;
7546 
7547   return SDValue();
7548 }
7549 
7550 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7551                                          unsigned Test, SDNodeFlags Flags,
7552                                          const SDLoc &DL,
7553                                          SelectionDAG &DAG) const {
7554   EVT OperandVT = Op.getValueType();
7555   assert(OperandVT.isFloatingPoint());
7556 
7557   // Degenerated cases.
7558   if (Test == 0)
7559     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7560   if ((Test & fcAllFlags) == fcAllFlags)
7561     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7562 
7563   // PPC double double is a pair of doubles, of which the higher part determines
7564   // the value class.
7565   if (OperandVT == MVT::ppcf128) {
7566     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7567                      DAG.getConstant(1, DL, MVT::i32));
7568     OperandVT = MVT::f64;
7569   }
7570 
7571   // Some checks may be represented as inversion of simpler check, for example
7572   // "inf|normal|subnormal|zero" => !"nan".
7573   bool IsInverted = false;
7574   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7575     IsInverted = true;
7576     Test = InvertedCheck;
7577   }
7578 
7579   // Floating-point type properties.
7580   EVT ScalarFloatVT = OperandVT.getScalarType();
7581   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7582   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7583   bool IsF80 = (ScalarFloatVT == MVT::f80);
7584 
7585   // Some checks can be implemented using float comparisons, if floating point
7586   // exceptions are ignored.
7587   if (Flags.hasNoFPExcept() &&
7588       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7589     if (Test == fcZero)
7590       return DAG.getSetCC(DL, ResultVT, Op,
7591                           DAG.getConstantFP(0.0, DL, OperandVT),
7592                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7593     if (Test == fcNan)
7594       return DAG.getSetCC(DL, ResultVT, Op, Op,
7595                           IsInverted ? ISD::SETO : ISD::SETUO);
7596   }
7597 
7598   // In the general case use integer operations.
7599   unsigned BitSize = OperandVT.getScalarSizeInBits();
7600   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7601   if (OperandVT.isVector())
7602     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7603                              OperandVT.getVectorElementCount());
7604   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7605 
7606   // Various masks.
7607   APInt SignBit = APInt::getSignMask(BitSize);
7608   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7609   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7610   const unsigned ExplicitIntBitInF80 = 63;
7611   APInt ExpMask = Inf;
7612   if (IsF80)
7613     ExpMask.clearBit(ExplicitIntBitInF80);
7614   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7615   APInt QNaNBitMask =
7616       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7617   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7618 
7619   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7620   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7621   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7622   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7623   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7624   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7625 
7626   SDValue Res;
7627   const auto appendResult = [&](SDValue PartialRes) {
7628     if (PartialRes) {
7629       if (Res)
7630         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7631       else
7632         Res = PartialRes;
7633     }
7634   };
7635 
7636   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7637   const auto getIntBitIsSet = [&]() -> SDValue {
7638     if (!IntBitIsSetV) {
7639       APInt IntBitMask(BitSize, 0);
7640       IntBitMask.setBit(ExplicitIntBitInF80);
7641       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7642       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7643       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7644     }
7645     return IntBitIsSetV;
7646   };
7647 
7648   // Split the value into sign bit and absolute value.
7649   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7650   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7651                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7652 
7653   // Tests that involve more than one class should be processed first.
7654   SDValue PartialRes;
7655 
7656   if (IsF80)
7657     ; // Detect finite numbers of f80 by checking individual classes because
7658       // they have different settings of the explicit integer bit.
7659   else if ((Test & fcFinite) == fcFinite) {
7660     // finite(V) ==> abs(V) < exp_mask
7661     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7662     Test &= ~fcFinite;
7663   } else if ((Test & fcFinite) == fcPosFinite) {
7664     // finite(V) && V > 0 ==> V < exp_mask
7665     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7666     Test &= ~fcPosFinite;
7667   } else if ((Test & fcFinite) == fcNegFinite) {
7668     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7669     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7670     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7671     Test &= ~fcNegFinite;
7672   }
7673   appendResult(PartialRes);
7674 
7675   // Check for individual classes.
7676 
7677   if (unsigned PartialCheck = Test & fcZero) {
7678     if (PartialCheck == fcPosZero)
7679       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7680     else if (PartialCheck == fcZero)
7681       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7682     else // ISD::fcNegZero
7683       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7684     appendResult(PartialRes);
7685   }
7686 
7687   if (unsigned PartialCheck = Test & fcInf) {
7688     if (PartialCheck == fcPosInf)
7689       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7690     else if (PartialCheck == fcInf)
7691       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7692     else { // ISD::fcNegInf
7693       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7694       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7695       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7696     }
7697     appendResult(PartialRes);
7698   }
7699 
7700   if (unsigned PartialCheck = Test & fcNan) {
7701     APInt InfWithQnanBit = Inf | QNaNBitMask;
7702     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7703     if (PartialCheck == fcNan) {
7704       // isnan(V) ==> abs(V) > int(inf)
7705       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7706       if (IsF80) {
7707         // Recognize unsupported values as NaNs for compatibility with glibc.
7708         // In them (exp(V)==0) == int_bit.
7709         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7710         SDValue ExpIsZero =
7711             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7712         SDValue IsPseudo =
7713             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7714         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7715       }
7716     } else if (PartialCheck == fcQNan) {
7717       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7718       PartialRes =
7719           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7720     } else { // ISD::fcSNan
7721       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7722       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7723       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7724       SDValue IsNotQnan =
7725           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7726       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7727     }
7728     appendResult(PartialRes);
7729   }
7730 
7731   if (unsigned PartialCheck = Test & fcSubnormal) {
7732     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7733     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7734     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7735     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7736     SDValue VMinusOneV =
7737         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7738     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7739     if (PartialCheck == fcNegSubnormal)
7740       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7741     appendResult(PartialRes);
7742   }
7743 
7744   if (unsigned PartialCheck = Test & fcNormal) {
7745     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7746     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7747     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7748     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7749     APInt ExpLimit = ExpMask - ExpLSB;
7750     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7751     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7752     if (PartialCheck == fcNegNormal)
7753       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7754     else if (PartialCheck == fcPosNormal) {
7755       SDValue PosSignV =
7756           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7757       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7758     }
7759     if (IsF80)
7760       PartialRes =
7761           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7762     appendResult(PartialRes);
7763   }
7764 
7765   if (!Res)
7766     return DAG.getConstant(IsInverted, DL, ResultVT);
7767   if (IsInverted)
7768     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7769   return Res;
7770 }
7771 
7772 // Only expand vector types if we have the appropriate vector bit operations.
7773 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7774   assert(VT.isVector() && "Expected vector type");
7775   unsigned Len = VT.getScalarSizeInBits();
7776   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7777          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7778          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7779          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7780          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7781 }
7782 
7783 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7784   SDLoc dl(Node);
7785   EVT VT = Node->getValueType(0);
7786   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7787   SDValue Op = Node->getOperand(0);
7788   unsigned Len = VT.getScalarSizeInBits();
7789   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7790 
7791   // TODO: Add support for irregular type lengths.
7792   if (!(Len <= 128 && Len % 8 == 0))
7793     return SDValue();
7794 
7795   // Only expand vector types if we have the appropriate vector bit operations.
7796   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7797     return SDValue();
7798 
7799   // This is the "best" algorithm from
7800   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7801   SDValue Mask55 =
7802       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7803   SDValue Mask33 =
7804       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7805   SDValue Mask0F =
7806       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7807 
7808   // v = v - ((v >> 1) & 0x55555555...)
7809   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7810                    DAG.getNode(ISD::AND, dl, VT,
7811                                DAG.getNode(ISD::SRL, dl, VT, Op,
7812                                            DAG.getConstant(1, dl, ShVT)),
7813                                Mask55));
7814   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7815   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7816                    DAG.getNode(ISD::AND, dl, VT,
7817                                DAG.getNode(ISD::SRL, dl, VT, Op,
7818                                            DAG.getConstant(2, dl, ShVT)),
7819                                Mask33));
7820   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7821   Op = DAG.getNode(ISD::AND, dl, VT,
7822                    DAG.getNode(ISD::ADD, dl, VT, Op,
7823                                DAG.getNode(ISD::SRL, dl, VT, Op,
7824                                            DAG.getConstant(4, dl, ShVT))),
7825                    Mask0F);
7826 
7827   if (Len <= 8)
7828     return Op;
7829 
7830   // Avoid the multiply if we only have 2 bytes to add.
7831   // TODO: Only doing this for scalars because vectors weren't as obviously
7832   // improved.
7833   if (Len == 16 && !VT.isVector()) {
7834     // v = (v + (v >> 8)) & 0x00FF;
7835     return DAG.getNode(ISD::AND, dl, VT,
7836                      DAG.getNode(ISD::ADD, dl, VT, Op,
7837                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7838                                              DAG.getConstant(8, dl, ShVT))),
7839                      DAG.getConstant(0xFF, dl, VT));
7840   }
7841 
7842   // v = (v * 0x01010101...) >> (Len - 8)
7843   SDValue Mask01 =
7844       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7845   return DAG.getNode(ISD::SRL, dl, VT,
7846                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7847                      DAG.getConstant(Len - 8, dl, ShVT));
7848 }
7849 
7850 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7851   SDLoc dl(Node);
7852   EVT VT = Node->getValueType(0);
7853   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7854   SDValue Op = Node->getOperand(0);
7855   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7856 
7857   // If the non-ZERO_UNDEF version is supported we can use that instead.
7858   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7859       isOperationLegalOrCustom(ISD::CTLZ, VT))
7860     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7861 
7862   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7863   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7864     EVT SetCCVT =
7865         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7866     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7867     SDValue Zero = DAG.getConstant(0, dl, VT);
7868     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7869     return DAG.getSelect(dl, VT, SrcIsZero,
7870                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7871   }
7872 
7873   // Only expand vector types if we have the appropriate vector bit operations.
7874   // This includes the operations needed to expand CTPOP if it isn't supported.
7875   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7876                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7877                          !canExpandVectorCTPOP(*this, VT)) ||
7878                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7879                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7880     return SDValue();
7881 
7882   // for now, we do this:
7883   // x = x | (x >> 1);
7884   // x = x | (x >> 2);
7885   // ...
7886   // x = x | (x >>16);
7887   // x = x | (x >>32); // for 64-bit input
7888   // return popcount(~x);
7889   //
7890   // Ref: "Hacker's Delight" by Henry Warren
7891   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7892     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7893     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7894                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7895   }
7896   Op = DAG.getNOT(dl, Op, VT);
7897   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7898 }
7899 
7900 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7901   SDLoc dl(Node);
7902   EVT VT = Node->getValueType(0);
7903   SDValue Op = Node->getOperand(0);
7904   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7905 
7906   // If the non-ZERO_UNDEF version is supported we can use that instead.
7907   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7908       isOperationLegalOrCustom(ISD::CTTZ, VT))
7909     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7910 
7911   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7912   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7913     EVT SetCCVT =
7914         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7915     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7916     SDValue Zero = DAG.getConstant(0, dl, VT);
7917     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7918     return DAG.getSelect(dl, VT, SrcIsZero,
7919                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7920   }
7921 
7922   // Only expand vector types if we have the appropriate vector bit operations.
7923   // This includes the operations needed to expand CTPOP if it isn't supported.
7924   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7925                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7926                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7927                          !canExpandVectorCTPOP(*this, VT)) ||
7928                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7929                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7930                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7931     return SDValue();
7932 
7933   // for now, we use: { return popcount(~x & (x - 1)); }
7934   // unless the target has ctlz but not ctpop, in which case we use:
7935   // { return 32 - nlz(~x & (x-1)); }
7936   // Ref: "Hacker's Delight" by Henry Warren
7937   SDValue Tmp = DAG.getNode(
7938       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7939       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7940 
7941   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7942   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7943     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7944                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7945   }
7946 
7947   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7948 }
7949 
7950 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7951                                   bool IsNegative) const {
7952   SDLoc dl(N);
7953   EVT VT = N->getValueType(0);
7954   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7955   SDValue Op = N->getOperand(0);
7956 
7957   // abs(x) -> smax(x,sub(0,x))
7958   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7959       isOperationLegal(ISD::SMAX, VT)) {
7960     SDValue Zero = DAG.getConstant(0, dl, VT);
7961     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7962                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7963   }
7964 
7965   // abs(x) -> umin(x,sub(0,x))
7966   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7967       isOperationLegal(ISD::UMIN, VT)) {
7968     SDValue Zero = DAG.getConstant(0, dl, VT);
7969     Op = DAG.getFreeze(Op);
7970     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7971                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7972   }
7973 
7974   // 0 - abs(x) -> smin(x, sub(0,x))
7975   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7976       isOperationLegal(ISD::SMIN, VT)) {
7977     Op = DAG.getFreeze(Op);
7978     SDValue Zero = DAG.getConstant(0, dl, VT);
7979     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7980                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7981   }
7982 
7983   // Only expand vector types if we have the appropriate vector operations.
7984   if (VT.isVector() &&
7985       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7986        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7987        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7988        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7989     return SDValue();
7990 
7991   Op = DAG.getFreeze(Op);
7992   SDValue Shift =
7993       DAG.getNode(ISD::SRA, dl, VT, Op,
7994                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7995   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7996 
7997   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7998   if (!IsNegative)
7999     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8000 
8001   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8002   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8003 }
8004 
8005 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8006   SDLoc dl(N);
8007   EVT VT = N->getValueType(0);
8008   SDValue Op = N->getOperand(0);
8009 
8010   if (!VT.isSimple())
8011     return SDValue();
8012 
8013   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8014   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8015   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8016   default:
8017     return SDValue();
8018   case MVT::i16:
8019     // Use a rotate by 8. This can be further expanded if necessary.
8020     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8021   case MVT::i32:
8022     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8023     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8024     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8025     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8026     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8027                        DAG.getConstant(0xFF0000, dl, VT));
8028     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8029     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8030     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8031     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8032   case MVT::i64:
8033     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8034     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8035     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8036     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8037     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8038     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8039     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8040     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8041     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8042                        DAG.getConstant(255ULL<<48, dl, VT));
8043     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8044                        DAG.getConstant(255ULL<<40, dl, VT));
8045     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8046                        DAG.getConstant(255ULL<<32, dl, VT));
8047     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8048                        DAG.getConstant(255ULL<<24, dl, VT));
8049     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8050                        DAG.getConstant(255ULL<<16, dl, VT));
8051     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8052                        DAG.getConstant(255ULL<<8 , dl, VT));
8053     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8054     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8055     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8056     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8057     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8058     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8059     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8060   }
8061 }
8062 
8063 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8064   SDLoc dl(N);
8065   EVT VT = N->getValueType(0);
8066   SDValue Op = N->getOperand(0);
8067   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8068   unsigned Sz = VT.getScalarSizeInBits();
8069 
8070   SDValue Tmp, Tmp2, Tmp3;
8071 
8072   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8073   // and finally the i1 pairs.
8074   // TODO: We can easily support i4/i2 legal types if any target ever does.
8075   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8076     // Create the masks - repeating the pattern every byte.
8077     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8078     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8079     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8080 
8081     // BSWAP if the type is wider than a single byte.
8082     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8083 
8084     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8085     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8086     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8087     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8088     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8089     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8090 
8091     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8092     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8093     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8094     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8095     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8096     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8097 
8098     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8099     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8100     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8101     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8102     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8103     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8104     return Tmp;
8105   }
8106 
8107   Tmp = DAG.getConstant(0, dl, VT);
8108   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8109     if (I < J)
8110       Tmp2 =
8111           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8112     else
8113       Tmp2 =
8114           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8115 
8116     APInt Shift(Sz, 1);
8117     Shift <<= J;
8118     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8119     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8120   }
8121 
8122   return Tmp;
8123 }
8124 
8125 std::pair<SDValue, SDValue>
8126 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8127                                     SelectionDAG &DAG) const {
8128   SDLoc SL(LD);
8129   SDValue Chain = LD->getChain();
8130   SDValue BasePTR = LD->getBasePtr();
8131   EVT SrcVT = LD->getMemoryVT();
8132   EVT DstVT = LD->getValueType(0);
8133   ISD::LoadExtType ExtType = LD->getExtensionType();
8134 
8135   if (SrcVT.isScalableVector())
8136     report_fatal_error("Cannot scalarize scalable vector loads");
8137 
8138   unsigned NumElem = SrcVT.getVectorNumElements();
8139 
8140   EVT SrcEltVT = SrcVT.getScalarType();
8141   EVT DstEltVT = DstVT.getScalarType();
8142 
8143   // A vector must always be stored in memory as-is, i.e. without any padding
8144   // between the elements, since various code depend on it, e.g. in the
8145   // handling of a bitcast of a vector type to int, which may be done with a
8146   // vector store followed by an integer load. A vector that does not have
8147   // elements that are byte-sized must therefore be stored as an integer
8148   // built out of the extracted vector elements.
8149   if (!SrcEltVT.isByteSized()) {
8150     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8151     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8152 
8153     unsigned NumSrcBits = SrcVT.getSizeInBits();
8154     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8155 
8156     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8157     SDValue SrcEltBitMask = DAG.getConstant(
8158         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8159 
8160     // Load the whole vector and avoid masking off the top bits as it makes
8161     // the codegen worse.
8162     SDValue Load =
8163         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8164                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8165                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8166 
8167     SmallVector<SDValue, 8> Vals;
8168     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8169       unsigned ShiftIntoIdx =
8170           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8171       SDValue ShiftAmount =
8172           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8173                                      LoadVT, SL, /*LegalTypes=*/false);
8174       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8175       SDValue Elt =
8176           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8177       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8178 
8179       if (ExtType != ISD::NON_EXTLOAD) {
8180         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8181         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8182       }
8183 
8184       Vals.push_back(Scalar);
8185     }
8186 
8187     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8188     return std::make_pair(Value, Load.getValue(1));
8189   }
8190 
8191   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8192   assert(SrcEltVT.isByteSized());
8193 
8194   SmallVector<SDValue, 8> Vals;
8195   SmallVector<SDValue, 8> LoadChains;
8196 
8197   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8198     SDValue ScalarLoad =
8199         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8200                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8201                        SrcEltVT, LD->getOriginalAlign(),
8202                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8203 
8204     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8205 
8206     Vals.push_back(ScalarLoad.getValue(0));
8207     LoadChains.push_back(ScalarLoad.getValue(1));
8208   }
8209 
8210   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8211   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8212 
8213   return std::make_pair(Value, NewChain);
8214 }
8215 
8216 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8217                                              SelectionDAG &DAG) const {
8218   SDLoc SL(ST);
8219 
8220   SDValue Chain = ST->getChain();
8221   SDValue BasePtr = ST->getBasePtr();
8222   SDValue Value = ST->getValue();
8223   EVT StVT = ST->getMemoryVT();
8224 
8225   if (StVT.isScalableVector())
8226     report_fatal_error("Cannot scalarize scalable vector stores");
8227 
8228   // The type of the data we want to save
8229   EVT RegVT = Value.getValueType();
8230   EVT RegSclVT = RegVT.getScalarType();
8231 
8232   // The type of data as saved in memory.
8233   EVT MemSclVT = StVT.getScalarType();
8234 
8235   unsigned NumElem = StVT.getVectorNumElements();
8236 
8237   // A vector must always be stored in memory as-is, i.e. without any padding
8238   // between the elements, since various code depend on it, e.g. in the
8239   // handling of a bitcast of a vector type to int, which may be done with a
8240   // vector store followed by an integer load. A vector that does not have
8241   // elements that are byte-sized must therefore be stored as an integer
8242   // built out of the extracted vector elements.
8243   if (!MemSclVT.isByteSized()) {
8244     unsigned NumBits = StVT.getSizeInBits();
8245     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8246 
8247     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8248 
8249     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8250       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8251                                 DAG.getVectorIdxConstant(Idx, SL));
8252       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8253       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8254       unsigned ShiftIntoIdx =
8255           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8256       SDValue ShiftAmount =
8257           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8258       SDValue ShiftedElt =
8259           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8260       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8261     }
8262 
8263     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8264                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8265                         ST->getAAInfo());
8266   }
8267 
8268   // Store Stride in bytes
8269   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8270   assert(Stride && "Zero stride!");
8271   // Extract each of the elements from the original vector and save them into
8272   // memory individually.
8273   SmallVector<SDValue, 8> Stores;
8274   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8275     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8276                               DAG.getVectorIdxConstant(Idx, SL));
8277 
8278     SDValue Ptr =
8279         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8280 
8281     // This scalar TruncStore may be illegal, but we legalize it later.
8282     SDValue Store = DAG.getTruncStore(
8283         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8284         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8285         ST->getAAInfo());
8286 
8287     Stores.push_back(Store);
8288   }
8289 
8290   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8291 }
8292 
8293 std::pair<SDValue, SDValue>
8294 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8295   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8296          "unaligned indexed loads not implemented!");
8297   SDValue Chain = LD->getChain();
8298   SDValue Ptr = LD->getBasePtr();
8299   EVT VT = LD->getValueType(0);
8300   EVT LoadedVT = LD->getMemoryVT();
8301   SDLoc dl(LD);
8302   auto &MF = DAG.getMachineFunction();
8303 
8304   if (VT.isFloatingPoint() || VT.isVector()) {
8305     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8306     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8307       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8308           LoadedVT.isVector()) {
8309         // Scalarize the load and let the individual components be handled.
8310         return scalarizeVectorLoad(LD, DAG);
8311       }
8312 
8313       // Expand to a (misaligned) integer load of the same size,
8314       // then bitconvert to floating point or vector.
8315       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8316                                     LD->getMemOperand());
8317       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8318       if (LoadedVT != VT)
8319         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8320                              ISD::ANY_EXTEND, dl, VT, Result);
8321 
8322       return std::make_pair(Result, newLoad.getValue(1));
8323     }
8324 
8325     // Copy the value to a (aligned) stack slot using (unaligned) integer
8326     // loads and stores, then do a (aligned) load from the stack slot.
8327     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8328     unsigned LoadedBytes = LoadedVT.getStoreSize();
8329     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8330     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8331 
8332     // Make sure the stack slot is also aligned for the register type.
8333     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8334     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8335     SmallVector<SDValue, 8> Stores;
8336     SDValue StackPtr = StackBase;
8337     unsigned Offset = 0;
8338 
8339     EVT PtrVT = Ptr.getValueType();
8340     EVT StackPtrVT = StackPtr.getValueType();
8341 
8342     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8343     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8344 
8345     // Do all but one copies using the full register width.
8346     for (unsigned i = 1; i < NumRegs; i++) {
8347       // Load one integer register's worth from the original location.
8348       SDValue Load = DAG.getLoad(
8349           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8350           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8351           LD->getAAInfo());
8352       // Follow the load with a store to the stack slot.  Remember the store.
8353       Stores.push_back(DAG.getStore(
8354           Load.getValue(1), dl, Load, StackPtr,
8355           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8356       // Increment the pointers.
8357       Offset += RegBytes;
8358 
8359       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8360       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8361     }
8362 
8363     // The last copy may be partial.  Do an extending load.
8364     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8365                                   8 * (LoadedBytes - Offset));
8366     SDValue Load =
8367         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8368                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8369                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8370                        LD->getAAInfo());
8371     // Follow the load with a store to the stack slot.  Remember the store.
8372     // On big-endian machines this requires a truncating store to ensure
8373     // that the bits end up in the right place.
8374     Stores.push_back(DAG.getTruncStore(
8375         Load.getValue(1), dl, Load, StackPtr,
8376         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8377 
8378     // The order of the stores doesn't matter - say it with a TokenFactor.
8379     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8380 
8381     // Finally, perform the original load only redirected to the stack slot.
8382     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8383                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8384                           LoadedVT);
8385 
8386     // Callers expect a MERGE_VALUES node.
8387     return std::make_pair(Load, TF);
8388   }
8389 
8390   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8391          "Unaligned load of unsupported type.");
8392 
8393   // Compute the new VT that is half the size of the old one.  This is an
8394   // integer MVT.
8395   unsigned NumBits = LoadedVT.getSizeInBits();
8396   EVT NewLoadedVT;
8397   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8398   NumBits >>= 1;
8399 
8400   Align Alignment = LD->getOriginalAlign();
8401   unsigned IncrementSize = NumBits / 8;
8402   ISD::LoadExtType HiExtType = LD->getExtensionType();
8403 
8404   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8405   if (HiExtType == ISD::NON_EXTLOAD)
8406     HiExtType = ISD::ZEXTLOAD;
8407 
8408   // Load the value in two parts
8409   SDValue Lo, Hi;
8410   if (DAG.getDataLayout().isLittleEndian()) {
8411     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8412                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8413                         LD->getAAInfo());
8414 
8415     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8416     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8417                         LD->getPointerInfo().getWithOffset(IncrementSize),
8418                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8419                         LD->getAAInfo());
8420   } else {
8421     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8422                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8423                         LD->getAAInfo());
8424 
8425     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8426     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8427                         LD->getPointerInfo().getWithOffset(IncrementSize),
8428                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8429                         LD->getAAInfo());
8430   }
8431 
8432   // aggregate the two parts
8433   SDValue ShiftAmount =
8434       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8435                                                     DAG.getDataLayout()));
8436   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8437   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8438 
8439   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8440                              Hi.getValue(1));
8441 
8442   return std::make_pair(Result, TF);
8443 }
8444 
8445 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8446                                              SelectionDAG &DAG) const {
8447   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8448          "unaligned indexed stores not implemented!");
8449   SDValue Chain = ST->getChain();
8450   SDValue Ptr = ST->getBasePtr();
8451   SDValue Val = ST->getValue();
8452   EVT VT = Val.getValueType();
8453   Align Alignment = ST->getOriginalAlign();
8454   auto &MF = DAG.getMachineFunction();
8455   EVT StoreMemVT = ST->getMemoryVT();
8456 
8457   SDLoc dl(ST);
8458   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8459     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8460     if (isTypeLegal(intVT)) {
8461       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8462           StoreMemVT.isVector()) {
8463         // Scalarize the store and let the individual components be handled.
8464         SDValue Result = scalarizeVectorStore(ST, DAG);
8465         return Result;
8466       }
8467       // Expand to a bitconvert of the value to the integer type of the
8468       // same size, then a (misaligned) int store.
8469       // FIXME: Does not handle truncating floating point stores!
8470       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8471       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8472                             Alignment, ST->getMemOperand()->getFlags());
8473       return Result;
8474     }
8475     // Do a (aligned) store to a stack slot, then copy from the stack slot
8476     // to the final destination using (unaligned) integer loads and stores.
8477     MVT RegVT = getRegisterType(
8478         *DAG.getContext(),
8479         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8480     EVT PtrVT = Ptr.getValueType();
8481     unsigned StoredBytes = StoreMemVT.getStoreSize();
8482     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8483     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8484 
8485     // Make sure the stack slot is also aligned for the register type.
8486     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8487     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8488 
8489     // Perform the original store, only redirected to the stack slot.
8490     SDValue Store = DAG.getTruncStore(
8491         Chain, dl, Val, StackPtr,
8492         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8493 
8494     EVT StackPtrVT = StackPtr.getValueType();
8495 
8496     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8497     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8498     SmallVector<SDValue, 8> Stores;
8499     unsigned Offset = 0;
8500 
8501     // Do all but one copies using the full register width.
8502     for (unsigned i = 1; i < NumRegs; i++) {
8503       // Load one integer register's worth from the stack slot.
8504       SDValue Load = DAG.getLoad(
8505           RegVT, dl, Store, StackPtr,
8506           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8507       // Store it to the final location.  Remember the store.
8508       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8509                                     ST->getPointerInfo().getWithOffset(Offset),
8510                                     ST->getOriginalAlign(),
8511                                     ST->getMemOperand()->getFlags()));
8512       // Increment the pointers.
8513       Offset += RegBytes;
8514       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8515       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8516     }
8517 
8518     // The last store may be partial.  Do a truncating store.  On big-endian
8519     // machines this requires an extending load from the stack slot to ensure
8520     // that the bits are in the right place.
8521     EVT LoadMemVT =
8522         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8523 
8524     // Load from the stack slot.
8525     SDValue Load = DAG.getExtLoad(
8526         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8527         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8528 
8529     Stores.push_back(
8530         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8531                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8532                           ST->getOriginalAlign(),
8533                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8534     // The order of the stores doesn't matter - say it with a TokenFactor.
8535     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8536     return Result;
8537   }
8538 
8539   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8540          "Unaligned store of unknown type.");
8541   // Get the half-size VT
8542   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8543   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8544   unsigned IncrementSize = NumBits / 8;
8545 
8546   // Divide the stored value in two parts.
8547   SDValue ShiftAmount = DAG.getConstant(
8548       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8549   SDValue Lo = Val;
8550   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8551 
8552   // Store the two parts
8553   SDValue Store1, Store2;
8554   Store1 = DAG.getTruncStore(Chain, dl,
8555                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8556                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8557                              ST->getMemOperand()->getFlags());
8558 
8559   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8560   Store2 = DAG.getTruncStore(
8561       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8562       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8563       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8564 
8565   SDValue Result =
8566       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8567   return Result;
8568 }
8569 
8570 SDValue
8571 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8572                                        const SDLoc &DL, EVT DataVT,
8573                                        SelectionDAG &DAG,
8574                                        bool IsCompressedMemory) const {
8575   SDValue Increment;
8576   EVT AddrVT = Addr.getValueType();
8577   EVT MaskVT = Mask.getValueType();
8578   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8579          "Incompatible types of Data and Mask");
8580   if (IsCompressedMemory) {
8581     if (DataVT.isScalableVector())
8582       report_fatal_error(
8583           "Cannot currently handle compressed memory with scalable vectors");
8584     // Incrementing the pointer according to number of '1's in the mask.
8585     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8586     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8587     if (MaskIntVT.getSizeInBits() < 32) {
8588       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8589       MaskIntVT = MVT::i32;
8590     }
8591 
8592     // Count '1's with POPCNT.
8593     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8594     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8595     // Scale is an element size in bytes.
8596     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8597                                     AddrVT);
8598     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8599   } else if (DataVT.isScalableVector()) {
8600     Increment = DAG.getVScale(DL, AddrVT,
8601                               APInt(AddrVT.getFixedSizeInBits(),
8602                                     DataVT.getStoreSize().getKnownMinSize()));
8603   } else
8604     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8605 
8606   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8607 }
8608 
8609 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8610                                        EVT VecVT, const SDLoc &dl,
8611                                        ElementCount SubEC) {
8612   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8613          "Cannot index a scalable vector within a fixed-width vector");
8614 
8615   unsigned NElts = VecVT.getVectorMinNumElements();
8616   unsigned NumSubElts = SubEC.getKnownMinValue();
8617   EVT IdxVT = Idx.getValueType();
8618 
8619   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8620     // If this is a constant index and we know the value plus the number of the
8621     // elements in the subvector minus one is less than the minimum number of
8622     // elements then it's safe to return Idx.
8623     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8624       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8625         return Idx;
8626     SDValue VS =
8627         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8628     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8629     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8630                               DAG.getConstant(NumSubElts, dl, IdxVT));
8631     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8632   }
8633   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8634     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8635     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8636                        DAG.getConstant(Imm, dl, IdxVT));
8637   }
8638   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8639   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8640                      DAG.getConstant(MaxIndex, dl, IdxVT));
8641 }
8642 
8643 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8644                                                 SDValue VecPtr, EVT VecVT,
8645                                                 SDValue Index) const {
8646   return getVectorSubVecPointer(
8647       DAG, VecPtr, VecVT,
8648       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8649       Index);
8650 }
8651 
8652 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8653                                                SDValue VecPtr, EVT VecVT,
8654                                                EVT SubVecVT,
8655                                                SDValue Index) const {
8656   SDLoc dl(Index);
8657   // Make sure the index type is big enough to compute in.
8658   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8659 
8660   EVT EltVT = VecVT.getVectorElementType();
8661 
8662   // Calculate the element offset and add it to the pointer.
8663   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8664   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8665          "Converting bits to bytes lost precision");
8666   assert(SubVecVT.getVectorElementType() == EltVT &&
8667          "Sub-vector must be a vector with matching element type");
8668   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8669                                   SubVecVT.getVectorElementCount());
8670 
8671   EVT IdxVT = Index.getValueType();
8672   if (SubVecVT.isScalableVector())
8673     Index =
8674         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8675                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8676 
8677   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8678                       DAG.getConstant(EltSize, dl, IdxVT));
8679   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8680 }
8681 
8682 //===----------------------------------------------------------------------===//
8683 // Implementation of Emulated TLS Model
8684 //===----------------------------------------------------------------------===//
8685 
8686 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8687                                                 SelectionDAG &DAG) const {
8688   // Access to address of TLS varialbe xyz is lowered to a function call:
8689   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8690   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8691   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8692   SDLoc dl(GA);
8693 
8694   ArgListTy Args;
8695   ArgListEntry Entry;
8696   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8697   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8698   StringRef EmuTlsVarName(NameString);
8699   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8700   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8701   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8702   Entry.Ty = VoidPtrType;
8703   Args.push_back(Entry);
8704 
8705   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8706 
8707   TargetLowering::CallLoweringInfo CLI(DAG);
8708   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8709   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8710   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8711 
8712   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8713   // At last for X86 targets, maybe good for other targets too?
8714   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8715   MFI.setAdjustsStack(true); // Is this only for X86 target?
8716   MFI.setHasCalls(true);
8717 
8718   assert((GA->getOffset() == 0) &&
8719          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8720   return CallResult.first;
8721 }
8722 
8723 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8724                                                 SelectionDAG &DAG) const {
8725   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8726   if (!isCtlzFast())
8727     return SDValue();
8728   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8729   SDLoc dl(Op);
8730   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8731     if (C->isZero() && CC == ISD::SETEQ) {
8732       EVT VT = Op.getOperand(0).getValueType();
8733       SDValue Zext = Op.getOperand(0);
8734       if (VT.bitsLT(MVT::i32)) {
8735         VT = MVT::i32;
8736         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8737       }
8738       unsigned Log2b = Log2_32(VT.getSizeInBits());
8739       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8740       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8741                                 DAG.getConstant(Log2b, dl, MVT::i32));
8742       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8743     }
8744   }
8745   return SDValue();
8746 }
8747 
8748 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8749   SDValue Op0 = Node->getOperand(0);
8750   SDValue Op1 = Node->getOperand(1);
8751   EVT VT = Op0.getValueType();
8752   unsigned Opcode = Node->getOpcode();
8753   SDLoc DL(Node);
8754 
8755   // umin(x,y) -> sub(x,usubsat(x,y))
8756   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8757       isOperationLegal(ISD::USUBSAT, VT)) {
8758     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8759                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8760   }
8761 
8762   // umax(x,y) -> add(x,usubsat(y,x))
8763   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8764       isOperationLegal(ISD::USUBSAT, VT)) {
8765     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8766                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8767   }
8768 
8769   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8770   ISD::CondCode CC;
8771   switch (Opcode) {
8772   default: llvm_unreachable("How did we get here?");
8773   case ISD::SMAX: CC = ISD::SETGT; break;
8774   case ISD::SMIN: CC = ISD::SETLT; break;
8775   case ISD::UMAX: CC = ISD::SETUGT; break;
8776   case ISD::UMIN: CC = ISD::SETULT; break;
8777   }
8778 
8779   // FIXME: Should really try to split the vector in case it's legal on a
8780   // subvector.
8781   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8782     return DAG.UnrollVectorOp(Node);
8783 
8784   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8785   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8786   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8787 }
8788 
8789 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8790   unsigned Opcode = Node->getOpcode();
8791   SDValue LHS = Node->getOperand(0);
8792   SDValue RHS = Node->getOperand(1);
8793   EVT VT = LHS.getValueType();
8794   SDLoc dl(Node);
8795 
8796   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8797   assert(VT.isInteger() && "Expected operands to be integers");
8798 
8799   // usub.sat(a, b) -> umax(a, b) - b
8800   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8801     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8802     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8803   }
8804 
8805   // uadd.sat(a, b) -> umin(a, ~b) + b
8806   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8807     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8808     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8809     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8810   }
8811 
8812   unsigned OverflowOp;
8813   switch (Opcode) {
8814   case ISD::SADDSAT:
8815     OverflowOp = ISD::SADDO;
8816     break;
8817   case ISD::UADDSAT:
8818     OverflowOp = ISD::UADDO;
8819     break;
8820   case ISD::SSUBSAT:
8821     OverflowOp = ISD::SSUBO;
8822     break;
8823   case ISD::USUBSAT:
8824     OverflowOp = ISD::USUBO;
8825     break;
8826   default:
8827     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8828                      "addition or subtraction node.");
8829   }
8830 
8831   // FIXME: Should really try to split the vector in case it's legal on a
8832   // subvector.
8833   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8834     return DAG.UnrollVectorOp(Node);
8835 
8836   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8837   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8838   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8839   SDValue SumDiff = Result.getValue(0);
8840   SDValue Overflow = Result.getValue(1);
8841   SDValue Zero = DAG.getConstant(0, dl, VT);
8842   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8843 
8844   if (Opcode == ISD::UADDSAT) {
8845     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8846       // (LHS + RHS) | OverflowMask
8847       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8848       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8849     }
8850     // Overflow ? 0xffff.... : (LHS + RHS)
8851     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8852   }
8853 
8854   if (Opcode == ISD::USUBSAT) {
8855     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8856       // (LHS - RHS) & ~OverflowMask
8857       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8858       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8859       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8860     }
8861     // Overflow ? 0 : (LHS - RHS)
8862     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8863   }
8864 
8865   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8866   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8867   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8868   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8869                               DAG.getConstant(BitWidth - 1, dl, VT));
8870   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8871   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8872 }
8873 
8874 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8875   unsigned Opcode = Node->getOpcode();
8876   bool IsSigned = Opcode == ISD::SSHLSAT;
8877   SDValue LHS = Node->getOperand(0);
8878   SDValue RHS = Node->getOperand(1);
8879   EVT VT = LHS.getValueType();
8880   SDLoc dl(Node);
8881 
8882   assert((Node->getOpcode() == ISD::SSHLSAT ||
8883           Node->getOpcode() == ISD::USHLSAT) &&
8884           "Expected a SHLSAT opcode");
8885   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8886   assert(VT.isInteger() && "Expected operands to be integers");
8887 
8888   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8889 
8890   unsigned BW = VT.getScalarSizeInBits();
8891   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8892   SDValue Orig =
8893       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8894 
8895   SDValue SatVal;
8896   if (IsSigned) {
8897     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8898     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8899     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8900                              SatMin, SatMax, ISD::SETLT);
8901   } else {
8902     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8903   }
8904   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8905 
8906   return Result;
8907 }
8908 
8909 SDValue
8910 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8911   assert((Node->getOpcode() == ISD::SMULFIX ||
8912           Node->getOpcode() == ISD::UMULFIX ||
8913           Node->getOpcode() == ISD::SMULFIXSAT ||
8914           Node->getOpcode() == ISD::UMULFIXSAT) &&
8915          "Expected a fixed point multiplication opcode");
8916 
8917   SDLoc dl(Node);
8918   SDValue LHS = Node->getOperand(0);
8919   SDValue RHS = Node->getOperand(1);
8920   EVT VT = LHS.getValueType();
8921   unsigned Scale = Node->getConstantOperandVal(2);
8922   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8923                      Node->getOpcode() == ISD::UMULFIXSAT);
8924   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8925                  Node->getOpcode() == ISD::SMULFIXSAT);
8926   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8927   unsigned VTSize = VT.getScalarSizeInBits();
8928 
8929   if (!Scale) {
8930     // [us]mul.fix(a, b, 0) -> mul(a, b)
8931     if (!Saturating) {
8932       if (isOperationLegalOrCustom(ISD::MUL, VT))
8933         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8934     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8935       SDValue Result =
8936           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8937       SDValue Product = Result.getValue(0);
8938       SDValue Overflow = Result.getValue(1);
8939       SDValue Zero = DAG.getConstant(0, dl, VT);
8940 
8941       APInt MinVal = APInt::getSignedMinValue(VTSize);
8942       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8943       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8944       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8945       // Xor the inputs, if resulting sign bit is 0 the product will be
8946       // positive, else negative.
8947       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8948       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8949       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8950       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8951     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8952       SDValue Result =
8953           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8954       SDValue Product = Result.getValue(0);
8955       SDValue Overflow = Result.getValue(1);
8956 
8957       APInt MaxVal = APInt::getMaxValue(VTSize);
8958       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8959       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8960     }
8961   }
8962 
8963   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8964          "Expected scale to be less than the number of bits if signed or at "
8965          "most the number of bits if unsigned.");
8966   assert(LHS.getValueType() == RHS.getValueType() &&
8967          "Expected both operands to be the same type");
8968 
8969   // Get the upper and lower bits of the result.
8970   SDValue Lo, Hi;
8971   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8972   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8973   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8974     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8975     Lo = Result.getValue(0);
8976     Hi = Result.getValue(1);
8977   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8978     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8979     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8980   } else if (VT.isVector()) {
8981     return SDValue();
8982   } else {
8983     report_fatal_error("Unable to expand fixed point multiplication.");
8984   }
8985 
8986   if (Scale == VTSize)
8987     // Result is just the top half since we'd be shifting by the width of the
8988     // operand. Overflow impossible so this works for both UMULFIX and
8989     // UMULFIXSAT.
8990     return Hi;
8991 
8992   // The result will need to be shifted right by the scale since both operands
8993   // are scaled. The result is given to us in 2 halves, so we only want part of
8994   // both in the result.
8995   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8996   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8997                                DAG.getConstant(Scale, dl, ShiftTy));
8998   if (!Saturating)
8999     return Result;
9000 
9001   if (!Signed) {
9002     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9003     // widened multiplication) aren't all zeroes.
9004 
9005     // Saturate to max if ((Hi >> Scale) != 0),
9006     // which is the same as if (Hi > ((1 << Scale) - 1))
9007     APInt MaxVal = APInt::getMaxValue(VTSize);
9008     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9009                                       dl, VT);
9010     Result = DAG.getSelectCC(dl, Hi, LowMask,
9011                              DAG.getConstant(MaxVal, dl, VT), Result,
9012                              ISD::SETUGT);
9013 
9014     return Result;
9015   }
9016 
9017   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9018   // widened multiplication) aren't all ones or all zeroes.
9019 
9020   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9021   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9022 
9023   if (Scale == 0) {
9024     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9025                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9026     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9027     // Saturated to SatMin if wide product is negative, and SatMax if wide
9028     // product is positive ...
9029     SDValue Zero = DAG.getConstant(0, dl, VT);
9030     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9031                                                ISD::SETLT);
9032     // ... but only if we overflowed.
9033     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9034   }
9035 
9036   //  We handled Scale==0 above so all the bits to examine is in Hi.
9037 
9038   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9039   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9040   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9041                                     dl, VT);
9042   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9043   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9044   // which is the same as if (HI < (-1 << (Scale - 1))
9045   SDValue HighMask =
9046       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9047                       dl, VT);
9048   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9049   return Result;
9050 }
9051 
9052 SDValue
9053 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9054                                     SDValue LHS, SDValue RHS,
9055                                     unsigned Scale, SelectionDAG &DAG) const {
9056   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9057           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9058          "Expected a fixed point division opcode");
9059 
9060   EVT VT = LHS.getValueType();
9061   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9062   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9063   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9064 
9065   // If there is enough room in the type to upscale the LHS or downscale the
9066   // RHS before the division, we can perform it in this type without having to
9067   // resize. For signed operations, the LHS headroom is the number of
9068   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9069   // The headroom for the RHS is the number of trailing zeroes.
9070   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9071                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9072   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9073 
9074   // For signed saturating operations, we need to be able to detect true integer
9075   // division overflow; that is, when you have MIN / -EPS. However, this
9076   // is undefined behavior and if we emit divisions that could take such
9077   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9078   // example).
9079   // Avoid this by requiring an extra bit so that we never get this case.
9080   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9081   // signed saturating division, we need to emit a whopping 32-bit division.
9082   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9083     return SDValue();
9084 
9085   unsigned LHSShift = std::min(LHSLead, Scale);
9086   unsigned RHSShift = Scale - LHSShift;
9087 
9088   // At this point, we know that if we shift the LHS up by LHSShift and the
9089   // RHS down by RHSShift, we can emit a regular division with a final scaling
9090   // factor of Scale.
9091 
9092   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9093   if (LHSShift)
9094     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9095                       DAG.getConstant(LHSShift, dl, ShiftTy));
9096   if (RHSShift)
9097     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9098                       DAG.getConstant(RHSShift, dl, ShiftTy));
9099 
9100   SDValue Quot;
9101   if (Signed) {
9102     // For signed operations, if the resulting quotient is negative and the
9103     // remainder is nonzero, subtract 1 from the quotient to round towards
9104     // negative infinity.
9105     SDValue Rem;
9106     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9107     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9108     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9109     if (isTypeLegal(VT) &&
9110         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9111       Quot = DAG.getNode(ISD::SDIVREM, dl,
9112                          DAG.getVTList(VT, VT),
9113                          LHS, RHS);
9114       Rem = Quot.getValue(1);
9115       Quot = Quot.getValue(0);
9116     } else {
9117       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9118                          LHS, RHS);
9119       Rem = DAG.getNode(ISD::SREM, dl, VT,
9120                         LHS, RHS);
9121     }
9122     SDValue Zero = DAG.getConstant(0, dl, VT);
9123     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9124     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9125     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9126     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9127     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9128                                DAG.getConstant(1, dl, VT));
9129     Quot = DAG.getSelect(dl, VT,
9130                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9131                          Sub1, Quot);
9132   } else
9133     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9134                        LHS, RHS);
9135 
9136   return Quot;
9137 }
9138 
9139 void TargetLowering::expandUADDSUBO(
9140     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9141   SDLoc dl(Node);
9142   SDValue LHS = Node->getOperand(0);
9143   SDValue RHS = Node->getOperand(1);
9144   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9145 
9146   // If ADD/SUBCARRY is legal, use that instead.
9147   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9148   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9149     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9150     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9151                                     { LHS, RHS, CarryIn });
9152     Result = SDValue(NodeCarry.getNode(), 0);
9153     Overflow = SDValue(NodeCarry.getNode(), 1);
9154     return;
9155   }
9156 
9157   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9158                             LHS.getValueType(), LHS, RHS);
9159 
9160   EVT ResultType = Node->getValueType(1);
9161   EVT SetCCType = getSetCCResultType(
9162       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9163   SDValue SetCC;
9164   if (IsAdd && isOneConstant(RHS)) {
9165     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9166     // the live range of X. We assume comparing with 0 is cheap.
9167     // The general case (X + C) < C is not necessarily beneficial. Although we
9168     // reduce the live range of X, we may introduce the materialization of
9169     // constant C.
9170     SetCC =
9171         DAG.getSetCC(dl, SetCCType, Result,
9172                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9173   } else {
9174     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9175     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9176   }
9177   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9178 }
9179 
9180 void TargetLowering::expandSADDSUBO(
9181     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9182   SDLoc dl(Node);
9183   SDValue LHS = Node->getOperand(0);
9184   SDValue RHS = Node->getOperand(1);
9185   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9186 
9187   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9188                             LHS.getValueType(), LHS, RHS);
9189 
9190   EVT ResultType = Node->getValueType(1);
9191   EVT OType = getSetCCResultType(
9192       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9193 
9194   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9195   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9196   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9197     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9198     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9199     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9200     return;
9201   }
9202 
9203   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9204 
9205   // For an addition, the result should be less than one of the operands (LHS)
9206   // if and only if the other operand (RHS) is negative, otherwise there will
9207   // be overflow.
9208   // For a subtraction, the result should be less than one of the operands
9209   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9210   // otherwise there will be overflow.
9211   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9212   SDValue ConditionRHS =
9213       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9214 
9215   Overflow = DAG.getBoolExtOrTrunc(
9216       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9217       ResultType, ResultType);
9218 }
9219 
9220 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9221                                 SDValue &Overflow, SelectionDAG &DAG) const {
9222   SDLoc dl(Node);
9223   EVT VT = Node->getValueType(0);
9224   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9225   SDValue LHS = Node->getOperand(0);
9226   SDValue RHS = Node->getOperand(1);
9227   bool isSigned = Node->getOpcode() == ISD::SMULO;
9228 
9229   // For power-of-two multiplications we can use a simpler shift expansion.
9230   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9231     const APInt &C = RHSC->getAPIntValue();
9232     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9233     if (C.isPowerOf2()) {
9234       // smulo(x, signed_min) is same as umulo(x, signed_min).
9235       bool UseArithShift = isSigned && !C.isMinSignedValue();
9236       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9237       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9238       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9239       Overflow = DAG.getSetCC(dl, SetCCVT,
9240           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9241                       dl, VT, Result, ShiftAmt),
9242           LHS, ISD::SETNE);
9243       return true;
9244     }
9245   }
9246 
9247   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9248   if (VT.isVector())
9249     WideVT =
9250         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9251 
9252   SDValue BottomHalf;
9253   SDValue TopHalf;
9254   static const unsigned Ops[2][3] =
9255       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9256         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9257   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9258     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9259     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9260   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9261     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9262                              RHS);
9263     TopHalf = BottomHalf.getValue(1);
9264   } else if (isTypeLegal(WideVT)) {
9265     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9266     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9267     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9268     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9269     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9270         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9271     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9272                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9273   } else {
9274     if (VT.isVector())
9275       return false;
9276 
9277     // We can fall back to a libcall with an illegal type for the MUL if we
9278     // have a libcall big enough.
9279     // Also, we can fall back to a division in some cases, but that's a big
9280     // performance hit in the general case.
9281     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9282     if (WideVT == MVT::i16)
9283       LC = RTLIB::MUL_I16;
9284     else if (WideVT == MVT::i32)
9285       LC = RTLIB::MUL_I32;
9286     else if (WideVT == MVT::i64)
9287       LC = RTLIB::MUL_I64;
9288     else if (WideVT == MVT::i128)
9289       LC = RTLIB::MUL_I128;
9290     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9291 
9292     SDValue HiLHS;
9293     SDValue HiRHS;
9294     if (isSigned) {
9295       // The high part is obtained by SRA'ing all but one of the bits of low
9296       // part.
9297       unsigned LoSize = VT.getFixedSizeInBits();
9298       HiLHS =
9299           DAG.getNode(ISD::SRA, dl, VT, LHS,
9300                       DAG.getConstant(LoSize - 1, dl,
9301                                       getPointerTy(DAG.getDataLayout())));
9302       HiRHS =
9303           DAG.getNode(ISD::SRA, dl, VT, RHS,
9304                       DAG.getConstant(LoSize - 1, dl,
9305                                       getPointerTy(DAG.getDataLayout())));
9306     } else {
9307         HiLHS = DAG.getConstant(0, dl, VT);
9308         HiRHS = DAG.getConstant(0, dl, VT);
9309     }
9310 
9311     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9312     // pre-lowered to the correct types. This all depends upon WideVT not
9313     // being a legal type for the architecture and thus has to be split to
9314     // two arguments.
9315     SDValue Ret;
9316     TargetLowering::MakeLibCallOptions CallOptions;
9317     CallOptions.setSExt(isSigned);
9318     CallOptions.setIsPostTypeLegalization(true);
9319     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9320       // Halves of WideVT are packed into registers in different order
9321       // depending on platform endianness. This is usually handled by
9322       // the C calling convention, but we can't defer to it in
9323       // the legalizer.
9324       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9325       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9326     } else {
9327       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9328       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9329     }
9330     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9331            "Ret value is a collection of constituent nodes holding result.");
9332     if (DAG.getDataLayout().isLittleEndian()) {
9333       // Same as above.
9334       BottomHalf = Ret.getOperand(0);
9335       TopHalf = Ret.getOperand(1);
9336     } else {
9337       BottomHalf = Ret.getOperand(1);
9338       TopHalf = Ret.getOperand(0);
9339     }
9340   }
9341 
9342   Result = BottomHalf;
9343   if (isSigned) {
9344     SDValue ShiftAmt = DAG.getConstant(
9345         VT.getScalarSizeInBits() - 1, dl,
9346         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9347     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9348     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9349   } else {
9350     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9351                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9352   }
9353 
9354   // Truncate the result if SetCC returns a larger type than needed.
9355   EVT RType = Node->getValueType(1);
9356   if (RType.bitsLT(Overflow.getValueType()))
9357     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9358 
9359   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9360          "Unexpected result type for S/UMULO legalization");
9361   return true;
9362 }
9363 
9364 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9365   SDLoc dl(Node);
9366   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9367   SDValue Op = Node->getOperand(0);
9368   EVT VT = Op.getValueType();
9369 
9370   if (VT.isScalableVector())
9371     report_fatal_error(
9372         "Expanding reductions for scalable vectors is undefined.");
9373 
9374   // Try to use a shuffle reduction for power of two vectors.
9375   if (VT.isPow2VectorType()) {
9376     while (VT.getVectorNumElements() > 1) {
9377       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9378       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9379         break;
9380 
9381       SDValue Lo, Hi;
9382       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9383       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9384       VT = HalfVT;
9385     }
9386   }
9387 
9388   EVT EltVT = VT.getVectorElementType();
9389   unsigned NumElts = VT.getVectorNumElements();
9390 
9391   SmallVector<SDValue, 8> Ops;
9392   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9393 
9394   SDValue Res = Ops[0];
9395   for (unsigned i = 1; i < NumElts; i++)
9396     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9397 
9398   // Result type may be wider than element type.
9399   if (EltVT != Node->getValueType(0))
9400     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9401   return Res;
9402 }
9403 
9404 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9405   SDLoc dl(Node);
9406   SDValue AccOp = Node->getOperand(0);
9407   SDValue VecOp = Node->getOperand(1);
9408   SDNodeFlags Flags = Node->getFlags();
9409 
9410   EVT VT = VecOp.getValueType();
9411   EVT EltVT = VT.getVectorElementType();
9412 
9413   if (VT.isScalableVector())
9414     report_fatal_error(
9415         "Expanding reductions for scalable vectors is undefined.");
9416 
9417   unsigned NumElts = VT.getVectorNumElements();
9418 
9419   SmallVector<SDValue, 8> Ops;
9420   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9421 
9422   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9423 
9424   SDValue Res = AccOp;
9425   for (unsigned i = 0; i < NumElts; i++)
9426     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9427 
9428   return Res;
9429 }
9430 
9431 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9432                                SelectionDAG &DAG) const {
9433   EVT VT = Node->getValueType(0);
9434   SDLoc dl(Node);
9435   bool isSigned = Node->getOpcode() == ISD::SREM;
9436   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9437   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9438   SDValue Dividend = Node->getOperand(0);
9439   SDValue Divisor = Node->getOperand(1);
9440   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9441     SDVTList VTs = DAG.getVTList(VT, VT);
9442     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9443     return true;
9444   }
9445   if (isOperationLegalOrCustom(DivOpc, VT)) {
9446     // X % Y -> X-X/Y*Y
9447     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9448     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9449     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9450     return true;
9451   }
9452   return false;
9453 }
9454 
9455 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9456                                             SelectionDAG &DAG) const {
9457   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9458   SDLoc dl(SDValue(Node, 0));
9459   SDValue Src = Node->getOperand(0);
9460 
9461   // DstVT is the result type, while SatVT is the size to which we saturate
9462   EVT SrcVT = Src.getValueType();
9463   EVT DstVT = Node->getValueType(0);
9464 
9465   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9466   unsigned SatWidth = SatVT.getScalarSizeInBits();
9467   unsigned DstWidth = DstVT.getScalarSizeInBits();
9468   assert(SatWidth <= DstWidth &&
9469          "Expected saturation width smaller than result width");
9470 
9471   // Determine minimum and maximum integer values and their corresponding
9472   // floating-point values.
9473   APInt MinInt, MaxInt;
9474   if (IsSigned) {
9475     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9476     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9477   } else {
9478     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9479     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9480   }
9481 
9482   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9483   // libcall emission cannot handle this. Large result types will fail.
9484   if (SrcVT == MVT::f16) {
9485     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9486     SrcVT = Src.getValueType();
9487   }
9488 
9489   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9490   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9491 
9492   APFloat::opStatus MinStatus =
9493       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9494   APFloat::opStatus MaxStatus =
9495       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9496   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9497                              !(MaxStatus & APFloat::opStatus::opInexact);
9498 
9499   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9500   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9501 
9502   // If the integer bounds are exactly representable as floats and min/max are
9503   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9504   // of comparisons and selects.
9505   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9506                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9507   if (AreExactFloatBounds && MinMaxLegal) {
9508     SDValue Clamped = Src;
9509 
9510     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9511     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9512     // Clamp by MaxFloat from above. NaN cannot occur.
9513     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9514     // Convert clamped value to integer.
9515     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9516                                   dl, DstVT, Clamped);
9517 
9518     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9519     // which will cast to zero.
9520     if (!IsSigned)
9521       return FpToInt;
9522 
9523     // Otherwise, select 0 if Src is NaN.
9524     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9525     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9526                            ISD::CondCode::SETUO);
9527   }
9528 
9529   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9530   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9531 
9532   // Result of direct conversion. The assumption here is that the operation is
9533   // non-trapping and it's fine to apply it to an out-of-range value if we
9534   // select it away later.
9535   SDValue FpToInt =
9536       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9537 
9538   SDValue Select = FpToInt;
9539 
9540   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9541   // MinInt if Src is NaN.
9542   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9543                            ISD::CondCode::SETULT);
9544   // If Src OGT MaxFloat, select MaxInt.
9545   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9546                            ISD::CondCode::SETOGT);
9547 
9548   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9549   // is already zero.
9550   if (!IsSigned)
9551     return Select;
9552 
9553   // Otherwise, select 0 if Src is NaN.
9554   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9555   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9556 }
9557 
9558 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9559                                            SelectionDAG &DAG) const {
9560   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9561   assert(Node->getValueType(0).isScalableVector() &&
9562          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9563 
9564   EVT VT = Node->getValueType(0);
9565   SDValue V1 = Node->getOperand(0);
9566   SDValue V2 = Node->getOperand(1);
9567   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9568   SDLoc DL(Node);
9569 
9570   // Expand through memory thusly:
9571   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9572   //  Store V1, Ptr
9573   //  Store V2, Ptr + sizeof(V1)
9574   //  If (Imm < 0)
9575   //    TrailingElts = -Imm
9576   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9577   //  else
9578   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9579   //  Res = Load Ptr
9580 
9581   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9582 
9583   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9584                                VT.getVectorElementCount() * 2);
9585   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9586   EVT PtrVT = StackPtr.getValueType();
9587   auto &MF = DAG.getMachineFunction();
9588   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9589   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9590 
9591   // Store the lo part of CONCAT_VECTORS(V1, V2)
9592   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9593   // Store the hi part of CONCAT_VECTORS(V1, V2)
9594   SDValue OffsetToV2 = DAG.getVScale(
9595       DL, PtrVT,
9596       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9597   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9598   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9599 
9600   if (Imm >= 0) {
9601     // Load back the required element. getVectorElementPointer takes care of
9602     // clamping the index if it's out-of-bounds.
9603     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9604     // Load the spliced result
9605     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9606                        MachinePointerInfo::getUnknownStack(MF));
9607   }
9608 
9609   uint64_t TrailingElts = -Imm;
9610 
9611   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9612   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9613   SDValue TrailingBytes =
9614       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9615 
9616   if (TrailingElts > VT.getVectorMinNumElements()) {
9617     SDValue VLBytes = DAG.getVScale(
9618         DL, PtrVT,
9619         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9620     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9621   }
9622 
9623   // Calculate the start address of the spliced result.
9624   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9625 
9626   // Load the spliced result
9627   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9628                      MachinePointerInfo::getUnknownStack(MF));
9629 }
9630 
9631 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9632                                            SDValue &LHS, SDValue &RHS,
9633                                            SDValue &CC, SDValue Mask,
9634                                            SDValue EVL, bool &NeedInvert,
9635                                            const SDLoc &dl, SDValue &Chain,
9636                                            bool IsSignaling) const {
9637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9638   MVT OpVT = LHS.getSimpleValueType();
9639   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9640   NeedInvert = false;
9641   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9642   bool IsNonVP = !EVL;
9643   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9644   default:
9645     llvm_unreachable("Unknown condition code action!");
9646   case TargetLowering::Legal:
9647     // Nothing to do.
9648     break;
9649   case TargetLowering::Expand: {
9650     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9651     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9652       std::swap(LHS, RHS);
9653       CC = DAG.getCondCode(InvCC);
9654       return true;
9655     }
9656     // Swapping operands didn't work. Try inverting the condition.
9657     bool NeedSwap = false;
9658     InvCC = getSetCCInverse(CCCode, OpVT);
9659     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9660       // If inverting the condition is not enough, try swapping operands
9661       // on top of it.
9662       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9663       NeedSwap = true;
9664     }
9665     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9666       CC = DAG.getCondCode(InvCC);
9667       NeedInvert = true;
9668       if (NeedSwap)
9669         std::swap(LHS, RHS);
9670       return true;
9671     }
9672 
9673     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9674     unsigned Opc = 0;
9675     switch (CCCode) {
9676     default:
9677       llvm_unreachable("Don't know how to expand this condition!");
9678     case ISD::SETUO:
9679       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9680         CC1 = ISD::SETUNE;
9681         CC2 = ISD::SETUNE;
9682         Opc = ISD::OR;
9683         break;
9684       }
9685       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9686              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9687       NeedInvert = true;
9688       LLVM_FALLTHROUGH;
9689     case ISD::SETO:
9690       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9691              "If SETO is expanded, SETOEQ must be legal!");
9692       CC1 = ISD::SETOEQ;
9693       CC2 = ISD::SETOEQ;
9694       Opc = ISD::AND;
9695       break;
9696     case ISD::SETONE:
9697     case ISD::SETUEQ:
9698       // If the SETUO or SETO CC isn't legal, we might be able to use
9699       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9700       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9701       // the operands.
9702       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9703       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9704           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9705            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9706         CC1 = ISD::SETOGT;
9707         CC2 = ISD::SETOLT;
9708         Opc = ISD::OR;
9709         NeedInvert = ((unsigned)CCCode & 0x8U);
9710         break;
9711       }
9712       LLVM_FALLTHROUGH;
9713     case ISD::SETOEQ:
9714     case ISD::SETOGT:
9715     case ISD::SETOGE:
9716     case ISD::SETOLT:
9717     case ISD::SETOLE:
9718     case ISD::SETUNE:
9719     case ISD::SETUGT:
9720     case ISD::SETUGE:
9721     case ISD::SETULT:
9722     case ISD::SETULE:
9723       // If we are floating point, assign and break, otherwise fall through.
9724       if (!OpVT.isInteger()) {
9725         // We can use the 4th bit to tell if we are the unordered
9726         // or ordered version of the opcode.
9727         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9728         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9729         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9730         break;
9731       }
9732       // Fallthrough if we are unsigned integer.
9733       LLVM_FALLTHROUGH;
9734     case ISD::SETLE:
9735     case ISD::SETGT:
9736     case ISD::SETGE:
9737     case ISD::SETLT:
9738     case ISD::SETNE:
9739     case ISD::SETEQ:
9740       // If all combinations of inverting the condition and swapping operands
9741       // didn't work then we have no means to expand the condition.
9742       llvm_unreachable("Don't know how to expand this condition!");
9743     }
9744 
9745     SDValue SetCC1, SetCC2;
9746     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9747       // If we aren't the ordered or unorder operation,
9748       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9749       if (IsNonVP) {
9750         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9751         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9752       } else {
9753         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9754         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9755       }
9756     } else {
9757       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9758       if (IsNonVP) {
9759         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9760         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9761       } else {
9762         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9763         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9764       }
9765     }
9766     if (Chain)
9767       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9768                           SetCC2.getValue(1));
9769     if (IsNonVP)
9770       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9771     else {
9772       // Transform the binary opcode to the VP equivalent.
9773       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9774       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9775       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9776     }
9777     RHS = SDValue();
9778     CC = SDValue();
9779     return true;
9780   }
9781   }
9782   return false;
9783 }
9784