1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETUO:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     break;
352   case ISD::SETO:
353     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
354           (VT == MVT::f64) ? RTLIB::O_F64 :
355           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
356     break;
357   case ISD::SETONE:
358     // SETONE = O && UNE
359     ShouldInvertCC = true;
360     LLVM_FALLTHROUGH;
361   case ISD::SETUEQ:
362     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
363           (VT == MVT::f64) ? RTLIB::UO_F64 :
364           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
365     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
366           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
367           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
368     break;
369   default:
370     // Invert CC for unordered comparisons
371     ShouldInvertCC = true;
372     switch (CCCode) {
373     case ISD::SETULT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
375             (VT == MVT::f64) ? RTLIB::OGE_F64 :
376             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
377       break;
378     case ISD::SETULE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
380             (VT == MVT::f64) ? RTLIB::OGT_F64 :
381             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
382       break;
383     case ISD::SETUGT:
384       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
385             (VT == MVT::f64) ? RTLIB::OLE_F64 :
386             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
387       break;
388     case ISD::SETUGE:
389       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
390             (VT == MVT::f64) ? RTLIB::OLT_F64 :
391             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
392       break;
393     default: llvm_unreachable("Do not know how to soften this setcc!");
394     }
395   }
396 
397   // Use the target specific return value for comparions lib calls.
398   EVT RetVT = getCmpLibcallReturnType();
399   SDValue Ops[2] = {NewLHS, NewRHS};
400   TargetLowering::MakeLibCallOptions CallOptions;
401   EVT OpsVT[2] = { OldLHS.getValueType(),
402                    OldRHS.getValueType() };
403   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
404   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
405   NewLHS = Call.first;
406   NewRHS = DAG.getConstant(0, dl, RetVT);
407 
408   CCCode = getCmpLibcallCC(LC1);
409   if (ShouldInvertCC) {
410     assert(RetVT.isInteger());
411     CCCode = getSetCCInverse(CCCode, RetVT);
412   }
413 
414   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
415     // Update Chain.
416     Chain = Call.second;
417   } else {
418     EVT SetCCVT =
419         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
420     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
421     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
422     CCCode = getCmpLibcallCC(LC2);
423     if (ShouldInvertCC)
424       CCCode = getSetCCInverse(CCCode, RetVT);
425     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
426     if (Chain)
427       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
428                           Call2.second);
429     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
430                          Tmp.getValueType(), Tmp, NewLHS);
431     NewRHS = SDValue();
432   }
433 }
434 
435 /// Return the entry encoding for a jump table in the current function. The
436 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
437 unsigned TargetLowering::getJumpTableEncoding() const {
438   // In non-pic modes, just use the address of a block.
439   if (!isPositionIndependent())
440     return MachineJumpTableInfo::EK_BlockAddress;
441 
442   // In PIC mode, if the target supports a GPRel32 directive, use it.
443   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
444     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
445 
446   // Otherwise, use a label difference.
447   return MachineJumpTableInfo::EK_LabelDifference32;
448 }
449 
450 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
451                                                  SelectionDAG &DAG) const {
452   // If our PIC model is GP relative, use the global offset table as the base.
453   unsigned JTEncoding = getJumpTableEncoding();
454 
455   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
456       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
457     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
458 
459   return Table;
460 }
461 
462 /// This returns the relocation base for the given PIC jumptable, the same as
463 /// getPICJumpTableRelocBase, but as an MCExpr.
464 const MCExpr *
465 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
466                                              unsigned JTI,MCContext &Ctx) const{
467   // The normal PIC reloc base is the label at the start of the jump table.
468   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
469 }
470 
471 bool
472 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
473   const TargetMachine &TM = getTargetMachine();
474   const GlobalValue *GV = GA->getGlobal();
475 
476   // If the address is not even local to this DSO we will have to load it from
477   // a got and then add the offset.
478   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
479     return false;
480 
481   // If the code is position independent we will have to add a base register.
482   if (isPositionIndependent())
483     return false;
484 
485   // Otherwise we can do it.
486   return true;
487 }
488 
489 //===----------------------------------------------------------------------===//
490 //  Optimization Methods
491 //===----------------------------------------------------------------------===//
492 
493 /// If the specified instruction has a constant integer operand and there are
494 /// bits set in that constant that are not demanded, then clear those bits and
495 /// return true.
496 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
497                                             TargetLoweringOpt &TLO) const {
498   SDLoc DL(Op);
499   unsigned Opcode = Op.getOpcode();
500 
501   // Do target-specific constant optimization.
502   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
503     return TLO.New.getNode();
504 
505   // FIXME: ISD::SELECT, ISD::SELECT_CC
506   switch (Opcode) {
507   default:
508     break;
509   case ISD::XOR:
510   case ISD::AND:
511   case ISD::OR: {
512     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513     if (!Op1C)
514       return false;
515 
516     // If this is a 'not' op, don't touch it because that's a canonical form.
517     const APInt &C = Op1C->getAPIntValue();
518     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
519       return false;
520 
521     if (!C.isSubsetOf(Demanded)) {
522       EVT VT = Op.getValueType();
523       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
524       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525       return TLO.CombineTo(Op, NewOp);
526     }
527 
528     break;
529   }
530   }
531 
532   return false;
533 }
534 
535 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
536 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
537 /// generalized for targets with other types of implicit widening casts.
538 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
539                                       const APInt &Demanded,
540                                       TargetLoweringOpt &TLO) const {
541   assert(Op.getNumOperands() == 2 &&
542          "ShrinkDemandedOp only supports binary operators!");
543   assert(Op.getNode()->getNumValues() == 1 &&
544          "ShrinkDemandedOp only supports nodes with one result!");
545 
546   SelectionDAG &DAG = TLO.DAG;
547   SDLoc dl(Op);
548 
549   // Early return, as this function cannot handle vector types.
550   if (Op.getValueType().isVector())
551     return false;
552 
553   // Don't do this if the node has another user, which may require the
554   // full value.
555   if (!Op.getNode()->hasOneUse())
556     return false;
557 
558   // Search for the smallest integer type with free casts to and from
559   // Op's type. For expedience, just check power-of-2 integer types.
560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
561   unsigned DemandedSize = Demanded.getActiveBits();
562   unsigned SmallVTBits = DemandedSize;
563   if (!isPowerOf2_32(SmallVTBits))
564     SmallVTBits = NextPowerOf2(SmallVTBits);
565   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
566     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
567     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
568         TLI.isZExtFree(SmallVT, Op.getValueType())) {
569       // We found a type with free casts.
570       SDValue X = DAG.getNode(
571           Op.getOpcode(), dl, SmallVT,
572           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
573           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
574       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
575       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
576       return TLO.CombineTo(Op, Z);
577     }
578   }
579   return false;
580 }
581 
582 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
583                                           DAGCombinerInfo &DCI) const {
584   SelectionDAG &DAG = DCI.DAG;
585   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
586                         !DCI.isBeforeLegalizeOps());
587   KnownBits Known;
588 
589   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
590   if (Simplified) {
591     DCI.AddToWorklist(Op.getNode());
592     DCI.CommitTargetLoweringOpt(TLO);
593   }
594   return Simplified;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           KnownBits &Known,
599                                           TargetLoweringOpt &TLO,
600                                           unsigned Depth,
601                                           bool AssumeSingleUse) const {
602   EVT VT = Op.getValueType();
603   APInt DemandedElts = VT.isVector()
604                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
605                            : APInt(1, 1);
606   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
607                               AssumeSingleUse);
608 }
609 
610 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
611 // TODO: Under what circumstances can we create nodes? Constant folding?
612 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
613     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
614     SelectionDAG &DAG, unsigned Depth) const {
615   // Limit search depth.
616   if (Depth >= SelectionDAG::MaxRecursionDepth)
617     return SDValue();
618 
619   // Ignore UNDEFs.
620   if (Op.isUndef())
621     return SDValue();
622 
623   // Not demanding any bits/elts from Op.
624   if (DemandedBits == 0 || DemandedElts == 0)
625     return DAG.getUNDEF(Op.getValueType());
626 
627   unsigned NumElts = DemandedElts.getBitWidth();
628   KnownBits LHSKnown, RHSKnown;
629   switch (Op.getOpcode()) {
630   case ISD::BITCAST: {
631     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
632     EVT SrcVT = Src.getValueType();
633     EVT DstVT = Op.getValueType();
634     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
635     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
636 
637     if (NumSrcEltBits == NumDstEltBits)
638       if (SDValue V = SimplifyMultipleUseDemandedBits(
639               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
640         return DAG.getBitcast(DstVT, V);
641 
642     // TODO - bigendian once we have test coverage.
643     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
644         DAG.getDataLayout().isLittleEndian()) {
645       unsigned Scale = NumDstEltBits / NumSrcEltBits;
646       unsigned NumSrcElts = SrcVT.getVectorNumElements();
647       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
648       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
649       for (unsigned i = 0; i != Scale; ++i) {
650         unsigned Offset = i * NumSrcEltBits;
651         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
652         if (!Sub.isNullValue()) {
653           DemandedSrcBits |= Sub;
654           for (unsigned j = 0; j != NumElts; ++j)
655             if (DemandedElts[j])
656               DemandedSrcElts.setBit((j * Scale) + i);
657         }
658       }
659 
660       if (SDValue V = SimplifyMultipleUseDemandedBits(
661               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
662         return DAG.getBitcast(DstVT, V);
663     }
664 
665     // TODO - bigendian once we have test coverage.
666     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
667         DAG.getDataLayout().isLittleEndian()) {
668       unsigned Scale = NumSrcEltBits / NumDstEltBits;
669       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
670       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
672       for (unsigned i = 0; i != NumElts; ++i)
673         if (DemandedElts[i]) {
674           unsigned Offset = (i % Scale) * NumDstEltBits;
675           DemandedSrcBits.insertBits(DemandedBits, Offset);
676           DemandedSrcElts.setBit(i / Scale);
677         }
678 
679       if (SDValue V = SimplifyMultipleUseDemandedBits(
680               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
681         return DAG.getBitcast(DstVT, V);
682     }
683 
684     break;
685   }
686   case ISD::AND: {
687     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
688     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
689 
690     // If all of the demanded bits are known 1 on one side, return the other.
691     // These bits cannot contribute to the result of the 'and' in this
692     // context.
693     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
694       return Op.getOperand(0);
695     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
696       return Op.getOperand(1);
697     break;
698   }
699   case ISD::OR: {
700     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
701     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
702 
703     // If all of the demanded bits are known zero on one side, return the
704     // other.  These bits cannot contribute to the result of the 'or' in this
705     // context.
706     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
707       return Op.getOperand(0);
708     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
709       return Op.getOperand(1);
710     break;
711   }
712   case ISD::XOR: {
713     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
714     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
715 
716     // If all of the demanded bits are known zero on one side, return the
717     // other.
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
719       return Op.getOperand(0);
720     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
721       return Op.getOperand(1);
722     break;
723   }
724   case ISD::SETCC: {
725     SDValue Op0 = Op.getOperand(0);
726     SDValue Op1 = Op.getOperand(1);
727     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
728     // If (1) we only need the sign-bit, (2) the setcc operands are the same
729     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
730     // -1, we may be able to bypass the setcc.
731     if (DemandedBits.isSignMask() &&
732         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
733         getBooleanContents(Op0.getValueType()) ==
734             BooleanContent::ZeroOrNegativeOneBooleanContent) {
735       // If we're testing X < 0, then this compare isn't needed - just use X!
736       // FIXME: We're limiting to integer types here, but this should also work
737       // if we don't care about FP signed-zero. The use of SETLT with FP means
738       // that we don't care about NaNs.
739       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
740           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
741         return Op0;
742     }
743     break;
744   }
745   case ISD::SIGN_EXTEND_INREG: {
746     // If none of the extended bits are demanded, eliminate the sextinreg.
747     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
748     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
749       return Op.getOperand(0);
750     break;
751   }
752   case ISD::INSERT_VECTOR_ELT: {
753     // If we don't demand the inserted element, return the base vector.
754     SDValue Vec = Op.getOperand(0);
755     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
756     EVT VecVT = Vec.getValueType();
757     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
758         !DemandedElts[CIdx->getZExtValue()])
759       return Vec;
760     break;
761   }
762   case ISD::VECTOR_SHUFFLE: {
763     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
764 
765     // If all the demanded elts are from one operand and are inline,
766     // then we can use the operand directly.
767     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
768     for (unsigned i = 0; i != NumElts; ++i) {
769       int M = ShuffleMask[i];
770       if (M < 0 || !DemandedElts[i])
771         continue;
772       AllUndef = false;
773       IdentityLHS &= (M == (int)i);
774       IdentityRHS &= ((M - NumElts) == i);
775     }
776 
777     if (AllUndef)
778       return DAG.getUNDEF(Op.getValueType());
779     if (IdentityLHS)
780       return Op.getOperand(0);
781     if (IdentityRHS)
782       return Op.getOperand(1);
783     break;
784   }
785   default:
786     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
787       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
788               Op, DemandedBits, DemandedElts, DAG, Depth))
789         return V;
790     break;
791   }
792   return SDValue();
793 }
794 
795 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
796 /// result of Op are ever used downstream. If we can use this information to
797 /// simplify Op, create a new simplified DAG node and return true, returning the
798 /// original and new nodes in Old and New. Otherwise, analyze the expression and
799 /// return a mask of Known bits for the expression (used to simplify the
800 /// caller).  The Known bits may only be accurate for those bits in the
801 /// OriginalDemandedBits and OriginalDemandedElts.
802 bool TargetLowering::SimplifyDemandedBits(
803     SDValue Op, const APInt &OriginalDemandedBits,
804     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
805     unsigned Depth, bool AssumeSingleUse) const {
806   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
807   assert(Op.getScalarValueSizeInBits() == BitWidth &&
808          "Mask size mismatches value type size!");
809 
810   unsigned NumElts = OriginalDemandedElts.getBitWidth();
811   assert((!Op.getValueType().isVector() ||
812           NumElts == Op.getValueType().getVectorNumElements()) &&
813          "Unexpected vector size");
814 
815   APInt DemandedBits = OriginalDemandedBits;
816   APInt DemandedElts = OriginalDemandedElts;
817   SDLoc dl(Op);
818   auto &DL = TLO.DAG.getDataLayout();
819 
820   // Don't know anything.
821   Known = KnownBits(BitWidth);
822 
823   // Undef operand.
824   if (Op.isUndef())
825     return false;
826 
827   if (Op.getOpcode() == ISD::Constant) {
828     // We know all of the bits for a constant!
829     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
830     Known.Zero = ~Known.One;
831     return false;
832   }
833 
834   // Other users may use these bits.
835   EVT VT = Op.getValueType();
836   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
837     if (Depth != 0) {
838       // If not at the root, Just compute the Known bits to
839       // simplify things downstream.
840       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
841       return false;
842     }
843     // If this is the root being simplified, allow it to have multiple uses,
844     // just set the DemandedBits/Elts to all bits.
845     DemandedBits = APInt::getAllOnesValue(BitWidth);
846     DemandedElts = APInt::getAllOnesValue(NumElts);
847   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
848     // Not demanding any bits/elts from Op.
849     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
850   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
851     // Limit search depth.
852     return false;
853   }
854 
855   KnownBits Known2, KnownOut;
856   switch (Op.getOpcode()) {
857   case ISD::TargetConstant:
858     llvm_unreachable("Can't simplify this node");
859   case ISD::SCALAR_TO_VECTOR: {
860     if (!DemandedElts[0])
861       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
862 
863     KnownBits SrcKnown;
864     SDValue Src = Op.getOperand(0);
865     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
866     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
867     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
868       return true;
869     Known = SrcKnown.zextOrTrunc(BitWidth, false);
870     break;
871   }
872   case ISD::BUILD_VECTOR:
873     // Collect the known bits that are shared by every demanded element.
874     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
875     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
876     return false; // Don't fall through, will infinitely loop.
877   case ISD::LOAD: {
878     LoadSDNode *LD = cast<LoadSDNode>(Op);
879     if (getTargetConstantFromLoad(LD)) {
880       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
881       return false; // Don't fall through, will infinitely loop.
882     }
883     break;
884   }
885   case ISD::INSERT_VECTOR_ELT: {
886     SDValue Vec = Op.getOperand(0);
887     SDValue Scl = Op.getOperand(1);
888     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
889     EVT VecVT = Vec.getValueType();
890 
891     // If index isn't constant, assume we need all vector elements AND the
892     // inserted element.
893     APInt DemandedVecElts(DemandedElts);
894     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
895       unsigned Idx = CIdx->getZExtValue();
896       DemandedVecElts.clearBit(Idx);
897 
898       // Inserted element is not required.
899       if (!DemandedElts[Idx])
900         return TLO.CombineTo(Op, Vec);
901     }
902 
903     KnownBits KnownScl;
904     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
905     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
906     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
907       return true;
908 
909     Known = KnownScl.zextOrTrunc(BitWidth, false);
910 
911     KnownBits KnownVec;
912     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
913                              Depth + 1))
914       return true;
915 
916     if (!!DemandedVecElts) {
917       Known.One &= KnownVec.One;
918       Known.Zero &= KnownVec.Zero;
919     }
920 
921     return false;
922   }
923   case ISD::INSERT_SUBVECTOR: {
924     SDValue Base = Op.getOperand(0);
925     SDValue Sub = Op.getOperand(1);
926     EVT SubVT = Sub.getValueType();
927     unsigned NumSubElts = SubVT.getVectorNumElements();
928 
929     // If index isn't constant, assume we need the original demanded base
930     // elements and ALL the inserted subvector elements.
931     APInt BaseElts = DemandedElts;
932     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
933     if (isa<ConstantSDNode>(Op.getOperand(2))) {
934       const APInt &Idx = Op.getConstantOperandAPInt(2);
935       if (Idx.ule(NumElts - NumSubElts)) {
936         unsigned SubIdx = Idx.getZExtValue();
937         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
938         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
939       }
940     }
941 
942     KnownBits KnownSub, KnownBase;
943     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
944                              Depth + 1))
945       return true;
946     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
947                              Depth + 1))
948       return true;
949 
950     Known.Zero.setAllBits();
951     Known.One.setAllBits();
952     if (!!SubElts) {
953         Known.One &= KnownSub.One;
954         Known.Zero &= KnownSub.Zero;
955     }
956     if (!!BaseElts) {
957         Known.One &= KnownBase.One;
958         Known.Zero &= KnownBase.Zero;
959     }
960     break;
961   }
962   case ISD::EXTRACT_SUBVECTOR: {
963     // If index isn't constant, assume we need all the source vector elements.
964     SDValue Src = Op.getOperand(0);
965     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
966     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
967     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
968     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
969       // Offset the demanded elts by the subvector index.
970       uint64_t Idx = SubIdx->getZExtValue();
971       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
972     }
973     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
974       return true;
975     break;
976   }
977   case ISD::CONCAT_VECTORS: {
978     Known.Zero.setAllBits();
979     Known.One.setAllBits();
980     EVT SubVT = Op.getOperand(0).getValueType();
981     unsigned NumSubVecs = Op.getNumOperands();
982     unsigned NumSubElts = SubVT.getVectorNumElements();
983     for (unsigned i = 0; i != NumSubVecs; ++i) {
984       APInt DemandedSubElts =
985           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
986       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
987                                Known2, TLO, Depth + 1))
988         return true;
989       // Known bits are shared by every demanded subvector element.
990       if (!!DemandedSubElts) {
991         Known.One &= Known2.One;
992         Known.Zero &= Known2.Zero;
993       }
994     }
995     break;
996   }
997   case ISD::VECTOR_SHUFFLE: {
998     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
999 
1000     // Collect demanded elements from shuffle operands..
1001     APInt DemandedLHS(NumElts, 0);
1002     APInt DemandedRHS(NumElts, 0);
1003     for (unsigned i = 0; i != NumElts; ++i) {
1004       if (!DemandedElts[i])
1005         continue;
1006       int M = ShuffleMask[i];
1007       if (M < 0) {
1008         // For UNDEF elements, we don't know anything about the common state of
1009         // the shuffle result.
1010         DemandedLHS.clearAllBits();
1011         DemandedRHS.clearAllBits();
1012         break;
1013       }
1014       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1015       if (M < (int)NumElts)
1016         DemandedLHS.setBit(M);
1017       else
1018         DemandedRHS.setBit(M - NumElts);
1019     }
1020 
1021     if (!!DemandedLHS || !!DemandedRHS) {
1022       SDValue Op0 = Op.getOperand(0);
1023       SDValue Op1 = Op.getOperand(1);
1024 
1025       Known.Zero.setAllBits();
1026       Known.One.setAllBits();
1027       if (!!DemandedLHS) {
1028         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1029                                  Depth + 1))
1030           return true;
1031         Known.One &= Known2.One;
1032         Known.Zero &= Known2.Zero;
1033       }
1034       if (!!DemandedRHS) {
1035         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1036                                  Depth + 1))
1037           return true;
1038         Known.One &= Known2.One;
1039         Known.Zero &= Known2.Zero;
1040       }
1041 
1042       // Attempt to avoid multi-use ops if we don't need anything from them.
1043       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1044           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1045       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1046           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1047       if (DemandedOp0 || DemandedOp1) {
1048         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1049         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1050         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1051         return TLO.CombineTo(Op, NewOp);
1052       }
1053     }
1054     break;
1055   }
1056   case ISD::AND: {
1057     SDValue Op0 = Op.getOperand(0);
1058     SDValue Op1 = Op.getOperand(1);
1059 
1060     // If the RHS is a constant, check to see if the LHS would be zero without
1061     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1062     // simplify the LHS, here we're using information from the LHS to simplify
1063     // the RHS.
1064     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1065       // Do not increment Depth here; that can cause an infinite loop.
1066       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1067       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1068       if ((LHSKnown.Zero & DemandedBits) ==
1069           (~RHSC->getAPIntValue() & DemandedBits))
1070         return TLO.CombineTo(Op, Op0);
1071 
1072       // If any of the set bits in the RHS are known zero on the LHS, shrink
1073       // the constant.
1074       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1075         return true;
1076 
1077       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1078       // constant, but if this 'and' is only clearing bits that were just set by
1079       // the xor, then this 'and' can be eliminated by shrinking the mask of
1080       // the xor. For example, for a 32-bit X:
1081       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1082       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1083           LHSKnown.One == ~RHSC->getAPIntValue()) {
1084         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1085         return TLO.CombineTo(Op, Xor);
1086       }
1087     }
1088 
1089     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1090                              Depth + 1))
1091       return true;
1092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1093     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1094                              Known2, TLO, Depth + 1))
1095       return true;
1096     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1097 
1098     // Attempt to avoid multi-use ops if we don't need anything from them.
1099     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1100       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1101           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1103           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1104       if (DemandedOp0 || DemandedOp1) {
1105         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1106         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1107         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1108         return TLO.CombineTo(Op, NewOp);
1109       }
1110     }
1111 
1112     // If all of the demanded bits are known one on one side, return the other.
1113     // These bits cannot contribute to the result of the 'and'.
1114     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1115       return TLO.CombineTo(Op, Op0);
1116     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1117       return TLO.CombineTo(Op, Op1);
1118     // If all of the demanded bits in the inputs are known zeros, return zero.
1119     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1120       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1121     // If the RHS is a constant, see if we can simplify it.
1122     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1123       return true;
1124     // If the operation can be done in a smaller type, do so.
1125     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1126       return true;
1127 
1128     // Output known-1 bits are only known if set in both the LHS & RHS.
1129     Known.One &= Known2.One;
1130     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1131     Known.Zero |= Known2.Zero;
1132     break;
1133   }
1134   case ISD::OR: {
1135     SDValue Op0 = Op.getOperand(0);
1136     SDValue Op1 = Op.getOperand(1);
1137 
1138     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1139                              Depth + 1))
1140       return true;
1141     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1142     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1143                              Known2, TLO, Depth + 1))
1144       return true;
1145     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1146 
1147     // Attempt to avoid multi-use ops if we don't need anything from them.
1148     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1149       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1150           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1151       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1152           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1153       if (DemandedOp0 || DemandedOp1) {
1154         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1155         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1156         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1157         return TLO.CombineTo(Op, NewOp);
1158       }
1159     }
1160 
1161     // If all of the demanded bits are known zero on one side, return the other.
1162     // These bits cannot contribute to the result of the 'or'.
1163     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1164       return TLO.CombineTo(Op, Op0);
1165     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1166       return TLO.CombineTo(Op, Op1);
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-0 bits are only known if clear in both the LHS & RHS.
1175     Known.Zero &= Known2.Zero;
1176     // Output known-1 are known to be set if set in either the LHS | RHS.
1177     Known.One |= Known2.One;
1178     break;
1179   }
1180   case ISD::XOR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1189                              Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'xor'.
1209     if (DemandedBits.isSubsetOf(Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the operation can be done in a smaller type, do so.
1214     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1215       return true;
1216 
1217     // If all of the unknown bits are known to be zero on one side or the other
1218     // (but not both) turn this into an *inclusive* or.
1219     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1220     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1221       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1222 
1223     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1224     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1225     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1226     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1227 
1228     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1229       // If one side is a constant, and all of the known set bits on the other
1230       // side are also set in the constant, turn this into an AND, as we know
1231       // the bits will be cleared.
1232       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1233       // NB: it is okay if more bits are known than are requested
1234       if (C->getAPIntValue() == Known2.One) {
1235         SDValue ANDC =
1236             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1237         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1238       }
1239 
1240       // If the RHS is a constant, see if we can change it. Don't alter a -1
1241       // constant because that's a 'not' op, and that is better for combining
1242       // and codegen.
1243       if (!C->isAllOnesValue()) {
1244         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1245           // We're flipping all demanded bits. Flip the undemanded bits too.
1246           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1247           return TLO.CombineTo(Op, New);
1248         }
1249         // If we can't turn this into a 'not', try to shrink the constant.
1250         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1251           return true;
1252       }
1253     }
1254 
1255     Known = std::move(KnownOut);
1256     break;
1257   }
1258   case ISD::SELECT:
1259     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1260                              Depth + 1))
1261       return true;
1262     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1263                              Depth + 1))
1264       return true;
1265     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1266     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1267 
1268     // If the operands are constants, see if we can simplify them.
1269     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1270       return true;
1271 
1272     // Only known if known in both the LHS and RHS.
1273     Known.One &= Known2.One;
1274     Known.Zero &= Known2.Zero;
1275     break;
1276   case ISD::SELECT_CC:
1277     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1278                              Depth + 1))
1279       return true;
1280     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1281                              Depth + 1))
1282       return true;
1283     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1284     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1285 
1286     // If the operands are constants, see if we can simplify them.
1287     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1288       return true;
1289 
1290     // Only known if known in both the LHS and RHS.
1291     Known.One &= Known2.One;
1292     Known.Zero &= Known2.Zero;
1293     break;
1294   case ISD::SETCC: {
1295     SDValue Op0 = Op.getOperand(0);
1296     SDValue Op1 = Op.getOperand(1);
1297     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1298     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1299     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1300     // -1, we may be able to bypass the setcc.
1301     if (DemandedBits.isSignMask() &&
1302         Op0.getScalarValueSizeInBits() == BitWidth &&
1303         getBooleanContents(Op0.getValueType()) ==
1304             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1305       // If we're testing X < 0, then this compare isn't needed - just use X!
1306       // FIXME: We're limiting to integer types here, but this should also work
1307       // if we don't care about FP signed-zero. The use of SETLT with FP means
1308       // that we don't care about NaNs.
1309       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1310           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1311         return TLO.CombineTo(Op, Op0);
1312 
1313       // TODO: Should we check for other forms of sign-bit comparisons?
1314       // Examples: X <= -1, X >= 0
1315     }
1316     if (getBooleanContents(Op0.getValueType()) ==
1317             TargetLowering::ZeroOrOneBooleanContent &&
1318         BitWidth > 1)
1319       Known.Zero.setBitsFrom(1);
1320     break;
1321   }
1322   case ISD::SHL: {
1323     SDValue Op0 = Op.getOperand(0);
1324     SDValue Op1 = Op.getOperand(1);
1325 
1326     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1327       // If the shift count is an invalid immediate, don't do anything.
1328       if (SA->getAPIntValue().uge(BitWidth))
1329         break;
1330 
1331       unsigned ShAmt = SA->getZExtValue();
1332       if (ShAmt == 0)
1333         return TLO.CombineTo(Op, Op0);
1334 
1335       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1336       // single shift.  We can do this if the bottom bits (which are shifted
1337       // out) are never demanded.
1338       // TODO - support non-uniform vector amounts.
1339       if (Op0.getOpcode() == ISD::SRL) {
1340         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1341           if (ConstantSDNode *SA2 =
1342                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1343             if (SA2->getAPIntValue().ult(BitWidth)) {
1344               unsigned C1 = SA2->getZExtValue();
1345               unsigned Opc = ISD::SHL;
1346               int Diff = ShAmt - C1;
1347               if (Diff < 0) {
1348                 Diff = -Diff;
1349                 Opc = ISD::SRL;
1350               }
1351 
1352               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1353               return TLO.CombineTo(
1354                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1355             }
1356           }
1357         }
1358       }
1359 
1360       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1361                                Known, TLO, Depth + 1))
1362         return true;
1363 
1364       // Try shrinking the operation as long as the shift amount will still be
1365       // in range.
1366       if ((ShAmt < DemandedBits.getActiveBits()) &&
1367           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1368         return true;
1369 
1370       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1371       // are not demanded. This will likely allow the anyext to be folded away.
1372       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1373         SDValue InnerOp = Op0.getOperand(0);
1374         EVT InnerVT = InnerOp.getValueType();
1375         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1376         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1377             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1378           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1379           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1380             ShTy = InnerVT;
1381           SDValue NarrowShl =
1382               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1383                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1384           return TLO.CombineTo(
1385               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1386         }
1387         // Repeat the SHL optimization above in cases where an extension
1388         // intervenes: (shl (anyext (shr x, c1)), c2) to
1389         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1390         // aren't demanded (as above) and that the shifted upper c1 bits of
1391         // x aren't demanded.
1392         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1393             InnerOp.hasOneUse()) {
1394           if (ConstantSDNode *SA2 =
1395                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1396             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1397             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1398                 DemandedBits.getActiveBits() <=
1399                     (InnerBits - InnerShAmt + ShAmt) &&
1400                 DemandedBits.countTrailingZeros() >= ShAmt) {
1401               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1402                                                   Op1.getValueType());
1403               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1404                                                InnerOp.getOperand(0));
1405               return TLO.CombineTo(
1406                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1407             }
1408           }
1409         }
1410       }
1411 
1412       Known.Zero <<= ShAmt;
1413       Known.One <<= ShAmt;
1414       // low bits known zero.
1415       Known.Zero.setLowBits(ShAmt);
1416     }
1417     break;
1418   }
1419   case ISD::SRL: {
1420     SDValue Op0 = Op.getOperand(0);
1421     SDValue Op1 = Op.getOperand(1);
1422 
1423     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1424       // If the shift count is an invalid immediate, don't do anything.
1425       if (SA->getAPIntValue().uge(BitWidth))
1426         break;
1427 
1428       unsigned ShAmt = SA->getZExtValue();
1429       if (ShAmt == 0)
1430         return TLO.CombineTo(Op, Op0);
1431 
1432       EVT ShiftVT = Op1.getValueType();
1433       APInt InDemandedMask = (DemandedBits << ShAmt);
1434 
1435       // If the shift is exact, then it does demand the low bits (and knows that
1436       // they are zero).
1437       if (Op->getFlags().hasExact())
1438         InDemandedMask.setLowBits(ShAmt);
1439 
1440       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1441       // single shift.  We can do this if the top bits (which are shifted out)
1442       // are never demanded.
1443       // TODO - support non-uniform vector amounts.
1444       if (Op0.getOpcode() == ISD::SHL) {
1445         if (ConstantSDNode *SA2 =
1446                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1447           if (!DemandedBits.intersects(
1448                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1449             if (SA2->getAPIntValue().ult(BitWidth)) {
1450               unsigned C1 = SA2->getZExtValue();
1451               unsigned Opc = ISD::SRL;
1452               int Diff = ShAmt - C1;
1453               if (Diff < 0) {
1454                 Diff = -Diff;
1455                 Opc = ISD::SHL;
1456               }
1457 
1458               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1459               return TLO.CombineTo(
1460                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1461             }
1462           }
1463         }
1464       }
1465 
1466       // Compute the new bits that are at the top now.
1467       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1468                                Depth + 1))
1469         return true;
1470       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1471       Known.Zero.lshrInPlace(ShAmt);
1472       Known.One.lshrInPlace(ShAmt);
1473 
1474       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1475     }
1476     break;
1477   }
1478   case ISD::SRA: {
1479     SDValue Op0 = Op.getOperand(0);
1480     SDValue Op1 = Op.getOperand(1);
1481 
1482     // If this is an arithmetic shift right and only the low-bit is set, we can
1483     // always convert this into a logical shr, even if the shift amount is
1484     // variable.  The low bit of the shift cannot be an input sign bit unless
1485     // the shift amount is >= the size of the datatype, which is undefined.
1486     if (DemandedBits.isOneValue())
1487       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1488 
1489     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1490       // If the shift count is an invalid immediate, don't do anything.
1491       if (SA->getAPIntValue().uge(BitWidth))
1492         break;
1493 
1494       unsigned ShAmt = SA->getZExtValue();
1495       if (ShAmt == 0)
1496         return TLO.CombineTo(Op, Op0);
1497 
1498       APInt InDemandedMask = (DemandedBits << ShAmt);
1499 
1500       // If the shift is exact, then it does demand the low bits (and knows that
1501       // they are zero).
1502       if (Op->getFlags().hasExact())
1503         InDemandedMask.setLowBits(ShAmt);
1504 
1505       // If any of the demanded bits are produced by the sign extension, we also
1506       // demand the input sign bit.
1507       if (DemandedBits.countLeadingZeros() < ShAmt)
1508         InDemandedMask.setSignBit();
1509 
1510       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1511                                Depth + 1))
1512         return true;
1513       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1514       Known.Zero.lshrInPlace(ShAmt);
1515       Known.One.lshrInPlace(ShAmt);
1516 
1517       // If the input sign bit is known to be zero, or if none of the top bits
1518       // are demanded, turn this into an unsigned shift right.
1519       if (Known.Zero[BitWidth - ShAmt - 1] ||
1520           DemandedBits.countLeadingZeros() >= ShAmt) {
1521         SDNodeFlags Flags;
1522         Flags.setExact(Op->getFlags().hasExact());
1523         return TLO.CombineTo(
1524             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1525       }
1526 
1527       int Log2 = DemandedBits.exactLogBase2();
1528       if (Log2 >= 0) {
1529         // The bit must come from the sign.
1530         SDValue NewSA =
1531             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1532         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1533       }
1534 
1535       if (Known.One[BitWidth - ShAmt - 1])
1536         // New bits are known one.
1537         Known.One.setHighBits(ShAmt);
1538     }
1539     break;
1540   }
1541   case ISD::FSHL:
1542   case ISD::FSHR: {
1543     SDValue Op0 = Op.getOperand(0);
1544     SDValue Op1 = Op.getOperand(1);
1545     SDValue Op2 = Op.getOperand(2);
1546     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1547 
1548     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1549       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1550 
1551       // For fshl, 0-shift returns the 1st arg.
1552       // For fshr, 0-shift returns the 2nd arg.
1553       if (Amt == 0) {
1554         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1555                                  Known, TLO, Depth + 1))
1556           return true;
1557         break;
1558       }
1559 
1560       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1561       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1562       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1563       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1564       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1565                                Depth + 1))
1566         return true;
1567       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1568                                Depth + 1))
1569         return true;
1570 
1571       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1572       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1573       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1574       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1575       Known.One |= Known2.One;
1576       Known.Zero |= Known2.Zero;
1577     }
1578     break;
1579   }
1580   case ISD::BITREVERSE: {
1581     SDValue Src = Op.getOperand(0);
1582     APInt DemandedSrcBits = DemandedBits.reverseBits();
1583     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1584                              Depth + 1))
1585       return true;
1586     Known.One = Known2.One.reverseBits();
1587     Known.Zero = Known2.Zero.reverseBits();
1588     break;
1589   }
1590   case ISD::BSWAP: {
1591     SDValue Src = Op.getOperand(0);
1592     APInt DemandedSrcBits = DemandedBits.byteSwap();
1593     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1594                              Depth + 1))
1595       return true;
1596     Known.One = Known2.One.byteSwap();
1597     Known.Zero = Known2.Zero.byteSwap();
1598     break;
1599   }
1600   case ISD::SIGN_EXTEND_INREG: {
1601     SDValue Op0 = Op.getOperand(0);
1602     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1603     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1604 
1605     // If we only care about the highest bit, don't bother shifting right.
1606     if (DemandedBits.isSignMask()) {
1607       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1608       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1609       // However if the input is already sign extended we expect the sign
1610       // extension to be dropped altogether later and do not simplify.
1611       if (!AlreadySignExtended) {
1612         // Compute the correct shift amount type, which must be getShiftAmountTy
1613         // for scalar types after legalization.
1614         EVT ShiftAmtTy = VT;
1615         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1616           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1617 
1618         SDValue ShiftAmt =
1619             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1620         return TLO.CombineTo(Op,
1621                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1622       }
1623     }
1624 
1625     // If none of the extended bits are demanded, eliminate the sextinreg.
1626     if (DemandedBits.getActiveBits() <= ExVTBits)
1627       return TLO.CombineTo(Op, Op0);
1628 
1629     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1630 
1631     // Since the sign extended bits are demanded, we know that the sign
1632     // bit is demanded.
1633     InputDemandedBits.setBit(ExVTBits - 1);
1634 
1635     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1636       return true;
1637     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1638 
1639     // If the sign bit of the input is known set or clear, then we know the
1640     // top bits of the result.
1641 
1642     // If the input sign bit is known zero, convert this into a zero extension.
1643     if (Known.Zero[ExVTBits - 1])
1644       return TLO.CombineTo(
1645           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1646 
1647     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1648     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1649       Known.One.setBitsFrom(ExVTBits);
1650       Known.Zero &= Mask;
1651     } else { // Input sign bit unknown
1652       Known.Zero &= Mask;
1653       Known.One &= Mask;
1654     }
1655     break;
1656   }
1657   case ISD::BUILD_PAIR: {
1658     EVT HalfVT = Op.getOperand(0).getValueType();
1659     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1660 
1661     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1662     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1663 
1664     KnownBits KnownLo, KnownHi;
1665 
1666     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1667       return true;
1668 
1669     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1670       return true;
1671 
1672     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1673                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1674 
1675     Known.One = KnownLo.One.zext(BitWidth) |
1676                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1677     break;
1678   }
1679   case ISD::ZERO_EXTEND:
1680   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1681     SDValue Src = Op.getOperand(0);
1682     EVT SrcVT = Src.getValueType();
1683     unsigned InBits = SrcVT.getScalarSizeInBits();
1684     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1685     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1686 
1687     // If none of the top bits are demanded, convert this into an any_extend.
1688     if (DemandedBits.getActiveBits() <= InBits) {
1689       // If we only need the non-extended bits of the bottom element
1690       // then we can just bitcast to the result.
1691       if (IsVecInReg && DemandedElts == 1 &&
1692           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1693           TLO.DAG.getDataLayout().isLittleEndian())
1694         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1695 
1696       unsigned Opc =
1697           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1698       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1699         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1700     }
1701 
1702     APInt InDemandedBits = DemandedBits.trunc(InBits);
1703     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1704     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1705                              Depth + 1))
1706       return true;
1707     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1708     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1709     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1710     break;
1711   }
1712   case ISD::SIGN_EXTEND:
1713   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1714     SDValue Src = Op.getOperand(0);
1715     EVT SrcVT = Src.getValueType();
1716     unsigned InBits = SrcVT.getScalarSizeInBits();
1717     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1718     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1719 
1720     // If none of the top bits are demanded, convert this into an any_extend.
1721     if (DemandedBits.getActiveBits() <= InBits) {
1722       // If we only need the non-extended bits of the bottom element
1723       // then we can just bitcast to the result.
1724       if (IsVecInReg && DemandedElts == 1 &&
1725           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1726           TLO.DAG.getDataLayout().isLittleEndian())
1727         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1728 
1729       unsigned Opc =
1730           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1731       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1732         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1733     }
1734 
1735     APInt InDemandedBits = DemandedBits.trunc(InBits);
1736     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1737 
1738     // Since some of the sign extended bits are demanded, we know that the sign
1739     // bit is demanded.
1740     InDemandedBits.setBit(InBits - 1);
1741 
1742     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1743                              Depth + 1))
1744       return true;
1745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1746     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1747 
1748     // If the sign bit is known one, the top bits match.
1749     Known = Known.sext(BitWidth);
1750 
1751     // If the sign bit is known zero, convert this to a zero extend.
1752     if (Known.isNonNegative()) {
1753       unsigned Opc =
1754           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1755       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1756         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1757     }
1758     break;
1759   }
1760   case ISD::ANY_EXTEND:
1761   case ISD::ANY_EXTEND_VECTOR_INREG: {
1762     SDValue Src = Op.getOperand(0);
1763     EVT SrcVT = Src.getValueType();
1764     unsigned InBits = SrcVT.getScalarSizeInBits();
1765     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1766     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1767 
1768     // If we only need the bottom element then we can just bitcast.
1769     // TODO: Handle ANY_EXTEND?
1770     if (IsVecInReg && DemandedElts == 1 &&
1771         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1772         TLO.DAG.getDataLayout().isLittleEndian())
1773       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1774 
1775     APInt InDemandedBits = DemandedBits.trunc(InBits);
1776     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1777     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1778                              Depth + 1))
1779       return true;
1780     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1781     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1782     Known = Known.zext(BitWidth, false /* => any extend */);
1783     break;
1784   }
1785   case ISD::TRUNCATE: {
1786     SDValue Src = Op.getOperand(0);
1787 
1788     // Simplify the input, using demanded bit information, and compute the known
1789     // zero/one bits live out.
1790     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1791     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1792     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1793       return true;
1794     Known = Known.trunc(BitWidth);
1795 
1796     // Attempt to avoid multi-use ops if we don't need anything from them.
1797     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1798             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1799       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1800 
1801     // If the input is only used by this truncate, see if we can shrink it based
1802     // on the known demanded bits.
1803     if (Src.getNode()->hasOneUse()) {
1804       switch (Src.getOpcode()) {
1805       default:
1806         break;
1807       case ISD::SRL:
1808         // Shrink SRL by a constant if none of the high bits shifted in are
1809         // demanded.
1810         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1811           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1812           // undesirable.
1813           break;
1814 
1815         SDValue ShAmt = Src.getOperand(1);
1816         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1817         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1818           break;
1819         uint64_t ShVal = ShAmtC->getZExtValue();
1820 
1821         APInt HighBits =
1822             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1823         HighBits.lshrInPlace(ShVal);
1824         HighBits = HighBits.trunc(BitWidth);
1825 
1826         if (!(HighBits & DemandedBits)) {
1827           // None of the shifted in bits are needed.  Add a truncate of the
1828           // shift input, then shift it.
1829           if (TLO.LegalTypes())
1830             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1831           SDValue NewTrunc =
1832               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1833           return TLO.CombineTo(
1834               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1835         }
1836         break;
1837       }
1838     }
1839 
1840     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1841     break;
1842   }
1843   case ISD::AssertZext: {
1844     // AssertZext demands all of the high bits, plus any of the low bits
1845     // demanded by its users.
1846     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1847     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1848     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1849                              TLO, Depth + 1))
1850       return true;
1851     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1852 
1853     Known.Zero |= ~InMask;
1854     break;
1855   }
1856   case ISD::EXTRACT_VECTOR_ELT: {
1857     SDValue Src = Op.getOperand(0);
1858     SDValue Idx = Op.getOperand(1);
1859     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1860     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1861 
1862     // Demand the bits from every vector element without a constant index.
1863     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1864     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1865       if (CIdx->getAPIntValue().ult(NumSrcElts))
1866         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1867 
1868     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1869     // anything about the extended bits.
1870     APInt DemandedSrcBits = DemandedBits;
1871     if (BitWidth > EltBitWidth)
1872       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1873 
1874     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1875                              Depth + 1))
1876       return true;
1877 
1878     // Attempt to avoid multi-use ops if we don't need anything from them.
1879     if (!DemandedSrcBits.isAllOnesValue() ||
1880         !DemandedSrcElts.isAllOnesValue()) {
1881       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1882               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1883         SDValue NewOp =
1884             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1885         return TLO.CombineTo(Op, NewOp);
1886       }
1887     }
1888 
1889     Known = Known2;
1890     if (BitWidth > EltBitWidth)
1891       Known = Known.zext(BitWidth, false /* => any extend */);
1892     break;
1893   }
1894   case ISD::BITCAST: {
1895     SDValue Src = Op.getOperand(0);
1896     EVT SrcVT = Src.getValueType();
1897     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1898 
1899     // If this is an FP->Int bitcast and if the sign bit is the only
1900     // thing demanded, turn this into a FGETSIGN.
1901     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1902         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1903         SrcVT.isFloatingPoint()) {
1904       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1905       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1906       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1907           SrcVT != MVT::f128) {
1908         // Cannot eliminate/lower SHL for f128 yet.
1909         EVT Ty = OpVTLegal ? VT : MVT::i32;
1910         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1911         // place.  We expect the SHL to be eliminated by other optimizations.
1912         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1913         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1914         if (!OpVTLegal && OpVTSizeInBits > 32)
1915           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1916         unsigned ShVal = Op.getValueSizeInBits() - 1;
1917         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1918         return TLO.CombineTo(Op,
1919                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1920       }
1921     }
1922 
1923     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1924     // Demand the elt/bit if any of the original elts/bits are demanded.
1925     // TODO - bigendian once we have test coverage.
1926     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1927         TLO.DAG.getDataLayout().isLittleEndian()) {
1928       unsigned Scale = BitWidth / NumSrcEltBits;
1929       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1930       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1931       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1932       for (unsigned i = 0; i != Scale; ++i) {
1933         unsigned Offset = i * NumSrcEltBits;
1934         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1935         if (!Sub.isNullValue()) {
1936           DemandedSrcBits |= Sub;
1937           for (unsigned j = 0; j != NumElts; ++j)
1938             if (DemandedElts[j])
1939               DemandedSrcElts.setBit((j * Scale) + i);
1940         }
1941       }
1942 
1943       APInt KnownSrcUndef, KnownSrcZero;
1944       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1945                                      KnownSrcZero, TLO, Depth + 1))
1946         return true;
1947 
1948       KnownBits KnownSrcBits;
1949       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1950                                KnownSrcBits, TLO, Depth + 1))
1951         return true;
1952     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1953                TLO.DAG.getDataLayout().isLittleEndian()) {
1954       unsigned Scale = NumSrcEltBits / BitWidth;
1955       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1956       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1957       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1958       for (unsigned i = 0; i != NumElts; ++i)
1959         if (DemandedElts[i]) {
1960           unsigned Offset = (i % Scale) * BitWidth;
1961           DemandedSrcBits.insertBits(DemandedBits, Offset);
1962           DemandedSrcElts.setBit(i / Scale);
1963         }
1964 
1965       if (SrcVT.isVector()) {
1966         APInt KnownSrcUndef, KnownSrcZero;
1967         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1968                                        KnownSrcZero, TLO, Depth + 1))
1969           return true;
1970       }
1971 
1972       KnownBits KnownSrcBits;
1973       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1974                                KnownSrcBits, TLO, Depth + 1))
1975         return true;
1976     }
1977 
1978     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1979     // recursive call where Known may be useful to the caller.
1980     if (Depth > 0) {
1981       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1982       return false;
1983     }
1984     break;
1985   }
1986   case ISD::ADD:
1987   case ISD::MUL:
1988   case ISD::SUB: {
1989     // Add, Sub, and Mul don't demand any bits in positions beyond that
1990     // of the highest bit demanded of them.
1991     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1992     SDNodeFlags Flags = Op.getNode()->getFlags();
1993     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1994     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1995     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1996                              Depth + 1) ||
1997         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1998                              Depth + 1) ||
1999         // See if the operation should be performed at a smaller bit width.
2000         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2001       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2002         // Disable the nsw and nuw flags. We can no longer guarantee that we
2003         // won't wrap after simplification.
2004         Flags.setNoSignedWrap(false);
2005         Flags.setNoUnsignedWrap(false);
2006         SDValue NewOp =
2007             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2008         return TLO.CombineTo(Op, NewOp);
2009       }
2010       return true;
2011     }
2012 
2013     // Attempt to avoid multi-use ops if we don't need anything from them.
2014     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2015       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2016           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2017       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2018           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2019       if (DemandedOp0 || DemandedOp1) {
2020         Flags.setNoSignedWrap(false);
2021         Flags.setNoUnsignedWrap(false);
2022         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2023         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2024         SDValue NewOp =
2025             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2026         return TLO.CombineTo(Op, NewOp);
2027       }
2028     }
2029 
2030     // If we have a constant operand, we may be able to turn it into -1 if we
2031     // do not demand the high bits. This can make the constant smaller to
2032     // encode, allow more general folding, or match specialized instruction
2033     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2034     // is probably not useful (and could be detrimental).
2035     ConstantSDNode *C = isConstOrConstSplat(Op1);
2036     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2037     if (C && !C->isAllOnesValue() && !C->isOne() &&
2038         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2039       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2040       // Disable the nsw and nuw flags. We can no longer guarantee that we
2041       // won't wrap after simplification.
2042       Flags.setNoSignedWrap(false);
2043       Flags.setNoUnsignedWrap(false);
2044       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2045       return TLO.CombineTo(Op, NewOp);
2046     }
2047 
2048     LLVM_FALLTHROUGH;
2049   }
2050   default:
2051     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2052       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2053                                             Known, TLO, Depth))
2054         return true;
2055       break;
2056     }
2057 
2058     // Just use computeKnownBits to compute output bits.
2059     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2060     break;
2061   }
2062 
2063   // If we know the value of all of the demanded bits, return this as a
2064   // constant.
2065   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2066     // Avoid folding to a constant if any OpaqueConstant is involved.
2067     const SDNode *N = Op.getNode();
2068     for (SDNodeIterator I = SDNodeIterator::begin(N),
2069                         E = SDNodeIterator::end(N);
2070          I != E; ++I) {
2071       SDNode *Op = *I;
2072       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2073         if (C->isOpaque())
2074           return false;
2075     }
2076     // TODO: Handle float bits as well.
2077     if (VT.isInteger())
2078       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2079   }
2080 
2081   return false;
2082 }
2083 
2084 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2085                                                 const APInt &DemandedElts,
2086                                                 APInt &KnownUndef,
2087                                                 APInt &KnownZero,
2088                                                 DAGCombinerInfo &DCI) const {
2089   SelectionDAG &DAG = DCI.DAG;
2090   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2091                         !DCI.isBeforeLegalizeOps());
2092 
2093   bool Simplified =
2094       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2095   if (Simplified) {
2096     DCI.AddToWorklist(Op.getNode());
2097     DCI.CommitTargetLoweringOpt(TLO);
2098   }
2099 
2100   return Simplified;
2101 }
2102 
2103 /// Given a vector binary operation and known undefined elements for each input
2104 /// operand, compute whether each element of the output is undefined.
2105 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2106                                          const APInt &UndefOp0,
2107                                          const APInt &UndefOp1) {
2108   EVT VT = BO.getValueType();
2109   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2110          "Vector binop only");
2111 
2112   EVT EltVT = VT.getVectorElementType();
2113   unsigned NumElts = VT.getVectorNumElements();
2114   assert(UndefOp0.getBitWidth() == NumElts &&
2115          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2116 
2117   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2118                                    const APInt &UndefVals) {
2119     if (UndefVals[Index])
2120       return DAG.getUNDEF(EltVT);
2121 
2122     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2123       // Try hard to make sure that the getNode() call is not creating temporary
2124       // nodes. Ignore opaque integers because they do not constant fold.
2125       SDValue Elt = BV->getOperand(Index);
2126       auto *C = dyn_cast<ConstantSDNode>(Elt);
2127       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2128         return Elt;
2129     }
2130 
2131     return SDValue();
2132   };
2133 
2134   APInt KnownUndef = APInt::getNullValue(NumElts);
2135   for (unsigned i = 0; i != NumElts; ++i) {
2136     // If both inputs for this element are either constant or undef and match
2137     // the element type, compute the constant/undef result for this element of
2138     // the vector.
2139     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2140     // not handle FP constants. The code within getNode() should be refactored
2141     // to avoid the danger of creating a bogus temporary node here.
2142     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2143     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2144     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2145       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2146         KnownUndef.setBit(i);
2147   }
2148   return KnownUndef;
2149 }
2150 
2151 bool TargetLowering::SimplifyDemandedVectorElts(
2152     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2153     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2154     bool AssumeSingleUse) const {
2155   EVT VT = Op.getValueType();
2156   APInt DemandedElts = OriginalDemandedElts;
2157   unsigned NumElts = DemandedElts.getBitWidth();
2158   assert(VT.isVector() && "Expected vector op");
2159   assert(VT.getVectorNumElements() == NumElts &&
2160          "Mask size mismatches value type element count!");
2161 
2162   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2163 
2164   // Undef operand.
2165   if (Op.isUndef()) {
2166     KnownUndef.setAllBits();
2167     return false;
2168   }
2169 
2170   // If Op has other users, assume that all elements are needed.
2171   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2172     DemandedElts.setAllBits();
2173 
2174   // Not demanding any elements from Op.
2175   if (DemandedElts == 0) {
2176     KnownUndef.setAllBits();
2177     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2178   }
2179 
2180   // Limit search depth.
2181   if (Depth >= SelectionDAG::MaxRecursionDepth)
2182     return false;
2183 
2184   SDLoc DL(Op);
2185   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2186 
2187   switch (Op.getOpcode()) {
2188   case ISD::SCALAR_TO_VECTOR: {
2189     if (!DemandedElts[0]) {
2190       KnownUndef.setAllBits();
2191       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2192     }
2193     KnownUndef.setHighBits(NumElts - 1);
2194     break;
2195   }
2196   case ISD::BITCAST: {
2197     SDValue Src = Op.getOperand(0);
2198     EVT SrcVT = Src.getValueType();
2199 
2200     // We only handle vectors here.
2201     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2202     if (!SrcVT.isVector())
2203       break;
2204 
2205     // Fast handling of 'identity' bitcasts.
2206     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2207     if (NumSrcElts == NumElts)
2208       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2209                                         KnownZero, TLO, Depth + 1);
2210 
2211     APInt SrcZero, SrcUndef;
2212     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2213 
2214     // Bitcast from 'large element' src vector to 'small element' vector, we
2215     // must demand a source element if any DemandedElt maps to it.
2216     if ((NumElts % NumSrcElts) == 0) {
2217       unsigned Scale = NumElts / NumSrcElts;
2218       for (unsigned i = 0; i != NumElts; ++i)
2219         if (DemandedElts[i])
2220           SrcDemandedElts.setBit(i / Scale);
2221 
2222       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2223                                      TLO, Depth + 1))
2224         return true;
2225 
2226       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2227       // of the large element.
2228       // TODO - bigendian once we have test coverage.
2229       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2230         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2231         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2232         for (unsigned i = 0; i != NumElts; ++i)
2233           if (DemandedElts[i]) {
2234             unsigned Ofs = (i % Scale) * EltSizeInBits;
2235             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2236           }
2237 
2238         KnownBits Known;
2239         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2240           return true;
2241       }
2242 
2243       // If the src element is zero/undef then all the output elements will be -
2244       // only demanded elements are guaranteed to be correct.
2245       for (unsigned i = 0; i != NumSrcElts; ++i) {
2246         if (SrcDemandedElts[i]) {
2247           if (SrcZero[i])
2248             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2249           if (SrcUndef[i])
2250             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2251         }
2252       }
2253     }
2254 
2255     // Bitcast from 'small element' src vector to 'large element' vector, we
2256     // demand all smaller source elements covered by the larger demanded element
2257     // of this vector.
2258     if ((NumSrcElts % NumElts) == 0) {
2259       unsigned Scale = NumSrcElts / NumElts;
2260       for (unsigned i = 0; i != NumElts; ++i)
2261         if (DemandedElts[i])
2262           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2263 
2264       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2265                                      TLO, Depth + 1))
2266         return true;
2267 
2268       // If all the src elements covering an output element are zero/undef, then
2269       // the output element will be as well, assuming it was demanded.
2270       for (unsigned i = 0; i != NumElts; ++i) {
2271         if (DemandedElts[i]) {
2272           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2273             KnownZero.setBit(i);
2274           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2275             KnownUndef.setBit(i);
2276         }
2277       }
2278     }
2279     break;
2280   }
2281   case ISD::BUILD_VECTOR: {
2282     // Check all elements and simplify any unused elements with UNDEF.
2283     if (!DemandedElts.isAllOnesValue()) {
2284       // Don't simplify BROADCASTS.
2285       if (llvm::any_of(Op->op_values(),
2286                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2287         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2288         bool Updated = false;
2289         for (unsigned i = 0; i != NumElts; ++i) {
2290           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2291             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2292             KnownUndef.setBit(i);
2293             Updated = true;
2294           }
2295         }
2296         if (Updated)
2297           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2298       }
2299     }
2300     for (unsigned i = 0; i != NumElts; ++i) {
2301       SDValue SrcOp = Op.getOperand(i);
2302       if (SrcOp.isUndef()) {
2303         KnownUndef.setBit(i);
2304       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2305                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2306         KnownZero.setBit(i);
2307       }
2308     }
2309     break;
2310   }
2311   case ISD::CONCAT_VECTORS: {
2312     EVT SubVT = Op.getOperand(0).getValueType();
2313     unsigned NumSubVecs = Op.getNumOperands();
2314     unsigned NumSubElts = SubVT.getVectorNumElements();
2315     for (unsigned i = 0; i != NumSubVecs; ++i) {
2316       SDValue SubOp = Op.getOperand(i);
2317       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2318       APInt SubUndef, SubZero;
2319       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2320                                      Depth + 1))
2321         return true;
2322       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2323       KnownZero.insertBits(SubZero, i * NumSubElts);
2324     }
2325     break;
2326   }
2327   case ISD::INSERT_SUBVECTOR: {
2328     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2329       break;
2330     SDValue Base = Op.getOperand(0);
2331     SDValue Sub = Op.getOperand(1);
2332     EVT SubVT = Sub.getValueType();
2333     unsigned NumSubElts = SubVT.getVectorNumElements();
2334     const APInt &Idx = Op.getConstantOperandAPInt(2);
2335     if (Idx.ugt(NumElts - NumSubElts))
2336       break;
2337     unsigned SubIdx = Idx.getZExtValue();
2338     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2339     APInt SubUndef, SubZero;
2340     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2341                                    Depth + 1))
2342       return true;
2343     APInt BaseElts = DemandedElts;
2344     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2345 
2346     // If none of the base operand elements are demanded, replace it with undef.
2347     if (!BaseElts && !Base.isUndef())
2348       return TLO.CombineTo(Op,
2349                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2350                                            TLO.DAG.getUNDEF(VT),
2351                                            Op.getOperand(1),
2352                                            Op.getOperand(2)));
2353 
2354     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2355                                    Depth + 1))
2356       return true;
2357     KnownUndef.insertBits(SubUndef, SubIdx);
2358     KnownZero.insertBits(SubZero, SubIdx);
2359     break;
2360   }
2361   case ISD::EXTRACT_SUBVECTOR: {
2362     SDValue Src = Op.getOperand(0);
2363     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2364     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2365     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2366       // Offset the demanded elts by the subvector index.
2367       uint64_t Idx = SubIdx->getZExtValue();
2368       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2369       APInt SrcUndef, SrcZero;
2370       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2371                                      Depth + 1))
2372         return true;
2373       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2374       KnownZero = SrcZero.extractBits(NumElts, Idx);
2375     }
2376     break;
2377   }
2378   case ISD::INSERT_VECTOR_ELT: {
2379     SDValue Vec = Op.getOperand(0);
2380     SDValue Scl = Op.getOperand(1);
2381     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2382 
2383     // For a legal, constant insertion index, if we don't need this insertion
2384     // then strip it, else remove it from the demanded elts.
2385     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2386       unsigned Idx = CIdx->getZExtValue();
2387       if (!DemandedElts[Idx])
2388         return TLO.CombineTo(Op, Vec);
2389 
2390       APInt DemandedVecElts(DemandedElts);
2391       DemandedVecElts.clearBit(Idx);
2392       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2393                                      KnownZero, TLO, Depth + 1))
2394         return true;
2395 
2396       KnownUndef.clearBit(Idx);
2397       if (Scl.isUndef())
2398         KnownUndef.setBit(Idx);
2399 
2400       KnownZero.clearBit(Idx);
2401       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2402         KnownZero.setBit(Idx);
2403       break;
2404     }
2405 
2406     APInt VecUndef, VecZero;
2407     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2408                                    Depth + 1))
2409       return true;
2410     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2411     break;
2412   }
2413   case ISD::VSELECT: {
2414     // Try to transform the select condition based on the current demanded
2415     // elements.
2416     // TODO: If a condition element is undef, we can choose from one arm of the
2417     //       select (and if one arm is undef, then we can propagate that to the
2418     //       result).
2419     // TODO - add support for constant vselect masks (see IR version of this).
2420     APInt UnusedUndef, UnusedZero;
2421     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2422                                    UnusedZero, TLO, Depth + 1))
2423       return true;
2424 
2425     // See if we can simplify either vselect operand.
2426     APInt DemandedLHS(DemandedElts);
2427     APInt DemandedRHS(DemandedElts);
2428     APInt UndefLHS, ZeroLHS;
2429     APInt UndefRHS, ZeroRHS;
2430     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2431                                    ZeroLHS, TLO, Depth + 1))
2432       return true;
2433     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2434                                    ZeroRHS, TLO, Depth + 1))
2435       return true;
2436 
2437     KnownUndef = UndefLHS & UndefRHS;
2438     KnownZero = ZeroLHS & ZeroRHS;
2439     break;
2440   }
2441   case ISD::VECTOR_SHUFFLE: {
2442     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2443 
2444     // Collect demanded elements from shuffle operands..
2445     APInt DemandedLHS(NumElts, 0);
2446     APInt DemandedRHS(NumElts, 0);
2447     for (unsigned i = 0; i != NumElts; ++i) {
2448       int M = ShuffleMask[i];
2449       if (M < 0 || !DemandedElts[i])
2450         continue;
2451       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2452       if (M < (int)NumElts)
2453         DemandedLHS.setBit(M);
2454       else
2455         DemandedRHS.setBit(M - NumElts);
2456     }
2457 
2458     // See if we can simplify either shuffle operand.
2459     APInt UndefLHS, ZeroLHS;
2460     APInt UndefRHS, ZeroRHS;
2461     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2462                                    ZeroLHS, TLO, Depth + 1))
2463       return true;
2464     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2465                                    ZeroRHS, TLO, Depth + 1))
2466       return true;
2467 
2468     // Simplify mask using undef elements from LHS/RHS.
2469     bool Updated = false;
2470     bool IdentityLHS = true, IdentityRHS = true;
2471     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2472     for (unsigned i = 0; i != NumElts; ++i) {
2473       int &M = NewMask[i];
2474       if (M < 0)
2475         continue;
2476       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2477           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2478         Updated = true;
2479         M = -1;
2480       }
2481       IdentityLHS &= (M < 0) || (M == (int)i);
2482       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2483     }
2484 
2485     // Update legal shuffle masks based on demanded elements if it won't reduce
2486     // to Identity which can cause premature removal of the shuffle mask.
2487     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2488       SDValue LegalShuffle =
2489           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2490                                   NewMask, TLO.DAG);
2491       if (LegalShuffle)
2492         return TLO.CombineTo(Op, LegalShuffle);
2493     }
2494 
2495     // Propagate undef/zero elements from LHS/RHS.
2496     for (unsigned i = 0; i != NumElts; ++i) {
2497       int M = ShuffleMask[i];
2498       if (M < 0) {
2499         KnownUndef.setBit(i);
2500       } else if (M < (int)NumElts) {
2501         if (UndefLHS[M])
2502           KnownUndef.setBit(i);
2503         if (ZeroLHS[M])
2504           KnownZero.setBit(i);
2505       } else {
2506         if (UndefRHS[M - NumElts])
2507           KnownUndef.setBit(i);
2508         if (ZeroRHS[M - NumElts])
2509           KnownZero.setBit(i);
2510       }
2511     }
2512     break;
2513   }
2514   case ISD::ANY_EXTEND_VECTOR_INREG:
2515   case ISD::SIGN_EXTEND_VECTOR_INREG:
2516   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2517     APInt SrcUndef, SrcZero;
2518     SDValue Src = Op.getOperand(0);
2519     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2520     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2521     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2522                                    Depth + 1))
2523       return true;
2524     KnownZero = SrcZero.zextOrTrunc(NumElts);
2525     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2526 
2527     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2528         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2529         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2530       // aext - if we just need the bottom element then we can bitcast.
2531       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2532     }
2533 
2534     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2535       // zext(undef) upper bits are guaranteed to be zero.
2536       if (DemandedElts.isSubsetOf(KnownUndef))
2537         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2538       KnownUndef.clearAllBits();
2539     }
2540     break;
2541   }
2542 
2543   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2544   // MAX, saturated math, etc.
2545   case ISD::OR:
2546   case ISD::XOR:
2547   case ISD::ADD:
2548   case ISD::SUB:
2549   case ISD::FADD:
2550   case ISD::FSUB:
2551   case ISD::FMUL:
2552   case ISD::FDIV:
2553   case ISD::FREM: {
2554     APInt UndefRHS, ZeroRHS;
2555     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2556                                    ZeroRHS, TLO, Depth + 1))
2557       return true;
2558     APInt UndefLHS, ZeroLHS;
2559     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2560                                    ZeroLHS, TLO, Depth + 1))
2561       return true;
2562 
2563     KnownZero = ZeroLHS & ZeroRHS;
2564     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2565     break;
2566   }
2567   case ISD::SHL:
2568   case ISD::SRL:
2569   case ISD::SRA:
2570   case ISD::ROTL:
2571   case ISD::ROTR: {
2572     APInt UndefRHS, ZeroRHS;
2573     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2574                                    ZeroRHS, TLO, Depth + 1))
2575       return true;
2576     APInt UndefLHS, ZeroLHS;
2577     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2578                                    ZeroLHS, TLO, Depth + 1))
2579       return true;
2580 
2581     KnownZero = ZeroLHS;
2582     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2583     break;
2584   }
2585   case ISD::MUL:
2586   case ISD::AND: {
2587     APInt SrcUndef, SrcZero;
2588     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2589                                    SrcZero, TLO, Depth + 1))
2590       return true;
2591     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2592                                    KnownZero, TLO, Depth + 1))
2593       return true;
2594 
2595     // If either side has a zero element, then the result element is zero, even
2596     // if the other is an UNDEF.
2597     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2598     // and then handle 'and' nodes with the rest of the binop opcodes.
2599     KnownZero |= SrcZero;
2600     KnownUndef &= SrcUndef;
2601     KnownUndef &= ~KnownZero;
2602     break;
2603   }
2604   case ISD::TRUNCATE:
2605   case ISD::SIGN_EXTEND:
2606   case ISD::ZERO_EXTEND:
2607     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2608                                    KnownZero, TLO, Depth + 1))
2609       return true;
2610 
2611     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2612       // zext(undef) upper bits are guaranteed to be zero.
2613       if (DemandedElts.isSubsetOf(KnownUndef))
2614         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2615       KnownUndef.clearAllBits();
2616     }
2617     break;
2618   default: {
2619     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2620       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2621                                                   KnownZero, TLO, Depth))
2622         return true;
2623     } else {
2624       KnownBits Known;
2625       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2626       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2627                                TLO, Depth, AssumeSingleUse))
2628         return true;
2629     }
2630     break;
2631   }
2632   }
2633   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2634 
2635   // Constant fold all undef cases.
2636   // TODO: Handle zero cases as well.
2637   if (DemandedElts.isSubsetOf(KnownUndef))
2638     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2639 
2640   return false;
2641 }
2642 
2643 /// Determine which of the bits specified in Mask are known to be either zero or
2644 /// one and return them in the Known.
2645 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2646                                                    KnownBits &Known,
2647                                                    const APInt &DemandedElts,
2648                                                    const SelectionDAG &DAG,
2649                                                    unsigned Depth) const {
2650   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2651           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2652           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2653           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2654          "Should use MaskedValueIsZero if you don't know whether Op"
2655          " is a target node!");
2656   Known.resetAll();
2657 }
2658 
2659 void TargetLowering::computeKnownBitsForTargetInstr(
2660     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2661     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2662     unsigned Depth) const {
2663   Known.resetAll();
2664 }
2665 
2666 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2667                                                    KnownBits &Known,
2668                                                    const APInt &DemandedElts,
2669                                                    const SelectionDAG &DAG,
2670                                                    unsigned Depth) const {
2671   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2672 
2673   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2674     // The low bits are known zero if the pointer is aligned.
2675     Known.Zero.setLowBits(Log2_32(Align));
2676   }
2677 }
2678 
2679 /// This method can be implemented by targets that want to expose additional
2680 /// information about sign bits to the DAG Combiner.
2681 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2682                                                          const APInt &,
2683                                                          const SelectionDAG &,
2684                                                          unsigned Depth) const {
2685   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2686           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2687           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2688           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2689          "Should use ComputeNumSignBits if you don't know whether Op"
2690          " is a target node!");
2691   return 1;
2692 }
2693 
2694 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2695     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2696     TargetLoweringOpt &TLO, unsigned Depth) const {
2697   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2698           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2699           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2700           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2701          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2702          " is a target node!");
2703   return false;
2704 }
2705 
2706 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2707     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2708     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2709   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2710           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2711           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2712           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2713          "Should use SimplifyDemandedBits if you don't know whether Op"
2714          " is a target node!");
2715   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2716   return false;
2717 }
2718 
2719 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2720     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2721     SelectionDAG &DAG, unsigned Depth) const {
2722   assert(
2723       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2724        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2725        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2726        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2727       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2728       " is a target node!");
2729   return SDValue();
2730 }
2731 
2732 SDValue
2733 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2734                                         SDValue N1, MutableArrayRef<int> Mask,
2735                                         SelectionDAG &DAG) const {
2736   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2737   if (!LegalMask) {
2738     std::swap(N0, N1);
2739     ShuffleVectorSDNode::commuteMask(Mask);
2740     LegalMask = isShuffleMaskLegal(Mask, VT);
2741   }
2742 
2743   if (!LegalMask)
2744     return SDValue();
2745 
2746   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2747 }
2748 
2749 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2750   return nullptr;
2751 }
2752 
2753 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2754                                                   const SelectionDAG &DAG,
2755                                                   bool SNaN,
2756                                                   unsigned Depth) const {
2757   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2758           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2759           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2760           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2761          "Should use isKnownNeverNaN if you don't know whether Op"
2762          " is a target node!");
2763   return false;
2764 }
2765 
2766 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2767 // work with truncating build vectors and vectors with elements of less than
2768 // 8 bits.
2769 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2770   if (!N)
2771     return false;
2772 
2773   APInt CVal;
2774   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2775     CVal = CN->getAPIntValue();
2776   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2777     auto *CN = BV->getConstantSplatNode();
2778     if (!CN)
2779       return false;
2780 
2781     // If this is a truncating build vector, truncate the splat value.
2782     // Otherwise, we may fail to match the expected values below.
2783     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2784     CVal = CN->getAPIntValue();
2785     if (BVEltWidth < CVal.getBitWidth())
2786       CVal = CVal.trunc(BVEltWidth);
2787   } else {
2788     return false;
2789   }
2790 
2791   switch (getBooleanContents(N->getValueType(0))) {
2792   case UndefinedBooleanContent:
2793     return CVal[0];
2794   case ZeroOrOneBooleanContent:
2795     return CVal.isOneValue();
2796   case ZeroOrNegativeOneBooleanContent:
2797     return CVal.isAllOnesValue();
2798   }
2799 
2800   llvm_unreachable("Invalid boolean contents");
2801 }
2802 
2803 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2804   if (!N)
2805     return false;
2806 
2807   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2808   if (!CN) {
2809     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2810     if (!BV)
2811       return false;
2812 
2813     // Only interested in constant splats, we don't care about undef
2814     // elements in identifying boolean constants and getConstantSplatNode
2815     // returns NULL if all ops are undef;
2816     CN = BV->getConstantSplatNode();
2817     if (!CN)
2818       return false;
2819   }
2820 
2821   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2822     return !CN->getAPIntValue()[0];
2823 
2824   return CN->isNullValue();
2825 }
2826 
2827 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2828                                        bool SExt) const {
2829   if (VT == MVT::i1)
2830     return N->isOne();
2831 
2832   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2833   switch (Cnt) {
2834   case TargetLowering::ZeroOrOneBooleanContent:
2835     // An extended value of 1 is always true, unless its original type is i1,
2836     // in which case it will be sign extended to -1.
2837     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2838   case TargetLowering::UndefinedBooleanContent:
2839   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2840     return N->isAllOnesValue() && SExt;
2841   }
2842   llvm_unreachable("Unexpected enumeration.");
2843 }
2844 
2845 /// This helper function of SimplifySetCC tries to optimize the comparison when
2846 /// either operand of the SetCC node is a bitwise-and instruction.
2847 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2848                                          ISD::CondCode Cond, const SDLoc &DL,
2849                                          DAGCombinerInfo &DCI) const {
2850   // Match these patterns in any of their permutations:
2851   // (X & Y) == Y
2852   // (X & Y) != Y
2853   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2854     std::swap(N0, N1);
2855 
2856   EVT OpVT = N0.getValueType();
2857   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2858       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2859     return SDValue();
2860 
2861   SDValue X, Y;
2862   if (N0.getOperand(0) == N1) {
2863     X = N0.getOperand(1);
2864     Y = N0.getOperand(0);
2865   } else if (N0.getOperand(1) == N1) {
2866     X = N0.getOperand(0);
2867     Y = N0.getOperand(1);
2868   } else {
2869     return SDValue();
2870   }
2871 
2872   SelectionDAG &DAG = DCI.DAG;
2873   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2874   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2875     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2876     // Note that where Y is variable and is known to have at most one bit set
2877     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2878     // equivalent when Y == 0.
2879     assert(OpVT.isInteger());
2880     Cond = ISD::getSetCCInverse(Cond, OpVT);
2881     if (DCI.isBeforeLegalizeOps() ||
2882         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2883       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2884   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2885     // If the target supports an 'and-not' or 'and-complement' logic operation,
2886     // try to use that to make a comparison operation more efficient.
2887     // But don't do this transform if the mask is a single bit because there are
2888     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2889     // 'rlwinm' on PPC).
2890 
2891     // Bail out if the compare operand that we want to turn into a zero is
2892     // already a zero (otherwise, infinite loop).
2893     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2894     if (YConst && YConst->isNullValue())
2895       return SDValue();
2896 
2897     // Transform this into: ~X & Y == 0.
2898     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2899     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2900     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2901   }
2902 
2903   return SDValue();
2904 }
2905 
2906 /// There are multiple IR patterns that could be checking whether certain
2907 /// truncation of a signed number would be lossy or not. The pattern which is
2908 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2909 /// We are looking for the following pattern: (KeptBits is a constant)
2910 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2911 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2912 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2913 /// We will unfold it into the natural trunc+sext pattern:
2914 ///   ((%x << C) a>> C) dstcond %x
2915 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2916 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2917     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2918     const SDLoc &DL) const {
2919   // We must be comparing with a constant.
2920   ConstantSDNode *C1;
2921   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2922     return SDValue();
2923 
2924   // N0 should be:  add %x, (1 << (KeptBits-1))
2925   if (N0->getOpcode() != ISD::ADD)
2926     return SDValue();
2927 
2928   // And we must be 'add'ing a constant.
2929   ConstantSDNode *C01;
2930   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2931     return SDValue();
2932 
2933   SDValue X = N0->getOperand(0);
2934   EVT XVT = X.getValueType();
2935 
2936   // Validate constants ...
2937 
2938   APInt I1 = C1->getAPIntValue();
2939 
2940   ISD::CondCode NewCond;
2941   if (Cond == ISD::CondCode::SETULT) {
2942     NewCond = ISD::CondCode::SETEQ;
2943   } else if (Cond == ISD::CondCode::SETULE) {
2944     NewCond = ISD::CondCode::SETEQ;
2945     // But need to 'canonicalize' the constant.
2946     I1 += 1;
2947   } else if (Cond == ISD::CondCode::SETUGT) {
2948     NewCond = ISD::CondCode::SETNE;
2949     // But need to 'canonicalize' the constant.
2950     I1 += 1;
2951   } else if (Cond == ISD::CondCode::SETUGE) {
2952     NewCond = ISD::CondCode::SETNE;
2953   } else
2954     return SDValue();
2955 
2956   APInt I01 = C01->getAPIntValue();
2957 
2958   auto checkConstants = [&I1, &I01]() -> bool {
2959     // Both of them must be power-of-two, and the constant from setcc is bigger.
2960     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2961   };
2962 
2963   if (checkConstants()) {
2964     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2965   } else {
2966     // What if we invert constants? (and the target predicate)
2967     I1.negate();
2968     I01.negate();
2969     assert(XVT.isInteger());
2970     NewCond = getSetCCInverse(NewCond, XVT);
2971     if (!checkConstants())
2972       return SDValue();
2973     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2974   }
2975 
2976   // They are power-of-two, so which bit is set?
2977   const unsigned KeptBits = I1.logBase2();
2978   const unsigned KeptBitsMinusOne = I01.logBase2();
2979 
2980   // Magic!
2981   if (KeptBits != (KeptBitsMinusOne + 1))
2982     return SDValue();
2983   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2984 
2985   // We don't want to do this in every single case.
2986   SelectionDAG &DAG = DCI.DAG;
2987   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2988           XVT, KeptBits))
2989     return SDValue();
2990 
2991   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2992   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2993 
2994   // Unfold into:  ((%x << C) a>> C) cond %x
2995   // Where 'cond' will be either 'eq' or 'ne'.
2996   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2997   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2998   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2999   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3000 
3001   return T2;
3002 }
3003 
3004 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3005 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3006     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3007     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3008   assert(isConstOrConstSplat(N1C) &&
3009          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3010          "Should be a comparison with 0.");
3011   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3012          "Valid only for [in]equality comparisons.");
3013 
3014   unsigned NewShiftOpcode;
3015   SDValue X, C, Y;
3016 
3017   SelectionDAG &DAG = DCI.DAG;
3018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019 
3020   // Look for '(C l>>/<< Y)'.
3021   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3022     // The shift should be one-use.
3023     if (!V.hasOneUse())
3024       return false;
3025     unsigned OldShiftOpcode = V.getOpcode();
3026     switch (OldShiftOpcode) {
3027     case ISD::SHL:
3028       NewShiftOpcode = ISD::SRL;
3029       break;
3030     case ISD::SRL:
3031       NewShiftOpcode = ISD::SHL;
3032       break;
3033     default:
3034       return false; // must be a logical shift.
3035     }
3036     // We should be shifting a constant.
3037     // FIXME: best to use isConstantOrConstantVector().
3038     C = V.getOperand(0);
3039     ConstantSDNode *CC =
3040         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3041     if (!CC)
3042       return false;
3043     Y = V.getOperand(1);
3044 
3045     ConstantSDNode *XC =
3046         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3047     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3048         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3049   };
3050 
3051   // LHS of comparison should be an one-use 'and'.
3052   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3053     return SDValue();
3054 
3055   X = N0.getOperand(0);
3056   SDValue Mask = N0.getOperand(1);
3057 
3058   // 'and' is commutative!
3059   if (!Match(Mask)) {
3060     std::swap(X, Mask);
3061     if (!Match(Mask))
3062       return SDValue();
3063   }
3064 
3065   EVT VT = X.getValueType();
3066 
3067   // Produce:
3068   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3069   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3070   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3071   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3072   return T2;
3073 }
3074 
3075 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3076 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3077 /// handle the commuted versions of these patterns.
3078 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3079                                            ISD::CondCode Cond, const SDLoc &DL,
3080                                            DAGCombinerInfo &DCI) const {
3081   unsigned BOpcode = N0.getOpcode();
3082   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3083          "Unexpected binop");
3084   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3085 
3086   // (X + Y) == X --> Y == 0
3087   // (X - Y) == X --> Y == 0
3088   // (X ^ Y) == X --> Y == 0
3089   SelectionDAG &DAG = DCI.DAG;
3090   EVT OpVT = N0.getValueType();
3091   SDValue X = N0.getOperand(0);
3092   SDValue Y = N0.getOperand(1);
3093   if (X == N1)
3094     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3095 
3096   if (Y != N1)
3097     return SDValue();
3098 
3099   // (X + Y) == Y --> X == 0
3100   // (X ^ Y) == Y --> X == 0
3101   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3102     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3103 
3104   // The shift would not be valid if the operands are boolean (i1).
3105   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3106     return SDValue();
3107 
3108   // (X - Y) == Y --> X == Y << 1
3109   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3110                                  !DCI.isBeforeLegalize());
3111   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3112   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3113   if (!DCI.isCalledByLegalizer())
3114     DCI.AddToWorklist(YShl1.getNode());
3115   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3116 }
3117 
3118 /// Try to simplify a setcc built with the specified operands and cc. If it is
3119 /// unable to simplify it, return a null SDValue.
3120 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3121                                       ISD::CondCode Cond, bool foldBooleans,
3122                                       DAGCombinerInfo &DCI,
3123                                       const SDLoc &dl) const {
3124   SelectionDAG &DAG = DCI.DAG;
3125   const DataLayout &Layout = DAG.getDataLayout();
3126   EVT OpVT = N0.getValueType();
3127 
3128   // Constant fold or commute setcc.
3129   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3130     return Fold;
3131 
3132   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3133   // TODO: Handle non-splat vector constants. All undef causes trouble.
3134   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3135   if (isConstOrConstSplat(N0) &&
3136       (DCI.isBeforeLegalizeOps() ||
3137        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3138     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3139 
3140   // If we have a subtract with the same 2 non-constant operands as this setcc
3141   // -- but in reverse order -- then try to commute the operands of this setcc
3142   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3143   // instruction on some targets.
3144   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3145       (DCI.isBeforeLegalizeOps() ||
3146        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3147       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3148       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3149     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3150 
3151   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3152     const APInt &C1 = N1C->getAPIntValue();
3153 
3154     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3155     // equality comparison, then we're just comparing whether X itself is
3156     // zero.
3157     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3158         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3159         N0.getOperand(1).getOpcode() == ISD::Constant) {
3160       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3161       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3162           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3163         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3164           // (srl (ctlz x), 5) == 0  -> X != 0
3165           // (srl (ctlz x), 5) != 1  -> X != 0
3166           Cond = ISD::SETNE;
3167         } else {
3168           // (srl (ctlz x), 5) != 0  -> X == 0
3169           // (srl (ctlz x), 5) == 1  -> X == 0
3170           Cond = ISD::SETEQ;
3171         }
3172         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3173         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3174                             Zero, Cond);
3175       }
3176     }
3177 
3178     SDValue CTPOP = N0;
3179     // Look through truncs that don't change the value of a ctpop.
3180     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3181       CTPOP = N0.getOperand(0);
3182 
3183     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3184         (N0 == CTPOP ||
3185          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3186       EVT CTVT = CTPOP.getValueType();
3187       SDValue CTOp = CTPOP.getOperand(0);
3188 
3189       // (ctpop x) u< 2 -> (x & x-1) == 0
3190       // (ctpop x) u> 1 -> (x & x-1) != 0
3191       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3192         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3193         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3194         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3195         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3196         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3197       }
3198 
3199       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3200       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3201           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3202         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3203         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3204         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3205         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3206         assert(CTVT.isInteger());
3207         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3208         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3209         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3210         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3211         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3212         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3213         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3214       }
3215     }
3216 
3217     // (zext x) == C --> x == (trunc C)
3218     // (sext x) == C --> x == (trunc C)
3219     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3220         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3221       unsigned MinBits = N0.getValueSizeInBits();
3222       SDValue PreExt;
3223       bool Signed = false;
3224       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3225         // ZExt
3226         MinBits = N0->getOperand(0).getValueSizeInBits();
3227         PreExt = N0->getOperand(0);
3228       } else if (N0->getOpcode() == ISD::AND) {
3229         // DAGCombine turns costly ZExts into ANDs
3230         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3231           if ((C->getAPIntValue()+1).isPowerOf2()) {
3232             MinBits = C->getAPIntValue().countTrailingOnes();
3233             PreExt = N0->getOperand(0);
3234           }
3235       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3236         // SExt
3237         MinBits = N0->getOperand(0).getValueSizeInBits();
3238         PreExt = N0->getOperand(0);
3239         Signed = true;
3240       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3241         // ZEXTLOAD / SEXTLOAD
3242         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3243           MinBits = LN0->getMemoryVT().getSizeInBits();
3244           PreExt = N0;
3245         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3246           Signed = true;
3247           MinBits = LN0->getMemoryVT().getSizeInBits();
3248           PreExt = N0;
3249         }
3250       }
3251 
3252       // Figure out how many bits we need to preserve this constant.
3253       unsigned ReqdBits = Signed ?
3254         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3255         C1.getActiveBits();
3256 
3257       // Make sure we're not losing bits from the constant.
3258       if (MinBits > 0 &&
3259           MinBits < C1.getBitWidth() &&
3260           MinBits >= ReqdBits) {
3261         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3262         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3263           // Will get folded away.
3264           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3265           if (MinBits == 1 && C1 == 1)
3266             // Invert the condition.
3267             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3268                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3269           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3270           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3271         }
3272 
3273         // If truncating the setcc operands is not desirable, we can still
3274         // simplify the expression in some cases:
3275         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3276         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3277         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3278         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3279         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3280         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3281         SDValue TopSetCC = N0->getOperand(0);
3282         unsigned N0Opc = N0->getOpcode();
3283         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3284         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3285             TopSetCC.getOpcode() == ISD::SETCC &&
3286             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3287             (isConstFalseVal(N1C) ||
3288              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3289 
3290           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3291                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3292 
3293           if (!Inverse)
3294             return TopSetCC;
3295 
3296           ISD::CondCode InvCond = ISD::getSetCCInverse(
3297               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3298               TopSetCC.getOperand(0).getValueType());
3299           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3300                                       TopSetCC.getOperand(1),
3301                                       InvCond);
3302         }
3303       }
3304     }
3305 
3306     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3307     // equality or unsigned, and all 1 bits of the const are in the same
3308     // partial word, see if we can shorten the load.
3309     if (DCI.isBeforeLegalize() &&
3310         !ISD::isSignedIntSetCC(Cond) &&
3311         N0.getOpcode() == ISD::AND && C1 == 0 &&
3312         N0.getNode()->hasOneUse() &&
3313         isa<LoadSDNode>(N0.getOperand(0)) &&
3314         N0.getOperand(0).getNode()->hasOneUse() &&
3315         isa<ConstantSDNode>(N0.getOperand(1))) {
3316       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3317       APInt bestMask;
3318       unsigned bestWidth = 0, bestOffset = 0;
3319       if (Lod->isSimple() && Lod->isUnindexed()) {
3320         unsigned origWidth = N0.getValueSizeInBits();
3321         unsigned maskWidth = origWidth;
3322         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3323         // 8 bits, but have to be careful...
3324         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3325           origWidth = Lod->getMemoryVT().getSizeInBits();
3326         const APInt &Mask = N0.getConstantOperandAPInt(1);
3327         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3328           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3329           for (unsigned offset=0; offset<origWidth/width; offset++) {
3330             if (Mask.isSubsetOf(newMask)) {
3331               if (Layout.isLittleEndian())
3332                 bestOffset = (uint64_t)offset * (width/8);
3333               else
3334                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3335               bestMask = Mask.lshr(offset * (width/8) * 8);
3336               bestWidth = width;
3337               break;
3338             }
3339             newMask <<= width;
3340           }
3341         }
3342       }
3343       if (bestWidth) {
3344         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3345         if (newVT.isRound() &&
3346             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3347           SDValue Ptr = Lod->getBasePtr();
3348           if (bestOffset != 0)
3349             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3350           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3351           SDValue NewLoad = DAG.getLoad(
3352               newVT, dl, Lod->getChain(), Ptr,
3353               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3354           return DAG.getSetCC(dl, VT,
3355                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3356                                       DAG.getConstant(bestMask.trunc(bestWidth),
3357                                                       dl, newVT)),
3358                               DAG.getConstant(0LL, dl, newVT), Cond);
3359         }
3360       }
3361     }
3362 
3363     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3364     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3365       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3366 
3367       // If the comparison constant has bits in the upper part, the
3368       // zero-extended value could never match.
3369       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3370                                               C1.getBitWidth() - InSize))) {
3371         switch (Cond) {
3372         case ISD::SETUGT:
3373         case ISD::SETUGE:
3374         case ISD::SETEQ:
3375           return DAG.getConstant(0, dl, VT);
3376         case ISD::SETULT:
3377         case ISD::SETULE:
3378         case ISD::SETNE:
3379           return DAG.getConstant(1, dl, VT);
3380         case ISD::SETGT:
3381         case ISD::SETGE:
3382           // True if the sign bit of C1 is set.
3383           return DAG.getConstant(C1.isNegative(), dl, VT);
3384         case ISD::SETLT:
3385         case ISD::SETLE:
3386           // True if the sign bit of C1 isn't set.
3387           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3388         default:
3389           break;
3390         }
3391       }
3392 
3393       // Otherwise, we can perform the comparison with the low bits.
3394       switch (Cond) {
3395       case ISD::SETEQ:
3396       case ISD::SETNE:
3397       case ISD::SETUGT:
3398       case ISD::SETUGE:
3399       case ISD::SETULT:
3400       case ISD::SETULE: {
3401         EVT newVT = N0.getOperand(0).getValueType();
3402         if (DCI.isBeforeLegalizeOps() ||
3403             (isOperationLegal(ISD::SETCC, newVT) &&
3404              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3405           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3406           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3407 
3408           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3409                                           NewConst, Cond);
3410           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3411         }
3412         break;
3413       }
3414       default:
3415         break; // todo, be more careful with signed comparisons
3416       }
3417     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3418                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3419       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3420       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3421       EVT ExtDstTy = N0.getValueType();
3422       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3423 
3424       // If the constant doesn't fit into the number of bits for the source of
3425       // the sign extension, it is impossible for both sides to be equal.
3426       if (C1.getMinSignedBits() > ExtSrcTyBits)
3427         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3428 
3429       SDValue ZextOp;
3430       EVT Op0Ty = N0.getOperand(0).getValueType();
3431       if (Op0Ty == ExtSrcTy) {
3432         ZextOp = N0.getOperand(0);
3433       } else {
3434         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3435         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3436                              DAG.getConstant(Imm, dl, Op0Ty));
3437       }
3438       if (!DCI.isCalledByLegalizer())
3439         DCI.AddToWorklist(ZextOp.getNode());
3440       // Otherwise, make this a use of a zext.
3441       return DAG.getSetCC(dl, VT, ZextOp,
3442                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3443                                                               ExtDstTyBits,
3444                                                               ExtSrcTyBits),
3445                                           dl, ExtDstTy),
3446                           Cond);
3447     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3448                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3449       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3450       if (N0.getOpcode() == ISD::SETCC &&
3451           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3452           (N0.getValueType() == MVT::i1 ||
3453            getBooleanContents(N0.getOperand(0).getValueType()) ==
3454                        ZeroOrOneBooleanContent)) {
3455         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3456         if (TrueWhenTrue)
3457           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3458         // Invert the condition.
3459         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3460         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3461         if (DCI.isBeforeLegalizeOps() ||
3462             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3463           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3464       }
3465 
3466       if ((N0.getOpcode() == ISD::XOR ||
3467            (N0.getOpcode() == ISD::AND &&
3468             N0.getOperand(0).getOpcode() == ISD::XOR &&
3469             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3470           isa<ConstantSDNode>(N0.getOperand(1)) &&
3471           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3472         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3473         // can only do this if the top bits are known zero.
3474         unsigned BitWidth = N0.getValueSizeInBits();
3475         if (DAG.MaskedValueIsZero(N0,
3476                                   APInt::getHighBitsSet(BitWidth,
3477                                                         BitWidth-1))) {
3478           // Okay, get the un-inverted input value.
3479           SDValue Val;
3480           if (N0.getOpcode() == ISD::XOR) {
3481             Val = N0.getOperand(0);
3482           } else {
3483             assert(N0.getOpcode() == ISD::AND &&
3484                     N0.getOperand(0).getOpcode() == ISD::XOR);
3485             // ((X^1)&1)^1 -> X & 1
3486             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3487                               N0.getOperand(0).getOperand(0),
3488                               N0.getOperand(1));
3489           }
3490 
3491           return DAG.getSetCC(dl, VT, Val, N1,
3492                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3493         }
3494       } else if (N1C->isOne()) {
3495         SDValue Op0 = N0;
3496         if (Op0.getOpcode() == ISD::TRUNCATE)
3497           Op0 = Op0.getOperand(0);
3498 
3499         if ((Op0.getOpcode() == ISD::XOR) &&
3500             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3501             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3502           SDValue XorLHS = Op0.getOperand(0);
3503           SDValue XorRHS = Op0.getOperand(1);
3504           // Ensure that the input setccs return an i1 type or 0/1 value.
3505           if (Op0.getValueType() == MVT::i1 ||
3506               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3507                       ZeroOrOneBooleanContent &&
3508                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3509                         ZeroOrOneBooleanContent)) {
3510             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3511             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3512             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3513           }
3514         }
3515         if (Op0.getOpcode() == ISD::AND &&
3516             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3517             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3518           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3519           if (Op0.getValueType().bitsGT(VT))
3520             Op0 = DAG.getNode(ISD::AND, dl, VT,
3521                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3522                           DAG.getConstant(1, dl, VT));
3523           else if (Op0.getValueType().bitsLT(VT))
3524             Op0 = DAG.getNode(ISD::AND, dl, VT,
3525                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3526                         DAG.getConstant(1, dl, VT));
3527 
3528           return DAG.getSetCC(dl, VT, Op0,
3529                               DAG.getConstant(0, dl, Op0.getValueType()),
3530                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3531         }
3532         if (Op0.getOpcode() == ISD::AssertZext &&
3533             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3534           return DAG.getSetCC(dl, VT, Op0,
3535                               DAG.getConstant(0, dl, Op0.getValueType()),
3536                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3537       }
3538     }
3539 
3540     // Given:
3541     //   icmp eq/ne (urem %x, %y), 0
3542     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3543     //   icmp eq/ne %x, 0
3544     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3545         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3546       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3547       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3548       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3549         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3550     }
3551 
3552     if (SDValue V =
3553             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3554       return V;
3555   }
3556 
3557   // These simplifications apply to splat vectors as well.
3558   // TODO: Handle more splat vector cases.
3559   if (auto *N1C = isConstOrConstSplat(N1)) {
3560     const APInt &C1 = N1C->getAPIntValue();
3561 
3562     APInt MinVal, MaxVal;
3563     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3564     if (ISD::isSignedIntSetCC(Cond)) {
3565       MinVal = APInt::getSignedMinValue(OperandBitSize);
3566       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3567     } else {
3568       MinVal = APInt::getMinValue(OperandBitSize);
3569       MaxVal = APInt::getMaxValue(OperandBitSize);
3570     }
3571 
3572     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3573     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3574       // X >= MIN --> true
3575       if (C1 == MinVal)
3576         return DAG.getBoolConstant(true, dl, VT, OpVT);
3577 
3578       if (!VT.isVector()) { // TODO: Support this for vectors.
3579         // X >= C0 --> X > (C0 - 1)
3580         APInt C = C1 - 1;
3581         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3582         if ((DCI.isBeforeLegalizeOps() ||
3583              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3584             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3585                                   isLegalICmpImmediate(C.getSExtValue())))) {
3586           return DAG.getSetCC(dl, VT, N0,
3587                               DAG.getConstant(C, dl, N1.getValueType()),
3588                               NewCC);
3589         }
3590       }
3591     }
3592 
3593     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3594       // X <= MAX --> true
3595       if (C1 == MaxVal)
3596         return DAG.getBoolConstant(true, dl, VT, OpVT);
3597 
3598       // X <= C0 --> X < (C0 + 1)
3599       if (!VT.isVector()) { // TODO: Support this for vectors.
3600         APInt C = C1 + 1;
3601         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3602         if ((DCI.isBeforeLegalizeOps() ||
3603              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3604             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3605                                   isLegalICmpImmediate(C.getSExtValue())))) {
3606           return DAG.getSetCC(dl, VT, N0,
3607                               DAG.getConstant(C, dl, N1.getValueType()),
3608                               NewCC);
3609         }
3610       }
3611     }
3612 
3613     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3614       if (C1 == MinVal)
3615         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3616 
3617       // TODO: Support this for vectors after legalize ops.
3618       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3619         // Canonicalize setlt X, Max --> setne X, Max
3620         if (C1 == MaxVal)
3621           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3622 
3623         // If we have setult X, 1, turn it into seteq X, 0
3624         if (C1 == MinVal+1)
3625           return DAG.getSetCC(dl, VT, N0,
3626                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3627                               ISD::SETEQ);
3628       }
3629     }
3630 
3631     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3632       if (C1 == MaxVal)
3633         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3634 
3635       // TODO: Support this for vectors after legalize ops.
3636       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3637         // Canonicalize setgt X, Min --> setne X, Min
3638         if (C1 == MinVal)
3639           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3640 
3641         // If we have setugt X, Max-1, turn it into seteq X, Max
3642         if (C1 == MaxVal-1)
3643           return DAG.getSetCC(dl, VT, N0,
3644                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3645                               ISD::SETEQ);
3646       }
3647     }
3648 
3649     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3650       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3651       if (C1.isNullValue())
3652         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3653                 VT, N0, N1, Cond, DCI, dl))
3654           return CC;
3655     }
3656 
3657     // If we have "setcc X, C0", check to see if we can shrink the immediate
3658     // by changing cc.
3659     // TODO: Support this for vectors after legalize ops.
3660     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3661       // SETUGT X, SINTMAX  -> SETLT X, 0
3662       if (Cond == ISD::SETUGT &&
3663           C1 == APInt::getSignedMaxValue(OperandBitSize))
3664         return DAG.getSetCC(dl, VT, N0,
3665                             DAG.getConstant(0, dl, N1.getValueType()),
3666                             ISD::SETLT);
3667 
3668       // SETULT X, SINTMIN  -> SETGT X, -1
3669       if (Cond == ISD::SETULT &&
3670           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3671         SDValue ConstMinusOne =
3672             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3673                             N1.getValueType());
3674         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3675       }
3676     }
3677   }
3678 
3679   // Back to non-vector simplifications.
3680   // TODO: Can we do these for vector splats?
3681   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3682     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3683     const APInt &C1 = N1C->getAPIntValue();
3684     EVT ShValTy = N0.getValueType();
3685 
3686     // Fold bit comparisons when we can.
3687     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3688         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3689         N0.getOpcode() == ISD::AND) {
3690       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3691         EVT ShiftTy =
3692             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3693         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3694           // Perform the xform if the AND RHS is a single bit.
3695           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3696           if (AndRHS->getAPIntValue().isPowerOf2() &&
3697               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3698             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3699                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3700                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3701           }
3702         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3703           // (X & 8) == 8  -->  (X & 8) >> 3
3704           // Perform the xform if C1 is a single bit.
3705           unsigned ShCt = C1.logBase2();
3706           if (C1.isPowerOf2() &&
3707               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3708             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3709                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3710                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3711           }
3712         }
3713       }
3714     }
3715 
3716     if (C1.getMinSignedBits() <= 64 &&
3717         !isLegalICmpImmediate(C1.getSExtValue())) {
3718       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3719       // (X & -256) == 256 -> (X >> 8) == 1
3720       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3721           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3722         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3723           const APInt &AndRHSC = AndRHS->getAPIntValue();
3724           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3725             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3726             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3727               SDValue Shift =
3728                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3729                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3730               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3731               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3732             }
3733           }
3734         }
3735       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3736                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3737         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3738         // X <  0x100000000 -> (X >> 32) <  1
3739         // X >= 0x100000000 -> (X >> 32) >= 1
3740         // X <= 0x0ffffffff -> (X >> 32) <  1
3741         // X >  0x0ffffffff -> (X >> 32) >= 1
3742         unsigned ShiftBits;
3743         APInt NewC = C1;
3744         ISD::CondCode NewCond = Cond;
3745         if (AdjOne) {
3746           ShiftBits = C1.countTrailingOnes();
3747           NewC = NewC + 1;
3748           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3749         } else {
3750           ShiftBits = C1.countTrailingZeros();
3751         }
3752         NewC.lshrInPlace(ShiftBits);
3753         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3754             isLegalICmpImmediate(NewC.getSExtValue()) &&
3755             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3756           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3757                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3758           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3759           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3760         }
3761       }
3762     }
3763   }
3764 
3765   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3766     auto *CFP = cast<ConstantFPSDNode>(N1);
3767     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3768 
3769     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3770     // constant if knowing that the operand is non-nan is enough.  We prefer to
3771     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3772     // materialize 0.0.
3773     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3774       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3775 
3776     // setcc (fneg x), C -> setcc swap(pred) x, -C
3777     if (N0.getOpcode() == ISD::FNEG) {
3778       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3779       if (DCI.isBeforeLegalizeOps() ||
3780           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3781         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3782         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3783       }
3784     }
3785 
3786     // If the condition is not legal, see if we can find an equivalent one
3787     // which is legal.
3788     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3789       // If the comparison was an awkward floating-point == or != and one of
3790       // the comparison operands is infinity or negative infinity, convert the
3791       // condition to a less-awkward <= or >=.
3792       if (CFP->getValueAPF().isInfinity()) {
3793         if (CFP->getValueAPF().isNegative()) {
3794           if (Cond == ISD::SETOEQ &&
3795               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3796             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3797           if (Cond == ISD::SETUEQ &&
3798               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3799             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3800           if (Cond == ISD::SETUNE &&
3801               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3802             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3803           if (Cond == ISD::SETONE &&
3804               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3805             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3806         } else {
3807           if (Cond == ISD::SETOEQ &&
3808               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3809             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3810           if (Cond == ISD::SETUEQ &&
3811               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3812             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3813           if (Cond == ISD::SETUNE &&
3814               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3815             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3816           if (Cond == ISD::SETONE &&
3817               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3818             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3819         }
3820       }
3821     }
3822   }
3823 
3824   if (N0 == N1) {
3825     // The sext(setcc()) => setcc() optimization relies on the appropriate
3826     // constant being emitted.
3827     assert(!N0.getValueType().isInteger() &&
3828            "Integer types should be handled by FoldSetCC");
3829 
3830     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3831     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3832     if (UOF == 2) // FP operators that are undefined on NaNs.
3833       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3834     if (UOF == unsigned(EqTrue))
3835       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3836     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3837     // if it is not already.
3838     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3839     if (NewCond != Cond &&
3840         (DCI.isBeforeLegalizeOps() ||
3841                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3842       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3843   }
3844 
3845   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3846       N0.getValueType().isInteger()) {
3847     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3848         N0.getOpcode() == ISD::XOR) {
3849       // Simplify (X+Y) == (X+Z) -->  Y == Z
3850       if (N0.getOpcode() == N1.getOpcode()) {
3851         if (N0.getOperand(0) == N1.getOperand(0))
3852           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3853         if (N0.getOperand(1) == N1.getOperand(1))
3854           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3855         if (isCommutativeBinOp(N0.getOpcode())) {
3856           // If X op Y == Y op X, try other combinations.
3857           if (N0.getOperand(0) == N1.getOperand(1))
3858             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3859                                 Cond);
3860           if (N0.getOperand(1) == N1.getOperand(0))
3861             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3862                                 Cond);
3863         }
3864       }
3865 
3866       // If RHS is a legal immediate value for a compare instruction, we need
3867       // to be careful about increasing register pressure needlessly.
3868       bool LegalRHSImm = false;
3869 
3870       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3871         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3872           // Turn (X+C1) == C2 --> X == C2-C1
3873           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3874             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3875                                 DAG.getConstant(RHSC->getAPIntValue()-
3876                                                 LHSR->getAPIntValue(),
3877                                 dl, N0.getValueType()), Cond);
3878           }
3879 
3880           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3881           if (N0.getOpcode() == ISD::XOR)
3882             // If we know that all of the inverted bits are zero, don't bother
3883             // performing the inversion.
3884             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3885               return
3886                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3887                              DAG.getConstant(LHSR->getAPIntValue() ^
3888                                                RHSC->getAPIntValue(),
3889                                              dl, N0.getValueType()),
3890                              Cond);
3891         }
3892 
3893         // Turn (C1-X) == C2 --> X == C1-C2
3894         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3895           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3896             return
3897               DAG.getSetCC(dl, VT, N0.getOperand(1),
3898                            DAG.getConstant(SUBC->getAPIntValue() -
3899                                              RHSC->getAPIntValue(),
3900                                            dl, N0.getValueType()),
3901                            Cond);
3902           }
3903         }
3904 
3905         // Could RHSC fold directly into a compare?
3906         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3907           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3908       }
3909 
3910       // (X+Y) == X --> Y == 0 and similar folds.
3911       // Don't do this if X is an immediate that can fold into a cmp
3912       // instruction and X+Y has other uses. It could be an induction variable
3913       // chain, and the transform would increase register pressure.
3914       if (!LegalRHSImm || N0.hasOneUse())
3915         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3916           return V;
3917     }
3918 
3919     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3920         N1.getOpcode() == ISD::XOR)
3921       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3922         return V;
3923 
3924     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3925       return V;
3926   }
3927 
3928   // Fold remainder of division by a constant.
3929   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3930       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3931     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3932 
3933     // When division is cheap or optimizing for minimum size,
3934     // fall through to DIVREM creation by skipping this fold.
3935     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3936       if (N0.getOpcode() == ISD::UREM) {
3937         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3938           return Folded;
3939       } else if (N0.getOpcode() == ISD::SREM) {
3940         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3941           return Folded;
3942       }
3943     }
3944   }
3945 
3946   // Fold away ALL boolean setcc's.
3947   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3948     SDValue Temp;
3949     switch (Cond) {
3950     default: llvm_unreachable("Unknown integer setcc!");
3951     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3952       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3953       N0 = DAG.getNOT(dl, Temp, OpVT);
3954       if (!DCI.isCalledByLegalizer())
3955         DCI.AddToWorklist(Temp.getNode());
3956       break;
3957     case ISD::SETNE:  // X != Y   -->  (X^Y)
3958       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3959       break;
3960     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3961     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3962       Temp = DAG.getNOT(dl, N0, OpVT);
3963       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3964       if (!DCI.isCalledByLegalizer())
3965         DCI.AddToWorklist(Temp.getNode());
3966       break;
3967     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3968     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3969       Temp = DAG.getNOT(dl, N1, OpVT);
3970       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3971       if (!DCI.isCalledByLegalizer())
3972         DCI.AddToWorklist(Temp.getNode());
3973       break;
3974     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3975     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3976       Temp = DAG.getNOT(dl, N0, OpVT);
3977       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3978       if (!DCI.isCalledByLegalizer())
3979         DCI.AddToWorklist(Temp.getNode());
3980       break;
3981     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3982     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3983       Temp = DAG.getNOT(dl, N1, OpVT);
3984       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3985       break;
3986     }
3987     if (VT.getScalarType() != MVT::i1) {
3988       if (!DCI.isCalledByLegalizer())
3989         DCI.AddToWorklist(N0.getNode());
3990       // FIXME: If running after legalize, we probably can't do this.
3991       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3992       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3993     }
3994     return N0;
3995   }
3996 
3997   // Could not fold it.
3998   return SDValue();
3999 }
4000 
4001 /// Returns true (and the GlobalValue and the offset) if the node is a
4002 /// GlobalAddress + offset.
4003 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4004                                     int64_t &Offset) const {
4005 
4006   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4007 
4008   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4009     GA = GASD->getGlobal();
4010     Offset += GASD->getOffset();
4011     return true;
4012   }
4013 
4014   if (N->getOpcode() == ISD::ADD) {
4015     SDValue N1 = N->getOperand(0);
4016     SDValue N2 = N->getOperand(1);
4017     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4018       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4019         Offset += V->getSExtValue();
4020         return true;
4021       }
4022     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4023       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4024         Offset += V->getSExtValue();
4025         return true;
4026       }
4027     }
4028   }
4029 
4030   return false;
4031 }
4032 
4033 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4034                                           DAGCombinerInfo &DCI) const {
4035   // Default implementation: no optimization.
4036   return SDValue();
4037 }
4038 
4039 //===----------------------------------------------------------------------===//
4040 //  Inline Assembler Implementation Methods
4041 //===----------------------------------------------------------------------===//
4042 
4043 TargetLowering::ConstraintType
4044 TargetLowering::getConstraintType(StringRef Constraint) const {
4045   unsigned S = Constraint.size();
4046 
4047   if (S == 1) {
4048     switch (Constraint[0]) {
4049     default: break;
4050     case 'r':
4051       return C_RegisterClass;
4052     case 'm': // memory
4053     case 'o': // offsetable
4054     case 'V': // not offsetable
4055       return C_Memory;
4056     case 'n': // Simple Integer
4057     case 'E': // Floating Point Constant
4058     case 'F': // Floating Point Constant
4059       return C_Immediate;
4060     case 'i': // Simple Integer or Relocatable Constant
4061     case 's': // Relocatable Constant
4062     case 'p': // Address.
4063     case 'X': // Allow ANY value.
4064     case 'I': // Target registers.
4065     case 'J':
4066     case 'K':
4067     case 'L':
4068     case 'M':
4069     case 'N':
4070     case 'O':
4071     case 'P':
4072     case '<':
4073     case '>':
4074       return C_Other;
4075     }
4076   }
4077 
4078   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4079     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4080       return C_Memory;
4081     return C_Register;
4082   }
4083   return C_Unknown;
4084 }
4085 
4086 /// Try to replace an X constraint, which matches anything, with another that
4087 /// has more specific requirements based on the type of the corresponding
4088 /// operand.
4089 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4090   if (ConstraintVT.isInteger())
4091     return "r";
4092   if (ConstraintVT.isFloatingPoint())
4093     return "f"; // works for many targets
4094   return nullptr;
4095 }
4096 
4097 SDValue TargetLowering::LowerAsmOutputForConstraint(
4098     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4099     SelectionDAG &DAG) const {
4100   return SDValue();
4101 }
4102 
4103 /// Lower the specified operand into the Ops vector.
4104 /// If it is invalid, don't add anything to Ops.
4105 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4106                                                   std::string &Constraint,
4107                                                   std::vector<SDValue> &Ops,
4108                                                   SelectionDAG &DAG) const {
4109 
4110   if (Constraint.length() > 1) return;
4111 
4112   char ConstraintLetter = Constraint[0];
4113   switch (ConstraintLetter) {
4114   default: break;
4115   case 'X':     // Allows any operand; labels (basic block) use this.
4116     if (Op.getOpcode() == ISD::BasicBlock ||
4117         Op.getOpcode() == ISD::TargetBlockAddress) {
4118       Ops.push_back(Op);
4119       return;
4120     }
4121     LLVM_FALLTHROUGH;
4122   case 'i':    // Simple Integer or Relocatable Constant
4123   case 'n':    // Simple Integer
4124   case 's': {  // Relocatable Constant
4125 
4126     GlobalAddressSDNode *GA;
4127     ConstantSDNode *C;
4128     BlockAddressSDNode *BA;
4129     uint64_t Offset = 0;
4130 
4131     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4132     // etc., since getelementpointer is variadic. We can't use
4133     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4134     // while in this case the GA may be furthest from the root node which is
4135     // likely an ISD::ADD.
4136     while (1) {
4137       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4138         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4139                                                  GA->getValueType(0),
4140                                                  Offset + GA->getOffset()));
4141         return;
4142       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4143                  ConstraintLetter != 's') {
4144         // gcc prints these as sign extended.  Sign extend value to 64 bits
4145         // now; without this it would get ZExt'd later in
4146         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4147         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4148         BooleanContent BCont = getBooleanContents(MVT::i64);
4149         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4150                                       : ISD::SIGN_EXTEND;
4151         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4152                                                     : C->getSExtValue();
4153         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4154                                             SDLoc(C), MVT::i64));
4155         return;
4156       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4157                  ConstraintLetter != 'n') {
4158         Ops.push_back(DAG.getTargetBlockAddress(
4159             BA->getBlockAddress(), BA->getValueType(0),
4160             Offset + BA->getOffset(), BA->getTargetFlags()));
4161         return;
4162       } else {
4163         const unsigned OpCode = Op.getOpcode();
4164         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4165           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4166             Op = Op.getOperand(1);
4167           // Subtraction is not commutative.
4168           else if (OpCode == ISD::ADD &&
4169                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4170             Op = Op.getOperand(0);
4171           else
4172             return;
4173           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4174           continue;
4175         }
4176       }
4177       return;
4178     }
4179     break;
4180   }
4181   }
4182 }
4183 
4184 std::pair<unsigned, const TargetRegisterClass *>
4185 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4186                                              StringRef Constraint,
4187                                              MVT VT) const {
4188   if (Constraint.empty() || Constraint[0] != '{')
4189     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4190   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4191 
4192   // Remove the braces from around the name.
4193   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4194 
4195   std::pair<unsigned, const TargetRegisterClass *> R =
4196       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4197 
4198   // Figure out which register class contains this reg.
4199   for (const TargetRegisterClass *RC : RI->regclasses()) {
4200     // If none of the value types for this register class are valid, we
4201     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4202     if (!isLegalRC(*RI, *RC))
4203       continue;
4204 
4205     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4206          I != E; ++I) {
4207       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4208         std::pair<unsigned, const TargetRegisterClass *> S =
4209             std::make_pair(*I, RC);
4210 
4211         // If this register class has the requested value type, return it,
4212         // otherwise keep searching and return the first class found
4213         // if no other is found which explicitly has the requested type.
4214         if (RI->isTypeLegalForClass(*RC, VT))
4215           return S;
4216         if (!R.second)
4217           R = S;
4218       }
4219     }
4220   }
4221 
4222   return R;
4223 }
4224 
4225 //===----------------------------------------------------------------------===//
4226 // Constraint Selection.
4227 
4228 /// Return true of this is an input operand that is a matching constraint like
4229 /// "4".
4230 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4231   assert(!ConstraintCode.empty() && "No known constraint!");
4232   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4233 }
4234 
4235 /// If this is an input matching constraint, this method returns the output
4236 /// operand it matches.
4237 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4238   assert(!ConstraintCode.empty() && "No known constraint!");
4239   return atoi(ConstraintCode.c_str());
4240 }
4241 
4242 /// Split up the constraint string from the inline assembly value into the
4243 /// specific constraints and their prefixes, and also tie in the associated
4244 /// operand values.
4245 /// If this returns an empty vector, and if the constraint string itself
4246 /// isn't empty, there was an error parsing.
4247 TargetLowering::AsmOperandInfoVector
4248 TargetLowering::ParseConstraints(const DataLayout &DL,
4249                                  const TargetRegisterInfo *TRI,
4250                                  ImmutableCallSite CS) const {
4251   /// Information about all of the constraints.
4252   AsmOperandInfoVector ConstraintOperands;
4253   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4254   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4255 
4256   // Do a prepass over the constraints, canonicalizing them, and building up the
4257   // ConstraintOperands list.
4258   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4259   unsigned ResNo = 0; // ResNo - The result number of the next output.
4260 
4261   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4262     ConstraintOperands.emplace_back(std::move(CI));
4263     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4264 
4265     // Update multiple alternative constraint count.
4266     if (OpInfo.multipleAlternatives.size() > maCount)
4267       maCount = OpInfo.multipleAlternatives.size();
4268 
4269     OpInfo.ConstraintVT = MVT::Other;
4270 
4271     // Compute the value type for each operand.
4272     switch (OpInfo.Type) {
4273     case InlineAsm::isOutput:
4274       // Indirect outputs just consume an argument.
4275       if (OpInfo.isIndirect) {
4276         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4277         break;
4278       }
4279 
4280       // The return value of the call is this value.  As such, there is no
4281       // corresponding argument.
4282       assert(!CS.getType()->isVoidTy() &&
4283              "Bad inline asm!");
4284       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4285         OpInfo.ConstraintVT =
4286             getSimpleValueType(DL, STy->getElementType(ResNo));
4287       } else {
4288         assert(ResNo == 0 && "Asm only has one result!");
4289         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4290       }
4291       ++ResNo;
4292       break;
4293     case InlineAsm::isInput:
4294       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4295       break;
4296     case InlineAsm::isClobber:
4297       // Nothing to do.
4298       break;
4299     }
4300 
4301     if (OpInfo.CallOperandVal) {
4302       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4303       if (OpInfo.isIndirect) {
4304         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4305         if (!PtrTy)
4306           report_fatal_error("Indirect operand for inline asm not a pointer!");
4307         OpTy = PtrTy->getElementType();
4308       }
4309 
4310       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4311       if (StructType *STy = dyn_cast<StructType>(OpTy))
4312         if (STy->getNumElements() == 1)
4313           OpTy = STy->getElementType(0);
4314 
4315       // If OpTy is not a single value, it may be a struct/union that we
4316       // can tile with integers.
4317       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4318         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4319         switch (BitSize) {
4320         default: break;
4321         case 1:
4322         case 8:
4323         case 16:
4324         case 32:
4325         case 64:
4326         case 128:
4327           OpInfo.ConstraintVT =
4328               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4329           break;
4330         }
4331       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4332         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4333         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4334       } else {
4335         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4336       }
4337     }
4338   }
4339 
4340   // If we have multiple alternative constraints, select the best alternative.
4341   if (!ConstraintOperands.empty()) {
4342     if (maCount) {
4343       unsigned bestMAIndex = 0;
4344       int bestWeight = -1;
4345       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4346       int weight = -1;
4347       unsigned maIndex;
4348       // Compute the sums of the weights for each alternative, keeping track
4349       // of the best (highest weight) one so far.
4350       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4351         int weightSum = 0;
4352         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4353              cIndex != eIndex; ++cIndex) {
4354           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4355           if (OpInfo.Type == InlineAsm::isClobber)
4356             continue;
4357 
4358           // If this is an output operand with a matching input operand,
4359           // look up the matching input. If their types mismatch, e.g. one
4360           // is an integer, the other is floating point, or their sizes are
4361           // different, flag it as an maCantMatch.
4362           if (OpInfo.hasMatchingInput()) {
4363             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4364             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4365               if ((OpInfo.ConstraintVT.isInteger() !=
4366                    Input.ConstraintVT.isInteger()) ||
4367                   (OpInfo.ConstraintVT.getSizeInBits() !=
4368                    Input.ConstraintVT.getSizeInBits())) {
4369                 weightSum = -1; // Can't match.
4370                 break;
4371               }
4372             }
4373           }
4374           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4375           if (weight == -1) {
4376             weightSum = -1;
4377             break;
4378           }
4379           weightSum += weight;
4380         }
4381         // Update best.
4382         if (weightSum > bestWeight) {
4383           bestWeight = weightSum;
4384           bestMAIndex = maIndex;
4385         }
4386       }
4387 
4388       // Now select chosen alternative in each constraint.
4389       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4390            cIndex != eIndex; ++cIndex) {
4391         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4392         if (cInfo.Type == InlineAsm::isClobber)
4393           continue;
4394         cInfo.selectAlternative(bestMAIndex);
4395       }
4396     }
4397   }
4398 
4399   // Check and hook up tied operands, choose constraint code to use.
4400   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4401        cIndex != eIndex; ++cIndex) {
4402     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4403 
4404     // If this is an output operand with a matching input operand, look up the
4405     // matching input. If their types mismatch, e.g. one is an integer, the
4406     // other is floating point, or their sizes are different, flag it as an
4407     // error.
4408     if (OpInfo.hasMatchingInput()) {
4409       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4410 
4411       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4412         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4413             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4414                                          OpInfo.ConstraintVT);
4415         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4416             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4417                                          Input.ConstraintVT);
4418         if ((OpInfo.ConstraintVT.isInteger() !=
4419              Input.ConstraintVT.isInteger()) ||
4420             (MatchRC.second != InputRC.second)) {
4421           report_fatal_error("Unsupported asm: input constraint"
4422                              " with a matching output constraint of"
4423                              " incompatible type!");
4424         }
4425       }
4426     }
4427   }
4428 
4429   return ConstraintOperands;
4430 }
4431 
4432 /// Return an integer indicating how general CT is.
4433 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4434   switch (CT) {
4435   case TargetLowering::C_Immediate:
4436   case TargetLowering::C_Other:
4437   case TargetLowering::C_Unknown:
4438     return 0;
4439   case TargetLowering::C_Register:
4440     return 1;
4441   case TargetLowering::C_RegisterClass:
4442     return 2;
4443   case TargetLowering::C_Memory:
4444     return 3;
4445   }
4446   llvm_unreachable("Invalid constraint type");
4447 }
4448 
4449 /// Examine constraint type and operand type and determine a weight value.
4450 /// This object must already have been set up with the operand type
4451 /// and the current alternative constraint selected.
4452 TargetLowering::ConstraintWeight
4453   TargetLowering::getMultipleConstraintMatchWeight(
4454     AsmOperandInfo &info, int maIndex) const {
4455   InlineAsm::ConstraintCodeVector *rCodes;
4456   if (maIndex >= (int)info.multipleAlternatives.size())
4457     rCodes = &info.Codes;
4458   else
4459     rCodes = &info.multipleAlternatives[maIndex].Codes;
4460   ConstraintWeight BestWeight = CW_Invalid;
4461 
4462   // Loop over the options, keeping track of the most general one.
4463   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4464     ConstraintWeight weight =
4465       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4466     if (weight > BestWeight)
4467       BestWeight = weight;
4468   }
4469 
4470   return BestWeight;
4471 }
4472 
4473 /// Examine constraint type and operand type and determine a weight value.
4474 /// This object must already have been set up with the operand type
4475 /// and the current alternative constraint selected.
4476 TargetLowering::ConstraintWeight
4477   TargetLowering::getSingleConstraintMatchWeight(
4478     AsmOperandInfo &info, const char *constraint) const {
4479   ConstraintWeight weight = CW_Invalid;
4480   Value *CallOperandVal = info.CallOperandVal;
4481     // If we don't have a value, we can't do a match,
4482     // but allow it at the lowest weight.
4483   if (!CallOperandVal)
4484     return CW_Default;
4485   // Look at the constraint type.
4486   switch (*constraint) {
4487     case 'i': // immediate integer.
4488     case 'n': // immediate integer with a known value.
4489       if (isa<ConstantInt>(CallOperandVal))
4490         weight = CW_Constant;
4491       break;
4492     case 's': // non-explicit intregal immediate.
4493       if (isa<GlobalValue>(CallOperandVal))
4494         weight = CW_Constant;
4495       break;
4496     case 'E': // immediate float if host format.
4497     case 'F': // immediate float.
4498       if (isa<ConstantFP>(CallOperandVal))
4499         weight = CW_Constant;
4500       break;
4501     case '<': // memory operand with autodecrement.
4502     case '>': // memory operand with autoincrement.
4503     case 'm': // memory operand.
4504     case 'o': // offsettable memory operand
4505     case 'V': // non-offsettable memory operand
4506       weight = CW_Memory;
4507       break;
4508     case 'r': // general register.
4509     case 'g': // general register, memory operand or immediate integer.
4510               // note: Clang converts "g" to "imr".
4511       if (CallOperandVal->getType()->isIntegerTy())
4512         weight = CW_Register;
4513       break;
4514     case 'X': // any operand.
4515   default:
4516     weight = CW_Default;
4517     break;
4518   }
4519   return weight;
4520 }
4521 
4522 /// If there are multiple different constraints that we could pick for this
4523 /// operand (e.g. "imr") try to pick the 'best' one.
4524 /// This is somewhat tricky: constraints fall into four classes:
4525 ///    Other         -> immediates and magic values
4526 ///    Register      -> one specific register
4527 ///    RegisterClass -> a group of regs
4528 ///    Memory        -> memory
4529 /// Ideally, we would pick the most specific constraint possible: if we have
4530 /// something that fits into a register, we would pick it.  The problem here
4531 /// is that if we have something that could either be in a register or in
4532 /// memory that use of the register could cause selection of *other*
4533 /// operands to fail: they might only succeed if we pick memory.  Because of
4534 /// this the heuristic we use is:
4535 ///
4536 ///  1) If there is an 'other' constraint, and if the operand is valid for
4537 ///     that constraint, use it.  This makes us take advantage of 'i'
4538 ///     constraints when available.
4539 ///  2) Otherwise, pick the most general constraint present.  This prefers
4540 ///     'm' over 'r', for example.
4541 ///
4542 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4543                              const TargetLowering &TLI,
4544                              SDValue Op, SelectionDAG *DAG) {
4545   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4546   unsigned BestIdx = 0;
4547   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4548   int BestGenerality = -1;
4549 
4550   // Loop over the options, keeping track of the most general one.
4551   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4552     TargetLowering::ConstraintType CType =
4553       TLI.getConstraintType(OpInfo.Codes[i]);
4554 
4555     // Indirect 'other' or 'immediate' constraints are not allowed.
4556     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4557                                CType == TargetLowering::C_Register ||
4558                                CType == TargetLowering::C_RegisterClass))
4559       continue;
4560 
4561     // If this is an 'other' or 'immediate' constraint, see if the operand is
4562     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4563     // the operand is an integer in the range [0..31] we want to use I (saving a
4564     // load of a register), otherwise we must use 'r'.
4565     if ((CType == TargetLowering::C_Other ||
4566          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4567       assert(OpInfo.Codes[i].size() == 1 &&
4568              "Unhandled multi-letter 'other' constraint");
4569       std::vector<SDValue> ResultOps;
4570       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4571                                        ResultOps, *DAG);
4572       if (!ResultOps.empty()) {
4573         BestType = CType;
4574         BestIdx = i;
4575         break;
4576       }
4577     }
4578 
4579     // Things with matching constraints can only be registers, per gcc
4580     // documentation.  This mainly affects "g" constraints.
4581     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4582       continue;
4583 
4584     // This constraint letter is more general than the previous one, use it.
4585     int Generality = getConstraintGenerality(CType);
4586     if (Generality > BestGenerality) {
4587       BestType = CType;
4588       BestIdx = i;
4589       BestGenerality = Generality;
4590     }
4591   }
4592 
4593   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4594   OpInfo.ConstraintType = BestType;
4595 }
4596 
4597 /// Determines the constraint code and constraint type to use for the specific
4598 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4599 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4600                                             SDValue Op,
4601                                             SelectionDAG *DAG) const {
4602   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4603 
4604   // Single-letter constraints ('r') are very common.
4605   if (OpInfo.Codes.size() == 1) {
4606     OpInfo.ConstraintCode = OpInfo.Codes[0];
4607     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4608   } else {
4609     ChooseConstraint(OpInfo, *this, Op, DAG);
4610   }
4611 
4612   // 'X' matches anything.
4613   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4614     // Labels and constants are handled elsewhere ('X' is the only thing
4615     // that matches labels).  For Functions, the type here is the type of
4616     // the result, which is not what we want to look at; leave them alone.
4617     Value *v = OpInfo.CallOperandVal;
4618     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4619       OpInfo.CallOperandVal = v;
4620       return;
4621     }
4622 
4623     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4624       return;
4625 
4626     // Otherwise, try to resolve it to something we know about by looking at
4627     // the actual operand type.
4628     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4629       OpInfo.ConstraintCode = Repl;
4630       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4631     }
4632   }
4633 }
4634 
4635 /// Given an exact SDIV by a constant, create a multiplication
4636 /// with the multiplicative inverse of the constant.
4637 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4638                               const SDLoc &dl, SelectionDAG &DAG,
4639                               SmallVectorImpl<SDNode *> &Created) {
4640   SDValue Op0 = N->getOperand(0);
4641   SDValue Op1 = N->getOperand(1);
4642   EVT VT = N->getValueType(0);
4643   EVT SVT = VT.getScalarType();
4644   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4645   EVT ShSVT = ShVT.getScalarType();
4646 
4647   bool UseSRA = false;
4648   SmallVector<SDValue, 16> Shifts, Factors;
4649 
4650   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4651     if (C->isNullValue())
4652       return false;
4653     APInt Divisor = C->getAPIntValue();
4654     unsigned Shift = Divisor.countTrailingZeros();
4655     if (Shift) {
4656       Divisor.ashrInPlace(Shift);
4657       UseSRA = true;
4658     }
4659     // Calculate the multiplicative inverse, using Newton's method.
4660     APInt t;
4661     APInt Factor = Divisor;
4662     while ((t = Divisor * Factor) != 1)
4663       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4664     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4665     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4666     return true;
4667   };
4668 
4669   // Collect all magic values from the build vector.
4670   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4671     return SDValue();
4672 
4673   SDValue Shift, Factor;
4674   if (VT.isVector()) {
4675     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4676     Factor = DAG.getBuildVector(VT, dl, Factors);
4677   } else {
4678     Shift = Shifts[0];
4679     Factor = Factors[0];
4680   }
4681 
4682   SDValue Res = Op0;
4683 
4684   // Shift the value upfront if it is even, so the LSB is one.
4685   if (UseSRA) {
4686     // TODO: For UDIV use SRL instead of SRA.
4687     SDNodeFlags Flags;
4688     Flags.setExact(true);
4689     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4690     Created.push_back(Res.getNode());
4691   }
4692 
4693   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4694 }
4695 
4696 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4697                               SelectionDAG &DAG,
4698                               SmallVectorImpl<SDNode *> &Created) const {
4699   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4700   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4701   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4702     return SDValue(N, 0); // Lower SDIV as SDIV
4703   return SDValue();
4704 }
4705 
4706 /// Given an ISD::SDIV node expressing a divide by constant,
4707 /// return a DAG expression to select that will generate the same value by
4708 /// multiplying by a magic number.
4709 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4710 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4711                                   bool IsAfterLegalization,
4712                                   SmallVectorImpl<SDNode *> &Created) const {
4713   SDLoc dl(N);
4714   EVT VT = N->getValueType(0);
4715   EVT SVT = VT.getScalarType();
4716   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4717   EVT ShSVT = ShVT.getScalarType();
4718   unsigned EltBits = VT.getScalarSizeInBits();
4719 
4720   // Check to see if we can do this.
4721   // FIXME: We should be more aggressive here.
4722   if (!isTypeLegal(VT))
4723     return SDValue();
4724 
4725   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4726   if (N->getFlags().hasExact())
4727     return BuildExactSDIV(*this, N, dl, DAG, Created);
4728 
4729   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4730 
4731   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4732     if (C->isNullValue())
4733       return false;
4734 
4735     const APInt &Divisor = C->getAPIntValue();
4736     APInt::ms magics = Divisor.magic();
4737     int NumeratorFactor = 0;
4738     int ShiftMask = -1;
4739 
4740     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4741       // If d is +1/-1, we just multiply the numerator by +1/-1.
4742       NumeratorFactor = Divisor.getSExtValue();
4743       magics.m = 0;
4744       magics.s = 0;
4745       ShiftMask = 0;
4746     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4747       // If d > 0 and m < 0, add the numerator.
4748       NumeratorFactor = 1;
4749     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4750       // If d < 0 and m > 0, subtract the numerator.
4751       NumeratorFactor = -1;
4752     }
4753 
4754     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4755     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4756     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4757     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4758     return true;
4759   };
4760 
4761   SDValue N0 = N->getOperand(0);
4762   SDValue N1 = N->getOperand(1);
4763 
4764   // Collect the shifts / magic values from each element.
4765   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4766     return SDValue();
4767 
4768   SDValue MagicFactor, Factor, Shift, ShiftMask;
4769   if (VT.isVector()) {
4770     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4771     Factor = DAG.getBuildVector(VT, dl, Factors);
4772     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4773     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4774   } else {
4775     MagicFactor = MagicFactors[0];
4776     Factor = Factors[0];
4777     Shift = Shifts[0];
4778     ShiftMask = ShiftMasks[0];
4779   }
4780 
4781   // Multiply the numerator (operand 0) by the magic value.
4782   // FIXME: We should support doing a MUL in a wider type.
4783   SDValue Q;
4784   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4785                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4786     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4787   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4788                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4789     SDValue LoHi =
4790         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4791     Q = SDValue(LoHi.getNode(), 1);
4792   } else
4793     return SDValue(); // No mulhs or equivalent.
4794   Created.push_back(Q.getNode());
4795 
4796   // (Optionally) Add/subtract the numerator using Factor.
4797   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4798   Created.push_back(Factor.getNode());
4799   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4800   Created.push_back(Q.getNode());
4801 
4802   // Shift right algebraic by shift value.
4803   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4804   Created.push_back(Q.getNode());
4805 
4806   // Extract the sign bit, mask it and add it to the quotient.
4807   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4808   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4809   Created.push_back(T.getNode());
4810   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4811   Created.push_back(T.getNode());
4812   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4813 }
4814 
4815 /// Given an ISD::UDIV node expressing a divide by constant,
4816 /// return a DAG expression to select that will generate the same value by
4817 /// multiplying by a magic number.
4818 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4819 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4820                                   bool IsAfterLegalization,
4821                                   SmallVectorImpl<SDNode *> &Created) const {
4822   SDLoc dl(N);
4823   EVT VT = N->getValueType(0);
4824   EVT SVT = VT.getScalarType();
4825   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4826   EVT ShSVT = ShVT.getScalarType();
4827   unsigned EltBits = VT.getScalarSizeInBits();
4828 
4829   // Check to see if we can do this.
4830   // FIXME: We should be more aggressive here.
4831   if (!isTypeLegal(VT))
4832     return SDValue();
4833 
4834   bool UseNPQ = false;
4835   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4836 
4837   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4838     if (C->isNullValue())
4839       return false;
4840     // FIXME: We should use a narrower constant when the upper
4841     // bits are known to be zero.
4842     APInt Divisor = C->getAPIntValue();
4843     APInt::mu magics = Divisor.magicu();
4844     unsigned PreShift = 0, PostShift = 0;
4845 
4846     // If the divisor is even, we can avoid using the expensive fixup by
4847     // shifting the divided value upfront.
4848     if (magics.a != 0 && !Divisor[0]) {
4849       PreShift = Divisor.countTrailingZeros();
4850       // Get magic number for the shifted divisor.
4851       magics = Divisor.lshr(PreShift).magicu(PreShift);
4852       assert(magics.a == 0 && "Should use cheap fixup now");
4853     }
4854 
4855     APInt Magic = magics.m;
4856 
4857     unsigned SelNPQ;
4858     if (magics.a == 0 || Divisor.isOneValue()) {
4859       assert(magics.s < Divisor.getBitWidth() &&
4860              "We shouldn't generate an undefined shift!");
4861       PostShift = magics.s;
4862       SelNPQ = false;
4863     } else {
4864       PostShift = magics.s - 1;
4865       SelNPQ = true;
4866     }
4867 
4868     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4869     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4870     NPQFactors.push_back(
4871         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4872                                : APInt::getNullValue(EltBits),
4873                         dl, SVT));
4874     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4875     UseNPQ |= SelNPQ;
4876     return true;
4877   };
4878 
4879   SDValue N0 = N->getOperand(0);
4880   SDValue N1 = N->getOperand(1);
4881 
4882   // Collect the shifts/magic values from each element.
4883   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4884     return SDValue();
4885 
4886   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4887   if (VT.isVector()) {
4888     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4889     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4890     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4891     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4892   } else {
4893     PreShift = PreShifts[0];
4894     MagicFactor = MagicFactors[0];
4895     PostShift = PostShifts[0];
4896   }
4897 
4898   SDValue Q = N0;
4899   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4900   Created.push_back(Q.getNode());
4901 
4902   // FIXME: We should support doing a MUL in a wider type.
4903   auto GetMULHU = [&](SDValue X, SDValue Y) {
4904     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4905                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4906       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4907     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4908                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4909       SDValue LoHi =
4910           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4911       return SDValue(LoHi.getNode(), 1);
4912     }
4913     return SDValue(); // No mulhu or equivalent
4914   };
4915 
4916   // Multiply the numerator (operand 0) by the magic value.
4917   Q = GetMULHU(Q, MagicFactor);
4918   if (!Q)
4919     return SDValue();
4920 
4921   Created.push_back(Q.getNode());
4922 
4923   if (UseNPQ) {
4924     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4925     Created.push_back(NPQ.getNode());
4926 
4927     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4928     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4929     if (VT.isVector())
4930       NPQ = GetMULHU(NPQ, NPQFactor);
4931     else
4932       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4933 
4934     Created.push_back(NPQ.getNode());
4935 
4936     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4937     Created.push_back(Q.getNode());
4938   }
4939 
4940   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4941   Created.push_back(Q.getNode());
4942 
4943   SDValue One = DAG.getConstant(1, dl, VT);
4944   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4945   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4946 }
4947 
4948 /// If all values in Values that *don't* match the predicate are same 'splat'
4949 /// value, then replace all values with that splat value.
4950 /// Else, if AlternativeReplacement was provided, then replace all values that
4951 /// do match predicate with AlternativeReplacement value.
4952 static void
4953 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4954                           std::function<bool(SDValue)> Predicate,
4955                           SDValue AlternativeReplacement = SDValue()) {
4956   SDValue Replacement;
4957   // Is there a value for which the Predicate does *NOT* match? What is it?
4958   auto SplatValue = llvm::find_if_not(Values, Predicate);
4959   if (SplatValue != Values.end()) {
4960     // Does Values consist only of SplatValue's and values matching Predicate?
4961     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4962           return Value == *SplatValue || Predicate(Value);
4963         })) // Then we shall replace values matching predicate with SplatValue.
4964       Replacement = *SplatValue;
4965   }
4966   if (!Replacement) {
4967     // Oops, we did not find the "baseline" splat value.
4968     if (!AlternativeReplacement)
4969       return; // Nothing to do.
4970     // Let's replace with provided value then.
4971     Replacement = AlternativeReplacement;
4972   }
4973   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4974 }
4975 
4976 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4977 /// where the divisor is constant and the comparison target is zero,
4978 /// return a DAG expression that will generate the same comparison result
4979 /// using only multiplications, additions and shifts/rotations.
4980 /// Ref: "Hacker's Delight" 10-17.
4981 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4982                                         SDValue CompTargetNode,
4983                                         ISD::CondCode Cond,
4984                                         DAGCombinerInfo &DCI,
4985                                         const SDLoc &DL) const {
4986   SmallVector<SDNode *, 5> Built;
4987   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4988                                          DCI, DL, Built)) {
4989     for (SDNode *N : Built)
4990       DCI.AddToWorklist(N);
4991     return Folded;
4992   }
4993 
4994   return SDValue();
4995 }
4996 
4997 SDValue
4998 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4999                                   SDValue CompTargetNode, ISD::CondCode Cond,
5000                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5001                                   SmallVectorImpl<SDNode *> &Created) const {
5002   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5003   // - D must be constant, with D = D0 * 2^K where D0 is odd
5004   // - P is the multiplicative inverse of D0 modulo 2^W
5005   // - Q = floor(((2^W) - 1) / D)
5006   // where W is the width of the common type of N and D.
5007   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5008          "Only applicable for (in)equality comparisons.");
5009 
5010   SelectionDAG &DAG = DCI.DAG;
5011 
5012   EVT VT = REMNode.getValueType();
5013   EVT SVT = VT.getScalarType();
5014   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5015   EVT ShSVT = ShVT.getScalarType();
5016 
5017   // If MUL is unavailable, we cannot proceed in any case.
5018   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5019     return SDValue();
5020 
5021   bool ComparingWithAllZeros = true;
5022   bool AllComparisonsWithNonZerosAreTautological = true;
5023   bool HadTautologicalLanes = false;
5024   bool AllLanesAreTautological = true;
5025   bool HadEvenDivisor = false;
5026   bool AllDivisorsArePowerOfTwo = true;
5027   bool HadTautologicalInvertedLanes = false;
5028   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5029 
5030   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5031     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5032     if (CDiv->isNullValue())
5033       return false;
5034 
5035     const APInt &D = CDiv->getAPIntValue();
5036     const APInt &Cmp = CCmp->getAPIntValue();
5037 
5038     ComparingWithAllZeros &= Cmp.isNullValue();
5039 
5040     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5041     // if C2 is not less than C1, the comparison is always false.
5042     // But we will only be able to produce the comparison that will give the
5043     // opposive tautological answer. So this lane would need to be fixed up.
5044     bool TautologicalInvertedLane = D.ule(Cmp);
5045     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5046 
5047     // If all lanes are tautological (either all divisors are ones, or divisor
5048     // is not greater than the constant we are comparing with),
5049     // we will prefer to avoid the fold.
5050     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5051     HadTautologicalLanes |= TautologicalLane;
5052     AllLanesAreTautological &= TautologicalLane;
5053 
5054     // If we are comparing with non-zero, we need'll need  to subtract said
5055     // comparison value from the LHS. But there is no point in doing that if
5056     // every lane where we are comparing with non-zero is tautological..
5057     if (!Cmp.isNullValue())
5058       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5059 
5060     // Decompose D into D0 * 2^K
5061     unsigned K = D.countTrailingZeros();
5062     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5063     APInt D0 = D.lshr(K);
5064 
5065     // D is even if it has trailing zeros.
5066     HadEvenDivisor |= (K != 0);
5067     // D is a power-of-two if D0 is one.
5068     // If all divisors are power-of-two, we will prefer to avoid the fold.
5069     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5070 
5071     // P = inv(D0, 2^W)
5072     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5073     unsigned W = D.getBitWidth();
5074     APInt P = D0.zext(W + 1)
5075                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5076                   .trunc(W);
5077     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5078     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5079 
5080     // Q = floor((2^W - 1) u/ D)
5081     // R = ((2^W - 1) u% D)
5082     APInt Q, R;
5083     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5084 
5085     // If we are comparing with zero, then that comparison constant is okay,
5086     // else it may need to be one less than that.
5087     if (Cmp.ugt(R))
5088       Q -= 1;
5089 
5090     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5091            "We are expecting that K is always less than all-ones for ShSVT");
5092 
5093     // If the lane is tautological the result can be constant-folded.
5094     if (TautologicalLane) {
5095       // Set P and K amount to a bogus values so we can try to splat them.
5096       P = 0;
5097       K = -1;
5098       // And ensure that comparison constant is tautological,
5099       // it will always compare true/false.
5100       Q = -1;
5101     }
5102 
5103     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5104     KAmts.push_back(
5105         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5106     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5107     return true;
5108   };
5109 
5110   SDValue N = REMNode.getOperand(0);
5111   SDValue D = REMNode.getOperand(1);
5112 
5113   // Collect the values from each element.
5114   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5115     return SDValue();
5116 
5117   // If all lanes are tautological, the result can be constant-folded.
5118   if (AllLanesAreTautological)
5119     return SDValue();
5120 
5121   // If this is a urem by a powers-of-two, avoid the fold since it can be
5122   // best implemented as a bit test.
5123   if (AllDivisorsArePowerOfTwo)
5124     return SDValue();
5125 
5126   SDValue PVal, KVal, QVal;
5127   if (VT.isVector()) {
5128     if (HadTautologicalLanes) {
5129       // Try to turn PAmts into a splat, since we don't care about the values
5130       // that are currently '0'. If we can't, just keep '0'`s.
5131       turnVectorIntoSplatVector(PAmts, isNullConstant);
5132       // Try to turn KAmts into a splat, since we don't care about the values
5133       // that are currently '-1'. If we can't, change them to '0'`s.
5134       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5135                                 DAG.getConstant(0, DL, ShSVT));
5136     }
5137 
5138     PVal = DAG.getBuildVector(VT, DL, PAmts);
5139     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5140     QVal = DAG.getBuildVector(VT, DL, QAmts);
5141   } else {
5142     PVal = PAmts[0];
5143     KVal = KAmts[0];
5144     QVal = QAmts[0];
5145   }
5146 
5147   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5148     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5149       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5150     assert(CompTargetNode.getValueType() == N.getValueType() &&
5151            "Expecting that the types on LHS and RHS of comparisons match.");
5152     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5153   }
5154 
5155   // (mul N, P)
5156   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5157   Created.push_back(Op0.getNode());
5158 
5159   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5160   // divisors as a performance improvement, since rotating by 0 is a no-op.
5161   if (HadEvenDivisor) {
5162     // We need ROTR to do this.
5163     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5164       return SDValue();
5165     SDNodeFlags Flags;
5166     Flags.setExact(true);
5167     // UREM: (rotr (mul N, P), K)
5168     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5169     Created.push_back(Op0.getNode());
5170   }
5171 
5172   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5173   SDValue NewCC =
5174       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5175                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5176   if (!HadTautologicalInvertedLanes)
5177     return NewCC;
5178 
5179   // If any lanes previously compared always-false, the NewCC will give
5180   // always-true result for them, so we need to fixup those lanes.
5181   // Or the other way around for inequality predicate.
5182   assert(VT.isVector() && "Can/should only get here for vectors.");
5183   Created.push_back(NewCC.getNode());
5184 
5185   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5186   // if C2 is not less than C1, the comparison is always false.
5187   // But we have produced the comparison that will give the
5188   // opposive tautological answer. So these lanes would need to be fixed up.
5189   SDValue TautologicalInvertedChannels =
5190       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5191   Created.push_back(TautologicalInvertedChannels.getNode());
5192 
5193   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5194     // If we have a vector select, let's replace the comparison results in the
5195     // affected lanes with the correct tautological result.
5196     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5197                                               DL, SETCCVT, SETCCVT);
5198     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5199                        Replacement, NewCC);
5200   }
5201 
5202   // Else, we can just invert the comparison result in the appropriate lanes.
5203   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5204     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5205                        TautologicalInvertedChannels);
5206 
5207   return SDValue(); // Don't know how to lower.
5208 }
5209 
5210 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5211 /// where the divisor is constant and the comparison target is zero,
5212 /// return a DAG expression that will generate the same comparison result
5213 /// using only multiplications, additions and shifts/rotations.
5214 /// Ref: "Hacker's Delight" 10-17.
5215 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5216                                         SDValue CompTargetNode,
5217                                         ISD::CondCode Cond,
5218                                         DAGCombinerInfo &DCI,
5219                                         const SDLoc &DL) const {
5220   SmallVector<SDNode *, 7> Built;
5221   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5222                                          DCI, DL, Built)) {
5223     assert(Built.size() <= 7 && "Max size prediction failed.");
5224     for (SDNode *N : Built)
5225       DCI.AddToWorklist(N);
5226     return Folded;
5227   }
5228 
5229   return SDValue();
5230 }
5231 
5232 SDValue
5233 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5234                                   SDValue CompTargetNode, ISD::CondCode Cond,
5235                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5236                                   SmallVectorImpl<SDNode *> &Created) const {
5237   // Fold:
5238   //   (seteq/ne (srem N, D), 0)
5239   // To:
5240   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5241   //
5242   // - D must be constant, with D = D0 * 2^K where D0 is odd
5243   // - P is the multiplicative inverse of D0 modulo 2^W
5244   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5245   // - Q = floor((2 * A) / (2^K))
5246   // where W is the width of the common type of N and D.
5247   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5248          "Only applicable for (in)equality comparisons.");
5249 
5250   SelectionDAG &DAG = DCI.DAG;
5251 
5252   EVT VT = REMNode.getValueType();
5253   EVT SVT = VT.getScalarType();
5254   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5255   EVT ShSVT = ShVT.getScalarType();
5256 
5257   // If MUL is unavailable, we cannot proceed in any case.
5258   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5259     return SDValue();
5260 
5261   // TODO: Could support comparing with non-zero too.
5262   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5263   if (!CompTarget || !CompTarget->isNullValue())
5264     return SDValue();
5265 
5266   bool HadIntMinDivisor = false;
5267   bool HadOneDivisor = false;
5268   bool AllDivisorsAreOnes = true;
5269   bool HadEvenDivisor = false;
5270   bool NeedToApplyOffset = false;
5271   bool AllDivisorsArePowerOfTwo = true;
5272   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5273 
5274   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5275     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5276     if (C->isNullValue())
5277       return false;
5278 
5279     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5280 
5281     // WARNING: this fold is only valid for positive divisors!
5282     APInt D = C->getAPIntValue();
5283     if (D.isNegative())
5284       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5285 
5286     HadIntMinDivisor |= D.isMinSignedValue();
5287 
5288     // If all divisors are ones, we will prefer to avoid the fold.
5289     HadOneDivisor |= D.isOneValue();
5290     AllDivisorsAreOnes &= D.isOneValue();
5291 
5292     // Decompose D into D0 * 2^K
5293     unsigned K = D.countTrailingZeros();
5294     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5295     APInt D0 = D.lshr(K);
5296 
5297     if (!D.isMinSignedValue()) {
5298       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5299       // we don't care about this lane in this fold, we'll special-handle it.
5300       HadEvenDivisor |= (K != 0);
5301     }
5302 
5303     // D is a power-of-two if D0 is one. This includes INT_MIN.
5304     // If all divisors are power-of-two, we will prefer to avoid the fold.
5305     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5306 
5307     // P = inv(D0, 2^W)
5308     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5309     unsigned W = D.getBitWidth();
5310     APInt P = D0.zext(W + 1)
5311                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5312                   .trunc(W);
5313     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5314     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5315 
5316     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5317     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5318     A.clearLowBits(K);
5319 
5320     if (!D.isMinSignedValue()) {
5321       // If divisor INT_MIN, then we don't care about this lane in this fold,
5322       // we'll special-handle it.
5323       NeedToApplyOffset |= A != 0;
5324     }
5325 
5326     // Q = floor((2 * A) / (2^K))
5327     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5328 
5329     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5330            "We are expecting that A is always less than all-ones for SVT");
5331     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5332            "We are expecting that K is always less than all-ones for ShSVT");
5333 
5334     // If the divisor is 1 the result can be constant-folded. Likewise, we
5335     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5336     if (D.isOneValue()) {
5337       // Set P, A and K to a bogus values so we can try to splat them.
5338       P = 0;
5339       A = -1;
5340       K = -1;
5341 
5342       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5343       Q = -1;
5344     }
5345 
5346     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5347     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5348     KAmts.push_back(
5349         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5350     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5351     return true;
5352   };
5353 
5354   SDValue N = REMNode.getOperand(0);
5355   SDValue D = REMNode.getOperand(1);
5356 
5357   // Collect the values from each element.
5358   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5359     return SDValue();
5360 
5361   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5362   if (AllDivisorsAreOnes)
5363     return SDValue();
5364 
5365   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5366   // since it can be best implemented as a bit test.
5367   if (AllDivisorsArePowerOfTwo)
5368     return SDValue();
5369 
5370   SDValue PVal, AVal, KVal, QVal;
5371   if (VT.isVector()) {
5372     if (HadOneDivisor) {
5373       // Try to turn PAmts into a splat, since we don't care about the values
5374       // that are currently '0'. If we can't, just keep '0'`s.
5375       turnVectorIntoSplatVector(PAmts, isNullConstant);
5376       // Try to turn AAmts into a splat, since we don't care about the
5377       // values that are currently '-1'. If we can't, change them to '0'`s.
5378       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5379                                 DAG.getConstant(0, DL, SVT));
5380       // Try to turn KAmts into a splat, since we don't care about the values
5381       // that are currently '-1'. If we can't, change them to '0'`s.
5382       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5383                                 DAG.getConstant(0, DL, ShSVT));
5384     }
5385 
5386     PVal = DAG.getBuildVector(VT, DL, PAmts);
5387     AVal = DAG.getBuildVector(VT, DL, AAmts);
5388     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5389     QVal = DAG.getBuildVector(VT, DL, QAmts);
5390   } else {
5391     PVal = PAmts[0];
5392     AVal = AAmts[0];
5393     KVal = KAmts[0];
5394     QVal = QAmts[0];
5395   }
5396 
5397   // (mul N, P)
5398   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5399   Created.push_back(Op0.getNode());
5400 
5401   if (NeedToApplyOffset) {
5402     // We need ADD to do this.
5403     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5404       return SDValue();
5405 
5406     // (add (mul N, P), A)
5407     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5408     Created.push_back(Op0.getNode());
5409   }
5410 
5411   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5412   // divisors as a performance improvement, since rotating by 0 is a no-op.
5413   if (HadEvenDivisor) {
5414     // We need ROTR to do this.
5415     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5416       return SDValue();
5417     SDNodeFlags Flags;
5418     Flags.setExact(true);
5419     // SREM: (rotr (add (mul N, P), A), K)
5420     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5421     Created.push_back(Op0.getNode());
5422   }
5423 
5424   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5425   SDValue Fold =
5426       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5427                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5428 
5429   // If we didn't have lanes with INT_MIN divisor, then we're done.
5430   if (!HadIntMinDivisor)
5431     return Fold;
5432 
5433   // That fold is only valid for positive divisors. Which effectively means,
5434   // it is invalid for INT_MIN divisors. So if we have such a lane,
5435   // we must fix-up results for said lanes.
5436   assert(VT.isVector() && "Can/should only get here for vectors.");
5437 
5438   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5439       !isOperationLegalOrCustom(ISD::AND, VT) ||
5440       !isOperationLegalOrCustom(Cond, VT) ||
5441       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5442     return SDValue();
5443 
5444   Created.push_back(Fold.getNode());
5445 
5446   SDValue IntMin = DAG.getConstant(
5447       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5448   SDValue IntMax = DAG.getConstant(
5449       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5450   SDValue Zero =
5451       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5452 
5453   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5454   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5455   Created.push_back(DivisorIsIntMin.getNode());
5456 
5457   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5458   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5459   Created.push_back(Masked.getNode());
5460   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5461   Created.push_back(MaskedIsZero.getNode());
5462 
5463   // To produce final result we need to blend 2 vectors: 'SetCC' and
5464   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5465   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5466   // constant-folded, select can get lowered to a shuffle with constant mask.
5467   SDValue Blended =
5468       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5469 
5470   return Blended;
5471 }
5472 
5473 bool TargetLowering::
5474 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5475   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5476     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5477                                 "be a constant integer");
5478     return true;
5479   }
5480 
5481   return false;
5482 }
5483 
5484 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5485                                         bool LegalOperations, bool ForCodeSize,
5486                                         unsigned Depth) const {
5487   // fneg is removable even if it has multiple uses.
5488   if (Op.getOpcode() == ISD::FNEG)
5489     return 2;
5490 
5491   // Don't allow anything with multiple uses unless we know it is free.
5492   EVT VT = Op.getValueType();
5493   const SDNodeFlags Flags = Op->getFlags();
5494   const TargetOptions &Options = DAG.getTarget().Options;
5495   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5496                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5497     return 0;
5498 
5499   // Don't recurse exponentially.
5500   if (Depth > SelectionDAG::MaxRecursionDepth)
5501     return 0;
5502 
5503   switch (Op.getOpcode()) {
5504   case ISD::ConstantFP: {
5505     if (!LegalOperations)
5506       return 1;
5507 
5508     // Don't invert constant FP values after legalization unless the target says
5509     // the negated constant is legal.
5510     return isOperationLegal(ISD::ConstantFP, VT) ||
5511            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5512                         ForCodeSize);
5513   }
5514   case ISD::BUILD_VECTOR: {
5515     // Only permit BUILD_VECTOR of constants.
5516     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5517           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5518         }))
5519       return 0;
5520     if (!LegalOperations)
5521       return 1;
5522     if (isOperationLegal(ISD::ConstantFP, VT) &&
5523         isOperationLegal(ISD::BUILD_VECTOR, VT))
5524       return 1;
5525     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5526       return N.isUndef() ||
5527              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5528                           ForCodeSize);
5529     });
5530   }
5531   case ISD::FADD:
5532     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5533       return 0;
5534 
5535     // After operation legalization, it might not be legal to create new FSUBs.
5536     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5537       return 0;
5538 
5539     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5540     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5541                                     ForCodeSize, Depth + 1))
5542       return V;
5543     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5544     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5545                               ForCodeSize, Depth + 1);
5546   case ISD::FSUB:
5547     // We can't turn -(A-B) into B-A when we honor signed zeros.
5548     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5549       return 0;
5550 
5551     // fold (fneg (fsub A, B)) -> (fsub B, A)
5552     return 1;
5553 
5554   case ISD::FMUL:
5555   case ISD::FDIV:
5556     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5557     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5558                                     ForCodeSize, Depth + 1))
5559       return V;
5560 
5561     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5562     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5563       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5564         return 0;
5565 
5566     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5567                               ForCodeSize, Depth + 1);
5568 
5569   case ISD::FMA:
5570   case ISD::FMAD: {
5571     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5572       return 0;
5573 
5574     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5575     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5576     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5577                                  ForCodeSize, Depth + 1);
5578     if (!V2)
5579       return 0;
5580 
5581     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5582     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5583                                  ForCodeSize, Depth + 1);
5584     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5585                                  ForCodeSize, Depth + 1);
5586     char V01 = std::max(V0, V1);
5587     return V01 ? std::max(V01, V2) : 0;
5588   }
5589 
5590   case ISD::FP_EXTEND:
5591   case ISD::FP_ROUND:
5592   case ISD::FSIN:
5593     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5594                               ForCodeSize, Depth + 1);
5595   }
5596 
5597   return 0;
5598 }
5599 
5600 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5601                                              bool LegalOperations,
5602                                              bool ForCodeSize,
5603                                              unsigned Depth) const {
5604   // fneg is removable even if it has multiple uses.
5605   if (Op.getOpcode() == ISD::FNEG)
5606     return Op.getOperand(0);
5607 
5608   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5609          "getNegatedExpression doesn't match isNegatibleForFree");
5610   const SDNodeFlags Flags = Op->getFlags();
5611 
5612   switch (Op.getOpcode()) {
5613   case ISD::ConstantFP: {
5614     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5615     V.changeSign();
5616     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5617   }
5618   case ISD::BUILD_VECTOR: {
5619     SmallVector<SDValue, 4> Ops;
5620     for (SDValue C : Op->op_values()) {
5621       if (C.isUndef()) {
5622         Ops.push_back(C);
5623         continue;
5624       }
5625       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5626       V.changeSign();
5627       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5628     }
5629     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5630   }
5631   case ISD::FADD:
5632     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5633             Flags.hasNoSignedZeros()) &&
5634            "Expected NSZ fp-flag");
5635 
5636     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5637     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5638                            Depth + 1))
5639       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5640                          getNegatedExpression(Op.getOperand(0), DAG,
5641                                               LegalOperations, ForCodeSize,
5642                                               Depth + 1),
5643                          Op.getOperand(1), Flags);
5644     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5645     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5646                        getNegatedExpression(Op.getOperand(1), DAG,
5647                                             LegalOperations, ForCodeSize,
5648                                             Depth + 1),
5649                        Op.getOperand(0), Flags);
5650   case ISD::FSUB:
5651     // fold (fneg (fsub 0, B)) -> B
5652     if (ConstantFPSDNode *N0CFP =
5653             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5654       if (N0CFP->isZero())
5655         return Op.getOperand(1);
5656 
5657     // fold (fneg (fsub A, B)) -> (fsub B, A)
5658     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5659                        Op.getOperand(1), Op.getOperand(0), Flags);
5660 
5661   case ISD::FMUL:
5662   case ISD::FDIV:
5663     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5664     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5665                            Depth + 1))
5666       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5667                          getNegatedExpression(Op.getOperand(0), DAG,
5668                                               LegalOperations, ForCodeSize,
5669                                               Depth + 1),
5670                          Op.getOperand(1), Flags);
5671 
5672     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5673     return DAG.getNode(
5674         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5675         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5676                              ForCodeSize, Depth + 1),
5677         Flags);
5678 
5679   case ISD::FMA:
5680   case ISD::FMAD: {
5681     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5682             Flags.hasNoSignedZeros()) &&
5683            "Expected NSZ fp-flag");
5684 
5685     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5686                                         ForCodeSize, Depth + 1);
5687 
5688     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5689                                  ForCodeSize, Depth + 1);
5690     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5691                                  ForCodeSize, Depth + 1);
5692     // TODO: This is a hack. It is possible that costs have changed between now
5693     //       and the initial calls to isNegatibleForFree(). That is because we
5694     //       are rewriting the expression, and that may change the number of
5695     //       uses (and therefore the cost) of values. If the negation costs are
5696     //       equal, only negate this value if it is a constant. Otherwise, try
5697     //       operand 1. A better fix would eliminate uses as a cost factor or
5698     //       track the change in uses as we rewrite the expression.
5699     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5700       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5701       SDValue Neg0 = getNegatedExpression(
5702           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5703       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5704                          Op.getOperand(1), Neg2, Flags);
5705     }
5706 
5707     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5708     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5709                                         ForCodeSize, Depth + 1);
5710     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5711                        Op.getOperand(0), Neg1, Neg2, Flags);
5712   }
5713 
5714   case ISD::FP_EXTEND:
5715   case ISD::FSIN:
5716     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5717                        getNegatedExpression(Op.getOperand(0), DAG,
5718                                             LegalOperations, ForCodeSize,
5719                                             Depth + 1));
5720   case ISD::FP_ROUND:
5721     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5722                        getNegatedExpression(Op.getOperand(0), DAG,
5723                                             LegalOperations, ForCodeSize,
5724                                             Depth + 1),
5725                        Op.getOperand(1));
5726   }
5727 
5728   llvm_unreachable("Unknown code");
5729 }
5730 
5731 //===----------------------------------------------------------------------===//
5732 // Legalization Utilities
5733 //===----------------------------------------------------------------------===//
5734 
5735 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5736                                     SDValue LHS, SDValue RHS,
5737                                     SmallVectorImpl<SDValue> &Result,
5738                                     EVT HiLoVT, SelectionDAG &DAG,
5739                                     MulExpansionKind Kind, SDValue LL,
5740                                     SDValue LH, SDValue RL, SDValue RH) const {
5741   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5742          Opcode == ISD::SMUL_LOHI);
5743 
5744   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5745                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5746   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5747                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5748   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5749                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5750   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5751                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5752 
5753   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5754     return false;
5755 
5756   unsigned OuterBitSize = VT.getScalarSizeInBits();
5757   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5758   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5759   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5760 
5761   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5762   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5763          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5764 
5765   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5766   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5767                           bool Signed) -> bool {
5768     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5769       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5770       Hi = SDValue(Lo.getNode(), 1);
5771       return true;
5772     }
5773     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5774       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5775       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5776       return true;
5777     }
5778     return false;
5779   };
5780 
5781   SDValue Lo, Hi;
5782 
5783   if (!LL.getNode() && !RL.getNode() &&
5784       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5785     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5786     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5787   }
5788 
5789   if (!LL.getNode())
5790     return false;
5791 
5792   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5793   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5794       DAG.MaskedValueIsZero(RHS, HighMask)) {
5795     // The inputs are both zero-extended.
5796     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5797       Result.push_back(Lo);
5798       Result.push_back(Hi);
5799       if (Opcode != ISD::MUL) {
5800         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5801         Result.push_back(Zero);
5802         Result.push_back(Zero);
5803       }
5804       return true;
5805     }
5806   }
5807 
5808   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5809       RHSSB > InnerBitSize) {
5810     // The input values are both sign-extended.
5811     // TODO non-MUL case?
5812     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5813       Result.push_back(Lo);
5814       Result.push_back(Hi);
5815       return true;
5816     }
5817   }
5818 
5819   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5820   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5821   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5822     // FIXME getShiftAmountTy does not always return a sensible result when VT
5823     // is an illegal type, and so the type may be too small to fit the shift
5824     // amount. Override it with i32. The shift will have to be legalized.
5825     ShiftAmountTy = MVT::i32;
5826   }
5827   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5828 
5829   if (!LH.getNode() && !RH.getNode() &&
5830       isOperationLegalOrCustom(ISD::SRL, VT) &&
5831       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5832     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5833     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5834     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5835     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5836   }
5837 
5838   if (!LH.getNode())
5839     return false;
5840 
5841   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5842     return false;
5843 
5844   Result.push_back(Lo);
5845 
5846   if (Opcode == ISD::MUL) {
5847     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5848     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5849     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5850     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5851     Result.push_back(Hi);
5852     return true;
5853   }
5854 
5855   // Compute the full width result.
5856   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5857     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5858     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5859     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5860     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5861   };
5862 
5863   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5864   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5865     return false;
5866 
5867   // This is effectively the add part of a multiply-add of half-sized operands,
5868   // so it cannot overflow.
5869   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5870 
5871   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5872     return false;
5873 
5874   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5875   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5876 
5877   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5878                   isOperationLegalOrCustom(ISD::ADDE, VT));
5879   if (UseGlue)
5880     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5881                        Merge(Lo, Hi));
5882   else
5883     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5884                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5885 
5886   SDValue Carry = Next.getValue(1);
5887   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5888   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5889 
5890   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5891     return false;
5892 
5893   if (UseGlue)
5894     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5895                      Carry);
5896   else
5897     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5898                      Zero, Carry);
5899 
5900   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5901 
5902   if (Opcode == ISD::SMUL_LOHI) {
5903     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5904                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5905     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5906 
5907     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5908                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5909     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5910   }
5911 
5912   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5913   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5914   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5915   return true;
5916 }
5917 
5918 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5919                                SelectionDAG &DAG, MulExpansionKind Kind,
5920                                SDValue LL, SDValue LH, SDValue RL,
5921                                SDValue RH) const {
5922   SmallVector<SDValue, 2> Result;
5923   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5924                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5925                            DAG, Kind, LL, LH, RL, RH);
5926   if (Ok) {
5927     assert(Result.size() == 2);
5928     Lo = Result[0];
5929     Hi = Result[1];
5930   }
5931   return Ok;
5932 }
5933 
5934 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5935                                        SelectionDAG &DAG) const {
5936   EVT VT = Node->getValueType(0);
5937 
5938   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5939                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5940                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5941                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5942     return false;
5943 
5944   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5945   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5946   SDValue X = Node->getOperand(0);
5947   SDValue Y = Node->getOperand(1);
5948   SDValue Z = Node->getOperand(2);
5949 
5950   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5951   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5952   SDLoc DL(SDValue(Node, 0));
5953 
5954   EVT ShVT = Z.getValueType();
5955   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5956   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5957 
5958   SDValue ShAmt;
5959   if (isPowerOf2_32(EltSizeInBits)) {
5960     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5961     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5962   } else {
5963     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5964   }
5965 
5966   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5967   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5968   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5969   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5970 
5971   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5972   // and that is undefined. We must compare and select to avoid UB.
5973   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5974 
5975   // For fshl, 0-shift returns the 1st arg (X).
5976   // For fshr, 0-shift returns the 2nd arg (Y).
5977   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5978   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5979   return true;
5980 }
5981 
5982 // TODO: Merge with expandFunnelShift.
5983 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5984                                SelectionDAG &DAG) const {
5985   EVT VT = Node->getValueType(0);
5986   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5987   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5988   SDValue Op0 = Node->getOperand(0);
5989   SDValue Op1 = Node->getOperand(1);
5990   SDLoc DL(SDValue(Node, 0));
5991 
5992   EVT ShVT = Op1.getValueType();
5993   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5994 
5995   // If a rotate in the other direction is legal, use it.
5996   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5997   if (isOperationLegal(RevRot, VT)) {
5998     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5999     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6000     return true;
6001   }
6002 
6003   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6004                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6005                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6006                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6007                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6008     return false;
6009 
6010   // Otherwise,
6011   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6012   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6013   //
6014   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6015          "Expecting the type bitwidth to be a power of 2");
6016   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6017   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6018   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6019   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6020   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6021   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6022   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6023                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6024   return true;
6025 }
6026 
6027 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6028                                       SelectionDAG &DAG) const {
6029   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6030   SDValue Src = Node->getOperand(OpNo);
6031   EVT SrcVT = Src.getValueType();
6032   EVT DstVT = Node->getValueType(0);
6033   SDLoc dl(SDValue(Node, 0));
6034 
6035   // FIXME: Only f32 to i64 conversions are supported.
6036   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6037     return false;
6038 
6039   if (Node->isStrictFPOpcode())
6040     // When a NaN is converted to an integer a trap is allowed. We can't
6041     // use this expansion here because it would eliminate that trap. Other
6042     // traps are also allowed and cannot be eliminated. See
6043     // IEEE 754-2008 sec 5.8.
6044     return false;
6045 
6046   // Expand f32 -> i64 conversion
6047   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6048   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6049   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6050   EVT IntVT = SrcVT.changeTypeToInteger();
6051   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6052 
6053   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6054   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6055   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6056   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6057   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6058   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6059 
6060   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6061 
6062   SDValue ExponentBits = DAG.getNode(
6063       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6064       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6065   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6066 
6067   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6068                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6069                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6070   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6071 
6072   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6073                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6074                           DAG.getConstant(0x00800000, dl, IntVT));
6075 
6076   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6077 
6078   R = DAG.getSelectCC(
6079       dl, Exponent, ExponentLoBit,
6080       DAG.getNode(ISD::SHL, dl, DstVT, R,
6081                   DAG.getZExtOrTrunc(
6082                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6083                       dl, IntShVT)),
6084       DAG.getNode(ISD::SRL, dl, DstVT, R,
6085                   DAG.getZExtOrTrunc(
6086                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6087                       dl, IntShVT)),
6088       ISD::SETGT);
6089 
6090   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6091                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6092 
6093   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6094                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6095   return true;
6096 }
6097 
6098 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6099                                       SDValue &Chain,
6100                                       SelectionDAG &DAG) const {
6101   SDLoc dl(SDValue(Node, 0));
6102   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6103   SDValue Src = Node->getOperand(OpNo);
6104 
6105   EVT SrcVT = Src.getValueType();
6106   EVT DstVT = Node->getValueType(0);
6107   EVT SetCCVT =
6108       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6109   EVT DstSetCCVT =
6110       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6111 
6112   // Only expand vector types if we have the appropriate vector bit operations.
6113   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6114                                                    ISD::FP_TO_SINT;
6115   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6116                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6117     return false;
6118 
6119   // If the maximum float value is smaller then the signed integer range,
6120   // the destination signmask can't be represented by the float, so we can
6121   // just use FP_TO_SINT directly.
6122   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6123   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6124   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6125   if (APFloat::opOverflow &
6126       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6127     if (Node->isStrictFPOpcode()) {
6128       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6129                            { Node->getOperand(0), Src });
6130       Chain = Result.getValue(1);
6131     } else
6132       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6133     return true;
6134   }
6135 
6136   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6137   SDValue Sel;
6138 
6139   if (Node->isStrictFPOpcode())
6140     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6141                        Node->getOperand(0), /*IsSignaling*/ true);
6142   else
6143     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6144 
6145   bool Strict = Node->isStrictFPOpcode() ||
6146                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6147 
6148   if (Strict) {
6149     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6150     // signmask then offset (the result of which should be fully representable).
6151     // Sel = Src < 0x8000000000000000
6152     // FltOfs = select Sel, 0, 0x8000000000000000
6153     // IntOfs = select Sel, 0, 0x8000000000000000
6154     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6155 
6156     // TODO: Should any fast-math-flags be set for the FSUB?
6157     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6158                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6159     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6160     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6161                                    DAG.getConstant(0, dl, DstVT),
6162                                    DAG.getConstant(SignMask, dl, DstVT));
6163     SDValue SInt;
6164     if (Node->isStrictFPOpcode()) {
6165       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6166                                 { Node->getOperand(0), Src, FltOfs });
6167       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6168                          { Val.getValue(1), Val });
6169       Chain = SInt.getValue(1);
6170     } else {
6171       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6172       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6173     }
6174     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6175   } else {
6176     // Expand based on maximum range of FP_TO_SINT:
6177     // True = fp_to_sint(Src)
6178     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6179     // Result = select (Src < 0x8000000000000000), True, False
6180 
6181     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6182     // TODO: Should any fast-math-flags be set for the FSUB?
6183     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6184                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6185     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6186                         DAG.getConstant(SignMask, dl, DstVT));
6187     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6188     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6189   }
6190   return true;
6191 }
6192 
6193 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6194                                       SDValue &Chain,
6195                                       SelectionDAG &DAG) const {
6196   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6197   SDValue Src = Node->getOperand(OpNo);
6198   EVT SrcVT = Src.getValueType();
6199   EVT DstVT = Node->getValueType(0);
6200 
6201   if (SrcVT.getScalarType() != MVT::i64)
6202     return false;
6203 
6204   SDLoc dl(SDValue(Node, 0));
6205   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6206 
6207   if (DstVT.getScalarType() == MVT::f32) {
6208     // Only expand vector types if we have the appropriate vector bit
6209     // operations.
6210     if (SrcVT.isVector() &&
6211         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6212          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6213          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6214          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6215          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6216       return false;
6217 
6218     // For unsigned conversions, convert them to signed conversions using the
6219     // algorithm from the x86_64 __floatundisf in compiler_rt.
6220 
6221     // TODO: This really should be implemented using a branch rather than a
6222     // select.  We happen to get lucky and machinesink does the right
6223     // thing most of the time.  This would be a good candidate for a
6224     // pseudo-op, or, even better, for whole-function isel.
6225     EVT SetCCVT =
6226         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6227 
6228     SDValue SignBitTest = DAG.getSetCC(
6229         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6230 
6231     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6232     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6233     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6234     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6235     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6236 
6237     SDValue Slow, Fast;
6238     if (Node->isStrictFPOpcode()) {
6239       // In strict mode, we must avoid spurious exceptions, and therefore
6240       // must make sure to only emit a single STRICT_SINT_TO_FP.
6241       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src);
6242       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other },
6243                          { Node->getOperand(0), InCvt });
6244       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other },
6245                          { Fast.getValue(1), Fast, Fast });
6246       Chain = Slow.getValue(1);
6247       // The STRICT_SINT_TO_FP inherits the exception mode from the
6248       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
6249       // never raise any exception.
6250       SDNodeFlags Flags;
6251       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
6252       Fast->setFlags(Flags);
6253       Flags.setNoFPExcept(true);
6254       Slow->setFlags(Flags);
6255     } else {
6256       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6257       Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6258       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6259     }
6260 
6261     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6262     return true;
6263   }
6264 
6265   if (DstVT.getScalarType() == MVT::f64) {
6266     // Only expand vector types if we have the appropriate vector bit
6267     // operations.
6268     if (SrcVT.isVector() &&
6269         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6270          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6271          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6272          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6273          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6274       return false;
6275 
6276     // Implementation of unsigned i64 to f64 following the algorithm in
6277     // __floatundidf in compiler_rt. This implementation has the advantage
6278     // of performing rounding correctly, both in the default rounding mode
6279     // and in all alternate rounding modes.
6280     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6281     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6282         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6283     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6284     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6285     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6286 
6287     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6288     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6289     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6290     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6291     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6292     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6293     if (Node->isStrictFPOpcode()) {
6294       SDValue HiSub =
6295           DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6296                       {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6297       Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6298                            {HiSub.getValue(1), LoFlt, HiSub});
6299       Chain = Result.getValue(1);
6300     } else {
6301       SDValue HiSub =
6302           DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6303       Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6304     }
6305     return true;
6306   }
6307 
6308   return false;
6309 }
6310 
6311 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6312                                               SelectionDAG &DAG) const {
6313   SDLoc dl(Node);
6314   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6315     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6316   EVT VT = Node->getValueType(0);
6317   if (isOperationLegalOrCustom(NewOp, VT)) {
6318     SDValue Quiet0 = Node->getOperand(0);
6319     SDValue Quiet1 = Node->getOperand(1);
6320 
6321     if (!Node->getFlags().hasNoNaNs()) {
6322       // Insert canonicalizes if it's possible we need to quiet to get correct
6323       // sNaN behavior.
6324       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6325         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6326                              Node->getFlags());
6327       }
6328       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6329         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6330                              Node->getFlags());
6331       }
6332     }
6333 
6334     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6335   }
6336 
6337   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6338   // instead if there are no NaNs.
6339   if (Node->getFlags().hasNoNaNs()) {
6340     unsigned IEEE2018Op =
6341         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6342     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6343       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6344                          Node->getOperand(1), Node->getFlags());
6345     }
6346   }
6347 
6348   // If none of the above worked, but there are no NaNs, then expand to
6349   // a compare/select sequence.  This is required for correctness since
6350   // InstCombine might have canonicalized a fcmp+select sequence to a
6351   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6352   // expansion to libcall, we might introduce a link-time dependency
6353   // on libm into a file that originally did not have one.
6354   if (Node->getFlags().hasNoNaNs()) {
6355     ISD::CondCode Pred =
6356         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6357     SDValue Op1 = Node->getOperand(0);
6358     SDValue Op2 = Node->getOperand(1);
6359     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6360     // Copy FMF flags, but always set the no-signed-zeros flag
6361     // as this is implied by the FMINNUM/FMAXNUM semantics.
6362     SDNodeFlags Flags = Node->getFlags();
6363     Flags.setNoSignedZeros(true);
6364     SelCC->setFlags(Flags);
6365     return SelCC;
6366   }
6367 
6368   return SDValue();
6369 }
6370 
6371 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6372                                  SelectionDAG &DAG) const {
6373   SDLoc dl(Node);
6374   EVT VT = Node->getValueType(0);
6375   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6376   SDValue Op = Node->getOperand(0);
6377   unsigned Len = VT.getScalarSizeInBits();
6378   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6379 
6380   // TODO: Add support for irregular type lengths.
6381   if (!(Len <= 128 && Len % 8 == 0))
6382     return false;
6383 
6384   // Only expand vector types if we have the appropriate vector bit operations.
6385   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6386                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6387                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6388                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6389                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6390     return false;
6391 
6392   // This is the "best" algorithm from
6393   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6394   SDValue Mask55 =
6395       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6396   SDValue Mask33 =
6397       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6398   SDValue Mask0F =
6399       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6400   SDValue Mask01 =
6401       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6402 
6403   // v = v - ((v >> 1) & 0x55555555...)
6404   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6405                    DAG.getNode(ISD::AND, dl, VT,
6406                                DAG.getNode(ISD::SRL, dl, VT, Op,
6407                                            DAG.getConstant(1, dl, ShVT)),
6408                                Mask55));
6409   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6410   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6411                    DAG.getNode(ISD::AND, dl, VT,
6412                                DAG.getNode(ISD::SRL, dl, VT, Op,
6413                                            DAG.getConstant(2, dl, ShVT)),
6414                                Mask33));
6415   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6416   Op = DAG.getNode(ISD::AND, dl, VT,
6417                    DAG.getNode(ISD::ADD, dl, VT, Op,
6418                                DAG.getNode(ISD::SRL, dl, VT, Op,
6419                                            DAG.getConstant(4, dl, ShVT))),
6420                    Mask0F);
6421   // v = (v * 0x01010101...) >> (Len - 8)
6422   if (Len > 8)
6423     Op =
6424         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6425                     DAG.getConstant(Len - 8, dl, ShVT));
6426 
6427   Result = Op;
6428   return true;
6429 }
6430 
6431 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6432                                 SelectionDAG &DAG) const {
6433   SDLoc dl(Node);
6434   EVT VT = Node->getValueType(0);
6435   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6436   SDValue Op = Node->getOperand(0);
6437   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6438 
6439   // If the non-ZERO_UNDEF version is supported we can use that instead.
6440   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6441       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6442     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6443     return true;
6444   }
6445 
6446   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6447   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6448     EVT SetCCVT =
6449         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6450     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6451     SDValue Zero = DAG.getConstant(0, dl, VT);
6452     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6453     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6454                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6455     return true;
6456   }
6457 
6458   // Only expand vector types if we have the appropriate vector bit operations.
6459   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6460                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6461                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6462                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6463     return false;
6464 
6465   // for now, we do this:
6466   // x = x | (x >> 1);
6467   // x = x | (x >> 2);
6468   // ...
6469   // x = x | (x >>16);
6470   // x = x | (x >>32); // for 64-bit input
6471   // return popcount(~x);
6472   //
6473   // Ref: "Hacker's Delight" by Henry Warren
6474   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6475     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6476     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6477                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6478   }
6479   Op = DAG.getNOT(dl, Op, VT);
6480   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6481   return true;
6482 }
6483 
6484 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6485                                 SelectionDAG &DAG) const {
6486   SDLoc dl(Node);
6487   EVT VT = Node->getValueType(0);
6488   SDValue Op = Node->getOperand(0);
6489   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6490 
6491   // If the non-ZERO_UNDEF version is supported we can use that instead.
6492   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6493       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6494     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6495     return true;
6496   }
6497 
6498   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6499   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6500     EVT SetCCVT =
6501         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6502     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6503     SDValue Zero = DAG.getConstant(0, dl, VT);
6504     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6505     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6506                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6507     return true;
6508   }
6509 
6510   // Only expand vector types if we have the appropriate vector bit operations.
6511   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6512                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6513                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6514                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6515                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6516                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6517     return false;
6518 
6519   // for now, we use: { return popcount(~x & (x - 1)); }
6520   // unless the target has ctlz but not ctpop, in which case we use:
6521   // { return 32 - nlz(~x & (x-1)); }
6522   // Ref: "Hacker's Delight" by Henry Warren
6523   SDValue Tmp = DAG.getNode(
6524       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6525       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6526 
6527   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6528   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6529     Result =
6530         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6531                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6532     return true;
6533   }
6534 
6535   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6536   return true;
6537 }
6538 
6539 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6540                                SelectionDAG &DAG) const {
6541   SDLoc dl(N);
6542   EVT VT = N->getValueType(0);
6543   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6544   SDValue Op = N->getOperand(0);
6545 
6546   // Only expand vector types if we have the appropriate vector operations.
6547   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6548                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6549                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6550     return false;
6551 
6552   SDValue Shift =
6553       DAG.getNode(ISD::SRA, dl, VT, Op,
6554                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6555   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6556   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6557   return true;
6558 }
6559 
6560 std::pair<SDValue, SDValue>
6561 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6562                                     SelectionDAG &DAG) const {
6563   SDLoc SL(LD);
6564   SDValue Chain = LD->getChain();
6565   SDValue BasePTR = LD->getBasePtr();
6566   EVT SrcVT = LD->getMemoryVT();
6567   ISD::LoadExtType ExtType = LD->getExtensionType();
6568 
6569   unsigned NumElem = SrcVT.getVectorNumElements();
6570 
6571   EVT SrcEltVT = SrcVT.getScalarType();
6572   EVT DstEltVT = LD->getValueType(0).getScalarType();
6573 
6574   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6575   assert(SrcEltVT.isByteSized());
6576 
6577   SmallVector<SDValue, 8> Vals;
6578   SmallVector<SDValue, 8> LoadChains;
6579 
6580   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6581     SDValue ScalarLoad =
6582         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6583                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6584                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6585                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6586 
6587     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6588 
6589     Vals.push_back(ScalarLoad.getValue(0));
6590     LoadChains.push_back(ScalarLoad.getValue(1));
6591   }
6592 
6593   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6594   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6595 
6596   return std::make_pair(Value, NewChain);
6597 }
6598 
6599 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6600                                              SelectionDAG &DAG) const {
6601   SDLoc SL(ST);
6602 
6603   SDValue Chain = ST->getChain();
6604   SDValue BasePtr = ST->getBasePtr();
6605   SDValue Value = ST->getValue();
6606   EVT StVT = ST->getMemoryVT();
6607 
6608   // The type of the data we want to save
6609   EVT RegVT = Value.getValueType();
6610   EVT RegSclVT = RegVT.getScalarType();
6611 
6612   // The type of data as saved in memory.
6613   EVT MemSclVT = StVT.getScalarType();
6614 
6615   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6616   unsigned NumElem = StVT.getVectorNumElements();
6617 
6618   // A vector must always be stored in memory as-is, i.e. without any padding
6619   // between the elements, since various code depend on it, e.g. in the
6620   // handling of a bitcast of a vector type to int, which may be done with a
6621   // vector store followed by an integer load. A vector that does not have
6622   // elements that are byte-sized must therefore be stored as an integer
6623   // built out of the extracted vector elements.
6624   if (!MemSclVT.isByteSized()) {
6625     unsigned NumBits = StVT.getSizeInBits();
6626     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6627 
6628     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6629 
6630     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6631       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6632                                 DAG.getConstant(Idx, SL, IdxVT));
6633       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6634       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6635       unsigned ShiftIntoIdx =
6636           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6637       SDValue ShiftAmount =
6638           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6639       SDValue ShiftedElt =
6640           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6641       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6642     }
6643 
6644     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6645                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6646                         ST->getAAInfo());
6647   }
6648 
6649   // Store Stride in bytes
6650   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6651   assert(Stride && "Zero stride!");
6652   // Extract each of the elements from the original vector and save them into
6653   // memory individually.
6654   SmallVector<SDValue, 8> Stores;
6655   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6656     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6657                               DAG.getConstant(Idx, SL, IdxVT));
6658 
6659     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6660 
6661     // This scalar TruncStore may be illegal, but we legalize it later.
6662     SDValue Store = DAG.getTruncStore(
6663         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6664         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6665         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6666 
6667     Stores.push_back(Store);
6668   }
6669 
6670   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6671 }
6672 
6673 std::pair<SDValue, SDValue>
6674 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6675   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6676          "unaligned indexed loads not implemented!");
6677   SDValue Chain = LD->getChain();
6678   SDValue Ptr = LD->getBasePtr();
6679   EVT VT = LD->getValueType(0);
6680   EVT LoadedVT = LD->getMemoryVT();
6681   SDLoc dl(LD);
6682   auto &MF = DAG.getMachineFunction();
6683 
6684   if (VT.isFloatingPoint() || VT.isVector()) {
6685     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6686     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6687       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6688           LoadedVT.isVector()) {
6689         // Scalarize the load and let the individual components be handled.
6690         return scalarizeVectorLoad(LD, DAG);
6691       }
6692 
6693       // Expand to a (misaligned) integer load of the same size,
6694       // then bitconvert to floating point or vector.
6695       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6696                                     LD->getMemOperand());
6697       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6698       if (LoadedVT != VT)
6699         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6700                              ISD::ANY_EXTEND, dl, VT, Result);
6701 
6702       return std::make_pair(Result, newLoad.getValue(1));
6703     }
6704 
6705     // Copy the value to a (aligned) stack slot using (unaligned) integer
6706     // loads and stores, then do a (aligned) load from the stack slot.
6707     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6708     unsigned LoadedBytes = LoadedVT.getStoreSize();
6709     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6710     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6711 
6712     // Make sure the stack slot is also aligned for the register type.
6713     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6714     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6715     SmallVector<SDValue, 8> Stores;
6716     SDValue StackPtr = StackBase;
6717     unsigned Offset = 0;
6718 
6719     EVT PtrVT = Ptr.getValueType();
6720     EVT StackPtrVT = StackPtr.getValueType();
6721 
6722     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6723     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6724 
6725     // Do all but one copies using the full register width.
6726     for (unsigned i = 1; i < NumRegs; i++) {
6727       // Load one integer register's worth from the original location.
6728       SDValue Load = DAG.getLoad(
6729           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6730           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6731           LD->getAAInfo());
6732       // Follow the load with a store to the stack slot.  Remember the store.
6733       Stores.push_back(DAG.getStore(
6734           Load.getValue(1), dl, Load, StackPtr,
6735           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6736       // Increment the pointers.
6737       Offset += RegBytes;
6738 
6739       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6740       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6741     }
6742 
6743     // The last copy may be partial.  Do an extending load.
6744     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6745                                   8 * (LoadedBytes - Offset));
6746     SDValue Load =
6747         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6748                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6749                        MinAlign(LD->getAlignment(), Offset),
6750                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6751     // Follow the load with a store to the stack slot.  Remember the store.
6752     // On big-endian machines this requires a truncating store to ensure
6753     // that the bits end up in the right place.
6754     Stores.push_back(DAG.getTruncStore(
6755         Load.getValue(1), dl, Load, StackPtr,
6756         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6757 
6758     // The order of the stores doesn't matter - say it with a TokenFactor.
6759     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6760 
6761     // Finally, perform the original load only redirected to the stack slot.
6762     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6763                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6764                           LoadedVT);
6765 
6766     // Callers expect a MERGE_VALUES node.
6767     return std::make_pair(Load, TF);
6768   }
6769 
6770   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6771          "Unaligned load of unsupported type.");
6772 
6773   // Compute the new VT that is half the size of the old one.  This is an
6774   // integer MVT.
6775   unsigned NumBits = LoadedVT.getSizeInBits();
6776   EVT NewLoadedVT;
6777   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6778   NumBits >>= 1;
6779 
6780   unsigned Alignment = LD->getAlignment();
6781   unsigned IncrementSize = NumBits / 8;
6782   ISD::LoadExtType HiExtType = LD->getExtensionType();
6783 
6784   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6785   if (HiExtType == ISD::NON_EXTLOAD)
6786     HiExtType = ISD::ZEXTLOAD;
6787 
6788   // Load the value in two parts
6789   SDValue Lo, Hi;
6790   if (DAG.getDataLayout().isLittleEndian()) {
6791     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6792                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6793                         LD->getAAInfo());
6794 
6795     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6796     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6797                         LD->getPointerInfo().getWithOffset(IncrementSize),
6798                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6799                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6800   } else {
6801     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6802                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6803                         LD->getAAInfo());
6804 
6805     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6806     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6807                         LD->getPointerInfo().getWithOffset(IncrementSize),
6808                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6809                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6810   }
6811 
6812   // aggregate the two parts
6813   SDValue ShiftAmount =
6814       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6815                                                     DAG.getDataLayout()));
6816   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6817   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6818 
6819   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6820                              Hi.getValue(1));
6821 
6822   return std::make_pair(Result, TF);
6823 }
6824 
6825 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6826                                              SelectionDAG &DAG) const {
6827   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6828          "unaligned indexed stores not implemented!");
6829   SDValue Chain = ST->getChain();
6830   SDValue Ptr = ST->getBasePtr();
6831   SDValue Val = ST->getValue();
6832   EVT VT = Val.getValueType();
6833   int Alignment = ST->getAlignment();
6834   auto &MF = DAG.getMachineFunction();
6835   EVT StoreMemVT = ST->getMemoryVT();
6836 
6837   SDLoc dl(ST);
6838   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6839     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6840     if (isTypeLegal(intVT)) {
6841       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6842           StoreMemVT.isVector()) {
6843         // Scalarize the store and let the individual components be handled.
6844         SDValue Result = scalarizeVectorStore(ST, DAG);
6845         return Result;
6846       }
6847       // Expand to a bitconvert of the value to the integer type of the
6848       // same size, then a (misaligned) int store.
6849       // FIXME: Does not handle truncating floating point stores!
6850       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6851       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6852                             Alignment, ST->getMemOperand()->getFlags());
6853       return Result;
6854     }
6855     // Do a (aligned) store to a stack slot, then copy from the stack slot
6856     // to the final destination using (unaligned) integer loads and stores.
6857     MVT RegVT = getRegisterType(
6858         *DAG.getContext(),
6859         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6860     EVT PtrVT = Ptr.getValueType();
6861     unsigned StoredBytes = StoreMemVT.getStoreSize();
6862     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6863     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6864 
6865     // Make sure the stack slot is also aligned for the register type.
6866     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6867     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6868 
6869     // Perform the original store, only redirected to the stack slot.
6870     SDValue Store = DAG.getTruncStore(
6871         Chain, dl, Val, StackPtr,
6872         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6873 
6874     EVT StackPtrVT = StackPtr.getValueType();
6875 
6876     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6877     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6878     SmallVector<SDValue, 8> Stores;
6879     unsigned Offset = 0;
6880 
6881     // Do all but one copies using the full register width.
6882     for (unsigned i = 1; i < NumRegs; i++) {
6883       // Load one integer register's worth from the stack slot.
6884       SDValue Load = DAG.getLoad(
6885           RegVT, dl, Store, StackPtr,
6886           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6887       // Store it to the final location.  Remember the store.
6888       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6889                                     ST->getPointerInfo().getWithOffset(Offset),
6890                                     MinAlign(ST->getAlignment(), Offset),
6891                                     ST->getMemOperand()->getFlags()));
6892       // Increment the pointers.
6893       Offset += RegBytes;
6894       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6895       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6896     }
6897 
6898     // The last store may be partial.  Do a truncating store.  On big-endian
6899     // machines this requires an extending load from the stack slot to ensure
6900     // that the bits are in the right place.
6901     EVT LoadMemVT =
6902         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6903 
6904     // Load from the stack slot.
6905     SDValue Load = DAG.getExtLoad(
6906         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6907         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6908 
6909     Stores.push_back(
6910         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6911                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6912                           MinAlign(ST->getAlignment(), Offset),
6913                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6914     // The order of the stores doesn't matter - say it with a TokenFactor.
6915     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6916     return Result;
6917   }
6918 
6919   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6920          "Unaligned store of unknown type.");
6921   // Get the half-size VT
6922   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6923   int NumBits = NewStoredVT.getSizeInBits();
6924   int IncrementSize = NumBits / 8;
6925 
6926   // Divide the stored value in two parts.
6927   SDValue ShiftAmount = DAG.getConstant(
6928       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6929   SDValue Lo = Val;
6930   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6931 
6932   // Store the two parts
6933   SDValue Store1, Store2;
6934   Store1 = DAG.getTruncStore(Chain, dl,
6935                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6936                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6937                              ST->getMemOperand()->getFlags());
6938 
6939   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6940   Alignment = MinAlign(Alignment, IncrementSize);
6941   Store2 = DAG.getTruncStore(
6942       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6943       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6944       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6945 
6946   SDValue Result =
6947       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6948   return Result;
6949 }
6950 
6951 SDValue
6952 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6953                                        const SDLoc &DL, EVT DataVT,
6954                                        SelectionDAG &DAG,
6955                                        bool IsCompressedMemory) const {
6956   SDValue Increment;
6957   EVT AddrVT = Addr.getValueType();
6958   EVT MaskVT = Mask.getValueType();
6959   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6960          "Incompatible types of Data and Mask");
6961   if (IsCompressedMemory) {
6962     // Incrementing the pointer according to number of '1's in the mask.
6963     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6964     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6965     if (MaskIntVT.getSizeInBits() < 32) {
6966       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6967       MaskIntVT = MVT::i32;
6968     }
6969 
6970     // Count '1's with POPCNT.
6971     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6972     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6973     // Scale is an element size in bytes.
6974     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6975                                     AddrVT);
6976     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6977   } else
6978     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6979 
6980   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6981 }
6982 
6983 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6984                                        SDValue Idx,
6985                                        EVT VecVT,
6986                                        const SDLoc &dl) {
6987   if (isa<ConstantSDNode>(Idx))
6988     return Idx;
6989 
6990   EVT IdxVT = Idx.getValueType();
6991   unsigned NElts = VecVT.getVectorNumElements();
6992   if (isPowerOf2_32(NElts)) {
6993     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6994                                      Log2_32(NElts));
6995     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6996                        DAG.getConstant(Imm, dl, IdxVT));
6997   }
6998 
6999   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7000                      DAG.getConstant(NElts - 1, dl, IdxVT));
7001 }
7002 
7003 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7004                                                 SDValue VecPtr, EVT VecVT,
7005                                                 SDValue Index) const {
7006   SDLoc dl(Index);
7007   // Make sure the index type is big enough to compute in.
7008   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7009 
7010   EVT EltVT = VecVT.getVectorElementType();
7011 
7012   // Calculate the element offset and add it to the pointer.
7013   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7014   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7015          "Converting bits to bytes lost precision");
7016 
7017   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7018 
7019   EVT IdxVT = Index.getValueType();
7020 
7021   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7022                       DAG.getConstant(EltSize, dl, IdxVT));
7023   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7024 }
7025 
7026 //===----------------------------------------------------------------------===//
7027 // Implementation of Emulated TLS Model
7028 //===----------------------------------------------------------------------===//
7029 
7030 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7031                                                 SelectionDAG &DAG) const {
7032   // Access to address of TLS varialbe xyz is lowered to a function call:
7033   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7034   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7035   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7036   SDLoc dl(GA);
7037 
7038   ArgListTy Args;
7039   ArgListEntry Entry;
7040   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7041   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7042   StringRef EmuTlsVarName(NameString);
7043   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7044   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7045   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7046   Entry.Ty = VoidPtrType;
7047   Args.push_back(Entry);
7048 
7049   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7050 
7051   TargetLowering::CallLoweringInfo CLI(DAG);
7052   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7053   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7054   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7055 
7056   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7057   // At last for X86 targets, maybe good for other targets too?
7058   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7059   MFI.setAdjustsStack(true); // Is this only for X86 target?
7060   MFI.setHasCalls(true);
7061 
7062   assert((GA->getOffset() == 0) &&
7063          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7064   return CallResult.first;
7065 }
7066 
7067 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7068                                                 SelectionDAG &DAG) const {
7069   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7070   if (!isCtlzFast())
7071     return SDValue();
7072   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7073   SDLoc dl(Op);
7074   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7075     if (C->isNullValue() && CC == ISD::SETEQ) {
7076       EVT VT = Op.getOperand(0).getValueType();
7077       SDValue Zext = Op.getOperand(0);
7078       if (VT.bitsLT(MVT::i32)) {
7079         VT = MVT::i32;
7080         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7081       }
7082       unsigned Log2b = Log2_32(VT.getSizeInBits());
7083       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7084       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7085                                 DAG.getConstant(Log2b, dl, MVT::i32));
7086       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7087     }
7088   }
7089   return SDValue();
7090 }
7091 
7092 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7093   unsigned Opcode = Node->getOpcode();
7094   SDValue LHS = Node->getOperand(0);
7095   SDValue RHS = Node->getOperand(1);
7096   EVT VT = LHS.getValueType();
7097   SDLoc dl(Node);
7098 
7099   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7100   assert(VT.isInteger() && "Expected operands to be integers");
7101 
7102   // usub.sat(a, b) -> umax(a, b) - b
7103   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7104     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7105     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7106   }
7107 
7108   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7109     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7110     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7111     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7112   }
7113 
7114   unsigned OverflowOp;
7115   switch (Opcode) {
7116   case ISD::SADDSAT:
7117     OverflowOp = ISD::SADDO;
7118     break;
7119   case ISD::UADDSAT:
7120     OverflowOp = ISD::UADDO;
7121     break;
7122   case ISD::SSUBSAT:
7123     OverflowOp = ISD::SSUBO;
7124     break;
7125   case ISD::USUBSAT:
7126     OverflowOp = ISD::USUBO;
7127     break;
7128   default:
7129     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7130                      "addition or subtraction node.");
7131   }
7132 
7133   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7134   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7135   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7136                                LHS, RHS);
7137   SDValue SumDiff = Result.getValue(0);
7138   SDValue Overflow = Result.getValue(1);
7139   SDValue Zero = DAG.getConstant(0, dl, VT);
7140   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7141 
7142   if (Opcode == ISD::UADDSAT) {
7143     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7144       // (LHS + RHS) | OverflowMask
7145       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7146       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7147     }
7148     // Overflow ? 0xffff.... : (LHS + RHS)
7149     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7150   } else if (Opcode == ISD::USUBSAT) {
7151     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7152       // (LHS - RHS) & ~OverflowMask
7153       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7154       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7155       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7156     }
7157     // Overflow ? 0 : (LHS - RHS)
7158     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7159   } else {
7160     // SatMax -> Overflow && SumDiff < 0
7161     // SatMin -> Overflow && SumDiff >= 0
7162     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7163     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7164     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7165     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7166     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7167     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7168     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7169   }
7170 }
7171 
7172 SDValue
7173 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7174   assert((Node->getOpcode() == ISD::SMULFIX ||
7175           Node->getOpcode() == ISD::UMULFIX ||
7176           Node->getOpcode() == ISD::SMULFIXSAT ||
7177           Node->getOpcode() == ISD::UMULFIXSAT) &&
7178          "Expected a fixed point multiplication opcode");
7179 
7180   SDLoc dl(Node);
7181   SDValue LHS = Node->getOperand(0);
7182   SDValue RHS = Node->getOperand(1);
7183   EVT VT = LHS.getValueType();
7184   unsigned Scale = Node->getConstantOperandVal(2);
7185   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7186                      Node->getOpcode() == ISD::UMULFIXSAT);
7187   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7188                  Node->getOpcode() == ISD::SMULFIXSAT);
7189   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7190   unsigned VTSize = VT.getScalarSizeInBits();
7191 
7192   if (!Scale) {
7193     // [us]mul.fix(a, b, 0) -> mul(a, b)
7194     if (!Saturating) {
7195       if (isOperationLegalOrCustom(ISD::MUL, VT))
7196         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7197     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7198       SDValue Result =
7199           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7200       SDValue Product = Result.getValue(0);
7201       SDValue Overflow = Result.getValue(1);
7202       SDValue Zero = DAG.getConstant(0, dl, VT);
7203 
7204       APInt MinVal = APInt::getSignedMinValue(VTSize);
7205       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7206       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7207       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7208       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7209       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7210       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7211     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7212       SDValue Result =
7213           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7214       SDValue Product = Result.getValue(0);
7215       SDValue Overflow = Result.getValue(1);
7216 
7217       APInt MaxVal = APInt::getMaxValue(VTSize);
7218       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7219       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7220     }
7221   }
7222 
7223   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7224          "Expected scale to be less than the number of bits if signed or at "
7225          "most the number of bits if unsigned.");
7226   assert(LHS.getValueType() == RHS.getValueType() &&
7227          "Expected both operands to be the same type");
7228 
7229   // Get the upper and lower bits of the result.
7230   SDValue Lo, Hi;
7231   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7232   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7233   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7234     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7235     Lo = Result.getValue(0);
7236     Hi = Result.getValue(1);
7237   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7238     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7239     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7240   } else if (VT.isVector()) {
7241     return SDValue();
7242   } else {
7243     report_fatal_error("Unable to expand fixed point multiplication.");
7244   }
7245 
7246   if (Scale == VTSize)
7247     // Result is just the top half since we'd be shifting by the width of the
7248     // operand. Overflow impossible so this works for both UMULFIX and
7249     // UMULFIXSAT.
7250     return Hi;
7251 
7252   // The result will need to be shifted right by the scale since both operands
7253   // are scaled. The result is given to us in 2 halves, so we only want part of
7254   // both in the result.
7255   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7256   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7257                                DAG.getConstant(Scale, dl, ShiftTy));
7258   if (!Saturating)
7259     return Result;
7260 
7261   if (!Signed) {
7262     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7263     // widened multiplication) aren't all zeroes.
7264 
7265     // Saturate to max if ((Hi >> Scale) != 0),
7266     // which is the same as if (Hi > ((1 << Scale) - 1))
7267     APInt MaxVal = APInt::getMaxValue(VTSize);
7268     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7269                                       dl, VT);
7270     Result = DAG.getSelectCC(dl, Hi, LowMask,
7271                              DAG.getConstant(MaxVal, dl, VT), Result,
7272                              ISD::SETUGT);
7273 
7274     return Result;
7275   }
7276 
7277   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7278   // widened multiplication) aren't all ones or all zeroes.
7279 
7280   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7281   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7282 
7283   if (Scale == 0) {
7284     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7285                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7286     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7287     // Saturated to SatMin if wide product is negative, and SatMax if wide
7288     // product is positive ...
7289     SDValue Zero = DAG.getConstant(0, dl, VT);
7290     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7291                                                ISD::SETLT);
7292     // ... but only if we overflowed.
7293     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7294   }
7295 
7296   //  We handled Scale==0 above so all the bits to examine is in Hi.
7297 
7298   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7299   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7300   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7301                                     dl, VT);
7302   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7303   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7304   // which is the same as if (HI < (-1 << (Scale - 1))
7305   SDValue HighMask =
7306       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7307                       dl, VT);
7308   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7309   return Result;
7310 }
7311 
7312 SDValue
7313 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7314                                     SDValue LHS, SDValue RHS,
7315                                     unsigned Scale, SelectionDAG &DAG) const {
7316   assert((Opcode == ISD::SDIVFIX ||
7317           Opcode == ISD::UDIVFIX) &&
7318          "Expected a fixed point division opcode");
7319 
7320   EVT VT = LHS.getValueType();
7321   bool Signed = Opcode == ISD::SDIVFIX;
7322   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7323 
7324   // If there is enough room in the type to upscale the LHS or downscale the
7325   // RHS before the division, we can perform it in this type without having to
7326   // resize. For signed operations, the LHS headroom is the number of
7327   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7328   // The headroom for the RHS is the number of trailing zeroes.
7329   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7330                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7331   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7332 
7333   if (LHSLead + RHSTrail < Scale)
7334     return SDValue();
7335 
7336   unsigned LHSShift = std::min(LHSLead, Scale);
7337   unsigned RHSShift = Scale - LHSShift;
7338 
7339   // At this point, we know that if we shift the LHS up by LHSShift and the
7340   // RHS down by RHSShift, we can emit a regular division with a final scaling
7341   // factor of Scale.
7342 
7343   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7344   if (LHSShift)
7345     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7346                       DAG.getConstant(LHSShift, dl, ShiftTy));
7347   if (RHSShift)
7348     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7349                       DAG.getConstant(RHSShift, dl, ShiftTy));
7350 
7351   SDValue Quot;
7352   if (Signed) {
7353     // For signed operations, if the resulting quotient is negative and the
7354     // remainder is nonzero, subtract 1 from the quotient to round towards
7355     // negative infinity.
7356     SDValue Rem;
7357     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7358     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7359     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7360     if (isTypeLegal(VT) &&
7361         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7362       Quot = DAG.getNode(ISD::SDIVREM, dl,
7363                          DAG.getVTList(VT, VT),
7364                          LHS, RHS);
7365       Rem = Quot.getValue(1);
7366       Quot = Quot.getValue(0);
7367     } else {
7368       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7369                          LHS, RHS);
7370       Rem = DAG.getNode(ISD::SREM, dl, VT,
7371                         LHS, RHS);
7372     }
7373     SDValue Zero = DAG.getConstant(0, dl, VT);
7374     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7375     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7376     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7377     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7378     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7379                                DAG.getConstant(1, dl, VT));
7380     Quot = DAG.getSelect(dl, VT,
7381                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7382                          Sub1, Quot);
7383   } else
7384     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7385                        LHS, RHS);
7386 
7387   // TODO: Saturation.
7388 
7389   return Quot;
7390 }
7391 
7392 void TargetLowering::expandUADDSUBO(
7393     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7394   SDLoc dl(Node);
7395   SDValue LHS = Node->getOperand(0);
7396   SDValue RHS = Node->getOperand(1);
7397   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7398 
7399   // If ADD/SUBCARRY is legal, use that instead.
7400   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7401   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7402     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7403     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7404                                     { LHS, RHS, CarryIn });
7405     Result = SDValue(NodeCarry.getNode(), 0);
7406     Overflow = SDValue(NodeCarry.getNode(), 1);
7407     return;
7408   }
7409 
7410   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7411                             LHS.getValueType(), LHS, RHS);
7412 
7413   EVT ResultType = Node->getValueType(1);
7414   EVT SetCCType = getSetCCResultType(
7415       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7416   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7417   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7418   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7419 }
7420 
7421 void TargetLowering::expandSADDSUBO(
7422     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7423   SDLoc dl(Node);
7424   SDValue LHS = Node->getOperand(0);
7425   SDValue RHS = Node->getOperand(1);
7426   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7427 
7428   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7429                             LHS.getValueType(), LHS, RHS);
7430 
7431   EVT ResultType = Node->getValueType(1);
7432   EVT OType = getSetCCResultType(
7433       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7434 
7435   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7436   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7437   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7438     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7439     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7440     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7441     return;
7442   }
7443 
7444   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7445 
7446   // For an addition, the result should be less than one of the operands (LHS)
7447   // if and only if the other operand (RHS) is negative, otherwise there will
7448   // be overflow.
7449   // For a subtraction, the result should be less than one of the operands
7450   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7451   // otherwise there will be overflow.
7452   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7453   SDValue ConditionRHS =
7454       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7455 
7456   Overflow = DAG.getBoolExtOrTrunc(
7457       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7458       ResultType, ResultType);
7459 }
7460 
7461 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7462                                 SDValue &Overflow, SelectionDAG &DAG) const {
7463   SDLoc dl(Node);
7464   EVT VT = Node->getValueType(0);
7465   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7466   SDValue LHS = Node->getOperand(0);
7467   SDValue RHS = Node->getOperand(1);
7468   bool isSigned = Node->getOpcode() == ISD::SMULO;
7469 
7470   // For power-of-two multiplications we can use a simpler shift expansion.
7471   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7472     const APInt &C = RHSC->getAPIntValue();
7473     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7474     if (C.isPowerOf2()) {
7475       // smulo(x, signed_min) is same as umulo(x, signed_min).
7476       bool UseArithShift = isSigned && !C.isMinSignedValue();
7477       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7478       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7479       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7480       Overflow = DAG.getSetCC(dl, SetCCVT,
7481           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7482                       dl, VT, Result, ShiftAmt),
7483           LHS, ISD::SETNE);
7484       return true;
7485     }
7486   }
7487 
7488   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7489   if (VT.isVector())
7490     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7491                               VT.getVectorNumElements());
7492 
7493   SDValue BottomHalf;
7494   SDValue TopHalf;
7495   static const unsigned Ops[2][3] =
7496       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7497         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7498   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7499     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7500     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7501   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7502     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7503                              RHS);
7504     TopHalf = BottomHalf.getValue(1);
7505   } else if (isTypeLegal(WideVT)) {
7506     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7507     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7508     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7509     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7510     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7511         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7512     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7513                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7514   } else {
7515     if (VT.isVector())
7516       return false;
7517 
7518     // We can fall back to a libcall with an illegal type for the MUL if we
7519     // have a libcall big enough.
7520     // Also, we can fall back to a division in some cases, but that's a big
7521     // performance hit in the general case.
7522     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7523     if (WideVT == MVT::i16)
7524       LC = RTLIB::MUL_I16;
7525     else if (WideVT == MVT::i32)
7526       LC = RTLIB::MUL_I32;
7527     else if (WideVT == MVT::i64)
7528       LC = RTLIB::MUL_I64;
7529     else if (WideVT == MVT::i128)
7530       LC = RTLIB::MUL_I128;
7531     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7532 
7533     SDValue HiLHS;
7534     SDValue HiRHS;
7535     if (isSigned) {
7536       // The high part is obtained by SRA'ing all but one of the bits of low
7537       // part.
7538       unsigned LoSize = VT.getSizeInBits();
7539       HiLHS =
7540           DAG.getNode(ISD::SRA, dl, VT, LHS,
7541                       DAG.getConstant(LoSize - 1, dl,
7542                                       getPointerTy(DAG.getDataLayout())));
7543       HiRHS =
7544           DAG.getNode(ISD::SRA, dl, VT, RHS,
7545                       DAG.getConstant(LoSize - 1, dl,
7546                                       getPointerTy(DAG.getDataLayout())));
7547     } else {
7548         HiLHS = DAG.getConstant(0, dl, VT);
7549         HiRHS = DAG.getConstant(0, dl, VT);
7550     }
7551 
7552     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7553     // pre-lowered to the correct types. This all depends upon WideVT not
7554     // being a legal type for the architecture and thus has to be split to
7555     // two arguments.
7556     SDValue Ret;
7557     TargetLowering::MakeLibCallOptions CallOptions;
7558     CallOptions.setSExt(isSigned);
7559     CallOptions.setIsPostTypeLegalization(true);
7560     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7561       // Halves of WideVT are packed into registers in different order
7562       // depending on platform endianness. This is usually handled by
7563       // the C calling convention, but we can't defer to it in
7564       // the legalizer.
7565       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7566       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7567     } else {
7568       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7569       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7570     }
7571     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7572            "Ret value is a collection of constituent nodes holding result.");
7573     if (DAG.getDataLayout().isLittleEndian()) {
7574       // Same as above.
7575       BottomHalf = Ret.getOperand(0);
7576       TopHalf = Ret.getOperand(1);
7577     } else {
7578       BottomHalf = Ret.getOperand(1);
7579       TopHalf = Ret.getOperand(0);
7580     }
7581   }
7582 
7583   Result = BottomHalf;
7584   if (isSigned) {
7585     SDValue ShiftAmt = DAG.getConstant(
7586         VT.getScalarSizeInBits() - 1, dl,
7587         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7588     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7589     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7590   } else {
7591     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7592                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7593   }
7594 
7595   // Truncate the result if SetCC returns a larger type than needed.
7596   EVT RType = Node->getValueType(1);
7597   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7598     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7599 
7600   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7601          "Unexpected result type for S/UMULO legalization");
7602   return true;
7603 }
7604 
7605 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7606   SDLoc dl(Node);
7607   bool NoNaN = Node->getFlags().hasNoNaNs();
7608   unsigned BaseOpcode = 0;
7609   switch (Node->getOpcode()) {
7610   default: llvm_unreachable("Expected VECREDUCE opcode");
7611   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7612   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7613   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7614   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7615   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7616   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7617   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7618   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7619   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7620   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7621   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7622   case ISD::VECREDUCE_FMAX:
7623     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7624     break;
7625   case ISD::VECREDUCE_FMIN:
7626     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7627     break;
7628   }
7629 
7630   SDValue Op = Node->getOperand(0);
7631   EVT VT = Op.getValueType();
7632 
7633   // Try to use a shuffle reduction for power of two vectors.
7634   if (VT.isPow2VectorType()) {
7635     while (VT.getVectorNumElements() > 1) {
7636       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7637       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7638         break;
7639 
7640       SDValue Lo, Hi;
7641       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7642       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7643       VT = HalfVT;
7644     }
7645   }
7646 
7647   EVT EltVT = VT.getVectorElementType();
7648   unsigned NumElts = VT.getVectorNumElements();
7649 
7650   SmallVector<SDValue, 8> Ops;
7651   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7652 
7653   SDValue Res = Ops[0];
7654   for (unsigned i = 1; i < NumElts; i++)
7655     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7656 
7657   // Result type may be wider than element type.
7658   if (EltVT != Node->getValueType(0))
7659     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7660   return Res;
7661 }
7662