1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 369 return false; 370 371 if (!C.isSubsetOf(Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = Demanded.getActiveBits(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode( 421 Op.getOpcode(), dl, SmallVT, 422 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 424 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 425 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 426 return TLO.CombineTo(Op, Z); 427 } 428 } 429 return false; 430 } 431 432 bool 433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 434 const APInt &Demanded, 435 DAGCombinerInfo &DCI, 436 TargetLoweringOpt &TLO) const { 437 SDValue Op = User->getOperand(OpIdx); 438 KnownBits Known; 439 440 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 441 return false; 442 443 444 // Old will not always be the same as Op. For example: 445 // 446 // Demanded = 0xffffff 447 // Op = i64 truncate (i32 and x, 0xffffff) 448 // In this case simplify demand bits will want to replace the 'and' node 449 // with the value 'x', which will give us: 450 // Old = i32 and x, 0xffffff 451 // New = x 452 if (TLO.Old.hasOneUse()) { 453 // For the one use case, we just commit the change. 454 DCI.CommitTargetLoweringOpt(TLO); 455 return true; 456 } 457 458 // If Old has more than one use then it must be Op, because the 459 // AssumeSingleUse flag is not propogated to recursive calls of 460 // SimplifyDemanded bits, so the only node with multiple use that 461 // it will attempt to combine will be Op. 462 assert(TLO.Old == Op); 463 464 SmallVector <SDValue, 4> NewOps; 465 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 466 if (i == OpIdx) { 467 NewOps.push_back(TLO.New); 468 continue; 469 } 470 NewOps.push_back(User->getOperand(i)); 471 } 472 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 473 // Op has less users now, so we may be able to perform additional combines 474 // with it. 475 DCI.AddToWorklist(Op.getNode()); 476 // User's operands have been updated, so we may be able to do new combines 477 // with it. 478 DCI.AddToWorklist(User); 479 return true; 480 } 481 482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 483 DAGCombinerInfo &DCI) const { 484 485 SelectionDAG &DAG = DCI.DAG; 486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 487 !DCI.isBeforeLegalizeOps()); 488 KnownBits Known; 489 490 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 491 if (Simplified) 492 DCI.CommitTargetLoweringOpt(TLO); 493 return Simplified; 494 } 495 496 /// Look at Op. At this point, we know that only the DemandedMask bits of the 497 /// result of Op are ever used downstream. If we can use this information to 498 /// simplify Op, create a new simplified DAG node and return true, returning the 499 /// original and new nodes in Old and New. Otherwise, analyze the expression and 500 /// return a mask of Known bits for the expression (used to simplify the 501 /// caller). The Known bits may only be accurate for those bits in the 502 /// DemandedMask. 503 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 504 const APInt &DemandedMask, 505 KnownBits &Known, 506 TargetLoweringOpt &TLO, 507 unsigned Depth, 508 bool AssumeSingleUse) const { 509 unsigned BitWidth = DemandedMask.getBitWidth(); 510 assert(Op.getScalarValueSizeInBits() == BitWidth && 511 "Mask size mismatches value type size!"); 512 APInt NewMask = DemandedMask; 513 SDLoc dl(Op); 514 auto &DL = TLO.DAG.getDataLayout(); 515 516 // Don't know anything. 517 Known = KnownBits(BitWidth); 518 519 if (Op.getOpcode() == ISD::Constant) { 520 // We know all of the bits for a constant! 521 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 Known.Zero = ~Known.One; 523 return false; 524 } 525 526 // Other users may use these bits. 527 EVT VT = Op.getValueType(); 528 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 529 if (Depth != 0) { 530 // If not at the root, Just compute the Known bits to 531 // simplify things downstream. 532 TLO.DAG.computeKnownBits(Op, Known, Depth); 533 return false; 534 } 535 // If this is the root being simplified, allow it to have multiple uses, 536 // just set the NewMask to all bits. 537 NewMask = APInt::getAllOnesValue(BitWidth); 538 } else if (DemandedMask == 0) { 539 // Not demanding any bits from Op. 540 if (!Op.isUndef()) 541 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 542 return false; 543 } else if (Depth == 6) { // Limit search depth. 544 return false; 545 } 546 547 KnownBits Known2, KnownOut; 548 switch (Op.getOpcode()) { 549 case ISD::BUILD_VECTOR: 550 // Collect the known bits that are shared by every constant vector element. 551 Known.Zero.setAllBits(); Known.One.setAllBits(); 552 for (SDValue SrcOp : Op->ops()) { 553 if (!isa<ConstantSDNode>(SrcOp)) { 554 // We can only handle all constant values - bail out with no known bits. 555 Known = KnownBits(BitWidth); 556 return false; 557 } 558 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 559 Known2.Zero = ~Known2.One; 560 561 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 562 if (Known2.One.getBitWidth() != BitWidth) { 563 assert(Known2.getBitWidth() > BitWidth && 564 "Expected BUILD_VECTOR implicit truncation"); 565 Known2 = Known2.trunc(BitWidth); 566 } 567 568 // Known bits are the values that are shared by every element. 569 // TODO: support per-element known bits. 570 Known.One &= Known2.One; 571 Known.Zero &= Known2.Zero; 572 } 573 return false; // Don't fall through, will infinitely loop. 574 case ISD::AND: 575 // If the RHS is a constant, check to see if the LHS would be zero without 576 // using the bits from the RHS. Below, we use knowledge about the RHS to 577 // simplify the LHS, here we're using information from the LHS to simplify 578 // the RHS. 579 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 580 SDValue Op0 = Op.getOperand(0); 581 KnownBits LHSKnown; 582 // Do not increment Depth here; that can cause an infinite loop. 583 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 584 // If the LHS already has zeros where RHSC does, this 'and' is dead. 585 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 586 return TLO.CombineTo(Op, Op0); 587 588 // If any of the set bits in the RHS are known zero on the LHS, shrink 589 // the constant. 590 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 591 return true; 592 593 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 594 // constant, but if this 'and' is only clearing bits that were just set by 595 // the xor, then this 'and' can be eliminated by shrinking the mask of 596 // the xor. For example, for a 32-bit X: 597 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 598 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 599 LHSKnown.One == ~RHSC->getAPIntValue()) { 600 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), 601 Op.getOperand(1)); 602 return TLO.CombineTo(Op, Xor); 603 } 604 } 605 606 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 607 return true; 608 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 609 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 610 Known2, TLO, Depth+1)) 611 return true; 612 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 613 614 // If all of the demanded bits are known one on one side, return the other. 615 // These bits cannot contribute to the result of the 'and'. 616 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 617 return TLO.CombineTo(Op, Op.getOperand(0)); 618 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 619 return TLO.CombineTo(Op, Op.getOperand(1)); 620 // If all of the demanded bits in the inputs are known zeros, return zero. 621 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 622 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 623 // If the RHS is a constant, see if we can simplify it. 624 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 625 return true; 626 // If the operation can be done in a smaller type, do so. 627 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 628 return true; 629 630 // Output known-1 bits are only known if set in both the LHS & RHS. 631 Known.One &= Known2.One; 632 // Output known-0 are known to be clear if zero in either the LHS | RHS. 633 Known.Zero |= Known2.Zero; 634 break; 635 case ISD::OR: 636 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 637 return true; 638 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 639 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 640 Known2, TLO, Depth+1)) 641 return true; 642 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 643 644 // If all of the demanded bits are known zero on one side, return the other. 645 // These bits cannot contribute to the result of the 'or'. 646 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 647 return TLO.CombineTo(Op, Op.getOperand(0)); 648 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 649 return TLO.CombineTo(Op, Op.getOperand(1)); 650 // If the RHS is a constant, see if we can simplify it. 651 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 652 return true; 653 // If the operation can be done in a smaller type, do so. 654 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 655 return true; 656 657 // Output known-0 bits are only known if clear in both the LHS & RHS. 658 Known.Zero &= Known2.Zero; 659 // Output known-1 are known to be set if set in either the LHS | RHS. 660 Known.One |= Known2.One; 661 break; 662 case ISD::XOR: { 663 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 664 return true; 665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 666 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 667 return true; 668 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 669 670 // If all of the demanded bits are known zero on one side, return the other. 671 // These bits cannot contribute to the result of the 'xor'. 672 if (NewMask.isSubsetOf(Known.Zero)) 673 return TLO.CombineTo(Op, Op.getOperand(0)); 674 if (NewMask.isSubsetOf(Known2.Zero)) 675 return TLO.CombineTo(Op, Op.getOperand(1)); 676 // If the operation can be done in a smaller type, do so. 677 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 678 return true; 679 680 // If all of the unknown bits are known to be zero on one side or the other 681 // (but not both) turn this into an *inclusive* or. 682 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 683 if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) 684 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, 685 Op.getOperand(0), 686 Op.getOperand(1))); 687 688 // Output known-0 bits are known if clear or set in both the LHS & RHS. 689 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 690 // Output known-1 are known to be set if set in only one of the LHS, RHS. 691 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 692 693 // If all of the demanded bits on one side are known, and all of the set 694 // bits on that side are also known to be set on the other side, turn this 695 // into an AND, as we know the bits will be cleared. 696 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 697 // NB: it is okay if more bits are known than are requested 698 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side 699 if (Known.One == Known2.One) { // set bits are the same on both sides 700 SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); 701 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 702 Op.getOperand(0), ANDC)); 703 } 704 } 705 706 // If the RHS is a constant, see if we can change it. Don't alter a -1 707 // constant because that's a 'not' op, and that is better for combining and 708 // codegen. 709 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); 710 if (C && !C->isAllOnesValue()) { 711 if (NewMask.isSubsetOf(C->getAPIntValue())) { 712 // We're flipping all demanded bits. Flip the undemanded bits too. 713 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT); 714 return TLO.CombineTo(Op, New); 715 } 716 // If we can't turn this into a 'not', try to shrink the constant. 717 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 718 return true; 719 } 720 721 Known = std::move(KnownOut); 722 break; 723 } 724 case ISD::SELECT: 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 726 return true; 727 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 728 return true; 729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 730 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 731 732 // If the operands are constants, see if we can simplify them. 733 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 734 return true; 735 736 // Only known if known in both the LHS and RHS. 737 Known.One &= Known2.One; 738 Known.Zero &= Known2.Zero; 739 break; 740 case ISD::SELECT_CC: 741 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 742 return true; 743 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 744 return true; 745 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 746 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 747 748 // If the operands are constants, see if we can simplify them. 749 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 750 return true; 751 752 // Only known if known in both the LHS and RHS. 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 break; 756 case ISD::SETCC: { 757 SDValue Op0 = Op.getOperand(0); 758 SDValue Op1 = Op.getOperand(1); 759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 760 // If (1) we only need the sign-bit, (2) the setcc operands are the same 761 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 762 // -1, we may be able to bypass the setcc. 763 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 764 getBooleanContents(VT) == 765 BooleanContent::ZeroOrNegativeOneBooleanContent) { 766 // If we're testing X < 0, then this compare isn't needed - just use X! 767 // FIXME: We're limiting to integer types here, but this should also work 768 // if we don't care about FP signed-zero. The use of SETLT with FP means 769 // that we don't care about NaNs. 770 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 771 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 772 return TLO.CombineTo(Op, Op0); 773 774 // TODO: Should we check for other forms of sign-bit comparisons? 775 // Examples: X <= -1, X >= 0 776 } 777 if (getBooleanContents(Op0.getValueType()) == 778 TargetLowering::ZeroOrOneBooleanContent && 779 BitWidth > 1) 780 Known.Zero.setBitsFrom(1); 781 break; 782 } 783 case ISD::SHL: 784 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 785 SDValue InOp = Op.getOperand(0); 786 787 // If the shift count is an invalid immediate, don't do anything. 788 if (SA->getAPIntValue().uge(BitWidth)) 789 break; 790 791 unsigned ShAmt = SA->getZExtValue(); 792 793 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 794 // single shift. We can do this if the bottom bits (which are shifted 795 // out) are never demanded. 796 if (InOp.getOpcode() == ISD::SRL) { 797 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 798 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 799 if (SA2->getAPIntValue().ult(BitWidth)) { 800 unsigned C1 = SA2->getZExtValue(); 801 unsigned Opc = ISD::SHL; 802 int Diff = ShAmt-C1; 803 if (Diff < 0) { 804 Diff = -Diff; 805 Opc = ISD::SRL; 806 } 807 808 SDValue NewSA = 809 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 810 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 811 InOp.getOperand(0), 812 NewSA)); 813 } 814 } 815 } 816 } 817 818 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 819 return true; 820 821 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 822 // are not demanded. This will likely allow the anyext to be folded away. 823 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 824 SDValue InnerOp = InOp.getOperand(0); 825 EVT InnerVT = InnerOp.getValueType(); 826 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 827 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 828 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 829 EVT ShTy = getShiftAmountTy(InnerVT, DL); 830 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 831 ShTy = InnerVT; 832 SDValue NarrowShl = 833 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 834 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 835 return 836 TLO.CombineTo(Op, 837 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 838 } 839 // Repeat the SHL optimization above in cases where an extension 840 // intervenes: (shl (anyext (shr x, c1)), c2) to 841 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 842 // aren't demanded (as above) and that the shifted upper c1 bits of 843 // x aren't demanded. 844 if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 845 InnerOp.hasOneUse()) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { 847 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 848 if (InnerShAmt < ShAmt && 849 InnerShAmt < InnerBits && 850 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 851 NewMask.countTrailingZeros() >= ShAmt) { 852 SDValue NewSA = 853 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 854 Op.getOperand(1).getValueType()); 855 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 856 InnerOp.getOperand(0)); 857 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 858 NewExt, NewSA)); 859 } 860 } 861 } 862 } 863 864 Known.Zero <<= ShAmt; 865 Known.One <<= ShAmt; 866 // low bits known zero. 867 Known.Zero.setLowBits(ShAmt); 868 } 869 break; 870 case ISD::SRL: 871 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 872 SDValue InOp = Op.getOperand(0); 873 874 // If the shift count is an invalid immediate, don't do anything. 875 if (SA->getAPIntValue().uge(BitWidth)) 876 break; 877 878 unsigned ShAmt = SA->getZExtValue(); 879 APInt InDemandedMask = (NewMask << ShAmt); 880 881 // If the shift is exact, then it does demand the low bits (and knows that 882 // they are zero). 883 if (Op->getFlags().hasExact()) 884 InDemandedMask.setLowBits(ShAmt); 885 886 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 887 // single shift. We can do this if the top bits (which are shifted out) 888 // are never demanded. 889 if (InOp.getOpcode() == ISD::SHL) { 890 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 891 if (ShAmt && 892 (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 893 if (SA2->getAPIntValue().ult(BitWidth)) { 894 unsigned C1 = SA2->getZExtValue(); 895 unsigned Opc = ISD::SRL; 896 int Diff = ShAmt-C1; 897 if (Diff < 0) { 898 Diff = -Diff; 899 Opc = ISD::SHL; 900 } 901 902 SDValue NewSA = 903 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 904 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 905 InOp.getOperand(0), 906 NewSA)); 907 } 908 } 909 } 910 } 911 912 // Compute the new bits that are at the top now. 913 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 914 return true; 915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 916 Known.Zero.lshrInPlace(ShAmt); 917 Known.One.lshrInPlace(ShAmt); 918 919 Known.Zero.setHighBits(ShAmt); // High bits known zero. 920 } 921 break; 922 case ISD::SRA: 923 // If this is an arithmetic shift right and only the low-bit is set, we can 924 // always convert this into a logical shr, even if the shift amount is 925 // variable. The low bit of the shift cannot be an input sign bit unless 926 // the shift amount is >= the size of the datatype, which is undefined. 927 if (NewMask.isOneValue()) 928 return TLO.CombineTo(Op, 929 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 930 Op.getOperand(1))); 931 932 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 933 // If the shift count is an invalid immediate, don't do anything. 934 if (SA->getAPIntValue().uge(BitWidth)) 935 break; 936 937 unsigned ShAmt = SA->getZExtValue(); 938 APInt InDemandedMask = (NewMask << ShAmt); 939 940 // If the shift is exact, then it does demand the low bits (and knows that 941 // they are zero). 942 if (Op->getFlags().hasExact()) 943 InDemandedMask.setLowBits(ShAmt); 944 945 // If any of the demanded bits are produced by the sign extension, we also 946 // demand the input sign bit. 947 if (NewMask.countLeadingZeros() < ShAmt) 948 InDemandedMask.setSignBit(); 949 950 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 951 Depth+1)) 952 return true; 953 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 954 Known.Zero.lshrInPlace(ShAmt); 955 Known.One.lshrInPlace(ShAmt); 956 957 // If the input sign bit is known to be zero, or if none of the top bits 958 // are demanded, turn this into an unsigned shift right. 959 if (Known.Zero[BitWidth - ShAmt - 1] || 960 NewMask.countLeadingZeros() >= ShAmt) { 961 SDNodeFlags Flags; 962 Flags.setExact(Op->getFlags().hasExact()); 963 return TLO.CombineTo(Op, 964 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 965 Op.getOperand(1), Flags)); 966 } 967 968 int Log2 = NewMask.exactLogBase2(); 969 if (Log2 >= 0) { 970 // The bit must come from the sign. 971 SDValue NewSA = 972 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 973 Op.getOperand(1).getValueType()); 974 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 975 Op.getOperand(0), NewSA)); 976 } 977 978 if (Known.One[BitWidth - ShAmt - 1]) 979 // New bits are known one. 980 Known.One.setHighBits(ShAmt); 981 } 982 break; 983 case ISD::SIGN_EXTEND_INREG: { 984 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 985 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 986 987 // If we only care about the highest bit, don't bother shifting right. 988 if (NewMask.isSignMask()) { 989 SDValue InOp = Op.getOperand(0); 990 bool AlreadySignExtended = 991 TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; 992 // However if the input is already sign extended we expect the sign 993 // extension to be dropped altogether later and do not simplify. 994 if (!AlreadySignExtended) { 995 // Compute the correct shift amount type, which must be getShiftAmountTy 996 // for scalar types after legalization. 997 EVT ShiftAmtTy = VT; 998 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 999 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1000 1001 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1002 ShiftAmtTy); 1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp, 1004 ShiftAmt)); 1005 } 1006 } 1007 1008 // If none of the extended bits are demanded, eliminate the sextinreg. 1009 if (NewMask.getActiveBits() <= ExVTBits) 1010 return TLO.CombineTo(Op, Op.getOperand(0)); 1011 1012 APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); 1013 1014 // Since the sign extended bits are demanded, we know that the sign 1015 // bit is demanded. 1016 InputDemandedBits.setBit(ExVTBits - 1); 1017 1018 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1019 Known, TLO, Depth+1)) 1020 return true; 1021 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1022 1023 // If the sign bit of the input is known set or clear, then we know the 1024 // top bits of the result. 1025 1026 // If the input sign bit is known zero, convert this into a zero extension. 1027 if (Known.Zero[ExVTBits - 1]) 1028 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1029 Op.getOperand(0), dl, ExVT.getScalarType())); 1030 1031 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1032 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1033 Known.One.setBitsFrom(ExVTBits); 1034 Known.Zero &= Mask; 1035 } else { // Input sign bit unknown 1036 Known.Zero &= Mask; 1037 Known.One &= Mask; 1038 } 1039 break; 1040 } 1041 case ISD::BUILD_PAIR: { 1042 EVT HalfVT = Op.getOperand(0).getValueType(); 1043 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1044 1045 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1046 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1047 1048 KnownBits KnownLo, KnownHi; 1049 1050 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1051 return true; 1052 1053 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1054 return true; 1055 1056 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1057 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1058 1059 Known.One = KnownLo.One.zext(BitWidth) | 1060 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1061 break; 1062 } 1063 case ISD::ZERO_EXTEND: { 1064 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1065 1066 // If none of the top bits are demanded, convert this into an any_extend. 1067 if (NewMask.getActiveBits() <= OperandBitWidth) 1068 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1069 Op.getOperand(0))); 1070 1071 APInt InMask = NewMask.trunc(OperandBitWidth); 1072 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1073 return true; 1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1075 Known = Known.zext(BitWidth); 1076 Known.Zero.setBitsFrom(OperandBitWidth); 1077 break; 1078 } 1079 case ISD::SIGN_EXTEND: { 1080 unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); 1081 1082 // If none of the top bits are demanded, convert this into an any_extend. 1083 if (NewMask.getActiveBits() <= InBits) 1084 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1085 Op.getOperand(0))); 1086 1087 // Since some of the sign extended bits are demanded, we know that the sign 1088 // bit is demanded. 1089 APInt InDemandedBits = NewMask.trunc(InBits); 1090 InDemandedBits.setBit(InBits - 1); 1091 1092 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1093 Depth+1)) 1094 return true; 1095 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1096 // If the sign bit is known one, the top bits match. 1097 Known = Known.sext(BitWidth); 1098 1099 // If the sign bit is known zero, convert this to a zero extend. 1100 if (Known.isNonNegative()) 1101 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, 1102 Op.getOperand(0))); 1103 break; 1104 } 1105 case ISD::ANY_EXTEND: { 1106 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1107 APInt InMask = NewMask.trunc(OperandBitWidth); 1108 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1109 return true; 1110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1111 Known = Known.zext(BitWidth); 1112 break; 1113 } 1114 case ISD::TRUNCATE: { 1115 // Simplify the input, using demanded bit information, and compute the known 1116 // zero/one bits live out. 1117 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1118 APInt TruncMask = NewMask.zext(OperandBitWidth); 1119 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1120 return true; 1121 Known = Known.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1133 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1134 // undesirable. 1135 break; 1136 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1137 if (!ShAmt) 1138 break; 1139 SDValue Shift = In.getOperand(1); 1140 if (TLO.LegalTypes()) { 1141 uint64_t ShVal = ShAmt->getZExtValue(); 1142 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1143 } 1144 1145 if (ShAmt->getZExtValue() < BitWidth) { 1146 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1147 OperandBitWidth - BitWidth); 1148 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1149 HighBits = HighBits.trunc(BitWidth); 1150 1151 if (!(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, 1155 In.getOperand(0)); 1156 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, 1157 Shift)); 1158 } 1159 } 1160 break; 1161 } 1162 } 1163 1164 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1165 break; 1166 } 1167 case ISD::AssertZext: { 1168 // AssertZext demands all of the high bits, plus any of the low bits 1169 // demanded by its users. 1170 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1171 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1172 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1173 Known, TLO, Depth+1)) 1174 return true; 1175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1176 1177 Known.Zero |= ~InMask; 1178 break; 1179 } 1180 case ISD::BITCAST: 1181 // If this is an FP->Int bitcast and if the sign bit is the only 1182 // thing demanded, turn this into a FGETSIGN. 1183 if (!TLO.LegalOperations() && !VT.isVector() && 1184 !Op.getOperand(0).getValueType().isVector() && 1185 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1186 Op.getOperand(0).getValueType().isFloatingPoint()) { 1187 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1188 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1189 if ((OpVTLegal || i32Legal) && VT.isSimple() && 1190 Op.getOperand(0).getValueType() != MVT::f16 && 1191 Op.getOperand(0).getValueType() != MVT::f128) { 1192 // Cannot eliminate/lower SHL for f128 yet. 1193 EVT Ty = OpVTLegal ? VT : MVT::i32; 1194 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1195 // place. We expect the SHL to be eliminated by other optimizations. 1196 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1197 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1198 if (!OpVTLegal && OpVTSizeInBits > 32) 1199 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1200 unsigned ShVal = Op.getValueSizeInBits() - 1; 1201 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1202 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1203 } 1204 } 1205 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1206 // recursive call where Known may be useful to the caller. 1207 if (Depth > 0) { 1208 TLO.DAG.computeKnownBits(Op, Known, Depth); 1209 return false; 1210 } 1211 break; 1212 case ISD::ADD: 1213 case ISD::MUL: 1214 case ISD::SUB: { 1215 // Add, Sub, and Mul don't demand any bits in positions beyond that 1216 // of the highest bit demanded of them. 1217 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1218 unsigned NewMaskLZ = NewMask.countLeadingZeros(); 1219 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ); 1220 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1221 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1222 // See if the operation should be performed at a smaller bit width. 1223 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1224 SDNodeFlags Flags = Op.getNode()->getFlags(); 1225 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1226 // Disable the nsw and nuw flags. We can no longer guarantee that we 1227 // won't wrap after simplification. 1228 Flags.setNoSignedWrap(false); 1229 Flags.setNoUnsignedWrap(false); 1230 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1231 Flags); 1232 return TLO.CombineTo(Op, NewOp); 1233 } 1234 return true; 1235 } 1236 1237 // If we have a constant operand, we may be able to turn it into -1 if we 1238 // do not demand the high bits. This can make the constant smaller to 1239 // encode, allow more general folding, or match specialized instruction 1240 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1241 // is probably not useful (and could be detrimental). 1242 ConstantSDNode *C = isConstOrConstSplat(Op1); 1243 APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ); 1244 if (C && !C->isAllOnesValue() && !C->isOne() && 1245 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1246 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1247 // We can't guarantee that the new math op doesn't wrap, so explicitly 1248 // clear those flags to prevent folding with a potential existing node 1249 // that has those flags set. 1250 SDNodeFlags Flags; 1251 Flags.setNoSignedWrap(false); 1252 Flags.setNoUnsignedWrap(false); 1253 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1254 return TLO.CombineTo(Op, NewOp); 1255 } 1256 1257 LLVM_FALLTHROUGH; 1258 } 1259 default: 1260 // Just use computeKnownBits to compute output bits. 1261 TLO.DAG.computeKnownBits(Op, Known, Depth); 1262 break; 1263 } 1264 1265 // If we know the value of all of the demanded bits, return this as a 1266 // constant. 1267 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1268 // Avoid folding to a constant if any OpaqueConstant is involved. 1269 const SDNode *N = Op.getNode(); 1270 for (SDNodeIterator I = SDNodeIterator::begin(N), 1271 E = SDNodeIterator::end(N); I != E; ++I) { 1272 SDNode *Op = *I; 1273 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1274 if (C->isOpaque()) 1275 return false; 1276 } 1277 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1278 } 1279 1280 return false; 1281 } 1282 1283 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1284 const APInt &DemandedElts, 1285 APInt &KnownUndef, 1286 APInt &KnownZero, 1287 DAGCombinerInfo &DCI) const { 1288 SelectionDAG &DAG = DCI.DAG; 1289 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1290 !DCI.isBeforeLegalizeOps()); 1291 1292 bool Simplified = 1293 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1294 if (Simplified) 1295 DCI.CommitTargetLoweringOpt(TLO); 1296 return Simplified; 1297 } 1298 1299 bool TargetLowering::SimplifyDemandedVectorElts( 1300 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1301 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1302 bool AssumeSingleUse) const { 1303 EVT VT = Op.getValueType(); 1304 APInt DemandedElts = DemandedEltMask; 1305 unsigned NumElts = DemandedElts.getBitWidth(); 1306 assert(VT.isVector() && "Expected vector op"); 1307 assert(VT.getVectorNumElements() == NumElts && 1308 "Mask size mismatches value type element count!"); 1309 1310 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1311 1312 // Undef operand. 1313 if (Op.isUndef()) { 1314 KnownUndef.setAllBits(); 1315 return false; 1316 } 1317 1318 // If Op has other users, assume that all elements are needed. 1319 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1320 DemandedElts.setAllBits(); 1321 1322 // Not demanding any elements from Op. 1323 if (DemandedElts == 0) { 1324 KnownUndef.setAllBits(); 1325 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1326 } 1327 1328 // Limit search depth. 1329 if (Depth >= 6) 1330 return false; 1331 1332 SDLoc DL(Op); 1333 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1334 1335 switch (Op.getOpcode()) { 1336 case ISD::SCALAR_TO_VECTOR: { 1337 if (!DemandedElts[0]) { 1338 KnownUndef.setAllBits(); 1339 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1340 } 1341 KnownUndef.setHighBits(NumElts - 1); 1342 break; 1343 } 1344 case ISD::BITCAST: { 1345 SDValue Src = Op.getOperand(0); 1346 EVT SrcVT = Src.getValueType(); 1347 1348 // We only handle vectors here. 1349 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1350 if (!SrcVT.isVector()) 1351 break; 1352 1353 // Fast handling of 'identity' bitcasts. 1354 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1355 if (NumSrcElts == NumElts) 1356 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1357 KnownZero, TLO, Depth + 1); 1358 1359 APInt SrcZero, SrcUndef; 1360 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1361 1362 // Bitcast from 'large element' src vector to 'small element' vector, we 1363 // must demand a source element if any DemandedElt maps to it. 1364 if ((NumElts % NumSrcElts) == 0) { 1365 unsigned Scale = NumElts / NumSrcElts; 1366 for (unsigned i = 0; i != NumElts; ++i) 1367 if (DemandedElts[i]) 1368 SrcDemandedElts.setBit(i / Scale); 1369 1370 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1371 TLO, Depth + 1)) 1372 return true; 1373 1374 // If the src element is zero/undef then all the output elements will be - 1375 // only demanded elements are guaranteed to be correct. 1376 for (unsigned i = 0; i != NumSrcElts; ++i) { 1377 if (SrcDemandedElts[i]) { 1378 if (SrcZero[i]) 1379 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1380 if (SrcUndef[i]) 1381 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1382 } 1383 } 1384 } 1385 1386 // Bitcast from 'small element' src vector to 'large element' vector, we 1387 // demand all smaller source elements covered by the larger demanded element 1388 // of this vector. 1389 if ((NumSrcElts % NumElts) == 0) { 1390 unsigned Scale = NumSrcElts / NumElts; 1391 for (unsigned i = 0; i != NumElts; ++i) 1392 if (DemandedElts[i]) 1393 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1394 1395 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1396 TLO, Depth + 1)) 1397 return true; 1398 1399 // If all the src elements covering an output element are zero/undef, then 1400 // the output element will be as well, assuming it was demanded. 1401 for (unsigned i = 0; i != NumElts; ++i) { 1402 if (DemandedElts[i]) { 1403 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1404 KnownZero.setBit(i); 1405 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1406 KnownUndef.setBit(i); 1407 } 1408 } 1409 } 1410 break; 1411 } 1412 case ISD::BUILD_VECTOR: { 1413 // Check all elements and simplify any unused elements with UNDEF. 1414 if (!DemandedElts.isAllOnesValue()) { 1415 // Don't simplify BROADCASTS. 1416 if (llvm::any_of(Op->op_values(), 1417 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1418 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1419 bool Updated = false; 1420 for (unsigned i = 0; i != NumElts; ++i) { 1421 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1422 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1423 KnownUndef.setBit(i); 1424 Updated = true; 1425 } 1426 } 1427 if (Updated) 1428 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1429 } 1430 } 1431 for (unsigned i = 0; i != NumElts; ++i) { 1432 SDValue SrcOp = Op.getOperand(i); 1433 if (SrcOp.isUndef()) { 1434 KnownUndef.setBit(i); 1435 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1436 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1437 KnownZero.setBit(i); 1438 } 1439 } 1440 break; 1441 } 1442 case ISD::CONCAT_VECTORS: { 1443 EVT SubVT = Op.getOperand(0).getValueType(); 1444 unsigned NumSubVecs = Op.getNumOperands(); 1445 unsigned NumSubElts = SubVT.getVectorNumElements(); 1446 for (unsigned i = 0; i != NumSubVecs; ++i) { 1447 SDValue SubOp = Op.getOperand(i); 1448 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1449 APInt SubUndef, SubZero; 1450 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1451 Depth + 1)) 1452 return true; 1453 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1454 KnownZero.insertBits(SubZero, i * NumSubElts); 1455 } 1456 break; 1457 } 1458 case ISD::INSERT_SUBVECTOR: { 1459 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1460 break; 1461 SDValue Base = Op.getOperand(0); 1462 SDValue Sub = Op.getOperand(1); 1463 EVT SubVT = Sub.getValueType(); 1464 unsigned NumSubElts = SubVT.getVectorNumElements(); 1465 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1466 if (Idx.uge(NumElts - NumSubElts)) 1467 break; 1468 unsigned SubIdx = Idx.getZExtValue(); 1469 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1470 APInt SubUndef, SubZero; 1471 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1472 Depth + 1)) 1473 return true; 1474 APInt BaseElts = DemandedElts; 1475 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1476 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1477 Depth + 1)) 1478 return true; 1479 KnownUndef.insertBits(SubUndef, SubIdx); 1480 KnownZero.insertBits(SubZero, SubIdx); 1481 break; 1482 } 1483 case ISD::EXTRACT_SUBVECTOR: { 1484 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1485 break; 1486 SDValue Src = Op.getOperand(0); 1487 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1488 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); 1489 if (Idx.uge(NumSrcElts - NumElts)) 1490 break; 1491 // Offset the demanded elts by the subvector index. 1492 uint64_t SubIdx = Idx.getZExtValue(); 1493 APInt SrcElts = DemandedElts.zext(NumSrcElts).shl(SubIdx); 1494 APInt SrcUndef, SrcZero; 1495 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1496 Depth + 1)) 1497 return true; 1498 KnownUndef = SrcUndef.extractBits(NumElts, SubIdx); 1499 KnownZero = SrcZero.extractBits(NumElts, SubIdx); 1500 break; 1501 } 1502 case ISD::INSERT_VECTOR_ELT: { 1503 SDValue Vec = Op.getOperand(0); 1504 SDValue Scl = Op.getOperand(1); 1505 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1506 1507 // For a legal, constant insertion index, if we don't need this insertion 1508 // then strip it, else remove it from the demanded elts. 1509 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1510 unsigned Idx = CIdx->getZExtValue(); 1511 if (!DemandedElts[Idx]) 1512 return TLO.CombineTo(Op, Vec); 1513 DemandedElts.clearBit(Idx); 1514 1515 if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, 1516 KnownZero, TLO, Depth + 1)) 1517 return true; 1518 1519 KnownUndef.clearBit(Idx); 1520 if (Scl.isUndef()) 1521 KnownUndef.setBit(Idx); 1522 1523 KnownZero.clearBit(Idx); 1524 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1525 KnownZero.setBit(Idx); 1526 break; 1527 } 1528 1529 APInt VecUndef, VecZero; 1530 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1531 Depth + 1)) 1532 return true; 1533 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1534 break; 1535 } 1536 case ISD::VSELECT: { 1537 APInt DemandedLHS(DemandedElts); 1538 APInt DemandedRHS(DemandedElts); 1539 1540 // TODO - add support for constant vselect masks. 1541 1542 // See if we can simplify either vselect operand. 1543 APInt UndefLHS, ZeroLHS; 1544 APInt UndefRHS, ZeroRHS; 1545 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1546 ZeroLHS, TLO, Depth + 1)) 1547 return true; 1548 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1549 ZeroRHS, TLO, Depth + 1)) 1550 return true; 1551 1552 KnownUndef = UndefLHS & UndefRHS; 1553 KnownZero = ZeroLHS & ZeroRHS; 1554 break; 1555 } 1556 case ISD::VECTOR_SHUFFLE: { 1557 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1558 1559 // Collect demanded elements from shuffle operands.. 1560 APInt DemandedLHS(NumElts, 0); 1561 APInt DemandedRHS(NumElts, 0); 1562 for (unsigned i = 0; i != NumElts; ++i) { 1563 int M = ShuffleMask[i]; 1564 if (M < 0 || !DemandedElts[i]) 1565 continue; 1566 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1567 if (M < (int)NumElts) 1568 DemandedLHS.setBit(M); 1569 else 1570 DemandedRHS.setBit(M - NumElts); 1571 } 1572 1573 // See if we can simplify either shuffle operand. 1574 APInt UndefLHS, ZeroLHS; 1575 APInt UndefRHS, ZeroRHS; 1576 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1577 ZeroLHS, TLO, Depth + 1)) 1578 return true; 1579 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1580 ZeroRHS, TLO, Depth + 1)) 1581 return true; 1582 1583 // Simplify mask using undef elements from LHS/RHS. 1584 bool Updated = false; 1585 bool IdentityLHS = true, IdentityRHS = true; 1586 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1587 for (unsigned i = 0; i != NumElts; ++i) { 1588 int &M = NewMask[i]; 1589 if (M < 0) 1590 continue; 1591 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1592 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1593 Updated = true; 1594 M = -1; 1595 } 1596 IdentityLHS &= (M < 0) || (M == (int)i); 1597 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1598 } 1599 1600 // Update legal shuffle masks based on demanded elements if it won't reduce 1601 // to Identity which can cause premature removal of the shuffle mask. 1602 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1603 isShuffleMaskLegal(NewMask, VT)) 1604 return TLO.CombineTo(Op, 1605 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1606 Op.getOperand(1), NewMask)); 1607 1608 // Propagate undef/zero elements from LHS/RHS. 1609 for (unsigned i = 0; i != NumElts; ++i) { 1610 int M = ShuffleMask[i]; 1611 if (M < 0) { 1612 KnownUndef.setBit(i); 1613 } else if (M < (int)NumElts) { 1614 if (UndefLHS[M]) 1615 KnownUndef.setBit(i); 1616 if (ZeroLHS[M]) 1617 KnownZero.setBit(i); 1618 } else { 1619 if (UndefRHS[M - NumElts]) 1620 KnownUndef.setBit(i); 1621 if (ZeroRHS[M - NumElts]) 1622 KnownZero.setBit(i); 1623 } 1624 } 1625 break; 1626 } 1627 case ISD::ADD: 1628 case ISD::SUB: { 1629 APInt SrcUndef, SrcZero; 1630 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1631 SrcZero, TLO, Depth + 1)) 1632 return true; 1633 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1634 KnownZero, TLO, Depth + 1)) 1635 return true; 1636 KnownZero &= SrcZero; 1637 KnownUndef &= SrcUndef; 1638 break; 1639 } 1640 case ISD::TRUNCATE: 1641 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1642 KnownZero, TLO, Depth + 1)) 1643 return true; 1644 break; 1645 default: { 1646 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1647 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1648 KnownZero, TLO, Depth)) 1649 return true; 1650 break; 1651 } 1652 } 1653 1654 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1655 return false; 1656 } 1657 1658 /// Determine which of the bits specified in Mask are known to be either zero or 1659 /// one and return them in the Known. 1660 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1661 KnownBits &Known, 1662 const APInt &DemandedElts, 1663 const SelectionDAG &DAG, 1664 unsigned Depth) const { 1665 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1666 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1667 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1668 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1669 "Should use MaskedValueIsZero if you don't know whether Op" 1670 " is a target node!"); 1671 Known.resetAll(); 1672 } 1673 1674 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1675 KnownBits &Known, 1676 const APInt &DemandedElts, 1677 const SelectionDAG &DAG, 1678 unsigned Depth) const { 1679 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1680 1681 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1682 // The low bits are known zero if the pointer is aligned. 1683 Known.Zero.setLowBits(Log2_32(Align)); 1684 } 1685 } 1686 1687 /// This method can be implemented by targets that want to expose additional 1688 /// information about sign bits to the DAG Combiner. 1689 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1690 const APInt &, 1691 const SelectionDAG &, 1692 unsigned Depth) const { 1693 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1694 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1695 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1696 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1697 "Should use ComputeNumSignBits if you don't know whether Op" 1698 " is a target node!"); 1699 return 1; 1700 } 1701 1702 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1703 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1704 TargetLoweringOpt &TLO, unsigned Depth) const { 1705 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1706 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1707 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1708 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1709 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1710 " is a target node!"); 1711 return false; 1712 } 1713 1714 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 1715 const SelectionDAG &DAG, 1716 bool SNaN, 1717 unsigned Depth) const { 1718 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1719 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1720 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1721 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1722 "Should use isKnownNeverNaN if you don't know whether Op" 1723 " is a target node!"); 1724 return false; 1725 } 1726 1727 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1728 // work with truncating build vectors and vectors with elements of less than 1729 // 8 bits. 1730 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1731 if (!N) 1732 return false; 1733 1734 APInt CVal; 1735 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1736 CVal = CN->getAPIntValue(); 1737 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1738 auto *CN = BV->getConstantSplatNode(); 1739 if (!CN) 1740 return false; 1741 1742 // If this is a truncating build vector, truncate the splat value. 1743 // Otherwise, we may fail to match the expected values below. 1744 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1745 CVal = CN->getAPIntValue(); 1746 if (BVEltWidth < CVal.getBitWidth()) 1747 CVal = CVal.trunc(BVEltWidth); 1748 } else { 1749 return false; 1750 } 1751 1752 switch (getBooleanContents(N->getValueType(0))) { 1753 case UndefinedBooleanContent: 1754 return CVal[0]; 1755 case ZeroOrOneBooleanContent: 1756 return CVal.isOneValue(); 1757 case ZeroOrNegativeOneBooleanContent: 1758 return CVal.isAllOnesValue(); 1759 } 1760 1761 llvm_unreachable("Invalid boolean contents"); 1762 } 1763 1764 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1765 if (!N) 1766 return false; 1767 1768 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1769 if (!CN) { 1770 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1771 if (!BV) 1772 return false; 1773 1774 // Only interested in constant splats, we don't care about undef 1775 // elements in identifying boolean constants and getConstantSplatNode 1776 // returns NULL if all ops are undef; 1777 CN = BV->getConstantSplatNode(); 1778 if (!CN) 1779 return false; 1780 } 1781 1782 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1783 return !CN->getAPIntValue()[0]; 1784 1785 return CN->isNullValue(); 1786 } 1787 1788 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1789 bool SExt) const { 1790 if (VT == MVT::i1) 1791 return N->isOne(); 1792 1793 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1794 switch (Cnt) { 1795 case TargetLowering::ZeroOrOneBooleanContent: 1796 // An extended value of 1 is always true, unless its original type is i1, 1797 // in which case it will be sign extended to -1. 1798 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1799 case TargetLowering::UndefinedBooleanContent: 1800 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1801 return N->isAllOnesValue() && SExt; 1802 } 1803 llvm_unreachable("Unexpected enumeration."); 1804 } 1805 1806 /// This helper function of SimplifySetCC tries to optimize the comparison when 1807 /// either operand of the SetCC node is a bitwise-and instruction. 1808 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1809 ISD::CondCode Cond, 1810 DAGCombinerInfo &DCI, 1811 const SDLoc &DL) const { 1812 // Match these patterns in any of their permutations: 1813 // (X & Y) == Y 1814 // (X & Y) != Y 1815 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1816 std::swap(N0, N1); 1817 1818 EVT OpVT = N0.getValueType(); 1819 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1820 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1821 return SDValue(); 1822 1823 SDValue X, Y; 1824 if (N0.getOperand(0) == N1) { 1825 X = N0.getOperand(1); 1826 Y = N0.getOperand(0); 1827 } else if (N0.getOperand(1) == N1) { 1828 X = N0.getOperand(0); 1829 Y = N0.getOperand(1); 1830 } else { 1831 return SDValue(); 1832 } 1833 1834 SelectionDAG &DAG = DCI.DAG; 1835 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1836 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1837 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1838 // Note that where Y is variable and is known to have at most one bit set 1839 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1840 // equivalent when Y == 0. 1841 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1842 if (DCI.isBeforeLegalizeOps() || 1843 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1844 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1845 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1846 // If the target supports an 'and-not' or 'and-complement' logic operation, 1847 // try to use that to make a comparison operation more efficient. 1848 // But don't do this transform if the mask is a single bit because there are 1849 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1850 // 'rlwinm' on PPC). 1851 1852 // Bail out if the compare operand that we want to turn into a zero is 1853 // already a zero (otherwise, infinite loop). 1854 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1855 if (YConst && YConst->isNullValue()) 1856 return SDValue(); 1857 1858 // Transform this into: ~X & Y == 0. 1859 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1860 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1861 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1862 } 1863 1864 return SDValue(); 1865 } 1866 1867 /// There are multiple IR patterns that could be checking whether certain 1868 /// truncation of a signed number would be lossy or not. The pattern which is 1869 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 1870 /// We are looking for the following pattern: (KeptBits is a constant) 1871 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 1872 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 1873 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 1874 /// We will unfold it into the natural trunc+sext pattern: 1875 /// ((%x << C) a>> C) dstcond %x 1876 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 1877 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 1878 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 1879 const SDLoc &DL) const { 1880 // We must be comparing with a constant. 1881 ConstantSDNode *C1; 1882 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 1883 return SDValue(); 1884 1885 // N0 should be: add %x, (1 << (KeptBits-1)) 1886 if (N0->getOpcode() != ISD::ADD) 1887 return SDValue(); 1888 1889 // And we must be 'add'ing a constant. 1890 ConstantSDNode *C01; 1891 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 1892 return SDValue(); 1893 1894 SDValue X = N0->getOperand(0); 1895 EVT XVT = X.getValueType(); 1896 1897 // Validate constants ... 1898 1899 APInt I1 = C1->getAPIntValue(); 1900 1901 ISD::CondCode NewCond; 1902 if (Cond == ISD::CondCode::SETULT) { 1903 NewCond = ISD::CondCode::SETEQ; 1904 } else if (Cond == ISD::CondCode::SETULE) { 1905 NewCond = ISD::CondCode::SETEQ; 1906 // But need to 'canonicalize' the constant. 1907 I1 += 1; 1908 } else if (Cond == ISD::CondCode::SETUGT) { 1909 NewCond = ISD::CondCode::SETNE; 1910 // But need to 'canonicalize' the constant. 1911 I1 += 1; 1912 } else if (Cond == ISD::CondCode::SETUGE) { 1913 NewCond = ISD::CondCode::SETNE; 1914 } else 1915 return SDValue(); 1916 1917 const APInt &I01 = C01->getAPIntValue(); 1918 // Both of them must be power-of-two, and the constant from setcc is bigger. 1919 if (!(I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2())) 1920 return SDValue(); 1921 1922 // They are power-of-two, so which bit is set? 1923 const unsigned KeptBits = I1.logBase2(); 1924 const unsigned KeptBitsMinusOne = I01.logBase2(); 1925 1926 // Magic! 1927 if (KeptBits != (KeptBitsMinusOne + 1)) 1928 return SDValue(); 1929 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 1930 1931 // We don't want to do this in every single case. 1932 SelectionDAG &DAG = DCI.DAG; 1933 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 1934 XVT, KeptBits)) 1935 return SDValue(); 1936 1937 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 1938 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 1939 1940 // Unfold into: ((%x << C) a>> C) cond %x 1941 // Where 'cond' will be either 'eq' or 'ne'. 1942 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 1943 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 1944 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 1945 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 1946 1947 return T2; 1948 } 1949 1950 /// Try to simplify a setcc built with the specified operands and cc. If it is 1951 /// unable to simplify it, return a null SDValue. 1952 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1953 ISD::CondCode Cond, bool foldBooleans, 1954 DAGCombinerInfo &DCI, 1955 const SDLoc &dl) const { 1956 SelectionDAG &DAG = DCI.DAG; 1957 EVT OpVT = N0.getValueType(); 1958 1959 // These setcc operations always fold. 1960 switch (Cond) { 1961 default: break; 1962 case ISD::SETFALSE: 1963 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 1964 case ISD::SETTRUE: 1965 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 1966 } 1967 1968 // Ensure that the constant occurs on the RHS and fold constant comparisons. 1969 // TODO: Handle non-splat vector constants. All undef causes trouble. 1970 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1971 if (isConstOrConstSplat(N0) && 1972 (DCI.isBeforeLegalizeOps() || 1973 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1974 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1975 1976 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1977 const APInt &C1 = N1C->getAPIntValue(); 1978 1979 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1980 // equality comparison, then we're just comparing whether X itself is 1981 // zero. 1982 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 1983 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1984 N0.getOperand(1).getOpcode() == ISD::Constant) { 1985 const APInt &ShAmt 1986 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1987 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1988 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1989 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1990 // (srl (ctlz x), 5) == 0 -> X != 0 1991 // (srl (ctlz x), 5) != 1 -> X != 0 1992 Cond = ISD::SETNE; 1993 } else { 1994 // (srl (ctlz x), 5) != 0 -> X == 0 1995 // (srl (ctlz x), 5) == 1 -> X == 0 1996 Cond = ISD::SETEQ; 1997 } 1998 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1999 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2000 Zero, Cond); 2001 } 2002 } 2003 2004 SDValue CTPOP = N0; 2005 // Look through truncs that don't change the value of a ctpop. 2006 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2007 CTPOP = N0.getOperand(0); 2008 2009 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2010 (N0 == CTPOP || 2011 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2012 EVT CTVT = CTPOP.getValueType(); 2013 SDValue CTOp = CTPOP.getOperand(0); 2014 2015 // (ctpop x) u< 2 -> (x & x-1) == 0 2016 // (ctpop x) u> 1 -> (x & x-1) != 0 2017 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2018 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2019 DAG.getConstant(1, dl, CTVT)); 2020 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2021 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2022 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2023 } 2024 2025 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2026 } 2027 2028 // (zext x) == C --> x == (trunc C) 2029 // (sext x) == C --> x == (trunc C) 2030 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2031 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2032 unsigned MinBits = N0.getValueSizeInBits(); 2033 SDValue PreExt; 2034 bool Signed = false; 2035 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2036 // ZExt 2037 MinBits = N0->getOperand(0).getValueSizeInBits(); 2038 PreExt = N0->getOperand(0); 2039 } else if (N0->getOpcode() == ISD::AND) { 2040 // DAGCombine turns costly ZExts into ANDs 2041 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2042 if ((C->getAPIntValue()+1).isPowerOf2()) { 2043 MinBits = C->getAPIntValue().countTrailingOnes(); 2044 PreExt = N0->getOperand(0); 2045 } 2046 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2047 // SExt 2048 MinBits = N0->getOperand(0).getValueSizeInBits(); 2049 PreExt = N0->getOperand(0); 2050 Signed = true; 2051 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2052 // ZEXTLOAD / SEXTLOAD 2053 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2054 MinBits = LN0->getMemoryVT().getSizeInBits(); 2055 PreExt = N0; 2056 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2057 Signed = true; 2058 MinBits = LN0->getMemoryVT().getSizeInBits(); 2059 PreExt = N0; 2060 } 2061 } 2062 2063 // Figure out how many bits we need to preserve this constant. 2064 unsigned ReqdBits = Signed ? 2065 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2066 C1.getActiveBits(); 2067 2068 // Make sure we're not losing bits from the constant. 2069 if (MinBits > 0 && 2070 MinBits < C1.getBitWidth() && 2071 MinBits >= ReqdBits) { 2072 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2073 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2074 // Will get folded away. 2075 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2076 if (MinBits == 1 && C1 == 1) 2077 // Invert the condition. 2078 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2079 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2080 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2081 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2082 } 2083 2084 // If truncating the setcc operands is not desirable, we can still 2085 // simplify the expression in some cases: 2086 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2087 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2088 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2089 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2090 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2091 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2092 SDValue TopSetCC = N0->getOperand(0); 2093 unsigned N0Opc = N0->getOpcode(); 2094 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2095 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2096 TopSetCC.getOpcode() == ISD::SETCC && 2097 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2098 (isConstFalseVal(N1C) || 2099 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2100 2101 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2102 (!N1C->isNullValue() && Cond == ISD::SETNE); 2103 2104 if (!Inverse) 2105 return TopSetCC; 2106 2107 ISD::CondCode InvCond = ISD::getSetCCInverse( 2108 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2109 TopSetCC.getOperand(0).getValueType().isInteger()); 2110 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2111 TopSetCC.getOperand(1), 2112 InvCond); 2113 } 2114 } 2115 } 2116 2117 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2118 // equality or unsigned, and all 1 bits of the const are in the same 2119 // partial word, see if we can shorten the load. 2120 if (DCI.isBeforeLegalize() && 2121 !ISD::isSignedIntSetCC(Cond) && 2122 N0.getOpcode() == ISD::AND && C1 == 0 && 2123 N0.getNode()->hasOneUse() && 2124 isa<LoadSDNode>(N0.getOperand(0)) && 2125 N0.getOperand(0).getNode()->hasOneUse() && 2126 isa<ConstantSDNode>(N0.getOperand(1))) { 2127 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2128 APInt bestMask; 2129 unsigned bestWidth = 0, bestOffset = 0; 2130 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2131 unsigned origWidth = N0.getValueSizeInBits(); 2132 unsigned maskWidth = origWidth; 2133 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2134 // 8 bits, but have to be careful... 2135 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2136 origWidth = Lod->getMemoryVT().getSizeInBits(); 2137 const APInt &Mask = 2138 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2139 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2140 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2141 for (unsigned offset=0; offset<origWidth/width; offset++) { 2142 if (Mask.isSubsetOf(newMask)) { 2143 if (DAG.getDataLayout().isLittleEndian()) 2144 bestOffset = (uint64_t)offset * (width/8); 2145 else 2146 bestOffset = (origWidth/width - offset - 1) * (width/8); 2147 bestMask = Mask.lshr(offset * (width/8) * 8); 2148 bestWidth = width; 2149 break; 2150 } 2151 newMask <<= width; 2152 } 2153 } 2154 } 2155 if (bestWidth) { 2156 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2157 if (newVT.isRound()) { 2158 EVT PtrType = Lod->getOperand(1).getValueType(); 2159 SDValue Ptr = Lod->getBasePtr(); 2160 if (bestOffset != 0) 2161 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2162 DAG.getConstant(bestOffset, dl, PtrType)); 2163 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2164 SDValue NewLoad = DAG.getLoad( 2165 newVT, dl, Lod->getChain(), Ptr, 2166 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2167 return DAG.getSetCC(dl, VT, 2168 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2169 DAG.getConstant(bestMask.trunc(bestWidth), 2170 dl, newVT)), 2171 DAG.getConstant(0LL, dl, newVT), Cond); 2172 } 2173 } 2174 } 2175 2176 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2177 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2178 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2179 2180 // If the comparison constant has bits in the upper part, the 2181 // zero-extended value could never match. 2182 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2183 C1.getBitWidth() - InSize))) { 2184 switch (Cond) { 2185 case ISD::SETUGT: 2186 case ISD::SETUGE: 2187 case ISD::SETEQ: 2188 return DAG.getConstant(0, dl, VT); 2189 case ISD::SETULT: 2190 case ISD::SETULE: 2191 case ISD::SETNE: 2192 return DAG.getConstant(1, dl, VT); 2193 case ISD::SETGT: 2194 case ISD::SETGE: 2195 // True if the sign bit of C1 is set. 2196 return DAG.getConstant(C1.isNegative(), dl, VT); 2197 case ISD::SETLT: 2198 case ISD::SETLE: 2199 // True if the sign bit of C1 isn't set. 2200 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2201 default: 2202 break; 2203 } 2204 } 2205 2206 // Otherwise, we can perform the comparison with the low bits. 2207 switch (Cond) { 2208 case ISD::SETEQ: 2209 case ISD::SETNE: 2210 case ISD::SETUGT: 2211 case ISD::SETUGE: 2212 case ISD::SETULT: 2213 case ISD::SETULE: { 2214 EVT newVT = N0.getOperand(0).getValueType(); 2215 if (DCI.isBeforeLegalizeOps() || 2216 (isOperationLegal(ISD::SETCC, newVT) && 2217 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2218 EVT NewSetCCVT = 2219 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2220 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2221 2222 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2223 NewConst, Cond); 2224 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2225 } 2226 break; 2227 } 2228 default: 2229 break; // todo, be more careful with signed comparisons 2230 } 2231 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2232 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2233 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2234 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2235 EVT ExtDstTy = N0.getValueType(); 2236 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2237 2238 // If the constant doesn't fit into the number of bits for the source of 2239 // the sign extension, it is impossible for both sides to be equal. 2240 if (C1.getMinSignedBits() > ExtSrcTyBits) 2241 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2242 2243 SDValue ZextOp; 2244 EVT Op0Ty = N0.getOperand(0).getValueType(); 2245 if (Op0Ty == ExtSrcTy) { 2246 ZextOp = N0.getOperand(0); 2247 } else { 2248 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2249 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2250 DAG.getConstant(Imm, dl, Op0Ty)); 2251 } 2252 if (!DCI.isCalledByLegalizer()) 2253 DCI.AddToWorklist(ZextOp.getNode()); 2254 // Otherwise, make this a use of a zext. 2255 return DAG.getSetCC(dl, VT, ZextOp, 2256 DAG.getConstant(C1 & APInt::getLowBitsSet( 2257 ExtDstTyBits, 2258 ExtSrcTyBits), 2259 dl, ExtDstTy), 2260 Cond); 2261 } else if ((N1C->isNullValue() || N1C->isOne()) && 2262 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2263 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2264 if (N0.getOpcode() == ISD::SETCC && 2265 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2266 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2267 if (TrueWhenTrue) 2268 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2269 // Invert the condition. 2270 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2271 CC = ISD::getSetCCInverse(CC, 2272 N0.getOperand(0).getValueType().isInteger()); 2273 if (DCI.isBeforeLegalizeOps() || 2274 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2275 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2276 } 2277 2278 if ((N0.getOpcode() == ISD::XOR || 2279 (N0.getOpcode() == ISD::AND && 2280 N0.getOperand(0).getOpcode() == ISD::XOR && 2281 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2282 isa<ConstantSDNode>(N0.getOperand(1)) && 2283 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2284 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2285 // can only do this if the top bits are known zero. 2286 unsigned BitWidth = N0.getValueSizeInBits(); 2287 if (DAG.MaskedValueIsZero(N0, 2288 APInt::getHighBitsSet(BitWidth, 2289 BitWidth-1))) { 2290 // Okay, get the un-inverted input value. 2291 SDValue Val; 2292 if (N0.getOpcode() == ISD::XOR) { 2293 Val = N0.getOperand(0); 2294 } else { 2295 assert(N0.getOpcode() == ISD::AND && 2296 N0.getOperand(0).getOpcode() == ISD::XOR); 2297 // ((X^1)&1)^1 -> X & 1 2298 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2299 N0.getOperand(0).getOperand(0), 2300 N0.getOperand(1)); 2301 } 2302 2303 return DAG.getSetCC(dl, VT, Val, N1, 2304 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2305 } 2306 } else if (N1C->isOne() && 2307 (VT == MVT::i1 || 2308 getBooleanContents(N0->getValueType(0)) == 2309 ZeroOrOneBooleanContent)) { 2310 SDValue Op0 = N0; 2311 if (Op0.getOpcode() == ISD::TRUNCATE) 2312 Op0 = Op0.getOperand(0); 2313 2314 if ((Op0.getOpcode() == ISD::XOR) && 2315 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2316 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2317 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2318 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2319 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2320 Cond); 2321 } 2322 if (Op0.getOpcode() == ISD::AND && 2323 isa<ConstantSDNode>(Op0.getOperand(1)) && 2324 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2325 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2326 if (Op0.getValueType().bitsGT(VT)) 2327 Op0 = DAG.getNode(ISD::AND, dl, VT, 2328 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2329 DAG.getConstant(1, dl, VT)); 2330 else if (Op0.getValueType().bitsLT(VT)) 2331 Op0 = DAG.getNode(ISD::AND, dl, VT, 2332 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2333 DAG.getConstant(1, dl, VT)); 2334 2335 return DAG.getSetCC(dl, VT, Op0, 2336 DAG.getConstant(0, dl, Op0.getValueType()), 2337 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2338 } 2339 if (Op0.getOpcode() == ISD::AssertZext && 2340 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2341 return DAG.getSetCC(dl, VT, Op0, 2342 DAG.getConstant(0, dl, Op0.getValueType()), 2343 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2344 } 2345 } 2346 2347 if (SDValue V = 2348 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2349 return V; 2350 } 2351 2352 // These simplifications apply to splat vectors as well. 2353 // TODO: Handle more splat vector cases. 2354 if (auto *N1C = isConstOrConstSplat(N1)) { 2355 const APInt &C1 = N1C->getAPIntValue(); 2356 2357 APInt MinVal, MaxVal; 2358 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2359 if (ISD::isSignedIntSetCC(Cond)) { 2360 MinVal = APInt::getSignedMinValue(OperandBitSize); 2361 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2362 } else { 2363 MinVal = APInt::getMinValue(OperandBitSize); 2364 MaxVal = APInt::getMaxValue(OperandBitSize); 2365 } 2366 2367 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2368 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2369 // X >= MIN --> true 2370 if (C1 == MinVal) 2371 return DAG.getBoolConstant(true, dl, VT, OpVT); 2372 2373 if (!VT.isVector()) { // TODO: Support this for vectors. 2374 // X >= C0 --> X > (C0 - 1) 2375 APInt C = C1 - 1; 2376 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2377 if ((DCI.isBeforeLegalizeOps() || 2378 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2379 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2380 isLegalICmpImmediate(C.getSExtValue())))) { 2381 return DAG.getSetCC(dl, VT, N0, 2382 DAG.getConstant(C, dl, N1.getValueType()), 2383 NewCC); 2384 } 2385 } 2386 } 2387 2388 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2389 // X <= MAX --> true 2390 if (C1 == MaxVal) 2391 return DAG.getBoolConstant(true, dl, VT, OpVT); 2392 2393 // X <= C0 --> X < (C0 + 1) 2394 if (!VT.isVector()) { // TODO: Support this for vectors. 2395 APInt C = C1 + 1; 2396 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2397 if ((DCI.isBeforeLegalizeOps() || 2398 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2399 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2400 isLegalICmpImmediate(C.getSExtValue())))) { 2401 return DAG.getSetCC(dl, VT, N0, 2402 DAG.getConstant(C, dl, N1.getValueType()), 2403 NewCC); 2404 } 2405 } 2406 } 2407 2408 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2409 if (C1 == MinVal) 2410 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2411 2412 // TODO: Support this for vectors after legalize ops. 2413 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2414 // Canonicalize setlt X, Max --> setne X, Max 2415 if (C1 == MaxVal) 2416 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2417 2418 // If we have setult X, 1, turn it into seteq X, 0 2419 if (C1 == MinVal+1) 2420 return DAG.getSetCC(dl, VT, N0, 2421 DAG.getConstant(MinVal, dl, N0.getValueType()), 2422 ISD::SETEQ); 2423 } 2424 } 2425 2426 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2427 if (C1 == MaxVal) 2428 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2429 2430 // TODO: Support this for vectors after legalize ops. 2431 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2432 // Canonicalize setgt X, Min --> setne X, Min 2433 if (C1 == MinVal) 2434 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2435 2436 // If we have setugt X, Max-1, turn it into seteq X, Max 2437 if (C1 == MaxVal-1) 2438 return DAG.getSetCC(dl, VT, N0, 2439 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2440 ISD::SETEQ); 2441 } 2442 } 2443 2444 // If we have "setcc X, C0", check to see if we can shrink the immediate 2445 // by changing cc. 2446 // TODO: Support this for vectors after legalize ops. 2447 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2448 // SETUGT X, SINTMAX -> SETLT X, 0 2449 if (Cond == ISD::SETUGT && 2450 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2451 return DAG.getSetCC(dl, VT, N0, 2452 DAG.getConstant(0, dl, N1.getValueType()), 2453 ISD::SETLT); 2454 2455 // SETULT X, SINTMIN -> SETGT X, -1 2456 if (Cond == ISD::SETULT && 2457 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2458 SDValue ConstMinusOne = 2459 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2460 N1.getValueType()); 2461 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2462 } 2463 } 2464 } 2465 2466 // Back to non-vector simplifications. 2467 // TODO: Can we do these for vector splats? 2468 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2469 const APInt &C1 = N1C->getAPIntValue(); 2470 2471 // Fold bit comparisons when we can. 2472 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2473 (VT == N0.getValueType() || 2474 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2475 N0.getOpcode() == ISD::AND) { 2476 auto &DL = DAG.getDataLayout(); 2477 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2478 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2479 !DCI.isBeforeLegalize()); 2480 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2481 // Perform the xform if the AND RHS is a single bit. 2482 if (AndRHS->getAPIntValue().isPowerOf2()) { 2483 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2484 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2485 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2486 ShiftTy))); 2487 } 2488 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2489 // (X & 8) == 8 --> (X & 8) >> 3 2490 // Perform the xform if C1 is a single bit. 2491 if (C1.isPowerOf2()) { 2492 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2493 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2494 DAG.getConstant(C1.logBase2(), dl, 2495 ShiftTy))); 2496 } 2497 } 2498 } 2499 } 2500 2501 if (C1.getMinSignedBits() <= 64 && 2502 !isLegalICmpImmediate(C1.getSExtValue())) { 2503 // (X & -256) == 256 -> (X >> 8) == 1 2504 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2505 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2506 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2507 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2508 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2509 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2510 auto &DL = DAG.getDataLayout(); 2511 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2512 !DCI.isBeforeLegalize()); 2513 EVT CmpTy = N0.getValueType(); 2514 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2515 DAG.getConstant(ShiftBits, dl, 2516 ShiftTy)); 2517 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2518 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2519 } 2520 } 2521 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2522 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2523 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2524 // X < 0x100000000 -> (X >> 32) < 1 2525 // X >= 0x100000000 -> (X >> 32) >= 1 2526 // X <= 0x0ffffffff -> (X >> 32) < 1 2527 // X > 0x0ffffffff -> (X >> 32) >= 1 2528 unsigned ShiftBits; 2529 APInt NewC = C1; 2530 ISD::CondCode NewCond = Cond; 2531 if (AdjOne) { 2532 ShiftBits = C1.countTrailingOnes(); 2533 NewC = NewC + 1; 2534 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2535 } else { 2536 ShiftBits = C1.countTrailingZeros(); 2537 } 2538 NewC.lshrInPlace(ShiftBits); 2539 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2540 isLegalICmpImmediate(NewC.getSExtValue())) { 2541 auto &DL = DAG.getDataLayout(); 2542 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2543 !DCI.isBeforeLegalize()); 2544 EVT CmpTy = N0.getValueType(); 2545 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2546 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2547 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2548 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2549 } 2550 } 2551 } 2552 } 2553 2554 if (isa<ConstantFPSDNode>(N0.getNode())) { 2555 // Constant fold or commute setcc. 2556 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2557 if (O.getNode()) return O; 2558 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2559 // If the RHS of an FP comparison is a constant, simplify it away in 2560 // some cases. 2561 if (CFP->getValueAPF().isNaN()) { 2562 // If an operand is known to be a nan, we can fold it. 2563 switch (ISD::getUnorderedFlavor(Cond)) { 2564 default: llvm_unreachable("Unknown flavor!"); 2565 case 0: // Known false. 2566 return DAG.getBoolConstant(false, dl, VT, OpVT); 2567 case 1: // Known true. 2568 return DAG.getBoolConstant(true, dl, VT, OpVT); 2569 case 2: // Undefined. 2570 return DAG.getUNDEF(VT); 2571 } 2572 } 2573 2574 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2575 // constant if knowing that the operand is non-nan is enough. We prefer to 2576 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2577 // materialize 0.0. 2578 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2579 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2580 2581 // setcc (fneg x), C -> setcc swap(pred) x, -C 2582 if (N0.getOpcode() == ISD::FNEG) { 2583 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2584 if (DCI.isBeforeLegalizeOps() || 2585 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2586 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2587 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2588 } 2589 } 2590 2591 // If the condition is not legal, see if we can find an equivalent one 2592 // which is legal. 2593 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2594 // If the comparison was an awkward floating-point == or != and one of 2595 // the comparison operands is infinity or negative infinity, convert the 2596 // condition to a less-awkward <= or >=. 2597 if (CFP->getValueAPF().isInfinity()) { 2598 if (CFP->getValueAPF().isNegative()) { 2599 if (Cond == ISD::SETOEQ && 2600 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2601 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2602 if (Cond == ISD::SETUEQ && 2603 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2604 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2605 if (Cond == ISD::SETUNE && 2606 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2607 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2608 if (Cond == ISD::SETONE && 2609 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2610 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2611 } else { 2612 if (Cond == ISD::SETOEQ && 2613 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2614 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2615 if (Cond == ISD::SETUEQ && 2616 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2617 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2618 if (Cond == ISD::SETUNE && 2619 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2620 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2621 if (Cond == ISD::SETONE && 2622 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2623 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2624 } 2625 } 2626 } 2627 } 2628 2629 if (N0 == N1) { 2630 // The sext(setcc()) => setcc() optimization relies on the appropriate 2631 // constant being emitted. 2632 2633 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2634 2635 // We can always fold X == X for integer setcc's. 2636 if (N0.getValueType().isInteger()) 2637 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2638 2639 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2640 if (UOF == 2) // FP operators that are undefined on NaNs. 2641 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2642 if (UOF == unsigned(EqTrue)) 2643 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2644 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2645 // if it is not already. 2646 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2647 if (NewCond != Cond && 2648 (DCI.isBeforeLegalizeOps() || 2649 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2650 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2651 } 2652 2653 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2654 N0.getValueType().isInteger()) { 2655 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2656 N0.getOpcode() == ISD::XOR) { 2657 // Simplify (X+Y) == (X+Z) --> Y == Z 2658 if (N0.getOpcode() == N1.getOpcode()) { 2659 if (N0.getOperand(0) == N1.getOperand(0)) 2660 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2661 if (N0.getOperand(1) == N1.getOperand(1)) 2662 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2663 if (isCommutativeBinOp(N0.getOpcode())) { 2664 // If X op Y == Y op X, try other combinations. 2665 if (N0.getOperand(0) == N1.getOperand(1)) 2666 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2667 Cond); 2668 if (N0.getOperand(1) == N1.getOperand(0)) 2669 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2670 Cond); 2671 } 2672 } 2673 2674 // If RHS is a legal immediate value for a compare instruction, we need 2675 // to be careful about increasing register pressure needlessly. 2676 bool LegalRHSImm = false; 2677 2678 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2679 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2680 // Turn (X+C1) == C2 --> X == C2-C1 2681 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2682 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2683 DAG.getConstant(RHSC->getAPIntValue()- 2684 LHSR->getAPIntValue(), 2685 dl, N0.getValueType()), Cond); 2686 } 2687 2688 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2689 if (N0.getOpcode() == ISD::XOR) 2690 // If we know that all of the inverted bits are zero, don't bother 2691 // performing the inversion. 2692 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2693 return 2694 DAG.getSetCC(dl, VT, N0.getOperand(0), 2695 DAG.getConstant(LHSR->getAPIntValue() ^ 2696 RHSC->getAPIntValue(), 2697 dl, N0.getValueType()), 2698 Cond); 2699 } 2700 2701 // Turn (C1-X) == C2 --> X == C1-C2 2702 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2703 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2704 return 2705 DAG.getSetCC(dl, VT, N0.getOperand(1), 2706 DAG.getConstant(SUBC->getAPIntValue() - 2707 RHSC->getAPIntValue(), 2708 dl, N0.getValueType()), 2709 Cond); 2710 } 2711 } 2712 2713 // Could RHSC fold directly into a compare? 2714 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2715 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2716 } 2717 2718 // Simplify (X+Z) == X --> Z == 0 2719 // Don't do this if X is an immediate that can fold into a cmp 2720 // instruction and X+Z has other uses. It could be an induction variable 2721 // chain, and the transform would increase register pressure. 2722 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2723 if (N0.getOperand(0) == N1) 2724 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2725 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2726 if (N0.getOperand(1) == N1) { 2727 if (isCommutativeBinOp(N0.getOpcode())) 2728 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2729 DAG.getConstant(0, dl, N0.getValueType()), 2730 Cond); 2731 if (N0.getNode()->hasOneUse()) { 2732 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2733 auto &DL = DAG.getDataLayout(); 2734 // (Z-X) == X --> Z == X<<1 2735 SDValue SH = DAG.getNode( 2736 ISD::SHL, dl, N1.getValueType(), N1, 2737 DAG.getConstant(1, dl, 2738 getShiftAmountTy(N1.getValueType(), DL, 2739 !DCI.isBeforeLegalize()))); 2740 if (!DCI.isCalledByLegalizer()) 2741 DCI.AddToWorklist(SH.getNode()); 2742 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2743 } 2744 } 2745 } 2746 } 2747 2748 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2749 N1.getOpcode() == ISD::XOR) { 2750 // Simplify X == (X+Z) --> Z == 0 2751 if (N1.getOperand(0) == N0) 2752 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2753 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2754 if (N1.getOperand(1) == N0) { 2755 if (isCommutativeBinOp(N1.getOpcode())) 2756 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2757 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2758 if (N1.getNode()->hasOneUse()) { 2759 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2760 auto &DL = DAG.getDataLayout(); 2761 // X == (Z-X) --> X<<1 == Z 2762 SDValue SH = DAG.getNode( 2763 ISD::SHL, dl, N1.getValueType(), N0, 2764 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2765 !DCI.isBeforeLegalize()))); 2766 if (!DCI.isCalledByLegalizer()) 2767 DCI.AddToWorklist(SH.getNode()); 2768 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2769 } 2770 } 2771 } 2772 2773 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2774 return V; 2775 } 2776 2777 // Fold away ALL boolean setcc's. 2778 SDValue Temp; 2779 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2780 EVT OpVT = N0.getValueType(); 2781 switch (Cond) { 2782 default: llvm_unreachable("Unknown integer setcc!"); 2783 case ISD::SETEQ: // X == Y -> ~(X^Y) 2784 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2785 N0 = DAG.getNOT(dl, Temp, OpVT); 2786 if (!DCI.isCalledByLegalizer()) 2787 DCI.AddToWorklist(Temp.getNode()); 2788 break; 2789 case ISD::SETNE: // X != Y --> (X^Y) 2790 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2791 break; 2792 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2793 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2794 Temp = DAG.getNOT(dl, N0, OpVT); 2795 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2796 if (!DCI.isCalledByLegalizer()) 2797 DCI.AddToWorklist(Temp.getNode()); 2798 break; 2799 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2800 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2801 Temp = DAG.getNOT(dl, N1, OpVT); 2802 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2803 if (!DCI.isCalledByLegalizer()) 2804 DCI.AddToWorklist(Temp.getNode()); 2805 break; 2806 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2807 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2808 Temp = DAG.getNOT(dl, N0, OpVT); 2809 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2810 if (!DCI.isCalledByLegalizer()) 2811 DCI.AddToWorklist(Temp.getNode()); 2812 break; 2813 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2814 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2815 Temp = DAG.getNOT(dl, N1, OpVT); 2816 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2817 break; 2818 } 2819 if (VT.getScalarType() != MVT::i1) { 2820 if (!DCI.isCalledByLegalizer()) 2821 DCI.AddToWorklist(N0.getNode()); 2822 // FIXME: If running after legalize, we probably can't do this. 2823 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2824 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2825 } 2826 return N0; 2827 } 2828 2829 // Could not fold it. 2830 return SDValue(); 2831 } 2832 2833 /// Returns true (and the GlobalValue and the offset) if the node is a 2834 /// GlobalAddress + offset. 2835 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2836 int64_t &Offset) const { 2837 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2838 GA = GASD->getGlobal(); 2839 Offset += GASD->getOffset(); 2840 return true; 2841 } 2842 2843 if (N->getOpcode() == ISD::ADD) { 2844 SDValue N1 = N->getOperand(0); 2845 SDValue N2 = N->getOperand(1); 2846 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2847 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2848 Offset += V->getSExtValue(); 2849 return true; 2850 } 2851 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2852 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2853 Offset += V->getSExtValue(); 2854 return true; 2855 } 2856 } 2857 } 2858 2859 return false; 2860 } 2861 2862 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2863 DAGCombinerInfo &DCI) const { 2864 // Default implementation: no optimization. 2865 return SDValue(); 2866 } 2867 2868 //===----------------------------------------------------------------------===// 2869 // Inline Assembler Implementation Methods 2870 //===----------------------------------------------------------------------===// 2871 2872 TargetLowering::ConstraintType 2873 TargetLowering::getConstraintType(StringRef Constraint) const { 2874 unsigned S = Constraint.size(); 2875 2876 if (S == 1) { 2877 switch (Constraint[0]) { 2878 default: break; 2879 case 'r': return C_RegisterClass; 2880 case 'm': // memory 2881 case 'o': // offsetable 2882 case 'V': // not offsetable 2883 return C_Memory; 2884 case 'i': // Simple Integer or Relocatable Constant 2885 case 'n': // Simple Integer 2886 case 'E': // Floating Point Constant 2887 case 'F': // Floating Point Constant 2888 case 's': // Relocatable Constant 2889 case 'p': // Address. 2890 case 'X': // Allow ANY value. 2891 case 'I': // Target registers. 2892 case 'J': 2893 case 'K': 2894 case 'L': 2895 case 'M': 2896 case 'N': 2897 case 'O': 2898 case 'P': 2899 case '<': 2900 case '>': 2901 return C_Other; 2902 } 2903 } 2904 2905 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2906 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2907 return C_Memory; 2908 return C_Register; 2909 } 2910 return C_Unknown; 2911 } 2912 2913 /// Try to replace an X constraint, which matches anything, with another that 2914 /// has more specific requirements based on the type of the corresponding 2915 /// operand. 2916 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2917 if (ConstraintVT.isInteger()) 2918 return "r"; 2919 if (ConstraintVT.isFloatingPoint()) 2920 return "f"; // works for many targets 2921 return nullptr; 2922 } 2923 2924 /// Lower the specified operand into the Ops vector. 2925 /// If it is invalid, don't add anything to Ops. 2926 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2927 std::string &Constraint, 2928 std::vector<SDValue> &Ops, 2929 SelectionDAG &DAG) const { 2930 2931 if (Constraint.length() > 1) return; 2932 2933 char ConstraintLetter = Constraint[0]; 2934 switch (ConstraintLetter) { 2935 default: break; 2936 case 'X': // Allows any operand; labels (basic block) use this. 2937 if (Op.getOpcode() == ISD::BasicBlock) { 2938 Ops.push_back(Op); 2939 return; 2940 } 2941 LLVM_FALLTHROUGH; 2942 case 'i': // Simple Integer or Relocatable Constant 2943 case 'n': // Simple Integer 2944 case 's': { // Relocatable Constant 2945 // These operands are interested in values of the form (GV+C), where C may 2946 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2947 // is possible and fine if either GV or C are missing. 2948 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2949 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2950 2951 // If we have "(add GV, C)", pull out GV/C 2952 if (Op.getOpcode() == ISD::ADD) { 2953 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2954 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2955 if (!C || !GA) { 2956 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2957 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2958 } 2959 if (!C || !GA) { 2960 C = nullptr; 2961 GA = nullptr; 2962 } 2963 } 2964 2965 // If we find a valid operand, map to the TargetXXX version so that the 2966 // value itself doesn't get selected. 2967 if (GA) { // Either &GV or &GV+C 2968 if (ConstraintLetter != 'n') { 2969 int64_t Offs = GA->getOffset(); 2970 if (C) Offs += C->getZExtValue(); 2971 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2972 C ? SDLoc(C) : SDLoc(), 2973 Op.getValueType(), Offs)); 2974 } 2975 return; 2976 } 2977 if (C) { // just C, no GV. 2978 // Simple constants are not allowed for 's'. 2979 if (ConstraintLetter != 's') { 2980 // gcc prints these as sign extended. Sign extend value to 64 bits 2981 // now; without this it would get ZExt'd later in 2982 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2983 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 2984 SDLoc(C), MVT::i64)); 2985 } 2986 return; 2987 } 2988 break; 2989 } 2990 } 2991 } 2992 2993 std::pair<unsigned, const TargetRegisterClass *> 2994 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2995 StringRef Constraint, 2996 MVT VT) const { 2997 if (Constraint.empty() || Constraint[0] != '{') 2998 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2999 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 3000 3001 // Remove the braces from around the name. 3002 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 3003 3004 std::pair<unsigned, const TargetRegisterClass*> R = 3005 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 3006 3007 // Figure out which register class contains this reg. 3008 for (const TargetRegisterClass *RC : RI->regclasses()) { 3009 // If none of the value types for this register class are valid, we 3010 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3011 if (!isLegalRC(*RI, *RC)) 3012 continue; 3013 3014 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3015 I != E; ++I) { 3016 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3017 std::pair<unsigned, const TargetRegisterClass*> S = 3018 std::make_pair(*I, RC); 3019 3020 // If this register class has the requested value type, return it, 3021 // otherwise keep searching and return the first class found 3022 // if no other is found which explicitly has the requested type. 3023 if (RI->isTypeLegalForClass(*RC, VT)) 3024 return S; 3025 if (!R.second) 3026 R = S; 3027 } 3028 } 3029 } 3030 3031 return R; 3032 } 3033 3034 //===----------------------------------------------------------------------===// 3035 // Constraint Selection. 3036 3037 /// Return true of this is an input operand that is a matching constraint like 3038 /// "4". 3039 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3040 assert(!ConstraintCode.empty() && "No known constraint!"); 3041 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3042 } 3043 3044 /// If this is an input matching constraint, this method returns the output 3045 /// operand it matches. 3046 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3047 assert(!ConstraintCode.empty() && "No known constraint!"); 3048 return atoi(ConstraintCode.c_str()); 3049 } 3050 3051 /// Split up the constraint string from the inline assembly value into the 3052 /// specific constraints and their prefixes, and also tie in the associated 3053 /// operand values. 3054 /// If this returns an empty vector, and if the constraint string itself 3055 /// isn't empty, there was an error parsing. 3056 TargetLowering::AsmOperandInfoVector 3057 TargetLowering::ParseConstraints(const DataLayout &DL, 3058 const TargetRegisterInfo *TRI, 3059 ImmutableCallSite CS) const { 3060 /// Information about all of the constraints. 3061 AsmOperandInfoVector ConstraintOperands; 3062 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3063 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3064 3065 // Do a prepass over the constraints, canonicalizing them, and building up the 3066 // ConstraintOperands list. 3067 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3068 unsigned ResNo = 0; // ResNo - The result number of the next output. 3069 3070 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3071 ConstraintOperands.emplace_back(std::move(CI)); 3072 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3073 3074 // Update multiple alternative constraint count. 3075 if (OpInfo.multipleAlternatives.size() > maCount) 3076 maCount = OpInfo.multipleAlternatives.size(); 3077 3078 OpInfo.ConstraintVT = MVT::Other; 3079 3080 // Compute the value type for each operand. 3081 switch (OpInfo.Type) { 3082 case InlineAsm::isOutput: 3083 // Indirect outputs just consume an argument. 3084 if (OpInfo.isIndirect) { 3085 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3086 break; 3087 } 3088 3089 // The return value of the call is this value. As such, there is no 3090 // corresponding argument. 3091 assert(!CS.getType()->isVoidTy() && 3092 "Bad inline asm!"); 3093 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3094 OpInfo.ConstraintVT = 3095 getSimpleValueType(DL, STy->getElementType(ResNo)); 3096 } else { 3097 assert(ResNo == 0 && "Asm only has one result!"); 3098 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3099 } 3100 ++ResNo; 3101 break; 3102 case InlineAsm::isInput: 3103 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3104 break; 3105 case InlineAsm::isClobber: 3106 // Nothing to do. 3107 break; 3108 } 3109 3110 if (OpInfo.CallOperandVal) { 3111 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3112 if (OpInfo.isIndirect) { 3113 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3114 if (!PtrTy) 3115 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3116 OpTy = PtrTy->getElementType(); 3117 } 3118 3119 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3120 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3121 if (STy->getNumElements() == 1) 3122 OpTy = STy->getElementType(0); 3123 3124 // If OpTy is not a single value, it may be a struct/union that we 3125 // can tile with integers. 3126 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3127 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3128 switch (BitSize) { 3129 default: break; 3130 case 1: 3131 case 8: 3132 case 16: 3133 case 32: 3134 case 64: 3135 case 128: 3136 OpInfo.ConstraintVT = 3137 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3138 break; 3139 } 3140 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3141 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3142 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3143 } else { 3144 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3145 } 3146 } 3147 } 3148 3149 // If we have multiple alternative constraints, select the best alternative. 3150 if (!ConstraintOperands.empty()) { 3151 if (maCount) { 3152 unsigned bestMAIndex = 0; 3153 int bestWeight = -1; 3154 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3155 int weight = -1; 3156 unsigned maIndex; 3157 // Compute the sums of the weights for each alternative, keeping track 3158 // of the best (highest weight) one so far. 3159 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3160 int weightSum = 0; 3161 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3162 cIndex != eIndex; ++cIndex) { 3163 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3164 if (OpInfo.Type == InlineAsm::isClobber) 3165 continue; 3166 3167 // If this is an output operand with a matching input operand, 3168 // look up the matching input. If their types mismatch, e.g. one 3169 // is an integer, the other is floating point, or their sizes are 3170 // different, flag it as an maCantMatch. 3171 if (OpInfo.hasMatchingInput()) { 3172 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3173 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3174 if ((OpInfo.ConstraintVT.isInteger() != 3175 Input.ConstraintVT.isInteger()) || 3176 (OpInfo.ConstraintVT.getSizeInBits() != 3177 Input.ConstraintVT.getSizeInBits())) { 3178 weightSum = -1; // Can't match. 3179 break; 3180 } 3181 } 3182 } 3183 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3184 if (weight == -1) { 3185 weightSum = -1; 3186 break; 3187 } 3188 weightSum += weight; 3189 } 3190 // Update best. 3191 if (weightSum > bestWeight) { 3192 bestWeight = weightSum; 3193 bestMAIndex = maIndex; 3194 } 3195 } 3196 3197 // Now select chosen alternative in each constraint. 3198 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3199 cIndex != eIndex; ++cIndex) { 3200 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3201 if (cInfo.Type == InlineAsm::isClobber) 3202 continue; 3203 cInfo.selectAlternative(bestMAIndex); 3204 } 3205 } 3206 } 3207 3208 // Check and hook up tied operands, choose constraint code to use. 3209 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3210 cIndex != eIndex; ++cIndex) { 3211 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3212 3213 // If this is an output operand with a matching input operand, look up the 3214 // matching input. If their types mismatch, e.g. one is an integer, the 3215 // other is floating point, or their sizes are different, flag it as an 3216 // error. 3217 if (OpInfo.hasMatchingInput()) { 3218 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3219 3220 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3221 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3222 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3223 OpInfo.ConstraintVT); 3224 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3225 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3226 Input.ConstraintVT); 3227 if ((OpInfo.ConstraintVT.isInteger() != 3228 Input.ConstraintVT.isInteger()) || 3229 (MatchRC.second != InputRC.second)) { 3230 report_fatal_error("Unsupported asm: input constraint" 3231 " with a matching output constraint of" 3232 " incompatible type!"); 3233 } 3234 } 3235 } 3236 } 3237 3238 return ConstraintOperands; 3239 } 3240 3241 /// Return an integer indicating how general CT is. 3242 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3243 switch (CT) { 3244 case TargetLowering::C_Other: 3245 case TargetLowering::C_Unknown: 3246 return 0; 3247 case TargetLowering::C_Register: 3248 return 1; 3249 case TargetLowering::C_RegisterClass: 3250 return 2; 3251 case TargetLowering::C_Memory: 3252 return 3; 3253 } 3254 llvm_unreachable("Invalid constraint type"); 3255 } 3256 3257 /// Examine constraint type and operand type and determine a weight value. 3258 /// This object must already have been set up with the operand type 3259 /// and the current alternative constraint selected. 3260 TargetLowering::ConstraintWeight 3261 TargetLowering::getMultipleConstraintMatchWeight( 3262 AsmOperandInfo &info, int maIndex) const { 3263 InlineAsm::ConstraintCodeVector *rCodes; 3264 if (maIndex >= (int)info.multipleAlternatives.size()) 3265 rCodes = &info.Codes; 3266 else 3267 rCodes = &info.multipleAlternatives[maIndex].Codes; 3268 ConstraintWeight BestWeight = CW_Invalid; 3269 3270 // Loop over the options, keeping track of the most general one. 3271 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3272 ConstraintWeight weight = 3273 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3274 if (weight > BestWeight) 3275 BestWeight = weight; 3276 } 3277 3278 return BestWeight; 3279 } 3280 3281 /// Examine constraint type and operand type and determine a weight value. 3282 /// This object must already have been set up with the operand type 3283 /// and the current alternative constraint selected. 3284 TargetLowering::ConstraintWeight 3285 TargetLowering::getSingleConstraintMatchWeight( 3286 AsmOperandInfo &info, const char *constraint) const { 3287 ConstraintWeight weight = CW_Invalid; 3288 Value *CallOperandVal = info.CallOperandVal; 3289 // If we don't have a value, we can't do a match, 3290 // but allow it at the lowest weight. 3291 if (!CallOperandVal) 3292 return CW_Default; 3293 // Look at the constraint type. 3294 switch (*constraint) { 3295 case 'i': // immediate integer. 3296 case 'n': // immediate integer with a known value. 3297 if (isa<ConstantInt>(CallOperandVal)) 3298 weight = CW_Constant; 3299 break; 3300 case 's': // non-explicit intregal immediate. 3301 if (isa<GlobalValue>(CallOperandVal)) 3302 weight = CW_Constant; 3303 break; 3304 case 'E': // immediate float if host format. 3305 case 'F': // immediate float. 3306 if (isa<ConstantFP>(CallOperandVal)) 3307 weight = CW_Constant; 3308 break; 3309 case '<': // memory operand with autodecrement. 3310 case '>': // memory operand with autoincrement. 3311 case 'm': // memory operand. 3312 case 'o': // offsettable memory operand 3313 case 'V': // non-offsettable memory operand 3314 weight = CW_Memory; 3315 break; 3316 case 'r': // general register. 3317 case 'g': // general register, memory operand or immediate integer. 3318 // note: Clang converts "g" to "imr". 3319 if (CallOperandVal->getType()->isIntegerTy()) 3320 weight = CW_Register; 3321 break; 3322 case 'X': // any operand. 3323 default: 3324 weight = CW_Default; 3325 break; 3326 } 3327 return weight; 3328 } 3329 3330 /// If there are multiple different constraints that we could pick for this 3331 /// operand (e.g. "imr") try to pick the 'best' one. 3332 /// This is somewhat tricky: constraints fall into four classes: 3333 /// Other -> immediates and magic values 3334 /// Register -> one specific register 3335 /// RegisterClass -> a group of regs 3336 /// Memory -> memory 3337 /// Ideally, we would pick the most specific constraint possible: if we have 3338 /// something that fits into a register, we would pick it. The problem here 3339 /// is that if we have something that could either be in a register or in 3340 /// memory that use of the register could cause selection of *other* 3341 /// operands to fail: they might only succeed if we pick memory. Because of 3342 /// this the heuristic we use is: 3343 /// 3344 /// 1) If there is an 'other' constraint, and if the operand is valid for 3345 /// that constraint, use it. This makes us take advantage of 'i' 3346 /// constraints when available. 3347 /// 2) Otherwise, pick the most general constraint present. This prefers 3348 /// 'm' over 'r', for example. 3349 /// 3350 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3351 const TargetLowering &TLI, 3352 SDValue Op, SelectionDAG *DAG) { 3353 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3354 unsigned BestIdx = 0; 3355 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3356 int BestGenerality = -1; 3357 3358 // Loop over the options, keeping track of the most general one. 3359 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3360 TargetLowering::ConstraintType CType = 3361 TLI.getConstraintType(OpInfo.Codes[i]); 3362 3363 // If this is an 'other' constraint, see if the operand is valid for it. 3364 // For example, on X86 we might have an 'rI' constraint. If the operand 3365 // is an integer in the range [0..31] we want to use I (saving a load 3366 // of a register), otherwise we must use 'r'. 3367 if (CType == TargetLowering::C_Other && Op.getNode()) { 3368 assert(OpInfo.Codes[i].size() == 1 && 3369 "Unhandled multi-letter 'other' constraint"); 3370 std::vector<SDValue> ResultOps; 3371 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3372 ResultOps, *DAG); 3373 if (!ResultOps.empty()) { 3374 BestType = CType; 3375 BestIdx = i; 3376 break; 3377 } 3378 } 3379 3380 // Things with matching constraints can only be registers, per gcc 3381 // documentation. This mainly affects "g" constraints. 3382 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3383 continue; 3384 3385 // This constraint letter is more general than the previous one, use it. 3386 int Generality = getConstraintGenerality(CType); 3387 if (Generality > BestGenerality) { 3388 BestType = CType; 3389 BestIdx = i; 3390 BestGenerality = Generality; 3391 } 3392 } 3393 3394 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3395 OpInfo.ConstraintType = BestType; 3396 } 3397 3398 /// Determines the constraint code and constraint type to use for the specific 3399 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3400 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3401 SDValue Op, 3402 SelectionDAG *DAG) const { 3403 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3404 3405 // Single-letter constraints ('r') are very common. 3406 if (OpInfo.Codes.size() == 1) { 3407 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3408 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3409 } else { 3410 ChooseConstraint(OpInfo, *this, Op, DAG); 3411 } 3412 3413 // 'X' matches anything. 3414 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3415 // Labels and constants are handled elsewhere ('X' is the only thing 3416 // that matches labels). For Functions, the type here is the type of 3417 // the result, which is not what we want to look at; leave them alone. 3418 Value *v = OpInfo.CallOperandVal; 3419 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3420 OpInfo.CallOperandVal = v; 3421 return; 3422 } 3423 3424 // Otherwise, try to resolve it to something we know about by looking at 3425 // the actual operand type. 3426 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3427 OpInfo.ConstraintCode = Repl; 3428 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3429 } 3430 } 3431 } 3432 3433 /// Given an exact SDIV by a constant, create a multiplication 3434 /// with the multiplicative inverse of the constant. 3435 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 3436 const SDLoc &dl, SelectionDAG &DAG, 3437 SmallVectorImpl<SDNode *> &Created) { 3438 assert(d != 0 && "Division by zero!"); 3439 3440 // Shift the value upfront if it is even, so the LSB is one. 3441 unsigned ShAmt = d.countTrailingZeros(); 3442 if (ShAmt) { 3443 // TODO: For UDIV use SRL instead of SRA. 3444 SDValue Amt = 3445 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 3446 DAG.getDataLayout())); 3447 SDNodeFlags Flags; 3448 Flags.setExact(true); 3449 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); 3450 Created.push_back(Op1.getNode()); 3451 d.ashrInPlace(ShAmt); 3452 } 3453 3454 // Calculate the multiplicative inverse, using Newton's method. 3455 APInt t, xn = d; 3456 while ((t = d*xn) != 1) 3457 xn *= APInt(d.getBitWidth(), 2) - t; 3458 3459 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 3460 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3461 Created.push_back(Mul.getNode()); 3462 return Mul; 3463 } 3464 3465 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3466 SelectionDAG &DAG, 3467 SmallVectorImpl<SDNode *> &Created) const { 3468 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3470 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3471 return SDValue(N,0); // Lower SDIV as SDIV 3472 return SDValue(); 3473 } 3474 3475 /// Given an ISD::SDIV node expressing a divide by constant, 3476 /// return a DAG expression to select that will generate the same value by 3477 /// multiplying by a magic number. 3478 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3479 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3480 bool IsAfterLegalization, 3481 SmallVectorImpl<SDNode *> &Created) const { 3482 EVT VT = N->getValueType(0); 3483 SDLoc dl(N); 3484 3485 // Check to see if we can do this. 3486 // FIXME: We should be more aggressive here. 3487 if (!isTypeLegal(VT)) 3488 return SDValue(); 3489 3490 // TODO: Add non-uniform constant support. 3491 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 3492 if (!C || C->isNullValue()) 3493 return SDValue(); 3494 const APInt &Divisor = C->getAPIntValue(); 3495 3496 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3497 if (N->getFlags().hasExact()) 3498 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, Created); 3499 3500 APInt::ms magics = Divisor.magic(); 3501 3502 // Multiply the numerator (operand 0) by the magic value 3503 // FIXME: We should support doing a MUL in a wider type 3504 SDValue Q; 3505 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3506 isOperationLegalOrCustom(ISD::MULHS, VT)) 3507 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3508 DAG.getConstant(magics.m, dl, VT)); 3509 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3510 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3511 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3512 N->getOperand(0), 3513 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3514 else 3515 return SDValue(); // No mulhs or equvialent 3516 3517 Created.push_back(Q.getNode()); 3518 3519 // If d > 0 and m < 0, add the numerator 3520 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3521 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3522 Created.push_back(Q.getNode()); 3523 } 3524 // If d < 0 and m > 0, subtract the numerator. 3525 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3526 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3527 Created.push_back(Q.getNode()); 3528 } 3529 auto &DL = DAG.getDataLayout(); 3530 // Shift right algebraic if shift value is nonzero 3531 if (magics.s > 0) { 3532 Q = DAG.getNode( 3533 ISD::SRA, dl, VT, Q, 3534 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3535 Created.push_back(Q.getNode()); 3536 } 3537 // Extract the sign bit and add it to the quotient 3538 SDValue T = 3539 DAG.getNode(ISD::SRL, dl, VT, Q, 3540 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3541 getShiftAmountTy(Q.getValueType(), DL))); 3542 Created.push_back(T.getNode()); 3543 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3544 } 3545 3546 /// Given an ISD::UDIV node expressing a divide by constant, 3547 /// return a DAG expression to select that will generate the same value by 3548 /// multiplying by a magic number. 3549 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3550 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3551 SelectionDAG &DAG, bool IsAfterLegalization, 3552 SmallVectorImpl<SDNode *> &Created) const { 3553 EVT VT = N->getValueType(0); 3554 SDLoc dl(N); 3555 auto &DL = DAG.getDataLayout(); 3556 3557 // Check to see if we can do this. 3558 // FIXME: We should be more aggressive here. 3559 if (!isTypeLegal(VT)) 3560 return SDValue(); 3561 3562 // FIXME: We should use a narrower constant when the upper 3563 // bits are known to be zero. 3564 APInt::mu magics = Divisor.magicu(); 3565 3566 SDValue Q = N->getOperand(0); 3567 3568 // If the divisor is even, we can avoid using the expensive fixup by shifting 3569 // the divided value upfront. 3570 if (magics.a != 0 && !Divisor[0]) { 3571 unsigned Shift = Divisor.countTrailingZeros(); 3572 Q = DAG.getNode( 3573 ISD::SRL, dl, VT, Q, 3574 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3575 Created.push_back(Q.getNode()); 3576 3577 // Get magic number for the shifted divisor. 3578 magics = Divisor.lshr(Shift).magicu(Shift); 3579 assert(magics.a == 0 && "Should use cheap fixup now"); 3580 } 3581 3582 // Multiply the numerator (operand 0) by the magic value 3583 // FIXME: We should support doing a MUL in a wider type 3584 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3585 isOperationLegalOrCustom(ISD::MULHU, VT)) 3586 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3587 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3588 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3589 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3590 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3591 else 3592 return SDValue(); // No mulhu or equivalent 3593 3594 Created.push_back(Q.getNode()); 3595 3596 if (magics.a == 0) { 3597 assert(magics.s < Divisor.getBitWidth() && 3598 "We shouldn't generate an undefined shift!"); 3599 return DAG.getNode( 3600 ISD::SRL, dl, VT, Q, 3601 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3602 } else { 3603 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3604 Created.push_back(NPQ.getNode()); 3605 NPQ = DAG.getNode( 3606 ISD::SRL, dl, VT, NPQ, 3607 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3608 Created.push_back(NPQ.getNode()); 3609 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3610 Created.push_back(NPQ.getNode()); 3611 return DAG.getNode( 3612 ISD::SRL, dl, VT, NPQ, 3613 DAG.getConstant(magics.s - 1, dl, 3614 getShiftAmountTy(NPQ.getValueType(), DL))); 3615 } 3616 } 3617 3618 bool TargetLowering:: 3619 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3620 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3621 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3622 "be a constant integer"); 3623 return true; 3624 } 3625 3626 return false; 3627 } 3628 3629 //===----------------------------------------------------------------------===// 3630 // Legalization Utilities 3631 //===----------------------------------------------------------------------===// 3632 3633 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3634 SDValue LHS, SDValue RHS, 3635 SmallVectorImpl<SDValue> &Result, 3636 EVT HiLoVT, SelectionDAG &DAG, 3637 MulExpansionKind Kind, SDValue LL, 3638 SDValue LH, SDValue RL, SDValue RH) const { 3639 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3640 Opcode == ISD::SMUL_LOHI); 3641 3642 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3643 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3644 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3645 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3646 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3647 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3648 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3649 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3650 3651 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3652 return false; 3653 3654 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3655 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3656 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3657 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3658 3659 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3660 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3661 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3662 3663 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3664 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3665 bool Signed) -> bool { 3666 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3667 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3668 Hi = SDValue(Lo.getNode(), 1); 3669 return true; 3670 } 3671 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3672 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3673 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3674 return true; 3675 } 3676 return false; 3677 }; 3678 3679 SDValue Lo, Hi; 3680 3681 if (!LL.getNode() && !RL.getNode() && 3682 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3683 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3684 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3685 } 3686 3687 if (!LL.getNode()) 3688 return false; 3689 3690 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3691 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3692 DAG.MaskedValueIsZero(RHS, HighMask)) { 3693 // The inputs are both zero-extended. 3694 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3695 Result.push_back(Lo); 3696 Result.push_back(Hi); 3697 if (Opcode != ISD::MUL) { 3698 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3699 Result.push_back(Zero); 3700 Result.push_back(Zero); 3701 } 3702 return true; 3703 } 3704 } 3705 3706 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3707 RHSSB > InnerBitSize) { 3708 // The input values are both sign-extended. 3709 // TODO non-MUL case? 3710 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3711 Result.push_back(Lo); 3712 Result.push_back(Hi); 3713 return true; 3714 } 3715 } 3716 3717 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3718 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3719 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3720 // FIXME getShiftAmountTy does not always return a sensible result when VT 3721 // is an illegal type, and so the type may be too small to fit the shift 3722 // amount. Override it with i32. The shift will have to be legalized. 3723 ShiftAmountTy = MVT::i32; 3724 } 3725 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3726 3727 if (!LH.getNode() && !RH.getNode() && 3728 isOperationLegalOrCustom(ISD::SRL, VT) && 3729 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3730 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3731 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3732 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3733 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3734 } 3735 3736 if (!LH.getNode()) 3737 return false; 3738 3739 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3740 return false; 3741 3742 Result.push_back(Lo); 3743 3744 if (Opcode == ISD::MUL) { 3745 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3746 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3747 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3748 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3749 Result.push_back(Hi); 3750 return true; 3751 } 3752 3753 // Compute the full width result. 3754 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3755 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3756 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3757 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3758 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3759 }; 3760 3761 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3762 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3763 return false; 3764 3765 // This is effectively the add part of a multiply-add of half-sized operands, 3766 // so it cannot overflow. 3767 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3768 3769 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3770 return false; 3771 3772 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3773 Merge(Lo, Hi)); 3774 3775 SDValue Carry = Next.getValue(1); 3776 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3777 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3778 3779 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3780 return false; 3781 3782 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3783 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3784 Carry); 3785 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3786 3787 if (Opcode == ISD::SMUL_LOHI) { 3788 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3789 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3790 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3791 3792 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3793 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3794 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3795 } 3796 3797 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3798 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3799 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3800 return true; 3801 } 3802 3803 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3804 SelectionDAG &DAG, MulExpansionKind Kind, 3805 SDValue LL, SDValue LH, SDValue RL, 3806 SDValue RH) const { 3807 SmallVector<SDValue, 2> Result; 3808 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3809 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3810 DAG, Kind, LL, LH, RL, RH); 3811 if (Ok) { 3812 assert(Result.size() == 2); 3813 Lo = Result[0]; 3814 Hi = Result[1]; 3815 } 3816 return Ok; 3817 } 3818 3819 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3820 SelectionDAG &DAG) const { 3821 EVT VT = Node->getOperand(0).getValueType(); 3822 EVT NVT = Node->getValueType(0); 3823 SDLoc dl(SDValue(Node, 0)); 3824 3825 // FIXME: Only f32 to i64 conversions are supported. 3826 if (VT != MVT::f32 || NVT != MVT::i64) 3827 return false; 3828 3829 // Expand f32 -> i64 conversion 3830 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3831 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3832 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3833 VT.getSizeInBits()); 3834 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3835 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3836 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3837 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3838 IntVT); 3839 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3840 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3841 3842 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3843 3844 auto &DL = DAG.getDataLayout(); 3845 SDValue ExponentBits = DAG.getNode( 3846 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3847 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3848 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3849 3850 SDValue Sign = DAG.getNode( 3851 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3852 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3853 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3854 3855 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3856 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3857 DAG.getConstant(0x00800000, dl, IntVT)); 3858 3859 R = DAG.getZExtOrTrunc(R, dl, NVT); 3860 3861 R = DAG.getSelectCC( 3862 dl, Exponent, ExponentLoBit, 3863 DAG.getNode(ISD::SHL, dl, NVT, R, 3864 DAG.getZExtOrTrunc( 3865 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3866 dl, getShiftAmountTy(IntVT, DL))), 3867 DAG.getNode(ISD::SRL, dl, NVT, R, 3868 DAG.getZExtOrTrunc( 3869 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3870 dl, getShiftAmountTy(IntVT, DL))), 3871 ISD::SETGT); 3872 3873 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3874 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3875 Sign); 3876 3877 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3878 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3879 return true; 3880 } 3881 3882 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3883 SelectionDAG &DAG) const { 3884 SDLoc SL(LD); 3885 SDValue Chain = LD->getChain(); 3886 SDValue BasePTR = LD->getBasePtr(); 3887 EVT SrcVT = LD->getMemoryVT(); 3888 ISD::LoadExtType ExtType = LD->getExtensionType(); 3889 3890 unsigned NumElem = SrcVT.getVectorNumElements(); 3891 3892 EVT SrcEltVT = SrcVT.getScalarType(); 3893 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3894 3895 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3896 assert(SrcEltVT.isByteSized()); 3897 3898 EVT PtrVT = BasePTR.getValueType(); 3899 3900 SmallVector<SDValue, 8> Vals; 3901 SmallVector<SDValue, 8> LoadChains; 3902 3903 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3904 SDValue ScalarLoad = 3905 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3906 LD->getPointerInfo().getWithOffset(Idx * Stride), 3907 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3908 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3909 3910 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3911 DAG.getConstant(Stride, SL, PtrVT)); 3912 3913 Vals.push_back(ScalarLoad.getValue(0)); 3914 LoadChains.push_back(ScalarLoad.getValue(1)); 3915 } 3916 3917 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3918 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3919 3920 return DAG.getMergeValues({ Value, NewChain }, SL); 3921 } 3922 3923 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3924 SelectionDAG &DAG) const { 3925 SDLoc SL(ST); 3926 3927 SDValue Chain = ST->getChain(); 3928 SDValue BasePtr = ST->getBasePtr(); 3929 SDValue Value = ST->getValue(); 3930 EVT StVT = ST->getMemoryVT(); 3931 3932 // The type of the data we want to save 3933 EVT RegVT = Value.getValueType(); 3934 EVT RegSclVT = RegVT.getScalarType(); 3935 3936 // The type of data as saved in memory. 3937 EVT MemSclVT = StVT.getScalarType(); 3938 3939 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3940 unsigned NumElem = StVT.getVectorNumElements(); 3941 3942 // A vector must always be stored in memory as-is, i.e. without any padding 3943 // between the elements, since various code depend on it, e.g. in the 3944 // handling of a bitcast of a vector type to int, which may be done with a 3945 // vector store followed by an integer load. A vector that does not have 3946 // elements that are byte-sized must therefore be stored as an integer 3947 // built out of the extracted vector elements. 3948 if (!MemSclVT.isByteSized()) { 3949 unsigned NumBits = StVT.getSizeInBits(); 3950 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 3951 3952 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 3953 3954 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3955 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3956 DAG.getConstant(Idx, SL, IdxVT)); 3957 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 3958 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 3959 unsigned ShiftIntoIdx = 3960 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 3961 SDValue ShiftAmount = 3962 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 3963 SDValue ShiftedElt = 3964 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 3965 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 3966 } 3967 3968 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 3969 ST->getAlignment(), ST->getMemOperand()->getFlags(), 3970 ST->getAAInfo()); 3971 } 3972 3973 // Store Stride in bytes 3974 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3975 assert (Stride && "Zero stride!"); 3976 // Extract each of the elements from the original vector and save them into 3977 // memory individually. 3978 SmallVector<SDValue, 8> Stores; 3979 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3980 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3981 DAG.getConstant(Idx, SL, IdxVT)); 3982 3983 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 3984 3985 // This scalar TruncStore may be illegal, but we legalize it later. 3986 SDValue Store = DAG.getTruncStore( 3987 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3988 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3989 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3990 3991 Stores.push_back(Store); 3992 } 3993 3994 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3995 } 3996 3997 std::pair<SDValue, SDValue> 3998 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3999 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4000 "unaligned indexed loads not implemented!"); 4001 SDValue Chain = LD->getChain(); 4002 SDValue Ptr = LD->getBasePtr(); 4003 EVT VT = LD->getValueType(0); 4004 EVT LoadedVT = LD->getMemoryVT(); 4005 SDLoc dl(LD); 4006 auto &MF = DAG.getMachineFunction(); 4007 4008 if (VT.isFloatingPoint() || VT.isVector()) { 4009 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4010 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4011 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 4012 // Scalarize the load and let the individual components be handled. 4013 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4014 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4015 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4016 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4017 } 4018 4019 // Expand to a (misaligned) integer load of the same size, 4020 // then bitconvert to floating point or vector. 4021 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4022 LD->getMemOperand()); 4023 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4024 if (LoadedVT != VT) 4025 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4026 ISD::ANY_EXTEND, dl, VT, Result); 4027 4028 return std::make_pair(Result, newLoad.getValue(1)); 4029 } 4030 4031 // Copy the value to a (aligned) stack slot using (unaligned) integer 4032 // loads and stores, then do a (aligned) load from the stack slot. 4033 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4034 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4035 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4036 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4037 4038 // Make sure the stack slot is also aligned for the register type. 4039 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4040 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4041 SmallVector<SDValue, 8> Stores; 4042 SDValue StackPtr = StackBase; 4043 unsigned Offset = 0; 4044 4045 EVT PtrVT = Ptr.getValueType(); 4046 EVT StackPtrVT = StackPtr.getValueType(); 4047 4048 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4049 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4050 4051 // Do all but one copies using the full register width. 4052 for (unsigned i = 1; i < NumRegs; i++) { 4053 // Load one integer register's worth from the original location. 4054 SDValue Load = DAG.getLoad( 4055 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 4056 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 4057 LD->getAAInfo()); 4058 // Follow the load with a store to the stack slot. Remember the store. 4059 Stores.push_back(DAG.getStore( 4060 Load.getValue(1), dl, Load, StackPtr, 4061 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 4062 // Increment the pointers. 4063 Offset += RegBytes; 4064 4065 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4066 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4067 } 4068 4069 // The last copy may be partial. Do an extending load. 4070 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4071 8 * (LoadedBytes - Offset)); 4072 SDValue Load = 4073 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 4074 LD->getPointerInfo().getWithOffset(Offset), MemVT, 4075 MinAlign(LD->getAlignment(), Offset), 4076 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4077 // Follow the load with a store to the stack slot. Remember the store. 4078 // On big-endian machines this requires a truncating store to ensure 4079 // that the bits end up in the right place. 4080 Stores.push_back(DAG.getTruncStore( 4081 Load.getValue(1), dl, Load, StackPtr, 4082 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 4083 4084 // The order of the stores doesn't matter - say it with a TokenFactor. 4085 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4086 4087 // Finally, perform the original load only redirected to the stack slot. 4088 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 4089 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 4090 LoadedVT); 4091 4092 // Callers expect a MERGE_VALUES node. 4093 return std::make_pair(Load, TF); 4094 } 4095 4096 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 4097 "Unaligned load of unsupported type."); 4098 4099 // Compute the new VT that is half the size of the old one. This is an 4100 // integer MVT. 4101 unsigned NumBits = LoadedVT.getSizeInBits(); 4102 EVT NewLoadedVT; 4103 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 4104 NumBits >>= 1; 4105 4106 unsigned Alignment = LD->getAlignment(); 4107 unsigned IncrementSize = NumBits / 8; 4108 ISD::LoadExtType HiExtType = LD->getExtensionType(); 4109 4110 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 4111 if (HiExtType == ISD::NON_EXTLOAD) 4112 HiExtType = ISD::ZEXTLOAD; 4113 4114 // Load the value in two parts 4115 SDValue Lo, Hi; 4116 if (DAG.getDataLayout().isLittleEndian()) { 4117 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4118 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4119 LD->getAAInfo()); 4120 4121 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4122 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 4123 LD->getPointerInfo().getWithOffset(IncrementSize), 4124 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4125 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4126 } else { 4127 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4128 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4129 LD->getAAInfo()); 4130 4131 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4132 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4133 LD->getPointerInfo().getWithOffset(IncrementSize), 4134 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4135 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4136 } 4137 4138 // aggregate the two parts 4139 SDValue ShiftAmount = 4140 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4141 DAG.getDataLayout())); 4142 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4143 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4144 4145 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 4146 Hi.getValue(1)); 4147 4148 return std::make_pair(Result, TF); 4149 } 4150 4151 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 4152 SelectionDAG &DAG) const { 4153 assert(ST->getAddressingMode() == ISD::UNINDEXED && 4154 "unaligned indexed stores not implemented!"); 4155 SDValue Chain = ST->getChain(); 4156 SDValue Ptr = ST->getBasePtr(); 4157 SDValue Val = ST->getValue(); 4158 EVT VT = Val.getValueType(); 4159 int Alignment = ST->getAlignment(); 4160 auto &MF = DAG.getMachineFunction(); 4161 4162 SDLoc dl(ST); 4163 if (ST->getMemoryVT().isFloatingPoint() || 4164 ST->getMemoryVT().isVector()) { 4165 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 4166 if (isTypeLegal(intVT)) { 4167 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 4168 // Scalarize the store and let the individual components be handled. 4169 SDValue Result = scalarizeVectorStore(ST, DAG); 4170 4171 return Result; 4172 } 4173 // Expand to a bitconvert of the value to the integer type of the 4174 // same size, then a (misaligned) int store. 4175 // FIXME: Does not handle truncating floating point stores! 4176 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 4177 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 4178 Alignment, ST->getMemOperand()->getFlags()); 4179 return Result; 4180 } 4181 // Do a (aligned) store to a stack slot, then copy from the stack slot 4182 // to the final destination using (unaligned) integer loads and stores. 4183 EVT StoredVT = ST->getMemoryVT(); 4184 MVT RegVT = 4185 getRegisterType(*DAG.getContext(), 4186 EVT::getIntegerVT(*DAG.getContext(), 4187 StoredVT.getSizeInBits())); 4188 EVT PtrVT = Ptr.getValueType(); 4189 unsigned StoredBytes = StoredVT.getStoreSize(); 4190 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4191 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 4192 4193 // Make sure the stack slot is also aligned for the register type. 4194 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4195 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4196 4197 // Perform the original store, only redirected to the stack slot. 4198 SDValue Store = DAG.getTruncStore( 4199 Chain, dl, Val, StackPtr, 4200 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4201 4202 EVT StackPtrVT = StackPtr.getValueType(); 4203 4204 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4205 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4206 SmallVector<SDValue, 8> Stores; 4207 unsigned Offset = 0; 4208 4209 // Do all but one copies using the full register width. 4210 for (unsigned i = 1; i < NumRegs; i++) { 4211 // Load one integer register's worth from the stack slot. 4212 SDValue Load = DAG.getLoad( 4213 RegVT, dl, Store, StackPtr, 4214 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4215 // Store it to the final location. Remember the store. 4216 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4217 ST->getPointerInfo().getWithOffset(Offset), 4218 MinAlign(ST->getAlignment(), Offset), 4219 ST->getMemOperand()->getFlags())); 4220 // Increment the pointers. 4221 Offset += RegBytes; 4222 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4223 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4224 } 4225 4226 // The last store may be partial. Do a truncating store. On big-endian 4227 // machines this requires an extending load from the stack slot to ensure 4228 // that the bits are in the right place. 4229 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4230 8 * (StoredBytes - Offset)); 4231 4232 // Load from the stack slot. 4233 SDValue Load = DAG.getExtLoad( 4234 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4235 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4236 4237 Stores.push_back( 4238 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4239 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4240 MinAlign(ST->getAlignment(), Offset), 4241 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4242 // The order of the stores doesn't matter - say it with a TokenFactor. 4243 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4244 return Result; 4245 } 4246 4247 assert(ST->getMemoryVT().isInteger() && 4248 !ST->getMemoryVT().isVector() && 4249 "Unaligned store of unknown type."); 4250 // Get the half-size VT 4251 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4252 int NumBits = NewStoredVT.getSizeInBits(); 4253 int IncrementSize = NumBits / 8; 4254 4255 // Divide the stored value in two parts. 4256 SDValue ShiftAmount = 4257 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4258 DAG.getDataLayout())); 4259 SDValue Lo = Val; 4260 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4261 4262 // Store the two parts 4263 SDValue Store1, Store2; 4264 Store1 = DAG.getTruncStore(Chain, dl, 4265 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4266 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4267 ST->getMemOperand()->getFlags()); 4268 4269 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4270 Alignment = MinAlign(Alignment, IncrementSize); 4271 Store2 = DAG.getTruncStore( 4272 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4273 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4274 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4275 4276 SDValue Result = 4277 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4278 return Result; 4279 } 4280 4281 SDValue 4282 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4283 const SDLoc &DL, EVT DataVT, 4284 SelectionDAG &DAG, 4285 bool IsCompressedMemory) const { 4286 SDValue Increment; 4287 EVT AddrVT = Addr.getValueType(); 4288 EVT MaskVT = Mask.getValueType(); 4289 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4290 "Incompatible types of Data and Mask"); 4291 if (IsCompressedMemory) { 4292 // Incrementing the pointer according to number of '1's in the mask. 4293 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4294 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4295 if (MaskIntVT.getSizeInBits() < 32) { 4296 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4297 MaskIntVT = MVT::i32; 4298 } 4299 4300 // Count '1's with POPCNT. 4301 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4302 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4303 // Scale is an element size in bytes. 4304 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4305 AddrVT); 4306 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 4307 } else 4308 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 4309 4310 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 4311 } 4312 4313 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 4314 SDValue Idx, 4315 EVT VecVT, 4316 const SDLoc &dl) { 4317 if (isa<ConstantSDNode>(Idx)) 4318 return Idx; 4319 4320 EVT IdxVT = Idx.getValueType(); 4321 unsigned NElts = VecVT.getVectorNumElements(); 4322 if (isPowerOf2_32(NElts)) { 4323 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 4324 Log2_32(NElts)); 4325 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 4326 DAG.getConstant(Imm, dl, IdxVT)); 4327 } 4328 4329 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 4330 DAG.getConstant(NElts - 1, dl, IdxVT)); 4331 } 4332 4333 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 4334 SDValue VecPtr, EVT VecVT, 4335 SDValue Index) const { 4336 SDLoc dl(Index); 4337 // Make sure the index type is big enough to compute in. 4338 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 4339 4340 EVT EltVT = VecVT.getVectorElementType(); 4341 4342 // Calculate the element offset and add it to the pointer. 4343 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 4344 assert(EltSize * 8 == EltVT.getSizeInBits() && 4345 "Converting bits to bytes lost precision"); 4346 4347 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 4348 4349 EVT IdxVT = Index.getValueType(); 4350 4351 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 4352 DAG.getConstant(EltSize, dl, IdxVT)); 4353 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 4354 } 4355 4356 //===----------------------------------------------------------------------===// 4357 // Implementation of Emulated TLS Model 4358 //===----------------------------------------------------------------------===// 4359 4360 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 4361 SelectionDAG &DAG) const { 4362 // Access to address of TLS varialbe xyz is lowered to a function call: 4363 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 4364 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4365 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 4366 SDLoc dl(GA); 4367 4368 ArgListTy Args; 4369 ArgListEntry Entry; 4370 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 4371 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 4372 StringRef EmuTlsVarName(NameString); 4373 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 4374 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 4375 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 4376 Entry.Ty = VoidPtrType; 4377 Args.push_back(Entry); 4378 4379 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 4380 4381 TargetLowering::CallLoweringInfo CLI(DAG); 4382 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 4383 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 4384 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4385 4386 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 4387 // At last for X86 targets, maybe good for other targets too? 4388 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4389 MFI.setAdjustsStack(true); // Is this only for X86 target? 4390 MFI.setHasCalls(true); 4391 4392 assert((GA->getOffset() == 0) && 4393 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 4394 return CallResult.first; 4395 } 4396 4397 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 4398 SelectionDAG &DAG) const { 4399 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 4400 if (!isCtlzFast()) 4401 return SDValue(); 4402 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 4403 SDLoc dl(Op); 4404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4405 if (C->isNullValue() && CC == ISD::SETEQ) { 4406 EVT VT = Op.getOperand(0).getValueType(); 4407 SDValue Zext = Op.getOperand(0); 4408 if (VT.bitsLT(MVT::i32)) { 4409 VT = MVT::i32; 4410 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 4411 } 4412 unsigned Log2b = Log2_32(VT.getSizeInBits()); 4413 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 4414 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 4415 DAG.getConstant(Log2b, dl, MVT::i32)); 4416 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 4417 } 4418 } 4419 return SDValue(); 4420 } 4421