1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
911 /// result of Op are ever used downstream. If we can use this information to
912 /// simplify Op, create a new simplified DAG node and return true, returning the
913 /// original and new nodes in Old and New. Otherwise, analyze the expression and
914 /// return a mask of Known bits for the expression (used to simplify the
915 /// caller).  The Known bits may only be accurate for those bits in the
916 /// OriginalDemandedBits and OriginalDemandedElts.
917 bool TargetLowering::SimplifyDemandedBits(
918     SDValue Op, const APInt &OriginalDemandedBits,
919     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
920     unsigned Depth, bool AssumeSingleUse) const {
921   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
922   assert(Op.getScalarValueSizeInBits() == BitWidth &&
923          "Mask size mismatches value type size!");
924 
925   // Don't know anything.
926   Known = KnownBits(BitWidth);
927 
928   // TODO: We can probably do more work on calculating the known bits and
929   // simplifying the operations for scalable vectors, but for now we just
930   // bail out.
931   if (Op.getValueType().isScalableVector())
932     return false;
933 
934   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
935   unsigned NumElts = OriginalDemandedElts.getBitWidth();
936   assert((!Op.getValueType().isVector() ||
937           NumElts == Op.getValueType().getVectorNumElements()) &&
938          "Unexpected vector size");
939 
940   APInt DemandedBits = OriginalDemandedBits;
941   APInt DemandedElts = OriginalDemandedElts;
942   SDLoc dl(Op);
943   auto &DL = TLO.DAG.getDataLayout();
944 
945   // Undef operand.
946   if (Op.isUndef())
947     return false;
948 
949   if (Op.getOpcode() == ISD::Constant) {
950     // We know all of the bits for a constant!
951     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
952     return false;
953   }
954 
955   if (Op.getOpcode() == ISD::ConstantFP) {
956     // We know all of the bits for a floating point constant!
957     Known = KnownBits::makeConstant(
958         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
959     return false;
960   }
961 
962   // Other users may use these bits.
963   EVT VT = Op.getValueType();
964   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
965     if (Depth != 0) {
966       // If not at the root, Just compute the Known bits to
967       // simplify things downstream.
968       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
969       return false;
970     }
971     // If this is the root being simplified, allow it to have multiple uses,
972     // just set the DemandedBits/Elts to all bits.
973     DemandedBits = APInt::getAllOnes(BitWidth);
974     DemandedElts = APInt::getAllOnes(NumElts);
975   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
976     // Not demanding any bits/elts from Op.
977     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
978   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
979     // Limit search depth.
980     return false;
981   }
982 
983   KnownBits Known2;
984   switch (Op.getOpcode()) {
985   case ISD::TargetConstant:
986     llvm_unreachable("Can't simplify this node");
987   case ISD::SCALAR_TO_VECTOR: {
988     if (!DemandedElts[0])
989       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
990 
991     KnownBits SrcKnown;
992     SDValue Src = Op.getOperand(0);
993     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
994     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
995     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
996       return true;
997 
998     // Upper elements are undef, so only get the knownbits if we just demand
999     // the bottom element.
1000     if (DemandedElts == 1)
1001       Known = SrcKnown.anyextOrTrunc(BitWidth);
1002     break;
1003   }
1004   case ISD::BUILD_VECTOR:
1005     // Collect the known bits that are shared by every demanded element.
1006     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1007     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1008     return false; // Don't fall through, will infinitely loop.
1009   case ISD::LOAD: {
1010     auto *LD = cast<LoadSDNode>(Op);
1011     if (getTargetConstantFromLoad(LD)) {
1012       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1013       return false; // Don't fall through, will infinitely loop.
1014     }
1015     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1016       // If this is a ZEXTLoad and we are looking at the loaded value.
1017       EVT MemVT = LD->getMemoryVT();
1018       unsigned MemBits = MemVT.getScalarSizeInBits();
1019       Known.Zero.setBitsFrom(MemBits);
1020       return false; // Don't fall through, will infinitely loop.
1021     }
1022     break;
1023   }
1024   case ISD::INSERT_VECTOR_ELT: {
1025     SDValue Vec = Op.getOperand(0);
1026     SDValue Scl = Op.getOperand(1);
1027     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1028     EVT VecVT = Vec.getValueType();
1029 
1030     // If index isn't constant, assume we need all vector elements AND the
1031     // inserted element.
1032     APInt DemandedVecElts(DemandedElts);
1033     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1034       unsigned Idx = CIdx->getZExtValue();
1035       DemandedVecElts.clearBit(Idx);
1036 
1037       // Inserted element is not required.
1038       if (!DemandedElts[Idx])
1039         return TLO.CombineTo(Op, Vec);
1040     }
1041 
1042     KnownBits KnownScl;
1043     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1044     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1045     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1046       return true;
1047 
1048     Known = KnownScl.anyextOrTrunc(BitWidth);
1049 
1050     KnownBits KnownVec;
1051     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1052                              Depth + 1))
1053       return true;
1054 
1055     if (!!DemandedVecElts)
1056       Known = KnownBits::commonBits(Known, KnownVec);
1057 
1058     return false;
1059   }
1060   case ISD::INSERT_SUBVECTOR: {
1061     // Demand any elements from the subvector and the remainder from the src its
1062     // inserted into.
1063     SDValue Src = Op.getOperand(0);
1064     SDValue Sub = Op.getOperand(1);
1065     uint64_t Idx = Op.getConstantOperandVal(2);
1066     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1067     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1068     APInt DemandedSrcElts = DemandedElts;
1069     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1070 
1071     KnownBits KnownSub, KnownSrc;
1072     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1073                              Depth + 1))
1074       return true;
1075     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1076                              Depth + 1))
1077       return true;
1078 
1079     Known.Zero.setAllBits();
1080     Known.One.setAllBits();
1081     if (!!DemandedSubElts)
1082       Known = KnownBits::commonBits(Known, KnownSub);
1083     if (!!DemandedSrcElts)
1084       Known = KnownBits::commonBits(Known, KnownSrc);
1085 
1086     // Attempt to avoid multi-use src if we don't need anything from it.
1087     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1088         !DemandedSrcElts.isAllOnes()) {
1089       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1090           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1091       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1092           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1093       if (NewSub || NewSrc) {
1094         NewSub = NewSub ? NewSub : Sub;
1095         NewSrc = NewSrc ? NewSrc : Src;
1096         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1097                                         Op.getOperand(2));
1098         return TLO.CombineTo(Op, NewOp);
1099       }
1100     }
1101     break;
1102   }
1103   case ISD::EXTRACT_SUBVECTOR: {
1104     // Offset the demanded elts by the subvector index.
1105     SDValue Src = Op.getOperand(0);
1106     if (Src.getValueType().isScalableVector())
1107       break;
1108     uint64_t Idx = Op.getConstantOperandVal(1);
1109     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1110     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1111 
1112     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1113                              Depth + 1))
1114       return true;
1115 
1116     // Attempt to avoid multi-use src if we don't need anything from it.
1117     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1118       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1119           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1120       if (DemandedSrc) {
1121         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1122                                         Op.getOperand(1));
1123         return TLO.CombineTo(Op, NewOp);
1124       }
1125     }
1126     break;
1127   }
1128   case ISD::CONCAT_VECTORS: {
1129     Known.Zero.setAllBits();
1130     Known.One.setAllBits();
1131     EVT SubVT = Op.getOperand(0).getValueType();
1132     unsigned NumSubVecs = Op.getNumOperands();
1133     unsigned NumSubElts = SubVT.getVectorNumElements();
1134     for (unsigned i = 0; i != NumSubVecs; ++i) {
1135       APInt DemandedSubElts =
1136           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1137       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1138                                Known2, TLO, Depth + 1))
1139         return true;
1140       // Known bits are shared by every demanded subvector element.
1141       if (!!DemandedSubElts)
1142         Known = KnownBits::commonBits(Known, Known2);
1143     }
1144     break;
1145   }
1146   case ISD::VECTOR_SHUFFLE: {
1147     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1148 
1149     // Collect demanded elements from shuffle operands..
1150     APInt DemandedLHS(NumElts, 0);
1151     APInt DemandedRHS(NumElts, 0);
1152     for (unsigned i = 0; i != NumElts; ++i) {
1153       if (!DemandedElts[i])
1154         continue;
1155       int M = ShuffleMask[i];
1156       if (M < 0) {
1157         // For UNDEF elements, we don't know anything about the common state of
1158         // the shuffle result.
1159         DemandedLHS.clearAllBits();
1160         DemandedRHS.clearAllBits();
1161         break;
1162       }
1163       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1164       if (M < (int)NumElts)
1165         DemandedLHS.setBit(M);
1166       else
1167         DemandedRHS.setBit(M - NumElts);
1168     }
1169 
1170     if (!!DemandedLHS || !!DemandedRHS) {
1171       SDValue Op0 = Op.getOperand(0);
1172       SDValue Op1 = Op.getOperand(1);
1173 
1174       Known.Zero.setAllBits();
1175       Known.One.setAllBits();
1176       if (!!DemandedLHS) {
1177         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1178                                  Depth + 1))
1179           return true;
1180         Known = KnownBits::commonBits(Known, Known2);
1181       }
1182       if (!!DemandedRHS) {
1183         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1184                                  Depth + 1))
1185           return true;
1186         Known = KnownBits::commonBits(Known, Known2);
1187       }
1188 
1189       // Attempt to avoid multi-use ops if we don't need anything from them.
1190       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1191           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1192       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1193           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1194       if (DemandedOp0 || DemandedOp1) {
1195         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1196         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1197         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1198         return TLO.CombineTo(Op, NewOp);
1199       }
1200     }
1201     break;
1202   }
1203   case ISD::AND: {
1204     SDValue Op0 = Op.getOperand(0);
1205     SDValue Op1 = Op.getOperand(1);
1206 
1207     // If the RHS is a constant, check to see if the LHS would be zero without
1208     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1209     // simplify the LHS, here we're using information from the LHS to simplify
1210     // the RHS.
1211     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1212       // Do not increment Depth here; that can cause an infinite loop.
1213       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1214       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1215       if ((LHSKnown.Zero & DemandedBits) ==
1216           (~RHSC->getAPIntValue() & DemandedBits))
1217         return TLO.CombineTo(Op, Op0);
1218 
1219       // If any of the set bits in the RHS are known zero on the LHS, shrink
1220       // the constant.
1221       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1222                                  DemandedElts, TLO))
1223         return true;
1224 
1225       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1226       // constant, but if this 'and' is only clearing bits that were just set by
1227       // the xor, then this 'and' can be eliminated by shrinking the mask of
1228       // the xor. For example, for a 32-bit X:
1229       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1230       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1231           LHSKnown.One == ~RHSC->getAPIntValue()) {
1232         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1233         return TLO.CombineTo(Op, Xor);
1234       }
1235     }
1236 
1237     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1238                              Depth + 1))
1239       return true;
1240     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1241     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1242                              Known2, TLO, Depth + 1))
1243       return true;
1244     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1245 
1246     // Attempt to avoid multi-use ops if we don't need anything from them.
1247     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1248       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1249           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1250       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1251           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1252       if (DemandedOp0 || DemandedOp1) {
1253         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1254         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1255         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1256         return TLO.CombineTo(Op, NewOp);
1257       }
1258     }
1259 
1260     // If all of the demanded bits are known one on one side, return the other.
1261     // These bits cannot contribute to the result of the 'and'.
1262     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1263       return TLO.CombineTo(Op, Op0);
1264     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1265       return TLO.CombineTo(Op, Op1);
1266     // If all of the demanded bits in the inputs are known zeros, return zero.
1267     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1268       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1269     // If the RHS is a constant, see if we can simplify it.
1270     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1271                                TLO))
1272       return true;
1273     // If the operation can be done in a smaller type, do so.
1274     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1275       return true;
1276 
1277     Known &= Known2;
1278     break;
1279   }
1280   case ISD::OR: {
1281     SDValue Op0 = Op.getOperand(0);
1282     SDValue Op1 = Op.getOperand(1);
1283 
1284     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1285                              Depth + 1))
1286       return true;
1287     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1288     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1289                              Known2, TLO, Depth + 1))
1290       return true;
1291     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1292 
1293     // Attempt to avoid multi-use ops if we don't need anything from them.
1294     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1295       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1296           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1297       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1298           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1299       if (DemandedOp0 || DemandedOp1) {
1300         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1301         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1302         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1303         return TLO.CombineTo(Op, NewOp);
1304       }
1305     }
1306 
1307     // If all of the demanded bits are known zero on one side, return the other.
1308     // These bits cannot contribute to the result of the 'or'.
1309     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1310       return TLO.CombineTo(Op, Op0);
1311     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1312       return TLO.CombineTo(Op, Op1);
1313     // If the RHS is a constant, see if we can simplify it.
1314     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1315       return true;
1316     // If the operation can be done in a smaller type, do so.
1317     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1318       return true;
1319 
1320     Known |= Known2;
1321     break;
1322   }
1323   case ISD::XOR: {
1324     SDValue Op0 = Op.getOperand(0);
1325     SDValue Op1 = Op.getOperand(1);
1326 
1327     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1328                              Depth + 1))
1329       return true;
1330     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1331     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1332                              Depth + 1))
1333       return true;
1334     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1335 
1336     // Attempt to avoid multi-use ops if we don't need anything from them.
1337     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1338       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1339           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1340       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1341           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1342       if (DemandedOp0 || DemandedOp1) {
1343         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1344         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1345         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1346         return TLO.CombineTo(Op, NewOp);
1347       }
1348     }
1349 
1350     // If all of the demanded bits are known zero on one side, return the other.
1351     // These bits cannot contribute to the result of the 'xor'.
1352     if (DemandedBits.isSubsetOf(Known.Zero))
1353       return TLO.CombineTo(Op, Op0);
1354     if (DemandedBits.isSubsetOf(Known2.Zero))
1355       return TLO.CombineTo(Op, Op1);
1356     // If the operation can be done in a smaller type, do so.
1357     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1358       return true;
1359 
1360     // If all of the unknown bits are known to be zero on one side or the other
1361     // turn this into an *inclusive* or.
1362     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1363     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1364       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1365 
1366     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1367     if (C) {
1368       // If one side is a constant, and all of the set bits in the constant are
1369       // also known set on the other side, turn this into an AND, as we know
1370       // the bits will be cleared.
1371       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1372       // NB: it is okay if more bits are known than are requested
1373       if (C->getAPIntValue() == Known2.One) {
1374         SDValue ANDC =
1375             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1376         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1377       }
1378 
1379       // If the RHS is a constant, see if we can change it. Don't alter a -1
1380       // constant because that's a 'not' op, and that is better for combining
1381       // and codegen.
1382       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1383         // We're flipping all demanded bits. Flip the undemanded bits too.
1384         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1385         return TLO.CombineTo(Op, New);
1386       }
1387     }
1388 
1389     // If we can't turn this into a 'not', try to shrink the constant.
1390     if (!C || !C->isAllOnes())
1391       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1392         return true;
1393 
1394     Known ^= Known2;
1395     break;
1396   }
1397   case ISD::SELECT:
1398     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1399                              Depth + 1))
1400       return true;
1401     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1402                              Depth + 1))
1403       return true;
1404     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1405     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1406 
1407     // If the operands are constants, see if we can simplify them.
1408     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1409       return true;
1410 
1411     // Only known if known in both the LHS and RHS.
1412     Known = KnownBits::commonBits(Known, Known2);
1413     break;
1414   case ISD::SELECT_CC:
1415     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1416                              Depth + 1))
1417       return true;
1418     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1419                              Depth + 1))
1420       return true;
1421     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1422     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1423 
1424     // If the operands are constants, see if we can simplify them.
1425     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1426       return true;
1427 
1428     // Only known if known in both the LHS and RHS.
1429     Known = KnownBits::commonBits(Known, Known2);
1430     break;
1431   case ISD::SETCC: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1435     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1436     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1437     // -1, we may be able to bypass the setcc.
1438     if (DemandedBits.isSignMask() &&
1439         Op0.getScalarValueSizeInBits() == BitWidth &&
1440         getBooleanContents(Op0.getValueType()) ==
1441             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1442       // If we're testing X < 0, then this compare isn't needed - just use X!
1443       // FIXME: We're limiting to integer types here, but this should also work
1444       // if we don't care about FP signed-zero. The use of SETLT with FP means
1445       // that we don't care about NaNs.
1446       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1447           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1448         return TLO.CombineTo(Op, Op0);
1449 
1450       // TODO: Should we check for other forms of sign-bit comparisons?
1451       // Examples: X <= -1, X >= 0
1452     }
1453     if (getBooleanContents(Op0.getValueType()) ==
1454             TargetLowering::ZeroOrOneBooleanContent &&
1455         BitWidth > 1)
1456       Known.Zero.setBitsFrom(1);
1457     break;
1458   }
1459   case ISD::SHL: {
1460     SDValue Op0 = Op.getOperand(0);
1461     SDValue Op1 = Op.getOperand(1);
1462     EVT ShiftVT = Op1.getValueType();
1463 
1464     if (const APInt *SA =
1465             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1466       unsigned ShAmt = SA->getZExtValue();
1467       if (ShAmt == 0)
1468         return TLO.CombineTo(Op, Op0);
1469 
1470       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1471       // single shift.  We can do this if the bottom bits (which are shifted
1472       // out) are never demanded.
1473       // TODO - support non-uniform vector amounts.
1474       if (Op0.getOpcode() == ISD::SRL) {
1475         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1476           if (const APInt *SA2 =
1477                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1478             unsigned C1 = SA2->getZExtValue();
1479             unsigned Opc = ISD::SHL;
1480             int Diff = ShAmt - C1;
1481             if (Diff < 0) {
1482               Diff = -Diff;
1483               Opc = ISD::SRL;
1484             }
1485             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1486             return TLO.CombineTo(
1487                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1488           }
1489         }
1490       }
1491 
1492       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1493       // are not demanded. This will likely allow the anyext to be folded away.
1494       // TODO - support non-uniform vector amounts.
1495       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1496         SDValue InnerOp = Op0.getOperand(0);
1497         EVT InnerVT = InnerOp.getValueType();
1498         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1499         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1500             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1501           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1502           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1503             ShTy = InnerVT;
1504           SDValue NarrowShl =
1505               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1506                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1507           return TLO.CombineTo(
1508               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1509         }
1510 
1511         // Repeat the SHL optimization above in cases where an extension
1512         // intervenes: (shl (anyext (shr x, c1)), c2) to
1513         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1514         // aren't demanded (as above) and that the shifted upper c1 bits of
1515         // x aren't demanded.
1516         // TODO - support non-uniform vector amounts.
1517         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1518             InnerOp.hasOneUse()) {
1519           if (const APInt *SA2 =
1520                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1521             unsigned InnerShAmt = SA2->getZExtValue();
1522             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1523                 DemandedBits.getActiveBits() <=
1524                     (InnerBits - InnerShAmt + ShAmt) &&
1525                 DemandedBits.countTrailingZeros() >= ShAmt) {
1526               SDValue NewSA =
1527                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1528               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1529                                                InnerOp.getOperand(0));
1530               return TLO.CombineTo(
1531                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1532             }
1533           }
1534         }
1535       }
1536 
1537       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1538       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1539                                Depth + 1))
1540         return true;
1541       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1542       Known.Zero <<= ShAmt;
1543       Known.One <<= ShAmt;
1544       // low bits known zero.
1545       Known.Zero.setLowBits(ShAmt);
1546 
1547       // Try shrinking the operation as long as the shift amount will still be
1548       // in range.
1549       if ((ShAmt < DemandedBits.getActiveBits()) &&
1550           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1551         return true;
1552     }
1553 
1554     // If we are only demanding sign bits then we can use the shift source
1555     // directly.
1556     if (const APInt *MaxSA =
1557             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1558       unsigned ShAmt = MaxSA->getZExtValue();
1559       unsigned NumSignBits =
1560           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1561       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1562       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1563         return TLO.CombineTo(Op, Op0);
1564     }
1565     break;
1566   }
1567   case ISD::SRL: {
1568     SDValue Op0 = Op.getOperand(0);
1569     SDValue Op1 = Op.getOperand(1);
1570     EVT ShiftVT = Op1.getValueType();
1571 
1572     if (const APInt *SA =
1573             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1574       unsigned ShAmt = SA->getZExtValue();
1575       if (ShAmt == 0)
1576         return TLO.CombineTo(Op, Op0);
1577 
1578       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1579       // single shift.  We can do this if the top bits (which are shifted out)
1580       // are never demanded.
1581       // TODO - support non-uniform vector amounts.
1582       if (Op0.getOpcode() == ISD::SHL) {
1583         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1584           if (const APInt *SA2 =
1585                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1586             unsigned C1 = SA2->getZExtValue();
1587             unsigned Opc = ISD::SRL;
1588             int Diff = ShAmt - C1;
1589             if (Diff < 0) {
1590               Diff = -Diff;
1591               Opc = ISD::SHL;
1592             }
1593             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1594             return TLO.CombineTo(
1595                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1596           }
1597         }
1598       }
1599 
1600       APInt InDemandedMask = (DemandedBits << ShAmt);
1601 
1602       // If the shift is exact, then it does demand the low bits (and knows that
1603       // they are zero).
1604       if (Op->getFlags().hasExact())
1605         InDemandedMask.setLowBits(ShAmt);
1606 
1607       // Compute the new bits that are at the top now.
1608       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1609                                Depth + 1))
1610         return true;
1611       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1612       Known.Zero.lshrInPlace(ShAmt);
1613       Known.One.lshrInPlace(ShAmt);
1614       // High bits known zero.
1615       Known.Zero.setHighBits(ShAmt);
1616     }
1617     break;
1618   }
1619   case ISD::SRA: {
1620     SDValue Op0 = Op.getOperand(0);
1621     SDValue Op1 = Op.getOperand(1);
1622     EVT ShiftVT = Op1.getValueType();
1623 
1624     // If we only want bits that already match the signbit then we don't need
1625     // to shift.
1626     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1627     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1628         NumHiDemandedBits)
1629       return TLO.CombineTo(Op, Op0);
1630 
1631     // If this is an arithmetic shift right and only the low-bit is set, we can
1632     // always convert this into a logical shr, even if the shift amount is
1633     // variable.  The low bit of the shift cannot be an input sign bit unless
1634     // the shift amount is >= the size of the datatype, which is undefined.
1635     if (DemandedBits.isOne())
1636       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1637 
1638     if (const APInt *SA =
1639             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1640       unsigned ShAmt = SA->getZExtValue();
1641       if (ShAmt == 0)
1642         return TLO.CombineTo(Op, Op0);
1643 
1644       APInt InDemandedMask = (DemandedBits << ShAmt);
1645 
1646       // If the shift is exact, then it does demand the low bits (and knows that
1647       // they are zero).
1648       if (Op->getFlags().hasExact())
1649         InDemandedMask.setLowBits(ShAmt);
1650 
1651       // If any of the demanded bits are produced by the sign extension, we also
1652       // demand the input sign bit.
1653       if (DemandedBits.countLeadingZeros() < ShAmt)
1654         InDemandedMask.setSignBit();
1655 
1656       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1657                                Depth + 1))
1658         return true;
1659       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1660       Known.Zero.lshrInPlace(ShAmt);
1661       Known.One.lshrInPlace(ShAmt);
1662 
1663       // If the input sign bit is known to be zero, or if none of the top bits
1664       // are demanded, turn this into an unsigned shift right.
1665       if (Known.Zero[BitWidth - ShAmt - 1] ||
1666           DemandedBits.countLeadingZeros() >= ShAmt) {
1667         SDNodeFlags Flags;
1668         Flags.setExact(Op->getFlags().hasExact());
1669         return TLO.CombineTo(
1670             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1671       }
1672 
1673       int Log2 = DemandedBits.exactLogBase2();
1674       if (Log2 >= 0) {
1675         // The bit must come from the sign.
1676         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1677         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1678       }
1679 
1680       if (Known.One[BitWidth - ShAmt - 1])
1681         // New bits are known one.
1682         Known.One.setHighBits(ShAmt);
1683 
1684       // Attempt to avoid multi-use ops if we don't need anything from them.
1685       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1686         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1687             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1688         if (DemandedOp0) {
1689           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1690           return TLO.CombineTo(Op, NewOp);
1691         }
1692       }
1693     }
1694     break;
1695   }
1696   case ISD::FSHL:
1697   case ISD::FSHR: {
1698     SDValue Op0 = Op.getOperand(0);
1699     SDValue Op1 = Op.getOperand(1);
1700     SDValue Op2 = Op.getOperand(2);
1701     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1702 
1703     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1704       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1705 
1706       // For fshl, 0-shift returns the 1st arg.
1707       // For fshr, 0-shift returns the 2nd arg.
1708       if (Amt == 0) {
1709         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1710                                  Known, TLO, Depth + 1))
1711           return true;
1712         break;
1713       }
1714 
1715       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1716       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1717       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1718       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1719       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1720                                Depth + 1))
1721         return true;
1722       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1723                                Depth + 1))
1724         return true;
1725 
1726       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1727       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1728       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1729       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1730       Known.One |= Known2.One;
1731       Known.Zero |= Known2.Zero;
1732     }
1733 
1734     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1735     if (isPowerOf2_32(BitWidth)) {
1736       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1737       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1738                                Known2, TLO, Depth + 1))
1739         return true;
1740     }
1741     break;
1742   }
1743   case ISD::ROTL:
1744   case ISD::ROTR: {
1745     SDValue Op0 = Op.getOperand(0);
1746     SDValue Op1 = Op.getOperand(1);
1747     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1748 
1749     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1750     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1751       return TLO.CombineTo(Op, Op0);
1752 
1753     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1754       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1755       unsigned RevAmt = BitWidth - Amt;
1756 
1757       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1758       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1759       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1760       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1761                                Depth + 1))
1762         return true;
1763 
1764       // rot*(x, 0) --> x
1765       if (Amt == 0)
1766         return TLO.CombineTo(Op, Op0);
1767 
1768       // See if we don't demand either half of the rotated bits.
1769       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1770           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1771         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1772         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1773       }
1774       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1775           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1776         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1777         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1778       }
1779     }
1780 
1781     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1782     if (isPowerOf2_32(BitWidth)) {
1783       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1784       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1785                                Depth + 1))
1786         return true;
1787     }
1788     break;
1789   }
1790   case ISD::UMIN: {
1791     // Check if one arg is always less than (or equal) to the other arg.
1792     SDValue Op0 = Op.getOperand(0);
1793     SDValue Op1 = Op.getOperand(1);
1794     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1795     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1796     Known = KnownBits::umin(Known0, Known1);
1797     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1798       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1799     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1800       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1801     break;
1802   }
1803   case ISD::UMAX: {
1804     // Check if one arg is always greater than (or equal) to the other arg.
1805     SDValue Op0 = Op.getOperand(0);
1806     SDValue Op1 = Op.getOperand(1);
1807     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1808     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1809     Known = KnownBits::umax(Known0, Known1);
1810     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1811       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1812     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1813       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1814     break;
1815   }
1816   case ISD::BITREVERSE: {
1817     SDValue Src = Op.getOperand(0);
1818     APInt DemandedSrcBits = DemandedBits.reverseBits();
1819     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1820                              Depth + 1))
1821       return true;
1822     Known.One = Known2.One.reverseBits();
1823     Known.Zero = Known2.Zero.reverseBits();
1824     break;
1825   }
1826   case ISD::BSWAP: {
1827     SDValue Src = Op.getOperand(0);
1828 
1829     // If the only bits demanded come from one byte of the bswap result,
1830     // just shift the input byte into position to eliminate the bswap.
1831     unsigned NLZ = DemandedBits.countLeadingZeros();
1832     unsigned NTZ = DemandedBits.countTrailingZeros();
1833 
1834     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1835     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1836     // have 14 leading zeros, round to 8.
1837     NLZ = alignDown(NLZ, 8);
1838     NTZ = alignDown(NTZ, 8);
1839     // If we need exactly one byte, we can do this transformation.
1840     if (BitWidth - NLZ - NTZ == 8) {
1841       // Replace this with either a left or right shift to get the byte into
1842       // the right place.
1843       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1844       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1845         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1846         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1847         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1848         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1849         return TLO.CombineTo(Op, NewOp);
1850       }
1851     }
1852 
1853     APInt DemandedSrcBits = DemandedBits.byteSwap();
1854     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1855                              Depth + 1))
1856       return true;
1857     Known.One = Known2.One.byteSwap();
1858     Known.Zero = Known2.Zero.byteSwap();
1859     break;
1860   }
1861   case ISD::CTPOP: {
1862     // If only 1 bit is demanded, replace with PARITY as long as we're before
1863     // op legalization.
1864     // FIXME: Limit to scalars for now.
1865     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1866       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1867                                                Op.getOperand(0)));
1868 
1869     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1870     break;
1871   }
1872   case ISD::SIGN_EXTEND_INREG: {
1873     SDValue Op0 = Op.getOperand(0);
1874     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1875     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1876 
1877     // If we only care about the highest bit, don't bother shifting right.
1878     if (DemandedBits.isSignMask()) {
1879       unsigned MinSignedBits =
1880           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
1881       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1882       // However if the input is already sign extended we expect the sign
1883       // extension to be dropped altogether later and do not simplify.
1884       if (!AlreadySignExtended) {
1885         // Compute the correct shift amount type, which must be getShiftAmountTy
1886         // for scalar types after legalization.
1887         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1888                                                getShiftAmountTy(VT, DL));
1889         return TLO.CombineTo(Op,
1890                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1891       }
1892     }
1893 
1894     // If none of the extended bits are demanded, eliminate the sextinreg.
1895     if (DemandedBits.getActiveBits() <= ExVTBits)
1896       return TLO.CombineTo(Op, Op0);
1897 
1898     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1899 
1900     // Since the sign extended bits are demanded, we know that the sign
1901     // bit is demanded.
1902     InputDemandedBits.setBit(ExVTBits - 1);
1903 
1904     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1905       return true;
1906     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1907 
1908     // If the sign bit of the input is known set or clear, then we know the
1909     // top bits of the result.
1910 
1911     // If the input sign bit is known zero, convert this into a zero extension.
1912     if (Known.Zero[ExVTBits - 1])
1913       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1914 
1915     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1916     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1917       Known.One.setBitsFrom(ExVTBits);
1918       Known.Zero &= Mask;
1919     } else { // Input sign bit unknown
1920       Known.Zero &= Mask;
1921       Known.One &= Mask;
1922     }
1923     break;
1924   }
1925   case ISD::BUILD_PAIR: {
1926     EVT HalfVT = Op.getOperand(0).getValueType();
1927     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1928 
1929     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1930     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1931 
1932     KnownBits KnownLo, KnownHi;
1933 
1934     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1935       return true;
1936 
1937     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1938       return true;
1939 
1940     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1941                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1942 
1943     Known.One = KnownLo.One.zext(BitWidth) |
1944                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1945     break;
1946   }
1947   case ISD::ZERO_EXTEND:
1948   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1949     SDValue Src = Op.getOperand(0);
1950     EVT SrcVT = Src.getValueType();
1951     unsigned InBits = SrcVT.getScalarSizeInBits();
1952     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1953     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1954 
1955     // If none of the top bits are demanded, convert this into an any_extend.
1956     if (DemandedBits.getActiveBits() <= InBits) {
1957       // If we only need the non-extended bits of the bottom element
1958       // then we can just bitcast to the result.
1959       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1960           VT.getSizeInBits() == SrcVT.getSizeInBits())
1961         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1962 
1963       unsigned Opc =
1964           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1965       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1966         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1967     }
1968 
1969     APInt InDemandedBits = DemandedBits.trunc(InBits);
1970     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1971     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1972                              Depth + 1))
1973       return true;
1974     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1975     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1976     Known = Known.zext(BitWidth);
1977 
1978     // Attempt to avoid multi-use ops if we don't need anything from them.
1979     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1980             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1981       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1982     break;
1983   }
1984   case ISD::SIGN_EXTEND:
1985   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1986     SDValue Src = Op.getOperand(0);
1987     EVT SrcVT = Src.getValueType();
1988     unsigned InBits = SrcVT.getScalarSizeInBits();
1989     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1990     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1991 
1992     // If none of the top bits are demanded, convert this into an any_extend.
1993     if (DemandedBits.getActiveBits() <= InBits) {
1994       // If we only need the non-extended bits of the bottom element
1995       // then we can just bitcast to the result.
1996       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1997           VT.getSizeInBits() == SrcVT.getSizeInBits())
1998         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1999 
2000       unsigned Opc =
2001           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2002       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2003         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2004     }
2005 
2006     APInt InDemandedBits = DemandedBits.trunc(InBits);
2007     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2008 
2009     // Since some of the sign extended bits are demanded, we know that the sign
2010     // bit is demanded.
2011     InDemandedBits.setBit(InBits - 1);
2012 
2013     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2014                              Depth + 1))
2015       return true;
2016     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2017     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2018 
2019     // If the sign bit is known one, the top bits match.
2020     Known = Known.sext(BitWidth);
2021 
2022     // If the sign bit is known zero, convert this to a zero extend.
2023     if (Known.isNonNegative()) {
2024       unsigned Opc =
2025           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2026       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2027         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2028     }
2029 
2030     // Attempt to avoid multi-use ops if we don't need anything from them.
2031     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2032             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2033       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2034     break;
2035   }
2036   case ISD::ANY_EXTEND:
2037   case ISD::ANY_EXTEND_VECTOR_INREG: {
2038     SDValue Src = Op.getOperand(0);
2039     EVT SrcVT = Src.getValueType();
2040     unsigned InBits = SrcVT.getScalarSizeInBits();
2041     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2042     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2043 
2044     // If we only need the bottom element then we can just bitcast.
2045     // TODO: Handle ANY_EXTEND?
2046     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2047         VT.getSizeInBits() == SrcVT.getSizeInBits())
2048       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2049 
2050     APInt InDemandedBits = DemandedBits.trunc(InBits);
2051     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2052     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2053                              Depth + 1))
2054       return true;
2055     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2056     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2057     Known = Known.anyext(BitWidth);
2058 
2059     // Attempt to avoid multi-use ops if we don't need anything from them.
2060     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2061             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2062       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2063     break;
2064   }
2065   case ISD::TRUNCATE: {
2066     SDValue Src = Op.getOperand(0);
2067 
2068     // Simplify the input, using demanded bit information, and compute the known
2069     // zero/one bits live out.
2070     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2071     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2072     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2073                              Depth + 1))
2074       return true;
2075     Known = Known.trunc(BitWidth);
2076 
2077     // Attempt to avoid multi-use ops if we don't need anything from them.
2078     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2079             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2080       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2081 
2082     // If the input is only used by this truncate, see if we can shrink it based
2083     // on the known demanded bits.
2084     if (Src.getNode()->hasOneUse()) {
2085       switch (Src.getOpcode()) {
2086       default:
2087         break;
2088       case ISD::SRL:
2089         // Shrink SRL by a constant if none of the high bits shifted in are
2090         // demanded.
2091         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2092           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2093           // undesirable.
2094           break;
2095 
2096         const APInt *ShAmtC =
2097             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2098         if (!ShAmtC || ShAmtC->uge(BitWidth))
2099           break;
2100         uint64_t ShVal = ShAmtC->getZExtValue();
2101 
2102         APInt HighBits =
2103             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2104         HighBits.lshrInPlace(ShVal);
2105         HighBits = HighBits.trunc(BitWidth);
2106 
2107         if (!(HighBits & DemandedBits)) {
2108           // None of the shifted in bits are needed.  Add a truncate of the
2109           // shift input, then shift it.
2110           SDValue NewShAmt = TLO.DAG.getConstant(
2111               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2112           SDValue NewTrunc =
2113               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2114           return TLO.CombineTo(
2115               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2116         }
2117         break;
2118       }
2119     }
2120 
2121     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2122     break;
2123   }
2124   case ISD::AssertZext: {
2125     // AssertZext demands all of the high bits, plus any of the low bits
2126     // demanded by its users.
2127     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2128     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2129     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2130                              TLO, Depth + 1))
2131       return true;
2132     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2133 
2134     Known.Zero |= ~InMask;
2135     break;
2136   }
2137   case ISD::EXTRACT_VECTOR_ELT: {
2138     SDValue Src = Op.getOperand(0);
2139     SDValue Idx = Op.getOperand(1);
2140     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2141     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2142 
2143     if (SrcEltCnt.isScalable())
2144       return false;
2145 
2146     // Demand the bits from every vector element without a constant index.
2147     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2148     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2149     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2150       if (CIdx->getAPIntValue().ult(NumSrcElts))
2151         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2152 
2153     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2154     // anything about the extended bits.
2155     APInt DemandedSrcBits = DemandedBits;
2156     if (BitWidth > EltBitWidth)
2157       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2158 
2159     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2160                              Depth + 1))
2161       return true;
2162 
2163     // Attempt to avoid multi-use ops if we don't need anything from them.
2164     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2165       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2166               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2167         SDValue NewOp =
2168             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2169         return TLO.CombineTo(Op, NewOp);
2170       }
2171     }
2172 
2173     Known = Known2;
2174     if (BitWidth > EltBitWidth)
2175       Known = Known.anyext(BitWidth);
2176     break;
2177   }
2178   case ISD::BITCAST: {
2179     SDValue Src = Op.getOperand(0);
2180     EVT SrcVT = Src.getValueType();
2181     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2182 
2183     // If this is an FP->Int bitcast and if the sign bit is the only
2184     // thing demanded, turn this into a FGETSIGN.
2185     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2186         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2187         SrcVT.isFloatingPoint()) {
2188       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2189       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2190       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2191           SrcVT != MVT::f128) {
2192         // Cannot eliminate/lower SHL for f128 yet.
2193         EVT Ty = OpVTLegal ? VT : MVT::i32;
2194         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2195         // place.  We expect the SHL to be eliminated by other optimizations.
2196         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2197         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2198         if (!OpVTLegal && OpVTSizeInBits > 32)
2199           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2200         unsigned ShVal = Op.getValueSizeInBits() - 1;
2201         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2202         return TLO.CombineTo(Op,
2203                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2204       }
2205     }
2206 
2207     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2208     // Demand the elt/bit if any of the original elts/bits are demanded.
2209     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2210       unsigned Scale = BitWidth / NumSrcEltBits;
2211       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2212       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2213       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2214       for (unsigned i = 0; i != Scale; ++i) {
2215         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2216         unsigned BitOffset = EltOffset * NumSrcEltBits;
2217         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2218         if (!Sub.isZero()) {
2219           DemandedSrcBits |= Sub;
2220           for (unsigned j = 0; j != NumElts; ++j)
2221             if (DemandedElts[j])
2222               DemandedSrcElts.setBit((j * Scale) + i);
2223         }
2224       }
2225 
2226       APInt KnownSrcUndef, KnownSrcZero;
2227       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2228                                      KnownSrcZero, TLO, Depth + 1))
2229         return true;
2230 
2231       KnownBits KnownSrcBits;
2232       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2233                                KnownSrcBits, TLO, Depth + 1))
2234         return true;
2235     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2236       // TODO - bigendian once we have test coverage.
2237       unsigned Scale = NumSrcEltBits / BitWidth;
2238       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2239       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2240       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2241       for (unsigned i = 0; i != NumElts; ++i)
2242         if (DemandedElts[i]) {
2243           unsigned Offset = (i % Scale) * BitWidth;
2244           DemandedSrcBits.insertBits(DemandedBits, Offset);
2245           DemandedSrcElts.setBit(i / Scale);
2246         }
2247 
2248       if (SrcVT.isVector()) {
2249         APInt KnownSrcUndef, KnownSrcZero;
2250         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2251                                        KnownSrcZero, TLO, Depth + 1))
2252           return true;
2253       }
2254 
2255       KnownBits KnownSrcBits;
2256       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2257                                KnownSrcBits, TLO, Depth + 1))
2258         return true;
2259     }
2260 
2261     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2262     // recursive call where Known may be useful to the caller.
2263     if (Depth > 0) {
2264       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2265       return false;
2266     }
2267     break;
2268   }
2269   case ISD::MUL:
2270     if (DemandedBits.isPowerOf2()) {
2271       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2272       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2273       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2274       unsigned CTZ = DemandedBits.countTrailingZeros();
2275       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2276       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2277         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2278         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2279         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2280         return TLO.CombineTo(Op, Shl);
2281       }
2282     }
2283     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2284     // X * X is odd iff X is odd.
2285     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2286     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2287       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2288       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2289       return TLO.CombineTo(Op, And1);
2290     }
2291     LLVM_FALLTHROUGH;
2292   case ISD::ADD:
2293   case ISD::SUB: {
2294     // Add, Sub, and Mul don't demand any bits in positions beyond that
2295     // of the highest bit demanded of them.
2296     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2297     SDNodeFlags Flags = Op.getNode()->getFlags();
2298     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2299     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2300     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2301                              Depth + 1) ||
2302         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2303                              Depth + 1) ||
2304         // See if the operation should be performed at a smaller bit width.
2305         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2306       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2307         // Disable the nsw and nuw flags. We can no longer guarantee that we
2308         // won't wrap after simplification.
2309         Flags.setNoSignedWrap(false);
2310         Flags.setNoUnsignedWrap(false);
2311         SDValue NewOp =
2312             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2313         return TLO.CombineTo(Op, NewOp);
2314       }
2315       return true;
2316     }
2317 
2318     // Attempt to avoid multi-use ops if we don't need anything from them.
2319     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2320       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2321           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2322       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2323           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2324       if (DemandedOp0 || DemandedOp1) {
2325         Flags.setNoSignedWrap(false);
2326         Flags.setNoUnsignedWrap(false);
2327         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2328         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2329         SDValue NewOp =
2330             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2331         return TLO.CombineTo(Op, NewOp);
2332       }
2333     }
2334 
2335     // If we have a constant operand, we may be able to turn it into -1 if we
2336     // do not demand the high bits. This can make the constant smaller to
2337     // encode, allow more general folding, or match specialized instruction
2338     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2339     // is probably not useful (and could be detrimental).
2340     ConstantSDNode *C = isConstOrConstSplat(Op1);
2341     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2342     if (C && !C->isAllOnes() && !C->isOne() &&
2343         (C->getAPIntValue() | HighMask).isAllOnes()) {
2344       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2345       // Disable the nsw and nuw flags. We can no longer guarantee that we
2346       // won't wrap after simplification.
2347       Flags.setNoSignedWrap(false);
2348       Flags.setNoUnsignedWrap(false);
2349       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2350       return TLO.CombineTo(Op, NewOp);
2351     }
2352 
2353     LLVM_FALLTHROUGH;
2354   }
2355   default:
2356     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2357       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2358                                             Known, TLO, Depth))
2359         return true;
2360       break;
2361     }
2362 
2363     // Just use computeKnownBits to compute output bits.
2364     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2365     break;
2366   }
2367 
2368   // If we know the value of all of the demanded bits, return this as a
2369   // constant.
2370   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2371     // Avoid folding to a constant if any OpaqueConstant is involved.
2372     const SDNode *N = Op.getNode();
2373     for (SDNode *Op :
2374          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2375       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2376         if (C->isOpaque())
2377           return false;
2378     }
2379     if (VT.isInteger())
2380       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2381     if (VT.isFloatingPoint())
2382       return TLO.CombineTo(
2383           Op,
2384           TLO.DAG.getConstantFP(
2385               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2386   }
2387 
2388   return false;
2389 }
2390 
2391 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2392                                                 const APInt &DemandedElts,
2393                                                 DAGCombinerInfo &DCI) const {
2394   SelectionDAG &DAG = DCI.DAG;
2395   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2396                         !DCI.isBeforeLegalizeOps());
2397 
2398   APInt KnownUndef, KnownZero;
2399   bool Simplified =
2400       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2401   if (Simplified) {
2402     DCI.AddToWorklist(Op.getNode());
2403     DCI.CommitTargetLoweringOpt(TLO);
2404   }
2405 
2406   return Simplified;
2407 }
2408 
2409 /// Given a vector binary operation and known undefined elements for each input
2410 /// operand, compute whether each element of the output is undefined.
2411 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2412                                          const APInt &UndefOp0,
2413                                          const APInt &UndefOp1) {
2414   EVT VT = BO.getValueType();
2415   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2416          "Vector binop only");
2417 
2418   EVT EltVT = VT.getVectorElementType();
2419   unsigned NumElts = VT.getVectorNumElements();
2420   assert(UndefOp0.getBitWidth() == NumElts &&
2421          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2422 
2423   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2424                                    const APInt &UndefVals) {
2425     if (UndefVals[Index])
2426       return DAG.getUNDEF(EltVT);
2427 
2428     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2429       // Try hard to make sure that the getNode() call is not creating temporary
2430       // nodes. Ignore opaque integers because they do not constant fold.
2431       SDValue Elt = BV->getOperand(Index);
2432       auto *C = dyn_cast<ConstantSDNode>(Elt);
2433       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2434         return Elt;
2435     }
2436 
2437     return SDValue();
2438   };
2439 
2440   APInt KnownUndef = APInt::getZero(NumElts);
2441   for (unsigned i = 0; i != NumElts; ++i) {
2442     // If both inputs for this element are either constant or undef and match
2443     // the element type, compute the constant/undef result for this element of
2444     // the vector.
2445     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2446     // not handle FP constants. The code within getNode() should be refactored
2447     // to avoid the danger of creating a bogus temporary node here.
2448     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2449     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2450     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2451       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2452         KnownUndef.setBit(i);
2453   }
2454   return KnownUndef;
2455 }
2456 
2457 bool TargetLowering::SimplifyDemandedVectorElts(
2458     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2459     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2460     bool AssumeSingleUse) const {
2461   EVT VT = Op.getValueType();
2462   unsigned Opcode = Op.getOpcode();
2463   APInt DemandedElts = OriginalDemandedElts;
2464   unsigned NumElts = DemandedElts.getBitWidth();
2465   assert(VT.isVector() && "Expected vector op");
2466 
2467   KnownUndef = KnownZero = APInt::getZero(NumElts);
2468 
2469   // TODO: For now we assume we know nothing about scalable vectors.
2470   if (VT.isScalableVector())
2471     return false;
2472 
2473   assert(VT.getVectorNumElements() == NumElts &&
2474          "Mask size mismatches value type element count!");
2475 
2476   // Undef operand.
2477   if (Op.isUndef()) {
2478     KnownUndef.setAllBits();
2479     return false;
2480   }
2481 
2482   // If Op has other users, assume that all elements are needed.
2483   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2484     DemandedElts.setAllBits();
2485 
2486   // Not demanding any elements from Op.
2487   if (DemandedElts == 0) {
2488     KnownUndef.setAllBits();
2489     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2490   }
2491 
2492   // Limit search depth.
2493   if (Depth >= SelectionDAG::MaxRecursionDepth)
2494     return false;
2495 
2496   SDLoc DL(Op);
2497   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2498   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2499 
2500   // Helper for demanding the specified elements and all the bits of both binary
2501   // operands.
2502   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2503     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2504                                                            TLO.DAG, Depth + 1);
2505     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2506                                                            TLO.DAG, Depth + 1);
2507     if (NewOp0 || NewOp1) {
2508       SDValue NewOp = TLO.DAG.getNode(
2509           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2510       return TLO.CombineTo(Op, NewOp);
2511     }
2512     return false;
2513   };
2514 
2515   switch (Opcode) {
2516   case ISD::SCALAR_TO_VECTOR: {
2517     if (!DemandedElts[0]) {
2518       KnownUndef.setAllBits();
2519       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2520     }
2521     SDValue ScalarSrc = Op.getOperand(0);
2522     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2523       SDValue Src = ScalarSrc.getOperand(0);
2524       SDValue Idx = ScalarSrc.getOperand(1);
2525       EVT SrcVT = Src.getValueType();
2526 
2527       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2528 
2529       if (SrcEltCnt.isScalable())
2530         return false;
2531 
2532       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2533       if (isNullConstant(Idx)) {
2534         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2535         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2536         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2537         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2538                                        TLO, Depth + 1))
2539           return true;
2540       }
2541     }
2542     KnownUndef.setHighBits(NumElts - 1);
2543     break;
2544   }
2545   case ISD::BITCAST: {
2546     SDValue Src = Op.getOperand(0);
2547     EVT SrcVT = Src.getValueType();
2548 
2549     // We only handle vectors here.
2550     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2551     if (!SrcVT.isVector())
2552       break;
2553 
2554     // Fast handling of 'identity' bitcasts.
2555     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2556     if (NumSrcElts == NumElts)
2557       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2558                                         KnownZero, TLO, Depth + 1);
2559 
2560     APInt SrcDemandedElts, SrcZero, SrcUndef;
2561 
2562     // Bitcast from 'large element' src vector to 'small element' vector, we
2563     // must demand a source element if any DemandedElt maps to it.
2564     if ((NumElts % NumSrcElts) == 0) {
2565       unsigned Scale = NumElts / NumSrcElts;
2566       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2567       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2568                                      TLO, Depth + 1))
2569         return true;
2570 
2571       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2572       // of the large element.
2573       // TODO - bigendian once we have test coverage.
2574       if (IsLE) {
2575         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2576         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2577         for (unsigned i = 0; i != NumElts; ++i)
2578           if (DemandedElts[i]) {
2579             unsigned Ofs = (i % Scale) * EltSizeInBits;
2580             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2581           }
2582 
2583         KnownBits Known;
2584         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2585                                  TLO, Depth + 1))
2586           return true;
2587       }
2588 
2589       // If the src element is zero/undef then all the output elements will be -
2590       // only demanded elements are guaranteed to be correct.
2591       for (unsigned i = 0; i != NumSrcElts; ++i) {
2592         if (SrcDemandedElts[i]) {
2593           if (SrcZero[i])
2594             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2595           if (SrcUndef[i])
2596             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2597         }
2598       }
2599     }
2600 
2601     // Bitcast from 'small element' src vector to 'large element' vector, we
2602     // demand all smaller source elements covered by the larger demanded element
2603     // of this vector.
2604     if ((NumSrcElts % NumElts) == 0) {
2605       unsigned Scale = NumSrcElts / NumElts;
2606       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2607       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2608                                      TLO, Depth + 1))
2609         return true;
2610 
2611       // If all the src elements covering an output element are zero/undef, then
2612       // the output element will be as well, assuming it was demanded.
2613       for (unsigned i = 0; i != NumElts; ++i) {
2614         if (DemandedElts[i]) {
2615           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2616             KnownZero.setBit(i);
2617           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2618             KnownUndef.setBit(i);
2619         }
2620       }
2621     }
2622     break;
2623   }
2624   case ISD::BUILD_VECTOR: {
2625     // Check all elements and simplify any unused elements with UNDEF.
2626     if (!DemandedElts.isAllOnes()) {
2627       // Don't simplify BROADCASTS.
2628       if (llvm::any_of(Op->op_values(),
2629                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2630         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2631         bool Updated = false;
2632         for (unsigned i = 0; i != NumElts; ++i) {
2633           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2634             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2635             KnownUndef.setBit(i);
2636             Updated = true;
2637           }
2638         }
2639         if (Updated)
2640           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2641       }
2642     }
2643     for (unsigned i = 0; i != NumElts; ++i) {
2644       SDValue SrcOp = Op.getOperand(i);
2645       if (SrcOp.isUndef()) {
2646         KnownUndef.setBit(i);
2647       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2648                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2649         KnownZero.setBit(i);
2650       }
2651     }
2652     break;
2653   }
2654   case ISD::CONCAT_VECTORS: {
2655     EVT SubVT = Op.getOperand(0).getValueType();
2656     unsigned NumSubVecs = Op.getNumOperands();
2657     unsigned NumSubElts = SubVT.getVectorNumElements();
2658     for (unsigned i = 0; i != NumSubVecs; ++i) {
2659       SDValue SubOp = Op.getOperand(i);
2660       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2661       APInt SubUndef, SubZero;
2662       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2663                                      Depth + 1))
2664         return true;
2665       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2666       KnownZero.insertBits(SubZero, i * NumSubElts);
2667     }
2668     break;
2669   }
2670   case ISD::INSERT_SUBVECTOR: {
2671     // Demand any elements from the subvector and the remainder from the src its
2672     // inserted into.
2673     SDValue Src = Op.getOperand(0);
2674     SDValue Sub = Op.getOperand(1);
2675     uint64_t Idx = Op.getConstantOperandVal(2);
2676     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2677     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2678     APInt DemandedSrcElts = DemandedElts;
2679     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2680 
2681     APInt SubUndef, SubZero;
2682     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2683                                    Depth + 1))
2684       return true;
2685 
2686     // If none of the src operand elements are demanded, replace it with undef.
2687     if (!DemandedSrcElts && !Src.isUndef())
2688       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2689                                                TLO.DAG.getUNDEF(VT), Sub,
2690                                                Op.getOperand(2)));
2691 
2692     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2693                                    TLO, Depth + 1))
2694       return true;
2695     KnownUndef.insertBits(SubUndef, Idx);
2696     KnownZero.insertBits(SubZero, Idx);
2697 
2698     // Attempt to avoid multi-use ops if we don't need anything from them.
2699     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2700       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2701           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2702       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2703           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2704       if (NewSrc || NewSub) {
2705         NewSrc = NewSrc ? NewSrc : Src;
2706         NewSub = NewSub ? NewSub : Sub;
2707         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2708                                         NewSub, Op.getOperand(2));
2709         return TLO.CombineTo(Op, NewOp);
2710       }
2711     }
2712     break;
2713   }
2714   case ISD::EXTRACT_SUBVECTOR: {
2715     // Offset the demanded elts by the subvector index.
2716     SDValue Src = Op.getOperand(0);
2717     if (Src.getValueType().isScalableVector())
2718       break;
2719     uint64_t Idx = Op.getConstantOperandVal(1);
2720     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2721     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2722 
2723     APInt SrcUndef, SrcZero;
2724     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2725                                    Depth + 1))
2726       return true;
2727     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2728     KnownZero = SrcZero.extractBits(NumElts, Idx);
2729 
2730     // Attempt to avoid multi-use ops if we don't need anything from them.
2731     if (!DemandedElts.isAllOnes()) {
2732       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2733           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2734       if (NewSrc) {
2735         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2736                                         Op.getOperand(1));
2737         return TLO.CombineTo(Op, NewOp);
2738       }
2739     }
2740     break;
2741   }
2742   case ISD::INSERT_VECTOR_ELT: {
2743     SDValue Vec = Op.getOperand(0);
2744     SDValue Scl = Op.getOperand(1);
2745     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2746 
2747     // For a legal, constant insertion index, if we don't need this insertion
2748     // then strip it, else remove it from the demanded elts.
2749     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2750       unsigned Idx = CIdx->getZExtValue();
2751       if (!DemandedElts[Idx])
2752         return TLO.CombineTo(Op, Vec);
2753 
2754       APInt DemandedVecElts(DemandedElts);
2755       DemandedVecElts.clearBit(Idx);
2756       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2757                                      KnownZero, TLO, Depth + 1))
2758         return true;
2759 
2760       KnownUndef.setBitVal(Idx, Scl.isUndef());
2761 
2762       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2763       break;
2764     }
2765 
2766     APInt VecUndef, VecZero;
2767     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2768                                    Depth + 1))
2769       return true;
2770     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2771     break;
2772   }
2773   case ISD::VSELECT: {
2774     // Try to transform the select condition based on the current demanded
2775     // elements.
2776     // TODO: If a condition element is undef, we can choose from one arm of the
2777     //       select (and if one arm is undef, then we can propagate that to the
2778     //       result).
2779     // TODO - add support for constant vselect masks (see IR version of this).
2780     APInt UnusedUndef, UnusedZero;
2781     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2782                                    UnusedZero, TLO, Depth + 1))
2783       return true;
2784 
2785     // See if we can simplify either vselect operand.
2786     APInt DemandedLHS(DemandedElts);
2787     APInt DemandedRHS(DemandedElts);
2788     APInt UndefLHS, ZeroLHS;
2789     APInt UndefRHS, ZeroRHS;
2790     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2791                                    ZeroLHS, TLO, Depth + 1))
2792       return true;
2793     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2794                                    ZeroRHS, TLO, Depth + 1))
2795       return true;
2796 
2797     KnownUndef = UndefLHS & UndefRHS;
2798     KnownZero = ZeroLHS & ZeroRHS;
2799     break;
2800   }
2801   case ISD::VECTOR_SHUFFLE: {
2802     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2803 
2804     // Collect demanded elements from shuffle operands..
2805     APInt DemandedLHS(NumElts, 0);
2806     APInt DemandedRHS(NumElts, 0);
2807     for (unsigned i = 0; i != NumElts; ++i) {
2808       int M = ShuffleMask[i];
2809       if (M < 0 || !DemandedElts[i])
2810         continue;
2811       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2812       if (M < (int)NumElts)
2813         DemandedLHS.setBit(M);
2814       else
2815         DemandedRHS.setBit(M - NumElts);
2816     }
2817 
2818     // See if we can simplify either shuffle operand.
2819     APInt UndefLHS, ZeroLHS;
2820     APInt UndefRHS, ZeroRHS;
2821     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2822                                    ZeroLHS, TLO, Depth + 1))
2823       return true;
2824     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2825                                    ZeroRHS, TLO, Depth + 1))
2826       return true;
2827 
2828     // Simplify mask using undef elements from LHS/RHS.
2829     bool Updated = false;
2830     bool IdentityLHS = true, IdentityRHS = true;
2831     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2832     for (unsigned i = 0; i != NumElts; ++i) {
2833       int &M = NewMask[i];
2834       if (M < 0)
2835         continue;
2836       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2837           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2838         Updated = true;
2839         M = -1;
2840       }
2841       IdentityLHS &= (M < 0) || (M == (int)i);
2842       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2843     }
2844 
2845     // Update legal shuffle masks based on demanded elements if it won't reduce
2846     // to Identity which can cause premature removal of the shuffle mask.
2847     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2848       SDValue LegalShuffle =
2849           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2850                                   NewMask, TLO.DAG);
2851       if (LegalShuffle)
2852         return TLO.CombineTo(Op, LegalShuffle);
2853     }
2854 
2855     // Propagate undef/zero elements from LHS/RHS.
2856     for (unsigned i = 0; i != NumElts; ++i) {
2857       int M = ShuffleMask[i];
2858       if (M < 0) {
2859         KnownUndef.setBit(i);
2860       } else if (M < (int)NumElts) {
2861         if (UndefLHS[M])
2862           KnownUndef.setBit(i);
2863         if (ZeroLHS[M])
2864           KnownZero.setBit(i);
2865       } else {
2866         if (UndefRHS[M - NumElts])
2867           KnownUndef.setBit(i);
2868         if (ZeroRHS[M - NumElts])
2869           KnownZero.setBit(i);
2870       }
2871     }
2872     break;
2873   }
2874   case ISD::ANY_EXTEND_VECTOR_INREG:
2875   case ISD::SIGN_EXTEND_VECTOR_INREG:
2876   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2877     APInt SrcUndef, SrcZero;
2878     SDValue Src = Op.getOperand(0);
2879     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2880     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2881     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2882                                    Depth + 1))
2883       return true;
2884     KnownZero = SrcZero.zextOrTrunc(NumElts);
2885     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2886 
2887     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2888         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2889         DemandedSrcElts == 1) {
2890       // aext - if we just need the bottom element then we can bitcast.
2891       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2892     }
2893 
2894     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2895       // zext(undef) upper bits are guaranteed to be zero.
2896       if (DemandedElts.isSubsetOf(KnownUndef))
2897         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2898       KnownUndef.clearAllBits();
2899 
2900       // zext - if we just need the bottom element then we can mask:
2901       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2902       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2903           Op->isOnlyUserOf(Src.getNode()) &&
2904           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2905         SDLoc DL(Op);
2906         EVT SrcVT = Src.getValueType();
2907         EVT SrcSVT = SrcVT.getScalarType();
2908         SmallVector<SDValue> MaskElts;
2909         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2910         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2911         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2912         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2913                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2914           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2915           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2916         }
2917       }
2918     }
2919     break;
2920   }
2921 
2922   // TODO: There are more binop opcodes that could be handled here - MIN,
2923   // MAX, saturated math, etc.
2924   case ISD::ADD: {
2925     SDValue Op0 = Op.getOperand(0);
2926     SDValue Op1 = Op.getOperand(1);
2927     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2928       APInt UndefLHS, ZeroLHS;
2929       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2930                                      Depth + 1, /*AssumeSingleUse*/ true))
2931         return true;
2932     }
2933     LLVM_FALLTHROUGH;
2934   }
2935   case ISD::OR:
2936   case ISD::XOR:
2937   case ISD::SUB:
2938   case ISD::FADD:
2939   case ISD::FSUB:
2940   case ISD::FMUL:
2941   case ISD::FDIV:
2942   case ISD::FREM: {
2943     SDValue Op0 = Op.getOperand(0);
2944     SDValue Op1 = Op.getOperand(1);
2945 
2946     APInt UndefRHS, ZeroRHS;
2947     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2948                                    Depth + 1))
2949       return true;
2950     APInt UndefLHS, ZeroLHS;
2951     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2952                                    Depth + 1))
2953       return true;
2954 
2955     KnownZero = ZeroLHS & ZeroRHS;
2956     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2957 
2958     // Attempt to avoid multi-use ops if we don't need anything from them.
2959     // TODO - use KnownUndef to relax the demandedelts?
2960     if (!DemandedElts.isAllOnes())
2961       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2962         return true;
2963     break;
2964   }
2965   case ISD::SHL:
2966   case ISD::SRL:
2967   case ISD::SRA:
2968   case ISD::ROTL:
2969   case ISD::ROTR: {
2970     SDValue Op0 = Op.getOperand(0);
2971     SDValue Op1 = Op.getOperand(1);
2972 
2973     APInt UndefRHS, ZeroRHS;
2974     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2975                                    Depth + 1))
2976       return true;
2977     APInt UndefLHS, ZeroLHS;
2978     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2979                                    Depth + 1))
2980       return true;
2981 
2982     KnownZero = ZeroLHS;
2983     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2984 
2985     // Attempt to avoid multi-use ops if we don't need anything from them.
2986     // TODO - use KnownUndef to relax the demandedelts?
2987     if (!DemandedElts.isAllOnes())
2988       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2989         return true;
2990     break;
2991   }
2992   case ISD::MUL:
2993   case ISD::AND: {
2994     SDValue Op0 = Op.getOperand(0);
2995     SDValue Op1 = Op.getOperand(1);
2996 
2997     APInt SrcUndef, SrcZero;
2998     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2999                                    Depth + 1))
3000       return true;
3001     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3002                                    TLO, Depth + 1))
3003       return true;
3004 
3005     // If either side has a zero element, then the result element is zero, even
3006     // if the other is an UNDEF.
3007     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3008     // and then handle 'and' nodes with the rest of the binop opcodes.
3009     KnownZero |= SrcZero;
3010     KnownUndef &= SrcUndef;
3011     KnownUndef &= ~KnownZero;
3012 
3013     // Attempt to avoid multi-use ops if we don't need anything from them.
3014     // TODO - use KnownUndef to relax the demandedelts?
3015     if (!DemandedElts.isAllOnes())
3016       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3017         return true;
3018     break;
3019   }
3020   case ISD::TRUNCATE:
3021   case ISD::SIGN_EXTEND:
3022   case ISD::ZERO_EXTEND:
3023     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3024                                    KnownZero, TLO, Depth + 1))
3025       return true;
3026 
3027     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3028       // zext(undef) upper bits are guaranteed to be zero.
3029       if (DemandedElts.isSubsetOf(KnownUndef))
3030         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3031       KnownUndef.clearAllBits();
3032     }
3033     break;
3034   default: {
3035     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3036       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3037                                                   KnownZero, TLO, Depth))
3038         return true;
3039     } else {
3040       KnownBits Known;
3041       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3042       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3043                                TLO, Depth, AssumeSingleUse))
3044         return true;
3045     }
3046     break;
3047   }
3048   }
3049   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3050 
3051   // Constant fold all undef cases.
3052   // TODO: Handle zero cases as well.
3053   if (DemandedElts.isSubsetOf(KnownUndef))
3054     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3055 
3056   return false;
3057 }
3058 
3059 /// Determine which of the bits specified in Mask are known to be either zero or
3060 /// one and return them in the Known.
3061 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3062                                                    KnownBits &Known,
3063                                                    const APInt &DemandedElts,
3064                                                    const SelectionDAG &DAG,
3065                                                    unsigned Depth) const {
3066   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3067           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3068           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3069           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3070          "Should use MaskedValueIsZero if you don't know whether Op"
3071          " is a target node!");
3072   Known.resetAll();
3073 }
3074 
3075 void TargetLowering::computeKnownBitsForTargetInstr(
3076     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3077     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3078     unsigned Depth) const {
3079   Known.resetAll();
3080 }
3081 
3082 void TargetLowering::computeKnownBitsForFrameIndex(
3083   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3084   // The low bits are known zero if the pointer is aligned.
3085   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3086 }
3087 
3088 Align TargetLowering::computeKnownAlignForTargetInstr(
3089   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3090   unsigned Depth) const {
3091   return Align(1);
3092 }
3093 
3094 /// This method can be implemented by targets that want to expose additional
3095 /// information about sign bits to the DAG Combiner.
3096 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3097                                                          const APInt &,
3098                                                          const SelectionDAG &,
3099                                                          unsigned Depth) const {
3100   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3101           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3102           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3103           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3104          "Should use ComputeNumSignBits if you don't know whether Op"
3105          " is a target node!");
3106   return 1;
3107 }
3108 
3109 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3110   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3111   const MachineRegisterInfo &MRI, unsigned Depth) const {
3112   return 1;
3113 }
3114 
3115 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3116     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3117     TargetLoweringOpt &TLO, unsigned Depth) const {
3118   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3119           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3120           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3121           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3122          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3123          " is a target node!");
3124   return false;
3125 }
3126 
3127 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3128     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3129     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3130   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3131           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3132           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3133           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3134          "Should use SimplifyDemandedBits if you don't know whether Op"
3135          " is a target node!");
3136   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3137   return false;
3138 }
3139 
3140 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3141     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3142     SelectionDAG &DAG, unsigned Depth) const {
3143   assert(
3144       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3145        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3146        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3147        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3148       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3149       " is a target node!");
3150   return SDValue();
3151 }
3152 
3153 SDValue
3154 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3155                                         SDValue N1, MutableArrayRef<int> Mask,
3156                                         SelectionDAG &DAG) const {
3157   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3158   if (!LegalMask) {
3159     std::swap(N0, N1);
3160     ShuffleVectorSDNode::commuteMask(Mask);
3161     LegalMask = isShuffleMaskLegal(Mask, VT);
3162   }
3163 
3164   if (!LegalMask)
3165     return SDValue();
3166 
3167   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3168 }
3169 
3170 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3171   return nullptr;
3172 }
3173 
3174 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3175     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3176     bool PoisonOnly, unsigned Depth) const {
3177   assert(
3178       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3179        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3180        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3181        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3182       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3183       " is a target node!");
3184   return false;
3185 }
3186 
3187 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3188                                                   const SelectionDAG &DAG,
3189                                                   bool SNaN,
3190                                                   unsigned Depth) const {
3191   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3192           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3193           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3194           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3195          "Should use isKnownNeverNaN if you don't know whether Op"
3196          " is a target node!");
3197   return false;
3198 }
3199 
3200 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3201                                                const APInt &DemandedElts,
3202                                                APInt &UndefElts,
3203                                                unsigned Depth) const {
3204   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3205           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3206           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3207           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3208          "Should use isSplatValue if you don't know whether Op"
3209          " is a target node!");
3210   return false;
3211 }
3212 
3213 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3214 // work with truncating build vectors and vectors with elements of less than
3215 // 8 bits.
3216 bool TargetLowering::isConstTrueVal(SDValue N) const {
3217   if (!N)
3218     return false;
3219 
3220   unsigned EltWidth;
3221   APInt CVal;
3222   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3223                                                /*AllowTruncation=*/true)) {
3224     CVal = CN->getAPIntValue();
3225     EltWidth = N.getValueType().getScalarSizeInBits();
3226   } else
3227     return false;
3228 
3229   // If this is a truncating splat, truncate the splat value.
3230   // Otherwise, we may fail to match the expected values below.
3231   if (EltWidth < CVal.getBitWidth())
3232     CVal = CVal.trunc(EltWidth);
3233 
3234   switch (getBooleanContents(N.getValueType())) {
3235   case UndefinedBooleanContent:
3236     return CVal[0];
3237   case ZeroOrOneBooleanContent:
3238     return CVal.isOne();
3239   case ZeroOrNegativeOneBooleanContent:
3240     return CVal.isAllOnes();
3241   }
3242 
3243   llvm_unreachable("Invalid boolean contents");
3244 }
3245 
3246 bool TargetLowering::isConstFalseVal(SDValue N) const {
3247   if (!N)
3248     return false;
3249 
3250   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3251   if (!CN) {
3252     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3253     if (!BV)
3254       return false;
3255 
3256     // Only interested in constant splats, we don't care about undef
3257     // elements in identifying boolean constants and getConstantSplatNode
3258     // returns NULL if all ops are undef;
3259     CN = BV->getConstantSplatNode();
3260     if (!CN)
3261       return false;
3262   }
3263 
3264   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3265     return !CN->getAPIntValue()[0];
3266 
3267   return CN->isZero();
3268 }
3269 
3270 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3271                                        bool SExt) const {
3272   if (VT == MVT::i1)
3273     return N->isOne();
3274 
3275   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3276   switch (Cnt) {
3277   case TargetLowering::ZeroOrOneBooleanContent:
3278     // An extended value of 1 is always true, unless its original type is i1,
3279     // in which case it will be sign extended to -1.
3280     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3281   case TargetLowering::UndefinedBooleanContent:
3282   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3283     return N->isAllOnes() && SExt;
3284   }
3285   llvm_unreachable("Unexpected enumeration.");
3286 }
3287 
3288 /// This helper function of SimplifySetCC tries to optimize the comparison when
3289 /// either operand of the SetCC node is a bitwise-and instruction.
3290 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3291                                          ISD::CondCode Cond, const SDLoc &DL,
3292                                          DAGCombinerInfo &DCI) const {
3293   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3294     std::swap(N0, N1);
3295 
3296   SelectionDAG &DAG = DCI.DAG;
3297   EVT OpVT = N0.getValueType();
3298   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3299       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3300     return SDValue();
3301 
3302   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3303   // iff everything but LSB is known zero:
3304   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3305       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3306        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3307     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3308     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3309     if (DAG.MaskedValueIsZero(N0, UpperBits))
3310       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3311   }
3312 
3313   // Match these patterns in any of their permutations:
3314   // (X & Y) == Y
3315   // (X & Y) != Y
3316   SDValue X, Y;
3317   if (N0.getOperand(0) == N1) {
3318     X = N0.getOperand(1);
3319     Y = N0.getOperand(0);
3320   } else if (N0.getOperand(1) == N1) {
3321     X = N0.getOperand(0);
3322     Y = N0.getOperand(1);
3323   } else {
3324     return SDValue();
3325   }
3326 
3327   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3328   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3329     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3330     // Note that where Y is variable and is known to have at most one bit set
3331     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3332     // equivalent when Y == 0.
3333     assert(OpVT.isInteger());
3334     Cond = ISD::getSetCCInverse(Cond, OpVT);
3335     if (DCI.isBeforeLegalizeOps() ||
3336         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3337       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3338   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3339     // If the target supports an 'and-not' or 'and-complement' logic operation,
3340     // try to use that to make a comparison operation more efficient.
3341     // But don't do this transform if the mask is a single bit because there are
3342     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3343     // 'rlwinm' on PPC).
3344 
3345     // Bail out if the compare operand that we want to turn into a zero is
3346     // already a zero (otherwise, infinite loop).
3347     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3348     if (YConst && YConst->isZero())
3349       return SDValue();
3350 
3351     // Transform this into: ~X & Y == 0.
3352     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3353     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3354     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3355   }
3356 
3357   return SDValue();
3358 }
3359 
3360 /// There are multiple IR patterns that could be checking whether certain
3361 /// truncation of a signed number would be lossy or not. The pattern which is
3362 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3363 /// We are looking for the following pattern: (KeptBits is a constant)
3364 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3365 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3366 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3367 /// We will unfold it into the natural trunc+sext pattern:
3368 ///   ((%x << C) a>> C) dstcond %x
3369 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3370 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3371     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3372     const SDLoc &DL) const {
3373   // We must be comparing with a constant.
3374   ConstantSDNode *C1;
3375   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3376     return SDValue();
3377 
3378   // N0 should be:  add %x, (1 << (KeptBits-1))
3379   if (N0->getOpcode() != ISD::ADD)
3380     return SDValue();
3381 
3382   // And we must be 'add'ing a constant.
3383   ConstantSDNode *C01;
3384   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3385     return SDValue();
3386 
3387   SDValue X = N0->getOperand(0);
3388   EVT XVT = X.getValueType();
3389 
3390   // Validate constants ...
3391 
3392   APInt I1 = C1->getAPIntValue();
3393 
3394   ISD::CondCode NewCond;
3395   if (Cond == ISD::CondCode::SETULT) {
3396     NewCond = ISD::CondCode::SETEQ;
3397   } else if (Cond == ISD::CondCode::SETULE) {
3398     NewCond = ISD::CondCode::SETEQ;
3399     // But need to 'canonicalize' the constant.
3400     I1 += 1;
3401   } else if (Cond == ISD::CondCode::SETUGT) {
3402     NewCond = ISD::CondCode::SETNE;
3403     // But need to 'canonicalize' the constant.
3404     I1 += 1;
3405   } else if (Cond == ISD::CondCode::SETUGE) {
3406     NewCond = ISD::CondCode::SETNE;
3407   } else
3408     return SDValue();
3409 
3410   APInt I01 = C01->getAPIntValue();
3411 
3412   auto checkConstants = [&I1, &I01]() -> bool {
3413     // Both of them must be power-of-two, and the constant from setcc is bigger.
3414     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3415   };
3416 
3417   if (checkConstants()) {
3418     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3419   } else {
3420     // What if we invert constants? (and the target predicate)
3421     I1.negate();
3422     I01.negate();
3423     assert(XVT.isInteger());
3424     NewCond = getSetCCInverse(NewCond, XVT);
3425     if (!checkConstants())
3426       return SDValue();
3427     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3428   }
3429 
3430   // They are power-of-two, so which bit is set?
3431   const unsigned KeptBits = I1.logBase2();
3432   const unsigned KeptBitsMinusOne = I01.logBase2();
3433 
3434   // Magic!
3435   if (KeptBits != (KeptBitsMinusOne + 1))
3436     return SDValue();
3437   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3438 
3439   // We don't want to do this in every single case.
3440   SelectionDAG &DAG = DCI.DAG;
3441   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3442           XVT, KeptBits))
3443     return SDValue();
3444 
3445   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3446   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3447 
3448   // Unfold into:  ((%x << C) a>> C) cond %x
3449   // Where 'cond' will be either 'eq' or 'ne'.
3450   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3451   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3452   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3453   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3454 
3455   return T2;
3456 }
3457 
3458 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3459 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3460     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3461     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3462   assert(isConstOrConstSplat(N1C) &&
3463          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3464          "Should be a comparison with 0.");
3465   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3466          "Valid only for [in]equality comparisons.");
3467 
3468   unsigned NewShiftOpcode;
3469   SDValue X, C, Y;
3470 
3471   SelectionDAG &DAG = DCI.DAG;
3472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3473 
3474   // Look for '(C l>>/<< Y)'.
3475   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3476     // The shift should be one-use.
3477     if (!V.hasOneUse())
3478       return false;
3479     unsigned OldShiftOpcode = V.getOpcode();
3480     switch (OldShiftOpcode) {
3481     case ISD::SHL:
3482       NewShiftOpcode = ISD::SRL;
3483       break;
3484     case ISD::SRL:
3485       NewShiftOpcode = ISD::SHL;
3486       break;
3487     default:
3488       return false; // must be a logical shift.
3489     }
3490     // We should be shifting a constant.
3491     // FIXME: best to use isConstantOrConstantVector().
3492     C = V.getOperand(0);
3493     ConstantSDNode *CC =
3494         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3495     if (!CC)
3496       return false;
3497     Y = V.getOperand(1);
3498 
3499     ConstantSDNode *XC =
3500         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3501     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3502         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3503   };
3504 
3505   // LHS of comparison should be an one-use 'and'.
3506   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3507     return SDValue();
3508 
3509   X = N0.getOperand(0);
3510   SDValue Mask = N0.getOperand(1);
3511 
3512   // 'and' is commutative!
3513   if (!Match(Mask)) {
3514     std::swap(X, Mask);
3515     if (!Match(Mask))
3516       return SDValue();
3517   }
3518 
3519   EVT VT = X.getValueType();
3520 
3521   // Produce:
3522   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3523   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3524   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3525   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3526   return T2;
3527 }
3528 
3529 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3530 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3531 /// handle the commuted versions of these patterns.
3532 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3533                                            ISD::CondCode Cond, const SDLoc &DL,
3534                                            DAGCombinerInfo &DCI) const {
3535   unsigned BOpcode = N0.getOpcode();
3536   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3537          "Unexpected binop");
3538   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3539 
3540   // (X + Y) == X --> Y == 0
3541   // (X - Y) == X --> Y == 0
3542   // (X ^ Y) == X --> Y == 0
3543   SelectionDAG &DAG = DCI.DAG;
3544   EVT OpVT = N0.getValueType();
3545   SDValue X = N0.getOperand(0);
3546   SDValue Y = N0.getOperand(1);
3547   if (X == N1)
3548     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3549 
3550   if (Y != N1)
3551     return SDValue();
3552 
3553   // (X + Y) == Y --> X == 0
3554   // (X ^ Y) == Y --> X == 0
3555   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3556     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3557 
3558   // The shift would not be valid if the operands are boolean (i1).
3559   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3560     return SDValue();
3561 
3562   // (X - Y) == Y --> X == Y << 1
3563   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3564                                  !DCI.isBeforeLegalize());
3565   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3566   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3567   if (!DCI.isCalledByLegalizer())
3568     DCI.AddToWorklist(YShl1.getNode());
3569   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3570 }
3571 
3572 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3573                                       SDValue N0, const APInt &C1,
3574                                       ISD::CondCode Cond, const SDLoc &dl,
3575                                       SelectionDAG &DAG) {
3576   // Look through truncs that don't change the value of a ctpop.
3577   // FIXME: Add vector support? Need to be careful with setcc result type below.
3578   SDValue CTPOP = N0;
3579   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3580       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3581     CTPOP = N0.getOperand(0);
3582 
3583   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3584     return SDValue();
3585 
3586   EVT CTVT = CTPOP.getValueType();
3587   SDValue CTOp = CTPOP.getOperand(0);
3588 
3589   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3590   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3591   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3592     return SDValue();
3593 
3594   // (ctpop x) u< 2 -> (x & x-1) == 0
3595   // (ctpop x) u> 1 -> (x & x-1) != 0
3596   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3597     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3598     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3599       return SDValue();
3600     if (C1 == 0 && (Cond == ISD::SETULT))
3601       return SDValue(); // This is handled elsewhere.
3602 
3603     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3604 
3605     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3606     SDValue Result = CTOp;
3607     for (unsigned i = 0; i < Passes; i++) {
3608       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3609       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3610     }
3611     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3612     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3613   }
3614 
3615   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3616   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3617     // For scalars, keep CTPOP if it is legal or custom.
3618     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3619       return SDValue();
3620     // This is based on X86's custom lowering for CTPOP which produces more
3621     // instructions than the expansion here.
3622 
3623     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3624     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3625     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3626     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3627     assert(CTVT.isInteger());
3628     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3629     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3630     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3631     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3632     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3633     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3634     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3635   }
3636 
3637   return SDValue();
3638 }
3639 
3640 /// Try to simplify a setcc built with the specified operands and cc. If it is
3641 /// unable to simplify it, return a null SDValue.
3642 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3643                                       ISD::CondCode Cond, bool foldBooleans,
3644                                       DAGCombinerInfo &DCI,
3645                                       const SDLoc &dl) const {
3646   SelectionDAG &DAG = DCI.DAG;
3647   const DataLayout &Layout = DAG.getDataLayout();
3648   EVT OpVT = N0.getValueType();
3649 
3650   // Constant fold or commute setcc.
3651   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3652     return Fold;
3653 
3654   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3655   // TODO: Handle non-splat vector constants. All undef causes trouble.
3656   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3657   // infinite loop here when we encounter one.
3658   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3659   if (isConstOrConstSplat(N0) &&
3660       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3661       (DCI.isBeforeLegalizeOps() ||
3662        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3663     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3664 
3665   // If we have a subtract with the same 2 non-constant operands as this setcc
3666   // -- but in reverse order -- then try to commute the operands of this setcc
3667   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3668   // instruction on some targets.
3669   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3670       (DCI.isBeforeLegalizeOps() ||
3671        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3672       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3673       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3674     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3675 
3676   if (auto *N1C = isConstOrConstSplat(N1)) {
3677     const APInt &C1 = N1C->getAPIntValue();
3678 
3679     // Optimize some CTPOP cases.
3680     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3681       return V;
3682 
3683     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3684     // equality comparison, then we're just comparing whether X itself is
3685     // zero.
3686     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3687         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3688         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3689       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3690         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3691             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3692           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3693             // (srl (ctlz x), 5) == 0  -> X != 0
3694             // (srl (ctlz x), 5) != 1  -> X != 0
3695             Cond = ISD::SETNE;
3696           } else {
3697             // (srl (ctlz x), 5) != 0  -> X == 0
3698             // (srl (ctlz x), 5) == 1  -> X == 0
3699             Cond = ISD::SETEQ;
3700           }
3701           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3702           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3703                               Cond);
3704         }
3705       }
3706     }
3707   }
3708 
3709   // FIXME: Support vectors.
3710   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3711     const APInt &C1 = N1C->getAPIntValue();
3712 
3713     // (zext x) == C --> x == (trunc C)
3714     // (sext x) == C --> x == (trunc C)
3715     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3716         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3717       unsigned MinBits = N0.getValueSizeInBits();
3718       SDValue PreExt;
3719       bool Signed = false;
3720       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3721         // ZExt
3722         MinBits = N0->getOperand(0).getValueSizeInBits();
3723         PreExt = N0->getOperand(0);
3724       } else if (N0->getOpcode() == ISD::AND) {
3725         // DAGCombine turns costly ZExts into ANDs
3726         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3727           if ((C->getAPIntValue()+1).isPowerOf2()) {
3728             MinBits = C->getAPIntValue().countTrailingOnes();
3729             PreExt = N0->getOperand(0);
3730           }
3731       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3732         // SExt
3733         MinBits = N0->getOperand(0).getValueSizeInBits();
3734         PreExt = N0->getOperand(0);
3735         Signed = true;
3736       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3737         // ZEXTLOAD / SEXTLOAD
3738         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3739           MinBits = LN0->getMemoryVT().getSizeInBits();
3740           PreExt = N0;
3741         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3742           Signed = true;
3743           MinBits = LN0->getMemoryVT().getSizeInBits();
3744           PreExt = N0;
3745         }
3746       }
3747 
3748       // Figure out how many bits we need to preserve this constant.
3749       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3750 
3751       // Make sure we're not losing bits from the constant.
3752       if (MinBits > 0 &&
3753           MinBits < C1.getBitWidth() &&
3754           MinBits >= ReqdBits) {
3755         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3756         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3757           // Will get folded away.
3758           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3759           if (MinBits == 1 && C1 == 1)
3760             // Invert the condition.
3761             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3762                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3763           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3764           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3765         }
3766 
3767         // If truncating the setcc operands is not desirable, we can still
3768         // simplify the expression in some cases:
3769         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3770         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3771         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3772         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3773         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3774         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3775         SDValue TopSetCC = N0->getOperand(0);
3776         unsigned N0Opc = N0->getOpcode();
3777         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3778         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3779             TopSetCC.getOpcode() == ISD::SETCC &&
3780             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3781             (isConstFalseVal(N1) ||
3782              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3783 
3784           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3785                          (!N1C->isZero() && Cond == ISD::SETNE);
3786 
3787           if (!Inverse)
3788             return TopSetCC;
3789 
3790           ISD::CondCode InvCond = ISD::getSetCCInverse(
3791               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3792               TopSetCC.getOperand(0).getValueType());
3793           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3794                                       TopSetCC.getOperand(1),
3795                                       InvCond);
3796         }
3797       }
3798     }
3799 
3800     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3801     // equality or unsigned, and all 1 bits of the const are in the same
3802     // partial word, see if we can shorten the load.
3803     if (DCI.isBeforeLegalize() &&
3804         !ISD::isSignedIntSetCC(Cond) &&
3805         N0.getOpcode() == ISD::AND && C1 == 0 &&
3806         N0.getNode()->hasOneUse() &&
3807         isa<LoadSDNode>(N0.getOperand(0)) &&
3808         N0.getOperand(0).getNode()->hasOneUse() &&
3809         isa<ConstantSDNode>(N0.getOperand(1))) {
3810       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3811       APInt bestMask;
3812       unsigned bestWidth = 0, bestOffset = 0;
3813       if (Lod->isSimple() && Lod->isUnindexed()) {
3814         unsigned origWidth = N0.getValueSizeInBits();
3815         unsigned maskWidth = origWidth;
3816         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3817         // 8 bits, but have to be careful...
3818         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3819           origWidth = Lod->getMemoryVT().getSizeInBits();
3820         const APInt &Mask = N0.getConstantOperandAPInt(1);
3821         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3822           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3823           for (unsigned offset=0; offset<origWidth/width; offset++) {
3824             if (Mask.isSubsetOf(newMask)) {
3825               if (Layout.isLittleEndian())
3826                 bestOffset = (uint64_t)offset * (width/8);
3827               else
3828                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3829               bestMask = Mask.lshr(offset * (width/8) * 8);
3830               bestWidth = width;
3831               break;
3832             }
3833             newMask <<= width;
3834           }
3835         }
3836       }
3837       if (bestWidth) {
3838         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3839         if (newVT.isRound() &&
3840             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3841           SDValue Ptr = Lod->getBasePtr();
3842           if (bestOffset != 0)
3843             Ptr =
3844                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3845           SDValue NewLoad =
3846               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3847                           Lod->getPointerInfo().getWithOffset(bestOffset),
3848                           Lod->getOriginalAlign());
3849           return DAG.getSetCC(dl, VT,
3850                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3851                                       DAG.getConstant(bestMask.trunc(bestWidth),
3852                                                       dl, newVT)),
3853                               DAG.getConstant(0LL, dl, newVT), Cond);
3854         }
3855       }
3856     }
3857 
3858     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3859     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3860       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3861 
3862       // If the comparison constant has bits in the upper part, the
3863       // zero-extended value could never match.
3864       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3865                                               C1.getBitWidth() - InSize))) {
3866         switch (Cond) {
3867         case ISD::SETUGT:
3868         case ISD::SETUGE:
3869         case ISD::SETEQ:
3870           return DAG.getConstant(0, dl, VT);
3871         case ISD::SETULT:
3872         case ISD::SETULE:
3873         case ISD::SETNE:
3874           return DAG.getConstant(1, dl, VT);
3875         case ISD::SETGT:
3876         case ISD::SETGE:
3877           // True if the sign bit of C1 is set.
3878           return DAG.getConstant(C1.isNegative(), dl, VT);
3879         case ISD::SETLT:
3880         case ISD::SETLE:
3881           // True if the sign bit of C1 isn't set.
3882           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3883         default:
3884           break;
3885         }
3886       }
3887 
3888       // Otherwise, we can perform the comparison with the low bits.
3889       switch (Cond) {
3890       case ISD::SETEQ:
3891       case ISD::SETNE:
3892       case ISD::SETUGT:
3893       case ISD::SETUGE:
3894       case ISD::SETULT:
3895       case ISD::SETULE: {
3896         EVT newVT = N0.getOperand(0).getValueType();
3897         if (DCI.isBeforeLegalizeOps() ||
3898             (isOperationLegal(ISD::SETCC, newVT) &&
3899              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3900           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3901           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3902 
3903           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3904                                           NewConst, Cond);
3905           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3906         }
3907         break;
3908       }
3909       default:
3910         break; // todo, be more careful with signed comparisons
3911       }
3912     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3913                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3914                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3915                                       OpVT)) {
3916       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3917       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3918       EVT ExtDstTy = N0.getValueType();
3919       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3920 
3921       // If the constant doesn't fit into the number of bits for the source of
3922       // the sign extension, it is impossible for both sides to be equal.
3923       if (C1.getMinSignedBits() > ExtSrcTyBits)
3924         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3925 
3926       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3927              ExtDstTy != ExtSrcTy && "Unexpected types!");
3928       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3929       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3930                                    DAG.getConstant(Imm, dl, ExtDstTy));
3931       if (!DCI.isCalledByLegalizer())
3932         DCI.AddToWorklist(ZextOp.getNode());
3933       // Otherwise, make this a use of a zext.
3934       return DAG.getSetCC(dl, VT, ZextOp,
3935                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3936     } else if ((N1C->isZero() || N1C->isOne()) &&
3937                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3938       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3939       if (N0.getOpcode() == ISD::SETCC &&
3940           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3941           (N0.getValueType() == MVT::i1 ||
3942            getBooleanContents(N0.getOperand(0).getValueType()) ==
3943                        ZeroOrOneBooleanContent)) {
3944         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3945         if (TrueWhenTrue)
3946           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3947         // Invert the condition.
3948         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3949         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3950         if (DCI.isBeforeLegalizeOps() ||
3951             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3952           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3953       }
3954 
3955       if ((N0.getOpcode() == ISD::XOR ||
3956            (N0.getOpcode() == ISD::AND &&
3957             N0.getOperand(0).getOpcode() == ISD::XOR &&
3958             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3959           isOneConstant(N0.getOperand(1))) {
3960         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3961         // can only do this if the top bits are known zero.
3962         unsigned BitWidth = N0.getValueSizeInBits();
3963         if (DAG.MaskedValueIsZero(N0,
3964                                   APInt::getHighBitsSet(BitWidth,
3965                                                         BitWidth-1))) {
3966           // Okay, get the un-inverted input value.
3967           SDValue Val;
3968           if (N0.getOpcode() == ISD::XOR) {
3969             Val = N0.getOperand(0);
3970           } else {
3971             assert(N0.getOpcode() == ISD::AND &&
3972                     N0.getOperand(0).getOpcode() == ISD::XOR);
3973             // ((X^1)&1)^1 -> X & 1
3974             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3975                               N0.getOperand(0).getOperand(0),
3976                               N0.getOperand(1));
3977           }
3978 
3979           return DAG.getSetCC(dl, VT, Val, N1,
3980                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3981         }
3982       } else if (N1C->isOne()) {
3983         SDValue Op0 = N0;
3984         if (Op0.getOpcode() == ISD::TRUNCATE)
3985           Op0 = Op0.getOperand(0);
3986 
3987         if ((Op0.getOpcode() == ISD::XOR) &&
3988             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3989             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3990           SDValue XorLHS = Op0.getOperand(0);
3991           SDValue XorRHS = Op0.getOperand(1);
3992           // Ensure that the input setccs return an i1 type or 0/1 value.
3993           if (Op0.getValueType() == MVT::i1 ||
3994               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3995                       ZeroOrOneBooleanContent &&
3996                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3997                         ZeroOrOneBooleanContent)) {
3998             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3999             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4000             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4001           }
4002         }
4003         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4004           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4005           if (Op0.getValueType().bitsGT(VT))
4006             Op0 = DAG.getNode(ISD::AND, dl, VT,
4007                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4008                           DAG.getConstant(1, dl, VT));
4009           else if (Op0.getValueType().bitsLT(VT))
4010             Op0 = DAG.getNode(ISD::AND, dl, VT,
4011                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4012                         DAG.getConstant(1, dl, VT));
4013 
4014           return DAG.getSetCC(dl, VT, Op0,
4015                               DAG.getConstant(0, dl, Op0.getValueType()),
4016                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4017         }
4018         if (Op0.getOpcode() == ISD::AssertZext &&
4019             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4020           return DAG.getSetCC(dl, VT, Op0,
4021                               DAG.getConstant(0, dl, Op0.getValueType()),
4022                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4023       }
4024     }
4025 
4026     // Given:
4027     //   icmp eq/ne (urem %x, %y), 0
4028     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4029     //   icmp eq/ne %x, 0
4030     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4031         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4032       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4033       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4034       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4035         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4036     }
4037 
4038     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4039     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4040     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4041         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4042         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4043         N1C && N1C->isAllOnes()) {
4044       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4045                           DAG.getConstant(0, dl, OpVT),
4046                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4047     }
4048 
4049     if (SDValue V =
4050             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4051       return V;
4052   }
4053 
4054   // These simplifications apply to splat vectors as well.
4055   // TODO: Handle more splat vector cases.
4056   if (auto *N1C = isConstOrConstSplat(N1)) {
4057     const APInt &C1 = N1C->getAPIntValue();
4058 
4059     APInt MinVal, MaxVal;
4060     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4061     if (ISD::isSignedIntSetCC(Cond)) {
4062       MinVal = APInt::getSignedMinValue(OperandBitSize);
4063       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4064     } else {
4065       MinVal = APInt::getMinValue(OperandBitSize);
4066       MaxVal = APInt::getMaxValue(OperandBitSize);
4067     }
4068 
4069     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4070     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4071       // X >= MIN --> true
4072       if (C1 == MinVal)
4073         return DAG.getBoolConstant(true, dl, VT, OpVT);
4074 
4075       if (!VT.isVector()) { // TODO: Support this for vectors.
4076         // X >= C0 --> X > (C0 - 1)
4077         APInt C = C1 - 1;
4078         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4079         if ((DCI.isBeforeLegalizeOps() ||
4080              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4081             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4082                                   isLegalICmpImmediate(C.getSExtValue())))) {
4083           return DAG.getSetCC(dl, VT, N0,
4084                               DAG.getConstant(C, dl, N1.getValueType()),
4085                               NewCC);
4086         }
4087       }
4088     }
4089 
4090     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4091       // X <= MAX --> true
4092       if (C1 == MaxVal)
4093         return DAG.getBoolConstant(true, dl, VT, OpVT);
4094 
4095       // X <= C0 --> X < (C0 + 1)
4096       if (!VT.isVector()) { // TODO: Support this for vectors.
4097         APInt C = C1 + 1;
4098         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4099         if ((DCI.isBeforeLegalizeOps() ||
4100              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4101             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4102                                   isLegalICmpImmediate(C.getSExtValue())))) {
4103           return DAG.getSetCC(dl, VT, N0,
4104                               DAG.getConstant(C, dl, N1.getValueType()),
4105                               NewCC);
4106         }
4107       }
4108     }
4109 
4110     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4111       if (C1 == MinVal)
4112         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4113 
4114       // TODO: Support this for vectors after legalize ops.
4115       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4116         // Canonicalize setlt X, Max --> setne X, Max
4117         if (C1 == MaxVal)
4118           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4119 
4120         // If we have setult X, 1, turn it into seteq X, 0
4121         if (C1 == MinVal+1)
4122           return DAG.getSetCC(dl, VT, N0,
4123                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4124                               ISD::SETEQ);
4125       }
4126     }
4127 
4128     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4129       if (C1 == MaxVal)
4130         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4131 
4132       // TODO: Support this for vectors after legalize ops.
4133       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4134         // Canonicalize setgt X, Min --> setne X, Min
4135         if (C1 == MinVal)
4136           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4137 
4138         // If we have setugt X, Max-1, turn it into seteq X, Max
4139         if (C1 == MaxVal-1)
4140           return DAG.getSetCC(dl, VT, N0,
4141                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4142                               ISD::SETEQ);
4143       }
4144     }
4145 
4146     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4147       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4148       if (C1.isZero())
4149         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4150                 VT, N0, N1, Cond, DCI, dl))
4151           return CC;
4152 
4153       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4154       // For example, when high 32-bits of i64 X are known clear:
4155       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4156       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4157       bool CmpZero = N1C->getAPIntValue().isZero();
4158       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4159       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4160         // Match or(lo,shl(hi,bw/2)) pattern.
4161         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4162           unsigned EltBits = V.getScalarValueSizeInBits();
4163           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4164             return false;
4165           SDValue LHS = V.getOperand(0);
4166           SDValue RHS = V.getOperand(1);
4167           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4168           // Unshifted element must have zero upperbits.
4169           if (RHS.getOpcode() == ISD::SHL &&
4170               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4171               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4172               DAG.MaskedValueIsZero(LHS, HiBits)) {
4173             Lo = LHS;
4174             Hi = RHS.getOperand(0);
4175             return true;
4176           }
4177           if (LHS.getOpcode() == ISD::SHL &&
4178               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4179               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4180               DAG.MaskedValueIsZero(RHS, HiBits)) {
4181             Lo = RHS;
4182             Hi = LHS.getOperand(0);
4183             return true;
4184           }
4185           return false;
4186         };
4187 
4188         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4189           unsigned EltBits = N0.getScalarValueSizeInBits();
4190           unsigned HalfBits = EltBits / 2;
4191           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4192           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4193           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4194           SDValue NewN0 =
4195               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4196           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4197           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4198         };
4199 
4200         SDValue Lo, Hi;
4201         if (IsConcat(N0, Lo, Hi))
4202           return MergeConcat(Lo, Hi);
4203 
4204         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4205           SDValue Lo0, Lo1, Hi0, Hi1;
4206           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4207               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4208             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4209                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4210           }
4211         }
4212       }
4213     }
4214 
4215     // If we have "setcc X, C0", check to see if we can shrink the immediate
4216     // by changing cc.
4217     // TODO: Support this for vectors after legalize ops.
4218     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4219       // SETUGT X, SINTMAX  -> SETLT X, 0
4220       // SETUGE X, SINTMIN -> SETLT X, 0
4221       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4222           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4223         return DAG.getSetCC(dl, VT, N0,
4224                             DAG.getConstant(0, dl, N1.getValueType()),
4225                             ISD::SETLT);
4226 
4227       // SETULT X, SINTMIN  -> SETGT X, -1
4228       // SETULE X, SINTMAX  -> SETGT X, -1
4229       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4230           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4231         return DAG.getSetCC(dl, VT, N0,
4232                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4233                             ISD::SETGT);
4234     }
4235   }
4236 
4237   // Back to non-vector simplifications.
4238   // TODO: Can we do these for vector splats?
4239   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4240     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4241     const APInt &C1 = N1C->getAPIntValue();
4242     EVT ShValTy = N0.getValueType();
4243 
4244     // Fold bit comparisons when we can. This will result in an
4245     // incorrect value when boolean false is negative one, unless
4246     // the bitsize is 1 in which case the false value is the same
4247     // in practice regardless of the representation.
4248     if ((VT.getSizeInBits() == 1 ||
4249          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4250         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4251         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4252         N0.getOpcode() == ISD::AND) {
4253       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4254         EVT ShiftTy =
4255             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4256         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4257           // Perform the xform if the AND RHS is a single bit.
4258           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4259           if (AndRHS->getAPIntValue().isPowerOf2() &&
4260               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4261             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4262                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4263                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4264           }
4265         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4266           // (X & 8) == 8  -->  (X & 8) >> 3
4267           // Perform the xform if C1 is a single bit.
4268           unsigned ShCt = C1.logBase2();
4269           if (C1.isPowerOf2() &&
4270               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4271             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4272                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4273                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4274           }
4275         }
4276       }
4277     }
4278 
4279     if (C1.getMinSignedBits() <= 64 &&
4280         !isLegalICmpImmediate(C1.getSExtValue())) {
4281       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4282       // (X & -256) == 256 -> (X >> 8) == 1
4283       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4284           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4285         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4286           const APInt &AndRHSC = AndRHS->getAPIntValue();
4287           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4288             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4289             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4290               SDValue Shift =
4291                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4292                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4293               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4294               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4295             }
4296           }
4297         }
4298       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4299                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4300         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4301         // X <  0x100000000 -> (X >> 32) <  1
4302         // X >= 0x100000000 -> (X >> 32) >= 1
4303         // X <= 0x0ffffffff -> (X >> 32) <  1
4304         // X >  0x0ffffffff -> (X >> 32) >= 1
4305         unsigned ShiftBits;
4306         APInt NewC = C1;
4307         ISD::CondCode NewCond = Cond;
4308         if (AdjOne) {
4309           ShiftBits = C1.countTrailingOnes();
4310           NewC = NewC + 1;
4311           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4312         } else {
4313           ShiftBits = C1.countTrailingZeros();
4314         }
4315         NewC.lshrInPlace(ShiftBits);
4316         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4317             isLegalICmpImmediate(NewC.getSExtValue()) &&
4318             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4319           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4320                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4321           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4322           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4323         }
4324       }
4325     }
4326   }
4327 
4328   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4329     auto *CFP = cast<ConstantFPSDNode>(N1);
4330     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4331 
4332     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4333     // constant if knowing that the operand is non-nan is enough.  We prefer to
4334     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4335     // materialize 0.0.
4336     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4337       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4338 
4339     // setcc (fneg x), C -> setcc swap(pred) x, -C
4340     if (N0.getOpcode() == ISD::FNEG) {
4341       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4342       if (DCI.isBeforeLegalizeOps() ||
4343           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4344         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4345         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4346       }
4347     }
4348 
4349     // If the condition is not legal, see if we can find an equivalent one
4350     // which is legal.
4351     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4352       // If the comparison was an awkward floating-point == or != and one of
4353       // the comparison operands is infinity or negative infinity, convert the
4354       // condition to a less-awkward <= or >=.
4355       if (CFP->getValueAPF().isInfinity()) {
4356         bool IsNegInf = CFP->getValueAPF().isNegative();
4357         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4358         switch (Cond) {
4359         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4360         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4361         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4362         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4363         default: break;
4364         }
4365         if (NewCond != ISD::SETCC_INVALID &&
4366             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4367           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4368       }
4369     }
4370   }
4371 
4372   if (N0 == N1) {
4373     // The sext(setcc()) => setcc() optimization relies on the appropriate
4374     // constant being emitted.
4375     assert(!N0.getValueType().isInteger() &&
4376            "Integer types should be handled by FoldSetCC");
4377 
4378     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4379     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4380     if (UOF == 2) // FP operators that are undefined on NaNs.
4381       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4382     if (UOF == unsigned(EqTrue))
4383       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4384     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4385     // if it is not already.
4386     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4387     if (NewCond != Cond &&
4388         (DCI.isBeforeLegalizeOps() ||
4389                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4390       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4391   }
4392 
4393   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4394       N0.getValueType().isInteger()) {
4395     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4396         N0.getOpcode() == ISD::XOR) {
4397       // Simplify (X+Y) == (X+Z) -->  Y == Z
4398       if (N0.getOpcode() == N1.getOpcode()) {
4399         if (N0.getOperand(0) == N1.getOperand(0))
4400           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4401         if (N0.getOperand(1) == N1.getOperand(1))
4402           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4403         if (isCommutativeBinOp(N0.getOpcode())) {
4404           // If X op Y == Y op X, try other combinations.
4405           if (N0.getOperand(0) == N1.getOperand(1))
4406             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4407                                 Cond);
4408           if (N0.getOperand(1) == N1.getOperand(0))
4409             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4410                                 Cond);
4411         }
4412       }
4413 
4414       // If RHS is a legal immediate value for a compare instruction, we need
4415       // to be careful about increasing register pressure needlessly.
4416       bool LegalRHSImm = false;
4417 
4418       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4419         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4420           // Turn (X+C1) == C2 --> X == C2-C1
4421           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4422             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4423                                 DAG.getConstant(RHSC->getAPIntValue()-
4424                                                 LHSR->getAPIntValue(),
4425                                 dl, N0.getValueType()), Cond);
4426           }
4427 
4428           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4429           if (N0.getOpcode() == ISD::XOR)
4430             // If we know that all of the inverted bits are zero, don't bother
4431             // performing the inversion.
4432             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4433               return
4434                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4435                              DAG.getConstant(LHSR->getAPIntValue() ^
4436                                                RHSC->getAPIntValue(),
4437                                              dl, N0.getValueType()),
4438                              Cond);
4439         }
4440 
4441         // Turn (C1-X) == C2 --> X == C1-C2
4442         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4443           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4444             return
4445               DAG.getSetCC(dl, VT, N0.getOperand(1),
4446                            DAG.getConstant(SUBC->getAPIntValue() -
4447                                              RHSC->getAPIntValue(),
4448                                            dl, N0.getValueType()),
4449                            Cond);
4450           }
4451         }
4452 
4453         // Could RHSC fold directly into a compare?
4454         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4455           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4456       }
4457 
4458       // (X+Y) == X --> Y == 0 and similar folds.
4459       // Don't do this if X is an immediate that can fold into a cmp
4460       // instruction and X+Y has other uses. It could be an induction variable
4461       // chain, and the transform would increase register pressure.
4462       if (!LegalRHSImm || N0.hasOneUse())
4463         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4464           return V;
4465     }
4466 
4467     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4468         N1.getOpcode() == ISD::XOR)
4469       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4470         return V;
4471 
4472     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4473       return V;
4474   }
4475 
4476   // Fold remainder of division by a constant.
4477   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4478       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4479     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4480 
4481     // When division is cheap or optimizing for minimum size,
4482     // fall through to DIVREM creation by skipping this fold.
4483     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4484       if (N0.getOpcode() == ISD::UREM) {
4485         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4486           return Folded;
4487       } else if (N0.getOpcode() == ISD::SREM) {
4488         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4489           return Folded;
4490       }
4491     }
4492   }
4493 
4494   // Fold away ALL boolean setcc's.
4495   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4496     SDValue Temp;
4497     switch (Cond) {
4498     default: llvm_unreachable("Unknown integer setcc!");
4499     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4500       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4501       N0 = DAG.getNOT(dl, Temp, OpVT);
4502       if (!DCI.isCalledByLegalizer())
4503         DCI.AddToWorklist(Temp.getNode());
4504       break;
4505     case ISD::SETNE:  // X != Y   -->  (X^Y)
4506       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4507       break;
4508     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4509     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4510       Temp = DAG.getNOT(dl, N0, OpVT);
4511       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4512       if (!DCI.isCalledByLegalizer())
4513         DCI.AddToWorklist(Temp.getNode());
4514       break;
4515     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4516     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4517       Temp = DAG.getNOT(dl, N1, OpVT);
4518       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4519       if (!DCI.isCalledByLegalizer())
4520         DCI.AddToWorklist(Temp.getNode());
4521       break;
4522     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4523     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4524       Temp = DAG.getNOT(dl, N0, OpVT);
4525       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4526       if (!DCI.isCalledByLegalizer())
4527         DCI.AddToWorklist(Temp.getNode());
4528       break;
4529     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4530     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4531       Temp = DAG.getNOT(dl, N1, OpVT);
4532       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4533       break;
4534     }
4535     if (VT.getScalarType() != MVT::i1) {
4536       if (!DCI.isCalledByLegalizer())
4537         DCI.AddToWorklist(N0.getNode());
4538       // FIXME: If running after legalize, we probably can't do this.
4539       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4540       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4541     }
4542     return N0;
4543   }
4544 
4545   // Could not fold it.
4546   return SDValue();
4547 }
4548 
4549 /// Returns true (and the GlobalValue and the offset) if the node is a
4550 /// GlobalAddress + offset.
4551 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4552                                     int64_t &Offset) const {
4553 
4554   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4555 
4556   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4557     GA = GASD->getGlobal();
4558     Offset += GASD->getOffset();
4559     return true;
4560   }
4561 
4562   if (N->getOpcode() == ISD::ADD) {
4563     SDValue N1 = N->getOperand(0);
4564     SDValue N2 = N->getOperand(1);
4565     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4566       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4567         Offset += V->getSExtValue();
4568         return true;
4569       }
4570     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4571       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4572         Offset += V->getSExtValue();
4573         return true;
4574       }
4575     }
4576   }
4577 
4578   return false;
4579 }
4580 
4581 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4582                                           DAGCombinerInfo &DCI) const {
4583   // Default implementation: no optimization.
4584   return SDValue();
4585 }
4586 
4587 //===----------------------------------------------------------------------===//
4588 //  Inline Assembler Implementation Methods
4589 //===----------------------------------------------------------------------===//
4590 
4591 TargetLowering::ConstraintType
4592 TargetLowering::getConstraintType(StringRef Constraint) const {
4593   unsigned S = Constraint.size();
4594 
4595   if (S == 1) {
4596     switch (Constraint[0]) {
4597     default: break;
4598     case 'r':
4599       return C_RegisterClass;
4600     case 'm': // memory
4601     case 'o': // offsetable
4602     case 'V': // not offsetable
4603       return C_Memory;
4604     case 'n': // Simple Integer
4605     case 'E': // Floating Point Constant
4606     case 'F': // Floating Point Constant
4607       return C_Immediate;
4608     case 'i': // Simple Integer or Relocatable Constant
4609     case 's': // Relocatable Constant
4610     case 'p': // Address.
4611     case 'X': // Allow ANY value.
4612     case 'I': // Target registers.
4613     case 'J':
4614     case 'K':
4615     case 'L':
4616     case 'M':
4617     case 'N':
4618     case 'O':
4619     case 'P':
4620     case '<':
4621     case '>':
4622       return C_Other;
4623     }
4624   }
4625 
4626   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4627     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4628       return C_Memory;
4629     return C_Register;
4630   }
4631   return C_Unknown;
4632 }
4633 
4634 /// Try to replace an X constraint, which matches anything, with another that
4635 /// has more specific requirements based on the type of the corresponding
4636 /// operand.
4637 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4638   if (ConstraintVT.isInteger())
4639     return "r";
4640   if (ConstraintVT.isFloatingPoint())
4641     return "f"; // works for many targets
4642   return nullptr;
4643 }
4644 
4645 SDValue TargetLowering::LowerAsmOutputForConstraint(
4646     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4647     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4648   return SDValue();
4649 }
4650 
4651 /// Lower the specified operand into the Ops vector.
4652 /// If it is invalid, don't add anything to Ops.
4653 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4654                                                   std::string &Constraint,
4655                                                   std::vector<SDValue> &Ops,
4656                                                   SelectionDAG &DAG) const {
4657 
4658   if (Constraint.length() > 1) return;
4659 
4660   char ConstraintLetter = Constraint[0];
4661   switch (ConstraintLetter) {
4662   default: break;
4663   case 'X':    // Allows any operand
4664   case 'i':    // Simple Integer or Relocatable Constant
4665   case 'n':    // Simple Integer
4666   case 's': {  // Relocatable Constant
4667 
4668     ConstantSDNode *C;
4669     uint64_t Offset = 0;
4670 
4671     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4672     // etc., since getelementpointer is variadic. We can't use
4673     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4674     // while in this case the GA may be furthest from the root node which is
4675     // likely an ISD::ADD.
4676     while (true) {
4677       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4678         // gcc prints these as sign extended.  Sign extend value to 64 bits
4679         // now; without this it would get ZExt'd later in
4680         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4681         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4682         BooleanContent BCont = getBooleanContents(MVT::i64);
4683         ISD::NodeType ExtOpc =
4684             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4685         int64_t ExtVal =
4686             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4687         Ops.push_back(
4688             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4689         return;
4690       }
4691       if (ConstraintLetter != 'n') {
4692         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4693           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4694                                                    GA->getValueType(0),
4695                                                    Offset + GA->getOffset()));
4696           return;
4697         }
4698         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4699           Ops.push_back(DAG.getTargetBlockAddress(
4700               BA->getBlockAddress(), BA->getValueType(0),
4701               Offset + BA->getOffset(), BA->getTargetFlags()));
4702           return;
4703         }
4704         if (isa<BasicBlockSDNode>(Op)) {
4705           Ops.push_back(Op);
4706           return;
4707         }
4708       }
4709       const unsigned OpCode = Op.getOpcode();
4710       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4711         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4712           Op = Op.getOperand(1);
4713         // Subtraction is not commutative.
4714         else if (OpCode == ISD::ADD &&
4715                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4716           Op = Op.getOperand(0);
4717         else
4718           return;
4719         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4720         continue;
4721       }
4722       return;
4723     }
4724     break;
4725   }
4726   }
4727 }
4728 
4729 std::pair<unsigned, const TargetRegisterClass *>
4730 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4731                                              StringRef Constraint,
4732                                              MVT VT) const {
4733   if (Constraint.empty() || Constraint[0] != '{')
4734     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4735   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4736 
4737   // Remove the braces from around the name.
4738   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4739 
4740   std::pair<unsigned, const TargetRegisterClass *> R =
4741       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4742 
4743   // Figure out which register class contains this reg.
4744   for (const TargetRegisterClass *RC : RI->regclasses()) {
4745     // If none of the value types for this register class are valid, we
4746     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4747     if (!isLegalRC(*RI, *RC))
4748       continue;
4749 
4750     for (const MCPhysReg &PR : *RC) {
4751       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4752         std::pair<unsigned, const TargetRegisterClass *> S =
4753             std::make_pair(PR, RC);
4754 
4755         // If this register class has the requested value type, return it,
4756         // otherwise keep searching and return the first class found
4757         // if no other is found which explicitly has the requested type.
4758         if (RI->isTypeLegalForClass(*RC, VT))
4759           return S;
4760         if (!R.second)
4761           R = S;
4762       }
4763     }
4764   }
4765 
4766   return R;
4767 }
4768 
4769 //===----------------------------------------------------------------------===//
4770 // Constraint Selection.
4771 
4772 /// Return true of this is an input operand that is a matching constraint like
4773 /// "4".
4774 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4775   assert(!ConstraintCode.empty() && "No known constraint!");
4776   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4777 }
4778 
4779 /// If this is an input matching constraint, this method returns the output
4780 /// operand it matches.
4781 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4782   assert(!ConstraintCode.empty() && "No known constraint!");
4783   return atoi(ConstraintCode.c_str());
4784 }
4785 
4786 /// Split up the constraint string from the inline assembly value into the
4787 /// specific constraints and their prefixes, and also tie in the associated
4788 /// operand values.
4789 /// If this returns an empty vector, and if the constraint string itself
4790 /// isn't empty, there was an error parsing.
4791 TargetLowering::AsmOperandInfoVector
4792 TargetLowering::ParseConstraints(const DataLayout &DL,
4793                                  const TargetRegisterInfo *TRI,
4794                                  const CallBase &Call) const {
4795   /// Information about all of the constraints.
4796   AsmOperandInfoVector ConstraintOperands;
4797   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4798   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4799 
4800   // Do a prepass over the constraints, canonicalizing them, and building up the
4801   // ConstraintOperands list.
4802   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4803   unsigned ResNo = 0; // ResNo - The result number of the next output.
4804 
4805   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4806     ConstraintOperands.emplace_back(std::move(CI));
4807     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4808 
4809     // Update multiple alternative constraint count.
4810     if (OpInfo.multipleAlternatives.size() > maCount)
4811       maCount = OpInfo.multipleAlternatives.size();
4812 
4813     OpInfo.ConstraintVT = MVT::Other;
4814 
4815     // Compute the value type for each operand.
4816     switch (OpInfo.Type) {
4817     case InlineAsm::isOutput:
4818       // Indirect outputs just consume an argument.
4819       if (OpInfo.isIndirect) {
4820         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4821         break;
4822       }
4823 
4824       // The return value of the call is this value.  As such, there is no
4825       // corresponding argument.
4826       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4827       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4828         OpInfo.ConstraintVT =
4829             getSimpleValueType(DL, STy->getElementType(ResNo));
4830       } else {
4831         assert(ResNo == 0 && "Asm only has one result!");
4832         OpInfo.ConstraintVT =
4833             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4834       }
4835       ++ResNo;
4836       break;
4837     case InlineAsm::isInput:
4838       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4839       break;
4840     case InlineAsm::isClobber:
4841       // Nothing to do.
4842       break;
4843     }
4844 
4845     if (OpInfo.CallOperandVal) {
4846       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4847       if (OpInfo.isIndirect) {
4848         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4849         assert(OpTy && "Indirect opernad must have elementtype attribute");
4850       }
4851 
4852       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4853       if (StructType *STy = dyn_cast<StructType>(OpTy))
4854         if (STy->getNumElements() == 1)
4855           OpTy = STy->getElementType(0);
4856 
4857       // If OpTy is not a single value, it may be a struct/union that we
4858       // can tile with integers.
4859       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4860         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4861         switch (BitSize) {
4862         default: break;
4863         case 1:
4864         case 8:
4865         case 16:
4866         case 32:
4867         case 64:
4868         case 128:
4869           OpInfo.ConstraintVT =
4870               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4871           break;
4872         }
4873       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4874         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4875         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4876       } else {
4877         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4878       }
4879 
4880       ArgNo++;
4881     }
4882   }
4883 
4884   // If we have multiple alternative constraints, select the best alternative.
4885   if (!ConstraintOperands.empty()) {
4886     if (maCount) {
4887       unsigned bestMAIndex = 0;
4888       int bestWeight = -1;
4889       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4890       int weight = -1;
4891       unsigned maIndex;
4892       // Compute the sums of the weights for each alternative, keeping track
4893       // of the best (highest weight) one so far.
4894       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4895         int weightSum = 0;
4896         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4897              cIndex != eIndex; ++cIndex) {
4898           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4899           if (OpInfo.Type == InlineAsm::isClobber)
4900             continue;
4901 
4902           // If this is an output operand with a matching input operand,
4903           // look up the matching input. If their types mismatch, e.g. one
4904           // is an integer, the other is floating point, or their sizes are
4905           // different, flag it as an maCantMatch.
4906           if (OpInfo.hasMatchingInput()) {
4907             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4908             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4909               if ((OpInfo.ConstraintVT.isInteger() !=
4910                    Input.ConstraintVT.isInteger()) ||
4911                   (OpInfo.ConstraintVT.getSizeInBits() !=
4912                    Input.ConstraintVT.getSizeInBits())) {
4913                 weightSum = -1; // Can't match.
4914                 break;
4915               }
4916             }
4917           }
4918           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4919           if (weight == -1) {
4920             weightSum = -1;
4921             break;
4922           }
4923           weightSum += weight;
4924         }
4925         // Update best.
4926         if (weightSum > bestWeight) {
4927           bestWeight = weightSum;
4928           bestMAIndex = maIndex;
4929         }
4930       }
4931 
4932       // Now select chosen alternative in each constraint.
4933       for (AsmOperandInfo &cInfo : ConstraintOperands)
4934         if (cInfo.Type != InlineAsm::isClobber)
4935           cInfo.selectAlternative(bestMAIndex);
4936     }
4937   }
4938 
4939   // Check and hook up tied operands, choose constraint code to use.
4940   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4941        cIndex != eIndex; ++cIndex) {
4942     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4943 
4944     // If this is an output operand with a matching input operand, look up the
4945     // matching input. If their types mismatch, e.g. one is an integer, the
4946     // other is floating point, or their sizes are different, flag it as an
4947     // error.
4948     if (OpInfo.hasMatchingInput()) {
4949       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4950 
4951       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4952         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4953             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4954                                          OpInfo.ConstraintVT);
4955         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4956             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4957                                          Input.ConstraintVT);
4958         if ((OpInfo.ConstraintVT.isInteger() !=
4959              Input.ConstraintVT.isInteger()) ||
4960             (MatchRC.second != InputRC.second)) {
4961           report_fatal_error("Unsupported asm: input constraint"
4962                              " with a matching output constraint of"
4963                              " incompatible type!");
4964         }
4965       }
4966     }
4967   }
4968 
4969   return ConstraintOperands;
4970 }
4971 
4972 /// Return an integer indicating how general CT is.
4973 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4974   switch (CT) {
4975   case TargetLowering::C_Immediate:
4976   case TargetLowering::C_Other:
4977   case TargetLowering::C_Unknown:
4978     return 0;
4979   case TargetLowering::C_Register:
4980     return 1;
4981   case TargetLowering::C_RegisterClass:
4982     return 2;
4983   case TargetLowering::C_Memory:
4984     return 3;
4985   }
4986   llvm_unreachable("Invalid constraint type");
4987 }
4988 
4989 /// Examine constraint type and operand type and determine a weight value.
4990 /// This object must already have been set up with the operand type
4991 /// and the current alternative constraint selected.
4992 TargetLowering::ConstraintWeight
4993   TargetLowering::getMultipleConstraintMatchWeight(
4994     AsmOperandInfo &info, int maIndex) const {
4995   InlineAsm::ConstraintCodeVector *rCodes;
4996   if (maIndex >= (int)info.multipleAlternatives.size())
4997     rCodes = &info.Codes;
4998   else
4999     rCodes = &info.multipleAlternatives[maIndex].Codes;
5000   ConstraintWeight BestWeight = CW_Invalid;
5001 
5002   // Loop over the options, keeping track of the most general one.
5003   for (const std::string &rCode : *rCodes) {
5004     ConstraintWeight weight =
5005         getSingleConstraintMatchWeight(info, rCode.c_str());
5006     if (weight > BestWeight)
5007       BestWeight = weight;
5008   }
5009 
5010   return BestWeight;
5011 }
5012 
5013 /// Examine constraint type and operand type and determine a weight value.
5014 /// This object must already have been set up with the operand type
5015 /// and the current alternative constraint selected.
5016 TargetLowering::ConstraintWeight
5017   TargetLowering::getSingleConstraintMatchWeight(
5018     AsmOperandInfo &info, const char *constraint) const {
5019   ConstraintWeight weight = CW_Invalid;
5020   Value *CallOperandVal = info.CallOperandVal;
5021     // If we don't have a value, we can't do a match,
5022     // but allow it at the lowest weight.
5023   if (!CallOperandVal)
5024     return CW_Default;
5025   // Look at the constraint type.
5026   switch (*constraint) {
5027     case 'i': // immediate integer.
5028     case 'n': // immediate integer with a known value.
5029       if (isa<ConstantInt>(CallOperandVal))
5030         weight = CW_Constant;
5031       break;
5032     case 's': // non-explicit intregal immediate.
5033       if (isa<GlobalValue>(CallOperandVal))
5034         weight = CW_Constant;
5035       break;
5036     case 'E': // immediate float if host format.
5037     case 'F': // immediate float.
5038       if (isa<ConstantFP>(CallOperandVal))
5039         weight = CW_Constant;
5040       break;
5041     case '<': // memory operand with autodecrement.
5042     case '>': // memory operand with autoincrement.
5043     case 'm': // memory operand.
5044     case 'o': // offsettable memory operand
5045     case 'V': // non-offsettable memory operand
5046       weight = CW_Memory;
5047       break;
5048     case 'r': // general register.
5049     case 'g': // general register, memory operand or immediate integer.
5050               // note: Clang converts "g" to "imr".
5051       if (CallOperandVal->getType()->isIntegerTy())
5052         weight = CW_Register;
5053       break;
5054     case 'X': // any operand.
5055   default:
5056     weight = CW_Default;
5057     break;
5058   }
5059   return weight;
5060 }
5061 
5062 /// If there are multiple different constraints that we could pick for this
5063 /// operand (e.g. "imr") try to pick the 'best' one.
5064 /// This is somewhat tricky: constraints fall into four classes:
5065 ///    Other         -> immediates and magic values
5066 ///    Register      -> one specific register
5067 ///    RegisterClass -> a group of regs
5068 ///    Memory        -> memory
5069 /// Ideally, we would pick the most specific constraint possible: if we have
5070 /// something that fits into a register, we would pick it.  The problem here
5071 /// is that if we have something that could either be in a register or in
5072 /// memory that use of the register could cause selection of *other*
5073 /// operands to fail: they might only succeed if we pick memory.  Because of
5074 /// this the heuristic we use is:
5075 ///
5076 ///  1) If there is an 'other' constraint, and if the operand is valid for
5077 ///     that constraint, use it.  This makes us take advantage of 'i'
5078 ///     constraints when available.
5079 ///  2) Otherwise, pick the most general constraint present.  This prefers
5080 ///     'm' over 'r', for example.
5081 ///
5082 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5083                              const TargetLowering &TLI,
5084                              SDValue Op, SelectionDAG *DAG) {
5085   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5086   unsigned BestIdx = 0;
5087   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5088   int BestGenerality = -1;
5089 
5090   // Loop over the options, keeping track of the most general one.
5091   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5092     TargetLowering::ConstraintType CType =
5093       TLI.getConstraintType(OpInfo.Codes[i]);
5094 
5095     // Indirect 'other' or 'immediate' constraints are not allowed.
5096     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5097                                CType == TargetLowering::C_Register ||
5098                                CType == TargetLowering::C_RegisterClass))
5099       continue;
5100 
5101     // If this is an 'other' or 'immediate' constraint, see if the operand is
5102     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5103     // the operand is an integer in the range [0..31] we want to use I (saving a
5104     // load of a register), otherwise we must use 'r'.
5105     if ((CType == TargetLowering::C_Other ||
5106          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5107       assert(OpInfo.Codes[i].size() == 1 &&
5108              "Unhandled multi-letter 'other' constraint");
5109       std::vector<SDValue> ResultOps;
5110       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5111                                        ResultOps, *DAG);
5112       if (!ResultOps.empty()) {
5113         BestType = CType;
5114         BestIdx = i;
5115         break;
5116       }
5117     }
5118 
5119     // Things with matching constraints can only be registers, per gcc
5120     // documentation.  This mainly affects "g" constraints.
5121     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5122       continue;
5123 
5124     // This constraint letter is more general than the previous one, use it.
5125     int Generality = getConstraintGenerality(CType);
5126     if (Generality > BestGenerality) {
5127       BestType = CType;
5128       BestIdx = i;
5129       BestGenerality = Generality;
5130     }
5131   }
5132 
5133   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5134   OpInfo.ConstraintType = BestType;
5135 }
5136 
5137 /// Determines the constraint code and constraint type to use for the specific
5138 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5139 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5140                                             SDValue Op,
5141                                             SelectionDAG *DAG) const {
5142   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5143 
5144   // Single-letter constraints ('r') are very common.
5145   if (OpInfo.Codes.size() == 1) {
5146     OpInfo.ConstraintCode = OpInfo.Codes[0];
5147     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5148   } else {
5149     ChooseConstraint(OpInfo, *this, Op, DAG);
5150   }
5151 
5152   // 'X' matches anything.
5153   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5154     // Constants are handled elsewhere.  For Functions, the type here is the
5155     // type of the result, which is not what we want to look at; leave them
5156     // alone.
5157     Value *v = OpInfo.CallOperandVal;
5158     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5159       return;
5160     }
5161 
5162     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5163       OpInfo.ConstraintCode = "i";
5164       return;
5165     }
5166 
5167     // Otherwise, try to resolve it to something we know about by looking at
5168     // the actual operand type.
5169     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5170       OpInfo.ConstraintCode = Repl;
5171       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5172     }
5173   }
5174 }
5175 
5176 /// Given an exact SDIV by a constant, create a multiplication
5177 /// with the multiplicative inverse of the constant.
5178 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5179                               const SDLoc &dl, SelectionDAG &DAG,
5180                               SmallVectorImpl<SDNode *> &Created) {
5181   SDValue Op0 = N->getOperand(0);
5182   SDValue Op1 = N->getOperand(1);
5183   EVT VT = N->getValueType(0);
5184   EVT SVT = VT.getScalarType();
5185   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5186   EVT ShSVT = ShVT.getScalarType();
5187 
5188   bool UseSRA = false;
5189   SmallVector<SDValue, 16> Shifts, Factors;
5190 
5191   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5192     if (C->isZero())
5193       return false;
5194     APInt Divisor = C->getAPIntValue();
5195     unsigned Shift = Divisor.countTrailingZeros();
5196     if (Shift) {
5197       Divisor.ashrInPlace(Shift);
5198       UseSRA = true;
5199     }
5200     // Calculate the multiplicative inverse, using Newton's method.
5201     APInt t;
5202     APInt Factor = Divisor;
5203     while ((t = Divisor * Factor) != 1)
5204       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5205     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5206     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5207     return true;
5208   };
5209 
5210   // Collect all magic values from the build vector.
5211   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5212     return SDValue();
5213 
5214   SDValue Shift, Factor;
5215   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5216     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5217     Factor = DAG.getBuildVector(VT, dl, Factors);
5218   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5219     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5220            "Expected matchUnaryPredicate to return one element for scalable "
5221            "vectors");
5222     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5223     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5224   } else {
5225     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5226     Shift = Shifts[0];
5227     Factor = Factors[0];
5228   }
5229 
5230   SDValue Res = Op0;
5231 
5232   // Shift the value upfront if it is even, so the LSB is one.
5233   if (UseSRA) {
5234     // TODO: For UDIV use SRL instead of SRA.
5235     SDNodeFlags Flags;
5236     Flags.setExact(true);
5237     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5238     Created.push_back(Res.getNode());
5239   }
5240 
5241   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5242 }
5243 
5244 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5245                               SelectionDAG &DAG,
5246                               SmallVectorImpl<SDNode *> &Created) const {
5247   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5249   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5250     return SDValue(N, 0); // Lower SDIV as SDIV
5251   return SDValue();
5252 }
5253 
5254 /// Given an ISD::SDIV node expressing a divide by constant,
5255 /// return a DAG expression to select that will generate the same value by
5256 /// multiplying by a magic number.
5257 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5258 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5259                                   bool IsAfterLegalization,
5260                                   SmallVectorImpl<SDNode *> &Created) const {
5261   SDLoc dl(N);
5262   EVT VT = N->getValueType(0);
5263   EVT SVT = VT.getScalarType();
5264   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5265   EVT ShSVT = ShVT.getScalarType();
5266   unsigned EltBits = VT.getScalarSizeInBits();
5267   EVT MulVT;
5268 
5269   // Check to see if we can do this.
5270   // FIXME: We should be more aggressive here.
5271   if (!isTypeLegal(VT)) {
5272     // Limit this to simple scalars for now.
5273     if (VT.isVector() || !VT.isSimple())
5274       return SDValue();
5275 
5276     // If this type will be promoted to a large enough type with a legal
5277     // multiply operation, we can go ahead and do this transform.
5278     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5279       return SDValue();
5280 
5281     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5282     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5283         !isOperationLegal(ISD::MUL, MulVT))
5284       return SDValue();
5285   }
5286 
5287   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5288   if (N->getFlags().hasExact())
5289     return BuildExactSDIV(*this, N, dl, DAG, Created);
5290 
5291   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5292 
5293   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5294     if (C->isZero())
5295       return false;
5296 
5297     const APInt &Divisor = C->getAPIntValue();
5298     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5299     int NumeratorFactor = 0;
5300     int ShiftMask = -1;
5301 
5302     if (Divisor.isOne() || Divisor.isAllOnes()) {
5303       // If d is +1/-1, we just multiply the numerator by +1/-1.
5304       NumeratorFactor = Divisor.getSExtValue();
5305       magics.Magic = 0;
5306       magics.ShiftAmount = 0;
5307       ShiftMask = 0;
5308     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5309       // If d > 0 and m < 0, add the numerator.
5310       NumeratorFactor = 1;
5311     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5312       // If d < 0 and m > 0, subtract the numerator.
5313       NumeratorFactor = -1;
5314     }
5315 
5316     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5317     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5318     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5319     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5320     return true;
5321   };
5322 
5323   SDValue N0 = N->getOperand(0);
5324   SDValue N1 = N->getOperand(1);
5325 
5326   // Collect the shifts / magic values from each element.
5327   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5328     return SDValue();
5329 
5330   SDValue MagicFactor, Factor, Shift, ShiftMask;
5331   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5332     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5333     Factor = DAG.getBuildVector(VT, dl, Factors);
5334     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5335     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5336   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5337     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5338            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5339            "Expected matchUnaryPredicate to return one element for scalable "
5340            "vectors");
5341     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5342     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5343     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5344     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5345   } else {
5346     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5347     MagicFactor = MagicFactors[0];
5348     Factor = Factors[0];
5349     Shift = Shifts[0];
5350     ShiftMask = ShiftMasks[0];
5351   }
5352 
5353   // Multiply the numerator (operand 0) by the magic value.
5354   // FIXME: We should support doing a MUL in a wider type.
5355   auto GetMULHS = [&](SDValue X, SDValue Y) {
5356     // If the type isn't legal, use a wider mul of the the type calculated
5357     // earlier.
5358     if (!isTypeLegal(VT)) {
5359       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5360       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5361       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5362       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5363                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5364       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5365     }
5366 
5367     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5368       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5369     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5370       SDValue LoHi =
5371           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5372       return SDValue(LoHi.getNode(), 1);
5373     }
5374     return SDValue();
5375   };
5376 
5377   SDValue Q = GetMULHS(N0, MagicFactor);
5378   if (!Q)
5379     return SDValue();
5380 
5381   Created.push_back(Q.getNode());
5382 
5383   // (Optionally) Add/subtract the numerator using Factor.
5384   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5385   Created.push_back(Factor.getNode());
5386   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5387   Created.push_back(Q.getNode());
5388 
5389   // Shift right algebraic by shift value.
5390   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5391   Created.push_back(Q.getNode());
5392 
5393   // Extract the sign bit, mask it and add it to the quotient.
5394   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5395   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5396   Created.push_back(T.getNode());
5397   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5398   Created.push_back(T.getNode());
5399   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5400 }
5401 
5402 /// Given an ISD::UDIV node expressing a divide by constant,
5403 /// return a DAG expression to select that will generate the same value by
5404 /// multiplying by a magic number.
5405 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5406 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5407                                   bool IsAfterLegalization,
5408                                   SmallVectorImpl<SDNode *> &Created) const {
5409   SDLoc dl(N);
5410   EVT VT = N->getValueType(0);
5411   EVT SVT = VT.getScalarType();
5412   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5413   EVT ShSVT = ShVT.getScalarType();
5414   unsigned EltBits = VT.getScalarSizeInBits();
5415   EVT MulVT;
5416 
5417   // Check to see if we can do this.
5418   // FIXME: We should be more aggressive here.
5419   if (!isTypeLegal(VT)) {
5420     // Limit this to simple scalars for now.
5421     if (VT.isVector() || !VT.isSimple())
5422       return SDValue();
5423 
5424     // If this type will be promoted to a large enough type with a legal
5425     // multiply operation, we can go ahead and do this transform.
5426     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5427       return SDValue();
5428 
5429     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5430     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5431         !isOperationLegal(ISD::MUL, MulVT))
5432       return SDValue();
5433   }
5434 
5435   bool UseNPQ = false;
5436   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5437 
5438   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5439     if (C->isZero())
5440       return false;
5441     // FIXME: We should use a narrower constant when the upper
5442     // bits are known to be zero.
5443     const APInt& Divisor = C->getAPIntValue();
5444     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5445     unsigned PreShift = 0, PostShift = 0;
5446 
5447     // If the divisor is even, we can avoid using the expensive fixup by
5448     // shifting the divided value upfront.
5449     if (magics.IsAdd != 0 && !Divisor[0]) {
5450       PreShift = Divisor.countTrailingZeros();
5451       // Get magic number for the shifted divisor.
5452       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5453       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5454     }
5455 
5456     APInt Magic = magics.Magic;
5457 
5458     unsigned SelNPQ;
5459     if (magics.IsAdd == 0 || Divisor.isOne()) {
5460       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5461              "We shouldn't generate an undefined shift!");
5462       PostShift = magics.ShiftAmount;
5463       SelNPQ = false;
5464     } else {
5465       PostShift = magics.ShiftAmount - 1;
5466       SelNPQ = true;
5467     }
5468 
5469     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5470     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5471     NPQFactors.push_back(
5472         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5473                                : APInt::getZero(EltBits),
5474                         dl, SVT));
5475     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5476     UseNPQ |= SelNPQ;
5477     return true;
5478   };
5479 
5480   SDValue N0 = N->getOperand(0);
5481   SDValue N1 = N->getOperand(1);
5482 
5483   // Collect the shifts/magic values from each element.
5484   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5485     return SDValue();
5486 
5487   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5488   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5489     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5490     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5491     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5492     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5493   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5494     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5495            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5496            "Expected matchUnaryPredicate to return one for scalable vectors");
5497     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5498     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5499     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5500     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5501   } else {
5502     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5503     PreShift = PreShifts[0];
5504     MagicFactor = MagicFactors[0];
5505     PostShift = PostShifts[0];
5506   }
5507 
5508   SDValue Q = N0;
5509   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5510   Created.push_back(Q.getNode());
5511 
5512   // FIXME: We should support doing a MUL in a wider type.
5513   auto GetMULHU = [&](SDValue X, SDValue Y) {
5514     // If the type isn't legal, use a wider mul of the the type calculated
5515     // earlier.
5516     if (!isTypeLegal(VT)) {
5517       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5518       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5519       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5520       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5521                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5522       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5523     }
5524 
5525     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5526       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5527     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5528       SDValue LoHi =
5529           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5530       return SDValue(LoHi.getNode(), 1);
5531     }
5532     return SDValue(); // No mulhu or equivalent
5533   };
5534 
5535   // Multiply the numerator (operand 0) by the magic value.
5536   Q = GetMULHU(Q, MagicFactor);
5537   if (!Q)
5538     return SDValue();
5539 
5540   Created.push_back(Q.getNode());
5541 
5542   if (UseNPQ) {
5543     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5544     Created.push_back(NPQ.getNode());
5545 
5546     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5547     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5548     if (VT.isVector())
5549       NPQ = GetMULHU(NPQ, NPQFactor);
5550     else
5551       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5552 
5553     Created.push_back(NPQ.getNode());
5554 
5555     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5556     Created.push_back(Q.getNode());
5557   }
5558 
5559   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5560   Created.push_back(Q.getNode());
5561 
5562   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5563 
5564   SDValue One = DAG.getConstant(1, dl, VT);
5565   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5566   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5567 }
5568 
5569 /// If all values in Values that *don't* match the predicate are same 'splat'
5570 /// value, then replace all values with that splat value.
5571 /// Else, if AlternativeReplacement was provided, then replace all values that
5572 /// do match predicate with AlternativeReplacement value.
5573 static void
5574 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5575                           std::function<bool(SDValue)> Predicate,
5576                           SDValue AlternativeReplacement = SDValue()) {
5577   SDValue Replacement;
5578   // Is there a value for which the Predicate does *NOT* match? What is it?
5579   auto SplatValue = llvm::find_if_not(Values, Predicate);
5580   if (SplatValue != Values.end()) {
5581     // Does Values consist only of SplatValue's and values matching Predicate?
5582     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5583           return Value == *SplatValue || Predicate(Value);
5584         })) // Then we shall replace values matching predicate with SplatValue.
5585       Replacement = *SplatValue;
5586   }
5587   if (!Replacement) {
5588     // Oops, we did not find the "baseline" splat value.
5589     if (!AlternativeReplacement)
5590       return; // Nothing to do.
5591     // Let's replace with provided value then.
5592     Replacement = AlternativeReplacement;
5593   }
5594   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5595 }
5596 
5597 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5598 /// where the divisor is constant and the comparison target is zero,
5599 /// return a DAG expression that will generate the same comparison result
5600 /// using only multiplications, additions and shifts/rotations.
5601 /// Ref: "Hacker's Delight" 10-17.
5602 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5603                                         SDValue CompTargetNode,
5604                                         ISD::CondCode Cond,
5605                                         DAGCombinerInfo &DCI,
5606                                         const SDLoc &DL) const {
5607   SmallVector<SDNode *, 5> Built;
5608   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5609                                          DCI, DL, Built)) {
5610     for (SDNode *N : Built)
5611       DCI.AddToWorklist(N);
5612     return Folded;
5613   }
5614 
5615   return SDValue();
5616 }
5617 
5618 SDValue
5619 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5620                                   SDValue CompTargetNode, ISD::CondCode Cond,
5621                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5622                                   SmallVectorImpl<SDNode *> &Created) const {
5623   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5624   // - D must be constant, with D = D0 * 2^K where D0 is odd
5625   // - P is the multiplicative inverse of D0 modulo 2^W
5626   // - Q = floor(((2^W) - 1) / D)
5627   // where W is the width of the common type of N and D.
5628   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5629          "Only applicable for (in)equality comparisons.");
5630 
5631   SelectionDAG &DAG = DCI.DAG;
5632 
5633   EVT VT = REMNode.getValueType();
5634   EVT SVT = VT.getScalarType();
5635   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5636   EVT ShSVT = ShVT.getScalarType();
5637 
5638   // If MUL is unavailable, we cannot proceed in any case.
5639   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5640     return SDValue();
5641 
5642   bool ComparingWithAllZeros = true;
5643   bool AllComparisonsWithNonZerosAreTautological = true;
5644   bool HadTautologicalLanes = false;
5645   bool AllLanesAreTautological = true;
5646   bool HadEvenDivisor = false;
5647   bool AllDivisorsArePowerOfTwo = true;
5648   bool HadTautologicalInvertedLanes = false;
5649   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5650 
5651   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5652     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5653     if (CDiv->isZero())
5654       return false;
5655 
5656     const APInt &D = CDiv->getAPIntValue();
5657     const APInt &Cmp = CCmp->getAPIntValue();
5658 
5659     ComparingWithAllZeros &= Cmp.isZero();
5660 
5661     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5662     // if C2 is not less than C1, the comparison is always false.
5663     // But we will only be able to produce the comparison that will give the
5664     // opposive tautological answer. So this lane would need to be fixed up.
5665     bool TautologicalInvertedLane = D.ule(Cmp);
5666     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5667 
5668     // If all lanes are tautological (either all divisors are ones, or divisor
5669     // is not greater than the constant we are comparing with),
5670     // we will prefer to avoid the fold.
5671     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5672     HadTautologicalLanes |= TautologicalLane;
5673     AllLanesAreTautological &= TautologicalLane;
5674 
5675     // If we are comparing with non-zero, we need'll need  to subtract said
5676     // comparison value from the LHS. But there is no point in doing that if
5677     // every lane where we are comparing with non-zero is tautological..
5678     if (!Cmp.isZero())
5679       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5680 
5681     // Decompose D into D0 * 2^K
5682     unsigned K = D.countTrailingZeros();
5683     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5684     APInt D0 = D.lshr(K);
5685 
5686     // D is even if it has trailing zeros.
5687     HadEvenDivisor |= (K != 0);
5688     // D is a power-of-two if D0 is one.
5689     // If all divisors are power-of-two, we will prefer to avoid the fold.
5690     AllDivisorsArePowerOfTwo &= D0.isOne();
5691 
5692     // P = inv(D0, 2^W)
5693     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5694     unsigned W = D.getBitWidth();
5695     APInt P = D0.zext(W + 1)
5696                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5697                   .trunc(W);
5698     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5699     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5700 
5701     // Q = floor((2^W - 1) u/ D)
5702     // R = ((2^W - 1) u% D)
5703     APInt Q, R;
5704     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5705 
5706     // If we are comparing with zero, then that comparison constant is okay,
5707     // else it may need to be one less than that.
5708     if (Cmp.ugt(R))
5709       Q -= 1;
5710 
5711     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5712            "We are expecting that K is always less than all-ones for ShSVT");
5713 
5714     // If the lane is tautological the result can be constant-folded.
5715     if (TautologicalLane) {
5716       // Set P and K amount to a bogus values so we can try to splat them.
5717       P = 0;
5718       K = -1;
5719       // And ensure that comparison constant is tautological,
5720       // it will always compare true/false.
5721       Q = -1;
5722     }
5723 
5724     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5725     KAmts.push_back(
5726         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5727     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5728     return true;
5729   };
5730 
5731   SDValue N = REMNode.getOperand(0);
5732   SDValue D = REMNode.getOperand(1);
5733 
5734   // Collect the values from each element.
5735   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5736     return SDValue();
5737 
5738   // If all lanes are tautological, the result can be constant-folded.
5739   if (AllLanesAreTautological)
5740     return SDValue();
5741 
5742   // If this is a urem by a powers-of-two, avoid the fold since it can be
5743   // best implemented as a bit test.
5744   if (AllDivisorsArePowerOfTwo)
5745     return SDValue();
5746 
5747   SDValue PVal, KVal, QVal;
5748   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5749     if (HadTautologicalLanes) {
5750       // Try to turn PAmts into a splat, since we don't care about the values
5751       // that are currently '0'. If we can't, just keep '0'`s.
5752       turnVectorIntoSplatVector(PAmts, isNullConstant);
5753       // Try to turn KAmts into a splat, since we don't care about the values
5754       // that are currently '-1'. If we can't, change them to '0'`s.
5755       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5756                                 DAG.getConstant(0, DL, ShSVT));
5757     }
5758 
5759     PVal = DAG.getBuildVector(VT, DL, PAmts);
5760     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5761     QVal = DAG.getBuildVector(VT, DL, QAmts);
5762   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5763     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5764            "Expected matchBinaryPredicate to return one element for "
5765            "SPLAT_VECTORs");
5766     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5767     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5768     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5769   } else {
5770     PVal = PAmts[0];
5771     KVal = KAmts[0];
5772     QVal = QAmts[0];
5773   }
5774 
5775   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5776     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5777       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5778     assert(CompTargetNode.getValueType() == N.getValueType() &&
5779            "Expecting that the types on LHS and RHS of comparisons match.");
5780     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5781   }
5782 
5783   // (mul N, P)
5784   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5785   Created.push_back(Op0.getNode());
5786 
5787   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5788   // divisors as a performance improvement, since rotating by 0 is a no-op.
5789   if (HadEvenDivisor) {
5790     // We need ROTR to do this.
5791     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5792       return SDValue();
5793     // UREM: (rotr (mul N, P), K)
5794     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5795     Created.push_back(Op0.getNode());
5796   }
5797 
5798   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5799   SDValue NewCC =
5800       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5801                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5802   if (!HadTautologicalInvertedLanes)
5803     return NewCC;
5804 
5805   // If any lanes previously compared always-false, the NewCC will give
5806   // always-true result for them, so we need to fixup those lanes.
5807   // Or the other way around for inequality predicate.
5808   assert(VT.isVector() && "Can/should only get here for vectors.");
5809   Created.push_back(NewCC.getNode());
5810 
5811   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5812   // if C2 is not less than C1, the comparison is always false.
5813   // But we have produced the comparison that will give the
5814   // opposive tautological answer. So these lanes would need to be fixed up.
5815   SDValue TautologicalInvertedChannels =
5816       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5817   Created.push_back(TautologicalInvertedChannels.getNode());
5818 
5819   // NOTE: we avoid letting illegal types through even if we're before legalize
5820   // ops – legalization has a hard time producing good code for this.
5821   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5822     // If we have a vector select, let's replace the comparison results in the
5823     // affected lanes with the correct tautological result.
5824     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5825                                               DL, SETCCVT, SETCCVT);
5826     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5827                        Replacement, NewCC);
5828   }
5829 
5830   // Else, we can just invert the comparison result in the appropriate lanes.
5831   //
5832   // NOTE: see the note above VSELECT above.
5833   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5834     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5835                        TautologicalInvertedChannels);
5836 
5837   return SDValue(); // Don't know how to lower.
5838 }
5839 
5840 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5841 /// where the divisor is constant and the comparison target is zero,
5842 /// return a DAG expression that will generate the same comparison result
5843 /// using only multiplications, additions and shifts/rotations.
5844 /// Ref: "Hacker's Delight" 10-17.
5845 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5846                                         SDValue CompTargetNode,
5847                                         ISD::CondCode Cond,
5848                                         DAGCombinerInfo &DCI,
5849                                         const SDLoc &DL) const {
5850   SmallVector<SDNode *, 7> Built;
5851   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5852                                          DCI, DL, Built)) {
5853     assert(Built.size() <= 7 && "Max size prediction failed.");
5854     for (SDNode *N : Built)
5855       DCI.AddToWorklist(N);
5856     return Folded;
5857   }
5858 
5859   return SDValue();
5860 }
5861 
5862 SDValue
5863 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5864                                   SDValue CompTargetNode, ISD::CondCode Cond,
5865                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5866                                   SmallVectorImpl<SDNode *> &Created) const {
5867   // Fold:
5868   //   (seteq/ne (srem N, D), 0)
5869   // To:
5870   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5871   //
5872   // - D must be constant, with D = D0 * 2^K where D0 is odd
5873   // - P is the multiplicative inverse of D0 modulo 2^W
5874   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5875   // - Q = floor((2 * A) / (2^K))
5876   // where W is the width of the common type of N and D.
5877   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5878          "Only applicable for (in)equality comparisons.");
5879 
5880   SelectionDAG &DAG = DCI.DAG;
5881 
5882   EVT VT = REMNode.getValueType();
5883   EVT SVT = VT.getScalarType();
5884   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5885   EVT ShSVT = ShVT.getScalarType();
5886 
5887   // If we are after ops legalization, and MUL is unavailable, we can not
5888   // proceed.
5889   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5890     return SDValue();
5891 
5892   // TODO: Could support comparing with non-zero too.
5893   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5894   if (!CompTarget || !CompTarget->isZero())
5895     return SDValue();
5896 
5897   bool HadIntMinDivisor = false;
5898   bool HadOneDivisor = false;
5899   bool AllDivisorsAreOnes = true;
5900   bool HadEvenDivisor = false;
5901   bool NeedToApplyOffset = false;
5902   bool AllDivisorsArePowerOfTwo = true;
5903   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5904 
5905   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5906     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5907     if (C->isZero())
5908       return false;
5909 
5910     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5911 
5912     // WARNING: this fold is only valid for positive divisors!
5913     APInt D = C->getAPIntValue();
5914     if (D.isNegative())
5915       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5916 
5917     HadIntMinDivisor |= D.isMinSignedValue();
5918 
5919     // If all divisors are ones, we will prefer to avoid the fold.
5920     HadOneDivisor |= D.isOne();
5921     AllDivisorsAreOnes &= D.isOne();
5922 
5923     // Decompose D into D0 * 2^K
5924     unsigned K = D.countTrailingZeros();
5925     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5926     APInt D0 = D.lshr(K);
5927 
5928     if (!D.isMinSignedValue()) {
5929       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5930       // we don't care about this lane in this fold, we'll special-handle it.
5931       HadEvenDivisor |= (K != 0);
5932     }
5933 
5934     // D is a power-of-two if D0 is one. This includes INT_MIN.
5935     // If all divisors are power-of-two, we will prefer to avoid the fold.
5936     AllDivisorsArePowerOfTwo &= D0.isOne();
5937 
5938     // P = inv(D0, 2^W)
5939     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5940     unsigned W = D.getBitWidth();
5941     APInt P = D0.zext(W + 1)
5942                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5943                   .trunc(W);
5944     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5945     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5946 
5947     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5948     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5949     A.clearLowBits(K);
5950 
5951     if (!D.isMinSignedValue()) {
5952       // If divisor INT_MIN, then we don't care about this lane in this fold,
5953       // we'll special-handle it.
5954       NeedToApplyOffset |= A != 0;
5955     }
5956 
5957     // Q = floor((2 * A) / (2^K))
5958     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5959 
5960     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5961            "We are expecting that A is always less than all-ones for SVT");
5962     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5963            "We are expecting that K is always less than all-ones for ShSVT");
5964 
5965     // If the divisor is 1 the result can be constant-folded. Likewise, we
5966     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5967     if (D.isOne()) {
5968       // Set P, A and K to a bogus values so we can try to splat them.
5969       P = 0;
5970       A = -1;
5971       K = -1;
5972 
5973       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5974       Q = -1;
5975     }
5976 
5977     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5978     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5979     KAmts.push_back(
5980         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5981     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5982     return true;
5983   };
5984 
5985   SDValue N = REMNode.getOperand(0);
5986   SDValue D = REMNode.getOperand(1);
5987 
5988   // Collect the values from each element.
5989   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5990     return SDValue();
5991 
5992   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5993   if (AllDivisorsAreOnes)
5994     return SDValue();
5995 
5996   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5997   // since it can be best implemented as a bit test.
5998   if (AllDivisorsArePowerOfTwo)
5999     return SDValue();
6000 
6001   SDValue PVal, AVal, KVal, QVal;
6002   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6003     if (HadOneDivisor) {
6004       // Try to turn PAmts into a splat, since we don't care about the values
6005       // that are currently '0'. If we can't, just keep '0'`s.
6006       turnVectorIntoSplatVector(PAmts, isNullConstant);
6007       // Try to turn AAmts into a splat, since we don't care about the
6008       // values that are currently '-1'. If we can't, change them to '0'`s.
6009       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6010                                 DAG.getConstant(0, DL, SVT));
6011       // Try to turn KAmts into a splat, since we don't care about the values
6012       // that are currently '-1'. If we can't, change them to '0'`s.
6013       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6014                                 DAG.getConstant(0, DL, ShSVT));
6015     }
6016 
6017     PVal = DAG.getBuildVector(VT, DL, PAmts);
6018     AVal = DAG.getBuildVector(VT, DL, AAmts);
6019     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6020     QVal = DAG.getBuildVector(VT, DL, QAmts);
6021   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6022     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6023            QAmts.size() == 1 &&
6024            "Expected matchUnaryPredicate to return one element for scalable "
6025            "vectors");
6026     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6027     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6028     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6029     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6030   } else {
6031     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6032     PVal = PAmts[0];
6033     AVal = AAmts[0];
6034     KVal = KAmts[0];
6035     QVal = QAmts[0];
6036   }
6037 
6038   // (mul N, P)
6039   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6040   Created.push_back(Op0.getNode());
6041 
6042   if (NeedToApplyOffset) {
6043     // We need ADD to do this.
6044     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6045       return SDValue();
6046 
6047     // (add (mul N, P), A)
6048     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6049     Created.push_back(Op0.getNode());
6050   }
6051 
6052   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6053   // divisors as a performance improvement, since rotating by 0 is a no-op.
6054   if (HadEvenDivisor) {
6055     // We need ROTR to do this.
6056     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6057       return SDValue();
6058     // SREM: (rotr (add (mul N, P), A), K)
6059     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6060     Created.push_back(Op0.getNode());
6061   }
6062 
6063   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6064   SDValue Fold =
6065       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6066                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6067 
6068   // If we didn't have lanes with INT_MIN divisor, then we're done.
6069   if (!HadIntMinDivisor)
6070     return Fold;
6071 
6072   // That fold is only valid for positive divisors. Which effectively means,
6073   // it is invalid for INT_MIN divisors. So if we have such a lane,
6074   // we must fix-up results for said lanes.
6075   assert(VT.isVector() && "Can/should only get here for vectors.");
6076 
6077   // NOTE: we avoid letting illegal types through even if we're before legalize
6078   // ops – legalization has a hard time producing good code for the code that
6079   // follows.
6080   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6081       !isOperationLegalOrCustom(ISD::AND, VT) ||
6082       !isOperationLegalOrCustom(Cond, VT) ||
6083       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6084     return SDValue();
6085 
6086   Created.push_back(Fold.getNode());
6087 
6088   SDValue IntMin = DAG.getConstant(
6089       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6090   SDValue IntMax = DAG.getConstant(
6091       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6092   SDValue Zero =
6093       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6094 
6095   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6096   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6097   Created.push_back(DivisorIsIntMin.getNode());
6098 
6099   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6100   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6101   Created.push_back(Masked.getNode());
6102   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6103   Created.push_back(MaskedIsZero.getNode());
6104 
6105   // To produce final result we need to blend 2 vectors: 'SetCC' and
6106   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6107   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6108   // constant-folded, select can get lowered to a shuffle with constant mask.
6109   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6110                                 MaskedIsZero, Fold);
6111 
6112   return Blended;
6113 }
6114 
6115 bool TargetLowering::
6116 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6117   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6118     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6119                                 "be a constant integer");
6120     return true;
6121   }
6122 
6123   return false;
6124 }
6125 
6126 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6127                                          const DenormalMode &Mode) const {
6128   SDLoc DL(Op);
6129   EVT VT = Op.getValueType();
6130   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6131   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6132   // Testing it with denormal inputs to avoid wrong estimate.
6133   if (Mode.Input == DenormalMode::IEEE) {
6134     // This is specifically a check for the handling of denormal inputs,
6135     // not the result.
6136 
6137     // Test = fabs(X) < SmallestNormal
6138     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6139     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6140     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6141     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6142     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6143   }
6144   // Test = X == 0.0
6145   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6146 }
6147 
6148 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6149                                              bool LegalOps, bool OptForSize,
6150                                              NegatibleCost &Cost,
6151                                              unsigned Depth) const {
6152   // fneg is removable even if it has multiple uses.
6153   if (Op.getOpcode() == ISD::FNEG) {
6154     Cost = NegatibleCost::Cheaper;
6155     return Op.getOperand(0);
6156   }
6157 
6158   // Don't recurse exponentially.
6159   if (Depth > SelectionDAG::MaxRecursionDepth)
6160     return SDValue();
6161 
6162   // Pre-increment recursion depth for use in recursive calls.
6163   ++Depth;
6164   const SDNodeFlags Flags = Op->getFlags();
6165   const TargetOptions &Options = DAG.getTarget().Options;
6166   EVT VT = Op.getValueType();
6167   unsigned Opcode = Op.getOpcode();
6168 
6169   // Don't allow anything with multiple uses unless we know it is free.
6170   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6171     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6172                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6173     if (!IsFreeExtend)
6174       return SDValue();
6175   }
6176 
6177   auto RemoveDeadNode = [&](SDValue N) {
6178     if (N && N.getNode()->use_empty())
6179       DAG.RemoveDeadNode(N.getNode());
6180   };
6181 
6182   SDLoc DL(Op);
6183 
6184   // Because getNegatedExpression can delete nodes we need a handle to keep
6185   // temporary nodes alive in case the recursion manages to create an identical
6186   // node.
6187   std::list<HandleSDNode> Handles;
6188 
6189   switch (Opcode) {
6190   case ISD::ConstantFP: {
6191     // Don't invert constant FP values after legalization unless the target says
6192     // the negated constant is legal.
6193     bool IsOpLegal =
6194         isOperationLegal(ISD::ConstantFP, VT) ||
6195         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6196                      OptForSize);
6197 
6198     if (LegalOps && !IsOpLegal)
6199       break;
6200 
6201     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6202     V.changeSign();
6203     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6204 
6205     // If we already have the use of the negated floating constant, it is free
6206     // to negate it even it has multiple uses.
6207     if (!Op.hasOneUse() && CFP.use_empty())
6208       break;
6209     Cost = NegatibleCost::Neutral;
6210     return CFP;
6211   }
6212   case ISD::BUILD_VECTOR: {
6213     // Only permit BUILD_VECTOR of constants.
6214     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6215           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6216         }))
6217       break;
6218 
6219     bool IsOpLegal =
6220         (isOperationLegal(ISD::ConstantFP, VT) &&
6221          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6222         llvm::all_of(Op->op_values(), [&](SDValue N) {
6223           return N.isUndef() ||
6224                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6225                               OptForSize);
6226         });
6227 
6228     if (LegalOps && !IsOpLegal)
6229       break;
6230 
6231     SmallVector<SDValue, 4> Ops;
6232     for (SDValue C : Op->op_values()) {
6233       if (C.isUndef()) {
6234         Ops.push_back(C);
6235         continue;
6236       }
6237       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6238       V.changeSign();
6239       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6240     }
6241     Cost = NegatibleCost::Neutral;
6242     return DAG.getBuildVector(VT, DL, Ops);
6243   }
6244   case ISD::FADD: {
6245     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6246       break;
6247 
6248     // After operation legalization, it might not be legal to create new FSUBs.
6249     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6250       break;
6251     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6252 
6253     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6254     NegatibleCost CostX = NegatibleCost::Expensive;
6255     SDValue NegX =
6256         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6257     // Prevent this node from being deleted by the next call.
6258     if (NegX)
6259       Handles.emplace_back(NegX);
6260 
6261     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6262     NegatibleCost CostY = NegatibleCost::Expensive;
6263     SDValue NegY =
6264         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6265 
6266     // We're done with the handles.
6267     Handles.clear();
6268 
6269     // Negate the X if its cost is less or equal than Y.
6270     if (NegX && (CostX <= CostY)) {
6271       Cost = CostX;
6272       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6273       if (NegY != N)
6274         RemoveDeadNode(NegY);
6275       return N;
6276     }
6277 
6278     // Negate the Y if it is not expensive.
6279     if (NegY) {
6280       Cost = CostY;
6281       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6282       if (NegX != N)
6283         RemoveDeadNode(NegX);
6284       return N;
6285     }
6286     break;
6287   }
6288   case ISD::FSUB: {
6289     // We can't turn -(A-B) into B-A when we honor signed zeros.
6290     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6291       break;
6292 
6293     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6294     // fold (fneg (fsub 0, Y)) -> Y
6295     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6296       if (C->isZero()) {
6297         Cost = NegatibleCost::Cheaper;
6298         return Y;
6299       }
6300 
6301     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6302     Cost = NegatibleCost::Neutral;
6303     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6304   }
6305   case ISD::FMUL:
6306   case ISD::FDIV: {
6307     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6308 
6309     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6310     NegatibleCost CostX = NegatibleCost::Expensive;
6311     SDValue NegX =
6312         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6313     // Prevent this node from being deleted by the next call.
6314     if (NegX)
6315       Handles.emplace_back(NegX);
6316 
6317     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6318     NegatibleCost CostY = NegatibleCost::Expensive;
6319     SDValue NegY =
6320         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6321 
6322     // We're done with the handles.
6323     Handles.clear();
6324 
6325     // Negate the X if its cost is less or equal than Y.
6326     if (NegX && (CostX <= CostY)) {
6327       Cost = CostX;
6328       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6329       if (NegY != N)
6330         RemoveDeadNode(NegY);
6331       return N;
6332     }
6333 
6334     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6335     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6336       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6337         break;
6338 
6339     // Negate the Y if it is not expensive.
6340     if (NegY) {
6341       Cost = CostY;
6342       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6343       if (NegX != N)
6344         RemoveDeadNode(NegX);
6345       return N;
6346     }
6347     break;
6348   }
6349   case ISD::FMA:
6350   case ISD::FMAD: {
6351     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6352       break;
6353 
6354     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6355     NegatibleCost CostZ = NegatibleCost::Expensive;
6356     SDValue NegZ =
6357         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6358     // Give up if fail to negate the Z.
6359     if (!NegZ)
6360       break;
6361 
6362     // Prevent this node from being deleted by the next two calls.
6363     Handles.emplace_back(NegZ);
6364 
6365     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6366     NegatibleCost CostX = NegatibleCost::Expensive;
6367     SDValue NegX =
6368         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6369     // Prevent this node from being deleted by the next call.
6370     if (NegX)
6371       Handles.emplace_back(NegX);
6372 
6373     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6374     NegatibleCost CostY = NegatibleCost::Expensive;
6375     SDValue NegY =
6376         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6377 
6378     // We're done with the handles.
6379     Handles.clear();
6380 
6381     // Negate the X if its cost is less or equal than Y.
6382     if (NegX && (CostX <= CostY)) {
6383       Cost = std::min(CostX, CostZ);
6384       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6385       if (NegY != N)
6386         RemoveDeadNode(NegY);
6387       return N;
6388     }
6389 
6390     // Negate the Y if it is not expensive.
6391     if (NegY) {
6392       Cost = std::min(CostY, CostZ);
6393       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6394       if (NegX != N)
6395         RemoveDeadNode(NegX);
6396       return N;
6397     }
6398     break;
6399   }
6400 
6401   case ISD::FP_EXTEND:
6402   case ISD::FSIN:
6403     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6404                                             OptForSize, Cost, Depth))
6405       return DAG.getNode(Opcode, DL, VT, NegV);
6406     break;
6407   case ISD::FP_ROUND:
6408     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6409                                             OptForSize, Cost, Depth))
6410       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6411     break;
6412   }
6413 
6414   return SDValue();
6415 }
6416 
6417 //===----------------------------------------------------------------------===//
6418 // Legalization Utilities
6419 //===----------------------------------------------------------------------===//
6420 
6421 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6422                                     SDValue LHS, SDValue RHS,
6423                                     SmallVectorImpl<SDValue> &Result,
6424                                     EVT HiLoVT, SelectionDAG &DAG,
6425                                     MulExpansionKind Kind, SDValue LL,
6426                                     SDValue LH, SDValue RL, SDValue RH) const {
6427   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6428          Opcode == ISD::SMUL_LOHI);
6429 
6430   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6431                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6432   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6433                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6434   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6435                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6436   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6437                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6438 
6439   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6440     return false;
6441 
6442   unsigned OuterBitSize = VT.getScalarSizeInBits();
6443   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6444 
6445   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6446   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6447          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6448 
6449   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6450   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6451                           bool Signed) -> bool {
6452     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6453       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6454       Hi = SDValue(Lo.getNode(), 1);
6455       return true;
6456     }
6457     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6458       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6459       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6460       return true;
6461     }
6462     return false;
6463   };
6464 
6465   SDValue Lo, Hi;
6466 
6467   if (!LL.getNode() && !RL.getNode() &&
6468       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6469     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6470     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6471   }
6472 
6473   if (!LL.getNode())
6474     return false;
6475 
6476   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6477   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6478       DAG.MaskedValueIsZero(RHS, HighMask)) {
6479     // The inputs are both zero-extended.
6480     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6481       Result.push_back(Lo);
6482       Result.push_back(Hi);
6483       if (Opcode != ISD::MUL) {
6484         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6485         Result.push_back(Zero);
6486         Result.push_back(Zero);
6487       }
6488       return true;
6489     }
6490   }
6491 
6492   if (!VT.isVector() && Opcode == ISD::MUL &&
6493       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6494       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6495     // The input values are both sign-extended.
6496     // TODO non-MUL case?
6497     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6498       Result.push_back(Lo);
6499       Result.push_back(Hi);
6500       return true;
6501     }
6502   }
6503 
6504   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6505   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6506   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6507 
6508   if (!LH.getNode() && !RH.getNode() &&
6509       isOperationLegalOrCustom(ISD::SRL, VT) &&
6510       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6511     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6512     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6513     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6514     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6515   }
6516 
6517   if (!LH.getNode())
6518     return false;
6519 
6520   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6521     return false;
6522 
6523   Result.push_back(Lo);
6524 
6525   if (Opcode == ISD::MUL) {
6526     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6527     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6528     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6529     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6530     Result.push_back(Hi);
6531     return true;
6532   }
6533 
6534   // Compute the full width result.
6535   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6536     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6537     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6538     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6539     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6540   };
6541 
6542   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6543   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6544     return false;
6545 
6546   // This is effectively the add part of a multiply-add of half-sized operands,
6547   // so it cannot overflow.
6548   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6549 
6550   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6551     return false;
6552 
6553   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6554   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6555 
6556   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6557                   isOperationLegalOrCustom(ISD::ADDE, VT));
6558   if (UseGlue)
6559     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6560                        Merge(Lo, Hi));
6561   else
6562     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6563                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6564 
6565   SDValue Carry = Next.getValue(1);
6566   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6567   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6568 
6569   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6570     return false;
6571 
6572   if (UseGlue)
6573     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6574                      Carry);
6575   else
6576     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6577                      Zero, Carry);
6578 
6579   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6580 
6581   if (Opcode == ISD::SMUL_LOHI) {
6582     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6583                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6584     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6585 
6586     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6587                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6588     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6589   }
6590 
6591   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6592   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6593   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6594   return true;
6595 }
6596 
6597 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6598                                SelectionDAG &DAG, MulExpansionKind Kind,
6599                                SDValue LL, SDValue LH, SDValue RL,
6600                                SDValue RH) const {
6601   SmallVector<SDValue, 2> Result;
6602   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6603                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6604                            DAG, Kind, LL, LH, RL, RH);
6605   if (Ok) {
6606     assert(Result.size() == 2);
6607     Lo = Result[0];
6608     Hi = Result[1];
6609   }
6610   return Ok;
6611 }
6612 
6613 // Check that (every element of) Z is undef or not an exact multiple of BW.
6614 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6615   return ISD::matchUnaryPredicate(
6616       Z,
6617       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6618       true);
6619 }
6620 
6621 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6622                                           SelectionDAG &DAG) const {
6623   EVT VT = Node->getValueType(0);
6624 
6625   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6626                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6627                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6628                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6629     return SDValue();
6630 
6631   SDValue X = Node->getOperand(0);
6632   SDValue Y = Node->getOperand(1);
6633   SDValue Z = Node->getOperand(2);
6634 
6635   unsigned BW = VT.getScalarSizeInBits();
6636   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6637   SDLoc DL(SDValue(Node, 0));
6638 
6639   EVT ShVT = Z.getValueType();
6640 
6641   // If a funnel shift in the other direction is more supported, use it.
6642   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6643   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6644       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6645     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6646       // fshl X, Y, Z -> fshr X, Y, -Z
6647       // fshr X, Y, Z -> fshl X, Y, -Z
6648       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6649       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6650     } else {
6651       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6652       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6653       SDValue One = DAG.getConstant(1, DL, ShVT);
6654       if (IsFSHL) {
6655         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6656         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6657       } else {
6658         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6659         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6660       }
6661       Z = DAG.getNOT(DL, Z, ShVT);
6662     }
6663     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6664   }
6665 
6666   SDValue ShX, ShY;
6667   SDValue ShAmt, InvShAmt;
6668   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6669     // fshl: X << C | Y >> (BW - C)
6670     // fshr: X << (BW - C) | Y >> C
6671     // where C = Z % BW is not zero
6672     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6673     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6674     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6675     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6676     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6677   } else {
6678     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6679     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6680     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6681     if (isPowerOf2_32(BW)) {
6682       // Z % BW -> Z & (BW - 1)
6683       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6684       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6685       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6686     } else {
6687       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6688       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6689       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6690     }
6691 
6692     SDValue One = DAG.getConstant(1, DL, ShVT);
6693     if (IsFSHL) {
6694       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6695       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6696       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6697     } else {
6698       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6699       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6700       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6701     }
6702   }
6703   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6704 }
6705 
6706 // TODO: Merge with expandFunnelShift.
6707 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6708                                   SelectionDAG &DAG) const {
6709   EVT VT = Node->getValueType(0);
6710   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6711   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6712   SDValue Op0 = Node->getOperand(0);
6713   SDValue Op1 = Node->getOperand(1);
6714   SDLoc DL(SDValue(Node, 0));
6715 
6716   EVT ShVT = Op1.getValueType();
6717   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6718 
6719   // If a rotate in the other direction is more supported, use it.
6720   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6721   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6722       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6723     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6724     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6725   }
6726 
6727   if (!AllowVectorOps && VT.isVector() &&
6728       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6729        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6730        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6731        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6732        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6733     return SDValue();
6734 
6735   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6736   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6737   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6738   SDValue ShVal;
6739   SDValue HsVal;
6740   if (isPowerOf2_32(EltSizeInBits)) {
6741     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6742     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6743     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6744     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6745     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6746     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6747     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6748   } else {
6749     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6750     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6751     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6752     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6753     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6754     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6755     SDValue One = DAG.getConstant(1, DL, ShVT);
6756     HsVal =
6757         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6758   }
6759   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6760 }
6761 
6762 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6763                                       SelectionDAG &DAG) const {
6764   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6765   EVT VT = Node->getValueType(0);
6766   unsigned VTBits = VT.getScalarSizeInBits();
6767   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6768 
6769   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6770   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6771   SDValue ShOpLo = Node->getOperand(0);
6772   SDValue ShOpHi = Node->getOperand(1);
6773   SDValue ShAmt = Node->getOperand(2);
6774   EVT ShAmtVT = ShAmt.getValueType();
6775   EVT ShAmtCCVT =
6776       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6777   SDLoc dl(Node);
6778 
6779   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6780   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6781   // away during isel.
6782   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6783                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6784   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6785                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6786                        : DAG.getConstant(0, dl, VT);
6787 
6788   SDValue Tmp2, Tmp3;
6789   if (IsSHL) {
6790     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6791     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6792   } else {
6793     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6794     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6795   }
6796 
6797   // If the shift amount is larger or equal than the width of a part we don't
6798   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6799   // values for large shift amounts.
6800   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6801                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6802   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6803                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6804 
6805   if (IsSHL) {
6806     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6807     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6808   } else {
6809     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6810     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6811   }
6812 }
6813 
6814 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6815                                       SelectionDAG &DAG) const {
6816   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6817   SDValue Src = Node->getOperand(OpNo);
6818   EVT SrcVT = Src.getValueType();
6819   EVT DstVT = Node->getValueType(0);
6820   SDLoc dl(SDValue(Node, 0));
6821 
6822   // FIXME: Only f32 to i64 conversions are supported.
6823   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6824     return false;
6825 
6826   if (Node->isStrictFPOpcode())
6827     // When a NaN is converted to an integer a trap is allowed. We can't
6828     // use this expansion here because it would eliminate that trap. Other
6829     // traps are also allowed and cannot be eliminated. See
6830     // IEEE 754-2008 sec 5.8.
6831     return false;
6832 
6833   // Expand f32 -> i64 conversion
6834   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6835   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6836   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6837   EVT IntVT = SrcVT.changeTypeToInteger();
6838   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6839 
6840   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6841   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6842   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6843   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6844   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6845   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6846 
6847   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6848 
6849   SDValue ExponentBits = DAG.getNode(
6850       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6851       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6852   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6853 
6854   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6855                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6856                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6857   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6858 
6859   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6860                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6861                           DAG.getConstant(0x00800000, dl, IntVT));
6862 
6863   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6864 
6865   R = DAG.getSelectCC(
6866       dl, Exponent, ExponentLoBit,
6867       DAG.getNode(ISD::SHL, dl, DstVT, R,
6868                   DAG.getZExtOrTrunc(
6869                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6870                       dl, IntShVT)),
6871       DAG.getNode(ISD::SRL, dl, DstVT, R,
6872                   DAG.getZExtOrTrunc(
6873                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6874                       dl, IntShVT)),
6875       ISD::SETGT);
6876 
6877   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6878                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6879 
6880   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6881                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6882   return true;
6883 }
6884 
6885 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6886                                       SDValue &Chain,
6887                                       SelectionDAG &DAG) const {
6888   SDLoc dl(SDValue(Node, 0));
6889   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6890   SDValue Src = Node->getOperand(OpNo);
6891 
6892   EVT SrcVT = Src.getValueType();
6893   EVT DstVT = Node->getValueType(0);
6894   EVT SetCCVT =
6895       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6896   EVT DstSetCCVT =
6897       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6898 
6899   // Only expand vector types if we have the appropriate vector bit operations.
6900   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6901                                                    ISD::FP_TO_SINT;
6902   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6903                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6904     return false;
6905 
6906   // If the maximum float value is smaller then the signed integer range,
6907   // the destination signmask can't be represented by the float, so we can
6908   // just use FP_TO_SINT directly.
6909   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6910   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6911   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6912   if (APFloat::opOverflow &
6913       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6914     if (Node->isStrictFPOpcode()) {
6915       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6916                            { Node->getOperand(0), Src });
6917       Chain = Result.getValue(1);
6918     } else
6919       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6920     return true;
6921   }
6922 
6923   // Don't expand it if there isn't cheap fsub instruction.
6924   if (!isOperationLegalOrCustom(
6925           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6926     return false;
6927 
6928   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6929   SDValue Sel;
6930 
6931   if (Node->isStrictFPOpcode()) {
6932     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6933                        Node->getOperand(0), /*IsSignaling*/ true);
6934     Chain = Sel.getValue(1);
6935   } else {
6936     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6937   }
6938 
6939   bool Strict = Node->isStrictFPOpcode() ||
6940                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6941 
6942   if (Strict) {
6943     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6944     // signmask then offset (the result of which should be fully representable).
6945     // Sel = Src < 0x8000000000000000
6946     // FltOfs = select Sel, 0, 0x8000000000000000
6947     // IntOfs = select Sel, 0, 0x8000000000000000
6948     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6949 
6950     // TODO: Should any fast-math-flags be set for the FSUB?
6951     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6952                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6953     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6954     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6955                                    DAG.getConstant(0, dl, DstVT),
6956                                    DAG.getConstant(SignMask, dl, DstVT));
6957     SDValue SInt;
6958     if (Node->isStrictFPOpcode()) {
6959       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6960                                 { Chain, Src, FltOfs });
6961       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6962                          { Val.getValue(1), Val });
6963       Chain = SInt.getValue(1);
6964     } else {
6965       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6966       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6967     }
6968     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6969   } else {
6970     // Expand based on maximum range of FP_TO_SINT:
6971     // True = fp_to_sint(Src)
6972     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6973     // Result = select (Src < 0x8000000000000000), True, False
6974 
6975     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6976     // TODO: Should any fast-math-flags be set for the FSUB?
6977     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6978                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6979     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6980                         DAG.getConstant(SignMask, dl, DstVT));
6981     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6982     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6983   }
6984   return true;
6985 }
6986 
6987 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6988                                       SDValue &Chain,
6989                                       SelectionDAG &DAG) const {
6990   // This transform is not correct for converting 0 when rounding mode is set
6991   // to round toward negative infinity which will produce -0.0. So disable under
6992   // strictfp.
6993   if (Node->isStrictFPOpcode())
6994     return false;
6995 
6996   SDValue Src = Node->getOperand(0);
6997   EVT SrcVT = Src.getValueType();
6998   EVT DstVT = Node->getValueType(0);
6999 
7000   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7001     return false;
7002 
7003   // Only expand vector types if we have the appropriate vector bit operations.
7004   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7005                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7006                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7007                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7008                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7009     return false;
7010 
7011   SDLoc dl(SDValue(Node, 0));
7012   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7013 
7014   // Implementation of unsigned i64 to f64 following the algorithm in
7015   // __floatundidf in compiler_rt.  This implementation performs rounding
7016   // correctly in all rounding modes with the exception of converting 0
7017   // when rounding toward negative infinity. In that case the fsub will produce
7018   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7019   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7020   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7021       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7022   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7023   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7024   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7025 
7026   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7027   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7028   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7029   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7030   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7031   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7032   SDValue HiSub =
7033       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7034   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7035   return true;
7036 }
7037 
7038 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7039                                               SelectionDAG &DAG) const {
7040   SDLoc dl(Node);
7041   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7042     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7043   EVT VT = Node->getValueType(0);
7044 
7045   if (VT.isScalableVector())
7046     report_fatal_error(
7047         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7048 
7049   if (isOperationLegalOrCustom(NewOp, VT)) {
7050     SDValue Quiet0 = Node->getOperand(0);
7051     SDValue Quiet1 = Node->getOperand(1);
7052 
7053     if (!Node->getFlags().hasNoNaNs()) {
7054       // Insert canonicalizes if it's possible we need to quiet to get correct
7055       // sNaN behavior.
7056       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7057         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7058                              Node->getFlags());
7059       }
7060       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7061         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7062                              Node->getFlags());
7063       }
7064     }
7065 
7066     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7067   }
7068 
7069   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7070   // instead if there are no NaNs.
7071   if (Node->getFlags().hasNoNaNs()) {
7072     unsigned IEEE2018Op =
7073         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7074     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7075       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7076                          Node->getOperand(1), Node->getFlags());
7077     }
7078   }
7079 
7080   // If none of the above worked, but there are no NaNs, then expand to
7081   // a compare/select sequence.  This is required for correctness since
7082   // InstCombine might have canonicalized a fcmp+select sequence to a
7083   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7084   // expansion to libcall, we might introduce a link-time dependency
7085   // on libm into a file that originally did not have one.
7086   if (Node->getFlags().hasNoNaNs()) {
7087     ISD::CondCode Pred =
7088         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7089     SDValue Op1 = Node->getOperand(0);
7090     SDValue Op2 = Node->getOperand(1);
7091     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7092     // Copy FMF flags, but always set the no-signed-zeros flag
7093     // as this is implied by the FMINNUM/FMAXNUM semantics.
7094     SDNodeFlags Flags = Node->getFlags();
7095     Flags.setNoSignedZeros(true);
7096     SelCC->setFlags(Flags);
7097     return SelCC;
7098   }
7099 
7100   return SDValue();
7101 }
7102 
7103 // Only expand vector types if we have the appropriate vector bit operations.
7104 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7105   assert(VT.isVector() && "Expected vector type");
7106   unsigned Len = VT.getScalarSizeInBits();
7107   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7108          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7109          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7110          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7111          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7112 }
7113 
7114 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7115   SDLoc dl(Node);
7116   EVT VT = Node->getValueType(0);
7117   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7118   SDValue Op = Node->getOperand(0);
7119   unsigned Len = VT.getScalarSizeInBits();
7120   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7121 
7122   // TODO: Add support for irregular type lengths.
7123   if (!(Len <= 128 && Len % 8 == 0))
7124     return SDValue();
7125 
7126   // Only expand vector types if we have the appropriate vector bit operations.
7127   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7128     return SDValue();
7129 
7130   // This is the "best" algorithm from
7131   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7132   SDValue Mask55 =
7133       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7134   SDValue Mask33 =
7135       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7136   SDValue Mask0F =
7137       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7138   SDValue Mask01 =
7139       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7140 
7141   // v = v - ((v >> 1) & 0x55555555...)
7142   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7143                    DAG.getNode(ISD::AND, dl, VT,
7144                                DAG.getNode(ISD::SRL, dl, VT, Op,
7145                                            DAG.getConstant(1, dl, ShVT)),
7146                                Mask55));
7147   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7148   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7149                    DAG.getNode(ISD::AND, dl, VT,
7150                                DAG.getNode(ISD::SRL, dl, VT, Op,
7151                                            DAG.getConstant(2, dl, ShVT)),
7152                                Mask33));
7153   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7154   Op = DAG.getNode(ISD::AND, dl, VT,
7155                    DAG.getNode(ISD::ADD, dl, VT, Op,
7156                                DAG.getNode(ISD::SRL, dl, VT, Op,
7157                                            DAG.getConstant(4, dl, ShVT))),
7158                    Mask0F);
7159   // v = (v * 0x01010101...) >> (Len - 8)
7160   if (Len > 8)
7161     Op =
7162         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7163                     DAG.getConstant(Len - 8, dl, ShVT));
7164 
7165   return Op;
7166 }
7167 
7168 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7169   SDLoc dl(Node);
7170   EVT VT = Node->getValueType(0);
7171   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7172   SDValue Op = Node->getOperand(0);
7173   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7174 
7175   // If the non-ZERO_UNDEF version is supported we can use that instead.
7176   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7177       isOperationLegalOrCustom(ISD::CTLZ, VT))
7178     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7179 
7180   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7181   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7182     EVT SetCCVT =
7183         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7184     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7185     SDValue Zero = DAG.getConstant(0, dl, VT);
7186     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7187     return DAG.getSelect(dl, VT, SrcIsZero,
7188                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7189   }
7190 
7191   // Only expand vector types if we have the appropriate vector bit operations.
7192   // This includes the operations needed to expand CTPOP if it isn't supported.
7193   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7194                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7195                          !canExpandVectorCTPOP(*this, VT)) ||
7196                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7197                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7198     return SDValue();
7199 
7200   // for now, we do this:
7201   // x = x | (x >> 1);
7202   // x = x | (x >> 2);
7203   // ...
7204   // x = x | (x >>16);
7205   // x = x | (x >>32); // for 64-bit input
7206   // return popcount(~x);
7207   //
7208   // Ref: "Hacker's Delight" by Henry Warren
7209   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7210     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7211     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7212                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7213   }
7214   Op = DAG.getNOT(dl, Op, VT);
7215   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7216 }
7217 
7218 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7219   SDLoc dl(Node);
7220   EVT VT = Node->getValueType(0);
7221   SDValue Op = Node->getOperand(0);
7222   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7223 
7224   // If the non-ZERO_UNDEF version is supported we can use that instead.
7225   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7226       isOperationLegalOrCustom(ISD::CTTZ, VT))
7227     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7228 
7229   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7230   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7231     EVT SetCCVT =
7232         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7233     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7234     SDValue Zero = DAG.getConstant(0, dl, VT);
7235     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7236     return DAG.getSelect(dl, VT, SrcIsZero,
7237                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7238   }
7239 
7240   // Only expand vector types if we have the appropriate vector bit operations.
7241   // This includes the operations needed to expand CTPOP if it isn't supported.
7242   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7243                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7244                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7245                          !canExpandVectorCTPOP(*this, VT)) ||
7246                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7247                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7248                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7249     return SDValue();
7250 
7251   // for now, we use: { return popcount(~x & (x - 1)); }
7252   // unless the target has ctlz but not ctpop, in which case we use:
7253   // { return 32 - nlz(~x & (x-1)); }
7254   // Ref: "Hacker's Delight" by Henry Warren
7255   SDValue Tmp = DAG.getNode(
7256       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7257       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7258 
7259   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7260   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7261     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7262                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7263   }
7264 
7265   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7266 }
7267 
7268 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7269                                   bool IsNegative) const {
7270   SDLoc dl(N);
7271   EVT VT = N->getValueType(0);
7272   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7273   SDValue Op = N->getOperand(0);
7274 
7275   // abs(x) -> smax(x,sub(0,x))
7276   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7277       isOperationLegal(ISD::SMAX, VT)) {
7278     SDValue Zero = DAG.getConstant(0, dl, VT);
7279     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7280                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7281   }
7282 
7283   // abs(x) -> umin(x,sub(0,x))
7284   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7285       isOperationLegal(ISD::UMIN, VT)) {
7286     SDValue Zero = DAG.getConstant(0, dl, VT);
7287     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7288                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7289   }
7290 
7291   // 0 - abs(x) -> smin(x, sub(0,x))
7292   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7293       isOperationLegal(ISD::SMIN, VT)) {
7294     SDValue Zero = DAG.getConstant(0, dl, VT);
7295     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7296                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7297   }
7298 
7299   // Only expand vector types if we have the appropriate vector operations.
7300   if (VT.isVector() &&
7301       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7302        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7303        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7304        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7305     return SDValue();
7306 
7307   SDValue Shift =
7308       DAG.getNode(ISD::SRA, dl, VT, Op,
7309                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7310   if (!IsNegative) {
7311     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7312     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7313   }
7314 
7315   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7316   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7317   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7318 }
7319 
7320 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7321   SDLoc dl(N);
7322   EVT VT = N->getValueType(0);
7323   SDValue Op = N->getOperand(0);
7324 
7325   if (!VT.isSimple())
7326     return SDValue();
7327 
7328   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7329   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7330   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7331   default:
7332     return SDValue();
7333   case MVT::i16:
7334     // Use a rotate by 8. This can be further expanded if necessary.
7335     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7336   case MVT::i32:
7337     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7338     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7339     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7340     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7341     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7342                        DAG.getConstant(0xFF0000, dl, VT));
7343     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7344     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7345     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7346     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7347   case MVT::i64:
7348     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7349     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7350     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7351     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7352     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7353     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7354     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7355     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7356     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7357                        DAG.getConstant(255ULL<<48, dl, VT));
7358     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7359                        DAG.getConstant(255ULL<<40, dl, VT));
7360     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7361                        DAG.getConstant(255ULL<<32, dl, VT));
7362     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7363                        DAG.getConstant(255ULL<<24, dl, VT));
7364     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7365                        DAG.getConstant(255ULL<<16, dl, VT));
7366     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7367                        DAG.getConstant(255ULL<<8 , dl, VT));
7368     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7369     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7370     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7371     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7372     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7373     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7374     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7375   }
7376 }
7377 
7378 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7379   SDLoc dl(N);
7380   EVT VT = N->getValueType(0);
7381   SDValue Op = N->getOperand(0);
7382   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7383   unsigned Sz = VT.getScalarSizeInBits();
7384 
7385   SDValue Tmp, Tmp2, Tmp3;
7386 
7387   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7388   // and finally the i1 pairs.
7389   // TODO: We can easily support i4/i2 legal types if any target ever does.
7390   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7391     // Create the masks - repeating the pattern every byte.
7392     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7393     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7394     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7395 
7396     // BSWAP if the type is wider than a single byte.
7397     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7398 
7399     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7400     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7401     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7402     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7403     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7404     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7405 
7406     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7407     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7408     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7409     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7410     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7411     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7412 
7413     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7414     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7415     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7416     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7417     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7418     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7419     return Tmp;
7420   }
7421 
7422   Tmp = DAG.getConstant(0, dl, VT);
7423   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7424     if (I < J)
7425       Tmp2 =
7426           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7427     else
7428       Tmp2 =
7429           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7430 
7431     APInt Shift(Sz, 1);
7432     Shift <<= J;
7433     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7434     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7435   }
7436 
7437   return Tmp;
7438 }
7439 
7440 std::pair<SDValue, SDValue>
7441 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7442                                     SelectionDAG &DAG) const {
7443   SDLoc SL(LD);
7444   SDValue Chain = LD->getChain();
7445   SDValue BasePTR = LD->getBasePtr();
7446   EVT SrcVT = LD->getMemoryVT();
7447   EVT DstVT = LD->getValueType(0);
7448   ISD::LoadExtType ExtType = LD->getExtensionType();
7449 
7450   if (SrcVT.isScalableVector())
7451     report_fatal_error("Cannot scalarize scalable vector loads");
7452 
7453   unsigned NumElem = SrcVT.getVectorNumElements();
7454 
7455   EVT SrcEltVT = SrcVT.getScalarType();
7456   EVT DstEltVT = DstVT.getScalarType();
7457 
7458   // A vector must always be stored in memory as-is, i.e. without any padding
7459   // between the elements, since various code depend on it, e.g. in the
7460   // handling of a bitcast of a vector type to int, which may be done with a
7461   // vector store followed by an integer load. A vector that does not have
7462   // elements that are byte-sized must therefore be stored as an integer
7463   // built out of the extracted vector elements.
7464   if (!SrcEltVT.isByteSized()) {
7465     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7466     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7467 
7468     unsigned NumSrcBits = SrcVT.getSizeInBits();
7469     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7470 
7471     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7472     SDValue SrcEltBitMask = DAG.getConstant(
7473         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7474 
7475     // Load the whole vector and avoid masking off the top bits as it makes
7476     // the codegen worse.
7477     SDValue Load =
7478         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7479                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7480                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7481 
7482     SmallVector<SDValue, 8> Vals;
7483     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7484       unsigned ShiftIntoIdx =
7485           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7486       SDValue ShiftAmount =
7487           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7488                                      LoadVT, SL, /*LegalTypes=*/false);
7489       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7490       SDValue Elt =
7491           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7492       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7493 
7494       if (ExtType != ISD::NON_EXTLOAD) {
7495         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7496         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7497       }
7498 
7499       Vals.push_back(Scalar);
7500     }
7501 
7502     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7503     return std::make_pair(Value, Load.getValue(1));
7504   }
7505 
7506   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7507   assert(SrcEltVT.isByteSized());
7508 
7509   SmallVector<SDValue, 8> Vals;
7510   SmallVector<SDValue, 8> LoadChains;
7511 
7512   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7513     SDValue ScalarLoad =
7514         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7515                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7516                        SrcEltVT, LD->getOriginalAlign(),
7517                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7518 
7519     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7520 
7521     Vals.push_back(ScalarLoad.getValue(0));
7522     LoadChains.push_back(ScalarLoad.getValue(1));
7523   }
7524 
7525   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7526   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7527 
7528   return std::make_pair(Value, NewChain);
7529 }
7530 
7531 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7532                                              SelectionDAG &DAG) const {
7533   SDLoc SL(ST);
7534 
7535   SDValue Chain = ST->getChain();
7536   SDValue BasePtr = ST->getBasePtr();
7537   SDValue Value = ST->getValue();
7538   EVT StVT = ST->getMemoryVT();
7539 
7540   if (StVT.isScalableVector())
7541     report_fatal_error("Cannot scalarize scalable vector stores");
7542 
7543   // The type of the data we want to save
7544   EVT RegVT = Value.getValueType();
7545   EVT RegSclVT = RegVT.getScalarType();
7546 
7547   // The type of data as saved in memory.
7548   EVT MemSclVT = StVT.getScalarType();
7549 
7550   unsigned NumElem = StVT.getVectorNumElements();
7551 
7552   // A vector must always be stored in memory as-is, i.e. without any padding
7553   // between the elements, since various code depend on it, e.g. in the
7554   // handling of a bitcast of a vector type to int, which may be done with a
7555   // vector store followed by an integer load. A vector that does not have
7556   // elements that are byte-sized must therefore be stored as an integer
7557   // built out of the extracted vector elements.
7558   if (!MemSclVT.isByteSized()) {
7559     unsigned NumBits = StVT.getSizeInBits();
7560     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7561 
7562     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7563 
7564     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7565       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7566                                 DAG.getVectorIdxConstant(Idx, SL));
7567       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7568       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7569       unsigned ShiftIntoIdx =
7570           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7571       SDValue ShiftAmount =
7572           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7573       SDValue ShiftedElt =
7574           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7575       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7576     }
7577 
7578     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7579                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7580                         ST->getAAInfo());
7581   }
7582 
7583   // Store Stride in bytes
7584   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7585   assert(Stride && "Zero stride!");
7586   // Extract each of the elements from the original vector and save them into
7587   // memory individually.
7588   SmallVector<SDValue, 8> Stores;
7589   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7590     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7591                               DAG.getVectorIdxConstant(Idx, SL));
7592 
7593     SDValue Ptr =
7594         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7595 
7596     // This scalar TruncStore may be illegal, but we legalize it later.
7597     SDValue Store = DAG.getTruncStore(
7598         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7599         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7600         ST->getAAInfo());
7601 
7602     Stores.push_back(Store);
7603   }
7604 
7605   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7606 }
7607 
7608 std::pair<SDValue, SDValue>
7609 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7610   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7611          "unaligned indexed loads not implemented!");
7612   SDValue Chain = LD->getChain();
7613   SDValue Ptr = LD->getBasePtr();
7614   EVT VT = LD->getValueType(0);
7615   EVT LoadedVT = LD->getMemoryVT();
7616   SDLoc dl(LD);
7617   auto &MF = DAG.getMachineFunction();
7618 
7619   if (VT.isFloatingPoint() || VT.isVector()) {
7620     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7621     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7622       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7623           LoadedVT.isVector()) {
7624         // Scalarize the load and let the individual components be handled.
7625         return scalarizeVectorLoad(LD, DAG);
7626       }
7627 
7628       // Expand to a (misaligned) integer load of the same size,
7629       // then bitconvert to floating point or vector.
7630       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7631                                     LD->getMemOperand());
7632       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7633       if (LoadedVT != VT)
7634         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7635                              ISD::ANY_EXTEND, dl, VT, Result);
7636 
7637       return std::make_pair(Result, newLoad.getValue(1));
7638     }
7639 
7640     // Copy the value to a (aligned) stack slot using (unaligned) integer
7641     // loads and stores, then do a (aligned) load from the stack slot.
7642     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7643     unsigned LoadedBytes = LoadedVT.getStoreSize();
7644     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7645     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7646 
7647     // Make sure the stack slot is also aligned for the register type.
7648     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7649     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7650     SmallVector<SDValue, 8> Stores;
7651     SDValue StackPtr = StackBase;
7652     unsigned Offset = 0;
7653 
7654     EVT PtrVT = Ptr.getValueType();
7655     EVT StackPtrVT = StackPtr.getValueType();
7656 
7657     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7658     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7659 
7660     // Do all but one copies using the full register width.
7661     for (unsigned i = 1; i < NumRegs; i++) {
7662       // Load one integer register's worth from the original location.
7663       SDValue Load = DAG.getLoad(
7664           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7665           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7666           LD->getAAInfo());
7667       // Follow the load with a store to the stack slot.  Remember the store.
7668       Stores.push_back(DAG.getStore(
7669           Load.getValue(1), dl, Load, StackPtr,
7670           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7671       // Increment the pointers.
7672       Offset += RegBytes;
7673 
7674       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7675       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7676     }
7677 
7678     // The last copy may be partial.  Do an extending load.
7679     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7680                                   8 * (LoadedBytes - Offset));
7681     SDValue Load =
7682         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7683                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7684                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7685                        LD->getAAInfo());
7686     // Follow the load with a store to the stack slot.  Remember the store.
7687     // On big-endian machines this requires a truncating store to ensure
7688     // that the bits end up in the right place.
7689     Stores.push_back(DAG.getTruncStore(
7690         Load.getValue(1), dl, Load, StackPtr,
7691         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7692 
7693     // The order of the stores doesn't matter - say it with a TokenFactor.
7694     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7695 
7696     // Finally, perform the original load only redirected to the stack slot.
7697     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7698                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7699                           LoadedVT);
7700 
7701     // Callers expect a MERGE_VALUES node.
7702     return std::make_pair(Load, TF);
7703   }
7704 
7705   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7706          "Unaligned load of unsupported type.");
7707 
7708   // Compute the new VT that is half the size of the old one.  This is an
7709   // integer MVT.
7710   unsigned NumBits = LoadedVT.getSizeInBits();
7711   EVT NewLoadedVT;
7712   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7713   NumBits >>= 1;
7714 
7715   Align Alignment = LD->getOriginalAlign();
7716   unsigned IncrementSize = NumBits / 8;
7717   ISD::LoadExtType HiExtType = LD->getExtensionType();
7718 
7719   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7720   if (HiExtType == ISD::NON_EXTLOAD)
7721     HiExtType = ISD::ZEXTLOAD;
7722 
7723   // Load the value in two parts
7724   SDValue Lo, Hi;
7725   if (DAG.getDataLayout().isLittleEndian()) {
7726     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7727                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7728                         LD->getAAInfo());
7729 
7730     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7731     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7732                         LD->getPointerInfo().getWithOffset(IncrementSize),
7733                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7734                         LD->getAAInfo());
7735   } else {
7736     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7737                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7738                         LD->getAAInfo());
7739 
7740     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7741     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7742                         LD->getPointerInfo().getWithOffset(IncrementSize),
7743                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7744                         LD->getAAInfo());
7745   }
7746 
7747   // aggregate the two parts
7748   SDValue ShiftAmount =
7749       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7750                                                     DAG.getDataLayout()));
7751   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7752   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7753 
7754   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7755                              Hi.getValue(1));
7756 
7757   return std::make_pair(Result, TF);
7758 }
7759 
7760 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7761                                              SelectionDAG &DAG) const {
7762   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7763          "unaligned indexed stores not implemented!");
7764   SDValue Chain = ST->getChain();
7765   SDValue Ptr = ST->getBasePtr();
7766   SDValue Val = ST->getValue();
7767   EVT VT = Val.getValueType();
7768   Align Alignment = ST->getOriginalAlign();
7769   auto &MF = DAG.getMachineFunction();
7770   EVT StoreMemVT = ST->getMemoryVT();
7771 
7772   SDLoc dl(ST);
7773   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7774     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7775     if (isTypeLegal(intVT)) {
7776       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7777           StoreMemVT.isVector()) {
7778         // Scalarize the store and let the individual components be handled.
7779         SDValue Result = scalarizeVectorStore(ST, DAG);
7780         return Result;
7781       }
7782       // Expand to a bitconvert of the value to the integer type of the
7783       // same size, then a (misaligned) int store.
7784       // FIXME: Does not handle truncating floating point stores!
7785       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7786       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7787                             Alignment, ST->getMemOperand()->getFlags());
7788       return Result;
7789     }
7790     // Do a (aligned) store to a stack slot, then copy from the stack slot
7791     // to the final destination using (unaligned) integer loads and stores.
7792     MVT RegVT = getRegisterType(
7793         *DAG.getContext(),
7794         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7795     EVT PtrVT = Ptr.getValueType();
7796     unsigned StoredBytes = StoreMemVT.getStoreSize();
7797     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7798     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7799 
7800     // Make sure the stack slot is also aligned for the register type.
7801     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7802     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7803 
7804     // Perform the original store, only redirected to the stack slot.
7805     SDValue Store = DAG.getTruncStore(
7806         Chain, dl, Val, StackPtr,
7807         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7808 
7809     EVT StackPtrVT = StackPtr.getValueType();
7810 
7811     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7812     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7813     SmallVector<SDValue, 8> Stores;
7814     unsigned Offset = 0;
7815 
7816     // Do all but one copies using the full register width.
7817     for (unsigned i = 1; i < NumRegs; i++) {
7818       // Load one integer register's worth from the stack slot.
7819       SDValue Load = DAG.getLoad(
7820           RegVT, dl, Store, StackPtr,
7821           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7822       // Store it to the final location.  Remember the store.
7823       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7824                                     ST->getPointerInfo().getWithOffset(Offset),
7825                                     ST->getOriginalAlign(),
7826                                     ST->getMemOperand()->getFlags()));
7827       // Increment the pointers.
7828       Offset += RegBytes;
7829       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7830       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7831     }
7832 
7833     // The last store may be partial.  Do a truncating store.  On big-endian
7834     // machines this requires an extending load from the stack slot to ensure
7835     // that the bits are in the right place.
7836     EVT LoadMemVT =
7837         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7838 
7839     // Load from the stack slot.
7840     SDValue Load = DAG.getExtLoad(
7841         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7842         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7843 
7844     Stores.push_back(
7845         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7846                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7847                           ST->getOriginalAlign(),
7848                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7849     // The order of the stores doesn't matter - say it with a TokenFactor.
7850     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7851     return Result;
7852   }
7853 
7854   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7855          "Unaligned store of unknown type.");
7856   // Get the half-size VT
7857   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7858   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7859   unsigned IncrementSize = NumBits / 8;
7860 
7861   // Divide the stored value in two parts.
7862   SDValue ShiftAmount = DAG.getConstant(
7863       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7864   SDValue Lo = Val;
7865   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7866 
7867   // Store the two parts
7868   SDValue Store1, Store2;
7869   Store1 = DAG.getTruncStore(Chain, dl,
7870                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7871                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7872                              ST->getMemOperand()->getFlags());
7873 
7874   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7875   Store2 = DAG.getTruncStore(
7876       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7877       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7878       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7879 
7880   SDValue Result =
7881       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7882   return Result;
7883 }
7884 
7885 SDValue
7886 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7887                                        const SDLoc &DL, EVT DataVT,
7888                                        SelectionDAG &DAG,
7889                                        bool IsCompressedMemory) const {
7890   SDValue Increment;
7891   EVT AddrVT = Addr.getValueType();
7892   EVT MaskVT = Mask.getValueType();
7893   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7894          "Incompatible types of Data and Mask");
7895   if (IsCompressedMemory) {
7896     if (DataVT.isScalableVector())
7897       report_fatal_error(
7898           "Cannot currently handle compressed memory with scalable vectors");
7899     // Incrementing the pointer according to number of '1's in the mask.
7900     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7901     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7902     if (MaskIntVT.getSizeInBits() < 32) {
7903       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7904       MaskIntVT = MVT::i32;
7905     }
7906 
7907     // Count '1's with POPCNT.
7908     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7909     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7910     // Scale is an element size in bytes.
7911     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7912                                     AddrVT);
7913     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7914   } else if (DataVT.isScalableVector()) {
7915     Increment = DAG.getVScale(DL, AddrVT,
7916                               APInt(AddrVT.getFixedSizeInBits(),
7917                                     DataVT.getStoreSize().getKnownMinSize()));
7918   } else
7919     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7920 
7921   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7922 }
7923 
7924 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7925                                        EVT VecVT, const SDLoc &dl,
7926                                        ElementCount SubEC) {
7927   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7928          "Cannot index a scalable vector within a fixed-width vector");
7929 
7930   unsigned NElts = VecVT.getVectorMinNumElements();
7931   unsigned NumSubElts = SubEC.getKnownMinValue();
7932   EVT IdxVT = Idx.getValueType();
7933 
7934   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7935     // If this is a constant index and we know the value plus the number of the
7936     // elements in the subvector minus one is less than the minimum number of
7937     // elements then it's safe to return Idx.
7938     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7939       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7940         return Idx;
7941     SDValue VS =
7942         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7943     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7944     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7945                               DAG.getConstant(NumSubElts, dl, IdxVT));
7946     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7947   }
7948   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7949     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7950     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7951                        DAG.getConstant(Imm, dl, IdxVT));
7952   }
7953   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7954   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7955                      DAG.getConstant(MaxIndex, dl, IdxVT));
7956 }
7957 
7958 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7959                                                 SDValue VecPtr, EVT VecVT,
7960                                                 SDValue Index) const {
7961   return getVectorSubVecPointer(
7962       DAG, VecPtr, VecVT,
7963       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7964       Index);
7965 }
7966 
7967 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7968                                                SDValue VecPtr, EVT VecVT,
7969                                                EVT SubVecVT,
7970                                                SDValue Index) const {
7971   SDLoc dl(Index);
7972   // Make sure the index type is big enough to compute in.
7973   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7974 
7975   EVT EltVT = VecVT.getVectorElementType();
7976 
7977   // Calculate the element offset and add it to the pointer.
7978   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7979   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7980          "Converting bits to bytes lost precision");
7981   assert(SubVecVT.getVectorElementType() == EltVT &&
7982          "Sub-vector must be a vector with matching element type");
7983   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7984                                   SubVecVT.getVectorElementCount());
7985 
7986   EVT IdxVT = Index.getValueType();
7987   if (SubVecVT.isScalableVector())
7988     Index =
7989         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7990                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7991 
7992   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7993                       DAG.getConstant(EltSize, dl, IdxVT));
7994   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7995 }
7996 
7997 //===----------------------------------------------------------------------===//
7998 // Implementation of Emulated TLS Model
7999 //===----------------------------------------------------------------------===//
8000 
8001 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8002                                                 SelectionDAG &DAG) const {
8003   // Access to address of TLS varialbe xyz is lowered to a function call:
8004   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8005   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8006   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8007   SDLoc dl(GA);
8008 
8009   ArgListTy Args;
8010   ArgListEntry Entry;
8011   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8012   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8013   StringRef EmuTlsVarName(NameString);
8014   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8015   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8016   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8017   Entry.Ty = VoidPtrType;
8018   Args.push_back(Entry);
8019 
8020   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8021 
8022   TargetLowering::CallLoweringInfo CLI(DAG);
8023   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8024   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8025   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8026 
8027   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8028   // At last for X86 targets, maybe good for other targets too?
8029   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8030   MFI.setAdjustsStack(true); // Is this only for X86 target?
8031   MFI.setHasCalls(true);
8032 
8033   assert((GA->getOffset() == 0) &&
8034          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8035   return CallResult.first;
8036 }
8037 
8038 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8039                                                 SelectionDAG &DAG) const {
8040   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8041   if (!isCtlzFast())
8042     return SDValue();
8043   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8044   SDLoc dl(Op);
8045   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8046     if (C->isZero() && CC == ISD::SETEQ) {
8047       EVT VT = Op.getOperand(0).getValueType();
8048       SDValue Zext = Op.getOperand(0);
8049       if (VT.bitsLT(MVT::i32)) {
8050         VT = MVT::i32;
8051         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8052       }
8053       unsigned Log2b = Log2_32(VT.getSizeInBits());
8054       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8055       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8056                                 DAG.getConstant(Log2b, dl, MVT::i32));
8057       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8058     }
8059   }
8060   return SDValue();
8061 }
8062 
8063 // Convert redundant addressing modes (e.g. scaling is redundant
8064 // when accessing bytes).
8065 ISD::MemIndexType
8066 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8067                                       SDValue Offsets) const {
8068   bool IsScaledIndex =
8069       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8070   bool IsSignedIndex =
8071       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8072 
8073   // Scaling is unimportant for bytes, canonicalize to unscaled.
8074   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8075     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8076 
8077   return IndexType;
8078 }
8079 
8080 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8081   SDValue Op0 = Node->getOperand(0);
8082   SDValue Op1 = Node->getOperand(1);
8083   EVT VT = Op0.getValueType();
8084   unsigned Opcode = Node->getOpcode();
8085   SDLoc DL(Node);
8086 
8087   // umin(x,y) -> sub(x,usubsat(x,y))
8088   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8089       isOperationLegal(ISD::USUBSAT, VT)) {
8090     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8091                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8092   }
8093 
8094   // umax(x,y) -> add(x,usubsat(y,x))
8095   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8096       isOperationLegal(ISD::USUBSAT, VT)) {
8097     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8098                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8099   }
8100 
8101   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8102   ISD::CondCode CC;
8103   switch (Opcode) {
8104   default: llvm_unreachable("How did we get here?");
8105   case ISD::SMAX: CC = ISD::SETGT; break;
8106   case ISD::SMIN: CC = ISD::SETLT; break;
8107   case ISD::UMAX: CC = ISD::SETUGT; break;
8108   case ISD::UMIN: CC = ISD::SETULT; break;
8109   }
8110 
8111   // FIXME: Should really try to split the vector in case it's legal on a
8112   // subvector.
8113   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8114     return DAG.UnrollVectorOp(Node);
8115 
8116   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8117   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8118   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8119 }
8120 
8121 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8122   unsigned Opcode = Node->getOpcode();
8123   SDValue LHS = Node->getOperand(0);
8124   SDValue RHS = Node->getOperand(1);
8125   EVT VT = LHS.getValueType();
8126   SDLoc dl(Node);
8127 
8128   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8129   assert(VT.isInteger() && "Expected operands to be integers");
8130 
8131   // usub.sat(a, b) -> umax(a, b) - b
8132   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8133     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8134     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8135   }
8136 
8137   // uadd.sat(a, b) -> umin(a, ~b) + b
8138   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8139     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8140     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8141     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8142   }
8143 
8144   unsigned OverflowOp;
8145   switch (Opcode) {
8146   case ISD::SADDSAT:
8147     OverflowOp = ISD::SADDO;
8148     break;
8149   case ISD::UADDSAT:
8150     OverflowOp = ISD::UADDO;
8151     break;
8152   case ISD::SSUBSAT:
8153     OverflowOp = ISD::SSUBO;
8154     break;
8155   case ISD::USUBSAT:
8156     OverflowOp = ISD::USUBO;
8157     break;
8158   default:
8159     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8160                      "addition or subtraction node.");
8161   }
8162 
8163   // FIXME: Should really try to split the vector in case it's legal on a
8164   // subvector.
8165   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8166     return DAG.UnrollVectorOp(Node);
8167 
8168   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8169   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8170   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8171   SDValue SumDiff = Result.getValue(0);
8172   SDValue Overflow = Result.getValue(1);
8173   SDValue Zero = DAG.getConstant(0, dl, VT);
8174   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8175 
8176   if (Opcode == ISD::UADDSAT) {
8177     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8178       // (LHS + RHS) | OverflowMask
8179       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8180       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8181     }
8182     // Overflow ? 0xffff.... : (LHS + RHS)
8183     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8184   }
8185 
8186   if (Opcode == ISD::USUBSAT) {
8187     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8188       // (LHS - RHS) & ~OverflowMask
8189       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8190       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8191       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8192     }
8193     // Overflow ? 0 : (LHS - RHS)
8194     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8195   }
8196 
8197   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8198   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8199   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8200   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8201                               DAG.getConstant(BitWidth - 1, dl, VT));
8202   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8203   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8204 }
8205 
8206 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8207   unsigned Opcode = Node->getOpcode();
8208   bool IsSigned = Opcode == ISD::SSHLSAT;
8209   SDValue LHS = Node->getOperand(0);
8210   SDValue RHS = Node->getOperand(1);
8211   EVT VT = LHS.getValueType();
8212   SDLoc dl(Node);
8213 
8214   assert((Node->getOpcode() == ISD::SSHLSAT ||
8215           Node->getOpcode() == ISD::USHLSAT) &&
8216           "Expected a SHLSAT opcode");
8217   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8218   assert(VT.isInteger() && "Expected operands to be integers");
8219 
8220   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8221 
8222   unsigned BW = VT.getScalarSizeInBits();
8223   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8224   SDValue Orig =
8225       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8226 
8227   SDValue SatVal;
8228   if (IsSigned) {
8229     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8230     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8231     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8232                              SatMin, SatMax, ISD::SETLT);
8233   } else {
8234     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8235   }
8236   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8237 
8238   return Result;
8239 }
8240 
8241 SDValue
8242 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8243   assert((Node->getOpcode() == ISD::SMULFIX ||
8244           Node->getOpcode() == ISD::UMULFIX ||
8245           Node->getOpcode() == ISD::SMULFIXSAT ||
8246           Node->getOpcode() == ISD::UMULFIXSAT) &&
8247          "Expected a fixed point multiplication opcode");
8248 
8249   SDLoc dl(Node);
8250   SDValue LHS = Node->getOperand(0);
8251   SDValue RHS = Node->getOperand(1);
8252   EVT VT = LHS.getValueType();
8253   unsigned Scale = Node->getConstantOperandVal(2);
8254   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8255                      Node->getOpcode() == ISD::UMULFIXSAT);
8256   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8257                  Node->getOpcode() == ISD::SMULFIXSAT);
8258   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8259   unsigned VTSize = VT.getScalarSizeInBits();
8260 
8261   if (!Scale) {
8262     // [us]mul.fix(a, b, 0) -> mul(a, b)
8263     if (!Saturating) {
8264       if (isOperationLegalOrCustom(ISD::MUL, VT))
8265         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8266     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8267       SDValue Result =
8268           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8269       SDValue Product = Result.getValue(0);
8270       SDValue Overflow = Result.getValue(1);
8271       SDValue Zero = DAG.getConstant(0, dl, VT);
8272 
8273       APInt MinVal = APInt::getSignedMinValue(VTSize);
8274       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8275       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8276       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8277       // Xor the inputs, if resulting sign bit is 0 the product will be
8278       // positive, else negative.
8279       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8280       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8281       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8282       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8283     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8284       SDValue Result =
8285           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8286       SDValue Product = Result.getValue(0);
8287       SDValue Overflow = Result.getValue(1);
8288 
8289       APInt MaxVal = APInt::getMaxValue(VTSize);
8290       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8291       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8292     }
8293   }
8294 
8295   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8296          "Expected scale to be less than the number of bits if signed or at "
8297          "most the number of bits if unsigned.");
8298   assert(LHS.getValueType() == RHS.getValueType() &&
8299          "Expected both operands to be the same type");
8300 
8301   // Get the upper and lower bits of the result.
8302   SDValue Lo, Hi;
8303   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8304   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8305   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8306     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8307     Lo = Result.getValue(0);
8308     Hi = Result.getValue(1);
8309   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8310     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8311     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8312   } else if (VT.isVector()) {
8313     return SDValue();
8314   } else {
8315     report_fatal_error("Unable to expand fixed point multiplication.");
8316   }
8317 
8318   if (Scale == VTSize)
8319     // Result is just the top half since we'd be shifting by the width of the
8320     // operand. Overflow impossible so this works for both UMULFIX and
8321     // UMULFIXSAT.
8322     return Hi;
8323 
8324   // The result will need to be shifted right by the scale since both operands
8325   // are scaled. The result is given to us in 2 halves, so we only want part of
8326   // both in the result.
8327   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8328   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8329                                DAG.getConstant(Scale, dl, ShiftTy));
8330   if (!Saturating)
8331     return Result;
8332 
8333   if (!Signed) {
8334     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8335     // widened multiplication) aren't all zeroes.
8336 
8337     // Saturate to max if ((Hi >> Scale) != 0),
8338     // which is the same as if (Hi > ((1 << Scale) - 1))
8339     APInt MaxVal = APInt::getMaxValue(VTSize);
8340     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8341                                       dl, VT);
8342     Result = DAG.getSelectCC(dl, Hi, LowMask,
8343                              DAG.getConstant(MaxVal, dl, VT), Result,
8344                              ISD::SETUGT);
8345 
8346     return Result;
8347   }
8348 
8349   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8350   // widened multiplication) aren't all ones or all zeroes.
8351 
8352   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8353   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8354 
8355   if (Scale == 0) {
8356     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8357                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8358     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8359     // Saturated to SatMin if wide product is negative, and SatMax if wide
8360     // product is positive ...
8361     SDValue Zero = DAG.getConstant(0, dl, VT);
8362     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8363                                                ISD::SETLT);
8364     // ... but only if we overflowed.
8365     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8366   }
8367 
8368   //  We handled Scale==0 above so all the bits to examine is in Hi.
8369 
8370   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8371   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8372   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8373                                     dl, VT);
8374   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8375   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8376   // which is the same as if (HI < (-1 << (Scale - 1))
8377   SDValue HighMask =
8378       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8379                       dl, VT);
8380   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8381   return Result;
8382 }
8383 
8384 SDValue
8385 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8386                                     SDValue LHS, SDValue RHS,
8387                                     unsigned Scale, SelectionDAG &DAG) const {
8388   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8389           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8390          "Expected a fixed point division opcode");
8391 
8392   EVT VT = LHS.getValueType();
8393   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8394   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8395   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8396 
8397   // If there is enough room in the type to upscale the LHS or downscale the
8398   // RHS before the division, we can perform it in this type without having to
8399   // resize. For signed operations, the LHS headroom is the number of
8400   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8401   // The headroom for the RHS is the number of trailing zeroes.
8402   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8403                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8404   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8405 
8406   // For signed saturating operations, we need to be able to detect true integer
8407   // division overflow; that is, when you have MIN / -EPS. However, this
8408   // is undefined behavior and if we emit divisions that could take such
8409   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8410   // example).
8411   // Avoid this by requiring an extra bit so that we never get this case.
8412   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8413   // signed saturating division, we need to emit a whopping 32-bit division.
8414   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8415     return SDValue();
8416 
8417   unsigned LHSShift = std::min(LHSLead, Scale);
8418   unsigned RHSShift = Scale - LHSShift;
8419 
8420   // At this point, we know that if we shift the LHS up by LHSShift and the
8421   // RHS down by RHSShift, we can emit a regular division with a final scaling
8422   // factor of Scale.
8423 
8424   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8425   if (LHSShift)
8426     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8427                       DAG.getConstant(LHSShift, dl, ShiftTy));
8428   if (RHSShift)
8429     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8430                       DAG.getConstant(RHSShift, dl, ShiftTy));
8431 
8432   SDValue Quot;
8433   if (Signed) {
8434     // For signed operations, if the resulting quotient is negative and the
8435     // remainder is nonzero, subtract 1 from the quotient to round towards
8436     // negative infinity.
8437     SDValue Rem;
8438     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8439     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8440     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8441     if (isTypeLegal(VT) &&
8442         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8443       Quot = DAG.getNode(ISD::SDIVREM, dl,
8444                          DAG.getVTList(VT, VT),
8445                          LHS, RHS);
8446       Rem = Quot.getValue(1);
8447       Quot = Quot.getValue(0);
8448     } else {
8449       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8450                          LHS, RHS);
8451       Rem = DAG.getNode(ISD::SREM, dl, VT,
8452                         LHS, RHS);
8453     }
8454     SDValue Zero = DAG.getConstant(0, dl, VT);
8455     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8456     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8457     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8458     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8459     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8460                                DAG.getConstant(1, dl, VT));
8461     Quot = DAG.getSelect(dl, VT,
8462                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8463                          Sub1, Quot);
8464   } else
8465     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8466                        LHS, RHS);
8467 
8468   return Quot;
8469 }
8470 
8471 void TargetLowering::expandUADDSUBO(
8472     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8473   SDLoc dl(Node);
8474   SDValue LHS = Node->getOperand(0);
8475   SDValue RHS = Node->getOperand(1);
8476   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8477 
8478   // If ADD/SUBCARRY is legal, use that instead.
8479   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8480   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8481     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8482     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8483                                     { LHS, RHS, CarryIn });
8484     Result = SDValue(NodeCarry.getNode(), 0);
8485     Overflow = SDValue(NodeCarry.getNode(), 1);
8486     return;
8487   }
8488 
8489   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8490                             LHS.getValueType(), LHS, RHS);
8491 
8492   EVT ResultType = Node->getValueType(1);
8493   EVT SetCCType = getSetCCResultType(
8494       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8495   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8496   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8497   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8498 }
8499 
8500 void TargetLowering::expandSADDSUBO(
8501     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8502   SDLoc dl(Node);
8503   SDValue LHS = Node->getOperand(0);
8504   SDValue RHS = Node->getOperand(1);
8505   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8506 
8507   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8508                             LHS.getValueType(), LHS, RHS);
8509 
8510   EVT ResultType = Node->getValueType(1);
8511   EVT OType = getSetCCResultType(
8512       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8513 
8514   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8515   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8516   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8517     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8518     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8519     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8520     return;
8521   }
8522 
8523   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8524 
8525   // For an addition, the result should be less than one of the operands (LHS)
8526   // if and only if the other operand (RHS) is negative, otherwise there will
8527   // be overflow.
8528   // For a subtraction, the result should be less than one of the operands
8529   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8530   // otherwise there will be overflow.
8531   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8532   SDValue ConditionRHS =
8533       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8534 
8535   Overflow = DAG.getBoolExtOrTrunc(
8536       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8537       ResultType, ResultType);
8538 }
8539 
8540 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8541                                 SDValue &Overflow, SelectionDAG &DAG) const {
8542   SDLoc dl(Node);
8543   EVT VT = Node->getValueType(0);
8544   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8545   SDValue LHS = Node->getOperand(0);
8546   SDValue RHS = Node->getOperand(1);
8547   bool isSigned = Node->getOpcode() == ISD::SMULO;
8548 
8549   // For power-of-two multiplications we can use a simpler shift expansion.
8550   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8551     const APInt &C = RHSC->getAPIntValue();
8552     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8553     if (C.isPowerOf2()) {
8554       // smulo(x, signed_min) is same as umulo(x, signed_min).
8555       bool UseArithShift = isSigned && !C.isMinSignedValue();
8556       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8557       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8558       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8559       Overflow = DAG.getSetCC(dl, SetCCVT,
8560           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8561                       dl, VT, Result, ShiftAmt),
8562           LHS, ISD::SETNE);
8563       return true;
8564     }
8565   }
8566 
8567   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8568   if (VT.isVector())
8569     WideVT =
8570         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8571 
8572   SDValue BottomHalf;
8573   SDValue TopHalf;
8574   static const unsigned Ops[2][3] =
8575       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8576         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8577   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8578     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8579     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8580   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8581     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8582                              RHS);
8583     TopHalf = BottomHalf.getValue(1);
8584   } else if (isTypeLegal(WideVT)) {
8585     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8586     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8587     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8588     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8589     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8590         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8591     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8592                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8593   } else {
8594     if (VT.isVector())
8595       return false;
8596 
8597     // We can fall back to a libcall with an illegal type for the MUL if we
8598     // have a libcall big enough.
8599     // Also, we can fall back to a division in some cases, but that's a big
8600     // performance hit in the general case.
8601     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8602     if (WideVT == MVT::i16)
8603       LC = RTLIB::MUL_I16;
8604     else if (WideVT == MVT::i32)
8605       LC = RTLIB::MUL_I32;
8606     else if (WideVT == MVT::i64)
8607       LC = RTLIB::MUL_I64;
8608     else if (WideVT == MVT::i128)
8609       LC = RTLIB::MUL_I128;
8610     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8611 
8612     SDValue HiLHS;
8613     SDValue HiRHS;
8614     if (isSigned) {
8615       // The high part is obtained by SRA'ing all but one of the bits of low
8616       // part.
8617       unsigned LoSize = VT.getFixedSizeInBits();
8618       HiLHS =
8619           DAG.getNode(ISD::SRA, dl, VT, LHS,
8620                       DAG.getConstant(LoSize - 1, dl,
8621                                       getPointerTy(DAG.getDataLayout())));
8622       HiRHS =
8623           DAG.getNode(ISD::SRA, dl, VT, RHS,
8624                       DAG.getConstant(LoSize - 1, dl,
8625                                       getPointerTy(DAG.getDataLayout())));
8626     } else {
8627         HiLHS = DAG.getConstant(0, dl, VT);
8628         HiRHS = DAG.getConstant(0, dl, VT);
8629     }
8630 
8631     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8632     // pre-lowered to the correct types. This all depends upon WideVT not
8633     // being a legal type for the architecture and thus has to be split to
8634     // two arguments.
8635     SDValue Ret;
8636     TargetLowering::MakeLibCallOptions CallOptions;
8637     CallOptions.setSExt(isSigned);
8638     CallOptions.setIsPostTypeLegalization(true);
8639     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8640       // Halves of WideVT are packed into registers in different order
8641       // depending on platform endianness. This is usually handled by
8642       // the C calling convention, but we can't defer to it in
8643       // the legalizer.
8644       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8645       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8646     } else {
8647       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8648       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8649     }
8650     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8651            "Ret value is a collection of constituent nodes holding result.");
8652     if (DAG.getDataLayout().isLittleEndian()) {
8653       // Same as above.
8654       BottomHalf = Ret.getOperand(0);
8655       TopHalf = Ret.getOperand(1);
8656     } else {
8657       BottomHalf = Ret.getOperand(1);
8658       TopHalf = Ret.getOperand(0);
8659     }
8660   }
8661 
8662   Result = BottomHalf;
8663   if (isSigned) {
8664     SDValue ShiftAmt = DAG.getConstant(
8665         VT.getScalarSizeInBits() - 1, dl,
8666         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8667     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8668     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8669   } else {
8670     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8671                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8672   }
8673 
8674   // Truncate the result if SetCC returns a larger type than needed.
8675   EVT RType = Node->getValueType(1);
8676   if (RType.bitsLT(Overflow.getValueType()))
8677     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8678 
8679   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8680          "Unexpected result type for S/UMULO legalization");
8681   return true;
8682 }
8683 
8684 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8685   SDLoc dl(Node);
8686   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8687   SDValue Op = Node->getOperand(0);
8688   EVT VT = Op.getValueType();
8689 
8690   if (VT.isScalableVector())
8691     report_fatal_error(
8692         "Expanding reductions for scalable vectors is undefined.");
8693 
8694   // Try to use a shuffle reduction for power of two vectors.
8695   if (VT.isPow2VectorType()) {
8696     while (VT.getVectorNumElements() > 1) {
8697       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8698       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8699         break;
8700 
8701       SDValue Lo, Hi;
8702       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8703       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8704       VT = HalfVT;
8705     }
8706   }
8707 
8708   EVT EltVT = VT.getVectorElementType();
8709   unsigned NumElts = VT.getVectorNumElements();
8710 
8711   SmallVector<SDValue, 8> Ops;
8712   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8713 
8714   SDValue Res = Ops[0];
8715   for (unsigned i = 1; i < NumElts; i++)
8716     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8717 
8718   // Result type may be wider than element type.
8719   if (EltVT != Node->getValueType(0))
8720     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8721   return Res;
8722 }
8723 
8724 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8725   SDLoc dl(Node);
8726   SDValue AccOp = Node->getOperand(0);
8727   SDValue VecOp = Node->getOperand(1);
8728   SDNodeFlags Flags = Node->getFlags();
8729 
8730   EVT VT = VecOp.getValueType();
8731   EVT EltVT = VT.getVectorElementType();
8732 
8733   if (VT.isScalableVector())
8734     report_fatal_error(
8735         "Expanding reductions for scalable vectors is undefined.");
8736 
8737   unsigned NumElts = VT.getVectorNumElements();
8738 
8739   SmallVector<SDValue, 8> Ops;
8740   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8741 
8742   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8743 
8744   SDValue Res = AccOp;
8745   for (unsigned i = 0; i < NumElts; i++)
8746     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8747 
8748   return Res;
8749 }
8750 
8751 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8752                                SelectionDAG &DAG) const {
8753   EVT VT = Node->getValueType(0);
8754   SDLoc dl(Node);
8755   bool isSigned = Node->getOpcode() == ISD::SREM;
8756   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8757   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8758   SDValue Dividend = Node->getOperand(0);
8759   SDValue Divisor = Node->getOperand(1);
8760   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8761     SDVTList VTs = DAG.getVTList(VT, VT);
8762     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8763     return true;
8764   }
8765   if (isOperationLegalOrCustom(DivOpc, VT)) {
8766     // X % Y -> X-X/Y*Y
8767     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8768     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8769     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8770     return true;
8771   }
8772   return false;
8773 }
8774 
8775 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8776                                             SelectionDAG &DAG) const {
8777   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8778   SDLoc dl(SDValue(Node, 0));
8779   SDValue Src = Node->getOperand(0);
8780 
8781   // DstVT is the result type, while SatVT is the size to which we saturate
8782   EVT SrcVT = Src.getValueType();
8783   EVT DstVT = Node->getValueType(0);
8784 
8785   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8786   unsigned SatWidth = SatVT.getScalarSizeInBits();
8787   unsigned DstWidth = DstVT.getScalarSizeInBits();
8788   assert(SatWidth <= DstWidth &&
8789          "Expected saturation width smaller than result width");
8790 
8791   // Determine minimum and maximum integer values and their corresponding
8792   // floating-point values.
8793   APInt MinInt, MaxInt;
8794   if (IsSigned) {
8795     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8796     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8797   } else {
8798     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8799     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8800   }
8801 
8802   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8803   // libcall emission cannot handle this. Large result types will fail.
8804   if (SrcVT == MVT::f16) {
8805     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8806     SrcVT = Src.getValueType();
8807   }
8808 
8809   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8810   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8811 
8812   APFloat::opStatus MinStatus =
8813       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8814   APFloat::opStatus MaxStatus =
8815       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8816   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8817                              !(MaxStatus & APFloat::opStatus::opInexact);
8818 
8819   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8820   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8821 
8822   // If the integer bounds are exactly representable as floats and min/max are
8823   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8824   // of comparisons and selects.
8825   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8826                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8827   if (AreExactFloatBounds && MinMaxLegal) {
8828     SDValue Clamped = Src;
8829 
8830     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8831     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8832     // Clamp by MaxFloat from above. NaN cannot occur.
8833     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8834     // Convert clamped value to integer.
8835     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8836                                   dl, DstVT, Clamped);
8837 
8838     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8839     // which will cast to zero.
8840     if (!IsSigned)
8841       return FpToInt;
8842 
8843     // Otherwise, select 0 if Src is NaN.
8844     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8845     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8846                            ISD::CondCode::SETUO);
8847   }
8848 
8849   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8850   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8851 
8852   // Result of direct conversion. The assumption here is that the operation is
8853   // non-trapping and it's fine to apply it to an out-of-range value if we
8854   // select it away later.
8855   SDValue FpToInt =
8856       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8857 
8858   SDValue Select = FpToInt;
8859 
8860   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8861   // MinInt if Src is NaN.
8862   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8863                            ISD::CondCode::SETULT);
8864   // If Src OGT MaxFloat, select MaxInt.
8865   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8866                            ISD::CondCode::SETOGT);
8867 
8868   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8869   // is already zero.
8870   if (!IsSigned)
8871     return Select;
8872 
8873   // Otherwise, select 0 if Src is NaN.
8874   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8875   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8876 }
8877 
8878 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8879                                            SelectionDAG &DAG) const {
8880   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8881   assert(Node->getValueType(0).isScalableVector() &&
8882          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8883 
8884   EVT VT = Node->getValueType(0);
8885   SDValue V1 = Node->getOperand(0);
8886   SDValue V2 = Node->getOperand(1);
8887   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8888   SDLoc DL(Node);
8889 
8890   // Expand through memory thusly:
8891   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8892   //  Store V1, Ptr
8893   //  Store V2, Ptr + sizeof(V1)
8894   //  If (Imm < 0)
8895   //    TrailingElts = -Imm
8896   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8897   //  else
8898   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8899   //  Res = Load Ptr
8900 
8901   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8902 
8903   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8904                                VT.getVectorElementCount() * 2);
8905   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8906   EVT PtrVT = StackPtr.getValueType();
8907   auto &MF = DAG.getMachineFunction();
8908   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8909   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8910 
8911   // Store the lo part of CONCAT_VECTORS(V1, V2)
8912   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8913   // Store the hi part of CONCAT_VECTORS(V1, V2)
8914   SDValue OffsetToV2 = DAG.getVScale(
8915       DL, PtrVT,
8916       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8917   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8918   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8919 
8920   if (Imm >= 0) {
8921     // Load back the required element. getVectorElementPointer takes care of
8922     // clamping the index if it's out-of-bounds.
8923     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8924     // Load the spliced result
8925     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8926                        MachinePointerInfo::getUnknownStack(MF));
8927   }
8928 
8929   uint64_t TrailingElts = -Imm;
8930 
8931   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8932   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8933   SDValue TrailingBytes =
8934       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8935 
8936   if (TrailingElts > VT.getVectorMinNumElements()) {
8937     SDValue VLBytes = DAG.getVScale(
8938         DL, PtrVT,
8939         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8940     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8941   }
8942 
8943   // Calculate the start address of the spliced result.
8944   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8945 
8946   // Load the spliced result
8947   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8948                      MachinePointerInfo::getUnknownStack(MF));
8949 }
8950 
8951 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8952                                            SDValue &LHS, SDValue &RHS,
8953                                            SDValue &CC, bool &NeedInvert,
8954                                            const SDLoc &dl, SDValue &Chain,
8955                                            bool IsSignaling) const {
8956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8957   MVT OpVT = LHS.getSimpleValueType();
8958   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8959   NeedInvert = false;
8960   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8961   default:
8962     llvm_unreachable("Unknown condition code action!");
8963   case TargetLowering::Legal:
8964     // Nothing to do.
8965     break;
8966   case TargetLowering::Expand: {
8967     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8968     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8969       std::swap(LHS, RHS);
8970       CC = DAG.getCondCode(InvCC);
8971       return true;
8972     }
8973     // Swapping operands didn't work. Try inverting the condition.
8974     bool NeedSwap = false;
8975     InvCC = getSetCCInverse(CCCode, OpVT);
8976     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8977       // If inverting the condition is not enough, try swapping operands
8978       // on top of it.
8979       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8980       NeedSwap = true;
8981     }
8982     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8983       CC = DAG.getCondCode(InvCC);
8984       NeedInvert = true;
8985       if (NeedSwap)
8986         std::swap(LHS, RHS);
8987       return true;
8988     }
8989 
8990     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8991     unsigned Opc = 0;
8992     switch (CCCode) {
8993     default:
8994       llvm_unreachable("Don't know how to expand this condition!");
8995     case ISD::SETUO:
8996       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8997         CC1 = ISD::SETUNE;
8998         CC2 = ISD::SETUNE;
8999         Opc = ISD::OR;
9000         break;
9001       }
9002       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9003              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9004       NeedInvert = true;
9005       LLVM_FALLTHROUGH;
9006     case ISD::SETO:
9007       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9008              "If SETO is expanded, SETOEQ must be legal!");
9009       CC1 = ISD::SETOEQ;
9010       CC2 = ISD::SETOEQ;
9011       Opc = ISD::AND;
9012       break;
9013     case ISD::SETONE:
9014     case ISD::SETUEQ:
9015       // If the SETUO or SETO CC isn't legal, we might be able to use
9016       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9017       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9018       // the operands.
9019       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9020       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9021           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9022            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9023         CC1 = ISD::SETOGT;
9024         CC2 = ISD::SETOLT;
9025         Opc = ISD::OR;
9026         NeedInvert = ((unsigned)CCCode & 0x8U);
9027         break;
9028       }
9029       LLVM_FALLTHROUGH;
9030     case ISD::SETOEQ:
9031     case ISD::SETOGT:
9032     case ISD::SETOGE:
9033     case ISD::SETOLT:
9034     case ISD::SETOLE:
9035     case ISD::SETUNE:
9036     case ISD::SETUGT:
9037     case ISD::SETUGE:
9038     case ISD::SETULT:
9039     case ISD::SETULE:
9040       // If we are floating point, assign and break, otherwise fall through.
9041       if (!OpVT.isInteger()) {
9042         // We can use the 4th bit to tell if we are the unordered
9043         // or ordered version of the opcode.
9044         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9045         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9046         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9047         break;
9048       }
9049       // Fallthrough if we are unsigned integer.
9050       LLVM_FALLTHROUGH;
9051     case ISD::SETLE:
9052     case ISD::SETGT:
9053     case ISD::SETGE:
9054     case ISD::SETLT:
9055     case ISD::SETNE:
9056     case ISD::SETEQ:
9057       // If all combinations of inverting the condition and swapping operands
9058       // didn't work then we have no means to expand the condition.
9059       llvm_unreachable("Don't know how to expand this condition!");
9060     }
9061 
9062     SDValue SetCC1, SetCC2;
9063     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9064       // If we aren't the ordered or unorder operation,
9065       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9066       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9067       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9068     } else {
9069       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9070       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9071       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9072     }
9073     if (Chain)
9074       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9075                           SetCC2.getValue(1));
9076     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9077     RHS = SDValue();
9078     CC = SDValue();
9079     return true;
9080   }
9081   }
9082   return false;
9083 }
9084