1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetLoweringObjectFile.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// NOTE: The constructor takes ownership of TLOF. 37 TargetLowering::TargetLowering(const TargetMachine &tm, 38 const TargetLoweringObjectFile *tlof) 39 : TargetLoweringBase(tm, tlof) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return NULL; 43 } 44 45 /// Check whether a given call node is in tail position within its function. If 46 /// so, it sets Chain to the input chain of the tail call. 47 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 48 SDValue &Chain) const { 49 const Function *F = DAG.getMachineFunction().getFunction(); 50 51 // Conservatively require the attributes of the call to match those of 52 // the return. Ignore noalias because it doesn't affect the call sequence. 53 AttributeSet CallerAttrs = F->getAttributes(); 54 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 55 .removeAttribute(Attribute::NoAlias).hasAttributes()) 56 return false; 57 58 // It's not safe to eliminate the sign / zero extension of the return value. 59 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 60 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 61 return false; 62 63 // Check if the only use is a function return node. 64 return isUsedByReturnOnly(Node, Chain); 65 } 66 67 68 /// Generate a libcall taking the given operands as arguments and returning a 69 /// result of type RetVT. 70 std::pair<SDValue, SDValue> 71 TargetLowering::makeLibCall(SelectionDAG &DAG, 72 RTLIB::Libcall LC, EVT RetVT, 73 const SDValue *Ops, unsigned NumOps, 74 bool isSigned, SDLoc dl, 75 bool doesNotReturn, 76 bool isReturnValueUsed) const { 77 TargetLowering::ArgListTy Args; 78 Args.reserve(NumOps); 79 80 TargetLowering::ArgListEntry Entry; 81 for (unsigned i = 0; i != NumOps; ++i) { 82 Entry.Node = Ops[i]; 83 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 84 Entry.isSExt = isSigned; 85 Entry.isZExt = !isSigned; 86 Args.push_back(Entry); 87 } 88 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 89 90 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 91 TargetLowering:: 92 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 93 false, 0, getLibcallCallingConv(LC), 94 /*isTailCall=*/false, 95 doesNotReturn, isReturnValueUsed, Callee, Args, 96 DAG, dl); 97 return LowerCallTo(CLI); 98 } 99 100 101 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 102 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 103 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 104 SDValue &NewLHS, SDValue &NewRHS, 105 ISD::CondCode &CCCode, 106 SDLoc dl) const { 107 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 108 && "Unsupported setcc type!"); 109 110 // Expand into one or more soft-fp libcall(s). 111 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 112 switch (CCCode) { 113 case ISD::SETEQ: 114 case ISD::SETOEQ: 115 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 116 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 117 break; 118 case ISD::SETNE: 119 case ISD::SETUNE: 120 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 121 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 122 break; 123 case ISD::SETGE: 124 case ISD::SETOGE: 125 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 126 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 127 break; 128 case ISD::SETLT: 129 case ISD::SETOLT: 130 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 131 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 132 break; 133 case ISD::SETLE: 134 case ISD::SETOLE: 135 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 136 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 137 break; 138 case ISD::SETGT: 139 case ISD::SETOGT: 140 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 141 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 142 break; 143 case ISD::SETUO: 144 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 145 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 146 break; 147 case ISD::SETO: 148 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 149 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 150 break; 151 default: 152 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 153 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 154 switch (CCCode) { 155 case ISD::SETONE: 156 // SETONE = SETOLT | SETOGT 157 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 158 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 159 // Fallthrough 160 case ISD::SETUGT: 161 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 162 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 163 break; 164 case ISD::SETUGE: 165 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 166 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 167 break; 168 case ISD::SETULT: 169 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 170 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 171 break; 172 case ISD::SETULE: 173 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 174 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 175 break; 176 case ISD::SETUEQ: 177 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 178 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 179 break; 180 default: llvm_unreachable("Do not know how to soften this setcc!"); 181 } 182 } 183 184 // Use the target specific return value for comparions lib calls. 185 EVT RetVT = getCmpLibcallReturnType(); 186 SDValue Ops[2] = { NewLHS, NewRHS }; 187 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 188 dl).first; 189 NewRHS = DAG.getConstant(0, RetVT); 190 CCCode = getCmpLibcallCC(LC1); 191 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 192 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 193 getSetCCResultType(*DAG.getContext(), RetVT), 194 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 195 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 196 dl).first; 197 NewLHS = DAG.getNode(ISD::SETCC, dl, 198 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 199 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 200 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 201 NewRHS = SDValue(); 202 } 203 } 204 205 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 206 /// current function. The returned value is a member of the 207 /// MachineJumpTableInfo::JTEntryKind enum. 208 unsigned TargetLowering::getJumpTableEncoding() const { 209 // In non-pic modes, just use the address of a block. 210 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 211 return MachineJumpTableInfo::EK_BlockAddress; 212 213 // In PIC mode, if the target supports a GPRel32 directive, use it. 214 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 215 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 216 217 // Otherwise, use a label difference. 218 return MachineJumpTableInfo::EK_LabelDifference32; 219 } 220 221 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 222 SelectionDAG &DAG) const { 223 // If our PIC model is GP relative, use the global offset table as the base. 224 unsigned JTEncoding = getJumpTableEncoding(); 225 226 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 227 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 228 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 229 230 return Table; 231 } 232 233 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 234 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 235 /// MCExpr. 236 const MCExpr * 237 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 238 unsigned JTI,MCContext &Ctx) const{ 239 // The normal PIC reloc base is the label at the start of the jump table. 240 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 241 } 242 243 bool 244 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 245 // Assume that everything is safe in static mode. 246 if (getTargetMachine().getRelocationModel() == Reloc::Static) 247 return true; 248 249 // In dynamic-no-pic mode, assume that known defined values are safe. 250 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 251 GA && 252 !GA->getGlobal()->isDeclaration() && 253 !GA->getGlobal()->isWeakForLinker()) 254 return true; 255 256 // Otherwise assume nothing is safe. 257 return false; 258 } 259 260 //===----------------------------------------------------------------------===// 261 // Optimization Methods 262 //===----------------------------------------------------------------------===// 263 264 /// ShrinkDemandedConstant - Check to see if the specified operand of the 265 /// specified instruction is a constant integer. If so, check to see if there 266 /// are any bits set in the constant that are not demanded. If so, shrink the 267 /// constant and return true. 268 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 269 const APInt &Demanded) { 270 SDLoc dl(Op); 271 272 // FIXME: ISD::SELECT, ISD::SELECT_CC 273 switch (Op.getOpcode()) { 274 default: break; 275 case ISD::XOR: 276 case ISD::AND: 277 case ISD::OR: { 278 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 279 if (!C) return false; 280 281 if (Op.getOpcode() == ISD::XOR && 282 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 283 return false; 284 285 // if we can expand it to have all bits set, do it 286 if (C->getAPIntValue().intersects(~Demanded)) { 287 EVT VT = Op.getValueType(); 288 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 289 DAG.getConstant(Demanded & 290 C->getAPIntValue(), 291 VT)); 292 return CombineTo(Op, New); 293 } 294 295 break; 296 } 297 } 298 299 return false; 300 } 301 302 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 303 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 304 /// cast, but it could be generalized for targets with other types of 305 /// implicit widening casts. 306 bool 307 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 308 unsigned BitWidth, 309 const APInt &Demanded, 310 SDLoc dl) { 311 assert(Op.getNumOperands() == 2 && 312 "ShrinkDemandedOp only supports binary operators!"); 313 assert(Op.getNode()->getNumValues() == 1 && 314 "ShrinkDemandedOp only supports nodes with one result!"); 315 316 // Don't do this if the node has another user, which may require the 317 // full value. 318 if (!Op.getNode()->hasOneUse()) 319 return false; 320 321 // Search for the smallest integer type with free casts to and from 322 // Op's type. For expedience, just check power-of-2 integer types. 323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 324 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 325 unsigned SmallVTBits = DemandedSize; 326 if (!isPowerOf2_32(SmallVTBits)) 327 SmallVTBits = NextPowerOf2(SmallVTBits); 328 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 329 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 330 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 331 TLI.isZExtFree(SmallVT, Op.getValueType())) { 332 // We found a type with free casts. 333 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 334 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 335 Op.getNode()->getOperand(0)), 336 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 337 Op.getNode()->getOperand(1))); 338 bool NeedZext = DemandedSize > SmallVTBits; 339 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 340 dl, Op.getValueType(), X); 341 return CombineTo(Op, Z); 342 } 343 } 344 return false; 345 } 346 347 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 348 /// DemandedMask bits of the result of Op are ever used downstream. If we can 349 /// use this information to simplify Op, create a new simplified DAG node and 350 /// return true, returning the original and new nodes in Old and New. Otherwise, 351 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 352 /// the expression (used to simplify the caller). The KnownZero/One bits may 353 /// only be accurate for those bits in the DemandedMask. 354 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 355 const APInt &DemandedMask, 356 APInt &KnownZero, 357 APInt &KnownOne, 358 TargetLoweringOpt &TLO, 359 unsigned Depth) const { 360 unsigned BitWidth = DemandedMask.getBitWidth(); 361 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 362 "Mask size mismatches value type size!"); 363 APInt NewMask = DemandedMask; 364 SDLoc dl(Op); 365 366 // Don't know anything. 367 KnownZero = KnownOne = APInt(BitWidth, 0); 368 369 // Other users may use these bits. 370 if (!Op.getNode()->hasOneUse()) { 371 if (Depth != 0) { 372 // If not at the root, Just compute the KnownZero/KnownOne bits to 373 // simplify things downstream. 374 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 375 return false; 376 } 377 // If this is the root being simplified, allow it to have multiple uses, 378 // just set the NewMask to all bits. 379 NewMask = APInt::getAllOnesValue(BitWidth); 380 } else if (DemandedMask == 0) { 381 // Not demanding any bits from Op. 382 if (Op.getOpcode() != ISD::UNDEF) 383 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 384 return false; 385 } else if (Depth == 6) { // Limit search depth. 386 return false; 387 } 388 389 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 390 switch (Op.getOpcode()) { 391 case ISD::Constant: 392 // We know all of the bits for a constant! 393 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 394 KnownZero = ~KnownOne; 395 return false; // Don't fall through, will infinitely loop. 396 case ISD::AND: 397 // If the RHS is a constant, check to see if the LHS would be zero without 398 // using the bits from the RHS. Below, we use knowledge about the RHS to 399 // simplify the LHS, here we're using information from the LHS to simplify 400 // the RHS. 401 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 402 APInt LHSZero, LHSOne; 403 // Do not increment Depth here; that can cause an infinite loop. 404 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 405 // If the LHS already has zeros where RHSC does, this and is dead. 406 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 407 return TLO.CombineTo(Op, Op.getOperand(0)); 408 // If any of the set bits in the RHS are known zero on the LHS, shrink 409 // the constant. 410 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 411 return true; 412 } 413 414 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 415 KnownOne, TLO, Depth+1)) 416 return true; 417 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 418 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 419 KnownZero2, KnownOne2, TLO, Depth+1)) 420 return true; 421 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 422 423 // If all of the demanded bits are known one on one side, return the other. 424 // These bits cannot contribute to the result of the 'and'. 425 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 426 return TLO.CombineTo(Op, Op.getOperand(0)); 427 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 428 return TLO.CombineTo(Op, Op.getOperand(1)); 429 // If all of the demanded bits in the inputs are known zeros, return zero. 430 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 431 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 432 // If the RHS is a constant, see if we can simplify it. 433 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 434 return true; 435 // If the operation can be done in a smaller type, do so. 436 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 437 return true; 438 439 // Output known-1 bits are only known if set in both the LHS & RHS. 440 KnownOne &= KnownOne2; 441 // Output known-0 are known to be clear if zero in either the LHS | RHS. 442 KnownZero |= KnownZero2; 443 break; 444 case ISD::OR: 445 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 446 KnownOne, TLO, Depth+1)) 447 return true; 448 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 449 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 450 KnownZero2, KnownOne2, TLO, Depth+1)) 451 return true; 452 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 453 454 // If all of the demanded bits are known zero on one side, return the other. 455 // These bits cannot contribute to the result of the 'or'. 456 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 457 return TLO.CombineTo(Op, Op.getOperand(0)); 458 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 459 return TLO.CombineTo(Op, Op.getOperand(1)); 460 // If all of the potentially set bits on one side are known to be set on 461 // the other side, just use the 'other' side. 462 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 463 return TLO.CombineTo(Op, Op.getOperand(0)); 464 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 465 return TLO.CombineTo(Op, Op.getOperand(1)); 466 // If the RHS is a constant, see if we can simplify it. 467 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 468 return true; 469 // If the operation can be done in a smaller type, do so. 470 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 471 return true; 472 473 // Output known-0 bits are only known if clear in both the LHS & RHS. 474 KnownZero &= KnownZero2; 475 // Output known-1 are known to be set if set in either the LHS | RHS. 476 KnownOne |= KnownOne2; 477 break; 478 case ISD::XOR: 479 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 480 KnownOne, TLO, Depth+1)) 481 return true; 482 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 483 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 484 KnownOne2, TLO, Depth+1)) 485 return true; 486 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 487 488 // If all of the demanded bits are known zero on one side, return the other. 489 // These bits cannot contribute to the result of the 'xor'. 490 if ((KnownZero & NewMask) == NewMask) 491 return TLO.CombineTo(Op, Op.getOperand(0)); 492 if ((KnownZero2 & NewMask) == NewMask) 493 return TLO.CombineTo(Op, Op.getOperand(1)); 494 // If the operation can be done in a smaller type, do so. 495 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 496 return true; 497 498 // If all of the unknown bits are known to be zero on one side or the other 499 // (but not both) turn this into an *inclusive* or. 500 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 501 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 502 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 503 Op.getOperand(0), 504 Op.getOperand(1))); 505 506 // Output known-0 bits are known if clear or set in both the LHS & RHS. 507 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 508 // Output known-1 are known to be set if set in only one of the LHS, RHS. 509 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 510 511 // If all of the demanded bits on one side are known, and all of the set 512 // bits on that side are also known to be set on the other side, turn this 513 // into an AND, as we know the bits will be cleared. 514 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 515 // NB: it is okay if more bits are known than are requested 516 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 517 if (KnownOne == KnownOne2) { // set bits are the same on both sides 518 EVT VT = Op.getValueType(); 519 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 520 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 521 Op.getOperand(0), ANDC)); 522 } 523 } 524 525 // If the RHS is a constant, see if we can simplify it. 526 // for XOR, we prefer to force bits to 1 if they will make a -1. 527 // if we can't force bits, try to shrink constant 528 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 529 APInt Expanded = C->getAPIntValue() | (~NewMask); 530 // if we can expand it to have all bits set, do it 531 if (Expanded.isAllOnesValue()) { 532 if (Expanded != C->getAPIntValue()) { 533 EVT VT = Op.getValueType(); 534 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 535 TLO.DAG.getConstant(Expanded, VT)); 536 return TLO.CombineTo(Op, New); 537 } 538 // if it already has all the bits set, nothing to change 539 // but don't shrink either! 540 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 541 return true; 542 } 543 } 544 545 KnownZero = KnownZeroOut; 546 KnownOne = KnownOneOut; 547 break; 548 case ISD::SELECT: 549 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 550 KnownOne, TLO, Depth+1)) 551 return true; 552 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 553 KnownOne2, TLO, Depth+1)) 554 return true; 555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 556 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 557 558 // If the operands are constants, see if we can simplify them. 559 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 560 return true; 561 562 // Only known if known in both the LHS and RHS. 563 KnownOne &= KnownOne2; 564 KnownZero &= KnownZero2; 565 break; 566 case ISD::SELECT_CC: 567 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 568 KnownOne, TLO, Depth+1)) 569 return true; 570 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 571 KnownOne2, TLO, Depth+1)) 572 return true; 573 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 574 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 575 576 // If the operands are constants, see if we can simplify them. 577 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 578 return true; 579 580 // Only known if known in both the LHS and RHS. 581 KnownOne &= KnownOne2; 582 KnownZero &= KnownZero2; 583 break; 584 case ISD::SHL: 585 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 586 unsigned ShAmt = SA->getZExtValue(); 587 SDValue InOp = Op.getOperand(0); 588 589 // If the shift count is an invalid immediate, don't do anything. 590 if (ShAmt >= BitWidth) 591 break; 592 593 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 594 // single shift. We can do this if the bottom bits (which are shifted 595 // out) are never demanded. 596 if (InOp.getOpcode() == ISD::SRL && 597 isa<ConstantSDNode>(InOp.getOperand(1))) { 598 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 599 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 600 unsigned Opc = ISD::SHL; 601 int Diff = ShAmt-C1; 602 if (Diff < 0) { 603 Diff = -Diff; 604 Opc = ISD::SRL; 605 } 606 607 SDValue NewSA = 608 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 609 EVT VT = Op.getValueType(); 610 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 611 InOp.getOperand(0), NewSA)); 612 } 613 } 614 615 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 616 KnownZero, KnownOne, TLO, Depth+1)) 617 return true; 618 619 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 620 // are not demanded. This will likely allow the anyext to be folded away. 621 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 622 SDValue InnerOp = InOp.getNode()->getOperand(0); 623 EVT InnerVT = InnerOp.getValueType(); 624 unsigned InnerBits = InnerVT.getSizeInBits(); 625 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 626 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 627 EVT ShTy = getShiftAmountTy(InnerVT); 628 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 629 ShTy = InnerVT; 630 SDValue NarrowShl = 631 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 632 TLO.DAG.getConstant(ShAmt, ShTy)); 633 return 634 TLO.CombineTo(Op, 635 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 636 NarrowShl)); 637 } 638 } 639 640 KnownZero <<= SA->getZExtValue(); 641 KnownOne <<= SA->getZExtValue(); 642 // low bits known zero. 643 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 644 } 645 break; 646 case ISD::SRL: 647 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 648 EVT VT = Op.getValueType(); 649 unsigned ShAmt = SA->getZExtValue(); 650 unsigned VTSize = VT.getSizeInBits(); 651 SDValue InOp = Op.getOperand(0); 652 653 // If the shift count is an invalid immediate, don't do anything. 654 if (ShAmt >= BitWidth) 655 break; 656 657 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 658 // single shift. We can do this if the top bits (which are shifted out) 659 // are never demanded. 660 if (InOp.getOpcode() == ISD::SHL && 661 isa<ConstantSDNode>(InOp.getOperand(1))) { 662 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 663 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 664 unsigned Opc = ISD::SRL; 665 int Diff = ShAmt-C1; 666 if (Diff < 0) { 667 Diff = -Diff; 668 Opc = ISD::SHL; 669 } 670 671 SDValue NewSA = 672 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 673 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 674 InOp.getOperand(0), NewSA)); 675 } 676 } 677 678 // Compute the new bits that are at the top now. 679 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 680 KnownZero, KnownOne, TLO, Depth+1)) 681 return true; 682 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 683 KnownZero = KnownZero.lshr(ShAmt); 684 KnownOne = KnownOne.lshr(ShAmt); 685 686 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 687 KnownZero |= HighBits; // High bits known zero. 688 } 689 break; 690 case ISD::SRA: 691 // If this is an arithmetic shift right and only the low-bit is set, we can 692 // always convert this into a logical shr, even if the shift amount is 693 // variable. The low bit of the shift cannot be an input sign bit unless 694 // the shift amount is >= the size of the datatype, which is undefined. 695 if (NewMask == 1) 696 return TLO.CombineTo(Op, 697 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 698 Op.getOperand(0), Op.getOperand(1))); 699 700 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 701 EVT VT = Op.getValueType(); 702 unsigned ShAmt = SA->getZExtValue(); 703 704 // If the shift count is an invalid immediate, don't do anything. 705 if (ShAmt >= BitWidth) 706 break; 707 708 APInt InDemandedMask = (NewMask << ShAmt); 709 710 // If any of the demanded bits are produced by the sign extension, we also 711 // demand the input sign bit. 712 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 713 if (HighBits.intersects(NewMask)) 714 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 715 716 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 717 KnownZero, KnownOne, TLO, Depth+1)) 718 return true; 719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 720 KnownZero = KnownZero.lshr(ShAmt); 721 KnownOne = KnownOne.lshr(ShAmt); 722 723 // Handle the sign bit, adjusted to where it is now in the mask. 724 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 725 726 // If the input sign bit is known to be zero, or if none of the top bits 727 // are demanded, turn this into an unsigned shift right. 728 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 729 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 730 Op.getOperand(0), 731 Op.getOperand(1))); 732 } else if (KnownOne.intersects(SignBit)) { // New bits are known one. 733 KnownOne |= HighBits; 734 } 735 } 736 break; 737 case ISD::SIGN_EXTEND_INREG: { 738 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 739 740 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 741 // If we only care about the highest bit, don't bother shifting right. 742 if (MsbMask == DemandedMask) { 743 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 744 SDValue InOp = Op.getOperand(0); 745 746 // Compute the correct shift amount type, which must be getShiftAmountTy 747 // for scalar types after legalization. 748 EVT ShiftAmtTy = Op.getValueType(); 749 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 750 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 751 752 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 754 Op.getValueType(), InOp, ShiftAmt)); 755 } 756 757 // Sign extension. Compute the demanded bits in the result that are not 758 // present in the input. 759 APInt NewBits = 760 APInt::getHighBitsSet(BitWidth, 761 BitWidth - ExVT.getScalarType().getSizeInBits()); 762 763 // If none of the extended bits are demanded, eliminate the sextinreg. 764 if ((NewBits & NewMask) == 0) 765 return TLO.CombineTo(Op, Op.getOperand(0)); 766 767 APInt InSignBit = 768 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 769 APInt InputDemandedBits = 770 APInt::getLowBitsSet(BitWidth, 771 ExVT.getScalarType().getSizeInBits()) & 772 NewMask; 773 774 // Since the sign extended bits are demanded, we know that the sign 775 // bit is demanded. 776 InputDemandedBits |= InSignBit; 777 778 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 779 KnownZero, KnownOne, TLO, Depth+1)) 780 return true; 781 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 782 783 // If the sign bit of the input is known set or clear, then we know the 784 // top bits of the result. 785 786 // If the input sign bit is known zero, convert this into a zero extension. 787 if (KnownZero.intersects(InSignBit)) 788 return TLO.CombineTo(Op, 789 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 790 791 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 792 KnownOne |= NewBits; 793 KnownZero &= ~NewBits; 794 } else { // Input sign bit unknown 795 KnownZero &= ~NewBits; 796 KnownOne &= ~NewBits; 797 } 798 break; 799 } 800 case ISD::ZERO_EXTEND: { 801 unsigned OperandBitWidth = 802 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 803 APInt InMask = NewMask.trunc(OperandBitWidth); 804 805 // If none of the top bits are demanded, convert this into an any_extend. 806 APInt NewBits = 807 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 808 if (!NewBits.intersects(NewMask)) 809 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 810 Op.getValueType(), 811 Op.getOperand(0))); 812 813 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 814 KnownZero, KnownOne, TLO, Depth+1)) 815 return true; 816 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 817 KnownZero = KnownZero.zext(BitWidth); 818 KnownOne = KnownOne.zext(BitWidth); 819 KnownZero |= NewBits; 820 break; 821 } 822 case ISD::SIGN_EXTEND: { 823 EVT InVT = Op.getOperand(0).getValueType(); 824 unsigned InBits = InVT.getScalarType().getSizeInBits(); 825 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 826 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 827 APInt NewBits = ~InMask & NewMask; 828 829 // If none of the top bits are demanded, convert this into an any_extend. 830 if (NewBits == 0) 831 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 832 Op.getValueType(), 833 Op.getOperand(0))); 834 835 // Since some of the sign extended bits are demanded, we know that the sign 836 // bit is demanded. 837 APInt InDemandedBits = InMask & NewMask; 838 InDemandedBits |= InSignBit; 839 InDemandedBits = InDemandedBits.trunc(InBits); 840 841 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 842 KnownOne, TLO, Depth+1)) 843 return true; 844 KnownZero = KnownZero.zext(BitWidth); 845 KnownOne = KnownOne.zext(BitWidth); 846 847 // If the sign bit is known zero, convert this to a zero extend. 848 if (KnownZero.intersects(InSignBit)) 849 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 850 Op.getValueType(), 851 Op.getOperand(0))); 852 853 // If the sign bit is known one, the top bits match. 854 if (KnownOne.intersects(InSignBit)) { 855 KnownOne |= NewBits; 856 assert((KnownZero & NewBits) == 0); 857 } else { // Otherwise, top bits aren't known. 858 assert((KnownOne & NewBits) == 0); 859 assert((KnownZero & NewBits) == 0); 860 } 861 break; 862 } 863 case ISD::ANY_EXTEND: { 864 unsigned OperandBitWidth = 865 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 866 APInt InMask = NewMask.trunc(OperandBitWidth); 867 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 868 KnownZero, KnownOne, TLO, Depth+1)) 869 return true; 870 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 871 KnownZero = KnownZero.zext(BitWidth); 872 KnownOne = KnownOne.zext(BitWidth); 873 break; 874 } 875 case ISD::TRUNCATE: { 876 // Simplify the input, using demanded bit information, and compute the known 877 // zero/one bits live out. 878 unsigned OperandBitWidth = 879 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 880 APInt TruncMask = NewMask.zext(OperandBitWidth); 881 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 882 KnownZero, KnownOne, TLO, Depth+1)) 883 return true; 884 KnownZero = KnownZero.trunc(BitWidth); 885 KnownOne = KnownOne.trunc(BitWidth); 886 887 // If the input is only used by this truncate, see if we can shrink it based 888 // on the known demanded bits. 889 if (Op.getOperand(0).getNode()->hasOneUse()) { 890 SDValue In = Op.getOperand(0); 891 switch (In.getOpcode()) { 892 default: break; 893 case ISD::SRL: 894 // Shrink SRL by a constant if none of the high bits shifted in are 895 // demanded. 896 if (TLO.LegalTypes() && 897 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 898 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 899 // undesirable. 900 break; 901 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 902 if (!ShAmt) 903 break; 904 SDValue Shift = In.getOperand(1); 905 if (TLO.LegalTypes()) { 906 uint64_t ShVal = ShAmt->getZExtValue(); 907 Shift = 908 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 909 } 910 911 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 912 OperandBitWidth - BitWidth); 913 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 914 915 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 916 // None of the shifted in bits are needed. Add a truncate of the 917 // shift input, then shift it. 918 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 919 Op.getValueType(), 920 In.getOperand(0)); 921 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 922 Op.getValueType(), 923 NewTrunc, 924 Shift)); 925 } 926 break; 927 } 928 } 929 930 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 931 break; 932 } 933 case ISD::AssertZext: { 934 // AssertZext demands all of the high bits, plus any of the low bits 935 // demanded by its users. 936 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 937 APInt InMask = APInt::getLowBitsSet(BitWidth, 938 VT.getSizeInBits()); 939 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 940 KnownZero, KnownOne, TLO, Depth+1)) 941 return true; 942 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 943 944 KnownZero |= ~InMask & NewMask; 945 break; 946 } 947 case ISD::BITCAST: 948 // If this is an FP->Int bitcast and if the sign bit is the only 949 // thing demanded, turn this into a FGETSIGN. 950 if (!TLO.LegalOperations() && 951 !Op.getValueType().isVector() && 952 !Op.getOperand(0).getValueType().isVector() && 953 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 954 Op.getOperand(0).getValueType().isFloatingPoint()) { 955 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 956 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 957 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 958 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 959 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 960 // place. We expect the SHL to be eliminated by other optimizations. 961 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 962 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 963 if (!OpVTLegal && OpVTSizeInBits > 32) 964 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 965 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 966 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 967 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 968 Op.getValueType(), 969 Sign, ShAmt)); 970 } 971 } 972 break; 973 case ISD::ADD: 974 case ISD::MUL: 975 case ISD::SUB: { 976 // Add, Sub, and Mul don't demand any bits in positions beyond that 977 // of the highest bit demanded of them. 978 APInt LoMask = APInt::getLowBitsSet(BitWidth, 979 BitWidth - NewMask.countLeadingZeros()); 980 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 981 KnownOne2, TLO, Depth+1)) 982 return true; 983 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 984 KnownOne2, TLO, Depth+1)) 985 return true; 986 // See if the operation should be performed at a smaller bit width. 987 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 988 return true; 989 } 990 // FALL THROUGH 991 default: 992 // Just use ComputeMaskedBits to compute output bits. 993 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 994 break; 995 } 996 997 // If we know the value of all of the demanded bits, return this as a 998 // constant. 999 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1000 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1001 1002 return false; 1003 } 1004 1005 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 1006 /// in Mask are known to be either zero or one and return them in the 1007 /// KnownZero/KnownOne bitsets. 1008 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1009 APInt &KnownZero, 1010 APInt &KnownOne, 1011 const SelectionDAG &DAG, 1012 unsigned Depth) const { 1013 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1014 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1015 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1016 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1017 "Should use MaskedValueIsZero if you don't know whether Op" 1018 " is a target node!"); 1019 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1020 } 1021 1022 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1023 /// targets that want to expose additional information about sign bits to the 1024 /// DAG Combiner. 1025 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1026 unsigned Depth) const { 1027 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1028 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1029 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1030 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1031 "Should use ComputeNumSignBits if you don't know whether Op" 1032 " is a target node!"); 1033 return 1; 1034 } 1035 1036 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1037 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1038 /// determine which bit is set. 1039 /// 1040 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1041 // A left-shift of a constant one will have exactly one bit set, because 1042 // shifting the bit off the end is undefined. 1043 if (Val.getOpcode() == ISD::SHL) 1044 if (ConstantSDNode *C = 1045 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1046 if (C->getAPIntValue() == 1) 1047 return true; 1048 1049 // Similarly, a right-shift of a constant sign-bit will have exactly 1050 // one bit set. 1051 if (Val.getOpcode() == ISD::SRL) 1052 if (ConstantSDNode *C = 1053 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1054 if (C->getAPIntValue().isSignBit()) 1055 return true; 1056 1057 // More could be done here, though the above checks are enough 1058 // to handle some common cases. 1059 1060 // Fall back to ComputeMaskedBits to catch other known cases. 1061 EVT OpVT = Val.getValueType(); 1062 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1063 APInt KnownZero, KnownOne; 1064 DAG.ComputeMaskedBits(Val, KnownZero, KnownOne); 1065 return (KnownZero.countPopulation() == BitWidth - 1) && 1066 (KnownOne.countPopulation() == 1); 1067 } 1068 1069 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1070 /// and cc. If it is unable to simplify it, return a null SDValue. 1071 SDValue 1072 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1073 ISD::CondCode Cond, bool foldBooleans, 1074 DAGCombinerInfo &DCI, SDLoc dl) const { 1075 SelectionDAG &DAG = DCI.DAG; 1076 1077 // These setcc operations always fold. 1078 switch (Cond) { 1079 default: break; 1080 case ISD::SETFALSE: 1081 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1082 case ISD::SETTRUE: 1083 case ISD::SETTRUE2: return DAG.getConstant(1, VT); 1084 } 1085 1086 // Ensure that the constant occurs on the RHS, and fold constant 1087 // comparisons. 1088 if (isa<ConstantSDNode>(N0.getNode())) 1089 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); 1090 1091 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1092 const APInt &C1 = N1C->getAPIntValue(); 1093 1094 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1095 // equality comparison, then we're just comparing whether X itself is 1096 // zero. 1097 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1098 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1099 N0.getOperand(1).getOpcode() == ISD::Constant) { 1100 const APInt &ShAmt 1101 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1102 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1103 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1104 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1105 // (srl (ctlz x), 5) == 0 -> X != 0 1106 // (srl (ctlz x), 5) != 1 -> X != 0 1107 Cond = ISD::SETNE; 1108 } else { 1109 // (srl (ctlz x), 5) != 0 -> X == 0 1110 // (srl (ctlz x), 5) == 1 -> X == 0 1111 Cond = ISD::SETEQ; 1112 } 1113 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1114 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1115 Zero, Cond); 1116 } 1117 } 1118 1119 SDValue CTPOP = N0; 1120 // Look through truncs that don't change the value of a ctpop. 1121 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1122 CTPOP = N0.getOperand(0); 1123 1124 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1125 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1126 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1127 EVT CTVT = CTPOP.getValueType(); 1128 SDValue CTOp = CTPOP.getOperand(0); 1129 1130 // (ctpop x) u< 2 -> (x & x-1) == 0 1131 // (ctpop x) u> 1 -> (x & x-1) != 0 1132 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1133 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1134 DAG.getConstant(1, CTVT)); 1135 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1136 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1137 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1138 } 1139 1140 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1141 } 1142 1143 // (zext x) == C --> x == (trunc C) 1144 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1145 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1146 unsigned MinBits = N0.getValueSizeInBits(); 1147 SDValue PreZExt; 1148 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1149 // ZExt 1150 MinBits = N0->getOperand(0).getValueSizeInBits(); 1151 PreZExt = N0->getOperand(0); 1152 } else if (N0->getOpcode() == ISD::AND) { 1153 // DAGCombine turns costly ZExts into ANDs 1154 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1155 if ((C->getAPIntValue()+1).isPowerOf2()) { 1156 MinBits = C->getAPIntValue().countTrailingOnes(); 1157 PreZExt = N0->getOperand(0); 1158 } 1159 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1160 // ZEXTLOAD 1161 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1162 MinBits = LN0->getMemoryVT().getSizeInBits(); 1163 PreZExt = N0; 1164 } 1165 } 1166 1167 // Make sure we're not losing bits from the constant. 1168 if (MinBits > 0 && 1169 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1170 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1171 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1172 // Will get folded away. 1173 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1174 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1175 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1176 } 1177 } 1178 } 1179 1180 // If the LHS is '(and load, const)', the RHS is 0, 1181 // the test is for equality or unsigned, and all 1 bits of the const are 1182 // in the same partial word, see if we can shorten the load. 1183 if (DCI.isBeforeLegalize() && 1184 N0.getOpcode() == ISD::AND && C1 == 0 && 1185 N0.getNode()->hasOneUse() && 1186 isa<LoadSDNode>(N0.getOperand(0)) && 1187 N0.getOperand(0).getNode()->hasOneUse() && 1188 isa<ConstantSDNode>(N0.getOperand(1))) { 1189 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1190 APInt bestMask; 1191 unsigned bestWidth = 0, bestOffset = 0; 1192 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1193 unsigned origWidth = N0.getValueType().getSizeInBits(); 1194 unsigned maskWidth = origWidth; 1195 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1196 // 8 bits, but have to be careful... 1197 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1198 origWidth = Lod->getMemoryVT().getSizeInBits(); 1199 const APInt &Mask = 1200 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1201 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1202 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1203 for (unsigned offset=0; offset<origWidth/width; offset++) { 1204 if ((newMask & Mask) == Mask) { 1205 if (!getDataLayout()->isLittleEndian()) 1206 bestOffset = (origWidth/width - offset - 1) * (width/8); 1207 else 1208 bestOffset = (uint64_t)offset * (width/8); 1209 bestMask = Mask.lshr(offset * (width/8) * 8); 1210 bestWidth = width; 1211 break; 1212 } 1213 newMask = newMask << width; 1214 } 1215 } 1216 } 1217 if (bestWidth) { 1218 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1219 if (newVT.isRound()) { 1220 EVT PtrType = Lod->getOperand(1).getValueType(); 1221 SDValue Ptr = Lod->getBasePtr(); 1222 if (bestOffset != 0) 1223 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1224 DAG.getConstant(bestOffset, PtrType)); 1225 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1226 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1227 Lod->getPointerInfo().getWithOffset(bestOffset), 1228 false, false, false, NewAlign); 1229 return DAG.getSetCC(dl, VT, 1230 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1231 DAG.getConstant(bestMask.trunc(bestWidth), 1232 newVT)), 1233 DAG.getConstant(0LL, newVT), Cond); 1234 } 1235 } 1236 } 1237 1238 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1239 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1240 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1241 1242 // If the comparison constant has bits in the upper part, the 1243 // zero-extended value could never match. 1244 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1245 C1.getBitWidth() - InSize))) { 1246 switch (Cond) { 1247 case ISD::SETUGT: 1248 case ISD::SETUGE: 1249 case ISD::SETEQ: return DAG.getConstant(0, VT); 1250 case ISD::SETULT: 1251 case ISD::SETULE: 1252 case ISD::SETNE: return DAG.getConstant(1, VT); 1253 case ISD::SETGT: 1254 case ISD::SETGE: 1255 // True if the sign bit of C1 is set. 1256 return DAG.getConstant(C1.isNegative(), VT); 1257 case ISD::SETLT: 1258 case ISD::SETLE: 1259 // True if the sign bit of C1 isn't set. 1260 return DAG.getConstant(C1.isNonNegative(), VT); 1261 default: 1262 break; 1263 } 1264 } 1265 1266 // Otherwise, we can perform the comparison with the low bits. 1267 switch (Cond) { 1268 case ISD::SETEQ: 1269 case ISD::SETNE: 1270 case ISD::SETUGT: 1271 case ISD::SETUGE: 1272 case ISD::SETULT: 1273 case ISD::SETULE: { 1274 EVT newVT = N0.getOperand(0).getValueType(); 1275 if (DCI.isBeforeLegalizeOps() || 1276 (isOperationLegal(ISD::SETCC, newVT) && 1277 getCondCodeAction(Cond, newVT.getSimpleVT())==Legal)) 1278 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1279 DAG.getConstant(C1.trunc(InSize), newVT), 1280 Cond); 1281 break; 1282 } 1283 default: 1284 break; // todo, be more careful with signed comparisons 1285 } 1286 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1287 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1288 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1289 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1290 EVT ExtDstTy = N0.getValueType(); 1291 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1292 1293 // If the constant doesn't fit into the number of bits for the source of 1294 // the sign extension, it is impossible for both sides to be equal. 1295 if (C1.getMinSignedBits() > ExtSrcTyBits) 1296 return DAG.getConstant(Cond == ISD::SETNE, VT); 1297 1298 SDValue ZextOp; 1299 EVT Op0Ty = N0.getOperand(0).getValueType(); 1300 if (Op0Ty == ExtSrcTy) { 1301 ZextOp = N0.getOperand(0); 1302 } else { 1303 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1304 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1305 DAG.getConstant(Imm, Op0Ty)); 1306 } 1307 if (!DCI.isCalledByLegalizer()) 1308 DCI.AddToWorklist(ZextOp.getNode()); 1309 // Otherwise, make this a use of a zext. 1310 return DAG.getSetCC(dl, VT, ZextOp, 1311 DAG.getConstant(C1 & APInt::getLowBitsSet( 1312 ExtDstTyBits, 1313 ExtSrcTyBits), 1314 ExtDstTy), 1315 Cond); 1316 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1317 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1318 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1319 if (N0.getOpcode() == ISD::SETCC && 1320 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1321 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1322 if (TrueWhenTrue) 1323 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1324 // Invert the condition. 1325 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1326 CC = ISD::getSetCCInverse(CC, 1327 N0.getOperand(0).getValueType().isInteger()); 1328 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1329 } 1330 1331 if ((N0.getOpcode() == ISD::XOR || 1332 (N0.getOpcode() == ISD::AND && 1333 N0.getOperand(0).getOpcode() == ISD::XOR && 1334 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1335 isa<ConstantSDNode>(N0.getOperand(1)) && 1336 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1337 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1338 // can only do this if the top bits are known zero. 1339 unsigned BitWidth = N0.getValueSizeInBits(); 1340 if (DAG.MaskedValueIsZero(N0, 1341 APInt::getHighBitsSet(BitWidth, 1342 BitWidth-1))) { 1343 // Okay, get the un-inverted input value. 1344 SDValue Val; 1345 if (N0.getOpcode() == ISD::XOR) 1346 Val = N0.getOperand(0); 1347 else { 1348 assert(N0.getOpcode() == ISD::AND && 1349 N0.getOperand(0).getOpcode() == ISD::XOR); 1350 // ((X^1)&1)^1 -> X & 1 1351 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1352 N0.getOperand(0).getOperand(0), 1353 N0.getOperand(1)); 1354 } 1355 1356 return DAG.getSetCC(dl, VT, Val, N1, 1357 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1358 } 1359 } else if (N1C->getAPIntValue() == 1 && 1360 (VT == MVT::i1 || 1361 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 1362 SDValue Op0 = N0; 1363 if (Op0.getOpcode() == ISD::TRUNCATE) 1364 Op0 = Op0.getOperand(0); 1365 1366 if ((Op0.getOpcode() == ISD::XOR) && 1367 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1368 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1369 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1370 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1371 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1372 Cond); 1373 } 1374 if (Op0.getOpcode() == ISD::AND && 1375 isa<ConstantSDNode>(Op0.getOperand(1)) && 1376 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1377 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1378 if (Op0.getValueType().bitsGT(VT)) 1379 Op0 = DAG.getNode(ISD::AND, dl, VT, 1380 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1381 DAG.getConstant(1, VT)); 1382 else if (Op0.getValueType().bitsLT(VT)) 1383 Op0 = DAG.getNode(ISD::AND, dl, VT, 1384 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1385 DAG.getConstant(1, VT)); 1386 1387 return DAG.getSetCC(dl, VT, Op0, 1388 DAG.getConstant(0, Op0.getValueType()), 1389 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1390 } 1391 if (Op0.getOpcode() == ISD::AssertZext && 1392 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1393 return DAG.getSetCC(dl, VT, Op0, 1394 DAG.getConstant(0, Op0.getValueType()), 1395 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1396 } 1397 } 1398 1399 APInt MinVal, MaxVal; 1400 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1401 if (ISD::isSignedIntSetCC(Cond)) { 1402 MinVal = APInt::getSignedMinValue(OperandBitSize); 1403 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1404 } else { 1405 MinVal = APInt::getMinValue(OperandBitSize); 1406 MaxVal = APInt::getMaxValue(OperandBitSize); 1407 } 1408 1409 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1410 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1411 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1412 // X >= C0 --> X > (C0-1) 1413 return DAG.getSetCC(dl, VT, N0, 1414 DAG.getConstant(C1-1, N1.getValueType()), 1415 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 1416 } 1417 1418 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1419 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1420 // X <= C0 --> X < (C0+1) 1421 return DAG.getSetCC(dl, VT, N0, 1422 DAG.getConstant(C1+1, N1.getValueType()), 1423 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 1424 } 1425 1426 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1427 return DAG.getConstant(0, VT); // X < MIN --> false 1428 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1429 return DAG.getConstant(1, VT); // X >= MIN --> true 1430 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1431 return DAG.getConstant(0, VT); // X > MAX --> false 1432 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1433 return DAG.getConstant(1, VT); // X <= MAX --> true 1434 1435 // Canonicalize setgt X, Min --> setne X, Min 1436 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1437 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1438 // Canonicalize setlt X, Max --> setne X, Max 1439 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1440 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1441 1442 // If we have setult X, 1, turn it into seteq X, 0 1443 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1444 return DAG.getSetCC(dl, VT, N0, 1445 DAG.getConstant(MinVal, N0.getValueType()), 1446 ISD::SETEQ); 1447 // If we have setugt X, Max-1, turn it into seteq X, Max 1448 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1449 return DAG.getSetCC(dl, VT, N0, 1450 DAG.getConstant(MaxVal, N0.getValueType()), 1451 ISD::SETEQ); 1452 1453 // If we have "setcc X, C0", check to see if we can shrink the immediate 1454 // by changing cc. 1455 1456 // SETUGT X, SINTMAX -> SETLT X, 0 1457 if (Cond == ISD::SETUGT && 1458 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1459 return DAG.getSetCC(dl, VT, N0, 1460 DAG.getConstant(0, N1.getValueType()), 1461 ISD::SETLT); 1462 1463 // SETULT X, SINTMIN -> SETGT X, -1 1464 if (Cond == ISD::SETULT && 1465 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1466 SDValue ConstMinusOne = 1467 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1468 N1.getValueType()); 1469 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1470 } 1471 1472 // Fold bit comparisons when we can. 1473 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1474 (VT == N0.getValueType() || 1475 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1476 N0.getOpcode() == ISD::AND) 1477 if (ConstantSDNode *AndRHS = 1478 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1479 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1480 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1481 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1482 // Perform the xform if the AND RHS is a single bit. 1483 if (AndRHS->getAPIntValue().isPowerOf2()) { 1484 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1485 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1486 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1487 } 1488 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1489 // (X & 8) == 8 --> (X & 8) >> 3 1490 // Perform the xform if C1 is a single bit. 1491 if (C1.isPowerOf2()) { 1492 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1493 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1494 DAG.getConstant(C1.logBase2(), ShiftTy))); 1495 } 1496 } 1497 } 1498 1499 if (C1.getMinSignedBits() <= 64 && 1500 !isLegalICmpImmediate(C1.getSExtValue())) { 1501 // (X & -256) == 256 -> (X >> 8) == 1 1502 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1503 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1504 if (ConstantSDNode *AndRHS = 1505 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1506 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1507 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1508 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1509 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1510 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1511 EVT CmpTy = N0.getValueType(); 1512 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1513 DAG.getConstant(ShiftBits, ShiftTy)); 1514 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1515 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1516 } 1517 } 1518 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1519 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1520 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1521 // X < 0x100000000 -> (X >> 32) < 1 1522 // X >= 0x100000000 -> (X >> 32) >= 1 1523 // X <= 0x0ffffffff -> (X >> 32) < 1 1524 // X > 0x0ffffffff -> (X >> 32) >= 1 1525 unsigned ShiftBits; 1526 APInt NewC = C1; 1527 ISD::CondCode NewCond = Cond; 1528 if (AdjOne) { 1529 ShiftBits = C1.countTrailingOnes(); 1530 NewC = NewC + 1; 1531 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1532 } else { 1533 ShiftBits = C1.countTrailingZeros(); 1534 } 1535 NewC = NewC.lshr(ShiftBits); 1536 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1537 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1538 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1539 EVT CmpTy = N0.getValueType(); 1540 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1541 DAG.getConstant(ShiftBits, ShiftTy)); 1542 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1543 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1544 } 1545 } 1546 } 1547 } 1548 1549 if (isa<ConstantFPSDNode>(N0.getNode())) { 1550 // Constant fold or commute setcc. 1551 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1552 if (O.getNode()) return O; 1553 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1554 // If the RHS of an FP comparison is a constant, simplify it away in 1555 // some cases. 1556 if (CFP->getValueAPF().isNaN()) { 1557 // If an operand is known to be a nan, we can fold it. 1558 switch (ISD::getUnorderedFlavor(Cond)) { 1559 default: llvm_unreachable("Unknown flavor!"); 1560 case 0: // Known false. 1561 return DAG.getConstant(0, VT); 1562 case 1: // Known true. 1563 return DAG.getConstant(1, VT); 1564 case 2: // Undefined. 1565 return DAG.getUNDEF(VT); 1566 } 1567 } 1568 1569 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1570 // constant if knowing that the operand is non-nan is enough. We prefer to 1571 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1572 // materialize 0.0. 1573 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1574 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1575 1576 // If the condition is not legal, see if we can find an equivalent one 1577 // which is legal. 1578 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1579 // If the comparison was an awkward floating-point == or != and one of 1580 // the comparison operands is infinity or negative infinity, convert the 1581 // condition to a less-awkward <= or >=. 1582 if (CFP->getValueAPF().isInfinity()) { 1583 if (CFP->getValueAPF().isNegative()) { 1584 if (Cond == ISD::SETOEQ && 1585 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1586 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1587 if (Cond == ISD::SETUEQ && 1588 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1589 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1590 if (Cond == ISD::SETUNE && 1591 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1592 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1593 if (Cond == ISD::SETONE && 1594 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1595 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1596 } else { 1597 if (Cond == ISD::SETOEQ && 1598 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1599 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1600 if (Cond == ISD::SETUEQ && 1601 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1602 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1603 if (Cond == ISD::SETUNE && 1604 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1605 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1606 if (Cond == ISD::SETONE && 1607 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1608 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1609 } 1610 } 1611 } 1612 } 1613 1614 if (N0 == N1) { 1615 // The sext(setcc()) => setcc() optimization relies on the appropriate 1616 // constant being emitted. 1617 uint64_t EqVal = 0; 1618 switch (getBooleanContents(N0.getValueType().isVector())) { 1619 case UndefinedBooleanContent: 1620 case ZeroOrOneBooleanContent: 1621 EqVal = ISD::isTrueWhenEqual(Cond); 1622 break; 1623 case ZeroOrNegativeOneBooleanContent: 1624 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1625 break; 1626 } 1627 1628 // We can always fold X == X for integer setcc's. 1629 if (N0.getValueType().isInteger()) { 1630 return DAG.getConstant(EqVal, VT); 1631 } 1632 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1633 if (UOF == 2) // FP operators that are undefined on NaNs. 1634 return DAG.getConstant(EqVal, VT); 1635 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1636 return DAG.getConstant(EqVal, VT); 1637 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1638 // if it is not already. 1639 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1640 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1641 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1642 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1643 } 1644 1645 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1646 N0.getValueType().isInteger()) { 1647 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1648 N0.getOpcode() == ISD::XOR) { 1649 // Simplify (X+Y) == (X+Z) --> Y == Z 1650 if (N0.getOpcode() == N1.getOpcode()) { 1651 if (N0.getOperand(0) == N1.getOperand(0)) 1652 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1653 if (N0.getOperand(1) == N1.getOperand(1)) 1654 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1655 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1656 // If X op Y == Y op X, try other combinations. 1657 if (N0.getOperand(0) == N1.getOperand(1)) 1658 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1659 Cond); 1660 if (N0.getOperand(1) == N1.getOperand(0)) 1661 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1662 Cond); 1663 } 1664 } 1665 1666 // If RHS is a legal immediate value for a compare instruction, we need 1667 // to be careful about increasing register pressure needlessly. 1668 bool LegalRHSImm = false; 1669 1670 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1671 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1672 // Turn (X+C1) == C2 --> X == C2-C1 1673 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1674 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1675 DAG.getConstant(RHSC->getAPIntValue()- 1676 LHSR->getAPIntValue(), 1677 N0.getValueType()), Cond); 1678 } 1679 1680 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1681 if (N0.getOpcode() == ISD::XOR) 1682 // If we know that all of the inverted bits are zero, don't bother 1683 // performing the inversion. 1684 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1685 return 1686 DAG.getSetCC(dl, VT, N0.getOperand(0), 1687 DAG.getConstant(LHSR->getAPIntValue() ^ 1688 RHSC->getAPIntValue(), 1689 N0.getValueType()), 1690 Cond); 1691 } 1692 1693 // Turn (C1-X) == C2 --> X == C1-C2 1694 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1695 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1696 return 1697 DAG.getSetCC(dl, VT, N0.getOperand(1), 1698 DAG.getConstant(SUBC->getAPIntValue() - 1699 RHSC->getAPIntValue(), 1700 N0.getValueType()), 1701 Cond); 1702 } 1703 } 1704 1705 // Could RHSC fold directly into a compare? 1706 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1707 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1708 } 1709 1710 // Simplify (X+Z) == X --> Z == 0 1711 // Don't do this if X is an immediate that can fold into a cmp 1712 // instruction and X+Z has other uses. It could be an induction variable 1713 // chain, and the transform would increase register pressure. 1714 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1715 if (N0.getOperand(0) == N1) 1716 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1717 DAG.getConstant(0, N0.getValueType()), Cond); 1718 if (N0.getOperand(1) == N1) { 1719 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1720 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1721 DAG.getConstant(0, N0.getValueType()), Cond); 1722 if (N0.getNode()->hasOneUse()) { 1723 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1724 // (Z-X) == X --> Z == X<<1 1725 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1726 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1727 if (!DCI.isCalledByLegalizer()) 1728 DCI.AddToWorklist(SH.getNode()); 1729 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1730 } 1731 } 1732 } 1733 } 1734 1735 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1736 N1.getOpcode() == ISD::XOR) { 1737 // Simplify X == (X+Z) --> Z == 0 1738 if (N1.getOperand(0) == N0) 1739 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1740 DAG.getConstant(0, N1.getValueType()), Cond); 1741 if (N1.getOperand(1) == N0) { 1742 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1743 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1744 DAG.getConstant(0, N1.getValueType()), Cond); 1745 if (N1.getNode()->hasOneUse()) { 1746 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1747 // X == (Z-X) --> X<<1 == Z 1748 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1749 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1750 if (!DCI.isCalledByLegalizer()) 1751 DCI.AddToWorklist(SH.getNode()); 1752 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1753 } 1754 } 1755 } 1756 1757 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1758 // Note that where y is variable and is known to have at most 1759 // one bit set (for example, if it is z&1) we cannot do this; 1760 // the expressions are not equivalent when y==0. 1761 if (N0.getOpcode() == ISD::AND) 1762 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1763 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1764 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1765 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1766 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1767 } 1768 } 1769 if (N1.getOpcode() == ISD::AND) 1770 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1771 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1772 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1773 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1774 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1775 } 1776 } 1777 } 1778 1779 // Fold away ALL boolean setcc's. 1780 SDValue Temp; 1781 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1782 switch (Cond) { 1783 default: llvm_unreachable("Unknown integer setcc!"); 1784 case ISD::SETEQ: // X == Y -> ~(X^Y) 1785 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1786 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1787 if (!DCI.isCalledByLegalizer()) 1788 DCI.AddToWorklist(Temp.getNode()); 1789 break; 1790 case ISD::SETNE: // X != Y --> (X^Y) 1791 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1792 break; 1793 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1794 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1795 Temp = DAG.getNOT(dl, N0, MVT::i1); 1796 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1797 if (!DCI.isCalledByLegalizer()) 1798 DCI.AddToWorklist(Temp.getNode()); 1799 break; 1800 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1801 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1802 Temp = DAG.getNOT(dl, N1, MVT::i1); 1803 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1804 if (!DCI.isCalledByLegalizer()) 1805 DCI.AddToWorklist(Temp.getNode()); 1806 break; 1807 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1808 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1809 Temp = DAG.getNOT(dl, N0, MVT::i1); 1810 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1811 if (!DCI.isCalledByLegalizer()) 1812 DCI.AddToWorklist(Temp.getNode()); 1813 break; 1814 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1815 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1816 Temp = DAG.getNOT(dl, N1, MVT::i1); 1817 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1818 break; 1819 } 1820 if (VT != MVT::i1) { 1821 if (!DCI.isCalledByLegalizer()) 1822 DCI.AddToWorklist(N0.getNode()); 1823 // FIXME: If running after legalize, we probably can't do this. 1824 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1825 } 1826 return N0; 1827 } 1828 1829 // Could not fold it. 1830 return SDValue(); 1831 } 1832 1833 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 1834 /// node is a GlobalAddress + offset. 1835 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 1836 int64_t &Offset) const { 1837 if (isa<GlobalAddressSDNode>(N)) { 1838 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 1839 GA = GASD->getGlobal(); 1840 Offset += GASD->getOffset(); 1841 return true; 1842 } 1843 1844 if (N->getOpcode() == ISD::ADD) { 1845 SDValue N1 = N->getOperand(0); 1846 SDValue N2 = N->getOperand(1); 1847 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 1848 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 1849 if (V) { 1850 Offset += V->getSExtValue(); 1851 return true; 1852 } 1853 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 1854 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 1855 if (V) { 1856 Offset += V->getSExtValue(); 1857 return true; 1858 } 1859 } 1860 } 1861 1862 return false; 1863 } 1864 1865 1866 SDValue TargetLowering:: 1867 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 1868 // Default implementation: no optimization. 1869 return SDValue(); 1870 } 1871 1872 //===----------------------------------------------------------------------===// 1873 // Inline Assembler Implementation Methods 1874 //===----------------------------------------------------------------------===// 1875 1876 1877 TargetLowering::ConstraintType 1878 TargetLowering::getConstraintType(const std::string &Constraint) const { 1879 unsigned S = Constraint.size(); 1880 1881 if (S == 1) { 1882 switch (Constraint[0]) { 1883 default: break; 1884 case 'r': return C_RegisterClass; 1885 case 'm': // memory 1886 case 'o': // offsetable 1887 case 'V': // not offsetable 1888 return C_Memory; 1889 case 'i': // Simple Integer or Relocatable Constant 1890 case 'n': // Simple Integer 1891 case 'E': // Floating Point Constant 1892 case 'F': // Floating Point Constant 1893 case 's': // Relocatable Constant 1894 case 'p': // Address. 1895 case 'X': // Allow ANY value. 1896 case 'I': // Target registers. 1897 case 'J': 1898 case 'K': 1899 case 'L': 1900 case 'M': 1901 case 'N': 1902 case 'O': 1903 case 'P': 1904 case '<': 1905 case '>': 1906 return C_Other; 1907 } 1908 } 1909 1910 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 1911 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 1912 return C_Memory; 1913 return C_Register; 1914 } 1915 return C_Unknown; 1916 } 1917 1918 /// LowerXConstraint - try to replace an X constraint, which matches anything, 1919 /// with another that has more specific requirements based on the type of the 1920 /// corresponding operand. 1921 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 1922 if (ConstraintVT.isInteger()) 1923 return "r"; 1924 if (ConstraintVT.isFloatingPoint()) 1925 return "f"; // works for many targets 1926 return 0; 1927 } 1928 1929 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 1930 /// vector. If it is invalid, don't add anything to Ops. 1931 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 1932 std::string &Constraint, 1933 std::vector<SDValue> &Ops, 1934 SelectionDAG &DAG) const { 1935 1936 if (Constraint.length() > 1) return; 1937 1938 char ConstraintLetter = Constraint[0]; 1939 switch (ConstraintLetter) { 1940 default: break; 1941 case 'X': // Allows any operand; labels (basic block) use this. 1942 if (Op.getOpcode() == ISD::BasicBlock) { 1943 Ops.push_back(Op); 1944 return; 1945 } 1946 // fall through 1947 case 'i': // Simple Integer or Relocatable Constant 1948 case 'n': // Simple Integer 1949 case 's': { // Relocatable Constant 1950 // These operands are interested in values of the form (GV+C), where C may 1951 // be folded in as an offset of GV, or it may be explicitly added. Also, it 1952 // is possible and fine if either GV or C are missing. 1953 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 1954 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1955 1956 // If we have "(add GV, C)", pull out GV/C 1957 if (Op.getOpcode() == ISD::ADD) { 1958 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1959 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 1960 if (C == 0 || GA == 0) { 1961 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 1962 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 1963 } 1964 if (C == 0 || GA == 0) 1965 C = 0, GA = 0; 1966 } 1967 1968 // If we find a valid operand, map to the TargetXXX version so that the 1969 // value itself doesn't get selected. 1970 if (GA) { // Either &GV or &GV+C 1971 if (ConstraintLetter != 'n') { 1972 int64_t Offs = GA->getOffset(); 1973 if (C) Offs += C->getZExtValue(); 1974 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 1975 C ? SDLoc(C) : SDLoc(), 1976 Op.getValueType(), Offs)); 1977 return; 1978 } 1979 } 1980 if (C) { // just C, no GV. 1981 // Simple constants are not allowed for 's'. 1982 if (ConstraintLetter != 's') { 1983 // gcc prints these as sign extended. Sign extend value to 64 bits 1984 // now; without this it would get ZExt'd later in 1985 // ScheduleDAGSDNodes::EmitNode, which is very generic. 1986 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 1987 MVT::i64)); 1988 return; 1989 } 1990 } 1991 break; 1992 } 1993 } 1994 } 1995 1996 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 1997 getRegForInlineAsmConstraint(const std::string &Constraint, 1998 MVT VT) const { 1999 if (Constraint[0] != '{') 2000 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 2001 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2002 2003 // Remove the braces from around the name. 2004 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2005 2006 std::pair<unsigned, const TargetRegisterClass*> R = 2007 std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2008 2009 // Figure out which register class contains this reg. 2010 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2011 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2012 E = RI->regclass_end(); RCI != E; ++RCI) { 2013 const TargetRegisterClass *RC = *RCI; 2014 2015 // If none of the value types for this register class are valid, we 2016 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2017 if (!isLegalRC(RC)) 2018 continue; 2019 2020 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2021 I != E; ++I) { 2022 if (RegName.equals_lower(RI->getName(*I))) { 2023 std::pair<unsigned, const TargetRegisterClass*> S = 2024 std::make_pair(*I, RC); 2025 2026 // If this register class has the requested value type, return it, 2027 // otherwise keep searching and return the first class found 2028 // if no other is found which explicitly has the requested type. 2029 if (RC->hasType(VT)) 2030 return S; 2031 else if (!R.second) 2032 R = S; 2033 } 2034 } 2035 } 2036 2037 return R; 2038 } 2039 2040 //===----------------------------------------------------------------------===// 2041 // Constraint Selection. 2042 2043 /// isMatchingInputConstraint - Return true of this is an input operand that is 2044 /// a matching constraint like "4". 2045 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2046 assert(!ConstraintCode.empty() && "No known constraint!"); 2047 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2048 } 2049 2050 /// getMatchedOperand - If this is an input matching constraint, this method 2051 /// returns the output operand it matches. 2052 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2053 assert(!ConstraintCode.empty() && "No known constraint!"); 2054 return atoi(ConstraintCode.c_str()); 2055 } 2056 2057 2058 /// ParseConstraints - Split up the constraint string from the inline 2059 /// assembly value into the specific constraints and their prefixes, 2060 /// and also tie in the associated operand values. 2061 /// If this returns an empty vector, and if the constraint string itself 2062 /// isn't empty, there was an error parsing. 2063 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2064 ImmutableCallSite CS) const { 2065 /// ConstraintOperands - Information about all of the constraints. 2066 AsmOperandInfoVector ConstraintOperands; 2067 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2068 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2069 2070 // Do a prepass over the constraints, canonicalizing them, and building up the 2071 // ConstraintOperands list. 2072 InlineAsm::ConstraintInfoVector 2073 ConstraintInfos = IA->ParseConstraints(); 2074 2075 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2076 unsigned ResNo = 0; // ResNo - The result number of the next output. 2077 2078 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2079 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2080 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2081 2082 // Update multiple alternative constraint count. 2083 if (OpInfo.multipleAlternatives.size() > maCount) 2084 maCount = OpInfo.multipleAlternatives.size(); 2085 2086 OpInfo.ConstraintVT = MVT::Other; 2087 2088 // Compute the value type for each operand. 2089 switch (OpInfo.Type) { 2090 case InlineAsm::isOutput: 2091 // Indirect outputs just consume an argument. 2092 if (OpInfo.isIndirect) { 2093 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2094 break; 2095 } 2096 2097 // The return value of the call is this value. As such, there is no 2098 // corresponding argument. 2099 assert(!CS.getType()->isVoidTy() && 2100 "Bad inline asm!"); 2101 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2102 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2103 } else { 2104 assert(ResNo == 0 && "Asm only has one result!"); 2105 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2106 } 2107 ++ResNo; 2108 break; 2109 case InlineAsm::isInput: 2110 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2111 break; 2112 case InlineAsm::isClobber: 2113 // Nothing to do. 2114 break; 2115 } 2116 2117 if (OpInfo.CallOperandVal) { 2118 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2119 if (OpInfo.isIndirect) { 2120 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2121 if (!PtrTy) 2122 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2123 OpTy = PtrTy->getElementType(); 2124 } 2125 2126 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2127 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2128 if (STy->getNumElements() == 1) 2129 OpTy = STy->getElementType(0); 2130 2131 // If OpTy is not a single value, it may be a struct/union that we 2132 // can tile with integers. 2133 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2134 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2135 switch (BitSize) { 2136 default: break; 2137 case 1: 2138 case 8: 2139 case 16: 2140 case 32: 2141 case 64: 2142 case 128: 2143 OpInfo.ConstraintVT = 2144 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2145 break; 2146 } 2147 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2148 OpInfo.ConstraintVT = MVT::getIntegerVT( 2149 8*getDataLayout()->getPointerSize(PT->getAddressSpace())); 2150 } else { 2151 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2152 } 2153 } 2154 } 2155 2156 // If we have multiple alternative constraints, select the best alternative. 2157 if (ConstraintInfos.size()) { 2158 if (maCount) { 2159 unsigned bestMAIndex = 0; 2160 int bestWeight = -1; 2161 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2162 int weight = -1; 2163 unsigned maIndex; 2164 // Compute the sums of the weights for each alternative, keeping track 2165 // of the best (highest weight) one so far. 2166 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2167 int weightSum = 0; 2168 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2169 cIndex != eIndex; ++cIndex) { 2170 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2171 if (OpInfo.Type == InlineAsm::isClobber) 2172 continue; 2173 2174 // If this is an output operand with a matching input operand, 2175 // look up the matching input. If their types mismatch, e.g. one 2176 // is an integer, the other is floating point, or their sizes are 2177 // different, flag it as an maCantMatch. 2178 if (OpInfo.hasMatchingInput()) { 2179 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2180 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2181 if ((OpInfo.ConstraintVT.isInteger() != 2182 Input.ConstraintVT.isInteger()) || 2183 (OpInfo.ConstraintVT.getSizeInBits() != 2184 Input.ConstraintVT.getSizeInBits())) { 2185 weightSum = -1; // Can't match. 2186 break; 2187 } 2188 } 2189 } 2190 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2191 if (weight == -1) { 2192 weightSum = -1; 2193 break; 2194 } 2195 weightSum += weight; 2196 } 2197 // Update best. 2198 if (weightSum > bestWeight) { 2199 bestWeight = weightSum; 2200 bestMAIndex = maIndex; 2201 } 2202 } 2203 2204 // Now select chosen alternative in each constraint. 2205 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2206 cIndex != eIndex; ++cIndex) { 2207 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2208 if (cInfo.Type == InlineAsm::isClobber) 2209 continue; 2210 cInfo.selectAlternative(bestMAIndex); 2211 } 2212 } 2213 } 2214 2215 // Check and hook up tied operands, choose constraint code to use. 2216 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2217 cIndex != eIndex; ++cIndex) { 2218 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2219 2220 // If this is an output operand with a matching input operand, look up the 2221 // matching input. If their types mismatch, e.g. one is an integer, the 2222 // other is floating point, or their sizes are different, flag it as an 2223 // error. 2224 if (OpInfo.hasMatchingInput()) { 2225 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2226 2227 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2228 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2229 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2230 OpInfo.ConstraintVT); 2231 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2232 getRegForInlineAsmConstraint(Input.ConstraintCode, 2233 Input.ConstraintVT); 2234 if ((OpInfo.ConstraintVT.isInteger() != 2235 Input.ConstraintVT.isInteger()) || 2236 (MatchRC.second != InputRC.second)) { 2237 report_fatal_error("Unsupported asm: input constraint" 2238 " with a matching output constraint of" 2239 " incompatible type!"); 2240 } 2241 } 2242 2243 } 2244 } 2245 2246 return ConstraintOperands; 2247 } 2248 2249 2250 /// getConstraintGenerality - Return an integer indicating how general CT 2251 /// is. 2252 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2253 switch (CT) { 2254 case TargetLowering::C_Other: 2255 case TargetLowering::C_Unknown: 2256 return 0; 2257 case TargetLowering::C_Register: 2258 return 1; 2259 case TargetLowering::C_RegisterClass: 2260 return 2; 2261 case TargetLowering::C_Memory: 2262 return 3; 2263 } 2264 llvm_unreachable("Invalid constraint type"); 2265 } 2266 2267 /// Examine constraint type and operand type and determine a weight value. 2268 /// This object must already have been set up with the operand type 2269 /// and the current alternative constraint selected. 2270 TargetLowering::ConstraintWeight 2271 TargetLowering::getMultipleConstraintMatchWeight( 2272 AsmOperandInfo &info, int maIndex) const { 2273 InlineAsm::ConstraintCodeVector *rCodes; 2274 if (maIndex >= (int)info.multipleAlternatives.size()) 2275 rCodes = &info.Codes; 2276 else 2277 rCodes = &info.multipleAlternatives[maIndex].Codes; 2278 ConstraintWeight BestWeight = CW_Invalid; 2279 2280 // Loop over the options, keeping track of the most general one. 2281 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2282 ConstraintWeight weight = 2283 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2284 if (weight > BestWeight) 2285 BestWeight = weight; 2286 } 2287 2288 return BestWeight; 2289 } 2290 2291 /// Examine constraint type and operand type and determine a weight value. 2292 /// This object must already have been set up with the operand type 2293 /// and the current alternative constraint selected. 2294 TargetLowering::ConstraintWeight 2295 TargetLowering::getSingleConstraintMatchWeight( 2296 AsmOperandInfo &info, const char *constraint) const { 2297 ConstraintWeight weight = CW_Invalid; 2298 Value *CallOperandVal = info.CallOperandVal; 2299 // If we don't have a value, we can't do a match, 2300 // but allow it at the lowest weight. 2301 if (CallOperandVal == NULL) 2302 return CW_Default; 2303 // Look at the constraint type. 2304 switch (*constraint) { 2305 case 'i': // immediate integer. 2306 case 'n': // immediate integer with a known value. 2307 if (isa<ConstantInt>(CallOperandVal)) 2308 weight = CW_Constant; 2309 break; 2310 case 's': // non-explicit intregal immediate. 2311 if (isa<GlobalValue>(CallOperandVal)) 2312 weight = CW_Constant; 2313 break; 2314 case 'E': // immediate float if host format. 2315 case 'F': // immediate float. 2316 if (isa<ConstantFP>(CallOperandVal)) 2317 weight = CW_Constant; 2318 break; 2319 case '<': // memory operand with autodecrement. 2320 case '>': // memory operand with autoincrement. 2321 case 'm': // memory operand. 2322 case 'o': // offsettable memory operand 2323 case 'V': // non-offsettable memory operand 2324 weight = CW_Memory; 2325 break; 2326 case 'r': // general register. 2327 case 'g': // general register, memory operand or immediate integer. 2328 // note: Clang converts "g" to "imr". 2329 if (CallOperandVal->getType()->isIntegerTy()) 2330 weight = CW_Register; 2331 break; 2332 case 'X': // any operand. 2333 default: 2334 weight = CW_Default; 2335 break; 2336 } 2337 return weight; 2338 } 2339 2340 /// ChooseConstraint - If there are multiple different constraints that we 2341 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2342 /// This is somewhat tricky: constraints fall into four classes: 2343 /// Other -> immediates and magic values 2344 /// Register -> one specific register 2345 /// RegisterClass -> a group of regs 2346 /// Memory -> memory 2347 /// Ideally, we would pick the most specific constraint possible: if we have 2348 /// something that fits into a register, we would pick it. The problem here 2349 /// is that if we have something that could either be in a register or in 2350 /// memory that use of the register could cause selection of *other* 2351 /// operands to fail: they might only succeed if we pick memory. Because of 2352 /// this the heuristic we use is: 2353 /// 2354 /// 1) If there is an 'other' constraint, and if the operand is valid for 2355 /// that constraint, use it. This makes us take advantage of 'i' 2356 /// constraints when available. 2357 /// 2) Otherwise, pick the most general constraint present. This prefers 2358 /// 'm' over 'r', for example. 2359 /// 2360 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2361 const TargetLowering &TLI, 2362 SDValue Op, SelectionDAG *DAG) { 2363 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2364 unsigned BestIdx = 0; 2365 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2366 int BestGenerality = -1; 2367 2368 // Loop over the options, keeping track of the most general one. 2369 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2370 TargetLowering::ConstraintType CType = 2371 TLI.getConstraintType(OpInfo.Codes[i]); 2372 2373 // If this is an 'other' constraint, see if the operand is valid for it. 2374 // For example, on X86 we might have an 'rI' constraint. If the operand 2375 // is an integer in the range [0..31] we want to use I (saving a load 2376 // of a register), otherwise we must use 'r'. 2377 if (CType == TargetLowering::C_Other && Op.getNode()) { 2378 assert(OpInfo.Codes[i].size() == 1 && 2379 "Unhandled multi-letter 'other' constraint"); 2380 std::vector<SDValue> ResultOps; 2381 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2382 ResultOps, *DAG); 2383 if (!ResultOps.empty()) { 2384 BestType = CType; 2385 BestIdx = i; 2386 break; 2387 } 2388 } 2389 2390 // Things with matching constraints can only be registers, per gcc 2391 // documentation. This mainly affects "g" constraints. 2392 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2393 continue; 2394 2395 // This constraint letter is more general than the previous one, use it. 2396 int Generality = getConstraintGenerality(CType); 2397 if (Generality > BestGenerality) { 2398 BestType = CType; 2399 BestIdx = i; 2400 BestGenerality = Generality; 2401 } 2402 } 2403 2404 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2405 OpInfo.ConstraintType = BestType; 2406 } 2407 2408 /// ComputeConstraintToUse - Determines the constraint code and constraint 2409 /// type to use for the specific AsmOperandInfo, setting 2410 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2411 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2412 SDValue Op, 2413 SelectionDAG *DAG) const { 2414 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2415 2416 // Single-letter constraints ('r') are very common. 2417 if (OpInfo.Codes.size() == 1) { 2418 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2419 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2420 } else { 2421 ChooseConstraint(OpInfo, *this, Op, DAG); 2422 } 2423 2424 // 'X' matches anything. 2425 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2426 // Labels and constants are handled elsewhere ('X' is the only thing 2427 // that matches labels). For Functions, the type here is the type of 2428 // the result, which is not what we want to look at; leave them alone. 2429 Value *v = OpInfo.CallOperandVal; 2430 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2431 OpInfo.CallOperandVal = v; 2432 return; 2433 } 2434 2435 // Otherwise, try to resolve it to something we know about by looking at 2436 // the actual operand type. 2437 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2438 OpInfo.ConstraintCode = Repl; 2439 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2440 } 2441 } 2442 } 2443 2444 /// \brief Given an exact SDIV by a constant, create a multiplication 2445 /// with the multiplicative inverse of the constant. 2446 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2447 SelectionDAG &DAG) const { 2448 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2449 APInt d = C->getAPIntValue(); 2450 assert(d != 0 && "Division by zero!"); 2451 2452 // Shift the value upfront if it is even, so the LSB is one. 2453 unsigned ShAmt = d.countTrailingZeros(); 2454 if (ShAmt) { 2455 // TODO: For UDIV use SRL instead of SRA. 2456 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2457 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 2458 d = d.ashr(ShAmt); 2459 } 2460 2461 // Calculate the multiplicative inverse, using Newton's method. 2462 APInt t, xn = d; 2463 while ((t = d*xn) != 1) 2464 xn *= APInt(d.getBitWidth(), 2) - t; 2465 2466 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2467 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2468 } 2469 2470 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2471 /// return a DAG expression to select that will generate the same value by 2472 /// multiplying by a magic number. See: 2473 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2474 SDValue TargetLowering:: 2475 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2476 std::vector<SDNode*> *Created) const { 2477 EVT VT = N->getValueType(0); 2478 SDLoc dl(N); 2479 2480 // Check to see if we can do this. 2481 // FIXME: We should be more aggressive here. 2482 if (!isTypeLegal(VT)) 2483 return SDValue(); 2484 2485 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2486 APInt::ms magics = d.magic(); 2487 2488 // Multiply the numerator (operand 0) by the magic value 2489 // FIXME: We should support doing a MUL in a wider type 2490 SDValue Q; 2491 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2492 isOperationLegalOrCustom(ISD::MULHS, VT)) 2493 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2494 DAG.getConstant(magics.m, VT)); 2495 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2496 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2497 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2498 N->getOperand(0), 2499 DAG.getConstant(magics.m, VT)).getNode(), 1); 2500 else 2501 return SDValue(); // No mulhs or equvialent 2502 // If d > 0 and m < 0, add the numerator 2503 if (d.isStrictlyPositive() && magics.m.isNegative()) { 2504 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2505 if (Created) 2506 Created->push_back(Q.getNode()); 2507 } 2508 // If d < 0 and m > 0, subtract the numerator. 2509 if (d.isNegative() && magics.m.isStrictlyPositive()) { 2510 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2511 if (Created) 2512 Created->push_back(Q.getNode()); 2513 } 2514 // Shift right algebraic if shift value is nonzero 2515 if (magics.s > 0) { 2516 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2517 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2518 if (Created) 2519 Created->push_back(Q.getNode()); 2520 } 2521 // Extract the sign bit and add it to the quotient 2522 SDValue T = 2523 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 2524 getShiftAmountTy(Q.getValueType()))); 2525 if (Created) 2526 Created->push_back(T.getNode()); 2527 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2528 } 2529 2530 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2531 /// return a DAG expression to select that will generate the same value by 2532 /// multiplying by a magic number. See: 2533 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2534 SDValue TargetLowering:: 2535 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2536 std::vector<SDNode*> *Created) const { 2537 EVT VT = N->getValueType(0); 2538 SDLoc dl(N); 2539 2540 // Check to see if we can do this. 2541 // FIXME: We should be more aggressive here. 2542 if (!isTypeLegal(VT)) 2543 return SDValue(); 2544 2545 // FIXME: We should use a narrower constant when the upper 2546 // bits are known to be zero. 2547 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2548 APInt::mu magics = N1C.magicu(); 2549 2550 SDValue Q = N->getOperand(0); 2551 2552 // If the divisor is even, we can avoid using the expensive fixup by shifting 2553 // the divided value upfront. 2554 if (magics.a != 0 && !N1C[0]) { 2555 unsigned Shift = N1C.countTrailingZeros(); 2556 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2557 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2558 if (Created) 2559 Created->push_back(Q.getNode()); 2560 2561 // Get magic number for the shifted divisor. 2562 magics = N1C.lshr(Shift).magicu(Shift); 2563 assert(magics.a == 0 && "Should use cheap fixup now"); 2564 } 2565 2566 // Multiply the numerator (operand 0) by the magic value 2567 // FIXME: We should support doing a MUL in a wider type 2568 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2569 isOperationLegalOrCustom(ISD::MULHU, VT)) 2570 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2571 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2572 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2573 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2574 DAG.getConstant(magics.m, VT)).getNode(), 1); 2575 else 2576 return SDValue(); // No mulhu or equvialent 2577 if (Created) 2578 Created->push_back(Q.getNode()); 2579 2580 if (magics.a == 0) { 2581 assert(magics.s < N1C.getBitWidth() && 2582 "We shouldn't generate an undefined shift!"); 2583 return DAG.getNode(ISD::SRL, dl, VT, Q, 2584 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2585 } else { 2586 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2587 if (Created) 2588 Created->push_back(NPQ.getNode()); 2589 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2590 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2591 if (Created) 2592 Created->push_back(NPQ.getNode()); 2593 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2594 if (Created) 2595 Created->push_back(NPQ.getNode()); 2596 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2597 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2598 } 2599 } 2600