1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
916     Known.Zero = ~Known.One;
917     return false;
918   }
919 
920   if (Op.getOpcode() == ISD::ConstantFP) {
921     // We know all of the bits for a floating point constant!
922     Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt();
923     Known.Zero = ~Known.One;
924     return false;
925   }
926 
927   // Other users may use these bits.
928   EVT VT = Op.getValueType();
929   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
930     if (Depth != 0) {
931       // If not at the root, Just compute the Known bits to
932       // simplify things downstream.
933       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
934       return false;
935     }
936     // If this is the root being simplified, allow it to have multiple uses,
937     // just set the DemandedBits/Elts to all bits.
938     DemandedBits = APInt::getAllOnesValue(BitWidth);
939     DemandedElts = APInt::getAllOnesValue(NumElts);
940   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
941     // Not demanding any bits/elts from Op.
942     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
943   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
944     // Limit search depth.
945     return false;
946   }
947 
948   KnownBits Known2;
949   switch (Op.getOpcode()) {
950   case ISD::TargetConstant:
951     llvm_unreachable("Can't simplify this node");
952   case ISD::SCALAR_TO_VECTOR: {
953     if (!DemandedElts[0])
954       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
955 
956     KnownBits SrcKnown;
957     SDValue Src = Op.getOperand(0);
958     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
959     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
960     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
961       return true;
962 
963     // Upper elements are undef, so only get the knownbits if we just demand
964     // the bottom element.
965     if (DemandedElts == 1)
966       Known = SrcKnown.anyextOrTrunc(BitWidth);
967     break;
968   }
969   case ISD::BUILD_VECTOR:
970     // Collect the known bits that are shared by every demanded element.
971     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
972     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
973     return false; // Don't fall through, will infinitely loop.
974   case ISD::LOAD: {
975     LoadSDNode *LD = cast<LoadSDNode>(Op);
976     if (getTargetConstantFromLoad(LD)) {
977       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
978       return false; // Don't fall through, will infinitely loop.
979     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
980       // If this is a ZEXTLoad and we are looking at the loaded value.
981       EVT MemVT = LD->getMemoryVT();
982       unsigned MemBits = MemVT.getScalarSizeInBits();
983       Known.Zero.setBitsFrom(MemBits);
984       return false; // Don't fall through, will infinitely loop.
985     }
986     break;
987   }
988   case ISD::INSERT_VECTOR_ELT: {
989     SDValue Vec = Op.getOperand(0);
990     SDValue Scl = Op.getOperand(1);
991     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
992     EVT VecVT = Vec.getValueType();
993 
994     // If index isn't constant, assume we need all vector elements AND the
995     // inserted element.
996     APInt DemandedVecElts(DemandedElts);
997     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
998       unsigned Idx = CIdx->getZExtValue();
999       DemandedVecElts.clearBit(Idx);
1000 
1001       // Inserted element is not required.
1002       if (!DemandedElts[Idx])
1003         return TLO.CombineTo(Op, Vec);
1004     }
1005 
1006     KnownBits KnownScl;
1007     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1008     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1009     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1010       return true;
1011 
1012     Known = KnownScl.anyextOrTrunc(BitWidth);
1013 
1014     KnownBits KnownVec;
1015     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1016                              Depth + 1))
1017       return true;
1018 
1019     if (!!DemandedVecElts) {
1020       Known.One &= KnownVec.One;
1021       Known.Zero &= KnownVec.Zero;
1022     }
1023 
1024     return false;
1025   }
1026   case ISD::INSERT_SUBVECTOR: {
1027     // Demand any elements from the subvector and the remainder from the src its
1028     // inserted into.
1029     SDValue Src = Op.getOperand(0);
1030     SDValue Sub = Op.getOperand(1);
1031     uint64_t Idx = Op.getConstantOperandVal(2);
1032     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1033     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1034     APInt DemandedSrcElts = DemandedElts;
1035     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1036 
1037     KnownBits KnownSub, KnownSrc;
1038     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1039                              Depth + 1))
1040       return true;
1041     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1042                              Depth + 1))
1043       return true;
1044 
1045     Known.Zero.setAllBits();
1046     Known.One.setAllBits();
1047     if (!!DemandedSubElts) {
1048       Known.One &= KnownSub.One;
1049       Known.Zero &= KnownSub.Zero;
1050     }
1051     if (!!DemandedSrcElts) {
1052       Known.One &= KnownSrc.One;
1053       Known.Zero &= KnownSrc.Zero;
1054     }
1055 
1056     // Attempt to avoid multi-use src if we don't need anything from it.
1057     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1058         !DemandedSrcElts.isAllOnesValue()) {
1059       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1060           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1061       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1062           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1063       if (NewSub || NewSrc) {
1064         NewSub = NewSub ? NewSub : Sub;
1065         NewSrc = NewSrc ? NewSrc : Src;
1066         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1067                                         Op.getOperand(2));
1068         return TLO.CombineTo(Op, NewOp);
1069       }
1070     }
1071     break;
1072   }
1073   case ISD::EXTRACT_SUBVECTOR: {
1074     // Offset the demanded elts by the subvector index.
1075     SDValue Src = Op.getOperand(0);
1076     if (Src.getValueType().isScalableVector())
1077       break;
1078     uint64_t Idx = Op.getConstantOperandVal(1);
1079     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1080     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1081 
1082     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1083                              Depth + 1))
1084       return true;
1085 
1086     // Attempt to avoid multi-use src if we don't need anything from it.
1087     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1088       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1089           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1090       if (DemandedSrc) {
1091         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1092                                         Op.getOperand(1));
1093         return TLO.CombineTo(Op, NewOp);
1094       }
1095     }
1096     break;
1097   }
1098   case ISD::CONCAT_VECTORS: {
1099     Known.Zero.setAllBits();
1100     Known.One.setAllBits();
1101     EVT SubVT = Op.getOperand(0).getValueType();
1102     unsigned NumSubVecs = Op.getNumOperands();
1103     unsigned NumSubElts = SubVT.getVectorNumElements();
1104     for (unsigned i = 0; i != NumSubVecs; ++i) {
1105       APInt DemandedSubElts =
1106           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1107       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1108                                Known2, TLO, Depth + 1))
1109         return true;
1110       // Known bits are shared by every demanded subvector element.
1111       if (!!DemandedSubElts) {
1112         Known.One &= Known2.One;
1113         Known.Zero &= Known2.Zero;
1114       }
1115     }
1116     break;
1117   }
1118   case ISD::VECTOR_SHUFFLE: {
1119     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1120 
1121     // Collect demanded elements from shuffle operands..
1122     APInt DemandedLHS(NumElts, 0);
1123     APInt DemandedRHS(NumElts, 0);
1124     for (unsigned i = 0; i != NumElts; ++i) {
1125       if (!DemandedElts[i])
1126         continue;
1127       int M = ShuffleMask[i];
1128       if (M < 0) {
1129         // For UNDEF elements, we don't know anything about the common state of
1130         // the shuffle result.
1131         DemandedLHS.clearAllBits();
1132         DemandedRHS.clearAllBits();
1133         break;
1134       }
1135       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1136       if (M < (int)NumElts)
1137         DemandedLHS.setBit(M);
1138       else
1139         DemandedRHS.setBit(M - NumElts);
1140     }
1141 
1142     if (!!DemandedLHS || !!DemandedRHS) {
1143       SDValue Op0 = Op.getOperand(0);
1144       SDValue Op1 = Op.getOperand(1);
1145 
1146       Known.Zero.setAllBits();
1147       Known.One.setAllBits();
1148       if (!!DemandedLHS) {
1149         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1150                                  Depth + 1))
1151           return true;
1152         Known.One &= Known2.One;
1153         Known.Zero &= Known2.Zero;
1154       }
1155       if (!!DemandedRHS) {
1156         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1157                                  Depth + 1))
1158           return true;
1159         Known.One &= Known2.One;
1160         Known.Zero &= Known2.Zero;
1161       }
1162 
1163       // Attempt to avoid multi-use ops if we don't need anything from them.
1164       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1165           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1166       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1167           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1168       if (DemandedOp0 || DemandedOp1) {
1169         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1170         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1171         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1172         return TLO.CombineTo(Op, NewOp);
1173       }
1174     }
1175     break;
1176   }
1177   case ISD::AND: {
1178     SDValue Op0 = Op.getOperand(0);
1179     SDValue Op1 = Op.getOperand(1);
1180 
1181     // If the RHS is a constant, check to see if the LHS would be zero without
1182     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1183     // simplify the LHS, here we're using information from the LHS to simplify
1184     // the RHS.
1185     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1186       // Do not increment Depth here; that can cause an infinite loop.
1187       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1188       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1189       if ((LHSKnown.Zero & DemandedBits) ==
1190           (~RHSC->getAPIntValue() & DemandedBits))
1191         return TLO.CombineTo(Op, Op0);
1192 
1193       // If any of the set bits in the RHS are known zero on the LHS, shrink
1194       // the constant.
1195       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1196                                  DemandedElts, TLO))
1197         return true;
1198 
1199       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1200       // constant, but if this 'and' is only clearing bits that were just set by
1201       // the xor, then this 'and' can be eliminated by shrinking the mask of
1202       // the xor. For example, for a 32-bit X:
1203       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1204       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1205           LHSKnown.One == ~RHSC->getAPIntValue()) {
1206         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1207         return TLO.CombineTo(Op, Xor);
1208       }
1209     }
1210 
1211     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1212                              Depth + 1))
1213       return true;
1214     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1215     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1216                              Known2, TLO, Depth + 1))
1217       return true;
1218     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1219 
1220     // Attempt to avoid multi-use ops if we don't need anything from them.
1221     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1222       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1223           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1224       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1225           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1226       if (DemandedOp0 || DemandedOp1) {
1227         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1228         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1229         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1230         return TLO.CombineTo(Op, NewOp);
1231       }
1232     }
1233 
1234     // If all of the demanded bits are known one on one side, return the other.
1235     // These bits cannot contribute to the result of the 'and'.
1236     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1237       return TLO.CombineTo(Op, Op0);
1238     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1239       return TLO.CombineTo(Op, Op1);
1240     // If all of the demanded bits in the inputs are known zeros, return zero.
1241     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1242       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1243     // If the RHS is a constant, see if we can simplify it.
1244     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1245                                TLO))
1246       return true;
1247     // If the operation can be done in a smaller type, do so.
1248     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1249       return true;
1250 
1251     Known &= Known2;
1252     break;
1253   }
1254   case ISD::OR: {
1255     SDValue Op0 = Op.getOperand(0);
1256     SDValue Op1 = Op.getOperand(1);
1257 
1258     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1259                              Depth + 1))
1260       return true;
1261     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1262     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1263                              Known2, TLO, Depth + 1))
1264       return true;
1265     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1266 
1267     // Attempt to avoid multi-use ops if we don't need anything from them.
1268     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1269       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1270           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1271       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1272           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1273       if (DemandedOp0 || DemandedOp1) {
1274         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1275         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1276         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1277         return TLO.CombineTo(Op, NewOp);
1278       }
1279     }
1280 
1281     // If all of the demanded bits are known zero on one side, return the other.
1282     // These bits cannot contribute to the result of the 'or'.
1283     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1284       return TLO.CombineTo(Op, Op0);
1285     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1286       return TLO.CombineTo(Op, Op1);
1287     // If the RHS is a constant, see if we can simplify it.
1288     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1289       return true;
1290     // If the operation can be done in a smaller type, do so.
1291     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1292       return true;
1293 
1294     Known |= Known2;
1295     break;
1296   }
1297   case ISD::XOR: {
1298     SDValue Op0 = Op.getOperand(0);
1299     SDValue Op1 = Op.getOperand(1);
1300 
1301     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1305     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1306                              Depth + 1))
1307       return true;
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // Attempt to avoid multi-use ops if we don't need anything from them.
1311     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1312       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1313           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1314       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1315           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1316       if (DemandedOp0 || DemandedOp1) {
1317         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1318         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1319         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1320         return TLO.CombineTo(Op, NewOp);
1321       }
1322     }
1323 
1324     // If all of the demanded bits are known zero on one side, return the other.
1325     // These bits cannot contribute to the result of the 'xor'.
1326     if (DemandedBits.isSubsetOf(Known.Zero))
1327       return TLO.CombineTo(Op, Op0);
1328     if (DemandedBits.isSubsetOf(Known2.Zero))
1329       return TLO.CombineTo(Op, Op1);
1330     // If the operation can be done in a smaller type, do so.
1331     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1332       return true;
1333 
1334     // If all of the unknown bits are known to be zero on one side or the other
1335     // turn this into an *inclusive* or.
1336     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1337     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1338       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1339 
1340     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1341     if (C) {
1342       // If one side is a constant, and all of the set bits in the constant are
1343       // also known set on the other side, turn this into an AND, as we know
1344       // the bits will be cleared.
1345       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1346       // NB: it is okay if more bits are known than are requested
1347       if (C->getAPIntValue() == Known2.One) {
1348         SDValue ANDC =
1349             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1350         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1351       }
1352 
1353       // If the RHS is a constant, see if we can change it. Don't alter a -1
1354       // constant because that's a 'not' op, and that is better for combining
1355       // and codegen.
1356       if (!C->isAllOnesValue() &&
1357           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1358         // We're flipping all demanded bits. Flip the undemanded bits too.
1359         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1360         return TLO.CombineTo(Op, New);
1361       }
1362     }
1363 
1364     // If we can't turn this into a 'not', try to shrink the constant.
1365     if (!C || !C->isAllOnesValue())
1366       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1367         return true;
1368 
1369     Known ^= Known2;
1370     break;
1371   }
1372   case ISD::SELECT:
1373     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1374                              Depth + 1))
1375       return true;
1376     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1377                              Depth + 1))
1378       return true;
1379     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1380     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1381 
1382     // If the operands are constants, see if we can simplify them.
1383     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1384       return true;
1385 
1386     // Only known if known in both the LHS and RHS.
1387     Known.One &= Known2.One;
1388     Known.Zero &= Known2.Zero;
1389     break;
1390   case ISD::SELECT_CC:
1391     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1392                              Depth + 1))
1393       return true;
1394     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1395                              Depth + 1))
1396       return true;
1397     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1398     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1399 
1400     // If the operands are constants, see if we can simplify them.
1401     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1402       return true;
1403 
1404     // Only known if known in both the LHS and RHS.
1405     Known.One &= Known2.One;
1406     Known.Zero &= Known2.Zero;
1407     break;
1408   case ISD::SETCC: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1412     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1413     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1414     // -1, we may be able to bypass the setcc.
1415     if (DemandedBits.isSignMask() &&
1416         Op0.getScalarValueSizeInBits() == BitWidth &&
1417         getBooleanContents(Op0.getValueType()) ==
1418             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1419       // If we're testing X < 0, then this compare isn't needed - just use X!
1420       // FIXME: We're limiting to integer types here, but this should also work
1421       // if we don't care about FP signed-zero. The use of SETLT with FP means
1422       // that we don't care about NaNs.
1423       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1424           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1425         return TLO.CombineTo(Op, Op0);
1426 
1427       // TODO: Should we check for other forms of sign-bit comparisons?
1428       // Examples: X <= -1, X >= 0
1429     }
1430     if (getBooleanContents(Op0.getValueType()) ==
1431             TargetLowering::ZeroOrOneBooleanContent &&
1432         BitWidth > 1)
1433       Known.Zero.setBitsFrom(1);
1434     break;
1435   }
1436   case ISD::SHL: {
1437     SDValue Op0 = Op.getOperand(0);
1438     SDValue Op1 = Op.getOperand(1);
1439     EVT ShiftVT = Op1.getValueType();
1440 
1441     if (const APInt *SA =
1442             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1443       unsigned ShAmt = SA->getZExtValue();
1444       if (ShAmt == 0)
1445         return TLO.CombineTo(Op, Op0);
1446 
1447       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1448       // single shift.  We can do this if the bottom bits (which are shifted
1449       // out) are never demanded.
1450       // TODO - support non-uniform vector amounts.
1451       if (Op0.getOpcode() == ISD::SRL) {
1452         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1453           if (const APInt *SA2 =
1454                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1455             unsigned C1 = SA2->getZExtValue();
1456             unsigned Opc = ISD::SHL;
1457             int Diff = ShAmt - C1;
1458             if (Diff < 0) {
1459               Diff = -Diff;
1460               Opc = ISD::SRL;
1461             }
1462             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1463             return TLO.CombineTo(
1464                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1465           }
1466         }
1467       }
1468 
1469       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1470       // are not demanded. This will likely allow the anyext to be folded away.
1471       // TODO - support non-uniform vector amounts.
1472       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1473         SDValue InnerOp = Op0.getOperand(0);
1474         EVT InnerVT = InnerOp.getValueType();
1475         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1476         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1477             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1478           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1479           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1480             ShTy = InnerVT;
1481           SDValue NarrowShl =
1482               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1483                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1484           return TLO.CombineTo(
1485               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1486         }
1487 
1488         // Repeat the SHL optimization above in cases where an extension
1489         // intervenes: (shl (anyext (shr x, c1)), c2) to
1490         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1491         // aren't demanded (as above) and that the shifted upper c1 bits of
1492         // x aren't demanded.
1493         // TODO - support non-uniform vector amounts.
1494         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1495             InnerOp.hasOneUse()) {
1496           if (const APInt *SA2 =
1497                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1498             unsigned InnerShAmt = SA2->getZExtValue();
1499             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1500                 DemandedBits.getActiveBits() <=
1501                     (InnerBits - InnerShAmt + ShAmt) &&
1502                 DemandedBits.countTrailingZeros() >= ShAmt) {
1503               SDValue NewSA =
1504                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1505               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1506                                                InnerOp.getOperand(0));
1507               return TLO.CombineTo(
1508                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1509             }
1510           }
1511         }
1512       }
1513 
1514       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1515       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1516                                Depth + 1))
1517         return true;
1518       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1519       Known.Zero <<= ShAmt;
1520       Known.One <<= ShAmt;
1521       // low bits known zero.
1522       Known.Zero.setLowBits(ShAmt);
1523 
1524       // Try shrinking the operation as long as the shift amount will still be
1525       // in range.
1526       if ((ShAmt < DemandedBits.getActiveBits()) &&
1527           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1528         return true;
1529     }
1530 
1531     // If we are only demanding sign bits then we can use the shift source
1532     // directly.
1533     if (const APInt *MaxSA =
1534             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1535       unsigned ShAmt = MaxSA->getZExtValue();
1536       unsigned NumSignBits =
1537           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1538       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1539       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1540         return TLO.CombineTo(Op, Op0);
1541     }
1542     break;
1543   }
1544   case ISD::SRL: {
1545     SDValue Op0 = Op.getOperand(0);
1546     SDValue Op1 = Op.getOperand(1);
1547     EVT ShiftVT = Op1.getValueType();
1548 
1549     if (const APInt *SA =
1550             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1551       unsigned ShAmt = SA->getZExtValue();
1552       if (ShAmt == 0)
1553         return TLO.CombineTo(Op, Op0);
1554 
1555       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1556       // single shift.  We can do this if the top bits (which are shifted out)
1557       // are never demanded.
1558       // TODO - support non-uniform vector amounts.
1559       if (Op0.getOpcode() == ISD::SHL) {
1560         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1561           if (const APInt *SA2 =
1562                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1563             unsigned C1 = SA2->getZExtValue();
1564             unsigned Opc = ISD::SRL;
1565             int Diff = ShAmt - C1;
1566             if (Diff < 0) {
1567               Diff = -Diff;
1568               Opc = ISD::SHL;
1569             }
1570             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1571             return TLO.CombineTo(
1572                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1573           }
1574         }
1575       }
1576 
1577       APInt InDemandedMask = (DemandedBits << ShAmt);
1578 
1579       // If the shift is exact, then it does demand the low bits (and knows that
1580       // they are zero).
1581       if (Op->getFlags().hasExact())
1582         InDemandedMask.setLowBits(ShAmt);
1583 
1584       // Compute the new bits that are at the top now.
1585       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1586                                Depth + 1))
1587         return true;
1588       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1589       Known.Zero.lshrInPlace(ShAmt);
1590       Known.One.lshrInPlace(ShAmt);
1591       // High bits known zero.
1592       Known.Zero.setHighBits(ShAmt);
1593     }
1594     break;
1595   }
1596   case ISD::SRA: {
1597     SDValue Op0 = Op.getOperand(0);
1598     SDValue Op1 = Op.getOperand(1);
1599     EVT ShiftVT = Op1.getValueType();
1600 
1601     // If we only want bits that already match the signbit then we don't need
1602     // to shift.
1603     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1604     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1605         NumHiDemandedBits)
1606       return TLO.CombineTo(Op, Op0);
1607 
1608     // If this is an arithmetic shift right and only the low-bit is set, we can
1609     // always convert this into a logical shr, even if the shift amount is
1610     // variable.  The low bit of the shift cannot be an input sign bit unless
1611     // the shift amount is >= the size of the datatype, which is undefined.
1612     if (DemandedBits.isOneValue())
1613       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1614 
1615     if (const APInt *SA =
1616             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1617       unsigned ShAmt = SA->getZExtValue();
1618       if (ShAmt == 0)
1619         return TLO.CombineTo(Op, Op0);
1620 
1621       APInt InDemandedMask = (DemandedBits << ShAmt);
1622 
1623       // If the shift is exact, then it does demand the low bits (and knows that
1624       // they are zero).
1625       if (Op->getFlags().hasExact())
1626         InDemandedMask.setLowBits(ShAmt);
1627 
1628       // If any of the demanded bits are produced by the sign extension, we also
1629       // demand the input sign bit.
1630       if (DemandedBits.countLeadingZeros() < ShAmt)
1631         InDemandedMask.setSignBit();
1632 
1633       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1634                                Depth + 1))
1635         return true;
1636       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1637       Known.Zero.lshrInPlace(ShAmt);
1638       Known.One.lshrInPlace(ShAmt);
1639 
1640       // If the input sign bit is known to be zero, or if none of the top bits
1641       // are demanded, turn this into an unsigned shift right.
1642       if (Known.Zero[BitWidth - ShAmt - 1] ||
1643           DemandedBits.countLeadingZeros() >= ShAmt) {
1644         SDNodeFlags Flags;
1645         Flags.setExact(Op->getFlags().hasExact());
1646         return TLO.CombineTo(
1647             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1648       }
1649 
1650       int Log2 = DemandedBits.exactLogBase2();
1651       if (Log2 >= 0) {
1652         // The bit must come from the sign.
1653         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1654         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1655       }
1656 
1657       if (Known.One[BitWidth - ShAmt - 1])
1658         // New bits are known one.
1659         Known.One.setHighBits(ShAmt);
1660 
1661       // Attempt to avoid multi-use ops if we don't need anything from them.
1662       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1663         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1664             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1665         if (DemandedOp0) {
1666           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1667           return TLO.CombineTo(Op, NewOp);
1668         }
1669       }
1670     }
1671     break;
1672   }
1673   case ISD::FSHL:
1674   case ISD::FSHR: {
1675     SDValue Op0 = Op.getOperand(0);
1676     SDValue Op1 = Op.getOperand(1);
1677     SDValue Op2 = Op.getOperand(2);
1678     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1679 
1680     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1681       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1682 
1683       // For fshl, 0-shift returns the 1st arg.
1684       // For fshr, 0-shift returns the 2nd arg.
1685       if (Amt == 0) {
1686         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1687                                  Known, TLO, Depth + 1))
1688           return true;
1689         break;
1690       }
1691 
1692       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1693       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1694       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1695       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1696       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1697                                Depth + 1))
1698         return true;
1699       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1700                                Depth + 1))
1701         return true;
1702 
1703       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1704       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1705       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1706       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1707       Known.One |= Known2.One;
1708       Known.Zero |= Known2.Zero;
1709     }
1710 
1711     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1712     if (isPowerOf2_32(BitWidth)) {
1713       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1714       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1715                                Known2, TLO, Depth + 1))
1716         return true;
1717     }
1718     break;
1719   }
1720   case ISD::ROTL:
1721   case ISD::ROTR: {
1722     SDValue Op0 = Op.getOperand(0);
1723     SDValue Op1 = Op.getOperand(1);
1724 
1725     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1726     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1727       return TLO.CombineTo(Op, Op0);
1728 
1729     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1730     if (isPowerOf2_32(BitWidth)) {
1731       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1732       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1733                                Depth + 1))
1734         return true;
1735     }
1736     break;
1737   }
1738   case ISD::BITREVERSE: {
1739     SDValue Src = Op.getOperand(0);
1740     APInt DemandedSrcBits = DemandedBits.reverseBits();
1741     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1742                              Depth + 1))
1743       return true;
1744     Known.One = Known2.One.reverseBits();
1745     Known.Zero = Known2.Zero.reverseBits();
1746     break;
1747   }
1748   case ISD::BSWAP: {
1749     SDValue Src = Op.getOperand(0);
1750     APInt DemandedSrcBits = DemandedBits.byteSwap();
1751     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1752                              Depth + 1))
1753       return true;
1754     Known.One = Known2.One.byteSwap();
1755     Known.Zero = Known2.Zero.byteSwap();
1756     break;
1757   }
1758   case ISD::CTPOP: {
1759     // If only 1 bit is demanded, replace with PARITY as long as we're before
1760     // op legalization.
1761     // FIXME: Limit to scalars for now.
1762     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1763       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1764                                                Op.getOperand(0)));
1765 
1766     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1767     break;
1768   }
1769   case ISD::SIGN_EXTEND_INREG: {
1770     SDValue Op0 = Op.getOperand(0);
1771     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1772     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1773 
1774     // If we only care about the highest bit, don't bother shifting right.
1775     if (DemandedBits.isSignMask()) {
1776       unsigned NumSignBits =
1777           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1778       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1779       // However if the input is already sign extended we expect the sign
1780       // extension to be dropped altogether later and do not simplify.
1781       if (!AlreadySignExtended) {
1782         // Compute the correct shift amount type, which must be getShiftAmountTy
1783         // for scalar types after legalization.
1784         EVT ShiftAmtTy = VT;
1785         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1786           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1787 
1788         SDValue ShiftAmt =
1789             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1790         return TLO.CombineTo(Op,
1791                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1792       }
1793     }
1794 
1795     // If none of the extended bits are demanded, eliminate the sextinreg.
1796     if (DemandedBits.getActiveBits() <= ExVTBits)
1797       return TLO.CombineTo(Op, Op0);
1798 
1799     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1800 
1801     // Since the sign extended bits are demanded, we know that the sign
1802     // bit is demanded.
1803     InputDemandedBits.setBit(ExVTBits - 1);
1804 
1805     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1806       return true;
1807     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808 
1809     // If the sign bit of the input is known set or clear, then we know the
1810     // top bits of the result.
1811 
1812     // If the input sign bit is known zero, convert this into a zero extension.
1813     if (Known.Zero[ExVTBits - 1])
1814       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1815 
1816     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1817     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1818       Known.One.setBitsFrom(ExVTBits);
1819       Known.Zero &= Mask;
1820     } else { // Input sign bit unknown
1821       Known.Zero &= Mask;
1822       Known.One &= Mask;
1823     }
1824     break;
1825   }
1826   case ISD::BUILD_PAIR: {
1827     EVT HalfVT = Op.getOperand(0).getValueType();
1828     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1829 
1830     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1831     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1832 
1833     KnownBits KnownLo, KnownHi;
1834 
1835     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1836       return true;
1837 
1838     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1839       return true;
1840 
1841     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1842                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1843 
1844     Known.One = KnownLo.One.zext(BitWidth) |
1845                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1846     break;
1847   }
1848   case ISD::ZERO_EXTEND:
1849   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1850     SDValue Src = Op.getOperand(0);
1851     EVT SrcVT = Src.getValueType();
1852     unsigned InBits = SrcVT.getScalarSizeInBits();
1853     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1854     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1855 
1856     // If none of the top bits are demanded, convert this into an any_extend.
1857     if (DemandedBits.getActiveBits() <= InBits) {
1858       // If we only need the non-extended bits of the bottom element
1859       // then we can just bitcast to the result.
1860       if (IsVecInReg && DemandedElts == 1 &&
1861           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1862           TLO.DAG.getDataLayout().isLittleEndian())
1863         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1864 
1865       unsigned Opc =
1866           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1867       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1868         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1869     }
1870 
1871     APInt InDemandedBits = DemandedBits.trunc(InBits);
1872     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1873     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1874                              Depth + 1))
1875       return true;
1876     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1877     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1878     Known = Known.zext(BitWidth);
1879 
1880     // Attempt to avoid multi-use ops if we don't need anything from them.
1881     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1882             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1883       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1884     break;
1885   }
1886   case ISD::SIGN_EXTEND:
1887   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1888     SDValue Src = Op.getOperand(0);
1889     EVT SrcVT = Src.getValueType();
1890     unsigned InBits = SrcVT.getScalarSizeInBits();
1891     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1892     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1893 
1894     // If none of the top bits are demanded, convert this into an any_extend.
1895     if (DemandedBits.getActiveBits() <= InBits) {
1896       // If we only need the non-extended bits of the bottom element
1897       // then we can just bitcast to the result.
1898       if (IsVecInReg && DemandedElts == 1 &&
1899           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1900           TLO.DAG.getDataLayout().isLittleEndian())
1901         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1902 
1903       unsigned Opc =
1904           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1905       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1906         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1907     }
1908 
1909     APInt InDemandedBits = DemandedBits.trunc(InBits);
1910     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1911 
1912     // Since some of the sign extended bits are demanded, we know that the sign
1913     // bit is demanded.
1914     InDemandedBits.setBit(InBits - 1);
1915 
1916     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1917                              Depth + 1))
1918       return true;
1919     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1920     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1921 
1922     // If the sign bit is known one, the top bits match.
1923     Known = Known.sext(BitWidth);
1924 
1925     // If the sign bit is known zero, convert this to a zero extend.
1926     if (Known.isNonNegative()) {
1927       unsigned Opc =
1928           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1929       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1930         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1931     }
1932 
1933     // Attempt to avoid multi-use ops if we don't need anything from them.
1934     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1935             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1936       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1937     break;
1938   }
1939   case ISD::ANY_EXTEND:
1940   case ISD::ANY_EXTEND_VECTOR_INREG: {
1941     SDValue Src = Op.getOperand(0);
1942     EVT SrcVT = Src.getValueType();
1943     unsigned InBits = SrcVT.getScalarSizeInBits();
1944     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1945     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1946 
1947     // If we only need the bottom element then we can just bitcast.
1948     // TODO: Handle ANY_EXTEND?
1949     if (IsVecInReg && DemandedElts == 1 &&
1950         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1951         TLO.DAG.getDataLayout().isLittleEndian())
1952       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1953 
1954     APInt InDemandedBits = DemandedBits.trunc(InBits);
1955     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1956     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1957                              Depth + 1))
1958       return true;
1959     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1960     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1961     Known = Known.anyext(BitWidth);
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::TRUNCATE: {
1970     SDValue Src = Op.getOperand(0);
1971 
1972     // Simplify the input, using demanded bit information, and compute the known
1973     // zero/one bits live out.
1974     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1975     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1976     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1977       return true;
1978     Known = Known.trunc(BitWidth);
1979 
1980     // Attempt to avoid multi-use ops if we don't need anything from them.
1981     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1982             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1983       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1984 
1985     // If the input is only used by this truncate, see if we can shrink it based
1986     // on the known demanded bits.
1987     if (Src.getNode()->hasOneUse()) {
1988       switch (Src.getOpcode()) {
1989       default:
1990         break;
1991       case ISD::SRL:
1992         // Shrink SRL by a constant if none of the high bits shifted in are
1993         // demanded.
1994         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1995           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1996           // undesirable.
1997           break;
1998 
1999         SDValue ShAmt = Src.getOperand(1);
2000         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
2001         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
2002           break;
2003         uint64_t ShVal = ShAmtC->getZExtValue();
2004 
2005         APInt HighBits =
2006             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2007         HighBits.lshrInPlace(ShVal);
2008         HighBits = HighBits.trunc(BitWidth);
2009 
2010         if (!(HighBits & DemandedBits)) {
2011           // None of the shifted in bits are needed.  Add a truncate of the
2012           // shift input, then shift it.
2013           if (TLO.LegalTypes())
2014             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
2015           SDValue NewTrunc =
2016               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2017           return TLO.CombineTo(
2018               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
2019         }
2020         break;
2021       }
2022     }
2023 
2024     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2025     break;
2026   }
2027   case ISD::AssertZext: {
2028     // AssertZext demands all of the high bits, plus any of the low bits
2029     // demanded by its users.
2030     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2031     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2032     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2033                              TLO, Depth + 1))
2034       return true;
2035     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2036 
2037     Known.Zero |= ~InMask;
2038     break;
2039   }
2040   case ISD::EXTRACT_VECTOR_ELT: {
2041     SDValue Src = Op.getOperand(0);
2042     SDValue Idx = Op.getOperand(1);
2043     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2044     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2045 
2046     if (SrcEltCnt.isScalable())
2047       return false;
2048 
2049     // Demand the bits from every vector element without a constant index.
2050     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2051     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2052     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2053       if (CIdx->getAPIntValue().ult(NumSrcElts))
2054         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2055 
2056     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2057     // anything about the extended bits.
2058     APInt DemandedSrcBits = DemandedBits;
2059     if (BitWidth > EltBitWidth)
2060       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2061 
2062     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2063                              Depth + 1))
2064       return true;
2065 
2066     // Attempt to avoid multi-use ops if we don't need anything from them.
2067     if (!DemandedSrcBits.isAllOnesValue() ||
2068         !DemandedSrcElts.isAllOnesValue()) {
2069       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2070               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2071         SDValue NewOp =
2072             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2073         return TLO.CombineTo(Op, NewOp);
2074       }
2075     }
2076 
2077     Known = Known2;
2078     if (BitWidth > EltBitWidth)
2079       Known = Known.anyext(BitWidth);
2080     break;
2081   }
2082   case ISD::BITCAST: {
2083     SDValue Src = Op.getOperand(0);
2084     EVT SrcVT = Src.getValueType();
2085     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2086 
2087     // If this is an FP->Int bitcast and if the sign bit is the only
2088     // thing demanded, turn this into a FGETSIGN.
2089     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2090         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2091         SrcVT.isFloatingPoint()) {
2092       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2093       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2094       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2095           SrcVT != MVT::f128) {
2096         // Cannot eliminate/lower SHL for f128 yet.
2097         EVT Ty = OpVTLegal ? VT : MVT::i32;
2098         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2099         // place.  We expect the SHL to be eliminated by other optimizations.
2100         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2101         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2102         if (!OpVTLegal && OpVTSizeInBits > 32)
2103           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2104         unsigned ShVal = Op.getValueSizeInBits() - 1;
2105         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2106         return TLO.CombineTo(Op,
2107                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2108       }
2109     }
2110 
2111     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2112     // Demand the elt/bit if any of the original elts/bits are demanded.
2113     // TODO - bigendian once we have test coverage.
2114     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2115         TLO.DAG.getDataLayout().isLittleEndian()) {
2116       unsigned Scale = BitWidth / NumSrcEltBits;
2117       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2118       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2119       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2120       for (unsigned i = 0; i != Scale; ++i) {
2121         unsigned Offset = i * NumSrcEltBits;
2122         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2123         if (!Sub.isNullValue()) {
2124           DemandedSrcBits |= Sub;
2125           for (unsigned j = 0; j != NumElts; ++j)
2126             if (DemandedElts[j])
2127               DemandedSrcElts.setBit((j * Scale) + i);
2128         }
2129       }
2130 
2131       APInt KnownSrcUndef, KnownSrcZero;
2132       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2133                                      KnownSrcZero, TLO, Depth + 1))
2134         return true;
2135 
2136       KnownBits KnownSrcBits;
2137       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2138                                KnownSrcBits, TLO, Depth + 1))
2139         return true;
2140     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2141                TLO.DAG.getDataLayout().isLittleEndian()) {
2142       unsigned Scale = NumSrcEltBits / BitWidth;
2143       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2144       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2145       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2146       for (unsigned i = 0; i != NumElts; ++i)
2147         if (DemandedElts[i]) {
2148           unsigned Offset = (i % Scale) * BitWidth;
2149           DemandedSrcBits.insertBits(DemandedBits, Offset);
2150           DemandedSrcElts.setBit(i / Scale);
2151         }
2152 
2153       if (SrcVT.isVector()) {
2154         APInt KnownSrcUndef, KnownSrcZero;
2155         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2156                                        KnownSrcZero, TLO, Depth + 1))
2157           return true;
2158       }
2159 
2160       KnownBits KnownSrcBits;
2161       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2162                                KnownSrcBits, TLO, Depth + 1))
2163         return true;
2164     }
2165 
2166     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2167     // recursive call where Known may be useful to the caller.
2168     if (Depth > 0) {
2169       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2170       return false;
2171     }
2172     break;
2173   }
2174   case ISD::ADD:
2175   case ISD::MUL:
2176   case ISD::SUB: {
2177     // Add, Sub, and Mul don't demand any bits in positions beyond that
2178     // of the highest bit demanded of them.
2179     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2180     SDNodeFlags Flags = Op.getNode()->getFlags();
2181     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2182     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2183     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2184                              Depth + 1) ||
2185         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2186                              Depth + 1) ||
2187         // See if the operation should be performed at a smaller bit width.
2188         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2189       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2190         // Disable the nsw and nuw flags. We can no longer guarantee that we
2191         // won't wrap after simplification.
2192         Flags.setNoSignedWrap(false);
2193         Flags.setNoUnsignedWrap(false);
2194         SDValue NewOp =
2195             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2196         return TLO.CombineTo(Op, NewOp);
2197       }
2198       return true;
2199     }
2200 
2201     // Attempt to avoid multi-use ops if we don't need anything from them.
2202     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2203       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2204           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2205       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2206           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2207       if (DemandedOp0 || DemandedOp1) {
2208         Flags.setNoSignedWrap(false);
2209         Flags.setNoUnsignedWrap(false);
2210         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2211         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2212         SDValue NewOp =
2213             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2214         return TLO.CombineTo(Op, NewOp);
2215       }
2216     }
2217 
2218     // If we have a constant operand, we may be able to turn it into -1 if we
2219     // do not demand the high bits. This can make the constant smaller to
2220     // encode, allow more general folding, or match specialized instruction
2221     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2222     // is probably not useful (and could be detrimental).
2223     ConstantSDNode *C = isConstOrConstSplat(Op1);
2224     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2225     if (C && !C->isAllOnesValue() && !C->isOne() &&
2226         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2227       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2228       // Disable the nsw and nuw flags. We can no longer guarantee that we
2229       // won't wrap after simplification.
2230       Flags.setNoSignedWrap(false);
2231       Flags.setNoUnsignedWrap(false);
2232       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2233       return TLO.CombineTo(Op, NewOp);
2234     }
2235 
2236     LLVM_FALLTHROUGH;
2237   }
2238   default:
2239     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2240       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2241                                             Known, TLO, Depth))
2242         return true;
2243       break;
2244     }
2245 
2246     // Just use computeKnownBits to compute output bits.
2247     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2248     break;
2249   }
2250 
2251   // If we know the value of all of the demanded bits, return this as a
2252   // constant.
2253   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2254     // Avoid folding to a constant if any OpaqueConstant is involved.
2255     const SDNode *N = Op.getNode();
2256     for (SDNodeIterator I = SDNodeIterator::begin(N),
2257                         E = SDNodeIterator::end(N);
2258          I != E; ++I) {
2259       SDNode *Op = *I;
2260       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2261         if (C->isOpaque())
2262           return false;
2263     }
2264     if (VT.isInteger())
2265       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2266     if (VT.isFloatingPoint())
2267       return TLO.CombineTo(
2268           Op,
2269           TLO.DAG.getConstantFP(
2270               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2271   }
2272 
2273   return false;
2274 }
2275 
2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2277                                                 const APInt &DemandedElts,
2278                                                 APInt &KnownUndef,
2279                                                 APInt &KnownZero,
2280                                                 DAGCombinerInfo &DCI) const {
2281   SelectionDAG &DAG = DCI.DAG;
2282   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2283                         !DCI.isBeforeLegalizeOps());
2284 
2285   bool Simplified =
2286       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2287   if (Simplified) {
2288     DCI.AddToWorklist(Op.getNode());
2289     DCI.CommitTargetLoweringOpt(TLO);
2290   }
2291 
2292   return Simplified;
2293 }
2294 
2295 /// Given a vector binary operation and known undefined elements for each input
2296 /// operand, compute whether each element of the output is undefined.
2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2298                                          const APInt &UndefOp0,
2299                                          const APInt &UndefOp1) {
2300   EVT VT = BO.getValueType();
2301   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2302          "Vector binop only");
2303 
2304   EVT EltVT = VT.getVectorElementType();
2305   unsigned NumElts = VT.getVectorNumElements();
2306   assert(UndefOp0.getBitWidth() == NumElts &&
2307          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2308 
2309   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2310                                    const APInt &UndefVals) {
2311     if (UndefVals[Index])
2312       return DAG.getUNDEF(EltVT);
2313 
2314     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2315       // Try hard to make sure that the getNode() call is not creating temporary
2316       // nodes. Ignore opaque integers because they do not constant fold.
2317       SDValue Elt = BV->getOperand(Index);
2318       auto *C = dyn_cast<ConstantSDNode>(Elt);
2319       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2320         return Elt;
2321     }
2322 
2323     return SDValue();
2324   };
2325 
2326   APInt KnownUndef = APInt::getNullValue(NumElts);
2327   for (unsigned i = 0; i != NumElts; ++i) {
2328     // If both inputs for this element are either constant or undef and match
2329     // the element type, compute the constant/undef result for this element of
2330     // the vector.
2331     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2332     // not handle FP constants. The code within getNode() should be refactored
2333     // to avoid the danger of creating a bogus temporary node here.
2334     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2335     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2336     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2337       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2338         KnownUndef.setBit(i);
2339   }
2340   return KnownUndef;
2341 }
2342 
2343 bool TargetLowering::SimplifyDemandedVectorElts(
2344     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2345     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2346     bool AssumeSingleUse) const {
2347   EVT VT = Op.getValueType();
2348   unsigned Opcode = Op.getOpcode();
2349   APInt DemandedElts = OriginalDemandedElts;
2350   unsigned NumElts = DemandedElts.getBitWidth();
2351   assert(VT.isVector() && "Expected vector op");
2352 
2353   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2354 
2355   // TODO: For now we assume we know nothing about scalable vectors.
2356   if (VT.isScalableVector())
2357     return false;
2358 
2359   assert(VT.getVectorNumElements() == NumElts &&
2360          "Mask size mismatches value type element count!");
2361 
2362   // Undef operand.
2363   if (Op.isUndef()) {
2364     KnownUndef.setAllBits();
2365     return false;
2366   }
2367 
2368   // If Op has other users, assume that all elements are needed.
2369   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2370     DemandedElts.setAllBits();
2371 
2372   // Not demanding any elements from Op.
2373   if (DemandedElts == 0) {
2374     KnownUndef.setAllBits();
2375     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2376   }
2377 
2378   // Limit search depth.
2379   if (Depth >= SelectionDAG::MaxRecursionDepth)
2380     return false;
2381 
2382   SDLoc DL(Op);
2383   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2384 
2385   // Helper for demanding the specified elements and all the bits of both binary
2386   // operands.
2387   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2388     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2389                                                            TLO.DAG, Depth + 1);
2390     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2391                                                            TLO.DAG, Depth + 1);
2392     if (NewOp0 || NewOp1) {
2393       SDValue NewOp = TLO.DAG.getNode(
2394           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2395       return TLO.CombineTo(Op, NewOp);
2396     }
2397     return false;
2398   };
2399 
2400   switch (Opcode) {
2401   case ISD::SCALAR_TO_VECTOR: {
2402     if (!DemandedElts[0]) {
2403       KnownUndef.setAllBits();
2404       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2405     }
2406     KnownUndef.setHighBits(NumElts - 1);
2407     break;
2408   }
2409   case ISD::BITCAST: {
2410     SDValue Src = Op.getOperand(0);
2411     EVT SrcVT = Src.getValueType();
2412 
2413     // We only handle vectors here.
2414     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2415     if (!SrcVT.isVector())
2416       break;
2417 
2418     // Fast handling of 'identity' bitcasts.
2419     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2420     if (NumSrcElts == NumElts)
2421       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2422                                         KnownZero, TLO, Depth + 1);
2423 
2424     APInt SrcZero, SrcUndef;
2425     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2426 
2427     // Bitcast from 'large element' src vector to 'small element' vector, we
2428     // must demand a source element if any DemandedElt maps to it.
2429     if ((NumElts % NumSrcElts) == 0) {
2430       unsigned Scale = NumElts / NumSrcElts;
2431       for (unsigned i = 0; i != NumElts; ++i)
2432         if (DemandedElts[i])
2433           SrcDemandedElts.setBit(i / Scale);
2434 
2435       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2436                                      TLO, Depth + 1))
2437         return true;
2438 
2439       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2440       // of the large element.
2441       // TODO - bigendian once we have test coverage.
2442       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2443         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2444         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2445         for (unsigned i = 0; i != NumElts; ++i)
2446           if (DemandedElts[i]) {
2447             unsigned Ofs = (i % Scale) * EltSizeInBits;
2448             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2449           }
2450 
2451         KnownBits Known;
2452         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2453                                  TLO, Depth + 1))
2454           return true;
2455       }
2456 
2457       // If the src element is zero/undef then all the output elements will be -
2458       // only demanded elements are guaranteed to be correct.
2459       for (unsigned i = 0; i != NumSrcElts; ++i) {
2460         if (SrcDemandedElts[i]) {
2461           if (SrcZero[i])
2462             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2463           if (SrcUndef[i])
2464             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2465         }
2466       }
2467     }
2468 
2469     // Bitcast from 'small element' src vector to 'large element' vector, we
2470     // demand all smaller source elements covered by the larger demanded element
2471     // of this vector.
2472     if ((NumSrcElts % NumElts) == 0) {
2473       unsigned Scale = NumSrcElts / NumElts;
2474       for (unsigned i = 0; i != NumElts; ++i)
2475         if (DemandedElts[i])
2476           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2477 
2478       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2479                                      TLO, Depth + 1))
2480         return true;
2481 
2482       // If all the src elements covering an output element are zero/undef, then
2483       // the output element will be as well, assuming it was demanded.
2484       for (unsigned i = 0; i != NumElts; ++i) {
2485         if (DemandedElts[i]) {
2486           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2487             KnownZero.setBit(i);
2488           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2489             KnownUndef.setBit(i);
2490         }
2491       }
2492     }
2493     break;
2494   }
2495   case ISD::BUILD_VECTOR: {
2496     // Check all elements and simplify any unused elements with UNDEF.
2497     if (!DemandedElts.isAllOnesValue()) {
2498       // Don't simplify BROADCASTS.
2499       if (llvm::any_of(Op->op_values(),
2500                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2501         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2502         bool Updated = false;
2503         for (unsigned i = 0; i != NumElts; ++i) {
2504           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2505             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2506             KnownUndef.setBit(i);
2507             Updated = true;
2508           }
2509         }
2510         if (Updated)
2511           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2512       }
2513     }
2514     for (unsigned i = 0; i != NumElts; ++i) {
2515       SDValue SrcOp = Op.getOperand(i);
2516       if (SrcOp.isUndef()) {
2517         KnownUndef.setBit(i);
2518       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2519                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2520         KnownZero.setBit(i);
2521       }
2522     }
2523     break;
2524   }
2525   case ISD::CONCAT_VECTORS: {
2526     EVT SubVT = Op.getOperand(0).getValueType();
2527     unsigned NumSubVecs = Op.getNumOperands();
2528     unsigned NumSubElts = SubVT.getVectorNumElements();
2529     for (unsigned i = 0; i != NumSubVecs; ++i) {
2530       SDValue SubOp = Op.getOperand(i);
2531       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2532       APInt SubUndef, SubZero;
2533       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2534                                      Depth + 1))
2535         return true;
2536       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2537       KnownZero.insertBits(SubZero, i * NumSubElts);
2538     }
2539     break;
2540   }
2541   case ISD::INSERT_SUBVECTOR: {
2542     // Demand any elements from the subvector and the remainder from the src its
2543     // inserted into.
2544     SDValue Src = Op.getOperand(0);
2545     SDValue Sub = Op.getOperand(1);
2546     uint64_t Idx = Op.getConstantOperandVal(2);
2547     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2548     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2549     APInt DemandedSrcElts = DemandedElts;
2550     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2551 
2552     APInt SubUndef, SubZero;
2553     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2554                                    Depth + 1))
2555       return true;
2556 
2557     // If none of the src operand elements are demanded, replace it with undef.
2558     if (!DemandedSrcElts && !Src.isUndef())
2559       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2560                                                TLO.DAG.getUNDEF(VT), Sub,
2561                                                Op.getOperand(2)));
2562 
2563     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2564                                    TLO, Depth + 1))
2565       return true;
2566     KnownUndef.insertBits(SubUndef, Idx);
2567     KnownZero.insertBits(SubZero, Idx);
2568 
2569     // Attempt to avoid multi-use ops if we don't need anything from them.
2570     if (!DemandedSrcElts.isAllOnesValue() ||
2571         !DemandedSubElts.isAllOnesValue()) {
2572       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2573           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2574       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2575           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2576       if (NewSrc || NewSub) {
2577         NewSrc = NewSrc ? NewSrc : Src;
2578         NewSub = NewSub ? NewSub : Sub;
2579         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2580                                         NewSub, Op.getOperand(2));
2581         return TLO.CombineTo(Op, NewOp);
2582       }
2583     }
2584     break;
2585   }
2586   case ISD::EXTRACT_SUBVECTOR: {
2587     // Offset the demanded elts by the subvector index.
2588     SDValue Src = Op.getOperand(0);
2589     if (Src.getValueType().isScalableVector())
2590       break;
2591     uint64_t Idx = Op.getConstantOperandVal(1);
2592     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2593     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2594 
2595     APInt SrcUndef, SrcZero;
2596     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2597                                    Depth + 1))
2598       return true;
2599     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2600     KnownZero = SrcZero.extractBits(NumElts, Idx);
2601 
2602     // Attempt to avoid multi-use ops if we don't need anything from them.
2603     if (!DemandedElts.isAllOnesValue()) {
2604       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2605           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2606       if (NewSrc) {
2607         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2608                                         Op.getOperand(1));
2609         return TLO.CombineTo(Op, NewOp);
2610       }
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_VECTOR_ELT: {
2615     SDValue Vec = Op.getOperand(0);
2616     SDValue Scl = Op.getOperand(1);
2617     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2618 
2619     // For a legal, constant insertion index, if we don't need this insertion
2620     // then strip it, else remove it from the demanded elts.
2621     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2622       unsigned Idx = CIdx->getZExtValue();
2623       if (!DemandedElts[Idx])
2624         return TLO.CombineTo(Op, Vec);
2625 
2626       APInt DemandedVecElts(DemandedElts);
2627       DemandedVecElts.clearBit(Idx);
2628       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2629                                      KnownZero, TLO, Depth + 1))
2630         return true;
2631 
2632       KnownUndef.setBitVal(Idx, Scl.isUndef());
2633 
2634       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2635       break;
2636     }
2637 
2638     APInt VecUndef, VecZero;
2639     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2640                                    Depth + 1))
2641       return true;
2642     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2643     break;
2644   }
2645   case ISD::VSELECT: {
2646     // Try to transform the select condition based on the current demanded
2647     // elements.
2648     // TODO: If a condition element is undef, we can choose from one arm of the
2649     //       select (and if one arm is undef, then we can propagate that to the
2650     //       result).
2651     // TODO - add support for constant vselect masks (see IR version of this).
2652     APInt UnusedUndef, UnusedZero;
2653     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2654                                    UnusedZero, TLO, Depth + 1))
2655       return true;
2656 
2657     // See if we can simplify either vselect operand.
2658     APInt DemandedLHS(DemandedElts);
2659     APInt DemandedRHS(DemandedElts);
2660     APInt UndefLHS, ZeroLHS;
2661     APInt UndefRHS, ZeroRHS;
2662     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2663                                    ZeroLHS, TLO, Depth + 1))
2664       return true;
2665     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2666                                    ZeroRHS, TLO, Depth + 1))
2667       return true;
2668 
2669     KnownUndef = UndefLHS & UndefRHS;
2670     KnownZero = ZeroLHS & ZeroRHS;
2671     break;
2672   }
2673   case ISD::VECTOR_SHUFFLE: {
2674     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2675 
2676     // Collect demanded elements from shuffle operands..
2677     APInt DemandedLHS(NumElts, 0);
2678     APInt DemandedRHS(NumElts, 0);
2679     for (unsigned i = 0; i != NumElts; ++i) {
2680       int M = ShuffleMask[i];
2681       if (M < 0 || !DemandedElts[i])
2682         continue;
2683       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2684       if (M < (int)NumElts)
2685         DemandedLHS.setBit(M);
2686       else
2687         DemandedRHS.setBit(M - NumElts);
2688     }
2689 
2690     // See if we can simplify either shuffle operand.
2691     APInt UndefLHS, ZeroLHS;
2692     APInt UndefRHS, ZeroRHS;
2693     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2694                                    ZeroLHS, TLO, Depth + 1))
2695       return true;
2696     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2697                                    ZeroRHS, TLO, Depth + 1))
2698       return true;
2699 
2700     // Simplify mask using undef elements from LHS/RHS.
2701     bool Updated = false;
2702     bool IdentityLHS = true, IdentityRHS = true;
2703     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2704     for (unsigned i = 0; i != NumElts; ++i) {
2705       int &M = NewMask[i];
2706       if (M < 0)
2707         continue;
2708       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2709           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2710         Updated = true;
2711         M = -1;
2712       }
2713       IdentityLHS &= (M < 0) || (M == (int)i);
2714       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2715     }
2716 
2717     // Update legal shuffle masks based on demanded elements if it won't reduce
2718     // to Identity which can cause premature removal of the shuffle mask.
2719     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2720       SDValue LegalShuffle =
2721           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2722                                   NewMask, TLO.DAG);
2723       if (LegalShuffle)
2724         return TLO.CombineTo(Op, LegalShuffle);
2725     }
2726 
2727     // Propagate undef/zero elements from LHS/RHS.
2728     for (unsigned i = 0; i != NumElts; ++i) {
2729       int M = ShuffleMask[i];
2730       if (M < 0) {
2731         KnownUndef.setBit(i);
2732       } else if (M < (int)NumElts) {
2733         if (UndefLHS[M])
2734           KnownUndef.setBit(i);
2735         if (ZeroLHS[M])
2736           KnownZero.setBit(i);
2737       } else {
2738         if (UndefRHS[M - NumElts])
2739           KnownUndef.setBit(i);
2740         if (ZeroRHS[M - NumElts])
2741           KnownZero.setBit(i);
2742       }
2743     }
2744     break;
2745   }
2746   case ISD::ANY_EXTEND_VECTOR_INREG:
2747   case ISD::SIGN_EXTEND_VECTOR_INREG:
2748   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2749     APInt SrcUndef, SrcZero;
2750     SDValue Src = Op.getOperand(0);
2751     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2752     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2753     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2754                                    Depth + 1))
2755       return true;
2756     KnownZero = SrcZero.zextOrTrunc(NumElts);
2757     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2758 
2759     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2760         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2761         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2762       // aext - if we just need the bottom element then we can bitcast.
2763       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2764     }
2765 
2766     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2767       // zext(undef) upper bits are guaranteed to be zero.
2768       if (DemandedElts.isSubsetOf(KnownUndef))
2769         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2770       KnownUndef.clearAllBits();
2771     }
2772     break;
2773   }
2774 
2775   // TODO: There are more binop opcodes that could be handled here - MIN,
2776   // MAX, saturated math, etc.
2777   case ISD::OR:
2778   case ISD::XOR:
2779   case ISD::ADD:
2780   case ISD::SUB:
2781   case ISD::FADD:
2782   case ISD::FSUB:
2783   case ISD::FMUL:
2784   case ISD::FDIV:
2785   case ISD::FREM: {
2786     SDValue Op0 = Op.getOperand(0);
2787     SDValue Op1 = Op.getOperand(1);
2788 
2789     APInt UndefRHS, ZeroRHS;
2790     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2791                                    Depth + 1))
2792       return true;
2793     APInt UndefLHS, ZeroLHS;
2794     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2795                                    Depth + 1))
2796       return true;
2797 
2798     KnownZero = ZeroLHS & ZeroRHS;
2799     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2800 
2801     // Attempt to avoid multi-use ops if we don't need anything from them.
2802     // TODO - use KnownUndef to relax the demandedelts?
2803     if (!DemandedElts.isAllOnesValue())
2804       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2805         return true;
2806     break;
2807   }
2808   case ISD::SHL:
2809   case ISD::SRL:
2810   case ISD::SRA:
2811   case ISD::ROTL:
2812   case ISD::ROTR: {
2813     SDValue Op0 = Op.getOperand(0);
2814     SDValue Op1 = Op.getOperand(1);
2815 
2816     APInt UndefRHS, ZeroRHS;
2817     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2818                                    Depth + 1))
2819       return true;
2820     APInt UndefLHS, ZeroLHS;
2821     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2822                                    Depth + 1))
2823       return true;
2824 
2825     KnownZero = ZeroLHS;
2826     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2827 
2828     // Attempt to avoid multi-use ops if we don't need anything from them.
2829     // TODO - use KnownUndef to relax the demandedelts?
2830     if (!DemandedElts.isAllOnesValue())
2831       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2832         return true;
2833     break;
2834   }
2835   case ISD::MUL:
2836   case ISD::AND: {
2837     SDValue Op0 = Op.getOperand(0);
2838     SDValue Op1 = Op.getOperand(1);
2839 
2840     APInt SrcUndef, SrcZero;
2841     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2842                                    Depth + 1))
2843       return true;
2844     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2845                                    TLO, Depth + 1))
2846       return true;
2847 
2848     // If either side has a zero element, then the result element is zero, even
2849     // if the other is an UNDEF.
2850     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2851     // and then handle 'and' nodes with the rest of the binop opcodes.
2852     KnownZero |= SrcZero;
2853     KnownUndef &= SrcUndef;
2854     KnownUndef &= ~KnownZero;
2855 
2856     // Attempt to avoid multi-use ops if we don't need anything from them.
2857     // TODO - use KnownUndef to relax the demandedelts?
2858     if (!DemandedElts.isAllOnesValue())
2859       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2860         return true;
2861     break;
2862   }
2863   case ISD::TRUNCATE:
2864   case ISD::SIGN_EXTEND:
2865   case ISD::ZERO_EXTEND:
2866     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2867                                    KnownZero, TLO, Depth + 1))
2868       return true;
2869 
2870     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2871       // zext(undef) upper bits are guaranteed to be zero.
2872       if (DemandedElts.isSubsetOf(KnownUndef))
2873         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2874       KnownUndef.clearAllBits();
2875     }
2876     break;
2877   default: {
2878     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2879       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2880                                                   KnownZero, TLO, Depth))
2881         return true;
2882     } else {
2883       KnownBits Known;
2884       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2885       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2886                                TLO, Depth, AssumeSingleUse))
2887         return true;
2888     }
2889     break;
2890   }
2891   }
2892   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2893 
2894   // Constant fold all undef cases.
2895   // TODO: Handle zero cases as well.
2896   if (DemandedElts.isSubsetOf(KnownUndef))
2897     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2898 
2899   return false;
2900 }
2901 
2902 /// Determine which of the bits specified in Mask are known to be either zero or
2903 /// one and return them in the Known.
2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2905                                                    KnownBits &Known,
2906                                                    const APInt &DemandedElts,
2907                                                    const SelectionDAG &DAG,
2908                                                    unsigned Depth) const {
2909   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2910           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2911           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2912           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2913          "Should use MaskedValueIsZero if you don't know whether Op"
2914          " is a target node!");
2915   Known.resetAll();
2916 }
2917 
2918 void TargetLowering::computeKnownBitsForTargetInstr(
2919     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2920     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2921     unsigned Depth) const {
2922   Known.resetAll();
2923 }
2924 
2925 void TargetLowering::computeKnownBitsForFrameIndex(
2926   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2927   // The low bits are known zero if the pointer is aligned.
2928   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2929 }
2930 
2931 Align TargetLowering::computeKnownAlignForTargetInstr(
2932   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2933   unsigned Depth) const {
2934   return Align(1);
2935 }
2936 
2937 /// This method can be implemented by targets that want to expose additional
2938 /// information about sign bits to the DAG Combiner.
2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2940                                                          const APInt &,
2941                                                          const SelectionDAG &,
2942                                                          unsigned Depth) const {
2943   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2944           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2945           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2946           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2947          "Should use ComputeNumSignBits if you don't know whether Op"
2948          " is a target node!");
2949   return 1;
2950 }
2951 
2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2953   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2954   const MachineRegisterInfo &MRI, unsigned Depth) const {
2955   return 1;
2956 }
2957 
2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2959     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2960     TargetLoweringOpt &TLO, unsigned Depth) const {
2961   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2962           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2963           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2964           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2965          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2966          " is a target node!");
2967   return false;
2968 }
2969 
2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2971     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2972     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2973   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2974           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2975           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2977          "Should use SimplifyDemandedBits if you don't know whether Op"
2978          " is a target node!");
2979   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2980   return false;
2981 }
2982 
2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2984     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2985     SelectionDAG &DAG, unsigned Depth) const {
2986   assert(
2987       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2992       " is a target node!");
2993   return SDValue();
2994 }
2995 
2996 SDValue
2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2998                                         SDValue N1, MutableArrayRef<int> Mask,
2999                                         SelectionDAG &DAG) const {
3000   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3001   if (!LegalMask) {
3002     std::swap(N0, N1);
3003     ShuffleVectorSDNode::commuteMask(Mask);
3004     LegalMask = isShuffleMaskLegal(Mask, VT);
3005   }
3006 
3007   if (!LegalMask)
3008     return SDValue();
3009 
3010   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3011 }
3012 
3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3014   return nullptr;
3015 }
3016 
3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3018                                                   const SelectionDAG &DAG,
3019                                                   bool SNaN,
3020                                                   unsigned Depth) const {
3021   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3022           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3023           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3024           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3025          "Should use isKnownNeverNaN if you don't know whether Op"
3026          " is a target node!");
3027   return false;
3028 }
3029 
3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3031 // work with truncating build vectors and vectors with elements of less than
3032 // 8 bits.
3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3034   if (!N)
3035     return false;
3036 
3037   APInt CVal;
3038   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3039     CVal = CN->getAPIntValue();
3040   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3041     auto *CN = BV->getConstantSplatNode();
3042     if (!CN)
3043       return false;
3044 
3045     // If this is a truncating build vector, truncate the splat value.
3046     // Otherwise, we may fail to match the expected values below.
3047     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3048     CVal = CN->getAPIntValue();
3049     if (BVEltWidth < CVal.getBitWidth())
3050       CVal = CVal.trunc(BVEltWidth);
3051   } else {
3052     return false;
3053   }
3054 
3055   switch (getBooleanContents(N->getValueType(0))) {
3056   case UndefinedBooleanContent:
3057     return CVal[0];
3058   case ZeroOrOneBooleanContent:
3059     return CVal.isOneValue();
3060   case ZeroOrNegativeOneBooleanContent:
3061     return CVal.isAllOnesValue();
3062   }
3063 
3064   llvm_unreachable("Invalid boolean contents");
3065 }
3066 
3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3068   if (!N)
3069     return false;
3070 
3071   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3072   if (!CN) {
3073     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3074     if (!BV)
3075       return false;
3076 
3077     // Only interested in constant splats, we don't care about undef
3078     // elements in identifying boolean constants and getConstantSplatNode
3079     // returns NULL if all ops are undef;
3080     CN = BV->getConstantSplatNode();
3081     if (!CN)
3082       return false;
3083   }
3084 
3085   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3086     return !CN->getAPIntValue()[0];
3087 
3088   return CN->isNullValue();
3089 }
3090 
3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3092                                        bool SExt) const {
3093   if (VT == MVT::i1)
3094     return N->isOne();
3095 
3096   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3097   switch (Cnt) {
3098   case TargetLowering::ZeroOrOneBooleanContent:
3099     // An extended value of 1 is always true, unless its original type is i1,
3100     // in which case it will be sign extended to -1.
3101     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3102   case TargetLowering::UndefinedBooleanContent:
3103   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3104     return N->isAllOnesValue() && SExt;
3105   }
3106   llvm_unreachable("Unexpected enumeration.");
3107 }
3108 
3109 /// This helper function of SimplifySetCC tries to optimize the comparison when
3110 /// either operand of the SetCC node is a bitwise-and instruction.
3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3112                                          ISD::CondCode Cond, const SDLoc &DL,
3113                                          DAGCombinerInfo &DCI) const {
3114   // Match these patterns in any of their permutations:
3115   // (X & Y) == Y
3116   // (X & Y) != Y
3117   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3118     std::swap(N0, N1);
3119 
3120   EVT OpVT = N0.getValueType();
3121   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3122       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3123     return SDValue();
3124 
3125   SDValue X, Y;
3126   if (N0.getOperand(0) == N1) {
3127     X = N0.getOperand(1);
3128     Y = N0.getOperand(0);
3129   } else if (N0.getOperand(1) == N1) {
3130     X = N0.getOperand(0);
3131     Y = N0.getOperand(1);
3132   } else {
3133     return SDValue();
3134   }
3135 
3136   SelectionDAG &DAG = DCI.DAG;
3137   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3138   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3139     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3140     // Note that where Y is variable and is known to have at most one bit set
3141     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3142     // equivalent when Y == 0.
3143     assert(OpVT.isInteger());
3144     Cond = ISD::getSetCCInverse(Cond, OpVT);
3145     if (DCI.isBeforeLegalizeOps() ||
3146         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3147       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3148   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3149     // If the target supports an 'and-not' or 'and-complement' logic operation,
3150     // try to use that to make a comparison operation more efficient.
3151     // But don't do this transform if the mask is a single bit because there are
3152     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3153     // 'rlwinm' on PPC).
3154 
3155     // Bail out if the compare operand that we want to turn into a zero is
3156     // already a zero (otherwise, infinite loop).
3157     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3158     if (YConst && YConst->isNullValue())
3159       return SDValue();
3160 
3161     // Transform this into: ~X & Y == 0.
3162     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3163     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3164     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3165   }
3166 
3167   return SDValue();
3168 }
3169 
3170 /// There are multiple IR patterns that could be checking whether certain
3171 /// truncation of a signed number would be lossy or not. The pattern which is
3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3173 /// We are looking for the following pattern: (KeptBits is a constant)
3174 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3176 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3177 /// We will unfold it into the natural trunc+sext pattern:
3178 ///   ((%x << C) a>> C) dstcond %x
3179 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3181     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3182     const SDLoc &DL) const {
3183   // We must be comparing with a constant.
3184   ConstantSDNode *C1;
3185   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3186     return SDValue();
3187 
3188   // N0 should be:  add %x, (1 << (KeptBits-1))
3189   if (N0->getOpcode() != ISD::ADD)
3190     return SDValue();
3191 
3192   // And we must be 'add'ing a constant.
3193   ConstantSDNode *C01;
3194   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3195     return SDValue();
3196 
3197   SDValue X = N0->getOperand(0);
3198   EVT XVT = X.getValueType();
3199 
3200   // Validate constants ...
3201 
3202   APInt I1 = C1->getAPIntValue();
3203 
3204   ISD::CondCode NewCond;
3205   if (Cond == ISD::CondCode::SETULT) {
3206     NewCond = ISD::CondCode::SETEQ;
3207   } else if (Cond == ISD::CondCode::SETULE) {
3208     NewCond = ISD::CondCode::SETEQ;
3209     // But need to 'canonicalize' the constant.
3210     I1 += 1;
3211   } else if (Cond == ISD::CondCode::SETUGT) {
3212     NewCond = ISD::CondCode::SETNE;
3213     // But need to 'canonicalize' the constant.
3214     I1 += 1;
3215   } else if (Cond == ISD::CondCode::SETUGE) {
3216     NewCond = ISD::CondCode::SETNE;
3217   } else
3218     return SDValue();
3219 
3220   APInt I01 = C01->getAPIntValue();
3221 
3222   auto checkConstants = [&I1, &I01]() -> bool {
3223     // Both of them must be power-of-two, and the constant from setcc is bigger.
3224     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3225   };
3226 
3227   if (checkConstants()) {
3228     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3229   } else {
3230     // What if we invert constants? (and the target predicate)
3231     I1.negate();
3232     I01.negate();
3233     assert(XVT.isInteger());
3234     NewCond = getSetCCInverse(NewCond, XVT);
3235     if (!checkConstants())
3236       return SDValue();
3237     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3238   }
3239 
3240   // They are power-of-two, so which bit is set?
3241   const unsigned KeptBits = I1.logBase2();
3242   const unsigned KeptBitsMinusOne = I01.logBase2();
3243 
3244   // Magic!
3245   if (KeptBits != (KeptBitsMinusOne + 1))
3246     return SDValue();
3247   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3248 
3249   // We don't want to do this in every single case.
3250   SelectionDAG &DAG = DCI.DAG;
3251   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3252           XVT, KeptBits))
3253     return SDValue();
3254 
3255   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3256   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3257 
3258   // Unfold into:  ((%x << C) a>> C) cond %x
3259   // Where 'cond' will be either 'eq' or 'ne'.
3260   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3261   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3262   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3263   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3264 
3265   return T2;
3266 }
3267 
3268 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3270     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3271     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3272   assert(isConstOrConstSplat(N1C) &&
3273          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3274          "Should be a comparison with 0.");
3275   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3276          "Valid only for [in]equality comparisons.");
3277 
3278   unsigned NewShiftOpcode;
3279   SDValue X, C, Y;
3280 
3281   SelectionDAG &DAG = DCI.DAG;
3282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3283 
3284   // Look for '(C l>>/<< Y)'.
3285   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3286     // The shift should be one-use.
3287     if (!V.hasOneUse())
3288       return false;
3289     unsigned OldShiftOpcode = V.getOpcode();
3290     switch (OldShiftOpcode) {
3291     case ISD::SHL:
3292       NewShiftOpcode = ISD::SRL;
3293       break;
3294     case ISD::SRL:
3295       NewShiftOpcode = ISD::SHL;
3296       break;
3297     default:
3298       return false; // must be a logical shift.
3299     }
3300     // We should be shifting a constant.
3301     // FIXME: best to use isConstantOrConstantVector().
3302     C = V.getOperand(0);
3303     ConstantSDNode *CC =
3304         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3305     if (!CC)
3306       return false;
3307     Y = V.getOperand(1);
3308 
3309     ConstantSDNode *XC =
3310         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3311     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3312         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3313   };
3314 
3315   // LHS of comparison should be an one-use 'and'.
3316   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3317     return SDValue();
3318 
3319   X = N0.getOperand(0);
3320   SDValue Mask = N0.getOperand(1);
3321 
3322   // 'and' is commutative!
3323   if (!Match(Mask)) {
3324     std::swap(X, Mask);
3325     if (!Match(Mask))
3326       return SDValue();
3327   }
3328 
3329   EVT VT = X.getValueType();
3330 
3331   // Produce:
3332   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3333   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3334   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3335   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3336   return T2;
3337 }
3338 
3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3341 /// handle the commuted versions of these patterns.
3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3343                                            ISD::CondCode Cond, const SDLoc &DL,
3344                                            DAGCombinerInfo &DCI) const {
3345   unsigned BOpcode = N0.getOpcode();
3346   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3347          "Unexpected binop");
3348   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3349 
3350   // (X + Y) == X --> Y == 0
3351   // (X - Y) == X --> Y == 0
3352   // (X ^ Y) == X --> Y == 0
3353   SelectionDAG &DAG = DCI.DAG;
3354   EVT OpVT = N0.getValueType();
3355   SDValue X = N0.getOperand(0);
3356   SDValue Y = N0.getOperand(1);
3357   if (X == N1)
3358     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3359 
3360   if (Y != N1)
3361     return SDValue();
3362 
3363   // (X + Y) == Y --> X == 0
3364   // (X ^ Y) == Y --> X == 0
3365   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3366     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3367 
3368   // The shift would not be valid if the operands are boolean (i1).
3369   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3370     return SDValue();
3371 
3372   // (X - Y) == Y --> X == Y << 1
3373   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3374                                  !DCI.isBeforeLegalize());
3375   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3376   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3377   if (!DCI.isCalledByLegalizer())
3378     DCI.AddToWorklist(YShl1.getNode());
3379   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3380 }
3381 
3382 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3383                                       SDValue N0, const APInt &C1,
3384                                       ISD::CondCode Cond, const SDLoc &dl,
3385                                       SelectionDAG &DAG) {
3386   // Look through truncs that don't change the value of a ctpop.
3387   // FIXME: Add vector support? Need to be careful with setcc result type below.
3388   SDValue CTPOP = N0;
3389   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3390       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3391     CTPOP = N0.getOperand(0);
3392 
3393   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3394     return SDValue();
3395 
3396   EVT CTVT = CTPOP.getValueType();
3397   SDValue CTOp = CTPOP.getOperand(0);
3398 
3399   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3400   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3401   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3402     return SDValue();
3403 
3404   // (ctpop x) u< 2 -> (x & x-1) == 0
3405   // (ctpop x) u> 1 -> (x & x-1) != 0
3406   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3407     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3408     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3409       return SDValue();
3410     if (C1 == 0 && (Cond == ISD::SETULT))
3411       return SDValue(); // This is handled elsewhere.
3412 
3413     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3414 
3415     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3416     SDValue Result = CTOp;
3417     for (unsigned i = 0; i < Passes; i++) {
3418       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3419       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3420     }
3421     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3422     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3423   }
3424 
3425   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3426   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3427     // For scalars, keep CTPOP if it is legal or custom.
3428     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3429       return SDValue();
3430     // This is based on X86's custom lowering for CTPOP which produces more
3431     // instructions than the expansion here.
3432 
3433     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3434     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3435     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3436     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3437     assert(CTVT.isInteger());
3438     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3439     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3440     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3441     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3442     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3443     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3444     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3445   }
3446 
3447   return SDValue();
3448 }
3449 
3450 /// Try to simplify a setcc built with the specified operands and cc. If it is
3451 /// unable to simplify it, return a null SDValue.
3452 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3453                                       ISD::CondCode Cond, bool foldBooleans,
3454                                       DAGCombinerInfo &DCI,
3455                                       const SDLoc &dl) const {
3456   SelectionDAG &DAG = DCI.DAG;
3457   const DataLayout &Layout = DAG.getDataLayout();
3458   EVT OpVT = N0.getValueType();
3459 
3460   // Constant fold or commute setcc.
3461   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3462     return Fold;
3463 
3464   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3465   // TODO: Handle non-splat vector constants. All undef causes trouble.
3466   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3467   // infinite loop here when we encounter one.
3468   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3469   if (isConstOrConstSplat(N0) &&
3470       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3471       (DCI.isBeforeLegalizeOps() ||
3472        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3473     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3474 
3475   // If we have a subtract with the same 2 non-constant operands as this setcc
3476   // -- but in reverse order -- then try to commute the operands of this setcc
3477   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3478   // instruction on some targets.
3479   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3480       (DCI.isBeforeLegalizeOps() ||
3481        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3482       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3483       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3484     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3485 
3486   if (auto *N1C = isConstOrConstSplat(N1)) {
3487     const APInt &C1 = N1C->getAPIntValue();
3488 
3489     // Optimize some CTPOP cases.
3490     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3491       return V;
3492 
3493     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3494     // equality comparison, then we're just comparing whether X itself is
3495     // zero.
3496     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3497         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3498         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3499       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3500         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3501             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3502           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3503             // (srl (ctlz x), 5) == 0  -> X != 0
3504             // (srl (ctlz x), 5) != 1  -> X != 0
3505             Cond = ISD::SETNE;
3506           } else {
3507             // (srl (ctlz x), 5) != 0  -> X == 0
3508             // (srl (ctlz x), 5) == 1  -> X == 0
3509             Cond = ISD::SETEQ;
3510           }
3511           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3512           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3513                               Cond);
3514         }
3515       }
3516     }
3517   }
3518 
3519   // FIXME: Support vectors.
3520   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3521     const APInt &C1 = N1C->getAPIntValue();
3522 
3523     // (zext x) == C --> x == (trunc C)
3524     // (sext x) == C --> x == (trunc C)
3525     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3526         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3527       unsigned MinBits = N0.getValueSizeInBits();
3528       SDValue PreExt;
3529       bool Signed = false;
3530       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3531         // ZExt
3532         MinBits = N0->getOperand(0).getValueSizeInBits();
3533         PreExt = N0->getOperand(0);
3534       } else if (N0->getOpcode() == ISD::AND) {
3535         // DAGCombine turns costly ZExts into ANDs
3536         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3537           if ((C->getAPIntValue()+1).isPowerOf2()) {
3538             MinBits = C->getAPIntValue().countTrailingOnes();
3539             PreExt = N0->getOperand(0);
3540           }
3541       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3542         // SExt
3543         MinBits = N0->getOperand(0).getValueSizeInBits();
3544         PreExt = N0->getOperand(0);
3545         Signed = true;
3546       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3547         // ZEXTLOAD / SEXTLOAD
3548         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3549           MinBits = LN0->getMemoryVT().getSizeInBits();
3550           PreExt = N0;
3551         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3552           Signed = true;
3553           MinBits = LN0->getMemoryVT().getSizeInBits();
3554           PreExt = N0;
3555         }
3556       }
3557 
3558       // Figure out how many bits we need to preserve this constant.
3559       unsigned ReqdBits = Signed ?
3560         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3561         C1.getActiveBits();
3562 
3563       // Make sure we're not losing bits from the constant.
3564       if (MinBits > 0 &&
3565           MinBits < C1.getBitWidth() &&
3566           MinBits >= ReqdBits) {
3567         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3568         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3569           // Will get folded away.
3570           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3571           if (MinBits == 1 && C1 == 1)
3572             // Invert the condition.
3573             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3574                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3575           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3576           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3577         }
3578 
3579         // If truncating the setcc operands is not desirable, we can still
3580         // simplify the expression in some cases:
3581         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3582         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3583         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3584         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3585         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3586         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3587         SDValue TopSetCC = N0->getOperand(0);
3588         unsigned N0Opc = N0->getOpcode();
3589         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3590         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3591             TopSetCC.getOpcode() == ISD::SETCC &&
3592             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3593             (isConstFalseVal(N1C) ||
3594              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3595 
3596           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3597                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3598 
3599           if (!Inverse)
3600             return TopSetCC;
3601 
3602           ISD::CondCode InvCond = ISD::getSetCCInverse(
3603               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3604               TopSetCC.getOperand(0).getValueType());
3605           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3606                                       TopSetCC.getOperand(1),
3607                                       InvCond);
3608         }
3609       }
3610     }
3611 
3612     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3613     // equality or unsigned, and all 1 bits of the const are in the same
3614     // partial word, see if we can shorten the load.
3615     if (DCI.isBeforeLegalize() &&
3616         !ISD::isSignedIntSetCC(Cond) &&
3617         N0.getOpcode() == ISD::AND && C1 == 0 &&
3618         N0.getNode()->hasOneUse() &&
3619         isa<LoadSDNode>(N0.getOperand(0)) &&
3620         N0.getOperand(0).getNode()->hasOneUse() &&
3621         isa<ConstantSDNode>(N0.getOperand(1))) {
3622       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3623       APInt bestMask;
3624       unsigned bestWidth = 0, bestOffset = 0;
3625       if (Lod->isSimple() && Lod->isUnindexed()) {
3626         unsigned origWidth = N0.getValueSizeInBits();
3627         unsigned maskWidth = origWidth;
3628         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3629         // 8 bits, but have to be careful...
3630         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3631           origWidth = Lod->getMemoryVT().getSizeInBits();
3632         const APInt &Mask = N0.getConstantOperandAPInt(1);
3633         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3634           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3635           for (unsigned offset=0; offset<origWidth/width; offset++) {
3636             if (Mask.isSubsetOf(newMask)) {
3637               if (Layout.isLittleEndian())
3638                 bestOffset = (uint64_t)offset * (width/8);
3639               else
3640                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3641               bestMask = Mask.lshr(offset * (width/8) * 8);
3642               bestWidth = width;
3643               break;
3644             }
3645             newMask <<= width;
3646           }
3647         }
3648       }
3649       if (bestWidth) {
3650         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3651         if (newVT.isRound() &&
3652             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3653           SDValue Ptr = Lod->getBasePtr();
3654           if (bestOffset != 0)
3655             Ptr =
3656                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3657           SDValue NewLoad =
3658               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3659                           Lod->getPointerInfo().getWithOffset(bestOffset),
3660                           Lod->getOriginalAlign());
3661           return DAG.getSetCC(dl, VT,
3662                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3663                                       DAG.getConstant(bestMask.trunc(bestWidth),
3664                                                       dl, newVT)),
3665                               DAG.getConstant(0LL, dl, newVT), Cond);
3666         }
3667       }
3668     }
3669 
3670     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3671     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3672       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3673 
3674       // If the comparison constant has bits in the upper part, the
3675       // zero-extended value could never match.
3676       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3677                                               C1.getBitWidth() - InSize))) {
3678         switch (Cond) {
3679         case ISD::SETUGT:
3680         case ISD::SETUGE:
3681         case ISD::SETEQ:
3682           return DAG.getConstant(0, dl, VT);
3683         case ISD::SETULT:
3684         case ISD::SETULE:
3685         case ISD::SETNE:
3686           return DAG.getConstant(1, dl, VT);
3687         case ISD::SETGT:
3688         case ISD::SETGE:
3689           // True if the sign bit of C1 is set.
3690           return DAG.getConstant(C1.isNegative(), dl, VT);
3691         case ISD::SETLT:
3692         case ISD::SETLE:
3693           // True if the sign bit of C1 isn't set.
3694           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3695         default:
3696           break;
3697         }
3698       }
3699 
3700       // Otherwise, we can perform the comparison with the low bits.
3701       switch (Cond) {
3702       case ISD::SETEQ:
3703       case ISD::SETNE:
3704       case ISD::SETUGT:
3705       case ISD::SETUGE:
3706       case ISD::SETULT:
3707       case ISD::SETULE: {
3708         EVT newVT = N0.getOperand(0).getValueType();
3709         if (DCI.isBeforeLegalizeOps() ||
3710             (isOperationLegal(ISD::SETCC, newVT) &&
3711              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3712           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3713           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3714 
3715           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3716                                           NewConst, Cond);
3717           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3718         }
3719         break;
3720       }
3721       default:
3722         break; // todo, be more careful with signed comparisons
3723       }
3724     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3725                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3726       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3727       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3728       EVT ExtDstTy = N0.getValueType();
3729       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3730 
3731       // If the constant doesn't fit into the number of bits for the source of
3732       // the sign extension, it is impossible for both sides to be equal.
3733       if (C1.getMinSignedBits() > ExtSrcTyBits)
3734         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3735 
3736       SDValue ZextOp;
3737       EVT Op0Ty = N0.getOperand(0).getValueType();
3738       if (Op0Ty == ExtSrcTy) {
3739         ZextOp = N0.getOperand(0);
3740       } else {
3741         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3742         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3743                              DAG.getConstant(Imm, dl, Op0Ty));
3744       }
3745       if (!DCI.isCalledByLegalizer())
3746         DCI.AddToWorklist(ZextOp.getNode());
3747       // Otherwise, make this a use of a zext.
3748       return DAG.getSetCC(dl, VT, ZextOp,
3749                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3750                                                               ExtDstTyBits,
3751                                                               ExtSrcTyBits),
3752                                           dl, ExtDstTy),
3753                           Cond);
3754     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3755                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3756       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3757       if (N0.getOpcode() == ISD::SETCC &&
3758           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3759           (N0.getValueType() == MVT::i1 ||
3760            getBooleanContents(N0.getOperand(0).getValueType()) ==
3761                        ZeroOrOneBooleanContent)) {
3762         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3763         if (TrueWhenTrue)
3764           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3765         // Invert the condition.
3766         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3767         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3768         if (DCI.isBeforeLegalizeOps() ||
3769             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3770           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3771       }
3772 
3773       if ((N0.getOpcode() == ISD::XOR ||
3774            (N0.getOpcode() == ISD::AND &&
3775             N0.getOperand(0).getOpcode() == ISD::XOR &&
3776             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3777           isa<ConstantSDNode>(N0.getOperand(1)) &&
3778           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3779         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3780         // can only do this if the top bits are known zero.
3781         unsigned BitWidth = N0.getValueSizeInBits();
3782         if (DAG.MaskedValueIsZero(N0,
3783                                   APInt::getHighBitsSet(BitWidth,
3784                                                         BitWidth-1))) {
3785           // Okay, get the un-inverted input value.
3786           SDValue Val;
3787           if (N0.getOpcode() == ISD::XOR) {
3788             Val = N0.getOperand(0);
3789           } else {
3790             assert(N0.getOpcode() == ISD::AND &&
3791                     N0.getOperand(0).getOpcode() == ISD::XOR);
3792             // ((X^1)&1)^1 -> X & 1
3793             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3794                               N0.getOperand(0).getOperand(0),
3795                               N0.getOperand(1));
3796           }
3797 
3798           return DAG.getSetCC(dl, VT, Val, N1,
3799                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3800         }
3801       } else if (N1C->isOne()) {
3802         SDValue Op0 = N0;
3803         if (Op0.getOpcode() == ISD::TRUNCATE)
3804           Op0 = Op0.getOperand(0);
3805 
3806         if ((Op0.getOpcode() == ISD::XOR) &&
3807             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3808             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3809           SDValue XorLHS = Op0.getOperand(0);
3810           SDValue XorRHS = Op0.getOperand(1);
3811           // Ensure that the input setccs return an i1 type or 0/1 value.
3812           if (Op0.getValueType() == MVT::i1 ||
3813               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3814                       ZeroOrOneBooleanContent &&
3815                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3816                         ZeroOrOneBooleanContent)) {
3817             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3818             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3819             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3820           }
3821         }
3822         if (Op0.getOpcode() == ISD::AND &&
3823             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3824             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3825           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3826           if (Op0.getValueType().bitsGT(VT))
3827             Op0 = DAG.getNode(ISD::AND, dl, VT,
3828                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3829                           DAG.getConstant(1, dl, VT));
3830           else if (Op0.getValueType().bitsLT(VT))
3831             Op0 = DAG.getNode(ISD::AND, dl, VT,
3832                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3833                         DAG.getConstant(1, dl, VT));
3834 
3835           return DAG.getSetCC(dl, VT, Op0,
3836                               DAG.getConstant(0, dl, Op0.getValueType()),
3837                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3838         }
3839         if (Op0.getOpcode() == ISD::AssertZext &&
3840             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3841           return DAG.getSetCC(dl, VT, Op0,
3842                               DAG.getConstant(0, dl, Op0.getValueType()),
3843                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3844       }
3845     }
3846 
3847     // Given:
3848     //   icmp eq/ne (urem %x, %y), 0
3849     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3850     //   icmp eq/ne %x, 0
3851     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3852         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3853       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3854       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3855       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3856         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3857     }
3858 
3859     if (SDValue V =
3860             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3861       return V;
3862   }
3863 
3864   // These simplifications apply to splat vectors as well.
3865   // TODO: Handle more splat vector cases.
3866   if (auto *N1C = isConstOrConstSplat(N1)) {
3867     const APInt &C1 = N1C->getAPIntValue();
3868 
3869     APInt MinVal, MaxVal;
3870     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3871     if (ISD::isSignedIntSetCC(Cond)) {
3872       MinVal = APInt::getSignedMinValue(OperandBitSize);
3873       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3874     } else {
3875       MinVal = APInt::getMinValue(OperandBitSize);
3876       MaxVal = APInt::getMaxValue(OperandBitSize);
3877     }
3878 
3879     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3880     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3881       // X >= MIN --> true
3882       if (C1 == MinVal)
3883         return DAG.getBoolConstant(true, dl, VT, OpVT);
3884 
3885       if (!VT.isVector()) { // TODO: Support this for vectors.
3886         // X >= C0 --> X > (C0 - 1)
3887         APInt C = C1 - 1;
3888         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3889         if ((DCI.isBeforeLegalizeOps() ||
3890              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3891             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3892                                   isLegalICmpImmediate(C.getSExtValue())))) {
3893           return DAG.getSetCC(dl, VT, N0,
3894                               DAG.getConstant(C, dl, N1.getValueType()),
3895                               NewCC);
3896         }
3897       }
3898     }
3899 
3900     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3901       // X <= MAX --> true
3902       if (C1 == MaxVal)
3903         return DAG.getBoolConstant(true, dl, VT, OpVT);
3904 
3905       // X <= C0 --> X < (C0 + 1)
3906       if (!VT.isVector()) { // TODO: Support this for vectors.
3907         APInt C = C1 + 1;
3908         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3909         if ((DCI.isBeforeLegalizeOps() ||
3910              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3911             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3912                                   isLegalICmpImmediate(C.getSExtValue())))) {
3913           return DAG.getSetCC(dl, VT, N0,
3914                               DAG.getConstant(C, dl, N1.getValueType()),
3915                               NewCC);
3916         }
3917       }
3918     }
3919 
3920     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3921       if (C1 == MinVal)
3922         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3923 
3924       // TODO: Support this for vectors after legalize ops.
3925       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3926         // Canonicalize setlt X, Max --> setne X, Max
3927         if (C1 == MaxVal)
3928           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3929 
3930         // If we have setult X, 1, turn it into seteq X, 0
3931         if (C1 == MinVal+1)
3932           return DAG.getSetCC(dl, VT, N0,
3933                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3934                               ISD::SETEQ);
3935       }
3936     }
3937 
3938     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3939       if (C1 == MaxVal)
3940         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3941 
3942       // TODO: Support this for vectors after legalize ops.
3943       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3944         // Canonicalize setgt X, Min --> setne X, Min
3945         if (C1 == MinVal)
3946           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3947 
3948         // If we have setugt X, Max-1, turn it into seteq X, Max
3949         if (C1 == MaxVal-1)
3950           return DAG.getSetCC(dl, VT, N0,
3951                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3952                               ISD::SETEQ);
3953       }
3954     }
3955 
3956     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3957       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3958       if (C1.isNullValue())
3959         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3960                 VT, N0, N1, Cond, DCI, dl))
3961           return CC;
3962 
3963       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3964       // For example, when high 32-bits of i64 X are known clear:
3965       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3966       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3967       bool CmpZero = N1C->getAPIntValue().isNullValue();
3968       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3969       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3970         // Match or(lo,shl(hi,bw/2)) pattern.
3971         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3972           unsigned EltBits = V.getScalarValueSizeInBits();
3973           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3974             return false;
3975           SDValue LHS = V.getOperand(0);
3976           SDValue RHS = V.getOperand(1);
3977           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3978           // Unshifted element must have zero upperbits.
3979           if (RHS.getOpcode() == ISD::SHL &&
3980               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3981               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3982               DAG.MaskedValueIsZero(LHS, HiBits)) {
3983             Lo = LHS;
3984             Hi = RHS.getOperand(0);
3985             return true;
3986           }
3987           if (LHS.getOpcode() == ISD::SHL &&
3988               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3989               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3990               DAG.MaskedValueIsZero(RHS, HiBits)) {
3991             Lo = RHS;
3992             Hi = LHS.getOperand(0);
3993             return true;
3994           }
3995           return false;
3996         };
3997 
3998         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
3999           unsigned EltBits = N0.getScalarValueSizeInBits();
4000           unsigned HalfBits = EltBits / 2;
4001           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4002           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4003           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4004           SDValue NewN0 =
4005               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4006           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4007           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4008         };
4009 
4010         SDValue Lo, Hi;
4011         if (IsConcat(N0, Lo, Hi))
4012           return MergeConcat(Lo, Hi);
4013 
4014         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4015           SDValue Lo0, Lo1, Hi0, Hi1;
4016           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4017               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4018             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4019                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4020           }
4021         }
4022       }
4023     }
4024 
4025     // If we have "setcc X, C0", check to see if we can shrink the immediate
4026     // by changing cc.
4027     // TODO: Support this for vectors after legalize ops.
4028     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4029       // SETUGT X, SINTMAX  -> SETLT X, 0
4030       // SETUGE X, SINTMIN -> SETLT X, 0
4031       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4032           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4033         return DAG.getSetCC(dl, VT, N0,
4034                             DAG.getConstant(0, dl, N1.getValueType()),
4035                             ISD::SETLT);
4036 
4037       // SETULT X, SINTMIN  -> SETGT X, -1
4038       // SETULE X, SINTMAX  -> SETGT X, -1
4039       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4040           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4041         return DAG.getSetCC(dl, VT, N0,
4042                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4043                             ISD::SETGT);
4044     }
4045   }
4046 
4047   // Back to non-vector simplifications.
4048   // TODO: Can we do these for vector splats?
4049   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4050     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4051     const APInt &C1 = N1C->getAPIntValue();
4052     EVT ShValTy = N0.getValueType();
4053 
4054     // Fold bit comparisons when we can. This will result in an
4055     // incorrect value when boolean false is negative one, unless
4056     // the bitsize is 1 in which case the false value is the same
4057     // in practice regardless of the representation.
4058     if ((VT.getSizeInBits() == 1 ||
4059          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4060         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4061         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4062         N0.getOpcode() == ISD::AND) {
4063       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4064         EVT ShiftTy =
4065             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4066         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4067           // Perform the xform if the AND RHS is a single bit.
4068           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4069           if (AndRHS->getAPIntValue().isPowerOf2() &&
4070               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4071             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4072                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4073                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4074           }
4075         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4076           // (X & 8) == 8  -->  (X & 8) >> 3
4077           // Perform the xform if C1 is a single bit.
4078           unsigned ShCt = C1.logBase2();
4079           if (C1.isPowerOf2() &&
4080               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4081             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4082                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4083                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4084           }
4085         }
4086       }
4087     }
4088 
4089     if (C1.getMinSignedBits() <= 64 &&
4090         !isLegalICmpImmediate(C1.getSExtValue())) {
4091       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4092       // (X & -256) == 256 -> (X >> 8) == 1
4093       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4094           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4095         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4096           const APInt &AndRHSC = AndRHS->getAPIntValue();
4097           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4098             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4099             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4100               SDValue Shift =
4101                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4102                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4103               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4104               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4105             }
4106           }
4107         }
4108       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4109                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4110         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4111         // X <  0x100000000 -> (X >> 32) <  1
4112         // X >= 0x100000000 -> (X >> 32) >= 1
4113         // X <= 0x0ffffffff -> (X >> 32) <  1
4114         // X >  0x0ffffffff -> (X >> 32) >= 1
4115         unsigned ShiftBits;
4116         APInt NewC = C1;
4117         ISD::CondCode NewCond = Cond;
4118         if (AdjOne) {
4119           ShiftBits = C1.countTrailingOnes();
4120           NewC = NewC + 1;
4121           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4122         } else {
4123           ShiftBits = C1.countTrailingZeros();
4124         }
4125         NewC.lshrInPlace(ShiftBits);
4126         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4127             isLegalICmpImmediate(NewC.getSExtValue()) &&
4128             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4129           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4130                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4131           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4132           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4133         }
4134       }
4135     }
4136   }
4137 
4138   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4139     auto *CFP = cast<ConstantFPSDNode>(N1);
4140     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4141 
4142     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4143     // constant if knowing that the operand is non-nan is enough.  We prefer to
4144     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4145     // materialize 0.0.
4146     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4147       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4148 
4149     // setcc (fneg x), C -> setcc swap(pred) x, -C
4150     if (N0.getOpcode() == ISD::FNEG) {
4151       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4152       if (DCI.isBeforeLegalizeOps() ||
4153           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4154         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4155         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4156       }
4157     }
4158 
4159     // If the condition is not legal, see if we can find an equivalent one
4160     // which is legal.
4161     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4162       // If the comparison was an awkward floating-point == or != and one of
4163       // the comparison operands is infinity or negative infinity, convert the
4164       // condition to a less-awkward <= or >=.
4165       if (CFP->getValueAPF().isInfinity()) {
4166         bool IsNegInf = CFP->getValueAPF().isNegative();
4167         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4168         switch (Cond) {
4169         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4170         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4171         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4172         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4173         default: break;
4174         }
4175         if (NewCond != ISD::SETCC_INVALID &&
4176             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4177           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4178       }
4179     }
4180   }
4181 
4182   if (N0 == N1) {
4183     // The sext(setcc()) => setcc() optimization relies on the appropriate
4184     // constant being emitted.
4185     assert(!N0.getValueType().isInteger() &&
4186            "Integer types should be handled by FoldSetCC");
4187 
4188     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4189     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4190     if (UOF == 2) // FP operators that are undefined on NaNs.
4191       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4192     if (UOF == unsigned(EqTrue))
4193       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4194     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4195     // if it is not already.
4196     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4197     if (NewCond != Cond &&
4198         (DCI.isBeforeLegalizeOps() ||
4199                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4200       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4201   }
4202 
4203   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4204       N0.getValueType().isInteger()) {
4205     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4206         N0.getOpcode() == ISD::XOR) {
4207       // Simplify (X+Y) == (X+Z) -->  Y == Z
4208       if (N0.getOpcode() == N1.getOpcode()) {
4209         if (N0.getOperand(0) == N1.getOperand(0))
4210           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4211         if (N0.getOperand(1) == N1.getOperand(1))
4212           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4213         if (isCommutativeBinOp(N0.getOpcode())) {
4214           // If X op Y == Y op X, try other combinations.
4215           if (N0.getOperand(0) == N1.getOperand(1))
4216             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4217                                 Cond);
4218           if (N0.getOperand(1) == N1.getOperand(0))
4219             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4220                                 Cond);
4221         }
4222       }
4223 
4224       // If RHS is a legal immediate value for a compare instruction, we need
4225       // to be careful about increasing register pressure needlessly.
4226       bool LegalRHSImm = false;
4227 
4228       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4229         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4230           // Turn (X+C1) == C2 --> X == C2-C1
4231           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4232             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4233                                 DAG.getConstant(RHSC->getAPIntValue()-
4234                                                 LHSR->getAPIntValue(),
4235                                 dl, N0.getValueType()), Cond);
4236           }
4237 
4238           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4239           if (N0.getOpcode() == ISD::XOR)
4240             // If we know that all of the inverted bits are zero, don't bother
4241             // performing the inversion.
4242             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4243               return
4244                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4245                              DAG.getConstant(LHSR->getAPIntValue() ^
4246                                                RHSC->getAPIntValue(),
4247                                              dl, N0.getValueType()),
4248                              Cond);
4249         }
4250 
4251         // Turn (C1-X) == C2 --> X == C1-C2
4252         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4253           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4254             return
4255               DAG.getSetCC(dl, VT, N0.getOperand(1),
4256                            DAG.getConstant(SUBC->getAPIntValue() -
4257                                              RHSC->getAPIntValue(),
4258                                            dl, N0.getValueType()),
4259                            Cond);
4260           }
4261         }
4262 
4263         // Could RHSC fold directly into a compare?
4264         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4265           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4266       }
4267 
4268       // (X+Y) == X --> Y == 0 and similar folds.
4269       // Don't do this if X is an immediate that can fold into a cmp
4270       // instruction and X+Y has other uses. It could be an induction variable
4271       // chain, and the transform would increase register pressure.
4272       if (!LegalRHSImm || N0.hasOneUse())
4273         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4274           return V;
4275     }
4276 
4277     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4278         N1.getOpcode() == ISD::XOR)
4279       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4280         return V;
4281 
4282     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4283       return V;
4284   }
4285 
4286   // Fold remainder of division by a constant.
4287   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4288       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4289     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4290 
4291     // When division is cheap or optimizing for minimum size,
4292     // fall through to DIVREM creation by skipping this fold.
4293     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4294       if (N0.getOpcode() == ISD::UREM) {
4295         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4296           return Folded;
4297       } else if (N0.getOpcode() == ISD::SREM) {
4298         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4299           return Folded;
4300       }
4301     }
4302   }
4303 
4304   // Fold away ALL boolean setcc's.
4305   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4306     SDValue Temp;
4307     switch (Cond) {
4308     default: llvm_unreachable("Unknown integer setcc!");
4309     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4310       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4311       N0 = DAG.getNOT(dl, Temp, OpVT);
4312       if (!DCI.isCalledByLegalizer())
4313         DCI.AddToWorklist(Temp.getNode());
4314       break;
4315     case ISD::SETNE:  // X != Y   -->  (X^Y)
4316       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4317       break;
4318     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4319     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4320       Temp = DAG.getNOT(dl, N0, OpVT);
4321       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4322       if (!DCI.isCalledByLegalizer())
4323         DCI.AddToWorklist(Temp.getNode());
4324       break;
4325     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4326     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4327       Temp = DAG.getNOT(dl, N1, OpVT);
4328       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4329       if (!DCI.isCalledByLegalizer())
4330         DCI.AddToWorklist(Temp.getNode());
4331       break;
4332     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4333     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4334       Temp = DAG.getNOT(dl, N0, OpVT);
4335       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4336       if (!DCI.isCalledByLegalizer())
4337         DCI.AddToWorklist(Temp.getNode());
4338       break;
4339     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4340     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4341       Temp = DAG.getNOT(dl, N1, OpVT);
4342       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4343       break;
4344     }
4345     if (VT.getScalarType() != MVT::i1) {
4346       if (!DCI.isCalledByLegalizer())
4347         DCI.AddToWorklist(N0.getNode());
4348       // FIXME: If running after legalize, we probably can't do this.
4349       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4350       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4351     }
4352     return N0;
4353   }
4354 
4355   // Could not fold it.
4356   return SDValue();
4357 }
4358 
4359 /// Returns true (and the GlobalValue and the offset) if the node is a
4360 /// GlobalAddress + offset.
4361 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4362                                     int64_t &Offset) const {
4363 
4364   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4365 
4366   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4367     GA = GASD->getGlobal();
4368     Offset += GASD->getOffset();
4369     return true;
4370   }
4371 
4372   if (N->getOpcode() == ISD::ADD) {
4373     SDValue N1 = N->getOperand(0);
4374     SDValue N2 = N->getOperand(1);
4375     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4376       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4377         Offset += V->getSExtValue();
4378         return true;
4379       }
4380     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4381       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4382         Offset += V->getSExtValue();
4383         return true;
4384       }
4385     }
4386   }
4387 
4388   return false;
4389 }
4390 
4391 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4392                                           DAGCombinerInfo &DCI) const {
4393   // Default implementation: no optimization.
4394   return SDValue();
4395 }
4396 
4397 //===----------------------------------------------------------------------===//
4398 //  Inline Assembler Implementation Methods
4399 //===----------------------------------------------------------------------===//
4400 
4401 TargetLowering::ConstraintType
4402 TargetLowering::getConstraintType(StringRef Constraint) const {
4403   unsigned S = Constraint.size();
4404 
4405   if (S == 1) {
4406     switch (Constraint[0]) {
4407     default: break;
4408     case 'r':
4409       return C_RegisterClass;
4410     case 'm': // memory
4411     case 'o': // offsetable
4412     case 'V': // not offsetable
4413       return C_Memory;
4414     case 'n': // Simple Integer
4415     case 'E': // Floating Point Constant
4416     case 'F': // Floating Point Constant
4417       return C_Immediate;
4418     case 'i': // Simple Integer or Relocatable Constant
4419     case 's': // Relocatable Constant
4420     case 'p': // Address.
4421     case 'X': // Allow ANY value.
4422     case 'I': // Target registers.
4423     case 'J':
4424     case 'K':
4425     case 'L':
4426     case 'M':
4427     case 'N':
4428     case 'O':
4429     case 'P':
4430     case '<':
4431     case '>':
4432       return C_Other;
4433     }
4434   }
4435 
4436   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4437     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4438       return C_Memory;
4439     return C_Register;
4440   }
4441   return C_Unknown;
4442 }
4443 
4444 /// Try to replace an X constraint, which matches anything, with another that
4445 /// has more specific requirements based on the type of the corresponding
4446 /// operand.
4447 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4448   if (ConstraintVT.isInteger())
4449     return "r";
4450   if (ConstraintVT.isFloatingPoint())
4451     return "f"; // works for many targets
4452   return nullptr;
4453 }
4454 
4455 SDValue TargetLowering::LowerAsmOutputForConstraint(
4456     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4457     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4458   return SDValue();
4459 }
4460 
4461 /// Lower the specified operand into the Ops vector.
4462 /// If it is invalid, don't add anything to Ops.
4463 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4464                                                   std::string &Constraint,
4465                                                   std::vector<SDValue> &Ops,
4466                                                   SelectionDAG &DAG) const {
4467 
4468   if (Constraint.length() > 1) return;
4469 
4470   char ConstraintLetter = Constraint[0];
4471   switch (ConstraintLetter) {
4472   default: break;
4473   case 'X':     // Allows any operand; labels (basic block) use this.
4474     if (Op.getOpcode() == ISD::BasicBlock ||
4475         Op.getOpcode() == ISD::TargetBlockAddress) {
4476       Ops.push_back(Op);
4477       return;
4478     }
4479     LLVM_FALLTHROUGH;
4480   case 'i':    // Simple Integer or Relocatable Constant
4481   case 'n':    // Simple Integer
4482   case 's': {  // Relocatable Constant
4483 
4484     GlobalAddressSDNode *GA;
4485     ConstantSDNode *C;
4486     BlockAddressSDNode *BA;
4487     uint64_t Offset = 0;
4488 
4489     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4490     // etc., since getelementpointer is variadic. We can't use
4491     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4492     // while in this case the GA may be furthest from the root node which is
4493     // likely an ISD::ADD.
4494     while (1) {
4495       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4496         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4497                                                  GA->getValueType(0),
4498                                                  Offset + GA->getOffset()));
4499         return;
4500       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4501                  ConstraintLetter != 's') {
4502         // gcc prints these as sign extended.  Sign extend value to 64 bits
4503         // now; without this it would get ZExt'd later in
4504         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4505         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4506         BooleanContent BCont = getBooleanContents(MVT::i64);
4507         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4508                                       : ISD::SIGN_EXTEND;
4509         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4510                                                     : C->getSExtValue();
4511         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4512                                             SDLoc(C), MVT::i64));
4513         return;
4514       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4515                  ConstraintLetter != 'n') {
4516         Ops.push_back(DAG.getTargetBlockAddress(
4517             BA->getBlockAddress(), BA->getValueType(0),
4518             Offset + BA->getOffset(), BA->getTargetFlags()));
4519         return;
4520       } else {
4521         const unsigned OpCode = Op.getOpcode();
4522         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4523           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4524             Op = Op.getOperand(1);
4525           // Subtraction is not commutative.
4526           else if (OpCode == ISD::ADD &&
4527                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4528             Op = Op.getOperand(0);
4529           else
4530             return;
4531           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4532           continue;
4533         }
4534       }
4535       return;
4536     }
4537     break;
4538   }
4539   }
4540 }
4541 
4542 std::pair<unsigned, const TargetRegisterClass *>
4543 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4544                                              StringRef Constraint,
4545                                              MVT VT) const {
4546   if (Constraint.empty() || Constraint[0] != '{')
4547     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4548   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4549 
4550   // Remove the braces from around the name.
4551   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4552 
4553   std::pair<unsigned, const TargetRegisterClass *> R =
4554       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4555 
4556   // Figure out which register class contains this reg.
4557   for (const TargetRegisterClass *RC : RI->regclasses()) {
4558     // If none of the value types for this register class are valid, we
4559     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4560     if (!isLegalRC(*RI, *RC))
4561       continue;
4562 
4563     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4564          I != E; ++I) {
4565       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4566         std::pair<unsigned, const TargetRegisterClass *> S =
4567             std::make_pair(*I, RC);
4568 
4569         // If this register class has the requested value type, return it,
4570         // otherwise keep searching and return the first class found
4571         // if no other is found which explicitly has the requested type.
4572         if (RI->isTypeLegalForClass(*RC, VT))
4573           return S;
4574         if (!R.second)
4575           R = S;
4576       }
4577     }
4578   }
4579 
4580   return R;
4581 }
4582 
4583 //===----------------------------------------------------------------------===//
4584 // Constraint Selection.
4585 
4586 /// Return true of this is an input operand that is a matching constraint like
4587 /// "4".
4588 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4589   assert(!ConstraintCode.empty() && "No known constraint!");
4590   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4591 }
4592 
4593 /// If this is an input matching constraint, this method returns the output
4594 /// operand it matches.
4595 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4596   assert(!ConstraintCode.empty() && "No known constraint!");
4597   return atoi(ConstraintCode.c_str());
4598 }
4599 
4600 /// Split up the constraint string from the inline assembly value into the
4601 /// specific constraints and their prefixes, and also tie in the associated
4602 /// operand values.
4603 /// If this returns an empty vector, and if the constraint string itself
4604 /// isn't empty, there was an error parsing.
4605 TargetLowering::AsmOperandInfoVector
4606 TargetLowering::ParseConstraints(const DataLayout &DL,
4607                                  const TargetRegisterInfo *TRI,
4608                                  const CallBase &Call) const {
4609   /// Information about all of the constraints.
4610   AsmOperandInfoVector ConstraintOperands;
4611   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4612   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4613 
4614   // Do a prepass over the constraints, canonicalizing them, and building up the
4615   // ConstraintOperands list.
4616   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4617   unsigned ResNo = 0; // ResNo - The result number of the next output.
4618 
4619   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4620     ConstraintOperands.emplace_back(std::move(CI));
4621     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4622 
4623     // Update multiple alternative constraint count.
4624     if (OpInfo.multipleAlternatives.size() > maCount)
4625       maCount = OpInfo.multipleAlternatives.size();
4626 
4627     OpInfo.ConstraintVT = MVT::Other;
4628 
4629     // Compute the value type for each operand.
4630     switch (OpInfo.Type) {
4631     case InlineAsm::isOutput:
4632       // Indirect outputs just consume an argument.
4633       if (OpInfo.isIndirect) {
4634         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4635         break;
4636       }
4637 
4638       // The return value of the call is this value.  As such, there is no
4639       // corresponding argument.
4640       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4641       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4642         OpInfo.ConstraintVT =
4643             getSimpleValueType(DL, STy->getElementType(ResNo));
4644       } else {
4645         assert(ResNo == 0 && "Asm only has one result!");
4646         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4647       }
4648       ++ResNo;
4649       break;
4650     case InlineAsm::isInput:
4651       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4652       break;
4653     case InlineAsm::isClobber:
4654       // Nothing to do.
4655       break;
4656     }
4657 
4658     if (OpInfo.CallOperandVal) {
4659       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4660       if (OpInfo.isIndirect) {
4661         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4662         if (!PtrTy)
4663           report_fatal_error("Indirect operand for inline asm not a pointer!");
4664         OpTy = PtrTy->getElementType();
4665       }
4666 
4667       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4668       if (StructType *STy = dyn_cast<StructType>(OpTy))
4669         if (STy->getNumElements() == 1)
4670           OpTy = STy->getElementType(0);
4671 
4672       // If OpTy is not a single value, it may be a struct/union that we
4673       // can tile with integers.
4674       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4675         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4676         switch (BitSize) {
4677         default: break;
4678         case 1:
4679         case 8:
4680         case 16:
4681         case 32:
4682         case 64:
4683         case 128:
4684           OpInfo.ConstraintVT =
4685               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4686           break;
4687         }
4688       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4689         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4690         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4691       } else {
4692         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4693       }
4694     }
4695   }
4696 
4697   // If we have multiple alternative constraints, select the best alternative.
4698   if (!ConstraintOperands.empty()) {
4699     if (maCount) {
4700       unsigned bestMAIndex = 0;
4701       int bestWeight = -1;
4702       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4703       int weight = -1;
4704       unsigned maIndex;
4705       // Compute the sums of the weights for each alternative, keeping track
4706       // of the best (highest weight) one so far.
4707       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4708         int weightSum = 0;
4709         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4710              cIndex != eIndex; ++cIndex) {
4711           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4712           if (OpInfo.Type == InlineAsm::isClobber)
4713             continue;
4714 
4715           // If this is an output operand with a matching input operand,
4716           // look up the matching input. If their types mismatch, e.g. one
4717           // is an integer, the other is floating point, or their sizes are
4718           // different, flag it as an maCantMatch.
4719           if (OpInfo.hasMatchingInput()) {
4720             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4721             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4722               if ((OpInfo.ConstraintVT.isInteger() !=
4723                    Input.ConstraintVT.isInteger()) ||
4724                   (OpInfo.ConstraintVT.getSizeInBits() !=
4725                    Input.ConstraintVT.getSizeInBits())) {
4726                 weightSum = -1; // Can't match.
4727                 break;
4728               }
4729             }
4730           }
4731           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4732           if (weight == -1) {
4733             weightSum = -1;
4734             break;
4735           }
4736           weightSum += weight;
4737         }
4738         // Update best.
4739         if (weightSum > bestWeight) {
4740           bestWeight = weightSum;
4741           bestMAIndex = maIndex;
4742         }
4743       }
4744 
4745       // Now select chosen alternative in each constraint.
4746       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4747            cIndex != eIndex; ++cIndex) {
4748         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4749         if (cInfo.Type == InlineAsm::isClobber)
4750           continue;
4751         cInfo.selectAlternative(bestMAIndex);
4752       }
4753     }
4754   }
4755 
4756   // Check and hook up tied operands, choose constraint code to use.
4757   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4758        cIndex != eIndex; ++cIndex) {
4759     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4760 
4761     // If this is an output operand with a matching input operand, look up the
4762     // matching input. If their types mismatch, e.g. one is an integer, the
4763     // other is floating point, or their sizes are different, flag it as an
4764     // error.
4765     if (OpInfo.hasMatchingInput()) {
4766       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4767 
4768       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4769         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4770             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4771                                          OpInfo.ConstraintVT);
4772         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4773             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4774                                          Input.ConstraintVT);
4775         if ((OpInfo.ConstraintVT.isInteger() !=
4776              Input.ConstraintVT.isInteger()) ||
4777             (MatchRC.second != InputRC.second)) {
4778           report_fatal_error("Unsupported asm: input constraint"
4779                              " with a matching output constraint of"
4780                              " incompatible type!");
4781         }
4782       }
4783     }
4784   }
4785 
4786   return ConstraintOperands;
4787 }
4788 
4789 /// Return an integer indicating how general CT is.
4790 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4791   switch (CT) {
4792   case TargetLowering::C_Immediate:
4793   case TargetLowering::C_Other:
4794   case TargetLowering::C_Unknown:
4795     return 0;
4796   case TargetLowering::C_Register:
4797     return 1;
4798   case TargetLowering::C_RegisterClass:
4799     return 2;
4800   case TargetLowering::C_Memory:
4801     return 3;
4802   }
4803   llvm_unreachable("Invalid constraint type");
4804 }
4805 
4806 /// Examine constraint type and operand type and determine a weight value.
4807 /// This object must already have been set up with the operand type
4808 /// and the current alternative constraint selected.
4809 TargetLowering::ConstraintWeight
4810   TargetLowering::getMultipleConstraintMatchWeight(
4811     AsmOperandInfo &info, int maIndex) const {
4812   InlineAsm::ConstraintCodeVector *rCodes;
4813   if (maIndex >= (int)info.multipleAlternatives.size())
4814     rCodes = &info.Codes;
4815   else
4816     rCodes = &info.multipleAlternatives[maIndex].Codes;
4817   ConstraintWeight BestWeight = CW_Invalid;
4818 
4819   // Loop over the options, keeping track of the most general one.
4820   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4821     ConstraintWeight weight =
4822       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4823     if (weight > BestWeight)
4824       BestWeight = weight;
4825   }
4826 
4827   return BestWeight;
4828 }
4829 
4830 /// Examine constraint type and operand type and determine a weight value.
4831 /// This object must already have been set up with the operand type
4832 /// and the current alternative constraint selected.
4833 TargetLowering::ConstraintWeight
4834   TargetLowering::getSingleConstraintMatchWeight(
4835     AsmOperandInfo &info, const char *constraint) const {
4836   ConstraintWeight weight = CW_Invalid;
4837   Value *CallOperandVal = info.CallOperandVal;
4838     // If we don't have a value, we can't do a match,
4839     // but allow it at the lowest weight.
4840   if (!CallOperandVal)
4841     return CW_Default;
4842   // Look at the constraint type.
4843   switch (*constraint) {
4844     case 'i': // immediate integer.
4845     case 'n': // immediate integer with a known value.
4846       if (isa<ConstantInt>(CallOperandVal))
4847         weight = CW_Constant;
4848       break;
4849     case 's': // non-explicit intregal immediate.
4850       if (isa<GlobalValue>(CallOperandVal))
4851         weight = CW_Constant;
4852       break;
4853     case 'E': // immediate float if host format.
4854     case 'F': // immediate float.
4855       if (isa<ConstantFP>(CallOperandVal))
4856         weight = CW_Constant;
4857       break;
4858     case '<': // memory operand with autodecrement.
4859     case '>': // memory operand with autoincrement.
4860     case 'm': // memory operand.
4861     case 'o': // offsettable memory operand
4862     case 'V': // non-offsettable memory operand
4863       weight = CW_Memory;
4864       break;
4865     case 'r': // general register.
4866     case 'g': // general register, memory operand or immediate integer.
4867               // note: Clang converts "g" to "imr".
4868       if (CallOperandVal->getType()->isIntegerTy())
4869         weight = CW_Register;
4870       break;
4871     case 'X': // any operand.
4872   default:
4873     weight = CW_Default;
4874     break;
4875   }
4876   return weight;
4877 }
4878 
4879 /// If there are multiple different constraints that we could pick for this
4880 /// operand (e.g. "imr") try to pick the 'best' one.
4881 /// This is somewhat tricky: constraints fall into four classes:
4882 ///    Other         -> immediates and magic values
4883 ///    Register      -> one specific register
4884 ///    RegisterClass -> a group of regs
4885 ///    Memory        -> memory
4886 /// Ideally, we would pick the most specific constraint possible: if we have
4887 /// something that fits into a register, we would pick it.  The problem here
4888 /// is that if we have something that could either be in a register or in
4889 /// memory that use of the register could cause selection of *other*
4890 /// operands to fail: they might only succeed if we pick memory.  Because of
4891 /// this the heuristic we use is:
4892 ///
4893 ///  1) If there is an 'other' constraint, and if the operand is valid for
4894 ///     that constraint, use it.  This makes us take advantage of 'i'
4895 ///     constraints when available.
4896 ///  2) Otherwise, pick the most general constraint present.  This prefers
4897 ///     'm' over 'r', for example.
4898 ///
4899 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4900                              const TargetLowering &TLI,
4901                              SDValue Op, SelectionDAG *DAG) {
4902   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4903   unsigned BestIdx = 0;
4904   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4905   int BestGenerality = -1;
4906 
4907   // Loop over the options, keeping track of the most general one.
4908   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4909     TargetLowering::ConstraintType CType =
4910       TLI.getConstraintType(OpInfo.Codes[i]);
4911 
4912     // Indirect 'other' or 'immediate' constraints are not allowed.
4913     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4914                                CType == TargetLowering::C_Register ||
4915                                CType == TargetLowering::C_RegisterClass))
4916       continue;
4917 
4918     // If this is an 'other' or 'immediate' constraint, see if the operand is
4919     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4920     // the operand is an integer in the range [0..31] we want to use I (saving a
4921     // load of a register), otherwise we must use 'r'.
4922     if ((CType == TargetLowering::C_Other ||
4923          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4924       assert(OpInfo.Codes[i].size() == 1 &&
4925              "Unhandled multi-letter 'other' constraint");
4926       std::vector<SDValue> ResultOps;
4927       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4928                                        ResultOps, *DAG);
4929       if (!ResultOps.empty()) {
4930         BestType = CType;
4931         BestIdx = i;
4932         break;
4933       }
4934     }
4935 
4936     // Things with matching constraints can only be registers, per gcc
4937     // documentation.  This mainly affects "g" constraints.
4938     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4939       continue;
4940 
4941     // This constraint letter is more general than the previous one, use it.
4942     int Generality = getConstraintGenerality(CType);
4943     if (Generality > BestGenerality) {
4944       BestType = CType;
4945       BestIdx = i;
4946       BestGenerality = Generality;
4947     }
4948   }
4949 
4950   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4951   OpInfo.ConstraintType = BestType;
4952 }
4953 
4954 /// Determines the constraint code and constraint type to use for the specific
4955 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4956 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4957                                             SDValue Op,
4958                                             SelectionDAG *DAG) const {
4959   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4960 
4961   // Single-letter constraints ('r') are very common.
4962   if (OpInfo.Codes.size() == 1) {
4963     OpInfo.ConstraintCode = OpInfo.Codes[0];
4964     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4965   } else {
4966     ChooseConstraint(OpInfo, *this, Op, DAG);
4967   }
4968 
4969   // 'X' matches anything.
4970   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4971     // Labels and constants are handled elsewhere ('X' is the only thing
4972     // that matches labels).  For Functions, the type here is the type of
4973     // the result, which is not what we want to look at; leave them alone.
4974     Value *v = OpInfo.CallOperandVal;
4975     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4976       OpInfo.CallOperandVal = v;
4977       return;
4978     }
4979 
4980     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4981       return;
4982 
4983     // Otherwise, try to resolve it to something we know about by looking at
4984     // the actual operand type.
4985     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4986       OpInfo.ConstraintCode = Repl;
4987       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4988     }
4989   }
4990 }
4991 
4992 /// Given an exact SDIV by a constant, create a multiplication
4993 /// with the multiplicative inverse of the constant.
4994 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4995                               const SDLoc &dl, SelectionDAG &DAG,
4996                               SmallVectorImpl<SDNode *> &Created) {
4997   SDValue Op0 = N->getOperand(0);
4998   SDValue Op1 = N->getOperand(1);
4999   EVT VT = N->getValueType(0);
5000   EVT SVT = VT.getScalarType();
5001   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5002   EVT ShSVT = ShVT.getScalarType();
5003 
5004   bool UseSRA = false;
5005   SmallVector<SDValue, 16> Shifts, Factors;
5006 
5007   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5008     if (C->isNullValue())
5009       return false;
5010     APInt Divisor = C->getAPIntValue();
5011     unsigned Shift = Divisor.countTrailingZeros();
5012     if (Shift) {
5013       Divisor.ashrInPlace(Shift);
5014       UseSRA = true;
5015     }
5016     // Calculate the multiplicative inverse, using Newton's method.
5017     APInt t;
5018     APInt Factor = Divisor;
5019     while ((t = Divisor * Factor) != 1)
5020       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5021     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5022     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5023     return true;
5024   };
5025 
5026   // Collect all magic values from the build vector.
5027   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5028     return SDValue();
5029 
5030   SDValue Shift, Factor;
5031   if (VT.isVector()) {
5032     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5033     Factor = DAG.getBuildVector(VT, dl, Factors);
5034   } else {
5035     Shift = Shifts[0];
5036     Factor = Factors[0];
5037   }
5038 
5039   SDValue Res = Op0;
5040 
5041   // Shift the value upfront if it is even, so the LSB is one.
5042   if (UseSRA) {
5043     // TODO: For UDIV use SRL instead of SRA.
5044     SDNodeFlags Flags;
5045     Flags.setExact(true);
5046     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5047     Created.push_back(Res.getNode());
5048   }
5049 
5050   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5051 }
5052 
5053 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5054                               SelectionDAG &DAG,
5055                               SmallVectorImpl<SDNode *> &Created) const {
5056   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5058   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5059     return SDValue(N, 0); // Lower SDIV as SDIV
5060   return SDValue();
5061 }
5062 
5063 /// Given an ISD::SDIV node expressing a divide by constant,
5064 /// return a DAG expression to select that will generate the same value by
5065 /// multiplying by a magic number.
5066 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5067 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5068                                   bool IsAfterLegalization,
5069                                   SmallVectorImpl<SDNode *> &Created) const {
5070   SDLoc dl(N);
5071   EVT VT = N->getValueType(0);
5072   EVT SVT = VT.getScalarType();
5073   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5074   EVT ShSVT = ShVT.getScalarType();
5075   unsigned EltBits = VT.getScalarSizeInBits();
5076 
5077   // Check to see if we can do this.
5078   // FIXME: We should be more aggressive here.
5079   if (!isTypeLegal(VT))
5080     return SDValue();
5081 
5082   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5083   if (N->getFlags().hasExact())
5084     return BuildExactSDIV(*this, N, dl, DAG, Created);
5085 
5086   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5087 
5088   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5089     if (C->isNullValue())
5090       return false;
5091 
5092     const APInt &Divisor = C->getAPIntValue();
5093     APInt::ms magics = Divisor.magic();
5094     int NumeratorFactor = 0;
5095     int ShiftMask = -1;
5096 
5097     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5098       // If d is +1/-1, we just multiply the numerator by +1/-1.
5099       NumeratorFactor = Divisor.getSExtValue();
5100       magics.m = 0;
5101       magics.s = 0;
5102       ShiftMask = 0;
5103     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5104       // If d > 0 and m < 0, add the numerator.
5105       NumeratorFactor = 1;
5106     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5107       // If d < 0 and m > 0, subtract the numerator.
5108       NumeratorFactor = -1;
5109     }
5110 
5111     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5112     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5113     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5114     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5115     return true;
5116   };
5117 
5118   SDValue N0 = N->getOperand(0);
5119   SDValue N1 = N->getOperand(1);
5120 
5121   // Collect the shifts / magic values from each element.
5122   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5123     return SDValue();
5124 
5125   SDValue MagicFactor, Factor, Shift, ShiftMask;
5126   if (VT.isVector()) {
5127     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5128     Factor = DAG.getBuildVector(VT, dl, Factors);
5129     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5130     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5131   } else {
5132     MagicFactor = MagicFactors[0];
5133     Factor = Factors[0];
5134     Shift = Shifts[0];
5135     ShiftMask = ShiftMasks[0];
5136   }
5137 
5138   // Multiply the numerator (operand 0) by the magic value.
5139   // FIXME: We should support doing a MUL in a wider type.
5140   SDValue Q;
5141   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5142                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5143     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5144   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5145                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5146     SDValue LoHi =
5147         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5148     Q = SDValue(LoHi.getNode(), 1);
5149   } else
5150     return SDValue(); // No mulhs or equivalent.
5151   Created.push_back(Q.getNode());
5152 
5153   // (Optionally) Add/subtract the numerator using Factor.
5154   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5155   Created.push_back(Factor.getNode());
5156   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5157   Created.push_back(Q.getNode());
5158 
5159   // Shift right algebraic by shift value.
5160   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5161   Created.push_back(Q.getNode());
5162 
5163   // Extract the sign bit, mask it and add it to the quotient.
5164   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5165   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5166   Created.push_back(T.getNode());
5167   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5168   Created.push_back(T.getNode());
5169   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5170 }
5171 
5172 /// Given an ISD::UDIV node expressing a divide by constant,
5173 /// return a DAG expression to select that will generate the same value by
5174 /// multiplying by a magic number.
5175 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5176 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5177                                   bool IsAfterLegalization,
5178                                   SmallVectorImpl<SDNode *> &Created) const {
5179   SDLoc dl(N);
5180   EVT VT = N->getValueType(0);
5181   EVT SVT = VT.getScalarType();
5182   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5183   EVT ShSVT = ShVT.getScalarType();
5184   unsigned EltBits = VT.getScalarSizeInBits();
5185 
5186   // Check to see if we can do this.
5187   // FIXME: We should be more aggressive here.
5188   if (!isTypeLegal(VT))
5189     return SDValue();
5190 
5191   bool UseNPQ = false;
5192   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5193 
5194   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5195     if (C->isNullValue())
5196       return false;
5197     // FIXME: We should use a narrower constant when the upper
5198     // bits are known to be zero.
5199     APInt Divisor = C->getAPIntValue();
5200     APInt::mu magics = Divisor.magicu();
5201     unsigned PreShift = 0, PostShift = 0;
5202 
5203     // If the divisor is even, we can avoid using the expensive fixup by
5204     // shifting the divided value upfront.
5205     if (magics.a != 0 && !Divisor[0]) {
5206       PreShift = Divisor.countTrailingZeros();
5207       // Get magic number for the shifted divisor.
5208       magics = Divisor.lshr(PreShift).magicu(PreShift);
5209       assert(magics.a == 0 && "Should use cheap fixup now");
5210     }
5211 
5212     APInt Magic = magics.m;
5213 
5214     unsigned SelNPQ;
5215     if (magics.a == 0 || Divisor.isOneValue()) {
5216       assert(magics.s < Divisor.getBitWidth() &&
5217              "We shouldn't generate an undefined shift!");
5218       PostShift = magics.s;
5219       SelNPQ = false;
5220     } else {
5221       PostShift = magics.s - 1;
5222       SelNPQ = true;
5223     }
5224 
5225     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5226     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5227     NPQFactors.push_back(
5228         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5229                                : APInt::getNullValue(EltBits),
5230                         dl, SVT));
5231     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5232     UseNPQ |= SelNPQ;
5233     return true;
5234   };
5235 
5236   SDValue N0 = N->getOperand(0);
5237   SDValue N1 = N->getOperand(1);
5238 
5239   // Collect the shifts/magic values from each element.
5240   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5241     return SDValue();
5242 
5243   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5244   if (VT.isVector()) {
5245     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5246     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5247     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5248     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5249   } else {
5250     PreShift = PreShifts[0];
5251     MagicFactor = MagicFactors[0];
5252     PostShift = PostShifts[0];
5253   }
5254 
5255   SDValue Q = N0;
5256   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5257   Created.push_back(Q.getNode());
5258 
5259   // FIXME: We should support doing a MUL in a wider type.
5260   auto GetMULHU = [&](SDValue X, SDValue Y) {
5261     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5262                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5263       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5264     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5265                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5266       SDValue LoHi =
5267           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5268       return SDValue(LoHi.getNode(), 1);
5269     }
5270     return SDValue(); // No mulhu or equivalent
5271   };
5272 
5273   // Multiply the numerator (operand 0) by the magic value.
5274   Q = GetMULHU(Q, MagicFactor);
5275   if (!Q)
5276     return SDValue();
5277 
5278   Created.push_back(Q.getNode());
5279 
5280   if (UseNPQ) {
5281     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5282     Created.push_back(NPQ.getNode());
5283 
5284     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5285     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5286     if (VT.isVector())
5287       NPQ = GetMULHU(NPQ, NPQFactor);
5288     else
5289       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5290 
5291     Created.push_back(NPQ.getNode());
5292 
5293     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5294     Created.push_back(Q.getNode());
5295   }
5296 
5297   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5298   Created.push_back(Q.getNode());
5299 
5300   SDValue One = DAG.getConstant(1, dl, VT);
5301   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5302   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5303 }
5304 
5305 /// If all values in Values that *don't* match the predicate are same 'splat'
5306 /// value, then replace all values with that splat value.
5307 /// Else, if AlternativeReplacement was provided, then replace all values that
5308 /// do match predicate with AlternativeReplacement value.
5309 static void
5310 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5311                           std::function<bool(SDValue)> Predicate,
5312                           SDValue AlternativeReplacement = SDValue()) {
5313   SDValue Replacement;
5314   // Is there a value for which the Predicate does *NOT* match? What is it?
5315   auto SplatValue = llvm::find_if_not(Values, Predicate);
5316   if (SplatValue != Values.end()) {
5317     // Does Values consist only of SplatValue's and values matching Predicate?
5318     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5319           return Value == *SplatValue || Predicate(Value);
5320         })) // Then we shall replace values matching predicate with SplatValue.
5321       Replacement = *SplatValue;
5322   }
5323   if (!Replacement) {
5324     // Oops, we did not find the "baseline" splat value.
5325     if (!AlternativeReplacement)
5326       return; // Nothing to do.
5327     // Let's replace with provided value then.
5328     Replacement = AlternativeReplacement;
5329   }
5330   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5331 }
5332 
5333 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5334 /// where the divisor is constant and the comparison target is zero,
5335 /// return a DAG expression that will generate the same comparison result
5336 /// using only multiplications, additions and shifts/rotations.
5337 /// Ref: "Hacker's Delight" 10-17.
5338 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5339                                         SDValue CompTargetNode,
5340                                         ISD::CondCode Cond,
5341                                         DAGCombinerInfo &DCI,
5342                                         const SDLoc &DL) const {
5343   SmallVector<SDNode *, 5> Built;
5344   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5345                                          DCI, DL, Built)) {
5346     for (SDNode *N : Built)
5347       DCI.AddToWorklist(N);
5348     return Folded;
5349   }
5350 
5351   return SDValue();
5352 }
5353 
5354 SDValue
5355 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5356                                   SDValue CompTargetNode, ISD::CondCode Cond,
5357                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5358                                   SmallVectorImpl<SDNode *> &Created) const {
5359   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5360   // - D must be constant, with D = D0 * 2^K where D0 is odd
5361   // - P is the multiplicative inverse of D0 modulo 2^W
5362   // - Q = floor(((2^W) - 1) / D)
5363   // where W is the width of the common type of N and D.
5364   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5365          "Only applicable for (in)equality comparisons.");
5366 
5367   SelectionDAG &DAG = DCI.DAG;
5368 
5369   EVT VT = REMNode.getValueType();
5370   EVT SVT = VT.getScalarType();
5371   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5372   EVT ShSVT = ShVT.getScalarType();
5373 
5374   // If MUL is unavailable, we cannot proceed in any case.
5375   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5376     return SDValue();
5377 
5378   bool ComparingWithAllZeros = true;
5379   bool AllComparisonsWithNonZerosAreTautological = true;
5380   bool HadTautologicalLanes = false;
5381   bool AllLanesAreTautological = true;
5382   bool HadEvenDivisor = false;
5383   bool AllDivisorsArePowerOfTwo = true;
5384   bool HadTautologicalInvertedLanes = false;
5385   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5386 
5387   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5388     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5389     if (CDiv->isNullValue())
5390       return false;
5391 
5392     const APInt &D = CDiv->getAPIntValue();
5393     const APInt &Cmp = CCmp->getAPIntValue();
5394 
5395     ComparingWithAllZeros &= Cmp.isNullValue();
5396 
5397     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5398     // if C2 is not less than C1, the comparison is always false.
5399     // But we will only be able to produce the comparison that will give the
5400     // opposive tautological answer. So this lane would need to be fixed up.
5401     bool TautologicalInvertedLane = D.ule(Cmp);
5402     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5403 
5404     // If all lanes are tautological (either all divisors are ones, or divisor
5405     // is not greater than the constant we are comparing with),
5406     // we will prefer to avoid the fold.
5407     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5408     HadTautologicalLanes |= TautologicalLane;
5409     AllLanesAreTautological &= TautologicalLane;
5410 
5411     // If we are comparing with non-zero, we need'll need  to subtract said
5412     // comparison value from the LHS. But there is no point in doing that if
5413     // every lane where we are comparing with non-zero is tautological..
5414     if (!Cmp.isNullValue())
5415       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5416 
5417     // Decompose D into D0 * 2^K
5418     unsigned K = D.countTrailingZeros();
5419     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5420     APInt D0 = D.lshr(K);
5421 
5422     // D is even if it has trailing zeros.
5423     HadEvenDivisor |= (K != 0);
5424     // D is a power-of-two if D0 is one.
5425     // If all divisors are power-of-two, we will prefer to avoid the fold.
5426     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5427 
5428     // P = inv(D0, 2^W)
5429     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5430     unsigned W = D.getBitWidth();
5431     APInt P = D0.zext(W + 1)
5432                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5433                   .trunc(W);
5434     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5435     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5436 
5437     // Q = floor((2^W - 1) u/ D)
5438     // R = ((2^W - 1) u% D)
5439     APInt Q, R;
5440     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5441 
5442     // If we are comparing with zero, then that comparison constant is okay,
5443     // else it may need to be one less than that.
5444     if (Cmp.ugt(R))
5445       Q -= 1;
5446 
5447     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5448            "We are expecting that K is always less than all-ones for ShSVT");
5449 
5450     // If the lane is tautological the result can be constant-folded.
5451     if (TautologicalLane) {
5452       // Set P and K amount to a bogus values so we can try to splat them.
5453       P = 0;
5454       K = -1;
5455       // And ensure that comparison constant is tautological,
5456       // it will always compare true/false.
5457       Q = -1;
5458     }
5459 
5460     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5461     KAmts.push_back(
5462         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5463     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5464     return true;
5465   };
5466 
5467   SDValue N = REMNode.getOperand(0);
5468   SDValue D = REMNode.getOperand(1);
5469 
5470   // Collect the values from each element.
5471   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5472     return SDValue();
5473 
5474   // If all lanes are tautological, the result can be constant-folded.
5475   if (AllLanesAreTautological)
5476     return SDValue();
5477 
5478   // If this is a urem by a powers-of-two, avoid the fold since it can be
5479   // best implemented as a bit test.
5480   if (AllDivisorsArePowerOfTwo)
5481     return SDValue();
5482 
5483   SDValue PVal, KVal, QVal;
5484   if (VT.isVector()) {
5485     if (HadTautologicalLanes) {
5486       // Try to turn PAmts into a splat, since we don't care about the values
5487       // that are currently '0'. If we can't, just keep '0'`s.
5488       turnVectorIntoSplatVector(PAmts, isNullConstant);
5489       // Try to turn KAmts into a splat, since we don't care about the values
5490       // that are currently '-1'. If we can't, change them to '0'`s.
5491       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5492                                 DAG.getConstant(0, DL, ShSVT));
5493     }
5494 
5495     PVal = DAG.getBuildVector(VT, DL, PAmts);
5496     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5497     QVal = DAG.getBuildVector(VT, DL, QAmts);
5498   } else {
5499     PVal = PAmts[0];
5500     KVal = KAmts[0];
5501     QVal = QAmts[0];
5502   }
5503 
5504   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5505     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5506       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5507     assert(CompTargetNode.getValueType() == N.getValueType() &&
5508            "Expecting that the types on LHS and RHS of comparisons match.");
5509     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5510   }
5511 
5512   // (mul N, P)
5513   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5514   Created.push_back(Op0.getNode());
5515 
5516   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5517   // divisors as a performance improvement, since rotating by 0 is a no-op.
5518   if (HadEvenDivisor) {
5519     // We need ROTR to do this.
5520     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5521       return SDValue();
5522     SDNodeFlags Flags;
5523     Flags.setExact(true);
5524     // UREM: (rotr (mul N, P), K)
5525     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5526     Created.push_back(Op0.getNode());
5527   }
5528 
5529   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5530   SDValue NewCC =
5531       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5532                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5533   if (!HadTautologicalInvertedLanes)
5534     return NewCC;
5535 
5536   // If any lanes previously compared always-false, the NewCC will give
5537   // always-true result for them, so we need to fixup those lanes.
5538   // Or the other way around for inequality predicate.
5539   assert(VT.isVector() && "Can/should only get here for vectors.");
5540   Created.push_back(NewCC.getNode());
5541 
5542   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5543   // if C2 is not less than C1, the comparison is always false.
5544   // But we have produced the comparison that will give the
5545   // opposive tautological answer. So these lanes would need to be fixed up.
5546   SDValue TautologicalInvertedChannels =
5547       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5548   Created.push_back(TautologicalInvertedChannels.getNode());
5549 
5550   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5551     // If we have a vector select, let's replace the comparison results in the
5552     // affected lanes with the correct tautological result.
5553     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5554                                               DL, SETCCVT, SETCCVT);
5555     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5556                        Replacement, NewCC);
5557   }
5558 
5559   // Else, we can just invert the comparison result in the appropriate lanes.
5560   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5561     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5562                        TautologicalInvertedChannels);
5563 
5564   return SDValue(); // Don't know how to lower.
5565 }
5566 
5567 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5568 /// where the divisor is constant and the comparison target is zero,
5569 /// return a DAG expression that will generate the same comparison result
5570 /// using only multiplications, additions and shifts/rotations.
5571 /// Ref: "Hacker's Delight" 10-17.
5572 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5573                                         SDValue CompTargetNode,
5574                                         ISD::CondCode Cond,
5575                                         DAGCombinerInfo &DCI,
5576                                         const SDLoc &DL) const {
5577   SmallVector<SDNode *, 7> Built;
5578   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5579                                          DCI, DL, Built)) {
5580     assert(Built.size() <= 7 && "Max size prediction failed.");
5581     for (SDNode *N : Built)
5582       DCI.AddToWorklist(N);
5583     return Folded;
5584   }
5585 
5586   return SDValue();
5587 }
5588 
5589 SDValue
5590 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5591                                   SDValue CompTargetNode, ISD::CondCode Cond,
5592                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5593                                   SmallVectorImpl<SDNode *> &Created) const {
5594   // Fold:
5595   //   (seteq/ne (srem N, D), 0)
5596   // To:
5597   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5598   //
5599   // - D must be constant, with D = D0 * 2^K where D0 is odd
5600   // - P is the multiplicative inverse of D0 modulo 2^W
5601   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5602   // - Q = floor((2 * A) / (2^K))
5603   // where W is the width of the common type of N and D.
5604   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5605          "Only applicable for (in)equality comparisons.");
5606 
5607   SelectionDAG &DAG = DCI.DAG;
5608 
5609   EVT VT = REMNode.getValueType();
5610   EVT SVT = VT.getScalarType();
5611   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5612   EVT ShSVT = ShVT.getScalarType();
5613 
5614   // If MUL is unavailable, we cannot proceed in any case.
5615   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5616     return SDValue();
5617 
5618   // TODO: Could support comparing with non-zero too.
5619   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5620   if (!CompTarget || !CompTarget->isNullValue())
5621     return SDValue();
5622 
5623   bool HadIntMinDivisor = false;
5624   bool HadOneDivisor = false;
5625   bool AllDivisorsAreOnes = true;
5626   bool HadEvenDivisor = false;
5627   bool NeedToApplyOffset = false;
5628   bool AllDivisorsArePowerOfTwo = true;
5629   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5630 
5631   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5632     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5633     if (C->isNullValue())
5634       return false;
5635 
5636     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5637 
5638     // WARNING: this fold is only valid for positive divisors!
5639     APInt D = C->getAPIntValue();
5640     if (D.isNegative())
5641       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5642 
5643     HadIntMinDivisor |= D.isMinSignedValue();
5644 
5645     // If all divisors are ones, we will prefer to avoid the fold.
5646     HadOneDivisor |= D.isOneValue();
5647     AllDivisorsAreOnes &= D.isOneValue();
5648 
5649     // Decompose D into D0 * 2^K
5650     unsigned K = D.countTrailingZeros();
5651     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5652     APInt D0 = D.lshr(K);
5653 
5654     if (!D.isMinSignedValue()) {
5655       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5656       // we don't care about this lane in this fold, we'll special-handle it.
5657       HadEvenDivisor |= (K != 0);
5658     }
5659 
5660     // D is a power-of-two if D0 is one. This includes INT_MIN.
5661     // If all divisors are power-of-two, we will prefer to avoid the fold.
5662     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5663 
5664     // P = inv(D0, 2^W)
5665     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5666     unsigned W = D.getBitWidth();
5667     APInt P = D0.zext(W + 1)
5668                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5669                   .trunc(W);
5670     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5671     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5672 
5673     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5674     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5675     A.clearLowBits(K);
5676 
5677     if (!D.isMinSignedValue()) {
5678       // If divisor INT_MIN, then we don't care about this lane in this fold,
5679       // we'll special-handle it.
5680       NeedToApplyOffset |= A != 0;
5681     }
5682 
5683     // Q = floor((2 * A) / (2^K))
5684     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5685 
5686     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5687            "We are expecting that A is always less than all-ones for SVT");
5688     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5689            "We are expecting that K is always less than all-ones for ShSVT");
5690 
5691     // If the divisor is 1 the result can be constant-folded. Likewise, we
5692     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5693     if (D.isOneValue()) {
5694       // Set P, A and K to a bogus values so we can try to splat them.
5695       P = 0;
5696       A = -1;
5697       K = -1;
5698 
5699       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5700       Q = -1;
5701     }
5702 
5703     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5704     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5705     KAmts.push_back(
5706         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5707     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5708     return true;
5709   };
5710 
5711   SDValue N = REMNode.getOperand(0);
5712   SDValue D = REMNode.getOperand(1);
5713 
5714   // Collect the values from each element.
5715   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5716     return SDValue();
5717 
5718   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5719   if (AllDivisorsAreOnes)
5720     return SDValue();
5721 
5722   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5723   // since it can be best implemented as a bit test.
5724   if (AllDivisorsArePowerOfTwo)
5725     return SDValue();
5726 
5727   SDValue PVal, AVal, KVal, QVal;
5728   if (VT.isVector()) {
5729     if (HadOneDivisor) {
5730       // Try to turn PAmts into a splat, since we don't care about the values
5731       // that are currently '0'. If we can't, just keep '0'`s.
5732       turnVectorIntoSplatVector(PAmts, isNullConstant);
5733       // Try to turn AAmts into a splat, since we don't care about the
5734       // values that are currently '-1'. If we can't, change them to '0'`s.
5735       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5736                                 DAG.getConstant(0, DL, SVT));
5737       // Try to turn KAmts into a splat, since we don't care about the values
5738       // that are currently '-1'. If we can't, change them to '0'`s.
5739       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5740                                 DAG.getConstant(0, DL, ShSVT));
5741     }
5742 
5743     PVal = DAG.getBuildVector(VT, DL, PAmts);
5744     AVal = DAG.getBuildVector(VT, DL, AAmts);
5745     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5746     QVal = DAG.getBuildVector(VT, DL, QAmts);
5747   } else {
5748     PVal = PAmts[0];
5749     AVal = AAmts[0];
5750     KVal = KAmts[0];
5751     QVal = QAmts[0];
5752   }
5753 
5754   // (mul N, P)
5755   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5756   Created.push_back(Op0.getNode());
5757 
5758   if (NeedToApplyOffset) {
5759     // We need ADD to do this.
5760     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5761       return SDValue();
5762 
5763     // (add (mul N, P), A)
5764     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5765     Created.push_back(Op0.getNode());
5766   }
5767 
5768   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5769   // divisors as a performance improvement, since rotating by 0 is a no-op.
5770   if (HadEvenDivisor) {
5771     // We need ROTR to do this.
5772     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5773       return SDValue();
5774     SDNodeFlags Flags;
5775     Flags.setExact(true);
5776     // SREM: (rotr (add (mul N, P), A), K)
5777     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5778     Created.push_back(Op0.getNode());
5779   }
5780 
5781   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5782   SDValue Fold =
5783       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5784                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5785 
5786   // If we didn't have lanes with INT_MIN divisor, then we're done.
5787   if (!HadIntMinDivisor)
5788     return Fold;
5789 
5790   // That fold is only valid for positive divisors. Which effectively means,
5791   // it is invalid for INT_MIN divisors. So if we have such a lane,
5792   // we must fix-up results for said lanes.
5793   assert(VT.isVector() && "Can/should only get here for vectors.");
5794 
5795   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5796       !isOperationLegalOrCustom(ISD::AND, VT) ||
5797       !isOperationLegalOrCustom(Cond, VT) ||
5798       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5799     return SDValue();
5800 
5801   Created.push_back(Fold.getNode());
5802 
5803   SDValue IntMin = DAG.getConstant(
5804       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5805   SDValue IntMax = DAG.getConstant(
5806       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5807   SDValue Zero =
5808       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5809 
5810   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5811   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5812   Created.push_back(DivisorIsIntMin.getNode());
5813 
5814   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5815   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5816   Created.push_back(Masked.getNode());
5817   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5818   Created.push_back(MaskedIsZero.getNode());
5819 
5820   // To produce final result we need to blend 2 vectors: 'SetCC' and
5821   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5822   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5823   // constant-folded, select can get lowered to a shuffle with constant mask.
5824   SDValue Blended =
5825       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5826 
5827   return Blended;
5828 }
5829 
5830 bool TargetLowering::
5831 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5832   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5833     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5834                                 "be a constant integer");
5835     return true;
5836   }
5837 
5838   return false;
5839 }
5840 
5841 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5842                                              bool LegalOps, bool OptForSize,
5843                                              NegatibleCost &Cost,
5844                                              unsigned Depth) const {
5845   // fneg is removable even if it has multiple uses.
5846   if (Op.getOpcode() == ISD::FNEG) {
5847     Cost = NegatibleCost::Cheaper;
5848     return Op.getOperand(0);
5849   }
5850 
5851   // Don't recurse exponentially.
5852   if (Depth > SelectionDAG::MaxRecursionDepth)
5853     return SDValue();
5854 
5855   // Pre-increment recursion depth for use in recursive calls.
5856   ++Depth;
5857   const SDNodeFlags Flags = Op->getFlags();
5858   const TargetOptions &Options = DAG.getTarget().Options;
5859   EVT VT = Op.getValueType();
5860   unsigned Opcode = Op.getOpcode();
5861 
5862   // Don't allow anything with multiple uses unless we know it is free.
5863   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5864     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5865                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5866     if (!IsFreeExtend)
5867       return SDValue();
5868   }
5869 
5870   auto RemoveDeadNode = [&](SDValue N) {
5871     if (N && N.getNode()->use_empty())
5872       DAG.RemoveDeadNode(N.getNode());
5873   };
5874 
5875   SDLoc DL(Op);
5876 
5877   switch (Opcode) {
5878   case ISD::ConstantFP: {
5879     // Don't invert constant FP values after legalization unless the target says
5880     // the negated constant is legal.
5881     bool IsOpLegal =
5882         isOperationLegal(ISD::ConstantFP, VT) ||
5883         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5884                      OptForSize);
5885 
5886     if (LegalOps && !IsOpLegal)
5887       break;
5888 
5889     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5890     V.changeSign();
5891     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5892 
5893     // If we already have the use of the negated floating constant, it is free
5894     // to negate it even it has multiple uses.
5895     if (!Op.hasOneUse() && CFP.use_empty())
5896       break;
5897     Cost = NegatibleCost::Neutral;
5898     return CFP;
5899   }
5900   case ISD::BUILD_VECTOR: {
5901     // Only permit BUILD_VECTOR of constants.
5902     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5903           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5904         }))
5905       break;
5906 
5907     bool IsOpLegal =
5908         (isOperationLegal(ISD::ConstantFP, VT) &&
5909          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5910         llvm::all_of(Op->op_values(), [&](SDValue N) {
5911           return N.isUndef() ||
5912                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5913                               OptForSize);
5914         });
5915 
5916     if (LegalOps && !IsOpLegal)
5917       break;
5918 
5919     SmallVector<SDValue, 4> Ops;
5920     for (SDValue C : Op->op_values()) {
5921       if (C.isUndef()) {
5922         Ops.push_back(C);
5923         continue;
5924       }
5925       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5926       V.changeSign();
5927       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5928     }
5929     Cost = NegatibleCost::Neutral;
5930     return DAG.getBuildVector(VT, DL, Ops);
5931   }
5932   case ISD::FADD: {
5933     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5934       break;
5935 
5936     // After operation legalization, it might not be legal to create new FSUBs.
5937     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5938       break;
5939     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5940 
5941     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5942     NegatibleCost CostX = NegatibleCost::Expensive;
5943     SDValue NegX =
5944         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5945     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5946     NegatibleCost CostY = NegatibleCost::Expensive;
5947     SDValue NegY =
5948         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5949 
5950     // Negate the X if its cost is less or equal than Y.
5951     if (NegX && (CostX <= CostY)) {
5952       Cost = CostX;
5953       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5954       if (NegY != N)
5955         RemoveDeadNode(NegY);
5956       return N;
5957     }
5958 
5959     // Negate the Y if it is not expensive.
5960     if (NegY) {
5961       Cost = CostY;
5962       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5963       if (NegX != N)
5964         RemoveDeadNode(NegX);
5965       return N;
5966     }
5967     break;
5968   }
5969   case ISD::FSUB: {
5970     // We can't turn -(A-B) into B-A when we honor signed zeros.
5971     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5972       break;
5973 
5974     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5975     // fold (fneg (fsub 0, Y)) -> Y
5976     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5977       if (C->isZero()) {
5978         Cost = NegatibleCost::Cheaper;
5979         return Y;
5980       }
5981 
5982     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5983     Cost = NegatibleCost::Neutral;
5984     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5985   }
5986   case ISD::FMUL:
5987   case ISD::FDIV: {
5988     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5989 
5990     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5991     NegatibleCost CostX = NegatibleCost::Expensive;
5992     SDValue NegX =
5993         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5994     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5995     NegatibleCost CostY = NegatibleCost::Expensive;
5996     SDValue NegY =
5997         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5998 
5999     // Negate the X if its cost is less or equal than Y.
6000     if (NegX && (CostX <= CostY)) {
6001       Cost = CostX;
6002       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6003       if (NegY != N)
6004         RemoveDeadNode(NegY);
6005       return N;
6006     }
6007 
6008     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6009     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6010       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6011         break;
6012 
6013     // Negate the Y if it is not expensive.
6014     if (NegY) {
6015       Cost = CostY;
6016       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6017       if (NegX != N)
6018         RemoveDeadNode(NegX);
6019       return N;
6020     }
6021     break;
6022   }
6023   case ISD::FMA:
6024   case ISD::FMAD: {
6025     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6026       break;
6027 
6028     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6029     NegatibleCost CostZ = NegatibleCost::Expensive;
6030     SDValue NegZ =
6031         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6032     // Give up if fail to negate the Z.
6033     if (!NegZ)
6034       break;
6035 
6036     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6037     NegatibleCost CostX = NegatibleCost::Expensive;
6038     SDValue NegX =
6039         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6040     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6041     NegatibleCost CostY = NegatibleCost::Expensive;
6042     SDValue NegY =
6043         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6044 
6045     // Negate the X if its cost is less or equal than Y.
6046     if (NegX && (CostX <= CostY)) {
6047       Cost = std::min(CostX, CostZ);
6048       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6049       if (NegY != N)
6050         RemoveDeadNode(NegY);
6051       return N;
6052     }
6053 
6054     // Negate the Y if it is not expensive.
6055     if (NegY) {
6056       Cost = std::min(CostY, CostZ);
6057       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6058       if (NegX != N)
6059         RemoveDeadNode(NegX);
6060       return N;
6061     }
6062     break;
6063   }
6064 
6065   case ISD::FP_EXTEND:
6066   case ISD::FSIN:
6067     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6068                                             OptForSize, Cost, Depth))
6069       return DAG.getNode(Opcode, DL, VT, NegV);
6070     break;
6071   case ISD::FP_ROUND:
6072     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6073                                             OptForSize, Cost, Depth))
6074       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6075     break;
6076   }
6077 
6078   return SDValue();
6079 }
6080 
6081 //===----------------------------------------------------------------------===//
6082 // Legalization Utilities
6083 //===----------------------------------------------------------------------===//
6084 
6085 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6086                                     SDValue LHS, SDValue RHS,
6087                                     SmallVectorImpl<SDValue> &Result,
6088                                     EVT HiLoVT, SelectionDAG &DAG,
6089                                     MulExpansionKind Kind, SDValue LL,
6090                                     SDValue LH, SDValue RL, SDValue RH) const {
6091   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6092          Opcode == ISD::SMUL_LOHI);
6093 
6094   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6095                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6096   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6097                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6098   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6099                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6100   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6101                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6102 
6103   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6104     return false;
6105 
6106   unsigned OuterBitSize = VT.getScalarSizeInBits();
6107   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6108   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
6109   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
6110 
6111   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6112   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6113          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6114 
6115   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6116   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6117                           bool Signed) -> bool {
6118     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6119       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6120       Hi = SDValue(Lo.getNode(), 1);
6121       return true;
6122     }
6123     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6124       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6125       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6126       return true;
6127     }
6128     return false;
6129   };
6130 
6131   SDValue Lo, Hi;
6132 
6133   if (!LL.getNode() && !RL.getNode() &&
6134       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6135     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6136     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6137   }
6138 
6139   if (!LL.getNode())
6140     return false;
6141 
6142   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6143   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6144       DAG.MaskedValueIsZero(RHS, HighMask)) {
6145     // The inputs are both zero-extended.
6146     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6147       Result.push_back(Lo);
6148       Result.push_back(Hi);
6149       if (Opcode != ISD::MUL) {
6150         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6151         Result.push_back(Zero);
6152         Result.push_back(Zero);
6153       }
6154       return true;
6155     }
6156   }
6157 
6158   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
6159       RHSSB > InnerBitSize) {
6160     // The input values are both sign-extended.
6161     // TODO non-MUL case?
6162     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6163       Result.push_back(Lo);
6164       Result.push_back(Hi);
6165       return true;
6166     }
6167   }
6168 
6169   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6170   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6171   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6172     // FIXME getShiftAmountTy does not always return a sensible result when VT
6173     // is an illegal type, and so the type may be too small to fit the shift
6174     // amount. Override it with i32. The shift will have to be legalized.
6175     ShiftAmountTy = MVT::i32;
6176   }
6177   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6178 
6179   if (!LH.getNode() && !RH.getNode() &&
6180       isOperationLegalOrCustom(ISD::SRL, VT) &&
6181       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6182     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6183     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6184     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6185     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6186   }
6187 
6188   if (!LH.getNode())
6189     return false;
6190 
6191   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6192     return false;
6193 
6194   Result.push_back(Lo);
6195 
6196   if (Opcode == ISD::MUL) {
6197     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6198     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6199     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6200     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6201     Result.push_back(Hi);
6202     return true;
6203   }
6204 
6205   // Compute the full width result.
6206   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6207     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6208     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6209     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6210     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6211   };
6212 
6213   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6214   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6215     return false;
6216 
6217   // This is effectively the add part of a multiply-add of half-sized operands,
6218   // so it cannot overflow.
6219   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6220 
6221   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6222     return false;
6223 
6224   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6225   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6226 
6227   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6228                   isOperationLegalOrCustom(ISD::ADDE, VT));
6229   if (UseGlue)
6230     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6231                        Merge(Lo, Hi));
6232   else
6233     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6234                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6235 
6236   SDValue Carry = Next.getValue(1);
6237   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6238   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6239 
6240   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6241     return false;
6242 
6243   if (UseGlue)
6244     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6245                      Carry);
6246   else
6247     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6248                      Zero, Carry);
6249 
6250   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6251 
6252   if (Opcode == ISD::SMUL_LOHI) {
6253     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6254                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6255     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6256 
6257     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6258                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6259     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6260   }
6261 
6262   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6263   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6264   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6265   return true;
6266 }
6267 
6268 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6269                                SelectionDAG &DAG, MulExpansionKind Kind,
6270                                SDValue LL, SDValue LH, SDValue RL,
6271                                SDValue RH) const {
6272   SmallVector<SDValue, 2> Result;
6273   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6274                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6275                            DAG, Kind, LL, LH, RL, RH);
6276   if (Ok) {
6277     assert(Result.size() == 2);
6278     Lo = Result[0];
6279     Hi = Result[1];
6280   }
6281   return Ok;
6282 }
6283 
6284 // Check that (every element of) Z is undef or not an exact multiple of BW.
6285 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6286   return ISD::matchUnaryPredicate(
6287       Z,
6288       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6289       true);
6290 }
6291 
6292 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6293                                        SelectionDAG &DAG) const {
6294   EVT VT = Node->getValueType(0);
6295 
6296   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6297                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6298                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6299                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6300     return false;
6301 
6302   SDValue X = Node->getOperand(0);
6303   SDValue Y = Node->getOperand(1);
6304   SDValue Z = Node->getOperand(2);
6305 
6306   unsigned BW = VT.getScalarSizeInBits();
6307   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6308   SDLoc DL(SDValue(Node, 0));
6309 
6310   EVT ShVT = Z.getValueType();
6311 
6312   // If a funnel shift in the other direction is more supported, use it.
6313   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6314   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6315       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6316     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6317       // fshl X, Y, Z -> fshr X, Y, -Z
6318       // fshr X, Y, Z -> fshl X, Y, -Z
6319       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6320       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6321     } else {
6322       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6323       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6324       SDValue One = DAG.getConstant(1, DL, ShVT);
6325       if (IsFSHL) {
6326         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6327         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6328       } else {
6329         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6330         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6331       }
6332       Z = DAG.getNOT(DL, Z, ShVT);
6333     }
6334     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6335     return true;
6336   }
6337 
6338   SDValue ShX, ShY;
6339   SDValue ShAmt, InvShAmt;
6340   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6341     // fshl: X << C | Y >> (BW - C)
6342     // fshr: X << (BW - C) | Y >> C
6343     // where C = Z % BW is not zero
6344     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6345     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6346     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6347     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6348     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6349   } else {
6350     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6351     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6352     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6353     if (isPowerOf2_32(BW)) {
6354       // Z % BW -> Z & (BW - 1)
6355       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6356       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6357       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6358     } else {
6359       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6360       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6361       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6362     }
6363 
6364     SDValue One = DAG.getConstant(1, DL, ShVT);
6365     if (IsFSHL) {
6366       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6367       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6368       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6369     } else {
6370       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6371       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6372       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6373     }
6374   }
6375   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6376   return true;
6377 }
6378 
6379 // TODO: Merge with expandFunnelShift.
6380 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6381                                SDValue &Result, SelectionDAG &DAG) const {
6382   EVT VT = Node->getValueType(0);
6383   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6384   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6385   SDValue Op0 = Node->getOperand(0);
6386   SDValue Op1 = Node->getOperand(1);
6387   SDLoc DL(SDValue(Node, 0));
6388 
6389   EVT ShVT = Op1.getValueType();
6390   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6391 
6392   // If a rotate in the other direction is supported, use it.
6393   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6394   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6395     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6396     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6397     return true;
6398   }
6399 
6400   if (!AllowVectorOps && VT.isVector() &&
6401       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6402        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6403        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6404        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6405        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6406     return false;
6407 
6408   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6409   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6410   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6411   SDValue ShVal;
6412   SDValue HsVal;
6413   if (isPowerOf2_32(EltSizeInBits)) {
6414     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6415     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6416     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6417     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6418     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6419     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6420     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6421   } else {
6422     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6423     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6424     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6425     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6426     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6427     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6428     SDValue One = DAG.getConstant(1, DL, ShVT);
6429     HsVal =
6430         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6431   }
6432   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6433   return true;
6434 }
6435 
6436 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6437                                       SelectionDAG &DAG) const {
6438   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6439   SDValue Src = Node->getOperand(OpNo);
6440   EVT SrcVT = Src.getValueType();
6441   EVT DstVT = Node->getValueType(0);
6442   SDLoc dl(SDValue(Node, 0));
6443 
6444   // FIXME: Only f32 to i64 conversions are supported.
6445   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6446     return false;
6447 
6448   if (Node->isStrictFPOpcode())
6449     // When a NaN is converted to an integer a trap is allowed. We can't
6450     // use this expansion here because it would eliminate that trap. Other
6451     // traps are also allowed and cannot be eliminated. See
6452     // IEEE 754-2008 sec 5.8.
6453     return false;
6454 
6455   // Expand f32 -> i64 conversion
6456   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6457   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6458   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6459   EVT IntVT = SrcVT.changeTypeToInteger();
6460   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6461 
6462   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6463   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6464   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6465   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6466   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6467   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6468 
6469   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6470 
6471   SDValue ExponentBits = DAG.getNode(
6472       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6473       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6474   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6475 
6476   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6477                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6478                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6479   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6480 
6481   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6482                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6483                           DAG.getConstant(0x00800000, dl, IntVT));
6484 
6485   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6486 
6487   R = DAG.getSelectCC(
6488       dl, Exponent, ExponentLoBit,
6489       DAG.getNode(ISD::SHL, dl, DstVT, R,
6490                   DAG.getZExtOrTrunc(
6491                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6492                       dl, IntShVT)),
6493       DAG.getNode(ISD::SRL, dl, DstVT, R,
6494                   DAG.getZExtOrTrunc(
6495                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6496                       dl, IntShVT)),
6497       ISD::SETGT);
6498 
6499   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6500                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6501 
6502   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6503                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6504   return true;
6505 }
6506 
6507 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6508                                       SDValue &Chain,
6509                                       SelectionDAG &DAG) const {
6510   SDLoc dl(SDValue(Node, 0));
6511   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6512   SDValue Src = Node->getOperand(OpNo);
6513 
6514   EVT SrcVT = Src.getValueType();
6515   EVT DstVT = Node->getValueType(0);
6516   EVT SetCCVT =
6517       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6518   EVT DstSetCCVT =
6519       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6520 
6521   // Only expand vector types if we have the appropriate vector bit operations.
6522   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6523                                                    ISD::FP_TO_SINT;
6524   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6525                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6526     return false;
6527 
6528   // If the maximum float value is smaller then the signed integer range,
6529   // the destination signmask can't be represented by the float, so we can
6530   // just use FP_TO_SINT directly.
6531   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6532   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6533   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6534   if (APFloat::opOverflow &
6535       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6536     if (Node->isStrictFPOpcode()) {
6537       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6538                            { Node->getOperand(0), Src });
6539       Chain = Result.getValue(1);
6540     } else
6541       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6542     return true;
6543   }
6544 
6545   // Don't expand it if there isn't cheap fsub instruction.
6546   if (!isOperationLegalOrCustom(
6547           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6548     return false;
6549 
6550   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6551   SDValue Sel;
6552 
6553   if (Node->isStrictFPOpcode()) {
6554     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6555                        Node->getOperand(0), /*IsSignaling*/ true);
6556     Chain = Sel.getValue(1);
6557   } else {
6558     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6559   }
6560 
6561   bool Strict = Node->isStrictFPOpcode() ||
6562                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6563 
6564   if (Strict) {
6565     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6566     // signmask then offset (the result of which should be fully representable).
6567     // Sel = Src < 0x8000000000000000
6568     // FltOfs = select Sel, 0, 0x8000000000000000
6569     // IntOfs = select Sel, 0, 0x8000000000000000
6570     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6571 
6572     // TODO: Should any fast-math-flags be set for the FSUB?
6573     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6574                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6575     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6576     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6577                                    DAG.getConstant(0, dl, DstVT),
6578                                    DAG.getConstant(SignMask, dl, DstVT));
6579     SDValue SInt;
6580     if (Node->isStrictFPOpcode()) {
6581       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6582                                 { Chain, Src, FltOfs });
6583       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6584                          { Val.getValue(1), Val });
6585       Chain = SInt.getValue(1);
6586     } else {
6587       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6588       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6589     }
6590     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6591   } else {
6592     // Expand based on maximum range of FP_TO_SINT:
6593     // True = fp_to_sint(Src)
6594     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6595     // Result = select (Src < 0x8000000000000000), True, False
6596 
6597     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6598     // TODO: Should any fast-math-flags be set for the FSUB?
6599     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6600                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6601     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6602                         DAG.getConstant(SignMask, dl, DstVT));
6603     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6604     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6605   }
6606   return true;
6607 }
6608 
6609 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6610                                       SDValue &Chain,
6611                                       SelectionDAG &DAG) const {
6612   // This transform is not correct for converting 0 when rounding mode is set
6613   // to round toward negative infinity which will produce -0.0. So disable under
6614   // strictfp.
6615   if (Node->isStrictFPOpcode())
6616     return false;
6617 
6618   SDValue Src = Node->getOperand(0);
6619   EVT SrcVT = Src.getValueType();
6620   EVT DstVT = Node->getValueType(0);
6621 
6622   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6623     return false;
6624 
6625   // Only expand vector types if we have the appropriate vector bit operations.
6626   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6627                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6628                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6629                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6630                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6631     return false;
6632 
6633   SDLoc dl(SDValue(Node, 0));
6634   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6635 
6636   // Implementation of unsigned i64 to f64 following the algorithm in
6637   // __floatundidf in compiler_rt.  This implementation performs rounding
6638   // correctly in all rounding modes with the exception of converting 0
6639   // when rounding toward negative infinity. In that case the fsub will produce
6640   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6641   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6642   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6643       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6644   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6645   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6646   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6647 
6648   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6649   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6650   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6651   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6652   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6653   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6654   SDValue HiSub =
6655       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6656   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6657   return true;
6658 }
6659 
6660 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6661                                               SelectionDAG &DAG) const {
6662   SDLoc dl(Node);
6663   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6664     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6665   EVT VT = Node->getValueType(0);
6666 
6667   if (VT.isScalableVector())
6668     report_fatal_error(
6669         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6670 
6671   if (isOperationLegalOrCustom(NewOp, VT)) {
6672     SDValue Quiet0 = Node->getOperand(0);
6673     SDValue Quiet1 = Node->getOperand(1);
6674 
6675     if (!Node->getFlags().hasNoNaNs()) {
6676       // Insert canonicalizes if it's possible we need to quiet to get correct
6677       // sNaN behavior.
6678       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6679         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6680                              Node->getFlags());
6681       }
6682       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6683         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6684                              Node->getFlags());
6685       }
6686     }
6687 
6688     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6689   }
6690 
6691   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6692   // instead if there are no NaNs.
6693   if (Node->getFlags().hasNoNaNs()) {
6694     unsigned IEEE2018Op =
6695         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6696     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6697       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6698                          Node->getOperand(1), Node->getFlags());
6699     }
6700   }
6701 
6702   // If none of the above worked, but there are no NaNs, then expand to
6703   // a compare/select sequence.  This is required for correctness since
6704   // InstCombine might have canonicalized a fcmp+select sequence to a
6705   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6706   // expansion to libcall, we might introduce a link-time dependency
6707   // on libm into a file that originally did not have one.
6708   if (Node->getFlags().hasNoNaNs()) {
6709     ISD::CondCode Pred =
6710         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6711     SDValue Op1 = Node->getOperand(0);
6712     SDValue Op2 = Node->getOperand(1);
6713     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6714     // Copy FMF flags, but always set the no-signed-zeros flag
6715     // as this is implied by the FMINNUM/FMAXNUM semantics.
6716     SDNodeFlags Flags = Node->getFlags();
6717     Flags.setNoSignedZeros(true);
6718     SelCC->setFlags(Flags);
6719     return SelCC;
6720   }
6721 
6722   return SDValue();
6723 }
6724 
6725 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6726                                  SelectionDAG &DAG) const {
6727   SDLoc dl(Node);
6728   EVT VT = Node->getValueType(0);
6729   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6730   SDValue Op = Node->getOperand(0);
6731   unsigned Len = VT.getScalarSizeInBits();
6732   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6733 
6734   // TODO: Add support for irregular type lengths.
6735   if (!(Len <= 128 && Len % 8 == 0))
6736     return false;
6737 
6738   // Only expand vector types if we have the appropriate vector bit operations.
6739   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6740                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6741                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6742                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6743                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6744     return false;
6745 
6746   // This is the "best" algorithm from
6747   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6748   SDValue Mask55 =
6749       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6750   SDValue Mask33 =
6751       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6752   SDValue Mask0F =
6753       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6754   SDValue Mask01 =
6755       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6756 
6757   // v = v - ((v >> 1) & 0x55555555...)
6758   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6759                    DAG.getNode(ISD::AND, dl, VT,
6760                                DAG.getNode(ISD::SRL, dl, VT, Op,
6761                                            DAG.getConstant(1, dl, ShVT)),
6762                                Mask55));
6763   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6764   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6765                    DAG.getNode(ISD::AND, dl, VT,
6766                                DAG.getNode(ISD::SRL, dl, VT, Op,
6767                                            DAG.getConstant(2, dl, ShVT)),
6768                                Mask33));
6769   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6770   Op = DAG.getNode(ISD::AND, dl, VT,
6771                    DAG.getNode(ISD::ADD, dl, VT, Op,
6772                                DAG.getNode(ISD::SRL, dl, VT, Op,
6773                                            DAG.getConstant(4, dl, ShVT))),
6774                    Mask0F);
6775   // v = (v * 0x01010101...) >> (Len - 8)
6776   if (Len > 8)
6777     Op =
6778         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6779                     DAG.getConstant(Len - 8, dl, ShVT));
6780 
6781   Result = Op;
6782   return true;
6783 }
6784 
6785 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6786                                 SelectionDAG &DAG) const {
6787   SDLoc dl(Node);
6788   EVT VT = Node->getValueType(0);
6789   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6790   SDValue Op = Node->getOperand(0);
6791   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6792 
6793   // If the non-ZERO_UNDEF version is supported we can use that instead.
6794   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6795       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6796     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6797     return true;
6798   }
6799 
6800   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6801   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6802     EVT SetCCVT =
6803         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6804     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6805     SDValue Zero = DAG.getConstant(0, dl, VT);
6806     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6807     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6808                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6809     return true;
6810   }
6811 
6812   // Only expand vector types if we have the appropriate vector bit operations.
6813   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6814                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6815                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6816                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6817     return false;
6818 
6819   // for now, we do this:
6820   // x = x | (x >> 1);
6821   // x = x | (x >> 2);
6822   // ...
6823   // x = x | (x >>16);
6824   // x = x | (x >>32); // for 64-bit input
6825   // return popcount(~x);
6826   //
6827   // Ref: "Hacker's Delight" by Henry Warren
6828   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6829     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6830     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6831                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6832   }
6833   Op = DAG.getNOT(dl, Op, VT);
6834   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6835   return true;
6836 }
6837 
6838 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6839                                 SelectionDAG &DAG) const {
6840   SDLoc dl(Node);
6841   EVT VT = Node->getValueType(0);
6842   SDValue Op = Node->getOperand(0);
6843   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6844 
6845   // If the non-ZERO_UNDEF version is supported we can use that instead.
6846   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6847       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6848     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6849     return true;
6850   }
6851 
6852   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6853   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6854     EVT SetCCVT =
6855         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6856     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6857     SDValue Zero = DAG.getConstant(0, dl, VT);
6858     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6859     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6860                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6861     return true;
6862   }
6863 
6864   // Only expand vector types if we have the appropriate vector bit operations.
6865   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6866                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6867                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6868                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6869                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6870                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6871     return false;
6872 
6873   // for now, we use: { return popcount(~x & (x - 1)); }
6874   // unless the target has ctlz but not ctpop, in which case we use:
6875   // { return 32 - nlz(~x & (x-1)); }
6876   // Ref: "Hacker's Delight" by Henry Warren
6877   SDValue Tmp = DAG.getNode(
6878       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6879       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6880 
6881   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6882   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6883     Result =
6884         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6885                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6886     return true;
6887   }
6888 
6889   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6890   return true;
6891 }
6892 
6893 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6894                                SelectionDAG &DAG, bool IsNegative) const {
6895   SDLoc dl(N);
6896   EVT VT = N->getValueType(0);
6897   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6898   SDValue Op = N->getOperand(0);
6899 
6900   // abs(x) -> smax(x,sub(0,x))
6901   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6902       isOperationLegal(ISD::SMAX, VT)) {
6903     SDValue Zero = DAG.getConstant(0, dl, VT);
6904     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
6905                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6906     return true;
6907   }
6908 
6909   // abs(x) -> umin(x,sub(0,x))
6910   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6911       isOperationLegal(ISD::UMIN, VT)) {
6912     SDValue Zero = DAG.getConstant(0, dl, VT);
6913     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
6914                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6915     return true;
6916   }
6917 
6918   // 0 - abs(x) -> smin(x, sub(0,x))
6919   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
6920       isOperationLegal(ISD::SMIN, VT)) {
6921     SDValue Zero = DAG.getConstant(0, dl, VT);
6922     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
6923                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6924     return true;
6925   }
6926 
6927   // Only expand vector types if we have the appropriate vector operations.
6928   if (VT.isVector() &&
6929       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6930        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
6931        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
6932        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6933     return false;
6934 
6935   SDValue Shift =
6936       DAG.getNode(ISD::SRA, dl, VT, Op,
6937                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6938   if (!IsNegative) {
6939     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6940     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6941   } else {
6942     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
6943     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
6944     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
6945   }
6946   return true;
6947 }
6948 
6949 std::pair<SDValue, SDValue>
6950 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6951                                     SelectionDAG &DAG) const {
6952   SDLoc SL(LD);
6953   SDValue Chain = LD->getChain();
6954   SDValue BasePTR = LD->getBasePtr();
6955   EVT SrcVT = LD->getMemoryVT();
6956   EVT DstVT = LD->getValueType(0);
6957   ISD::LoadExtType ExtType = LD->getExtensionType();
6958 
6959   if (SrcVT.isScalableVector())
6960     report_fatal_error("Cannot scalarize scalable vector loads");
6961 
6962   unsigned NumElem = SrcVT.getVectorNumElements();
6963 
6964   EVT SrcEltVT = SrcVT.getScalarType();
6965   EVT DstEltVT = DstVT.getScalarType();
6966 
6967   // A vector must always be stored in memory as-is, i.e. without any padding
6968   // between the elements, since various code depend on it, e.g. in the
6969   // handling of a bitcast of a vector type to int, which may be done with a
6970   // vector store followed by an integer load. A vector that does not have
6971   // elements that are byte-sized must therefore be stored as an integer
6972   // built out of the extracted vector elements.
6973   if (!SrcEltVT.isByteSized()) {
6974     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6975     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6976 
6977     unsigned NumSrcBits = SrcVT.getSizeInBits();
6978     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6979 
6980     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6981     SDValue SrcEltBitMask = DAG.getConstant(
6982         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6983 
6984     // Load the whole vector and avoid masking off the top bits as it makes
6985     // the codegen worse.
6986     SDValue Load =
6987         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6988                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
6989                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6990 
6991     SmallVector<SDValue, 8> Vals;
6992     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6993       unsigned ShiftIntoIdx =
6994           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6995       SDValue ShiftAmount =
6996           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6997                                      LoadVT, SL, /*LegalTypes=*/false);
6998       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6999       SDValue Elt =
7000           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7001       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7002 
7003       if (ExtType != ISD::NON_EXTLOAD) {
7004         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7005         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7006       }
7007 
7008       Vals.push_back(Scalar);
7009     }
7010 
7011     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7012     return std::make_pair(Value, Load.getValue(1));
7013   }
7014 
7015   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7016   assert(SrcEltVT.isByteSized());
7017 
7018   SmallVector<SDValue, 8> Vals;
7019   SmallVector<SDValue, 8> LoadChains;
7020 
7021   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7022     SDValue ScalarLoad =
7023         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7024                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7025                        SrcEltVT, LD->getOriginalAlign(),
7026                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7027 
7028     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7029 
7030     Vals.push_back(ScalarLoad.getValue(0));
7031     LoadChains.push_back(ScalarLoad.getValue(1));
7032   }
7033 
7034   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7035   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7036 
7037   return std::make_pair(Value, NewChain);
7038 }
7039 
7040 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7041                                              SelectionDAG &DAG) const {
7042   SDLoc SL(ST);
7043 
7044   SDValue Chain = ST->getChain();
7045   SDValue BasePtr = ST->getBasePtr();
7046   SDValue Value = ST->getValue();
7047   EVT StVT = ST->getMemoryVT();
7048 
7049   if (StVT.isScalableVector())
7050     report_fatal_error("Cannot scalarize scalable vector stores");
7051 
7052   // The type of the data we want to save
7053   EVT RegVT = Value.getValueType();
7054   EVT RegSclVT = RegVT.getScalarType();
7055 
7056   // The type of data as saved in memory.
7057   EVT MemSclVT = StVT.getScalarType();
7058 
7059   unsigned NumElem = StVT.getVectorNumElements();
7060 
7061   // A vector must always be stored in memory as-is, i.e. without any padding
7062   // between the elements, since various code depend on it, e.g. in the
7063   // handling of a bitcast of a vector type to int, which may be done with a
7064   // vector store followed by an integer load. A vector that does not have
7065   // elements that are byte-sized must therefore be stored as an integer
7066   // built out of the extracted vector elements.
7067   if (!MemSclVT.isByteSized()) {
7068     unsigned NumBits = StVT.getSizeInBits();
7069     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7070 
7071     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7072 
7073     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7074       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7075                                 DAG.getVectorIdxConstant(Idx, SL));
7076       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7077       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7078       unsigned ShiftIntoIdx =
7079           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7080       SDValue ShiftAmount =
7081           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7082       SDValue ShiftedElt =
7083           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7084       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7085     }
7086 
7087     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7088                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7089                         ST->getAAInfo());
7090   }
7091 
7092   // Store Stride in bytes
7093   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7094   assert(Stride && "Zero stride!");
7095   // Extract each of the elements from the original vector and save them into
7096   // memory individually.
7097   SmallVector<SDValue, 8> Stores;
7098   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7099     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7100                               DAG.getVectorIdxConstant(Idx, SL));
7101 
7102     SDValue Ptr =
7103         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7104 
7105     // This scalar TruncStore may be illegal, but we legalize it later.
7106     SDValue Store = DAG.getTruncStore(
7107         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7108         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7109         ST->getAAInfo());
7110 
7111     Stores.push_back(Store);
7112   }
7113 
7114   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7115 }
7116 
7117 std::pair<SDValue, SDValue>
7118 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7119   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7120          "unaligned indexed loads not implemented!");
7121   SDValue Chain = LD->getChain();
7122   SDValue Ptr = LD->getBasePtr();
7123   EVT VT = LD->getValueType(0);
7124   EVT LoadedVT = LD->getMemoryVT();
7125   SDLoc dl(LD);
7126   auto &MF = DAG.getMachineFunction();
7127 
7128   if (VT.isFloatingPoint() || VT.isVector()) {
7129     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7130     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7131       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7132           LoadedVT.isVector()) {
7133         // Scalarize the load and let the individual components be handled.
7134         return scalarizeVectorLoad(LD, DAG);
7135       }
7136 
7137       // Expand to a (misaligned) integer load of the same size,
7138       // then bitconvert to floating point or vector.
7139       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7140                                     LD->getMemOperand());
7141       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7142       if (LoadedVT != VT)
7143         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7144                              ISD::ANY_EXTEND, dl, VT, Result);
7145 
7146       return std::make_pair(Result, newLoad.getValue(1));
7147     }
7148 
7149     // Copy the value to a (aligned) stack slot using (unaligned) integer
7150     // loads and stores, then do a (aligned) load from the stack slot.
7151     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7152     unsigned LoadedBytes = LoadedVT.getStoreSize();
7153     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7154     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7155 
7156     // Make sure the stack slot is also aligned for the register type.
7157     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7158     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7159     SmallVector<SDValue, 8> Stores;
7160     SDValue StackPtr = StackBase;
7161     unsigned Offset = 0;
7162 
7163     EVT PtrVT = Ptr.getValueType();
7164     EVT StackPtrVT = StackPtr.getValueType();
7165 
7166     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7167     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7168 
7169     // Do all but one copies using the full register width.
7170     for (unsigned i = 1; i < NumRegs; i++) {
7171       // Load one integer register's worth from the original location.
7172       SDValue Load = DAG.getLoad(
7173           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7174           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7175           LD->getAAInfo());
7176       // Follow the load with a store to the stack slot.  Remember the store.
7177       Stores.push_back(DAG.getStore(
7178           Load.getValue(1), dl, Load, StackPtr,
7179           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7180       // Increment the pointers.
7181       Offset += RegBytes;
7182 
7183       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7184       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7185     }
7186 
7187     // The last copy may be partial.  Do an extending load.
7188     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7189                                   8 * (LoadedBytes - Offset));
7190     SDValue Load =
7191         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7192                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7193                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7194                        LD->getAAInfo());
7195     // Follow the load with a store to the stack slot.  Remember the store.
7196     // On big-endian machines this requires a truncating store to ensure
7197     // that the bits end up in the right place.
7198     Stores.push_back(DAG.getTruncStore(
7199         Load.getValue(1), dl, Load, StackPtr,
7200         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7201 
7202     // The order of the stores doesn't matter - say it with a TokenFactor.
7203     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7204 
7205     // Finally, perform the original load only redirected to the stack slot.
7206     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7207                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7208                           LoadedVT);
7209 
7210     // Callers expect a MERGE_VALUES node.
7211     return std::make_pair(Load, TF);
7212   }
7213 
7214   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7215          "Unaligned load of unsupported type.");
7216 
7217   // Compute the new VT that is half the size of the old one.  This is an
7218   // integer MVT.
7219   unsigned NumBits = LoadedVT.getSizeInBits();
7220   EVT NewLoadedVT;
7221   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7222   NumBits >>= 1;
7223 
7224   Align Alignment = LD->getOriginalAlign();
7225   unsigned IncrementSize = NumBits / 8;
7226   ISD::LoadExtType HiExtType = LD->getExtensionType();
7227 
7228   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7229   if (HiExtType == ISD::NON_EXTLOAD)
7230     HiExtType = ISD::ZEXTLOAD;
7231 
7232   // Load the value in two parts
7233   SDValue Lo, Hi;
7234   if (DAG.getDataLayout().isLittleEndian()) {
7235     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7236                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7237                         LD->getAAInfo());
7238 
7239     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7240     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7241                         LD->getPointerInfo().getWithOffset(IncrementSize),
7242                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7243                         LD->getAAInfo());
7244   } else {
7245     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7246                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7247                         LD->getAAInfo());
7248 
7249     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7250     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7251                         LD->getPointerInfo().getWithOffset(IncrementSize),
7252                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7253                         LD->getAAInfo());
7254   }
7255 
7256   // aggregate the two parts
7257   SDValue ShiftAmount =
7258       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7259                                                     DAG.getDataLayout()));
7260   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7261   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7262 
7263   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7264                              Hi.getValue(1));
7265 
7266   return std::make_pair(Result, TF);
7267 }
7268 
7269 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7270                                              SelectionDAG &DAG) const {
7271   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7272          "unaligned indexed stores not implemented!");
7273   SDValue Chain = ST->getChain();
7274   SDValue Ptr = ST->getBasePtr();
7275   SDValue Val = ST->getValue();
7276   EVT VT = Val.getValueType();
7277   Align Alignment = ST->getOriginalAlign();
7278   auto &MF = DAG.getMachineFunction();
7279   EVT StoreMemVT = ST->getMemoryVT();
7280 
7281   SDLoc dl(ST);
7282   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7283     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7284     if (isTypeLegal(intVT)) {
7285       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7286           StoreMemVT.isVector()) {
7287         // Scalarize the store and let the individual components be handled.
7288         SDValue Result = scalarizeVectorStore(ST, DAG);
7289         return Result;
7290       }
7291       // Expand to a bitconvert of the value to the integer type of the
7292       // same size, then a (misaligned) int store.
7293       // FIXME: Does not handle truncating floating point stores!
7294       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7295       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7296                             Alignment, ST->getMemOperand()->getFlags());
7297       return Result;
7298     }
7299     // Do a (aligned) store to a stack slot, then copy from the stack slot
7300     // to the final destination using (unaligned) integer loads and stores.
7301     MVT RegVT = getRegisterType(
7302         *DAG.getContext(),
7303         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7304     EVT PtrVT = Ptr.getValueType();
7305     unsigned StoredBytes = StoreMemVT.getStoreSize();
7306     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7307     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7308 
7309     // Make sure the stack slot is also aligned for the register type.
7310     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7311     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7312 
7313     // Perform the original store, only redirected to the stack slot.
7314     SDValue Store = DAG.getTruncStore(
7315         Chain, dl, Val, StackPtr,
7316         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7317 
7318     EVT StackPtrVT = StackPtr.getValueType();
7319 
7320     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7321     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7322     SmallVector<SDValue, 8> Stores;
7323     unsigned Offset = 0;
7324 
7325     // Do all but one copies using the full register width.
7326     for (unsigned i = 1; i < NumRegs; i++) {
7327       // Load one integer register's worth from the stack slot.
7328       SDValue Load = DAG.getLoad(
7329           RegVT, dl, Store, StackPtr,
7330           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7331       // Store it to the final location.  Remember the store.
7332       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7333                                     ST->getPointerInfo().getWithOffset(Offset),
7334                                     ST->getOriginalAlign(),
7335                                     ST->getMemOperand()->getFlags()));
7336       // Increment the pointers.
7337       Offset += RegBytes;
7338       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7339       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7340     }
7341 
7342     // The last store may be partial.  Do a truncating store.  On big-endian
7343     // machines this requires an extending load from the stack slot to ensure
7344     // that the bits are in the right place.
7345     EVT LoadMemVT =
7346         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7347 
7348     // Load from the stack slot.
7349     SDValue Load = DAG.getExtLoad(
7350         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7351         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7352 
7353     Stores.push_back(
7354         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7355                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7356                           ST->getOriginalAlign(),
7357                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7358     // The order of the stores doesn't matter - say it with a TokenFactor.
7359     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7360     return Result;
7361   }
7362 
7363   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7364          "Unaligned store of unknown type.");
7365   // Get the half-size VT
7366   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7367   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7368   unsigned IncrementSize = NumBits / 8;
7369 
7370   // Divide the stored value in two parts.
7371   SDValue ShiftAmount = DAG.getConstant(
7372       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7373   SDValue Lo = Val;
7374   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7375 
7376   // Store the two parts
7377   SDValue Store1, Store2;
7378   Store1 = DAG.getTruncStore(Chain, dl,
7379                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7380                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7381                              ST->getMemOperand()->getFlags());
7382 
7383   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7384   Store2 = DAG.getTruncStore(
7385       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7386       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7387       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7388 
7389   SDValue Result =
7390       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7391   return Result;
7392 }
7393 
7394 SDValue
7395 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7396                                        const SDLoc &DL, EVT DataVT,
7397                                        SelectionDAG &DAG,
7398                                        bool IsCompressedMemory) const {
7399   SDValue Increment;
7400   EVT AddrVT = Addr.getValueType();
7401   EVT MaskVT = Mask.getValueType();
7402   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7403          "Incompatible types of Data and Mask");
7404   if (IsCompressedMemory) {
7405     if (DataVT.isScalableVector())
7406       report_fatal_error(
7407           "Cannot currently handle compressed memory with scalable vectors");
7408     // Incrementing the pointer according to number of '1's in the mask.
7409     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7410     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7411     if (MaskIntVT.getSizeInBits() < 32) {
7412       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7413       MaskIntVT = MVT::i32;
7414     }
7415 
7416     // Count '1's with POPCNT.
7417     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7418     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7419     // Scale is an element size in bytes.
7420     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7421                                     AddrVT);
7422     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7423   } else if (DataVT.isScalableVector()) {
7424     Increment = DAG.getVScale(DL, AddrVT,
7425                               APInt(AddrVT.getFixedSizeInBits(),
7426                                     DataVT.getStoreSize().getKnownMinSize()));
7427   } else
7428     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7429 
7430   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7431 }
7432 
7433 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7434                                        SDValue Idx,
7435                                        EVT VecVT,
7436                                        const SDLoc &dl) {
7437   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7438     return Idx;
7439 
7440   EVT IdxVT = Idx.getValueType();
7441   unsigned NElts = VecVT.getVectorMinNumElements();
7442   if (VecVT.isScalableVector()) {
7443     SDValue VS = DAG.getVScale(dl, IdxVT,
7444                                APInt(IdxVT.getFixedSizeInBits(),
7445                                      NElts));
7446     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7447                               DAG.getConstant(1, dl, IdxVT));
7448 
7449     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7450   } else {
7451     if (isPowerOf2_32(NElts)) {
7452       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7453                                        Log2_32(NElts));
7454       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7455                          DAG.getConstant(Imm, dl, IdxVT));
7456     }
7457   }
7458 
7459   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7460                      DAG.getConstant(NElts - 1, dl, IdxVT));
7461 }
7462 
7463 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7464                                                 SDValue VecPtr, EVT VecVT,
7465                                                 SDValue Index) const {
7466   SDLoc dl(Index);
7467   // Make sure the index type is big enough to compute in.
7468   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7469 
7470   EVT EltVT = VecVT.getVectorElementType();
7471 
7472   // Calculate the element offset and add it to the pointer.
7473   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7474   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7475          "Converting bits to bytes lost precision");
7476 
7477   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7478 
7479   EVT IdxVT = Index.getValueType();
7480 
7481   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7482                       DAG.getConstant(EltSize, dl, IdxVT));
7483   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7484 }
7485 
7486 //===----------------------------------------------------------------------===//
7487 // Implementation of Emulated TLS Model
7488 //===----------------------------------------------------------------------===//
7489 
7490 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7491                                                 SelectionDAG &DAG) const {
7492   // Access to address of TLS varialbe xyz is lowered to a function call:
7493   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7494   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7495   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7496   SDLoc dl(GA);
7497 
7498   ArgListTy Args;
7499   ArgListEntry Entry;
7500   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7501   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7502   StringRef EmuTlsVarName(NameString);
7503   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7504   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7505   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7506   Entry.Ty = VoidPtrType;
7507   Args.push_back(Entry);
7508 
7509   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7510 
7511   TargetLowering::CallLoweringInfo CLI(DAG);
7512   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7513   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7514   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7515 
7516   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7517   // At last for X86 targets, maybe good for other targets too?
7518   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7519   MFI.setAdjustsStack(true); // Is this only for X86 target?
7520   MFI.setHasCalls(true);
7521 
7522   assert((GA->getOffset() == 0) &&
7523          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7524   return CallResult.first;
7525 }
7526 
7527 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7528                                                 SelectionDAG &DAG) const {
7529   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7530   if (!isCtlzFast())
7531     return SDValue();
7532   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7533   SDLoc dl(Op);
7534   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7535     if (C->isNullValue() && CC == ISD::SETEQ) {
7536       EVT VT = Op.getOperand(0).getValueType();
7537       SDValue Zext = Op.getOperand(0);
7538       if (VT.bitsLT(MVT::i32)) {
7539         VT = MVT::i32;
7540         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7541       }
7542       unsigned Log2b = Log2_32(VT.getSizeInBits());
7543       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7544       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7545                                 DAG.getConstant(Log2b, dl, MVT::i32));
7546       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7547     }
7548   }
7549   return SDValue();
7550 }
7551 
7552 // Convert redundant addressing modes (e.g. scaling is redundant
7553 // when accessing bytes).
7554 ISD::MemIndexType
7555 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7556                                       SDValue Offsets) const {
7557   bool IsScaledIndex =
7558       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7559   bool IsSignedIndex =
7560       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7561 
7562   // Scaling is unimportant for bytes, canonicalize to unscaled.
7563   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7564     IsScaledIndex = false;
7565     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7566   }
7567 
7568   return IndexType;
7569 }
7570 
7571 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7572   SDValue Op0 = Node->getOperand(0);
7573   SDValue Op1 = Node->getOperand(1);
7574   EVT VT = Op0.getValueType();
7575   unsigned Opcode = Node->getOpcode();
7576   SDLoc DL(Node);
7577 
7578   // umin(x,y) -> sub(x,usubsat(x,y))
7579   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7580       isOperationLegal(ISD::USUBSAT, VT)) {
7581     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7582                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7583   }
7584 
7585   // umax(x,y) -> add(x,usubsat(y,x))
7586   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7587       isOperationLegal(ISD::USUBSAT, VT)) {
7588     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7589                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7590   }
7591 
7592   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7593   ISD::CondCode CC;
7594   switch (Opcode) {
7595   default: llvm_unreachable("How did we get here?");
7596   case ISD::SMAX: CC = ISD::SETGT; break;
7597   case ISD::SMIN: CC = ISD::SETLT; break;
7598   case ISD::UMAX: CC = ISD::SETUGT; break;
7599   case ISD::UMIN: CC = ISD::SETULT; break;
7600   }
7601 
7602   // FIXME: Should really try to split the vector in case it's legal on a
7603   // subvector.
7604   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7605     return DAG.UnrollVectorOp(Node);
7606 
7607   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7608   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7609 }
7610 
7611 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7612   unsigned Opcode = Node->getOpcode();
7613   SDValue LHS = Node->getOperand(0);
7614   SDValue RHS = Node->getOperand(1);
7615   EVT VT = LHS.getValueType();
7616   SDLoc dl(Node);
7617 
7618   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7619   assert(VT.isInteger() && "Expected operands to be integers");
7620 
7621   // usub.sat(a, b) -> umax(a, b) - b
7622   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7623     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7624     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7625   }
7626 
7627   // uadd.sat(a, b) -> umin(a, ~b) + b
7628   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7629     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7630     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7631     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7632   }
7633 
7634   unsigned OverflowOp;
7635   switch (Opcode) {
7636   case ISD::SADDSAT:
7637     OverflowOp = ISD::SADDO;
7638     break;
7639   case ISD::UADDSAT:
7640     OverflowOp = ISD::UADDO;
7641     break;
7642   case ISD::SSUBSAT:
7643     OverflowOp = ISD::SSUBO;
7644     break;
7645   case ISD::USUBSAT:
7646     OverflowOp = ISD::USUBO;
7647     break;
7648   default:
7649     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7650                      "addition or subtraction node.");
7651   }
7652 
7653   // FIXME: Should really try to split the vector in case it's legal on a
7654   // subvector.
7655   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7656     return DAG.UnrollVectorOp(Node);
7657 
7658   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7659   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7660   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7661                                LHS, RHS);
7662   SDValue SumDiff = Result.getValue(0);
7663   SDValue Overflow = Result.getValue(1);
7664   SDValue Zero = DAG.getConstant(0, dl, VT);
7665   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7666 
7667   if (Opcode == ISD::UADDSAT) {
7668     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7669       // (LHS + RHS) | OverflowMask
7670       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7671       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7672     }
7673     // Overflow ? 0xffff.... : (LHS + RHS)
7674     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7675   } else if (Opcode == ISD::USUBSAT) {
7676     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7677       // (LHS - RHS) & ~OverflowMask
7678       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7679       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7680       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7681     }
7682     // Overflow ? 0 : (LHS - RHS)
7683     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7684   } else {
7685     // SatMax -> Overflow && SumDiff < 0
7686     // SatMin -> Overflow && SumDiff >= 0
7687     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7688     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7689     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7690     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7691     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7692     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7693     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7694   }
7695 }
7696 
7697 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7698   unsigned Opcode = Node->getOpcode();
7699   bool IsSigned = Opcode == ISD::SSHLSAT;
7700   SDValue LHS = Node->getOperand(0);
7701   SDValue RHS = Node->getOperand(1);
7702   EVT VT = LHS.getValueType();
7703   SDLoc dl(Node);
7704 
7705   assert((Node->getOpcode() == ISD::SSHLSAT ||
7706           Node->getOpcode() == ISD::USHLSAT) &&
7707           "Expected a SHLSAT opcode");
7708   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7709   assert(VT.isInteger() && "Expected operands to be integers");
7710 
7711   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7712 
7713   unsigned BW = VT.getScalarSizeInBits();
7714   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7715   SDValue Orig =
7716       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7717 
7718   SDValue SatVal;
7719   if (IsSigned) {
7720     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7721     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7722     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7723                              SatMin, SatMax, ISD::SETLT);
7724   } else {
7725     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7726   }
7727   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7728 
7729   return Result;
7730 }
7731 
7732 SDValue
7733 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7734   assert((Node->getOpcode() == ISD::SMULFIX ||
7735           Node->getOpcode() == ISD::UMULFIX ||
7736           Node->getOpcode() == ISD::SMULFIXSAT ||
7737           Node->getOpcode() == ISD::UMULFIXSAT) &&
7738          "Expected a fixed point multiplication opcode");
7739 
7740   SDLoc dl(Node);
7741   SDValue LHS = Node->getOperand(0);
7742   SDValue RHS = Node->getOperand(1);
7743   EVT VT = LHS.getValueType();
7744   unsigned Scale = Node->getConstantOperandVal(2);
7745   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7746                      Node->getOpcode() == ISD::UMULFIXSAT);
7747   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7748                  Node->getOpcode() == ISD::SMULFIXSAT);
7749   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7750   unsigned VTSize = VT.getScalarSizeInBits();
7751 
7752   if (!Scale) {
7753     // [us]mul.fix(a, b, 0) -> mul(a, b)
7754     if (!Saturating) {
7755       if (isOperationLegalOrCustom(ISD::MUL, VT))
7756         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7757     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7758       SDValue Result =
7759           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7760       SDValue Product = Result.getValue(0);
7761       SDValue Overflow = Result.getValue(1);
7762       SDValue Zero = DAG.getConstant(0, dl, VT);
7763 
7764       APInt MinVal = APInt::getSignedMinValue(VTSize);
7765       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7766       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7767       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7768       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7769       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7770       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7771     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7772       SDValue Result =
7773           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7774       SDValue Product = Result.getValue(0);
7775       SDValue Overflow = Result.getValue(1);
7776 
7777       APInt MaxVal = APInt::getMaxValue(VTSize);
7778       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7779       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7780     }
7781   }
7782 
7783   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7784          "Expected scale to be less than the number of bits if signed or at "
7785          "most the number of bits if unsigned.");
7786   assert(LHS.getValueType() == RHS.getValueType() &&
7787          "Expected both operands to be the same type");
7788 
7789   // Get the upper and lower bits of the result.
7790   SDValue Lo, Hi;
7791   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7792   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7793   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7794     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7795     Lo = Result.getValue(0);
7796     Hi = Result.getValue(1);
7797   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7798     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7799     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7800   } else if (VT.isVector()) {
7801     return SDValue();
7802   } else {
7803     report_fatal_error("Unable to expand fixed point multiplication.");
7804   }
7805 
7806   if (Scale == VTSize)
7807     // Result is just the top half since we'd be shifting by the width of the
7808     // operand. Overflow impossible so this works for both UMULFIX and
7809     // UMULFIXSAT.
7810     return Hi;
7811 
7812   // The result will need to be shifted right by the scale since both operands
7813   // are scaled. The result is given to us in 2 halves, so we only want part of
7814   // both in the result.
7815   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7816   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7817                                DAG.getConstant(Scale, dl, ShiftTy));
7818   if (!Saturating)
7819     return Result;
7820 
7821   if (!Signed) {
7822     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7823     // widened multiplication) aren't all zeroes.
7824 
7825     // Saturate to max if ((Hi >> Scale) != 0),
7826     // which is the same as if (Hi > ((1 << Scale) - 1))
7827     APInt MaxVal = APInt::getMaxValue(VTSize);
7828     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7829                                       dl, VT);
7830     Result = DAG.getSelectCC(dl, Hi, LowMask,
7831                              DAG.getConstant(MaxVal, dl, VT), Result,
7832                              ISD::SETUGT);
7833 
7834     return Result;
7835   }
7836 
7837   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7838   // widened multiplication) aren't all ones or all zeroes.
7839 
7840   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7841   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7842 
7843   if (Scale == 0) {
7844     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7845                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7846     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7847     // Saturated to SatMin if wide product is negative, and SatMax if wide
7848     // product is positive ...
7849     SDValue Zero = DAG.getConstant(0, dl, VT);
7850     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7851                                                ISD::SETLT);
7852     // ... but only if we overflowed.
7853     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7854   }
7855 
7856   //  We handled Scale==0 above so all the bits to examine is in Hi.
7857 
7858   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7859   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7860   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7861                                     dl, VT);
7862   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7863   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7864   // which is the same as if (HI < (-1 << (Scale - 1))
7865   SDValue HighMask =
7866       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7867                       dl, VT);
7868   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7869   return Result;
7870 }
7871 
7872 SDValue
7873 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7874                                     SDValue LHS, SDValue RHS,
7875                                     unsigned Scale, SelectionDAG &DAG) const {
7876   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7877           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7878          "Expected a fixed point division opcode");
7879 
7880   EVT VT = LHS.getValueType();
7881   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7882   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7883   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7884 
7885   // If there is enough room in the type to upscale the LHS or downscale the
7886   // RHS before the division, we can perform it in this type without having to
7887   // resize. For signed operations, the LHS headroom is the number of
7888   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7889   // The headroom for the RHS is the number of trailing zeroes.
7890   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7891                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7892   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7893 
7894   // For signed saturating operations, we need to be able to detect true integer
7895   // division overflow; that is, when you have MIN / -EPS. However, this
7896   // is undefined behavior and if we emit divisions that could take such
7897   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7898   // example).
7899   // Avoid this by requiring an extra bit so that we never get this case.
7900   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7901   // signed saturating division, we need to emit a whopping 32-bit division.
7902   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7903     return SDValue();
7904 
7905   unsigned LHSShift = std::min(LHSLead, Scale);
7906   unsigned RHSShift = Scale - LHSShift;
7907 
7908   // At this point, we know that if we shift the LHS up by LHSShift and the
7909   // RHS down by RHSShift, we can emit a regular division with a final scaling
7910   // factor of Scale.
7911 
7912   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7913   if (LHSShift)
7914     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7915                       DAG.getConstant(LHSShift, dl, ShiftTy));
7916   if (RHSShift)
7917     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7918                       DAG.getConstant(RHSShift, dl, ShiftTy));
7919 
7920   SDValue Quot;
7921   if (Signed) {
7922     // For signed operations, if the resulting quotient is negative and the
7923     // remainder is nonzero, subtract 1 from the quotient to round towards
7924     // negative infinity.
7925     SDValue Rem;
7926     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7927     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7928     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7929     if (isTypeLegal(VT) &&
7930         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7931       Quot = DAG.getNode(ISD::SDIVREM, dl,
7932                          DAG.getVTList(VT, VT),
7933                          LHS, RHS);
7934       Rem = Quot.getValue(1);
7935       Quot = Quot.getValue(0);
7936     } else {
7937       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7938                          LHS, RHS);
7939       Rem = DAG.getNode(ISD::SREM, dl, VT,
7940                         LHS, RHS);
7941     }
7942     SDValue Zero = DAG.getConstant(0, dl, VT);
7943     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7944     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7945     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7946     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7947     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7948                                DAG.getConstant(1, dl, VT));
7949     Quot = DAG.getSelect(dl, VT,
7950                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7951                          Sub1, Quot);
7952   } else
7953     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7954                        LHS, RHS);
7955 
7956   return Quot;
7957 }
7958 
7959 void TargetLowering::expandUADDSUBO(
7960     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7961   SDLoc dl(Node);
7962   SDValue LHS = Node->getOperand(0);
7963   SDValue RHS = Node->getOperand(1);
7964   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7965 
7966   // If ADD/SUBCARRY is legal, use that instead.
7967   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7968   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7969     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7970     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7971                                     { LHS, RHS, CarryIn });
7972     Result = SDValue(NodeCarry.getNode(), 0);
7973     Overflow = SDValue(NodeCarry.getNode(), 1);
7974     return;
7975   }
7976 
7977   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7978                             LHS.getValueType(), LHS, RHS);
7979 
7980   EVT ResultType = Node->getValueType(1);
7981   EVT SetCCType = getSetCCResultType(
7982       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7983   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7984   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7985   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7986 }
7987 
7988 void TargetLowering::expandSADDSUBO(
7989     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7990   SDLoc dl(Node);
7991   SDValue LHS = Node->getOperand(0);
7992   SDValue RHS = Node->getOperand(1);
7993   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7994 
7995   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7996                             LHS.getValueType(), LHS, RHS);
7997 
7998   EVT ResultType = Node->getValueType(1);
7999   EVT OType = getSetCCResultType(
8000       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8001 
8002   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8003   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8004   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8005     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8006     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8007     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8008     return;
8009   }
8010 
8011   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8012 
8013   // For an addition, the result should be less than one of the operands (LHS)
8014   // if and only if the other operand (RHS) is negative, otherwise there will
8015   // be overflow.
8016   // For a subtraction, the result should be less than one of the operands
8017   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8018   // otherwise there will be overflow.
8019   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8020   SDValue ConditionRHS =
8021       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8022 
8023   Overflow = DAG.getBoolExtOrTrunc(
8024       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8025       ResultType, ResultType);
8026 }
8027 
8028 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8029                                 SDValue &Overflow, SelectionDAG &DAG) const {
8030   SDLoc dl(Node);
8031   EVT VT = Node->getValueType(0);
8032   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8033   SDValue LHS = Node->getOperand(0);
8034   SDValue RHS = Node->getOperand(1);
8035   bool isSigned = Node->getOpcode() == ISD::SMULO;
8036 
8037   // For power-of-two multiplications we can use a simpler shift expansion.
8038   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8039     const APInt &C = RHSC->getAPIntValue();
8040     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8041     if (C.isPowerOf2()) {
8042       // smulo(x, signed_min) is same as umulo(x, signed_min).
8043       bool UseArithShift = isSigned && !C.isMinSignedValue();
8044       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8045       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8046       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8047       Overflow = DAG.getSetCC(dl, SetCCVT,
8048           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8049                       dl, VT, Result, ShiftAmt),
8050           LHS, ISD::SETNE);
8051       return true;
8052     }
8053   }
8054 
8055   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8056   if (VT.isVector())
8057     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8058                               VT.getVectorNumElements());
8059 
8060   SDValue BottomHalf;
8061   SDValue TopHalf;
8062   static const unsigned Ops[2][3] =
8063       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8064         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8065   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8066     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8067     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8068   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8069     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8070                              RHS);
8071     TopHalf = BottomHalf.getValue(1);
8072   } else if (isTypeLegal(WideVT)) {
8073     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8074     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8075     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8076     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8077     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8078         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8079     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8080                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8081   } else {
8082     if (VT.isVector())
8083       return false;
8084 
8085     // We can fall back to a libcall with an illegal type for the MUL if we
8086     // have a libcall big enough.
8087     // Also, we can fall back to a division in some cases, but that's a big
8088     // performance hit in the general case.
8089     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8090     if (WideVT == MVT::i16)
8091       LC = RTLIB::MUL_I16;
8092     else if (WideVT == MVT::i32)
8093       LC = RTLIB::MUL_I32;
8094     else if (WideVT == MVT::i64)
8095       LC = RTLIB::MUL_I64;
8096     else if (WideVT == MVT::i128)
8097       LC = RTLIB::MUL_I128;
8098     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8099 
8100     SDValue HiLHS;
8101     SDValue HiRHS;
8102     if (isSigned) {
8103       // The high part is obtained by SRA'ing all but one of the bits of low
8104       // part.
8105       unsigned LoSize = VT.getFixedSizeInBits();
8106       HiLHS =
8107           DAG.getNode(ISD::SRA, dl, VT, LHS,
8108                       DAG.getConstant(LoSize - 1, dl,
8109                                       getPointerTy(DAG.getDataLayout())));
8110       HiRHS =
8111           DAG.getNode(ISD::SRA, dl, VT, RHS,
8112                       DAG.getConstant(LoSize - 1, dl,
8113                                       getPointerTy(DAG.getDataLayout())));
8114     } else {
8115         HiLHS = DAG.getConstant(0, dl, VT);
8116         HiRHS = DAG.getConstant(0, dl, VT);
8117     }
8118 
8119     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8120     // pre-lowered to the correct types. This all depends upon WideVT not
8121     // being a legal type for the architecture and thus has to be split to
8122     // two arguments.
8123     SDValue Ret;
8124     TargetLowering::MakeLibCallOptions CallOptions;
8125     CallOptions.setSExt(isSigned);
8126     CallOptions.setIsPostTypeLegalization(true);
8127     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8128       // Halves of WideVT are packed into registers in different order
8129       // depending on platform endianness. This is usually handled by
8130       // the C calling convention, but we can't defer to it in
8131       // the legalizer.
8132       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8133       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8134     } else {
8135       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8136       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8137     }
8138     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8139            "Ret value is a collection of constituent nodes holding result.");
8140     if (DAG.getDataLayout().isLittleEndian()) {
8141       // Same as above.
8142       BottomHalf = Ret.getOperand(0);
8143       TopHalf = Ret.getOperand(1);
8144     } else {
8145       BottomHalf = Ret.getOperand(1);
8146       TopHalf = Ret.getOperand(0);
8147     }
8148   }
8149 
8150   Result = BottomHalf;
8151   if (isSigned) {
8152     SDValue ShiftAmt = DAG.getConstant(
8153         VT.getScalarSizeInBits() - 1, dl,
8154         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8155     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8156     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8157   } else {
8158     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8159                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8160   }
8161 
8162   // Truncate the result if SetCC returns a larger type than needed.
8163   EVT RType = Node->getValueType(1);
8164   if (RType.bitsLT(Overflow.getValueType()))
8165     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8166 
8167   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8168          "Unexpected result type for S/UMULO legalization");
8169   return true;
8170 }
8171 
8172 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8173   SDLoc dl(Node);
8174   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8175   SDValue Op = Node->getOperand(0);
8176   EVT VT = Op.getValueType();
8177 
8178   if (VT.isScalableVector())
8179     report_fatal_error(
8180         "Expanding reductions for scalable vectors is undefined.");
8181 
8182   // Try to use a shuffle reduction for power of two vectors.
8183   if (VT.isPow2VectorType()) {
8184     while (VT.getVectorNumElements() > 1) {
8185       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8186       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8187         break;
8188 
8189       SDValue Lo, Hi;
8190       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8191       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8192       VT = HalfVT;
8193     }
8194   }
8195 
8196   EVT EltVT = VT.getVectorElementType();
8197   unsigned NumElts = VT.getVectorNumElements();
8198 
8199   SmallVector<SDValue, 8> Ops;
8200   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8201 
8202   SDValue Res = Ops[0];
8203   for (unsigned i = 1; i < NumElts; i++)
8204     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8205 
8206   // Result type may be wider than element type.
8207   if (EltVT != Node->getValueType(0))
8208     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8209   return Res;
8210 }
8211 
8212 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8213   SDLoc dl(Node);
8214   SDValue AccOp = Node->getOperand(0);
8215   SDValue VecOp = Node->getOperand(1);
8216   SDNodeFlags Flags = Node->getFlags();
8217 
8218   EVT VT = VecOp.getValueType();
8219   EVT EltVT = VT.getVectorElementType();
8220 
8221   if (VT.isScalableVector())
8222     report_fatal_error(
8223         "Expanding reductions for scalable vectors is undefined.");
8224 
8225   unsigned NumElts = VT.getVectorNumElements();
8226 
8227   SmallVector<SDValue, 8> Ops;
8228   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8229 
8230   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8231 
8232   SDValue Res = AccOp;
8233   for (unsigned i = 0; i < NumElts; i++)
8234     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8235 
8236   return Res;
8237 }
8238 
8239 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8240                                SelectionDAG &DAG) const {
8241   EVT VT = Node->getValueType(0);
8242   SDLoc dl(Node);
8243   bool isSigned = Node->getOpcode() == ISD::SREM;
8244   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8245   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8246   SDValue Dividend = Node->getOperand(0);
8247   SDValue Divisor = Node->getOperand(1);
8248   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8249     SDVTList VTs = DAG.getVTList(VT, VT);
8250     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8251     return true;
8252   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8253     // X % Y -> X-X/Y*Y
8254     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8255     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8256     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8257     return true;
8258   }
8259   return false;
8260 }
8261 
8262 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8263                                             SelectionDAG &DAG) const {
8264   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8265   SDLoc dl(SDValue(Node, 0));
8266   SDValue Src = Node->getOperand(0);
8267 
8268   // DstVT is the result type, while SatVT is the size to which we saturate
8269   EVT SrcVT = Src.getValueType();
8270   EVT DstVT = Node->getValueType(0);
8271 
8272   unsigned SatWidth = Node->getConstantOperandVal(1);
8273   unsigned DstWidth = DstVT.getScalarSizeInBits();
8274   assert(SatWidth <= DstWidth &&
8275          "Expected saturation width smaller than result width");
8276 
8277   // Determine minimum and maximum integer values and their corresponding
8278   // floating-point values.
8279   APInt MinInt, MaxInt;
8280   if (IsSigned) {
8281     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8282     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8283   } else {
8284     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8285     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8286   }
8287 
8288   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8289   // libcall emission cannot handle this. Large result types will fail.
8290   if (SrcVT == MVT::f16) {
8291     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8292     SrcVT = Src.getValueType();
8293   }
8294 
8295   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8296   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8297 
8298   APFloat::opStatus MinStatus =
8299       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8300   APFloat::opStatus MaxStatus =
8301       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8302   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8303                              !(MaxStatus & APFloat::opStatus::opInexact);
8304 
8305   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8306   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8307 
8308   // If the integer bounds are exactly representable as floats and min/max are
8309   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8310   // of comparisons and selects.
8311   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8312                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8313   if (AreExactFloatBounds && MinMaxLegal) {
8314     SDValue Clamped = Src;
8315 
8316     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8317     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8318     // Clamp by MaxFloat from above. NaN cannot occur.
8319     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8320     // Convert clamped value to integer.
8321     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8322                                   dl, DstVT, Clamped);
8323 
8324     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8325     // which will cast to zero.
8326     if (!IsSigned)
8327       return FpToInt;
8328 
8329     // Otherwise, select 0 if Src is NaN.
8330     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8331     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8332                            ISD::CondCode::SETUO);
8333   }
8334 
8335   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8336   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8337 
8338   // Result of direct conversion. The assumption here is that the operation is
8339   // non-trapping and it's fine to apply it to an out-of-range value if we
8340   // select it away later.
8341   SDValue FpToInt =
8342       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8343 
8344   SDValue Select = FpToInt;
8345 
8346   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8347   // MinInt if Src is NaN.
8348   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8349                            ISD::CondCode::SETULT);
8350   // If Src OGT MaxFloat, select MaxInt.
8351   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8352                            ISD::CondCode::SETOGT);
8353 
8354   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8355   // is already zero.
8356   if (!IsSigned)
8357     return Select;
8358 
8359   // Otherwise, select 0 if Src is NaN.
8360   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8361   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8362 }
8363