1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 if (Op.getOpcode() == ISD::ConstantFP) { 921 // We know all of the bits for a floating point constant! 922 Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt(); 923 Known.Zero = ~Known.One; 924 return false; 925 } 926 927 // Other users may use these bits. 928 EVT VT = Op.getValueType(); 929 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 930 if (Depth != 0) { 931 // If not at the root, Just compute the Known bits to 932 // simplify things downstream. 933 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 934 return false; 935 } 936 // If this is the root being simplified, allow it to have multiple uses, 937 // just set the DemandedBits/Elts to all bits. 938 DemandedBits = APInt::getAllOnesValue(BitWidth); 939 DemandedElts = APInt::getAllOnesValue(NumElts); 940 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 941 // Not demanding any bits/elts from Op. 942 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 943 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 944 // Limit search depth. 945 return false; 946 } 947 948 KnownBits Known2; 949 switch (Op.getOpcode()) { 950 case ISD::TargetConstant: 951 llvm_unreachable("Can't simplify this node"); 952 case ISD::SCALAR_TO_VECTOR: { 953 if (!DemandedElts[0]) 954 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 955 956 KnownBits SrcKnown; 957 SDValue Src = Op.getOperand(0); 958 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 959 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 960 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 961 return true; 962 963 // Upper elements are undef, so only get the knownbits if we just demand 964 // the bottom element. 965 if (DemandedElts == 1) 966 Known = SrcKnown.anyextOrTrunc(BitWidth); 967 break; 968 } 969 case ISD::BUILD_VECTOR: 970 // Collect the known bits that are shared by every demanded element. 971 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 972 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 973 return false; // Don't fall through, will infinitely loop. 974 case ISD::LOAD: { 975 LoadSDNode *LD = cast<LoadSDNode>(Op); 976 if (getTargetConstantFromLoad(LD)) { 977 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 978 return false; // Don't fall through, will infinitely loop. 979 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 980 // If this is a ZEXTLoad and we are looking at the loaded value. 981 EVT MemVT = LD->getMemoryVT(); 982 unsigned MemBits = MemVT.getScalarSizeInBits(); 983 Known.Zero.setBitsFrom(MemBits); 984 return false; // Don't fall through, will infinitely loop. 985 } 986 break; 987 } 988 case ISD::INSERT_VECTOR_ELT: { 989 SDValue Vec = Op.getOperand(0); 990 SDValue Scl = Op.getOperand(1); 991 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 992 EVT VecVT = Vec.getValueType(); 993 994 // If index isn't constant, assume we need all vector elements AND the 995 // inserted element. 996 APInt DemandedVecElts(DemandedElts); 997 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 998 unsigned Idx = CIdx->getZExtValue(); 999 DemandedVecElts.clearBit(Idx); 1000 1001 // Inserted element is not required. 1002 if (!DemandedElts[Idx]) 1003 return TLO.CombineTo(Op, Vec); 1004 } 1005 1006 KnownBits KnownScl; 1007 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1008 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1009 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1010 return true; 1011 1012 Known = KnownScl.anyextOrTrunc(BitWidth); 1013 1014 KnownBits KnownVec; 1015 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1016 Depth + 1)) 1017 return true; 1018 1019 if (!!DemandedVecElts) { 1020 Known.One &= KnownVec.One; 1021 Known.Zero &= KnownVec.Zero; 1022 } 1023 1024 return false; 1025 } 1026 case ISD::INSERT_SUBVECTOR: { 1027 // Demand any elements from the subvector and the remainder from the src its 1028 // inserted into. 1029 SDValue Src = Op.getOperand(0); 1030 SDValue Sub = Op.getOperand(1); 1031 uint64_t Idx = Op.getConstantOperandVal(2); 1032 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1033 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1034 APInt DemandedSrcElts = DemandedElts; 1035 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1036 1037 KnownBits KnownSub, KnownSrc; 1038 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1039 Depth + 1)) 1040 return true; 1041 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1042 Depth + 1)) 1043 return true; 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 if (!!DemandedSubElts) { 1048 Known.One &= KnownSub.One; 1049 Known.Zero &= KnownSub.Zero; 1050 } 1051 if (!!DemandedSrcElts) { 1052 Known.One &= KnownSrc.One; 1053 Known.Zero &= KnownSrc.Zero; 1054 } 1055 1056 // Attempt to avoid multi-use src if we don't need anything from it. 1057 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1058 !DemandedSrcElts.isAllOnesValue()) { 1059 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1060 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1061 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1062 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1063 if (NewSub || NewSrc) { 1064 NewSub = NewSub ? NewSub : Sub; 1065 NewSrc = NewSrc ? NewSrc : Src; 1066 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1067 Op.getOperand(2)); 1068 return TLO.CombineTo(Op, NewOp); 1069 } 1070 } 1071 break; 1072 } 1073 case ISD::EXTRACT_SUBVECTOR: { 1074 // Offset the demanded elts by the subvector index. 1075 SDValue Src = Op.getOperand(0); 1076 if (Src.getValueType().isScalableVector()) 1077 break; 1078 uint64_t Idx = Op.getConstantOperandVal(1); 1079 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1080 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1081 1082 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1083 Depth + 1)) 1084 return true; 1085 1086 // Attempt to avoid multi-use src if we don't need anything from it. 1087 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1088 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1089 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1090 if (DemandedSrc) { 1091 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1092 Op.getOperand(1)); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 break; 1097 } 1098 case ISD::CONCAT_VECTORS: { 1099 Known.Zero.setAllBits(); 1100 Known.One.setAllBits(); 1101 EVT SubVT = Op.getOperand(0).getValueType(); 1102 unsigned NumSubVecs = Op.getNumOperands(); 1103 unsigned NumSubElts = SubVT.getVectorNumElements(); 1104 for (unsigned i = 0; i != NumSubVecs; ++i) { 1105 APInt DemandedSubElts = 1106 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1107 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1108 Known2, TLO, Depth + 1)) 1109 return true; 1110 // Known bits are shared by every demanded subvector element. 1111 if (!!DemandedSubElts) { 1112 Known.One &= Known2.One; 1113 Known.Zero &= Known2.Zero; 1114 } 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 if (!!DemandedRHS) { 1156 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1157 Depth + 1)) 1158 return true; 1159 Known.One &= Known2.One; 1160 Known.Zero &= Known2.Zero; 1161 } 1162 1163 // Attempt to avoid multi-use ops if we don't need anything from them. 1164 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1165 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1166 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1167 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1168 if (DemandedOp0 || DemandedOp1) { 1169 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1170 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1171 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1172 return TLO.CombineTo(Op, NewOp); 1173 } 1174 } 1175 break; 1176 } 1177 case ISD::AND: { 1178 SDValue Op0 = Op.getOperand(0); 1179 SDValue Op1 = Op.getOperand(1); 1180 1181 // If the RHS is a constant, check to see if the LHS would be zero without 1182 // using the bits from the RHS. Below, we use knowledge about the RHS to 1183 // simplify the LHS, here we're using information from the LHS to simplify 1184 // the RHS. 1185 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1186 // Do not increment Depth here; that can cause an infinite loop. 1187 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1188 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1189 if ((LHSKnown.Zero & DemandedBits) == 1190 (~RHSC->getAPIntValue() & DemandedBits)) 1191 return TLO.CombineTo(Op, Op0); 1192 1193 // If any of the set bits in the RHS are known zero on the LHS, shrink 1194 // the constant. 1195 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1196 DemandedElts, TLO)) 1197 return true; 1198 1199 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1200 // constant, but if this 'and' is only clearing bits that were just set by 1201 // the xor, then this 'and' can be eliminated by shrinking the mask of 1202 // the xor. For example, for a 32-bit X: 1203 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1204 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1205 LHSKnown.One == ~RHSC->getAPIntValue()) { 1206 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1207 return TLO.CombineTo(Op, Xor); 1208 } 1209 } 1210 1211 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1212 Depth + 1)) 1213 return true; 1214 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1215 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1216 Known2, TLO, Depth + 1)) 1217 return true; 1218 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1219 1220 // Attempt to avoid multi-use ops if we don't need anything from them. 1221 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1222 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1223 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1225 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1226 if (DemandedOp0 || DemandedOp1) { 1227 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1228 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1229 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1230 return TLO.CombineTo(Op, NewOp); 1231 } 1232 } 1233 1234 // If all of the demanded bits are known one on one side, return the other. 1235 // These bits cannot contribute to the result of the 'and'. 1236 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1237 return TLO.CombineTo(Op, Op0); 1238 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1239 return TLO.CombineTo(Op, Op1); 1240 // If all of the demanded bits in the inputs are known zeros, return zero. 1241 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1242 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1243 // If the RHS is a constant, see if we can simplify it. 1244 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1245 TLO)) 1246 return true; 1247 // If the operation can be done in a smaller type, do so. 1248 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1249 return true; 1250 1251 Known &= Known2; 1252 break; 1253 } 1254 case ISD::OR: { 1255 SDValue Op0 = Op.getOperand(0); 1256 SDValue Op1 = Op.getOperand(1); 1257 1258 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1259 Depth + 1)) 1260 return true; 1261 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1262 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1263 Known2, TLO, Depth + 1)) 1264 return true; 1265 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1266 1267 // Attempt to avoid multi-use ops if we don't need anything from them. 1268 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1269 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1270 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1272 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1273 if (DemandedOp0 || DemandedOp1) { 1274 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1275 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1276 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1277 return TLO.CombineTo(Op, NewOp); 1278 } 1279 } 1280 1281 // If all of the demanded bits are known zero on one side, return the other. 1282 // These bits cannot contribute to the result of the 'or'. 1283 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1284 return TLO.CombineTo(Op, Op0); 1285 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1286 return TLO.CombineTo(Op, Op1); 1287 // If the RHS is a constant, see if we can simplify it. 1288 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1289 return true; 1290 // If the operation can be done in a smaller type, do so. 1291 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1292 return true; 1293 1294 Known |= Known2; 1295 break; 1296 } 1297 case ISD::XOR: { 1298 SDValue Op0 = Op.getOperand(0); 1299 SDValue Op1 = Op.getOperand(1); 1300 1301 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1302 Depth + 1)) 1303 return true; 1304 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1309 1310 // Attempt to avoid multi-use ops if we don't need anything from them. 1311 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1312 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1313 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1315 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1316 if (DemandedOp0 || DemandedOp1) { 1317 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1318 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1319 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1320 return TLO.CombineTo(Op, NewOp); 1321 } 1322 } 1323 1324 // If all of the demanded bits are known zero on one side, return the other. 1325 // These bits cannot contribute to the result of the 'xor'. 1326 if (DemandedBits.isSubsetOf(Known.Zero)) 1327 return TLO.CombineTo(Op, Op0); 1328 if (DemandedBits.isSubsetOf(Known2.Zero)) 1329 return TLO.CombineTo(Op, Op1); 1330 // If the operation can be done in a smaller type, do so. 1331 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1332 return true; 1333 1334 // If all of the unknown bits are known to be zero on one side or the other 1335 // turn this into an *inclusive* or. 1336 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1337 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1338 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1339 1340 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1341 if (C) { 1342 // If one side is a constant, and all of the set bits in the constant are 1343 // also known set on the other side, turn this into an AND, as we know 1344 // the bits will be cleared. 1345 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1346 // NB: it is okay if more bits are known than are requested 1347 if (C->getAPIntValue() == Known2.One) { 1348 SDValue ANDC = 1349 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1350 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1351 } 1352 1353 // If the RHS is a constant, see if we can change it. Don't alter a -1 1354 // constant because that's a 'not' op, and that is better for combining 1355 // and codegen. 1356 if (!C->isAllOnesValue() && 1357 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1358 // We're flipping all demanded bits. Flip the undemanded bits too. 1359 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1360 return TLO.CombineTo(Op, New); 1361 } 1362 } 1363 1364 // If we can't turn this into a 'not', try to shrink the constant. 1365 if (!C || !C->isAllOnesValue()) 1366 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1367 return true; 1368 1369 Known ^= Known2; 1370 break; 1371 } 1372 case ISD::SELECT: 1373 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1374 Depth + 1)) 1375 return true; 1376 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1377 Depth + 1)) 1378 return true; 1379 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1380 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1381 1382 // If the operands are constants, see if we can simplify them. 1383 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1384 return true; 1385 1386 // Only known if known in both the LHS and RHS. 1387 Known.One &= Known2.One; 1388 Known.Zero &= Known2.Zero; 1389 break; 1390 case ISD::SELECT_CC: 1391 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1392 Depth + 1)) 1393 return true; 1394 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1398 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1399 1400 // If the operands are constants, see if we can simplify them. 1401 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1402 return true; 1403 1404 // Only known if known in both the LHS and RHS. 1405 Known.One &= Known2.One; 1406 Known.Zero &= Known2.Zero; 1407 break; 1408 case ISD::SETCC: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1412 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1413 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1414 // -1, we may be able to bypass the setcc. 1415 if (DemandedBits.isSignMask() && 1416 Op0.getScalarValueSizeInBits() == BitWidth && 1417 getBooleanContents(Op0.getValueType()) == 1418 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1419 // If we're testing X < 0, then this compare isn't needed - just use X! 1420 // FIXME: We're limiting to integer types here, but this should also work 1421 // if we don't care about FP signed-zero. The use of SETLT with FP means 1422 // that we don't care about NaNs. 1423 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1424 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1425 return TLO.CombineTo(Op, Op0); 1426 1427 // TODO: Should we check for other forms of sign-bit comparisons? 1428 // Examples: X <= -1, X >= 0 1429 } 1430 if (getBooleanContents(Op0.getValueType()) == 1431 TargetLowering::ZeroOrOneBooleanContent && 1432 BitWidth > 1) 1433 Known.Zero.setBitsFrom(1); 1434 break; 1435 } 1436 case ISD::SHL: { 1437 SDValue Op0 = Op.getOperand(0); 1438 SDValue Op1 = Op.getOperand(1); 1439 EVT ShiftVT = Op1.getValueType(); 1440 1441 if (const APInt *SA = 1442 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1443 unsigned ShAmt = SA->getZExtValue(); 1444 if (ShAmt == 0) 1445 return TLO.CombineTo(Op, Op0); 1446 1447 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1448 // single shift. We can do this if the bottom bits (which are shifted 1449 // out) are never demanded. 1450 // TODO - support non-uniform vector amounts. 1451 if (Op0.getOpcode() == ISD::SRL) { 1452 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1453 if (const APInt *SA2 = 1454 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1455 unsigned C1 = SA2->getZExtValue(); 1456 unsigned Opc = ISD::SHL; 1457 int Diff = ShAmt - C1; 1458 if (Diff < 0) { 1459 Diff = -Diff; 1460 Opc = ISD::SRL; 1461 } 1462 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1463 return TLO.CombineTo( 1464 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1465 } 1466 } 1467 } 1468 1469 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1470 // are not demanded. This will likely allow the anyext to be folded away. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1473 SDValue InnerOp = Op0.getOperand(0); 1474 EVT InnerVT = InnerOp.getValueType(); 1475 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1476 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1477 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1478 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1479 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1480 ShTy = InnerVT; 1481 SDValue NarrowShl = 1482 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1483 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1486 } 1487 1488 // Repeat the SHL optimization above in cases where an extension 1489 // intervenes: (shl (anyext (shr x, c1)), c2) to 1490 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1491 // aren't demanded (as above) and that the shifted upper c1 bits of 1492 // x aren't demanded. 1493 // TODO - support non-uniform vector amounts. 1494 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1495 InnerOp.hasOneUse()) { 1496 if (const APInt *SA2 = 1497 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1498 unsigned InnerShAmt = SA2->getZExtValue(); 1499 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1500 DemandedBits.getActiveBits() <= 1501 (InnerBits - InnerShAmt + ShAmt) && 1502 DemandedBits.countTrailingZeros() >= ShAmt) { 1503 SDValue NewSA = 1504 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1505 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1506 InnerOp.getOperand(0)); 1507 return TLO.CombineTo( 1508 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1509 } 1510 } 1511 } 1512 } 1513 1514 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero <<= ShAmt; 1520 Known.One <<= ShAmt; 1521 // low bits known zero. 1522 Known.Zero.setLowBits(ShAmt); 1523 1524 // Try shrinking the operation as long as the shift amount will still be 1525 // in range. 1526 if ((ShAmt < DemandedBits.getActiveBits()) && 1527 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1528 return true; 1529 } 1530 1531 // If we are only demanding sign bits then we can use the shift source 1532 // directly. 1533 if (const APInt *MaxSA = 1534 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1535 unsigned ShAmt = MaxSA->getZExtValue(); 1536 unsigned NumSignBits = 1537 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1538 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1539 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1540 return TLO.CombineTo(Op, Op0); 1541 } 1542 break; 1543 } 1544 case ISD::SRL: { 1545 SDValue Op0 = Op.getOperand(0); 1546 SDValue Op1 = Op.getOperand(1); 1547 EVT ShiftVT = Op1.getValueType(); 1548 1549 if (const APInt *SA = 1550 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1551 unsigned ShAmt = SA->getZExtValue(); 1552 if (ShAmt == 0) 1553 return TLO.CombineTo(Op, Op0); 1554 1555 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1556 // single shift. We can do this if the top bits (which are shifted out) 1557 // are never demanded. 1558 // TODO - support non-uniform vector amounts. 1559 if (Op0.getOpcode() == ISD::SHL) { 1560 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1561 if (const APInt *SA2 = 1562 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1563 unsigned C1 = SA2->getZExtValue(); 1564 unsigned Opc = ISD::SRL; 1565 int Diff = ShAmt - C1; 1566 if (Diff < 0) { 1567 Diff = -Diff; 1568 Opc = ISD::SHL; 1569 } 1570 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1571 return TLO.CombineTo( 1572 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1573 } 1574 } 1575 } 1576 1577 APInt InDemandedMask = (DemandedBits << ShAmt); 1578 1579 // If the shift is exact, then it does demand the low bits (and knows that 1580 // they are zero). 1581 if (Op->getFlags().hasExact()) 1582 InDemandedMask.setLowBits(ShAmt); 1583 1584 // Compute the new bits that are at the top now. 1585 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1586 Depth + 1)) 1587 return true; 1588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1589 Known.Zero.lshrInPlace(ShAmt); 1590 Known.One.lshrInPlace(ShAmt); 1591 // High bits known zero. 1592 Known.Zero.setHighBits(ShAmt); 1593 } 1594 break; 1595 } 1596 case ISD::SRA: { 1597 SDValue Op0 = Op.getOperand(0); 1598 SDValue Op1 = Op.getOperand(1); 1599 EVT ShiftVT = Op1.getValueType(); 1600 1601 // If we only want bits that already match the signbit then we don't need 1602 // to shift. 1603 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1604 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1605 NumHiDemandedBits) 1606 return TLO.CombineTo(Op, Op0); 1607 1608 // If this is an arithmetic shift right and only the low-bit is set, we can 1609 // always convert this into a logical shr, even if the shift amount is 1610 // variable. The low bit of the shift cannot be an input sign bit unless 1611 // the shift amount is >= the size of the datatype, which is undefined. 1612 if (DemandedBits.isOneValue()) 1613 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1614 1615 if (const APInt *SA = 1616 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1617 unsigned ShAmt = SA->getZExtValue(); 1618 if (ShAmt == 0) 1619 return TLO.CombineTo(Op, Op0); 1620 1621 APInt InDemandedMask = (DemandedBits << ShAmt); 1622 1623 // If the shift is exact, then it does demand the low bits (and knows that 1624 // they are zero). 1625 if (Op->getFlags().hasExact()) 1626 InDemandedMask.setLowBits(ShAmt); 1627 1628 // If any of the demanded bits are produced by the sign extension, we also 1629 // demand the input sign bit. 1630 if (DemandedBits.countLeadingZeros() < ShAmt) 1631 InDemandedMask.setSignBit(); 1632 1633 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1634 Depth + 1)) 1635 return true; 1636 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1637 Known.Zero.lshrInPlace(ShAmt); 1638 Known.One.lshrInPlace(ShAmt); 1639 1640 // If the input sign bit is known to be zero, or if none of the top bits 1641 // are demanded, turn this into an unsigned shift right. 1642 if (Known.Zero[BitWidth - ShAmt - 1] || 1643 DemandedBits.countLeadingZeros() >= ShAmt) { 1644 SDNodeFlags Flags; 1645 Flags.setExact(Op->getFlags().hasExact()); 1646 return TLO.CombineTo( 1647 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1648 } 1649 1650 int Log2 = DemandedBits.exactLogBase2(); 1651 if (Log2 >= 0) { 1652 // The bit must come from the sign. 1653 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1654 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1655 } 1656 1657 if (Known.One[BitWidth - ShAmt - 1]) 1658 // New bits are known one. 1659 Known.One.setHighBits(ShAmt); 1660 1661 // Attempt to avoid multi-use ops if we don't need anything from them. 1662 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1663 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1664 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1665 if (DemandedOp0) { 1666 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1667 return TLO.CombineTo(Op, NewOp); 1668 } 1669 } 1670 } 1671 break; 1672 } 1673 case ISD::FSHL: 1674 case ISD::FSHR: { 1675 SDValue Op0 = Op.getOperand(0); 1676 SDValue Op1 = Op.getOperand(1); 1677 SDValue Op2 = Op.getOperand(2); 1678 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1679 1680 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1681 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1682 1683 // For fshl, 0-shift returns the 1st arg. 1684 // For fshr, 0-shift returns the 2nd arg. 1685 if (Amt == 0) { 1686 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1687 Known, TLO, Depth + 1)) 1688 return true; 1689 break; 1690 } 1691 1692 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1693 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1694 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1695 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1696 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1697 Depth + 1)) 1698 return true; 1699 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 1703 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1704 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1705 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1706 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1707 Known.One |= Known2.One; 1708 Known.Zero |= Known2.Zero; 1709 } 1710 1711 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1712 if (isPowerOf2_32(BitWidth)) { 1713 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1714 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1715 Known2, TLO, Depth + 1)) 1716 return true; 1717 } 1718 break; 1719 } 1720 case ISD::ROTL: 1721 case ISD::ROTR: { 1722 SDValue Op0 = Op.getOperand(0); 1723 SDValue Op1 = Op.getOperand(1); 1724 1725 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1726 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1727 return TLO.CombineTo(Op, Op0); 1728 1729 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1730 if (isPowerOf2_32(BitWidth)) { 1731 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1732 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1733 Depth + 1)) 1734 return true; 1735 } 1736 break; 1737 } 1738 case ISD::BITREVERSE: { 1739 SDValue Src = Op.getOperand(0); 1740 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1741 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 Known.One = Known2.One.reverseBits(); 1745 Known.Zero = Known2.Zero.reverseBits(); 1746 break; 1747 } 1748 case ISD::BSWAP: { 1749 SDValue Src = Op.getOperand(0); 1750 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1751 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1752 Depth + 1)) 1753 return true; 1754 Known.One = Known2.One.byteSwap(); 1755 Known.Zero = Known2.Zero.byteSwap(); 1756 break; 1757 } 1758 case ISD::CTPOP: { 1759 // If only 1 bit is demanded, replace with PARITY as long as we're before 1760 // op legalization. 1761 // FIXME: Limit to scalars for now. 1762 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1763 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1764 Op.getOperand(0))); 1765 1766 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1767 break; 1768 } 1769 case ISD::SIGN_EXTEND_INREG: { 1770 SDValue Op0 = Op.getOperand(0); 1771 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1772 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1773 1774 // If we only care about the highest bit, don't bother shifting right. 1775 if (DemandedBits.isSignMask()) { 1776 unsigned NumSignBits = 1777 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1778 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1779 // However if the input is already sign extended we expect the sign 1780 // extension to be dropped altogether later and do not simplify. 1781 if (!AlreadySignExtended) { 1782 // Compute the correct shift amount type, which must be getShiftAmountTy 1783 // for scalar types after legalization. 1784 EVT ShiftAmtTy = VT; 1785 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1786 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1787 1788 SDValue ShiftAmt = 1789 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1790 return TLO.CombineTo(Op, 1791 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1792 } 1793 } 1794 1795 // If none of the extended bits are demanded, eliminate the sextinreg. 1796 if (DemandedBits.getActiveBits() <= ExVTBits) 1797 return TLO.CombineTo(Op, Op0); 1798 1799 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1800 1801 // Since the sign extended bits are demanded, we know that the sign 1802 // bit is demanded. 1803 InputDemandedBits.setBit(ExVTBits - 1); 1804 1805 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1806 return true; 1807 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1808 1809 // If the sign bit of the input is known set or clear, then we know the 1810 // top bits of the result. 1811 1812 // If the input sign bit is known zero, convert this into a zero extension. 1813 if (Known.Zero[ExVTBits - 1]) 1814 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1815 1816 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1817 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1818 Known.One.setBitsFrom(ExVTBits); 1819 Known.Zero &= Mask; 1820 } else { // Input sign bit unknown 1821 Known.Zero &= Mask; 1822 Known.One &= Mask; 1823 } 1824 break; 1825 } 1826 case ISD::BUILD_PAIR: { 1827 EVT HalfVT = Op.getOperand(0).getValueType(); 1828 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1829 1830 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1831 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1832 1833 KnownBits KnownLo, KnownHi; 1834 1835 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1836 return true; 1837 1838 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1839 return true; 1840 1841 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1842 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1843 1844 Known.One = KnownLo.One.zext(BitWidth) | 1845 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1846 break; 1847 } 1848 case ISD::ZERO_EXTEND: 1849 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1850 SDValue Src = Op.getOperand(0); 1851 EVT SrcVT = Src.getValueType(); 1852 unsigned InBits = SrcVT.getScalarSizeInBits(); 1853 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1854 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1855 1856 // If none of the top bits are demanded, convert this into an any_extend. 1857 if (DemandedBits.getActiveBits() <= InBits) { 1858 // If we only need the non-extended bits of the bottom element 1859 // then we can just bitcast to the result. 1860 if (IsVecInReg && DemandedElts == 1 && 1861 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1862 TLO.DAG.getDataLayout().isLittleEndian()) 1863 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1864 1865 unsigned Opc = 1866 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1867 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1868 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1869 } 1870 1871 APInt InDemandedBits = DemandedBits.trunc(InBits); 1872 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1873 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1874 Depth + 1)) 1875 return true; 1876 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1877 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1878 Known = Known.zext(BitWidth); 1879 1880 // Attempt to avoid multi-use ops if we don't need anything from them. 1881 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1882 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1883 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1884 break; 1885 } 1886 case ISD::SIGN_EXTEND: 1887 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1888 SDValue Src = Op.getOperand(0); 1889 EVT SrcVT = Src.getValueType(); 1890 unsigned InBits = SrcVT.getScalarSizeInBits(); 1891 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1892 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1893 1894 // If none of the top bits are demanded, convert this into an any_extend. 1895 if (DemandedBits.getActiveBits() <= InBits) { 1896 // If we only need the non-extended bits of the bottom element 1897 // then we can just bitcast to the result. 1898 if (IsVecInReg && DemandedElts == 1 && 1899 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1900 TLO.DAG.getDataLayout().isLittleEndian()) 1901 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1902 1903 unsigned Opc = 1904 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1905 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1907 } 1908 1909 APInt InDemandedBits = DemandedBits.trunc(InBits); 1910 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1911 1912 // Since some of the sign extended bits are demanded, we know that the sign 1913 // bit is demanded. 1914 InDemandedBits.setBit(InBits - 1); 1915 1916 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1917 Depth + 1)) 1918 return true; 1919 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1920 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1921 1922 // If the sign bit is known one, the top bits match. 1923 Known = Known.sext(BitWidth); 1924 1925 // If the sign bit is known zero, convert this to a zero extend. 1926 if (Known.isNonNegative()) { 1927 unsigned Opc = 1928 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1929 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1930 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1931 } 1932 1933 // Attempt to avoid multi-use ops if we don't need anything from them. 1934 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1935 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1937 break; 1938 } 1939 case ISD::ANY_EXTEND: 1940 case ISD::ANY_EXTEND_VECTOR_INREG: { 1941 SDValue Src = Op.getOperand(0); 1942 EVT SrcVT = Src.getValueType(); 1943 unsigned InBits = SrcVT.getScalarSizeInBits(); 1944 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1945 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1946 1947 // If we only need the bottom element then we can just bitcast. 1948 // TODO: Handle ANY_EXTEND? 1949 if (IsVecInReg && DemandedElts == 1 && 1950 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1951 TLO.DAG.getDataLayout().isLittleEndian()) 1952 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1953 1954 APInt InDemandedBits = DemandedBits.trunc(InBits); 1955 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1956 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1957 Depth + 1)) 1958 return true; 1959 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1960 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1961 Known = Known.anyext(BitWidth); 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::TRUNCATE: { 1970 SDValue Src = Op.getOperand(0); 1971 1972 // Simplify the input, using demanded bit information, and compute the known 1973 // zero/one bits live out. 1974 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1975 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1976 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1977 return true; 1978 Known = Known.trunc(BitWidth); 1979 1980 // Attempt to avoid multi-use ops if we don't need anything from them. 1981 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1982 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1983 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1984 1985 // If the input is only used by this truncate, see if we can shrink it based 1986 // on the known demanded bits. 1987 if (Src.getNode()->hasOneUse()) { 1988 switch (Src.getOpcode()) { 1989 default: 1990 break; 1991 case ISD::SRL: 1992 // Shrink SRL by a constant if none of the high bits shifted in are 1993 // demanded. 1994 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1995 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1996 // undesirable. 1997 break; 1998 1999 SDValue ShAmt = Src.getOperand(1); 2000 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 2001 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 2002 break; 2003 uint64_t ShVal = ShAmtC->getZExtValue(); 2004 2005 APInt HighBits = 2006 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2007 HighBits.lshrInPlace(ShVal); 2008 HighBits = HighBits.trunc(BitWidth); 2009 2010 if (!(HighBits & DemandedBits)) { 2011 // None of the shifted in bits are needed. Add a truncate of the 2012 // shift input, then shift it. 2013 if (TLO.LegalTypes()) 2014 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 2015 SDValue NewTrunc = 2016 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2017 return TLO.CombineTo( 2018 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 2019 } 2020 break; 2021 } 2022 } 2023 2024 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2025 break; 2026 } 2027 case ISD::AssertZext: { 2028 // AssertZext demands all of the high bits, plus any of the low bits 2029 // demanded by its users. 2030 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2031 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2032 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2033 TLO, Depth + 1)) 2034 return true; 2035 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2036 2037 Known.Zero |= ~InMask; 2038 break; 2039 } 2040 case ISD::EXTRACT_VECTOR_ELT: { 2041 SDValue Src = Op.getOperand(0); 2042 SDValue Idx = Op.getOperand(1); 2043 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2044 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2045 2046 if (SrcEltCnt.isScalable()) 2047 return false; 2048 2049 // Demand the bits from every vector element without a constant index. 2050 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2051 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2052 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2053 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2054 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2055 2056 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2057 // anything about the extended bits. 2058 APInt DemandedSrcBits = DemandedBits; 2059 if (BitWidth > EltBitWidth) 2060 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2061 2062 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2063 Depth + 1)) 2064 return true; 2065 2066 // Attempt to avoid multi-use ops if we don't need anything from them. 2067 if (!DemandedSrcBits.isAllOnesValue() || 2068 !DemandedSrcElts.isAllOnesValue()) { 2069 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2070 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2071 SDValue NewOp = 2072 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2073 return TLO.CombineTo(Op, NewOp); 2074 } 2075 } 2076 2077 Known = Known2; 2078 if (BitWidth > EltBitWidth) 2079 Known = Known.anyext(BitWidth); 2080 break; 2081 } 2082 case ISD::BITCAST: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2086 2087 // If this is an FP->Int bitcast and if the sign bit is the only 2088 // thing demanded, turn this into a FGETSIGN. 2089 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2090 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2091 SrcVT.isFloatingPoint()) { 2092 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2093 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2094 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2095 SrcVT != MVT::f128) { 2096 // Cannot eliminate/lower SHL for f128 yet. 2097 EVT Ty = OpVTLegal ? VT : MVT::i32; 2098 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2099 // place. We expect the SHL to be eliminated by other optimizations. 2100 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2101 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2102 if (!OpVTLegal && OpVTSizeInBits > 32) 2103 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2104 unsigned ShVal = Op.getValueSizeInBits() - 1; 2105 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2106 return TLO.CombineTo(Op, 2107 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2108 } 2109 } 2110 2111 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2112 // Demand the elt/bit if any of the original elts/bits are demanded. 2113 // TODO - bigendian once we have test coverage. 2114 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2115 TLO.DAG.getDataLayout().isLittleEndian()) { 2116 unsigned Scale = BitWidth / NumSrcEltBits; 2117 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2118 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2119 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2120 for (unsigned i = 0; i != Scale; ++i) { 2121 unsigned Offset = i * NumSrcEltBits; 2122 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2123 if (!Sub.isNullValue()) { 2124 DemandedSrcBits |= Sub; 2125 for (unsigned j = 0; j != NumElts; ++j) 2126 if (DemandedElts[j]) 2127 DemandedSrcElts.setBit((j * Scale) + i); 2128 } 2129 } 2130 2131 APInt KnownSrcUndef, KnownSrcZero; 2132 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2133 KnownSrcZero, TLO, Depth + 1)) 2134 return true; 2135 2136 KnownBits KnownSrcBits; 2137 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2138 KnownSrcBits, TLO, Depth + 1)) 2139 return true; 2140 } else if ((NumSrcEltBits % BitWidth) == 0 && 2141 TLO.DAG.getDataLayout().isLittleEndian()) { 2142 unsigned Scale = NumSrcEltBits / BitWidth; 2143 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2144 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2145 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2146 for (unsigned i = 0; i != NumElts; ++i) 2147 if (DemandedElts[i]) { 2148 unsigned Offset = (i % Scale) * BitWidth; 2149 DemandedSrcBits.insertBits(DemandedBits, Offset); 2150 DemandedSrcElts.setBit(i / Scale); 2151 } 2152 2153 if (SrcVT.isVector()) { 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 } 2159 2160 KnownBits KnownSrcBits; 2161 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2162 KnownSrcBits, TLO, Depth + 1)) 2163 return true; 2164 } 2165 2166 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2167 // recursive call where Known may be useful to the caller. 2168 if (Depth > 0) { 2169 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2170 return false; 2171 } 2172 break; 2173 } 2174 case ISD::ADD: 2175 case ISD::MUL: 2176 case ISD::SUB: { 2177 // Add, Sub, and Mul don't demand any bits in positions beyond that 2178 // of the highest bit demanded of them. 2179 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2180 SDNodeFlags Flags = Op.getNode()->getFlags(); 2181 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2182 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2183 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2184 Depth + 1) || 2185 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2186 Depth + 1) || 2187 // See if the operation should be performed at a smaller bit width. 2188 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2189 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2190 // Disable the nsw and nuw flags. We can no longer guarantee that we 2191 // won't wrap after simplification. 2192 Flags.setNoSignedWrap(false); 2193 Flags.setNoUnsignedWrap(false); 2194 SDValue NewOp = 2195 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2196 return TLO.CombineTo(Op, NewOp); 2197 } 2198 return true; 2199 } 2200 2201 // Attempt to avoid multi-use ops if we don't need anything from them. 2202 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2203 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2204 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2205 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2206 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2207 if (DemandedOp0 || DemandedOp1) { 2208 Flags.setNoSignedWrap(false); 2209 Flags.setNoUnsignedWrap(false); 2210 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2211 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2212 SDValue NewOp = 2213 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2214 return TLO.CombineTo(Op, NewOp); 2215 } 2216 } 2217 2218 // If we have a constant operand, we may be able to turn it into -1 if we 2219 // do not demand the high bits. This can make the constant smaller to 2220 // encode, allow more general folding, or match specialized instruction 2221 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2222 // is probably not useful (and could be detrimental). 2223 ConstantSDNode *C = isConstOrConstSplat(Op1); 2224 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2225 if (C && !C->isAllOnesValue() && !C->isOne() && 2226 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2227 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2228 // Disable the nsw and nuw flags. We can no longer guarantee that we 2229 // won't wrap after simplification. 2230 Flags.setNoSignedWrap(false); 2231 Flags.setNoUnsignedWrap(false); 2232 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2233 return TLO.CombineTo(Op, NewOp); 2234 } 2235 2236 LLVM_FALLTHROUGH; 2237 } 2238 default: 2239 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2240 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2241 Known, TLO, Depth)) 2242 return true; 2243 break; 2244 } 2245 2246 // Just use computeKnownBits to compute output bits. 2247 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2248 break; 2249 } 2250 2251 // If we know the value of all of the demanded bits, return this as a 2252 // constant. 2253 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2254 // Avoid folding to a constant if any OpaqueConstant is involved. 2255 const SDNode *N = Op.getNode(); 2256 for (SDNodeIterator I = SDNodeIterator::begin(N), 2257 E = SDNodeIterator::end(N); 2258 I != E; ++I) { 2259 SDNode *Op = *I; 2260 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2261 if (C->isOpaque()) 2262 return false; 2263 } 2264 if (VT.isInteger()) 2265 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2266 if (VT.isFloatingPoint()) 2267 return TLO.CombineTo( 2268 Op, 2269 TLO.DAG.getConstantFP( 2270 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2271 } 2272 2273 return false; 2274 } 2275 2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2277 const APInt &DemandedElts, 2278 APInt &KnownUndef, 2279 APInt &KnownZero, 2280 DAGCombinerInfo &DCI) const { 2281 SelectionDAG &DAG = DCI.DAG; 2282 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2283 !DCI.isBeforeLegalizeOps()); 2284 2285 bool Simplified = 2286 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2287 if (Simplified) { 2288 DCI.AddToWorklist(Op.getNode()); 2289 DCI.CommitTargetLoweringOpt(TLO); 2290 } 2291 2292 return Simplified; 2293 } 2294 2295 /// Given a vector binary operation and known undefined elements for each input 2296 /// operand, compute whether each element of the output is undefined. 2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2298 const APInt &UndefOp0, 2299 const APInt &UndefOp1) { 2300 EVT VT = BO.getValueType(); 2301 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2302 "Vector binop only"); 2303 2304 EVT EltVT = VT.getVectorElementType(); 2305 unsigned NumElts = VT.getVectorNumElements(); 2306 assert(UndefOp0.getBitWidth() == NumElts && 2307 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2308 2309 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2310 const APInt &UndefVals) { 2311 if (UndefVals[Index]) 2312 return DAG.getUNDEF(EltVT); 2313 2314 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2315 // Try hard to make sure that the getNode() call is not creating temporary 2316 // nodes. Ignore opaque integers because they do not constant fold. 2317 SDValue Elt = BV->getOperand(Index); 2318 auto *C = dyn_cast<ConstantSDNode>(Elt); 2319 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2320 return Elt; 2321 } 2322 2323 return SDValue(); 2324 }; 2325 2326 APInt KnownUndef = APInt::getNullValue(NumElts); 2327 for (unsigned i = 0; i != NumElts; ++i) { 2328 // If both inputs for this element are either constant or undef and match 2329 // the element type, compute the constant/undef result for this element of 2330 // the vector. 2331 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2332 // not handle FP constants. The code within getNode() should be refactored 2333 // to avoid the danger of creating a bogus temporary node here. 2334 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2335 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2336 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2337 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2338 KnownUndef.setBit(i); 2339 } 2340 return KnownUndef; 2341 } 2342 2343 bool TargetLowering::SimplifyDemandedVectorElts( 2344 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2345 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2346 bool AssumeSingleUse) const { 2347 EVT VT = Op.getValueType(); 2348 unsigned Opcode = Op.getOpcode(); 2349 APInt DemandedElts = OriginalDemandedElts; 2350 unsigned NumElts = DemandedElts.getBitWidth(); 2351 assert(VT.isVector() && "Expected vector op"); 2352 2353 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2354 2355 // TODO: For now we assume we know nothing about scalable vectors. 2356 if (VT.isScalableVector()) 2357 return false; 2358 2359 assert(VT.getVectorNumElements() == NumElts && 2360 "Mask size mismatches value type element count!"); 2361 2362 // Undef operand. 2363 if (Op.isUndef()) { 2364 KnownUndef.setAllBits(); 2365 return false; 2366 } 2367 2368 // If Op has other users, assume that all elements are needed. 2369 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2370 DemandedElts.setAllBits(); 2371 2372 // Not demanding any elements from Op. 2373 if (DemandedElts == 0) { 2374 KnownUndef.setAllBits(); 2375 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2376 } 2377 2378 // Limit search depth. 2379 if (Depth >= SelectionDAG::MaxRecursionDepth) 2380 return false; 2381 2382 SDLoc DL(Op); 2383 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2384 2385 // Helper for demanding the specified elements and all the bits of both binary 2386 // operands. 2387 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2388 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2389 TLO.DAG, Depth + 1); 2390 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2391 TLO.DAG, Depth + 1); 2392 if (NewOp0 || NewOp1) { 2393 SDValue NewOp = TLO.DAG.getNode( 2394 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2395 return TLO.CombineTo(Op, NewOp); 2396 } 2397 return false; 2398 }; 2399 2400 switch (Opcode) { 2401 case ISD::SCALAR_TO_VECTOR: { 2402 if (!DemandedElts[0]) { 2403 KnownUndef.setAllBits(); 2404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2405 } 2406 KnownUndef.setHighBits(NumElts - 1); 2407 break; 2408 } 2409 case ISD::BITCAST: { 2410 SDValue Src = Op.getOperand(0); 2411 EVT SrcVT = Src.getValueType(); 2412 2413 // We only handle vectors here. 2414 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2415 if (!SrcVT.isVector()) 2416 break; 2417 2418 // Fast handling of 'identity' bitcasts. 2419 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2420 if (NumSrcElts == NumElts) 2421 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2422 KnownZero, TLO, Depth + 1); 2423 2424 APInt SrcZero, SrcUndef; 2425 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2426 2427 // Bitcast from 'large element' src vector to 'small element' vector, we 2428 // must demand a source element if any DemandedElt maps to it. 2429 if ((NumElts % NumSrcElts) == 0) { 2430 unsigned Scale = NumElts / NumSrcElts; 2431 for (unsigned i = 0; i != NumElts; ++i) 2432 if (DemandedElts[i]) 2433 SrcDemandedElts.setBit(i / Scale); 2434 2435 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2436 TLO, Depth + 1)) 2437 return true; 2438 2439 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2440 // of the large element. 2441 // TODO - bigendian once we have test coverage. 2442 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2443 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2444 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2445 for (unsigned i = 0; i != NumElts; ++i) 2446 if (DemandedElts[i]) { 2447 unsigned Ofs = (i % Scale) * EltSizeInBits; 2448 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2449 } 2450 2451 KnownBits Known; 2452 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2453 TLO, Depth + 1)) 2454 return true; 2455 } 2456 2457 // If the src element is zero/undef then all the output elements will be - 2458 // only demanded elements are guaranteed to be correct. 2459 for (unsigned i = 0; i != NumSrcElts; ++i) { 2460 if (SrcDemandedElts[i]) { 2461 if (SrcZero[i]) 2462 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2463 if (SrcUndef[i]) 2464 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2465 } 2466 } 2467 } 2468 2469 // Bitcast from 'small element' src vector to 'large element' vector, we 2470 // demand all smaller source elements covered by the larger demanded element 2471 // of this vector. 2472 if ((NumSrcElts % NumElts) == 0) { 2473 unsigned Scale = NumSrcElts / NumElts; 2474 for (unsigned i = 0; i != NumElts; ++i) 2475 if (DemandedElts[i]) 2476 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2477 2478 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2479 TLO, Depth + 1)) 2480 return true; 2481 2482 // If all the src elements covering an output element are zero/undef, then 2483 // the output element will be as well, assuming it was demanded. 2484 for (unsigned i = 0; i != NumElts; ++i) { 2485 if (DemandedElts[i]) { 2486 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2487 KnownZero.setBit(i); 2488 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2489 KnownUndef.setBit(i); 2490 } 2491 } 2492 } 2493 break; 2494 } 2495 case ISD::BUILD_VECTOR: { 2496 // Check all elements and simplify any unused elements with UNDEF. 2497 if (!DemandedElts.isAllOnesValue()) { 2498 // Don't simplify BROADCASTS. 2499 if (llvm::any_of(Op->op_values(), 2500 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2501 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2502 bool Updated = false; 2503 for (unsigned i = 0; i != NumElts; ++i) { 2504 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2505 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2506 KnownUndef.setBit(i); 2507 Updated = true; 2508 } 2509 } 2510 if (Updated) 2511 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2512 } 2513 } 2514 for (unsigned i = 0; i != NumElts; ++i) { 2515 SDValue SrcOp = Op.getOperand(i); 2516 if (SrcOp.isUndef()) { 2517 KnownUndef.setBit(i); 2518 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2519 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2520 KnownZero.setBit(i); 2521 } 2522 } 2523 break; 2524 } 2525 case ISD::CONCAT_VECTORS: { 2526 EVT SubVT = Op.getOperand(0).getValueType(); 2527 unsigned NumSubVecs = Op.getNumOperands(); 2528 unsigned NumSubElts = SubVT.getVectorNumElements(); 2529 for (unsigned i = 0; i != NumSubVecs; ++i) { 2530 SDValue SubOp = Op.getOperand(i); 2531 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2532 APInt SubUndef, SubZero; 2533 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2534 Depth + 1)) 2535 return true; 2536 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2537 KnownZero.insertBits(SubZero, i * NumSubElts); 2538 } 2539 break; 2540 } 2541 case ISD::INSERT_SUBVECTOR: { 2542 // Demand any elements from the subvector and the remainder from the src its 2543 // inserted into. 2544 SDValue Src = Op.getOperand(0); 2545 SDValue Sub = Op.getOperand(1); 2546 uint64_t Idx = Op.getConstantOperandVal(2); 2547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2549 APInt DemandedSrcElts = DemandedElts; 2550 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2551 2552 APInt SubUndef, SubZero; 2553 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2554 Depth + 1)) 2555 return true; 2556 2557 // If none of the src operand elements are demanded, replace it with undef. 2558 if (!DemandedSrcElts && !Src.isUndef()) 2559 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2560 TLO.DAG.getUNDEF(VT), Sub, 2561 Op.getOperand(2))); 2562 2563 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2564 TLO, Depth + 1)) 2565 return true; 2566 KnownUndef.insertBits(SubUndef, Idx); 2567 KnownZero.insertBits(SubZero, Idx); 2568 2569 // Attempt to avoid multi-use ops if we don't need anything from them. 2570 if (!DemandedSrcElts.isAllOnesValue() || 2571 !DemandedSubElts.isAllOnesValue()) { 2572 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2573 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2574 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2575 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2576 if (NewSrc || NewSub) { 2577 NewSrc = NewSrc ? NewSrc : Src; 2578 NewSub = NewSub ? NewSub : Sub; 2579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2580 NewSub, Op.getOperand(2)); 2581 return TLO.CombineTo(Op, NewOp); 2582 } 2583 } 2584 break; 2585 } 2586 case ISD::EXTRACT_SUBVECTOR: { 2587 // Offset the demanded elts by the subvector index. 2588 SDValue Src = Op.getOperand(0); 2589 if (Src.getValueType().isScalableVector()) 2590 break; 2591 uint64_t Idx = Op.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2594 2595 APInt SrcUndef, SrcZero; 2596 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2597 Depth + 1)) 2598 return true; 2599 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2600 KnownZero = SrcZero.extractBits(NumElts, Idx); 2601 2602 // Attempt to avoid multi-use ops if we don't need anything from them. 2603 if (!DemandedElts.isAllOnesValue()) { 2604 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2605 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2606 if (NewSrc) { 2607 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2608 Op.getOperand(1)); 2609 return TLO.CombineTo(Op, NewOp); 2610 } 2611 } 2612 break; 2613 } 2614 case ISD::INSERT_VECTOR_ELT: { 2615 SDValue Vec = Op.getOperand(0); 2616 SDValue Scl = Op.getOperand(1); 2617 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2618 2619 // For a legal, constant insertion index, if we don't need this insertion 2620 // then strip it, else remove it from the demanded elts. 2621 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2622 unsigned Idx = CIdx->getZExtValue(); 2623 if (!DemandedElts[Idx]) 2624 return TLO.CombineTo(Op, Vec); 2625 2626 APInt DemandedVecElts(DemandedElts); 2627 DemandedVecElts.clearBit(Idx); 2628 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2629 KnownZero, TLO, Depth + 1)) 2630 return true; 2631 2632 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2633 2634 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2635 break; 2636 } 2637 2638 APInt VecUndef, VecZero; 2639 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2640 Depth + 1)) 2641 return true; 2642 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2643 break; 2644 } 2645 case ISD::VSELECT: { 2646 // Try to transform the select condition based on the current demanded 2647 // elements. 2648 // TODO: If a condition element is undef, we can choose from one arm of the 2649 // select (and if one arm is undef, then we can propagate that to the 2650 // result). 2651 // TODO - add support for constant vselect masks (see IR version of this). 2652 APInt UnusedUndef, UnusedZero; 2653 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2654 UnusedZero, TLO, Depth + 1)) 2655 return true; 2656 2657 // See if we can simplify either vselect operand. 2658 APInt DemandedLHS(DemandedElts); 2659 APInt DemandedRHS(DemandedElts); 2660 APInt UndefLHS, ZeroLHS; 2661 APInt UndefRHS, ZeroRHS; 2662 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2663 ZeroLHS, TLO, Depth + 1)) 2664 return true; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 2669 KnownUndef = UndefLHS & UndefRHS; 2670 KnownZero = ZeroLHS & ZeroRHS; 2671 break; 2672 } 2673 case ISD::VECTOR_SHUFFLE: { 2674 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2675 2676 // Collect demanded elements from shuffle operands.. 2677 APInt DemandedLHS(NumElts, 0); 2678 APInt DemandedRHS(NumElts, 0); 2679 for (unsigned i = 0; i != NumElts; ++i) { 2680 int M = ShuffleMask[i]; 2681 if (M < 0 || !DemandedElts[i]) 2682 continue; 2683 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2684 if (M < (int)NumElts) 2685 DemandedLHS.setBit(M); 2686 else 2687 DemandedRHS.setBit(M - NumElts); 2688 } 2689 2690 // See if we can simplify either shuffle operand. 2691 APInt UndefLHS, ZeroLHS; 2692 APInt UndefRHS, ZeroRHS; 2693 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2694 ZeroLHS, TLO, Depth + 1)) 2695 return true; 2696 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2697 ZeroRHS, TLO, Depth + 1)) 2698 return true; 2699 2700 // Simplify mask using undef elements from LHS/RHS. 2701 bool Updated = false; 2702 bool IdentityLHS = true, IdentityRHS = true; 2703 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2704 for (unsigned i = 0; i != NumElts; ++i) { 2705 int &M = NewMask[i]; 2706 if (M < 0) 2707 continue; 2708 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2709 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2710 Updated = true; 2711 M = -1; 2712 } 2713 IdentityLHS &= (M < 0) || (M == (int)i); 2714 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2715 } 2716 2717 // Update legal shuffle masks based on demanded elements if it won't reduce 2718 // to Identity which can cause premature removal of the shuffle mask. 2719 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2720 SDValue LegalShuffle = 2721 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2722 NewMask, TLO.DAG); 2723 if (LegalShuffle) 2724 return TLO.CombineTo(Op, LegalShuffle); 2725 } 2726 2727 // Propagate undef/zero elements from LHS/RHS. 2728 for (unsigned i = 0; i != NumElts; ++i) { 2729 int M = ShuffleMask[i]; 2730 if (M < 0) { 2731 KnownUndef.setBit(i); 2732 } else if (M < (int)NumElts) { 2733 if (UndefLHS[M]) 2734 KnownUndef.setBit(i); 2735 if (ZeroLHS[M]) 2736 KnownZero.setBit(i); 2737 } else { 2738 if (UndefRHS[M - NumElts]) 2739 KnownUndef.setBit(i); 2740 if (ZeroRHS[M - NumElts]) 2741 KnownZero.setBit(i); 2742 } 2743 } 2744 break; 2745 } 2746 case ISD::ANY_EXTEND_VECTOR_INREG: 2747 case ISD::SIGN_EXTEND_VECTOR_INREG: 2748 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2749 APInt SrcUndef, SrcZero; 2750 SDValue Src = Op.getOperand(0); 2751 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2752 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2753 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2754 Depth + 1)) 2755 return true; 2756 KnownZero = SrcZero.zextOrTrunc(NumElts); 2757 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2758 2759 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2760 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2761 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2762 // aext - if we just need the bottom element then we can bitcast. 2763 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2764 } 2765 2766 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2767 // zext(undef) upper bits are guaranteed to be zero. 2768 if (DemandedElts.isSubsetOf(KnownUndef)) 2769 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2770 KnownUndef.clearAllBits(); 2771 } 2772 break; 2773 } 2774 2775 // TODO: There are more binop opcodes that could be handled here - MIN, 2776 // MAX, saturated math, etc. 2777 case ISD::OR: 2778 case ISD::XOR: 2779 case ISD::ADD: 2780 case ISD::SUB: 2781 case ISD::FADD: 2782 case ISD::FSUB: 2783 case ISD::FMUL: 2784 case ISD::FDIV: 2785 case ISD::FREM: { 2786 SDValue Op0 = Op.getOperand(0); 2787 SDValue Op1 = Op.getOperand(1); 2788 2789 APInt UndefRHS, ZeroRHS; 2790 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2791 Depth + 1)) 2792 return true; 2793 APInt UndefLHS, ZeroLHS; 2794 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2795 Depth + 1)) 2796 return true; 2797 2798 KnownZero = ZeroLHS & ZeroRHS; 2799 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2800 2801 // Attempt to avoid multi-use ops if we don't need anything from them. 2802 // TODO - use KnownUndef to relax the demandedelts? 2803 if (!DemandedElts.isAllOnesValue()) 2804 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2805 return true; 2806 break; 2807 } 2808 case ISD::SHL: 2809 case ISD::SRL: 2810 case ISD::SRA: 2811 case ISD::ROTL: 2812 case ISD::ROTR: { 2813 SDValue Op0 = Op.getOperand(0); 2814 SDValue Op1 = Op.getOperand(1); 2815 2816 APInt UndefRHS, ZeroRHS; 2817 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2818 Depth + 1)) 2819 return true; 2820 APInt UndefLHS, ZeroLHS; 2821 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2822 Depth + 1)) 2823 return true; 2824 2825 KnownZero = ZeroLHS; 2826 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2827 2828 // Attempt to avoid multi-use ops if we don't need anything from them. 2829 // TODO - use KnownUndef to relax the demandedelts? 2830 if (!DemandedElts.isAllOnesValue()) 2831 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2832 return true; 2833 break; 2834 } 2835 case ISD::MUL: 2836 case ISD::AND: { 2837 SDValue Op0 = Op.getOperand(0); 2838 SDValue Op1 = Op.getOperand(1); 2839 2840 APInt SrcUndef, SrcZero; 2841 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2842 Depth + 1)) 2843 return true; 2844 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2845 TLO, Depth + 1)) 2846 return true; 2847 2848 // If either side has a zero element, then the result element is zero, even 2849 // if the other is an UNDEF. 2850 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2851 // and then handle 'and' nodes with the rest of the binop opcodes. 2852 KnownZero |= SrcZero; 2853 KnownUndef &= SrcUndef; 2854 KnownUndef &= ~KnownZero; 2855 2856 // Attempt to avoid multi-use ops if we don't need anything from them. 2857 // TODO - use KnownUndef to relax the demandedelts? 2858 if (!DemandedElts.isAllOnesValue()) 2859 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2860 return true; 2861 break; 2862 } 2863 case ISD::TRUNCATE: 2864 case ISD::SIGN_EXTEND: 2865 case ISD::ZERO_EXTEND: 2866 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2867 KnownZero, TLO, Depth + 1)) 2868 return true; 2869 2870 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2871 // zext(undef) upper bits are guaranteed to be zero. 2872 if (DemandedElts.isSubsetOf(KnownUndef)) 2873 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2874 KnownUndef.clearAllBits(); 2875 } 2876 break; 2877 default: { 2878 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2879 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2880 KnownZero, TLO, Depth)) 2881 return true; 2882 } else { 2883 KnownBits Known; 2884 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2885 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2886 TLO, Depth, AssumeSingleUse)) 2887 return true; 2888 } 2889 break; 2890 } 2891 } 2892 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2893 2894 // Constant fold all undef cases. 2895 // TODO: Handle zero cases as well. 2896 if (DemandedElts.isSubsetOf(KnownUndef)) 2897 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2898 2899 return false; 2900 } 2901 2902 /// Determine which of the bits specified in Mask are known to be either zero or 2903 /// one and return them in the Known. 2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2905 KnownBits &Known, 2906 const APInt &DemandedElts, 2907 const SelectionDAG &DAG, 2908 unsigned Depth) const { 2909 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2910 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2911 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2912 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2913 "Should use MaskedValueIsZero if you don't know whether Op" 2914 " is a target node!"); 2915 Known.resetAll(); 2916 } 2917 2918 void TargetLowering::computeKnownBitsForTargetInstr( 2919 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2920 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2921 unsigned Depth) const { 2922 Known.resetAll(); 2923 } 2924 2925 void TargetLowering::computeKnownBitsForFrameIndex( 2926 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2927 // The low bits are known zero if the pointer is aligned. 2928 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2929 } 2930 2931 Align TargetLowering::computeKnownAlignForTargetInstr( 2932 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2933 unsigned Depth) const { 2934 return Align(1); 2935 } 2936 2937 /// This method can be implemented by targets that want to expose additional 2938 /// information about sign bits to the DAG Combiner. 2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2940 const APInt &, 2941 const SelectionDAG &, 2942 unsigned Depth) const { 2943 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2944 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2945 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2946 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2947 "Should use ComputeNumSignBits if you don't know whether Op" 2948 " is a target node!"); 2949 return 1; 2950 } 2951 2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2953 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2954 const MachineRegisterInfo &MRI, unsigned Depth) const { 2955 return 1; 2956 } 2957 2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2959 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2960 TargetLoweringOpt &TLO, unsigned Depth) const { 2961 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2962 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2963 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2964 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2965 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2966 " is a target node!"); 2967 return false; 2968 } 2969 2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2971 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2972 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2973 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2974 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2976 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2977 "Should use SimplifyDemandedBits if you don't know whether Op" 2978 " is a target node!"); 2979 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2980 return false; 2981 } 2982 2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2984 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2985 SelectionDAG &DAG, unsigned Depth) const { 2986 assert( 2987 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2988 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2989 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2990 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2991 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2992 " is a target node!"); 2993 return SDValue(); 2994 } 2995 2996 SDValue 2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2998 SDValue N1, MutableArrayRef<int> Mask, 2999 SelectionDAG &DAG) const { 3000 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3001 if (!LegalMask) { 3002 std::swap(N0, N1); 3003 ShuffleVectorSDNode::commuteMask(Mask); 3004 LegalMask = isShuffleMaskLegal(Mask, VT); 3005 } 3006 3007 if (!LegalMask) 3008 return SDValue(); 3009 3010 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3011 } 3012 3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3014 return nullptr; 3015 } 3016 3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3018 const SelectionDAG &DAG, 3019 bool SNaN, 3020 unsigned Depth) const { 3021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3025 "Should use isKnownNeverNaN if you don't know whether Op" 3026 " is a target node!"); 3027 return false; 3028 } 3029 3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3031 // work with truncating build vectors and vectors with elements of less than 3032 // 8 bits. 3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3034 if (!N) 3035 return false; 3036 3037 APInt CVal; 3038 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3039 CVal = CN->getAPIntValue(); 3040 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3041 auto *CN = BV->getConstantSplatNode(); 3042 if (!CN) 3043 return false; 3044 3045 // If this is a truncating build vector, truncate the splat value. 3046 // Otherwise, we may fail to match the expected values below. 3047 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3048 CVal = CN->getAPIntValue(); 3049 if (BVEltWidth < CVal.getBitWidth()) 3050 CVal = CVal.trunc(BVEltWidth); 3051 } else { 3052 return false; 3053 } 3054 3055 switch (getBooleanContents(N->getValueType(0))) { 3056 case UndefinedBooleanContent: 3057 return CVal[0]; 3058 case ZeroOrOneBooleanContent: 3059 return CVal.isOneValue(); 3060 case ZeroOrNegativeOneBooleanContent: 3061 return CVal.isAllOnesValue(); 3062 } 3063 3064 llvm_unreachable("Invalid boolean contents"); 3065 } 3066 3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3068 if (!N) 3069 return false; 3070 3071 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3072 if (!CN) { 3073 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3074 if (!BV) 3075 return false; 3076 3077 // Only interested in constant splats, we don't care about undef 3078 // elements in identifying boolean constants and getConstantSplatNode 3079 // returns NULL if all ops are undef; 3080 CN = BV->getConstantSplatNode(); 3081 if (!CN) 3082 return false; 3083 } 3084 3085 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3086 return !CN->getAPIntValue()[0]; 3087 3088 return CN->isNullValue(); 3089 } 3090 3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3092 bool SExt) const { 3093 if (VT == MVT::i1) 3094 return N->isOne(); 3095 3096 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3097 switch (Cnt) { 3098 case TargetLowering::ZeroOrOneBooleanContent: 3099 // An extended value of 1 is always true, unless its original type is i1, 3100 // in which case it will be sign extended to -1. 3101 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3102 case TargetLowering::UndefinedBooleanContent: 3103 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3104 return N->isAllOnesValue() && SExt; 3105 } 3106 llvm_unreachable("Unexpected enumeration."); 3107 } 3108 3109 /// This helper function of SimplifySetCC tries to optimize the comparison when 3110 /// either operand of the SetCC node is a bitwise-and instruction. 3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3112 ISD::CondCode Cond, const SDLoc &DL, 3113 DAGCombinerInfo &DCI) const { 3114 // Match these patterns in any of their permutations: 3115 // (X & Y) == Y 3116 // (X & Y) != Y 3117 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3118 std::swap(N0, N1); 3119 3120 EVT OpVT = N0.getValueType(); 3121 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3122 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3123 return SDValue(); 3124 3125 SDValue X, Y; 3126 if (N0.getOperand(0) == N1) { 3127 X = N0.getOperand(1); 3128 Y = N0.getOperand(0); 3129 } else if (N0.getOperand(1) == N1) { 3130 X = N0.getOperand(0); 3131 Y = N0.getOperand(1); 3132 } else { 3133 return SDValue(); 3134 } 3135 3136 SelectionDAG &DAG = DCI.DAG; 3137 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3138 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3139 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3140 // Note that where Y is variable and is known to have at most one bit set 3141 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3142 // equivalent when Y == 0. 3143 assert(OpVT.isInteger()); 3144 Cond = ISD::getSetCCInverse(Cond, OpVT); 3145 if (DCI.isBeforeLegalizeOps() || 3146 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3147 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3148 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3149 // If the target supports an 'and-not' or 'and-complement' logic operation, 3150 // try to use that to make a comparison operation more efficient. 3151 // But don't do this transform if the mask is a single bit because there are 3152 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3153 // 'rlwinm' on PPC). 3154 3155 // Bail out if the compare operand that we want to turn into a zero is 3156 // already a zero (otherwise, infinite loop). 3157 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3158 if (YConst && YConst->isNullValue()) 3159 return SDValue(); 3160 3161 // Transform this into: ~X & Y == 0. 3162 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3163 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3164 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3165 } 3166 3167 return SDValue(); 3168 } 3169 3170 /// There are multiple IR patterns that could be checking whether certain 3171 /// truncation of a signed number would be lossy or not. The pattern which is 3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3173 /// We are looking for the following pattern: (KeptBits is a constant) 3174 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3176 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3177 /// We will unfold it into the natural trunc+sext pattern: 3178 /// ((%x << C) a>> C) dstcond %x 3179 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3181 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3182 const SDLoc &DL) const { 3183 // We must be comparing with a constant. 3184 ConstantSDNode *C1; 3185 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3186 return SDValue(); 3187 3188 // N0 should be: add %x, (1 << (KeptBits-1)) 3189 if (N0->getOpcode() != ISD::ADD) 3190 return SDValue(); 3191 3192 // And we must be 'add'ing a constant. 3193 ConstantSDNode *C01; 3194 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3195 return SDValue(); 3196 3197 SDValue X = N0->getOperand(0); 3198 EVT XVT = X.getValueType(); 3199 3200 // Validate constants ... 3201 3202 APInt I1 = C1->getAPIntValue(); 3203 3204 ISD::CondCode NewCond; 3205 if (Cond == ISD::CondCode::SETULT) { 3206 NewCond = ISD::CondCode::SETEQ; 3207 } else if (Cond == ISD::CondCode::SETULE) { 3208 NewCond = ISD::CondCode::SETEQ; 3209 // But need to 'canonicalize' the constant. 3210 I1 += 1; 3211 } else if (Cond == ISD::CondCode::SETUGT) { 3212 NewCond = ISD::CondCode::SETNE; 3213 // But need to 'canonicalize' the constant. 3214 I1 += 1; 3215 } else if (Cond == ISD::CondCode::SETUGE) { 3216 NewCond = ISD::CondCode::SETNE; 3217 } else 3218 return SDValue(); 3219 3220 APInt I01 = C01->getAPIntValue(); 3221 3222 auto checkConstants = [&I1, &I01]() -> bool { 3223 // Both of them must be power-of-two, and the constant from setcc is bigger. 3224 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3225 }; 3226 3227 if (checkConstants()) { 3228 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3229 } else { 3230 // What if we invert constants? (and the target predicate) 3231 I1.negate(); 3232 I01.negate(); 3233 assert(XVT.isInteger()); 3234 NewCond = getSetCCInverse(NewCond, XVT); 3235 if (!checkConstants()) 3236 return SDValue(); 3237 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3238 } 3239 3240 // They are power-of-two, so which bit is set? 3241 const unsigned KeptBits = I1.logBase2(); 3242 const unsigned KeptBitsMinusOne = I01.logBase2(); 3243 3244 // Magic! 3245 if (KeptBits != (KeptBitsMinusOne + 1)) 3246 return SDValue(); 3247 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3248 3249 // We don't want to do this in every single case. 3250 SelectionDAG &DAG = DCI.DAG; 3251 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3252 XVT, KeptBits)) 3253 return SDValue(); 3254 3255 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3256 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3257 3258 // Unfold into: ((%x << C) a>> C) cond %x 3259 // Where 'cond' will be either 'eq' or 'ne'. 3260 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3261 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3262 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3263 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3264 3265 return T2; 3266 } 3267 3268 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3270 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3271 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3272 assert(isConstOrConstSplat(N1C) && 3273 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3274 "Should be a comparison with 0."); 3275 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3276 "Valid only for [in]equality comparisons."); 3277 3278 unsigned NewShiftOpcode; 3279 SDValue X, C, Y; 3280 3281 SelectionDAG &DAG = DCI.DAG; 3282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3283 3284 // Look for '(C l>>/<< Y)'. 3285 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3286 // The shift should be one-use. 3287 if (!V.hasOneUse()) 3288 return false; 3289 unsigned OldShiftOpcode = V.getOpcode(); 3290 switch (OldShiftOpcode) { 3291 case ISD::SHL: 3292 NewShiftOpcode = ISD::SRL; 3293 break; 3294 case ISD::SRL: 3295 NewShiftOpcode = ISD::SHL; 3296 break; 3297 default: 3298 return false; // must be a logical shift. 3299 } 3300 // We should be shifting a constant. 3301 // FIXME: best to use isConstantOrConstantVector(). 3302 C = V.getOperand(0); 3303 ConstantSDNode *CC = 3304 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3305 if (!CC) 3306 return false; 3307 Y = V.getOperand(1); 3308 3309 ConstantSDNode *XC = 3310 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3311 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3312 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3313 }; 3314 3315 // LHS of comparison should be an one-use 'and'. 3316 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3317 return SDValue(); 3318 3319 X = N0.getOperand(0); 3320 SDValue Mask = N0.getOperand(1); 3321 3322 // 'and' is commutative! 3323 if (!Match(Mask)) { 3324 std::swap(X, Mask); 3325 if (!Match(Mask)) 3326 return SDValue(); 3327 } 3328 3329 EVT VT = X.getValueType(); 3330 3331 // Produce: 3332 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3333 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3334 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3335 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3336 return T2; 3337 } 3338 3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3341 /// handle the commuted versions of these patterns. 3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3343 ISD::CondCode Cond, const SDLoc &DL, 3344 DAGCombinerInfo &DCI) const { 3345 unsigned BOpcode = N0.getOpcode(); 3346 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3347 "Unexpected binop"); 3348 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3349 3350 // (X + Y) == X --> Y == 0 3351 // (X - Y) == X --> Y == 0 3352 // (X ^ Y) == X --> Y == 0 3353 SelectionDAG &DAG = DCI.DAG; 3354 EVT OpVT = N0.getValueType(); 3355 SDValue X = N0.getOperand(0); 3356 SDValue Y = N0.getOperand(1); 3357 if (X == N1) 3358 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3359 3360 if (Y != N1) 3361 return SDValue(); 3362 3363 // (X + Y) == Y --> X == 0 3364 // (X ^ Y) == Y --> X == 0 3365 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3366 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3367 3368 // The shift would not be valid if the operands are boolean (i1). 3369 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3370 return SDValue(); 3371 3372 // (X - Y) == Y --> X == Y << 1 3373 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3374 !DCI.isBeforeLegalize()); 3375 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3376 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3377 if (!DCI.isCalledByLegalizer()) 3378 DCI.AddToWorklist(YShl1.getNode()); 3379 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3380 } 3381 3382 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3383 SDValue N0, const APInt &C1, 3384 ISD::CondCode Cond, const SDLoc &dl, 3385 SelectionDAG &DAG) { 3386 // Look through truncs that don't change the value of a ctpop. 3387 // FIXME: Add vector support? Need to be careful with setcc result type below. 3388 SDValue CTPOP = N0; 3389 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3390 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3391 CTPOP = N0.getOperand(0); 3392 3393 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3394 return SDValue(); 3395 3396 EVT CTVT = CTPOP.getValueType(); 3397 SDValue CTOp = CTPOP.getOperand(0); 3398 3399 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3400 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3401 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3402 return SDValue(); 3403 3404 // (ctpop x) u< 2 -> (x & x-1) == 0 3405 // (ctpop x) u> 1 -> (x & x-1) != 0 3406 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3407 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3408 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3409 return SDValue(); 3410 if (C1 == 0 && (Cond == ISD::SETULT)) 3411 return SDValue(); // This is handled elsewhere. 3412 3413 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3414 3415 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3416 SDValue Result = CTOp; 3417 for (unsigned i = 0; i < Passes; i++) { 3418 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3419 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3420 } 3421 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3422 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3423 } 3424 3425 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3426 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3427 // For scalars, keep CTPOP if it is legal or custom. 3428 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3429 return SDValue(); 3430 // This is based on X86's custom lowering for CTPOP which produces more 3431 // instructions than the expansion here. 3432 3433 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3434 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3435 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3436 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3437 assert(CTVT.isInteger()); 3438 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3439 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3440 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3441 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3442 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3443 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3444 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3445 } 3446 3447 return SDValue(); 3448 } 3449 3450 /// Try to simplify a setcc built with the specified operands and cc. If it is 3451 /// unable to simplify it, return a null SDValue. 3452 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3453 ISD::CondCode Cond, bool foldBooleans, 3454 DAGCombinerInfo &DCI, 3455 const SDLoc &dl) const { 3456 SelectionDAG &DAG = DCI.DAG; 3457 const DataLayout &Layout = DAG.getDataLayout(); 3458 EVT OpVT = N0.getValueType(); 3459 3460 // Constant fold or commute setcc. 3461 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3462 return Fold; 3463 3464 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3465 // TODO: Handle non-splat vector constants. All undef causes trouble. 3466 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3467 // infinite loop here when we encounter one. 3468 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3469 if (isConstOrConstSplat(N0) && 3470 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3471 (DCI.isBeforeLegalizeOps() || 3472 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3473 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3474 3475 // If we have a subtract with the same 2 non-constant operands as this setcc 3476 // -- but in reverse order -- then try to commute the operands of this setcc 3477 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3478 // instruction on some targets. 3479 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3480 (DCI.isBeforeLegalizeOps() || 3481 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3482 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3483 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3484 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3485 3486 if (auto *N1C = isConstOrConstSplat(N1)) { 3487 const APInt &C1 = N1C->getAPIntValue(); 3488 3489 // Optimize some CTPOP cases. 3490 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3491 return V; 3492 3493 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3494 // equality comparison, then we're just comparing whether X itself is 3495 // zero. 3496 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3497 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3498 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3499 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3500 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3501 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3502 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3503 // (srl (ctlz x), 5) == 0 -> X != 0 3504 // (srl (ctlz x), 5) != 1 -> X != 0 3505 Cond = ISD::SETNE; 3506 } else { 3507 // (srl (ctlz x), 5) != 0 -> X == 0 3508 // (srl (ctlz x), 5) == 1 -> X == 0 3509 Cond = ISD::SETEQ; 3510 } 3511 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3512 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3513 Cond); 3514 } 3515 } 3516 } 3517 } 3518 3519 // FIXME: Support vectors. 3520 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3521 const APInt &C1 = N1C->getAPIntValue(); 3522 3523 // (zext x) == C --> x == (trunc C) 3524 // (sext x) == C --> x == (trunc C) 3525 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3526 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3527 unsigned MinBits = N0.getValueSizeInBits(); 3528 SDValue PreExt; 3529 bool Signed = false; 3530 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3531 // ZExt 3532 MinBits = N0->getOperand(0).getValueSizeInBits(); 3533 PreExt = N0->getOperand(0); 3534 } else if (N0->getOpcode() == ISD::AND) { 3535 // DAGCombine turns costly ZExts into ANDs 3536 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3537 if ((C->getAPIntValue()+1).isPowerOf2()) { 3538 MinBits = C->getAPIntValue().countTrailingOnes(); 3539 PreExt = N0->getOperand(0); 3540 } 3541 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3542 // SExt 3543 MinBits = N0->getOperand(0).getValueSizeInBits(); 3544 PreExt = N0->getOperand(0); 3545 Signed = true; 3546 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3547 // ZEXTLOAD / SEXTLOAD 3548 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3549 MinBits = LN0->getMemoryVT().getSizeInBits(); 3550 PreExt = N0; 3551 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3552 Signed = true; 3553 MinBits = LN0->getMemoryVT().getSizeInBits(); 3554 PreExt = N0; 3555 } 3556 } 3557 3558 // Figure out how many bits we need to preserve this constant. 3559 unsigned ReqdBits = Signed ? 3560 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3561 C1.getActiveBits(); 3562 3563 // Make sure we're not losing bits from the constant. 3564 if (MinBits > 0 && 3565 MinBits < C1.getBitWidth() && 3566 MinBits >= ReqdBits) { 3567 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3568 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3569 // Will get folded away. 3570 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3571 if (MinBits == 1 && C1 == 1) 3572 // Invert the condition. 3573 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3574 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3575 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3576 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3577 } 3578 3579 // If truncating the setcc operands is not desirable, we can still 3580 // simplify the expression in some cases: 3581 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3582 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3583 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3584 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3585 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3586 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3587 SDValue TopSetCC = N0->getOperand(0); 3588 unsigned N0Opc = N0->getOpcode(); 3589 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3590 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3591 TopSetCC.getOpcode() == ISD::SETCC && 3592 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3593 (isConstFalseVal(N1C) || 3594 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3595 3596 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3597 (!N1C->isNullValue() && Cond == ISD::SETNE); 3598 3599 if (!Inverse) 3600 return TopSetCC; 3601 3602 ISD::CondCode InvCond = ISD::getSetCCInverse( 3603 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3604 TopSetCC.getOperand(0).getValueType()); 3605 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3606 TopSetCC.getOperand(1), 3607 InvCond); 3608 } 3609 } 3610 } 3611 3612 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3613 // equality or unsigned, and all 1 bits of the const are in the same 3614 // partial word, see if we can shorten the load. 3615 if (DCI.isBeforeLegalize() && 3616 !ISD::isSignedIntSetCC(Cond) && 3617 N0.getOpcode() == ISD::AND && C1 == 0 && 3618 N0.getNode()->hasOneUse() && 3619 isa<LoadSDNode>(N0.getOperand(0)) && 3620 N0.getOperand(0).getNode()->hasOneUse() && 3621 isa<ConstantSDNode>(N0.getOperand(1))) { 3622 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3623 APInt bestMask; 3624 unsigned bestWidth = 0, bestOffset = 0; 3625 if (Lod->isSimple() && Lod->isUnindexed()) { 3626 unsigned origWidth = N0.getValueSizeInBits(); 3627 unsigned maskWidth = origWidth; 3628 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3629 // 8 bits, but have to be careful... 3630 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3631 origWidth = Lod->getMemoryVT().getSizeInBits(); 3632 const APInt &Mask = N0.getConstantOperandAPInt(1); 3633 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3634 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3635 for (unsigned offset=0; offset<origWidth/width; offset++) { 3636 if (Mask.isSubsetOf(newMask)) { 3637 if (Layout.isLittleEndian()) 3638 bestOffset = (uint64_t)offset * (width/8); 3639 else 3640 bestOffset = (origWidth/width - offset - 1) * (width/8); 3641 bestMask = Mask.lshr(offset * (width/8) * 8); 3642 bestWidth = width; 3643 break; 3644 } 3645 newMask <<= width; 3646 } 3647 } 3648 } 3649 if (bestWidth) { 3650 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3651 if (newVT.isRound() && 3652 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3653 SDValue Ptr = Lod->getBasePtr(); 3654 if (bestOffset != 0) 3655 Ptr = 3656 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3657 SDValue NewLoad = 3658 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3659 Lod->getPointerInfo().getWithOffset(bestOffset), 3660 Lod->getOriginalAlign()); 3661 return DAG.getSetCC(dl, VT, 3662 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3663 DAG.getConstant(bestMask.trunc(bestWidth), 3664 dl, newVT)), 3665 DAG.getConstant(0LL, dl, newVT), Cond); 3666 } 3667 } 3668 } 3669 3670 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3671 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3672 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3673 3674 // If the comparison constant has bits in the upper part, the 3675 // zero-extended value could never match. 3676 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3677 C1.getBitWidth() - InSize))) { 3678 switch (Cond) { 3679 case ISD::SETUGT: 3680 case ISD::SETUGE: 3681 case ISD::SETEQ: 3682 return DAG.getConstant(0, dl, VT); 3683 case ISD::SETULT: 3684 case ISD::SETULE: 3685 case ISD::SETNE: 3686 return DAG.getConstant(1, dl, VT); 3687 case ISD::SETGT: 3688 case ISD::SETGE: 3689 // True if the sign bit of C1 is set. 3690 return DAG.getConstant(C1.isNegative(), dl, VT); 3691 case ISD::SETLT: 3692 case ISD::SETLE: 3693 // True if the sign bit of C1 isn't set. 3694 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3695 default: 3696 break; 3697 } 3698 } 3699 3700 // Otherwise, we can perform the comparison with the low bits. 3701 switch (Cond) { 3702 case ISD::SETEQ: 3703 case ISD::SETNE: 3704 case ISD::SETUGT: 3705 case ISD::SETUGE: 3706 case ISD::SETULT: 3707 case ISD::SETULE: { 3708 EVT newVT = N0.getOperand(0).getValueType(); 3709 if (DCI.isBeforeLegalizeOps() || 3710 (isOperationLegal(ISD::SETCC, newVT) && 3711 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3712 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3713 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3714 3715 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3716 NewConst, Cond); 3717 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3718 } 3719 break; 3720 } 3721 default: 3722 break; // todo, be more careful with signed comparisons 3723 } 3724 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3725 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3726 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3727 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3728 EVT ExtDstTy = N0.getValueType(); 3729 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3730 3731 // If the constant doesn't fit into the number of bits for the source of 3732 // the sign extension, it is impossible for both sides to be equal. 3733 if (C1.getMinSignedBits() > ExtSrcTyBits) 3734 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3735 3736 SDValue ZextOp; 3737 EVT Op0Ty = N0.getOperand(0).getValueType(); 3738 if (Op0Ty == ExtSrcTy) { 3739 ZextOp = N0.getOperand(0); 3740 } else { 3741 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3742 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3743 DAG.getConstant(Imm, dl, Op0Ty)); 3744 } 3745 if (!DCI.isCalledByLegalizer()) 3746 DCI.AddToWorklist(ZextOp.getNode()); 3747 // Otherwise, make this a use of a zext. 3748 return DAG.getSetCC(dl, VT, ZextOp, 3749 DAG.getConstant(C1 & APInt::getLowBitsSet( 3750 ExtDstTyBits, 3751 ExtSrcTyBits), 3752 dl, ExtDstTy), 3753 Cond); 3754 } else if ((N1C->isNullValue() || N1C->isOne()) && 3755 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3756 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3757 if (N0.getOpcode() == ISD::SETCC && 3758 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3759 (N0.getValueType() == MVT::i1 || 3760 getBooleanContents(N0.getOperand(0).getValueType()) == 3761 ZeroOrOneBooleanContent)) { 3762 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3763 if (TrueWhenTrue) 3764 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3765 // Invert the condition. 3766 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3767 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3768 if (DCI.isBeforeLegalizeOps() || 3769 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3770 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3771 } 3772 3773 if ((N0.getOpcode() == ISD::XOR || 3774 (N0.getOpcode() == ISD::AND && 3775 N0.getOperand(0).getOpcode() == ISD::XOR && 3776 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3777 isa<ConstantSDNode>(N0.getOperand(1)) && 3778 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3779 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3780 // can only do this if the top bits are known zero. 3781 unsigned BitWidth = N0.getValueSizeInBits(); 3782 if (DAG.MaskedValueIsZero(N0, 3783 APInt::getHighBitsSet(BitWidth, 3784 BitWidth-1))) { 3785 // Okay, get the un-inverted input value. 3786 SDValue Val; 3787 if (N0.getOpcode() == ISD::XOR) { 3788 Val = N0.getOperand(0); 3789 } else { 3790 assert(N0.getOpcode() == ISD::AND && 3791 N0.getOperand(0).getOpcode() == ISD::XOR); 3792 // ((X^1)&1)^1 -> X & 1 3793 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3794 N0.getOperand(0).getOperand(0), 3795 N0.getOperand(1)); 3796 } 3797 3798 return DAG.getSetCC(dl, VT, Val, N1, 3799 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3800 } 3801 } else if (N1C->isOne()) { 3802 SDValue Op0 = N0; 3803 if (Op0.getOpcode() == ISD::TRUNCATE) 3804 Op0 = Op0.getOperand(0); 3805 3806 if ((Op0.getOpcode() == ISD::XOR) && 3807 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3808 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3809 SDValue XorLHS = Op0.getOperand(0); 3810 SDValue XorRHS = Op0.getOperand(1); 3811 // Ensure that the input setccs return an i1 type or 0/1 value. 3812 if (Op0.getValueType() == MVT::i1 || 3813 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3814 ZeroOrOneBooleanContent && 3815 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3816 ZeroOrOneBooleanContent)) { 3817 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3818 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3819 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3820 } 3821 } 3822 if (Op0.getOpcode() == ISD::AND && 3823 isa<ConstantSDNode>(Op0.getOperand(1)) && 3824 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3825 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3826 if (Op0.getValueType().bitsGT(VT)) 3827 Op0 = DAG.getNode(ISD::AND, dl, VT, 3828 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3829 DAG.getConstant(1, dl, VT)); 3830 else if (Op0.getValueType().bitsLT(VT)) 3831 Op0 = DAG.getNode(ISD::AND, dl, VT, 3832 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3833 DAG.getConstant(1, dl, VT)); 3834 3835 return DAG.getSetCC(dl, VT, Op0, 3836 DAG.getConstant(0, dl, Op0.getValueType()), 3837 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3838 } 3839 if (Op0.getOpcode() == ISD::AssertZext && 3840 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3841 return DAG.getSetCC(dl, VT, Op0, 3842 DAG.getConstant(0, dl, Op0.getValueType()), 3843 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3844 } 3845 } 3846 3847 // Given: 3848 // icmp eq/ne (urem %x, %y), 0 3849 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3850 // icmp eq/ne %x, 0 3851 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3852 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3853 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3854 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3855 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3856 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3857 } 3858 3859 if (SDValue V = 3860 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3861 return V; 3862 } 3863 3864 // These simplifications apply to splat vectors as well. 3865 // TODO: Handle more splat vector cases. 3866 if (auto *N1C = isConstOrConstSplat(N1)) { 3867 const APInt &C1 = N1C->getAPIntValue(); 3868 3869 APInt MinVal, MaxVal; 3870 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3871 if (ISD::isSignedIntSetCC(Cond)) { 3872 MinVal = APInt::getSignedMinValue(OperandBitSize); 3873 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3874 } else { 3875 MinVal = APInt::getMinValue(OperandBitSize); 3876 MaxVal = APInt::getMaxValue(OperandBitSize); 3877 } 3878 3879 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3880 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3881 // X >= MIN --> true 3882 if (C1 == MinVal) 3883 return DAG.getBoolConstant(true, dl, VT, OpVT); 3884 3885 if (!VT.isVector()) { // TODO: Support this for vectors. 3886 // X >= C0 --> X > (C0 - 1) 3887 APInt C = C1 - 1; 3888 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3889 if ((DCI.isBeforeLegalizeOps() || 3890 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3891 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3892 isLegalICmpImmediate(C.getSExtValue())))) { 3893 return DAG.getSetCC(dl, VT, N0, 3894 DAG.getConstant(C, dl, N1.getValueType()), 3895 NewCC); 3896 } 3897 } 3898 } 3899 3900 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3901 // X <= MAX --> true 3902 if (C1 == MaxVal) 3903 return DAG.getBoolConstant(true, dl, VT, OpVT); 3904 3905 // X <= C0 --> X < (C0 + 1) 3906 if (!VT.isVector()) { // TODO: Support this for vectors. 3907 APInt C = C1 + 1; 3908 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3909 if ((DCI.isBeforeLegalizeOps() || 3910 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3911 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3912 isLegalICmpImmediate(C.getSExtValue())))) { 3913 return DAG.getSetCC(dl, VT, N0, 3914 DAG.getConstant(C, dl, N1.getValueType()), 3915 NewCC); 3916 } 3917 } 3918 } 3919 3920 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3921 if (C1 == MinVal) 3922 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3923 3924 // TODO: Support this for vectors after legalize ops. 3925 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3926 // Canonicalize setlt X, Max --> setne X, Max 3927 if (C1 == MaxVal) 3928 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3929 3930 // If we have setult X, 1, turn it into seteq X, 0 3931 if (C1 == MinVal+1) 3932 return DAG.getSetCC(dl, VT, N0, 3933 DAG.getConstant(MinVal, dl, N0.getValueType()), 3934 ISD::SETEQ); 3935 } 3936 } 3937 3938 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3939 if (C1 == MaxVal) 3940 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3941 3942 // TODO: Support this for vectors after legalize ops. 3943 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3944 // Canonicalize setgt X, Min --> setne X, Min 3945 if (C1 == MinVal) 3946 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3947 3948 // If we have setugt X, Max-1, turn it into seteq X, Max 3949 if (C1 == MaxVal-1) 3950 return DAG.getSetCC(dl, VT, N0, 3951 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3952 ISD::SETEQ); 3953 } 3954 } 3955 3956 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3957 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3958 if (C1.isNullValue()) 3959 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3960 VT, N0, N1, Cond, DCI, dl)) 3961 return CC; 3962 3963 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3964 // For example, when high 32-bits of i64 X are known clear: 3965 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3966 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3967 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3968 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3969 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3970 // Match or(lo,shl(hi,bw/2)) pattern. 3971 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3972 unsigned EltBits = V.getScalarValueSizeInBits(); 3973 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3974 return false; 3975 SDValue LHS = V.getOperand(0); 3976 SDValue RHS = V.getOperand(1); 3977 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3978 // Unshifted element must have zero upperbits. 3979 if (RHS.getOpcode() == ISD::SHL && 3980 isa<ConstantSDNode>(RHS.getOperand(1)) && 3981 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3982 DAG.MaskedValueIsZero(LHS, HiBits)) { 3983 Lo = LHS; 3984 Hi = RHS.getOperand(0); 3985 return true; 3986 } 3987 if (LHS.getOpcode() == ISD::SHL && 3988 isa<ConstantSDNode>(LHS.getOperand(1)) && 3989 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3990 DAG.MaskedValueIsZero(RHS, HiBits)) { 3991 Lo = RHS; 3992 Hi = LHS.getOperand(0); 3993 return true; 3994 } 3995 return false; 3996 }; 3997 3998 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 3999 unsigned EltBits = N0.getScalarValueSizeInBits(); 4000 unsigned HalfBits = EltBits / 2; 4001 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4002 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4003 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4004 SDValue NewN0 = 4005 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4006 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4007 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4008 }; 4009 4010 SDValue Lo, Hi; 4011 if (IsConcat(N0, Lo, Hi)) 4012 return MergeConcat(Lo, Hi); 4013 4014 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4015 SDValue Lo0, Lo1, Hi0, Hi1; 4016 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4017 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4018 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4019 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4020 } 4021 } 4022 } 4023 } 4024 4025 // If we have "setcc X, C0", check to see if we can shrink the immediate 4026 // by changing cc. 4027 // TODO: Support this for vectors after legalize ops. 4028 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4029 // SETUGT X, SINTMAX -> SETLT X, 0 4030 // SETUGE X, SINTMIN -> SETLT X, 0 4031 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4032 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4033 return DAG.getSetCC(dl, VT, N0, 4034 DAG.getConstant(0, dl, N1.getValueType()), 4035 ISD::SETLT); 4036 4037 // SETULT X, SINTMIN -> SETGT X, -1 4038 // SETULE X, SINTMAX -> SETGT X, -1 4039 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4040 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4041 return DAG.getSetCC(dl, VT, N0, 4042 DAG.getAllOnesConstant(dl, N1.getValueType()), 4043 ISD::SETGT); 4044 } 4045 } 4046 4047 // Back to non-vector simplifications. 4048 // TODO: Can we do these for vector splats? 4049 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4051 const APInt &C1 = N1C->getAPIntValue(); 4052 EVT ShValTy = N0.getValueType(); 4053 4054 // Fold bit comparisons when we can. This will result in an 4055 // incorrect value when boolean false is negative one, unless 4056 // the bitsize is 1 in which case the false value is the same 4057 // in practice regardless of the representation. 4058 if ((VT.getSizeInBits() == 1 || 4059 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4060 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4061 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4062 N0.getOpcode() == ISD::AND) { 4063 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4064 EVT ShiftTy = 4065 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4066 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4067 // Perform the xform if the AND RHS is a single bit. 4068 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4069 if (AndRHS->getAPIntValue().isPowerOf2() && 4070 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4071 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4072 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4073 DAG.getConstant(ShCt, dl, ShiftTy))); 4074 } 4075 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4076 // (X & 8) == 8 --> (X & 8) >> 3 4077 // Perform the xform if C1 is a single bit. 4078 unsigned ShCt = C1.logBase2(); 4079 if (C1.isPowerOf2() && 4080 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4081 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4082 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4083 DAG.getConstant(ShCt, dl, ShiftTy))); 4084 } 4085 } 4086 } 4087 } 4088 4089 if (C1.getMinSignedBits() <= 64 && 4090 !isLegalICmpImmediate(C1.getSExtValue())) { 4091 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4092 // (X & -256) == 256 -> (X >> 8) == 1 4093 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4094 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4095 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4096 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4097 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4098 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4099 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4100 SDValue Shift = 4101 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4102 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4103 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4104 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4105 } 4106 } 4107 } 4108 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4109 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4110 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4111 // X < 0x100000000 -> (X >> 32) < 1 4112 // X >= 0x100000000 -> (X >> 32) >= 1 4113 // X <= 0x0ffffffff -> (X >> 32) < 1 4114 // X > 0x0ffffffff -> (X >> 32) >= 1 4115 unsigned ShiftBits; 4116 APInt NewC = C1; 4117 ISD::CondCode NewCond = Cond; 4118 if (AdjOne) { 4119 ShiftBits = C1.countTrailingOnes(); 4120 NewC = NewC + 1; 4121 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4122 } else { 4123 ShiftBits = C1.countTrailingZeros(); 4124 } 4125 NewC.lshrInPlace(ShiftBits); 4126 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4127 isLegalICmpImmediate(NewC.getSExtValue()) && 4128 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4129 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4130 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4131 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4132 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4133 } 4134 } 4135 } 4136 } 4137 4138 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4139 auto *CFP = cast<ConstantFPSDNode>(N1); 4140 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4141 4142 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4143 // constant if knowing that the operand is non-nan is enough. We prefer to 4144 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4145 // materialize 0.0. 4146 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4147 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4148 4149 // setcc (fneg x), C -> setcc swap(pred) x, -C 4150 if (N0.getOpcode() == ISD::FNEG) { 4151 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4152 if (DCI.isBeforeLegalizeOps() || 4153 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4154 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4155 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4156 } 4157 } 4158 4159 // If the condition is not legal, see if we can find an equivalent one 4160 // which is legal. 4161 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4162 // If the comparison was an awkward floating-point == or != and one of 4163 // the comparison operands is infinity or negative infinity, convert the 4164 // condition to a less-awkward <= or >=. 4165 if (CFP->getValueAPF().isInfinity()) { 4166 bool IsNegInf = CFP->getValueAPF().isNegative(); 4167 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4168 switch (Cond) { 4169 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4170 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4171 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4172 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4173 default: break; 4174 } 4175 if (NewCond != ISD::SETCC_INVALID && 4176 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4177 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4178 } 4179 } 4180 } 4181 4182 if (N0 == N1) { 4183 // The sext(setcc()) => setcc() optimization relies on the appropriate 4184 // constant being emitted. 4185 assert(!N0.getValueType().isInteger() && 4186 "Integer types should be handled by FoldSetCC"); 4187 4188 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4189 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4190 if (UOF == 2) // FP operators that are undefined on NaNs. 4191 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4192 if (UOF == unsigned(EqTrue)) 4193 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4194 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4195 // if it is not already. 4196 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4197 if (NewCond != Cond && 4198 (DCI.isBeforeLegalizeOps() || 4199 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4200 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4201 } 4202 4203 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4204 N0.getValueType().isInteger()) { 4205 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4206 N0.getOpcode() == ISD::XOR) { 4207 // Simplify (X+Y) == (X+Z) --> Y == Z 4208 if (N0.getOpcode() == N1.getOpcode()) { 4209 if (N0.getOperand(0) == N1.getOperand(0)) 4210 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4211 if (N0.getOperand(1) == N1.getOperand(1)) 4212 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4213 if (isCommutativeBinOp(N0.getOpcode())) { 4214 // If X op Y == Y op X, try other combinations. 4215 if (N0.getOperand(0) == N1.getOperand(1)) 4216 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4217 Cond); 4218 if (N0.getOperand(1) == N1.getOperand(0)) 4219 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4220 Cond); 4221 } 4222 } 4223 4224 // If RHS is a legal immediate value for a compare instruction, we need 4225 // to be careful about increasing register pressure needlessly. 4226 bool LegalRHSImm = false; 4227 4228 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4229 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4230 // Turn (X+C1) == C2 --> X == C2-C1 4231 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4232 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4233 DAG.getConstant(RHSC->getAPIntValue()- 4234 LHSR->getAPIntValue(), 4235 dl, N0.getValueType()), Cond); 4236 } 4237 4238 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4239 if (N0.getOpcode() == ISD::XOR) 4240 // If we know that all of the inverted bits are zero, don't bother 4241 // performing the inversion. 4242 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4243 return 4244 DAG.getSetCC(dl, VT, N0.getOperand(0), 4245 DAG.getConstant(LHSR->getAPIntValue() ^ 4246 RHSC->getAPIntValue(), 4247 dl, N0.getValueType()), 4248 Cond); 4249 } 4250 4251 // Turn (C1-X) == C2 --> X == C1-C2 4252 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4253 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4254 return 4255 DAG.getSetCC(dl, VT, N0.getOperand(1), 4256 DAG.getConstant(SUBC->getAPIntValue() - 4257 RHSC->getAPIntValue(), 4258 dl, N0.getValueType()), 4259 Cond); 4260 } 4261 } 4262 4263 // Could RHSC fold directly into a compare? 4264 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4265 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4266 } 4267 4268 // (X+Y) == X --> Y == 0 and similar folds. 4269 // Don't do this if X is an immediate that can fold into a cmp 4270 // instruction and X+Y has other uses. It could be an induction variable 4271 // chain, and the transform would increase register pressure. 4272 if (!LegalRHSImm || N0.hasOneUse()) 4273 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4274 return V; 4275 } 4276 4277 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4278 N1.getOpcode() == ISD::XOR) 4279 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4280 return V; 4281 4282 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4283 return V; 4284 } 4285 4286 // Fold remainder of division by a constant. 4287 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4288 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4289 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4290 4291 // When division is cheap or optimizing for minimum size, 4292 // fall through to DIVREM creation by skipping this fold. 4293 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4294 if (N0.getOpcode() == ISD::UREM) { 4295 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4296 return Folded; 4297 } else if (N0.getOpcode() == ISD::SREM) { 4298 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4299 return Folded; 4300 } 4301 } 4302 } 4303 4304 // Fold away ALL boolean setcc's. 4305 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4306 SDValue Temp; 4307 switch (Cond) { 4308 default: llvm_unreachable("Unknown integer setcc!"); 4309 case ISD::SETEQ: // X == Y -> ~(X^Y) 4310 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4311 N0 = DAG.getNOT(dl, Temp, OpVT); 4312 if (!DCI.isCalledByLegalizer()) 4313 DCI.AddToWorklist(Temp.getNode()); 4314 break; 4315 case ISD::SETNE: // X != Y --> (X^Y) 4316 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4317 break; 4318 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4319 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4320 Temp = DAG.getNOT(dl, N0, OpVT); 4321 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4322 if (!DCI.isCalledByLegalizer()) 4323 DCI.AddToWorklist(Temp.getNode()); 4324 break; 4325 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4326 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4327 Temp = DAG.getNOT(dl, N1, OpVT); 4328 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4329 if (!DCI.isCalledByLegalizer()) 4330 DCI.AddToWorklist(Temp.getNode()); 4331 break; 4332 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4333 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4334 Temp = DAG.getNOT(dl, N0, OpVT); 4335 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4336 if (!DCI.isCalledByLegalizer()) 4337 DCI.AddToWorklist(Temp.getNode()); 4338 break; 4339 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4340 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4341 Temp = DAG.getNOT(dl, N1, OpVT); 4342 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4343 break; 4344 } 4345 if (VT.getScalarType() != MVT::i1) { 4346 if (!DCI.isCalledByLegalizer()) 4347 DCI.AddToWorklist(N0.getNode()); 4348 // FIXME: If running after legalize, we probably can't do this. 4349 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4350 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4351 } 4352 return N0; 4353 } 4354 4355 // Could not fold it. 4356 return SDValue(); 4357 } 4358 4359 /// Returns true (and the GlobalValue and the offset) if the node is a 4360 /// GlobalAddress + offset. 4361 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4362 int64_t &Offset) const { 4363 4364 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4365 4366 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4367 GA = GASD->getGlobal(); 4368 Offset += GASD->getOffset(); 4369 return true; 4370 } 4371 4372 if (N->getOpcode() == ISD::ADD) { 4373 SDValue N1 = N->getOperand(0); 4374 SDValue N2 = N->getOperand(1); 4375 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4376 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4377 Offset += V->getSExtValue(); 4378 return true; 4379 } 4380 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4381 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4382 Offset += V->getSExtValue(); 4383 return true; 4384 } 4385 } 4386 } 4387 4388 return false; 4389 } 4390 4391 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4392 DAGCombinerInfo &DCI) const { 4393 // Default implementation: no optimization. 4394 return SDValue(); 4395 } 4396 4397 //===----------------------------------------------------------------------===// 4398 // Inline Assembler Implementation Methods 4399 //===----------------------------------------------------------------------===// 4400 4401 TargetLowering::ConstraintType 4402 TargetLowering::getConstraintType(StringRef Constraint) const { 4403 unsigned S = Constraint.size(); 4404 4405 if (S == 1) { 4406 switch (Constraint[0]) { 4407 default: break; 4408 case 'r': 4409 return C_RegisterClass; 4410 case 'm': // memory 4411 case 'o': // offsetable 4412 case 'V': // not offsetable 4413 return C_Memory; 4414 case 'n': // Simple Integer 4415 case 'E': // Floating Point Constant 4416 case 'F': // Floating Point Constant 4417 return C_Immediate; 4418 case 'i': // Simple Integer or Relocatable Constant 4419 case 's': // Relocatable Constant 4420 case 'p': // Address. 4421 case 'X': // Allow ANY value. 4422 case 'I': // Target registers. 4423 case 'J': 4424 case 'K': 4425 case 'L': 4426 case 'M': 4427 case 'N': 4428 case 'O': 4429 case 'P': 4430 case '<': 4431 case '>': 4432 return C_Other; 4433 } 4434 } 4435 4436 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4437 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4438 return C_Memory; 4439 return C_Register; 4440 } 4441 return C_Unknown; 4442 } 4443 4444 /// Try to replace an X constraint, which matches anything, with another that 4445 /// has more specific requirements based on the type of the corresponding 4446 /// operand. 4447 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4448 if (ConstraintVT.isInteger()) 4449 return "r"; 4450 if (ConstraintVT.isFloatingPoint()) 4451 return "f"; // works for many targets 4452 return nullptr; 4453 } 4454 4455 SDValue TargetLowering::LowerAsmOutputForConstraint( 4456 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4457 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4458 return SDValue(); 4459 } 4460 4461 /// Lower the specified operand into the Ops vector. 4462 /// If it is invalid, don't add anything to Ops. 4463 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4464 std::string &Constraint, 4465 std::vector<SDValue> &Ops, 4466 SelectionDAG &DAG) const { 4467 4468 if (Constraint.length() > 1) return; 4469 4470 char ConstraintLetter = Constraint[0]; 4471 switch (ConstraintLetter) { 4472 default: break; 4473 case 'X': // Allows any operand; labels (basic block) use this. 4474 if (Op.getOpcode() == ISD::BasicBlock || 4475 Op.getOpcode() == ISD::TargetBlockAddress) { 4476 Ops.push_back(Op); 4477 return; 4478 } 4479 LLVM_FALLTHROUGH; 4480 case 'i': // Simple Integer or Relocatable Constant 4481 case 'n': // Simple Integer 4482 case 's': { // Relocatable Constant 4483 4484 GlobalAddressSDNode *GA; 4485 ConstantSDNode *C; 4486 BlockAddressSDNode *BA; 4487 uint64_t Offset = 0; 4488 4489 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4490 // etc., since getelementpointer is variadic. We can't use 4491 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4492 // while in this case the GA may be furthest from the root node which is 4493 // likely an ISD::ADD. 4494 while (1) { 4495 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4496 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4497 GA->getValueType(0), 4498 Offset + GA->getOffset())); 4499 return; 4500 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4501 ConstraintLetter != 's') { 4502 // gcc prints these as sign extended. Sign extend value to 64 bits 4503 // now; without this it would get ZExt'd later in 4504 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4505 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4506 BooleanContent BCont = getBooleanContents(MVT::i64); 4507 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4508 : ISD::SIGN_EXTEND; 4509 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4510 : C->getSExtValue(); 4511 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4512 SDLoc(C), MVT::i64)); 4513 return; 4514 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4515 ConstraintLetter != 'n') { 4516 Ops.push_back(DAG.getTargetBlockAddress( 4517 BA->getBlockAddress(), BA->getValueType(0), 4518 Offset + BA->getOffset(), BA->getTargetFlags())); 4519 return; 4520 } else { 4521 const unsigned OpCode = Op.getOpcode(); 4522 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4523 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4524 Op = Op.getOperand(1); 4525 // Subtraction is not commutative. 4526 else if (OpCode == ISD::ADD && 4527 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4528 Op = Op.getOperand(0); 4529 else 4530 return; 4531 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4532 continue; 4533 } 4534 } 4535 return; 4536 } 4537 break; 4538 } 4539 } 4540 } 4541 4542 std::pair<unsigned, const TargetRegisterClass *> 4543 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4544 StringRef Constraint, 4545 MVT VT) const { 4546 if (Constraint.empty() || Constraint[0] != '{') 4547 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4548 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4549 4550 // Remove the braces from around the name. 4551 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4552 4553 std::pair<unsigned, const TargetRegisterClass *> R = 4554 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4555 4556 // Figure out which register class contains this reg. 4557 for (const TargetRegisterClass *RC : RI->regclasses()) { 4558 // If none of the value types for this register class are valid, we 4559 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4560 if (!isLegalRC(*RI, *RC)) 4561 continue; 4562 4563 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4564 I != E; ++I) { 4565 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4566 std::pair<unsigned, const TargetRegisterClass *> S = 4567 std::make_pair(*I, RC); 4568 4569 // If this register class has the requested value type, return it, 4570 // otherwise keep searching and return the first class found 4571 // if no other is found which explicitly has the requested type. 4572 if (RI->isTypeLegalForClass(*RC, VT)) 4573 return S; 4574 if (!R.second) 4575 R = S; 4576 } 4577 } 4578 } 4579 4580 return R; 4581 } 4582 4583 //===----------------------------------------------------------------------===// 4584 // Constraint Selection. 4585 4586 /// Return true of this is an input operand that is a matching constraint like 4587 /// "4". 4588 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4589 assert(!ConstraintCode.empty() && "No known constraint!"); 4590 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4591 } 4592 4593 /// If this is an input matching constraint, this method returns the output 4594 /// operand it matches. 4595 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4596 assert(!ConstraintCode.empty() && "No known constraint!"); 4597 return atoi(ConstraintCode.c_str()); 4598 } 4599 4600 /// Split up the constraint string from the inline assembly value into the 4601 /// specific constraints and their prefixes, and also tie in the associated 4602 /// operand values. 4603 /// If this returns an empty vector, and if the constraint string itself 4604 /// isn't empty, there was an error parsing. 4605 TargetLowering::AsmOperandInfoVector 4606 TargetLowering::ParseConstraints(const DataLayout &DL, 4607 const TargetRegisterInfo *TRI, 4608 const CallBase &Call) const { 4609 /// Information about all of the constraints. 4610 AsmOperandInfoVector ConstraintOperands; 4611 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4612 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4613 4614 // Do a prepass over the constraints, canonicalizing them, and building up the 4615 // ConstraintOperands list. 4616 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4617 unsigned ResNo = 0; // ResNo - The result number of the next output. 4618 4619 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4620 ConstraintOperands.emplace_back(std::move(CI)); 4621 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4622 4623 // Update multiple alternative constraint count. 4624 if (OpInfo.multipleAlternatives.size() > maCount) 4625 maCount = OpInfo.multipleAlternatives.size(); 4626 4627 OpInfo.ConstraintVT = MVT::Other; 4628 4629 // Compute the value type for each operand. 4630 switch (OpInfo.Type) { 4631 case InlineAsm::isOutput: 4632 // Indirect outputs just consume an argument. 4633 if (OpInfo.isIndirect) { 4634 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4635 break; 4636 } 4637 4638 // The return value of the call is this value. As such, there is no 4639 // corresponding argument. 4640 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4641 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4642 OpInfo.ConstraintVT = 4643 getSimpleValueType(DL, STy->getElementType(ResNo)); 4644 } else { 4645 assert(ResNo == 0 && "Asm only has one result!"); 4646 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4647 } 4648 ++ResNo; 4649 break; 4650 case InlineAsm::isInput: 4651 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4652 break; 4653 case InlineAsm::isClobber: 4654 // Nothing to do. 4655 break; 4656 } 4657 4658 if (OpInfo.CallOperandVal) { 4659 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4660 if (OpInfo.isIndirect) { 4661 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4662 if (!PtrTy) 4663 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4664 OpTy = PtrTy->getElementType(); 4665 } 4666 4667 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4668 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4669 if (STy->getNumElements() == 1) 4670 OpTy = STy->getElementType(0); 4671 4672 // If OpTy is not a single value, it may be a struct/union that we 4673 // can tile with integers. 4674 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4675 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4676 switch (BitSize) { 4677 default: break; 4678 case 1: 4679 case 8: 4680 case 16: 4681 case 32: 4682 case 64: 4683 case 128: 4684 OpInfo.ConstraintVT = 4685 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4686 break; 4687 } 4688 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4689 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4690 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4691 } else { 4692 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4693 } 4694 } 4695 } 4696 4697 // If we have multiple alternative constraints, select the best alternative. 4698 if (!ConstraintOperands.empty()) { 4699 if (maCount) { 4700 unsigned bestMAIndex = 0; 4701 int bestWeight = -1; 4702 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4703 int weight = -1; 4704 unsigned maIndex; 4705 // Compute the sums of the weights for each alternative, keeping track 4706 // of the best (highest weight) one so far. 4707 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4708 int weightSum = 0; 4709 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4710 cIndex != eIndex; ++cIndex) { 4711 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4712 if (OpInfo.Type == InlineAsm::isClobber) 4713 continue; 4714 4715 // If this is an output operand with a matching input operand, 4716 // look up the matching input. If their types mismatch, e.g. one 4717 // is an integer, the other is floating point, or their sizes are 4718 // different, flag it as an maCantMatch. 4719 if (OpInfo.hasMatchingInput()) { 4720 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4721 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4722 if ((OpInfo.ConstraintVT.isInteger() != 4723 Input.ConstraintVT.isInteger()) || 4724 (OpInfo.ConstraintVT.getSizeInBits() != 4725 Input.ConstraintVT.getSizeInBits())) { 4726 weightSum = -1; // Can't match. 4727 break; 4728 } 4729 } 4730 } 4731 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4732 if (weight == -1) { 4733 weightSum = -1; 4734 break; 4735 } 4736 weightSum += weight; 4737 } 4738 // Update best. 4739 if (weightSum > bestWeight) { 4740 bestWeight = weightSum; 4741 bestMAIndex = maIndex; 4742 } 4743 } 4744 4745 // Now select chosen alternative in each constraint. 4746 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4747 cIndex != eIndex; ++cIndex) { 4748 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4749 if (cInfo.Type == InlineAsm::isClobber) 4750 continue; 4751 cInfo.selectAlternative(bestMAIndex); 4752 } 4753 } 4754 } 4755 4756 // Check and hook up tied operands, choose constraint code to use. 4757 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4758 cIndex != eIndex; ++cIndex) { 4759 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4760 4761 // If this is an output operand with a matching input operand, look up the 4762 // matching input. If their types mismatch, e.g. one is an integer, the 4763 // other is floating point, or their sizes are different, flag it as an 4764 // error. 4765 if (OpInfo.hasMatchingInput()) { 4766 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4767 4768 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4769 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4770 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4771 OpInfo.ConstraintVT); 4772 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4773 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4774 Input.ConstraintVT); 4775 if ((OpInfo.ConstraintVT.isInteger() != 4776 Input.ConstraintVT.isInteger()) || 4777 (MatchRC.second != InputRC.second)) { 4778 report_fatal_error("Unsupported asm: input constraint" 4779 " with a matching output constraint of" 4780 " incompatible type!"); 4781 } 4782 } 4783 } 4784 } 4785 4786 return ConstraintOperands; 4787 } 4788 4789 /// Return an integer indicating how general CT is. 4790 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4791 switch (CT) { 4792 case TargetLowering::C_Immediate: 4793 case TargetLowering::C_Other: 4794 case TargetLowering::C_Unknown: 4795 return 0; 4796 case TargetLowering::C_Register: 4797 return 1; 4798 case TargetLowering::C_RegisterClass: 4799 return 2; 4800 case TargetLowering::C_Memory: 4801 return 3; 4802 } 4803 llvm_unreachable("Invalid constraint type"); 4804 } 4805 4806 /// Examine constraint type and operand type and determine a weight value. 4807 /// This object must already have been set up with the operand type 4808 /// and the current alternative constraint selected. 4809 TargetLowering::ConstraintWeight 4810 TargetLowering::getMultipleConstraintMatchWeight( 4811 AsmOperandInfo &info, int maIndex) const { 4812 InlineAsm::ConstraintCodeVector *rCodes; 4813 if (maIndex >= (int)info.multipleAlternatives.size()) 4814 rCodes = &info.Codes; 4815 else 4816 rCodes = &info.multipleAlternatives[maIndex].Codes; 4817 ConstraintWeight BestWeight = CW_Invalid; 4818 4819 // Loop over the options, keeping track of the most general one. 4820 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4821 ConstraintWeight weight = 4822 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4823 if (weight > BestWeight) 4824 BestWeight = weight; 4825 } 4826 4827 return BestWeight; 4828 } 4829 4830 /// Examine constraint type and operand type and determine a weight value. 4831 /// This object must already have been set up with the operand type 4832 /// and the current alternative constraint selected. 4833 TargetLowering::ConstraintWeight 4834 TargetLowering::getSingleConstraintMatchWeight( 4835 AsmOperandInfo &info, const char *constraint) const { 4836 ConstraintWeight weight = CW_Invalid; 4837 Value *CallOperandVal = info.CallOperandVal; 4838 // If we don't have a value, we can't do a match, 4839 // but allow it at the lowest weight. 4840 if (!CallOperandVal) 4841 return CW_Default; 4842 // Look at the constraint type. 4843 switch (*constraint) { 4844 case 'i': // immediate integer. 4845 case 'n': // immediate integer with a known value. 4846 if (isa<ConstantInt>(CallOperandVal)) 4847 weight = CW_Constant; 4848 break; 4849 case 's': // non-explicit intregal immediate. 4850 if (isa<GlobalValue>(CallOperandVal)) 4851 weight = CW_Constant; 4852 break; 4853 case 'E': // immediate float if host format. 4854 case 'F': // immediate float. 4855 if (isa<ConstantFP>(CallOperandVal)) 4856 weight = CW_Constant; 4857 break; 4858 case '<': // memory operand with autodecrement. 4859 case '>': // memory operand with autoincrement. 4860 case 'm': // memory operand. 4861 case 'o': // offsettable memory operand 4862 case 'V': // non-offsettable memory operand 4863 weight = CW_Memory; 4864 break; 4865 case 'r': // general register. 4866 case 'g': // general register, memory operand or immediate integer. 4867 // note: Clang converts "g" to "imr". 4868 if (CallOperandVal->getType()->isIntegerTy()) 4869 weight = CW_Register; 4870 break; 4871 case 'X': // any operand. 4872 default: 4873 weight = CW_Default; 4874 break; 4875 } 4876 return weight; 4877 } 4878 4879 /// If there are multiple different constraints that we could pick for this 4880 /// operand (e.g. "imr") try to pick the 'best' one. 4881 /// This is somewhat tricky: constraints fall into four classes: 4882 /// Other -> immediates and magic values 4883 /// Register -> one specific register 4884 /// RegisterClass -> a group of regs 4885 /// Memory -> memory 4886 /// Ideally, we would pick the most specific constraint possible: if we have 4887 /// something that fits into a register, we would pick it. The problem here 4888 /// is that if we have something that could either be in a register or in 4889 /// memory that use of the register could cause selection of *other* 4890 /// operands to fail: they might only succeed if we pick memory. Because of 4891 /// this the heuristic we use is: 4892 /// 4893 /// 1) If there is an 'other' constraint, and if the operand is valid for 4894 /// that constraint, use it. This makes us take advantage of 'i' 4895 /// constraints when available. 4896 /// 2) Otherwise, pick the most general constraint present. This prefers 4897 /// 'm' over 'r', for example. 4898 /// 4899 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4900 const TargetLowering &TLI, 4901 SDValue Op, SelectionDAG *DAG) { 4902 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4903 unsigned BestIdx = 0; 4904 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4905 int BestGenerality = -1; 4906 4907 // Loop over the options, keeping track of the most general one. 4908 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4909 TargetLowering::ConstraintType CType = 4910 TLI.getConstraintType(OpInfo.Codes[i]); 4911 4912 // Indirect 'other' or 'immediate' constraints are not allowed. 4913 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4914 CType == TargetLowering::C_Register || 4915 CType == TargetLowering::C_RegisterClass)) 4916 continue; 4917 4918 // If this is an 'other' or 'immediate' constraint, see if the operand is 4919 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4920 // the operand is an integer in the range [0..31] we want to use I (saving a 4921 // load of a register), otherwise we must use 'r'. 4922 if ((CType == TargetLowering::C_Other || 4923 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4924 assert(OpInfo.Codes[i].size() == 1 && 4925 "Unhandled multi-letter 'other' constraint"); 4926 std::vector<SDValue> ResultOps; 4927 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4928 ResultOps, *DAG); 4929 if (!ResultOps.empty()) { 4930 BestType = CType; 4931 BestIdx = i; 4932 break; 4933 } 4934 } 4935 4936 // Things with matching constraints can only be registers, per gcc 4937 // documentation. This mainly affects "g" constraints. 4938 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4939 continue; 4940 4941 // This constraint letter is more general than the previous one, use it. 4942 int Generality = getConstraintGenerality(CType); 4943 if (Generality > BestGenerality) { 4944 BestType = CType; 4945 BestIdx = i; 4946 BestGenerality = Generality; 4947 } 4948 } 4949 4950 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4951 OpInfo.ConstraintType = BestType; 4952 } 4953 4954 /// Determines the constraint code and constraint type to use for the specific 4955 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4956 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4957 SDValue Op, 4958 SelectionDAG *DAG) const { 4959 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4960 4961 // Single-letter constraints ('r') are very common. 4962 if (OpInfo.Codes.size() == 1) { 4963 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4964 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4965 } else { 4966 ChooseConstraint(OpInfo, *this, Op, DAG); 4967 } 4968 4969 // 'X' matches anything. 4970 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4971 // Labels and constants are handled elsewhere ('X' is the only thing 4972 // that matches labels). For Functions, the type here is the type of 4973 // the result, which is not what we want to look at; leave them alone. 4974 Value *v = OpInfo.CallOperandVal; 4975 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4976 OpInfo.CallOperandVal = v; 4977 return; 4978 } 4979 4980 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4981 return; 4982 4983 // Otherwise, try to resolve it to something we know about by looking at 4984 // the actual operand type. 4985 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4986 OpInfo.ConstraintCode = Repl; 4987 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4988 } 4989 } 4990 } 4991 4992 /// Given an exact SDIV by a constant, create a multiplication 4993 /// with the multiplicative inverse of the constant. 4994 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4995 const SDLoc &dl, SelectionDAG &DAG, 4996 SmallVectorImpl<SDNode *> &Created) { 4997 SDValue Op0 = N->getOperand(0); 4998 SDValue Op1 = N->getOperand(1); 4999 EVT VT = N->getValueType(0); 5000 EVT SVT = VT.getScalarType(); 5001 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5002 EVT ShSVT = ShVT.getScalarType(); 5003 5004 bool UseSRA = false; 5005 SmallVector<SDValue, 16> Shifts, Factors; 5006 5007 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5008 if (C->isNullValue()) 5009 return false; 5010 APInt Divisor = C->getAPIntValue(); 5011 unsigned Shift = Divisor.countTrailingZeros(); 5012 if (Shift) { 5013 Divisor.ashrInPlace(Shift); 5014 UseSRA = true; 5015 } 5016 // Calculate the multiplicative inverse, using Newton's method. 5017 APInt t; 5018 APInt Factor = Divisor; 5019 while ((t = Divisor * Factor) != 1) 5020 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5021 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5022 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5023 return true; 5024 }; 5025 5026 // Collect all magic values from the build vector. 5027 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5028 return SDValue(); 5029 5030 SDValue Shift, Factor; 5031 if (VT.isVector()) { 5032 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5033 Factor = DAG.getBuildVector(VT, dl, Factors); 5034 } else { 5035 Shift = Shifts[0]; 5036 Factor = Factors[0]; 5037 } 5038 5039 SDValue Res = Op0; 5040 5041 // Shift the value upfront if it is even, so the LSB is one. 5042 if (UseSRA) { 5043 // TODO: For UDIV use SRL instead of SRA. 5044 SDNodeFlags Flags; 5045 Flags.setExact(true); 5046 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5047 Created.push_back(Res.getNode()); 5048 } 5049 5050 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5051 } 5052 5053 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5054 SelectionDAG &DAG, 5055 SmallVectorImpl<SDNode *> &Created) const { 5056 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5058 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5059 return SDValue(N, 0); // Lower SDIV as SDIV 5060 return SDValue(); 5061 } 5062 5063 /// Given an ISD::SDIV node expressing a divide by constant, 5064 /// return a DAG expression to select that will generate the same value by 5065 /// multiplying by a magic number. 5066 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5067 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5068 bool IsAfterLegalization, 5069 SmallVectorImpl<SDNode *> &Created) const { 5070 SDLoc dl(N); 5071 EVT VT = N->getValueType(0); 5072 EVT SVT = VT.getScalarType(); 5073 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5074 EVT ShSVT = ShVT.getScalarType(); 5075 unsigned EltBits = VT.getScalarSizeInBits(); 5076 5077 // Check to see if we can do this. 5078 // FIXME: We should be more aggressive here. 5079 if (!isTypeLegal(VT)) 5080 return SDValue(); 5081 5082 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5083 if (N->getFlags().hasExact()) 5084 return BuildExactSDIV(*this, N, dl, DAG, Created); 5085 5086 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5087 5088 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5089 if (C->isNullValue()) 5090 return false; 5091 5092 const APInt &Divisor = C->getAPIntValue(); 5093 APInt::ms magics = Divisor.magic(); 5094 int NumeratorFactor = 0; 5095 int ShiftMask = -1; 5096 5097 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5098 // If d is +1/-1, we just multiply the numerator by +1/-1. 5099 NumeratorFactor = Divisor.getSExtValue(); 5100 magics.m = 0; 5101 magics.s = 0; 5102 ShiftMask = 0; 5103 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5104 // If d > 0 and m < 0, add the numerator. 5105 NumeratorFactor = 1; 5106 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5107 // If d < 0 and m > 0, subtract the numerator. 5108 NumeratorFactor = -1; 5109 } 5110 5111 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5112 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5113 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5114 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5115 return true; 5116 }; 5117 5118 SDValue N0 = N->getOperand(0); 5119 SDValue N1 = N->getOperand(1); 5120 5121 // Collect the shifts / magic values from each element. 5122 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5123 return SDValue(); 5124 5125 SDValue MagicFactor, Factor, Shift, ShiftMask; 5126 if (VT.isVector()) { 5127 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5128 Factor = DAG.getBuildVector(VT, dl, Factors); 5129 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5130 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5131 } else { 5132 MagicFactor = MagicFactors[0]; 5133 Factor = Factors[0]; 5134 Shift = Shifts[0]; 5135 ShiftMask = ShiftMasks[0]; 5136 } 5137 5138 // Multiply the numerator (operand 0) by the magic value. 5139 // FIXME: We should support doing a MUL in a wider type. 5140 SDValue Q; 5141 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5142 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5143 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5144 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5145 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5146 SDValue LoHi = 5147 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5148 Q = SDValue(LoHi.getNode(), 1); 5149 } else 5150 return SDValue(); // No mulhs or equivalent. 5151 Created.push_back(Q.getNode()); 5152 5153 // (Optionally) Add/subtract the numerator using Factor. 5154 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5155 Created.push_back(Factor.getNode()); 5156 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5157 Created.push_back(Q.getNode()); 5158 5159 // Shift right algebraic by shift value. 5160 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5161 Created.push_back(Q.getNode()); 5162 5163 // Extract the sign bit, mask it and add it to the quotient. 5164 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5165 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5166 Created.push_back(T.getNode()); 5167 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5168 Created.push_back(T.getNode()); 5169 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5170 } 5171 5172 /// Given an ISD::UDIV node expressing a divide by constant, 5173 /// return a DAG expression to select that will generate the same value by 5174 /// multiplying by a magic number. 5175 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5176 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5177 bool IsAfterLegalization, 5178 SmallVectorImpl<SDNode *> &Created) const { 5179 SDLoc dl(N); 5180 EVT VT = N->getValueType(0); 5181 EVT SVT = VT.getScalarType(); 5182 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5183 EVT ShSVT = ShVT.getScalarType(); 5184 unsigned EltBits = VT.getScalarSizeInBits(); 5185 5186 // Check to see if we can do this. 5187 // FIXME: We should be more aggressive here. 5188 if (!isTypeLegal(VT)) 5189 return SDValue(); 5190 5191 bool UseNPQ = false; 5192 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5193 5194 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5195 if (C->isNullValue()) 5196 return false; 5197 // FIXME: We should use a narrower constant when the upper 5198 // bits are known to be zero. 5199 APInt Divisor = C->getAPIntValue(); 5200 APInt::mu magics = Divisor.magicu(); 5201 unsigned PreShift = 0, PostShift = 0; 5202 5203 // If the divisor is even, we can avoid using the expensive fixup by 5204 // shifting the divided value upfront. 5205 if (magics.a != 0 && !Divisor[0]) { 5206 PreShift = Divisor.countTrailingZeros(); 5207 // Get magic number for the shifted divisor. 5208 magics = Divisor.lshr(PreShift).magicu(PreShift); 5209 assert(magics.a == 0 && "Should use cheap fixup now"); 5210 } 5211 5212 APInt Magic = magics.m; 5213 5214 unsigned SelNPQ; 5215 if (magics.a == 0 || Divisor.isOneValue()) { 5216 assert(magics.s < Divisor.getBitWidth() && 5217 "We shouldn't generate an undefined shift!"); 5218 PostShift = magics.s; 5219 SelNPQ = false; 5220 } else { 5221 PostShift = magics.s - 1; 5222 SelNPQ = true; 5223 } 5224 5225 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5226 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5227 NPQFactors.push_back( 5228 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5229 : APInt::getNullValue(EltBits), 5230 dl, SVT)); 5231 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5232 UseNPQ |= SelNPQ; 5233 return true; 5234 }; 5235 5236 SDValue N0 = N->getOperand(0); 5237 SDValue N1 = N->getOperand(1); 5238 5239 // Collect the shifts/magic values from each element. 5240 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5241 return SDValue(); 5242 5243 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5244 if (VT.isVector()) { 5245 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5246 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5247 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5248 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5249 } else { 5250 PreShift = PreShifts[0]; 5251 MagicFactor = MagicFactors[0]; 5252 PostShift = PostShifts[0]; 5253 } 5254 5255 SDValue Q = N0; 5256 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5257 Created.push_back(Q.getNode()); 5258 5259 // FIXME: We should support doing a MUL in a wider type. 5260 auto GetMULHU = [&](SDValue X, SDValue Y) { 5261 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5262 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5263 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5264 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5265 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5266 SDValue LoHi = 5267 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5268 return SDValue(LoHi.getNode(), 1); 5269 } 5270 return SDValue(); // No mulhu or equivalent 5271 }; 5272 5273 // Multiply the numerator (operand 0) by the magic value. 5274 Q = GetMULHU(Q, MagicFactor); 5275 if (!Q) 5276 return SDValue(); 5277 5278 Created.push_back(Q.getNode()); 5279 5280 if (UseNPQ) { 5281 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5282 Created.push_back(NPQ.getNode()); 5283 5284 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5285 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5286 if (VT.isVector()) 5287 NPQ = GetMULHU(NPQ, NPQFactor); 5288 else 5289 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5290 5291 Created.push_back(NPQ.getNode()); 5292 5293 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5294 Created.push_back(Q.getNode()); 5295 } 5296 5297 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5298 Created.push_back(Q.getNode()); 5299 5300 SDValue One = DAG.getConstant(1, dl, VT); 5301 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5302 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5303 } 5304 5305 /// If all values in Values that *don't* match the predicate are same 'splat' 5306 /// value, then replace all values with that splat value. 5307 /// Else, if AlternativeReplacement was provided, then replace all values that 5308 /// do match predicate with AlternativeReplacement value. 5309 static void 5310 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5311 std::function<bool(SDValue)> Predicate, 5312 SDValue AlternativeReplacement = SDValue()) { 5313 SDValue Replacement; 5314 // Is there a value for which the Predicate does *NOT* match? What is it? 5315 auto SplatValue = llvm::find_if_not(Values, Predicate); 5316 if (SplatValue != Values.end()) { 5317 // Does Values consist only of SplatValue's and values matching Predicate? 5318 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5319 return Value == *SplatValue || Predicate(Value); 5320 })) // Then we shall replace values matching predicate with SplatValue. 5321 Replacement = *SplatValue; 5322 } 5323 if (!Replacement) { 5324 // Oops, we did not find the "baseline" splat value. 5325 if (!AlternativeReplacement) 5326 return; // Nothing to do. 5327 // Let's replace with provided value then. 5328 Replacement = AlternativeReplacement; 5329 } 5330 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5331 } 5332 5333 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5334 /// where the divisor is constant and the comparison target is zero, 5335 /// return a DAG expression that will generate the same comparison result 5336 /// using only multiplications, additions and shifts/rotations. 5337 /// Ref: "Hacker's Delight" 10-17. 5338 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5339 SDValue CompTargetNode, 5340 ISD::CondCode Cond, 5341 DAGCombinerInfo &DCI, 5342 const SDLoc &DL) const { 5343 SmallVector<SDNode *, 5> Built; 5344 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5345 DCI, DL, Built)) { 5346 for (SDNode *N : Built) 5347 DCI.AddToWorklist(N); 5348 return Folded; 5349 } 5350 5351 return SDValue(); 5352 } 5353 5354 SDValue 5355 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5356 SDValue CompTargetNode, ISD::CondCode Cond, 5357 DAGCombinerInfo &DCI, const SDLoc &DL, 5358 SmallVectorImpl<SDNode *> &Created) const { 5359 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5360 // - D must be constant, with D = D0 * 2^K where D0 is odd 5361 // - P is the multiplicative inverse of D0 modulo 2^W 5362 // - Q = floor(((2^W) - 1) / D) 5363 // where W is the width of the common type of N and D. 5364 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5365 "Only applicable for (in)equality comparisons."); 5366 5367 SelectionDAG &DAG = DCI.DAG; 5368 5369 EVT VT = REMNode.getValueType(); 5370 EVT SVT = VT.getScalarType(); 5371 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5372 EVT ShSVT = ShVT.getScalarType(); 5373 5374 // If MUL is unavailable, we cannot proceed in any case. 5375 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5376 return SDValue(); 5377 5378 bool ComparingWithAllZeros = true; 5379 bool AllComparisonsWithNonZerosAreTautological = true; 5380 bool HadTautologicalLanes = false; 5381 bool AllLanesAreTautological = true; 5382 bool HadEvenDivisor = false; 5383 bool AllDivisorsArePowerOfTwo = true; 5384 bool HadTautologicalInvertedLanes = false; 5385 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5386 5387 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5388 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5389 if (CDiv->isNullValue()) 5390 return false; 5391 5392 const APInt &D = CDiv->getAPIntValue(); 5393 const APInt &Cmp = CCmp->getAPIntValue(); 5394 5395 ComparingWithAllZeros &= Cmp.isNullValue(); 5396 5397 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5398 // if C2 is not less than C1, the comparison is always false. 5399 // But we will only be able to produce the comparison that will give the 5400 // opposive tautological answer. So this lane would need to be fixed up. 5401 bool TautologicalInvertedLane = D.ule(Cmp); 5402 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5403 5404 // If all lanes are tautological (either all divisors are ones, or divisor 5405 // is not greater than the constant we are comparing with), 5406 // we will prefer to avoid the fold. 5407 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5408 HadTautologicalLanes |= TautologicalLane; 5409 AllLanesAreTautological &= TautologicalLane; 5410 5411 // If we are comparing with non-zero, we need'll need to subtract said 5412 // comparison value from the LHS. But there is no point in doing that if 5413 // every lane where we are comparing with non-zero is tautological.. 5414 if (!Cmp.isNullValue()) 5415 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5416 5417 // Decompose D into D0 * 2^K 5418 unsigned K = D.countTrailingZeros(); 5419 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5420 APInt D0 = D.lshr(K); 5421 5422 // D is even if it has trailing zeros. 5423 HadEvenDivisor |= (K != 0); 5424 // D is a power-of-two if D0 is one. 5425 // If all divisors are power-of-two, we will prefer to avoid the fold. 5426 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5427 5428 // P = inv(D0, 2^W) 5429 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5430 unsigned W = D.getBitWidth(); 5431 APInt P = D0.zext(W + 1) 5432 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5433 .trunc(W); 5434 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5435 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5436 5437 // Q = floor((2^W - 1) u/ D) 5438 // R = ((2^W - 1) u% D) 5439 APInt Q, R; 5440 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5441 5442 // If we are comparing with zero, then that comparison constant is okay, 5443 // else it may need to be one less than that. 5444 if (Cmp.ugt(R)) 5445 Q -= 1; 5446 5447 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5448 "We are expecting that K is always less than all-ones for ShSVT"); 5449 5450 // If the lane is tautological the result can be constant-folded. 5451 if (TautologicalLane) { 5452 // Set P and K amount to a bogus values so we can try to splat them. 5453 P = 0; 5454 K = -1; 5455 // And ensure that comparison constant is tautological, 5456 // it will always compare true/false. 5457 Q = -1; 5458 } 5459 5460 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5461 KAmts.push_back( 5462 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5463 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5464 return true; 5465 }; 5466 5467 SDValue N = REMNode.getOperand(0); 5468 SDValue D = REMNode.getOperand(1); 5469 5470 // Collect the values from each element. 5471 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5472 return SDValue(); 5473 5474 // If all lanes are tautological, the result can be constant-folded. 5475 if (AllLanesAreTautological) 5476 return SDValue(); 5477 5478 // If this is a urem by a powers-of-two, avoid the fold since it can be 5479 // best implemented as a bit test. 5480 if (AllDivisorsArePowerOfTwo) 5481 return SDValue(); 5482 5483 SDValue PVal, KVal, QVal; 5484 if (VT.isVector()) { 5485 if (HadTautologicalLanes) { 5486 // Try to turn PAmts into a splat, since we don't care about the values 5487 // that are currently '0'. If we can't, just keep '0'`s. 5488 turnVectorIntoSplatVector(PAmts, isNullConstant); 5489 // Try to turn KAmts into a splat, since we don't care about the values 5490 // that are currently '-1'. If we can't, change them to '0'`s. 5491 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5492 DAG.getConstant(0, DL, ShSVT)); 5493 } 5494 5495 PVal = DAG.getBuildVector(VT, DL, PAmts); 5496 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5497 QVal = DAG.getBuildVector(VT, DL, QAmts); 5498 } else { 5499 PVal = PAmts[0]; 5500 KVal = KAmts[0]; 5501 QVal = QAmts[0]; 5502 } 5503 5504 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5505 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5506 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5507 assert(CompTargetNode.getValueType() == N.getValueType() && 5508 "Expecting that the types on LHS and RHS of comparisons match."); 5509 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5510 } 5511 5512 // (mul N, P) 5513 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5514 Created.push_back(Op0.getNode()); 5515 5516 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5517 // divisors as a performance improvement, since rotating by 0 is a no-op. 5518 if (HadEvenDivisor) { 5519 // We need ROTR to do this. 5520 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5521 return SDValue(); 5522 SDNodeFlags Flags; 5523 Flags.setExact(true); 5524 // UREM: (rotr (mul N, P), K) 5525 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5526 Created.push_back(Op0.getNode()); 5527 } 5528 5529 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5530 SDValue NewCC = 5531 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5532 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5533 if (!HadTautologicalInvertedLanes) 5534 return NewCC; 5535 5536 // If any lanes previously compared always-false, the NewCC will give 5537 // always-true result for them, so we need to fixup those lanes. 5538 // Or the other way around for inequality predicate. 5539 assert(VT.isVector() && "Can/should only get here for vectors."); 5540 Created.push_back(NewCC.getNode()); 5541 5542 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5543 // if C2 is not less than C1, the comparison is always false. 5544 // But we have produced the comparison that will give the 5545 // opposive tautological answer. So these lanes would need to be fixed up. 5546 SDValue TautologicalInvertedChannels = 5547 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5548 Created.push_back(TautologicalInvertedChannels.getNode()); 5549 5550 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5551 // If we have a vector select, let's replace the comparison results in the 5552 // affected lanes with the correct tautological result. 5553 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5554 DL, SETCCVT, SETCCVT); 5555 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5556 Replacement, NewCC); 5557 } 5558 5559 // Else, we can just invert the comparison result in the appropriate lanes. 5560 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5561 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5562 TautologicalInvertedChannels); 5563 5564 return SDValue(); // Don't know how to lower. 5565 } 5566 5567 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5568 /// where the divisor is constant and the comparison target is zero, 5569 /// return a DAG expression that will generate the same comparison result 5570 /// using only multiplications, additions and shifts/rotations. 5571 /// Ref: "Hacker's Delight" 10-17. 5572 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5573 SDValue CompTargetNode, 5574 ISD::CondCode Cond, 5575 DAGCombinerInfo &DCI, 5576 const SDLoc &DL) const { 5577 SmallVector<SDNode *, 7> Built; 5578 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5579 DCI, DL, Built)) { 5580 assert(Built.size() <= 7 && "Max size prediction failed."); 5581 for (SDNode *N : Built) 5582 DCI.AddToWorklist(N); 5583 return Folded; 5584 } 5585 5586 return SDValue(); 5587 } 5588 5589 SDValue 5590 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5591 SDValue CompTargetNode, ISD::CondCode Cond, 5592 DAGCombinerInfo &DCI, const SDLoc &DL, 5593 SmallVectorImpl<SDNode *> &Created) const { 5594 // Fold: 5595 // (seteq/ne (srem N, D), 0) 5596 // To: 5597 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5598 // 5599 // - D must be constant, with D = D0 * 2^K where D0 is odd 5600 // - P is the multiplicative inverse of D0 modulo 2^W 5601 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5602 // - Q = floor((2 * A) / (2^K)) 5603 // where W is the width of the common type of N and D. 5604 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5605 "Only applicable for (in)equality comparisons."); 5606 5607 SelectionDAG &DAG = DCI.DAG; 5608 5609 EVT VT = REMNode.getValueType(); 5610 EVT SVT = VT.getScalarType(); 5611 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5612 EVT ShSVT = ShVT.getScalarType(); 5613 5614 // If MUL is unavailable, we cannot proceed in any case. 5615 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5616 return SDValue(); 5617 5618 // TODO: Could support comparing with non-zero too. 5619 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5620 if (!CompTarget || !CompTarget->isNullValue()) 5621 return SDValue(); 5622 5623 bool HadIntMinDivisor = false; 5624 bool HadOneDivisor = false; 5625 bool AllDivisorsAreOnes = true; 5626 bool HadEvenDivisor = false; 5627 bool NeedToApplyOffset = false; 5628 bool AllDivisorsArePowerOfTwo = true; 5629 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5630 5631 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5632 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5633 if (C->isNullValue()) 5634 return false; 5635 5636 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5637 5638 // WARNING: this fold is only valid for positive divisors! 5639 APInt D = C->getAPIntValue(); 5640 if (D.isNegative()) 5641 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5642 5643 HadIntMinDivisor |= D.isMinSignedValue(); 5644 5645 // If all divisors are ones, we will prefer to avoid the fold. 5646 HadOneDivisor |= D.isOneValue(); 5647 AllDivisorsAreOnes &= D.isOneValue(); 5648 5649 // Decompose D into D0 * 2^K 5650 unsigned K = D.countTrailingZeros(); 5651 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5652 APInt D0 = D.lshr(K); 5653 5654 if (!D.isMinSignedValue()) { 5655 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5656 // we don't care about this lane in this fold, we'll special-handle it. 5657 HadEvenDivisor |= (K != 0); 5658 } 5659 5660 // D is a power-of-two if D0 is one. This includes INT_MIN. 5661 // If all divisors are power-of-two, we will prefer to avoid the fold. 5662 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5663 5664 // P = inv(D0, 2^W) 5665 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5666 unsigned W = D.getBitWidth(); 5667 APInt P = D0.zext(W + 1) 5668 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5669 .trunc(W); 5670 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5671 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5672 5673 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5674 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5675 A.clearLowBits(K); 5676 5677 if (!D.isMinSignedValue()) { 5678 // If divisor INT_MIN, then we don't care about this lane in this fold, 5679 // we'll special-handle it. 5680 NeedToApplyOffset |= A != 0; 5681 } 5682 5683 // Q = floor((2 * A) / (2^K)) 5684 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5685 5686 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5687 "We are expecting that A is always less than all-ones for SVT"); 5688 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5689 "We are expecting that K is always less than all-ones for ShSVT"); 5690 5691 // If the divisor is 1 the result can be constant-folded. Likewise, we 5692 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5693 if (D.isOneValue()) { 5694 // Set P, A and K to a bogus values so we can try to splat them. 5695 P = 0; 5696 A = -1; 5697 K = -1; 5698 5699 // x ?% 1 == 0 <--> true <--> x u<= -1 5700 Q = -1; 5701 } 5702 5703 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5704 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5705 KAmts.push_back( 5706 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5707 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5708 return true; 5709 }; 5710 5711 SDValue N = REMNode.getOperand(0); 5712 SDValue D = REMNode.getOperand(1); 5713 5714 // Collect the values from each element. 5715 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5716 return SDValue(); 5717 5718 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5719 if (AllDivisorsAreOnes) 5720 return SDValue(); 5721 5722 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5723 // since it can be best implemented as a bit test. 5724 if (AllDivisorsArePowerOfTwo) 5725 return SDValue(); 5726 5727 SDValue PVal, AVal, KVal, QVal; 5728 if (VT.isVector()) { 5729 if (HadOneDivisor) { 5730 // Try to turn PAmts into a splat, since we don't care about the values 5731 // that are currently '0'. If we can't, just keep '0'`s. 5732 turnVectorIntoSplatVector(PAmts, isNullConstant); 5733 // Try to turn AAmts into a splat, since we don't care about the 5734 // values that are currently '-1'. If we can't, change them to '0'`s. 5735 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5736 DAG.getConstant(0, DL, SVT)); 5737 // Try to turn KAmts into a splat, since we don't care about the values 5738 // that are currently '-1'. If we can't, change them to '0'`s. 5739 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5740 DAG.getConstant(0, DL, ShSVT)); 5741 } 5742 5743 PVal = DAG.getBuildVector(VT, DL, PAmts); 5744 AVal = DAG.getBuildVector(VT, DL, AAmts); 5745 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5746 QVal = DAG.getBuildVector(VT, DL, QAmts); 5747 } else { 5748 PVal = PAmts[0]; 5749 AVal = AAmts[0]; 5750 KVal = KAmts[0]; 5751 QVal = QAmts[0]; 5752 } 5753 5754 // (mul N, P) 5755 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5756 Created.push_back(Op0.getNode()); 5757 5758 if (NeedToApplyOffset) { 5759 // We need ADD to do this. 5760 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5761 return SDValue(); 5762 5763 // (add (mul N, P), A) 5764 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5765 Created.push_back(Op0.getNode()); 5766 } 5767 5768 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5769 // divisors as a performance improvement, since rotating by 0 is a no-op. 5770 if (HadEvenDivisor) { 5771 // We need ROTR to do this. 5772 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5773 return SDValue(); 5774 SDNodeFlags Flags; 5775 Flags.setExact(true); 5776 // SREM: (rotr (add (mul N, P), A), K) 5777 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5778 Created.push_back(Op0.getNode()); 5779 } 5780 5781 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5782 SDValue Fold = 5783 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5784 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5785 5786 // If we didn't have lanes with INT_MIN divisor, then we're done. 5787 if (!HadIntMinDivisor) 5788 return Fold; 5789 5790 // That fold is only valid for positive divisors. Which effectively means, 5791 // it is invalid for INT_MIN divisors. So if we have such a lane, 5792 // we must fix-up results for said lanes. 5793 assert(VT.isVector() && "Can/should only get here for vectors."); 5794 5795 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5796 !isOperationLegalOrCustom(ISD::AND, VT) || 5797 !isOperationLegalOrCustom(Cond, VT) || 5798 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5799 return SDValue(); 5800 5801 Created.push_back(Fold.getNode()); 5802 5803 SDValue IntMin = DAG.getConstant( 5804 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5805 SDValue IntMax = DAG.getConstant( 5806 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5807 SDValue Zero = 5808 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5809 5810 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5811 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5812 Created.push_back(DivisorIsIntMin.getNode()); 5813 5814 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5815 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5816 Created.push_back(Masked.getNode()); 5817 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5818 Created.push_back(MaskedIsZero.getNode()); 5819 5820 // To produce final result we need to blend 2 vectors: 'SetCC' and 5821 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5822 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5823 // constant-folded, select can get lowered to a shuffle with constant mask. 5824 SDValue Blended = 5825 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5826 5827 return Blended; 5828 } 5829 5830 bool TargetLowering:: 5831 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5832 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5833 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5834 "be a constant integer"); 5835 return true; 5836 } 5837 5838 return false; 5839 } 5840 5841 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5842 bool LegalOps, bool OptForSize, 5843 NegatibleCost &Cost, 5844 unsigned Depth) const { 5845 // fneg is removable even if it has multiple uses. 5846 if (Op.getOpcode() == ISD::FNEG) { 5847 Cost = NegatibleCost::Cheaper; 5848 return Op.getOperand(0); 5849 } 5850 5851 // Don't recurse exponentially. 5852 if (Depth > SelectionDAG::MaxRecursionDepth) 5853 return SDValue(); 5854 5855 // Pre-increment recursion depth for use in recursive calls. 5856 ++Depth; 5857 const SDNodeFlags Flags = Op->getFlags(); 5858 const TargetOptions &Options = DAG.getTarget().Options; 5859 EVT VT = Op.getValueType(); 5860 unsigned Opcode = Op.getOpcode(); 5861 5862 // Don't allow anything with multiple uses unless we know it is free. 5863 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5864 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5865 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5866 if (!IsFreeExtend) 5867 return SDValue(); 5868 } 5869 5870 auto RemoveDeadNode = [&](SDValue N) { 5871 if (N && N.getNode()->use_empty()) 5872 DAG.RemoveDeadNode(N.getNode()); 5873 }; 5874 5875 SDLoc DL(Op); 5876 5877 switch (Opcode) { 5878 case ISD::ConstantFP: { 5879 // Don't invert constant FP values after legalization unless the target says 5880 // the negated constant is legal. 5881 bool IsOpLegal = 5882 isOperationLegal(ISD::ConstantFP, VT) || 5883 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5884 OptForSize); 5885 5886 if (LegalOps && !IsOpLegal) 5887 break; 5888 5889 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5890 V.changeSign(); 5891 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5892 5893 // If we already have the use of the negated floating constant, it is free 5894 // to negate it even it has multiple uses. 5895 if (!Op.hasOneUse() && CFP.use_empty()) 5896 break; 5897 Cost = NegatibleCost::Neutral; 5898 return CFP; 5899 } 5900 case ISD::BUILD_VECTOR: { 5901 // Only permit BUILD_VECTOR of constants. 5902 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5903 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5904 })) 5905 break; 5906 5907 bool IsOpLegal = 5908 (isOperationLegal(ISD::ConstantFP, VT) && 5909 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5910 llvm::all_of(Op->op_values(), [&](SDValue N) { 5911 return N.isUndef() || 5912 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5913 OptForSize); 5914 }); 5915 5916 if (LegalOps && !IsOpLegal) 5917 break; 5918 5919 SmallVector<SDValue, 4> Ops; 5920 for (SDValue C : Op->op_values()) { 5921 if (C.isUndef()) { 5922 Ops.push_back(C); 5923 continue; 5924 } 5925 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5926 V.changeSign(); 5927 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5928 } 5929 Cost = NegatibleCost::Neutral; 5930 return DAG.getBuildVector(VT, DL, Ops); 5931 } 5932 case ISD::FADD: { 5933 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5934 break; 5935 5936 // After operation legalization, it might not be legal to create new FSUBs. 5937 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5938 break; 5939 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5940 5941 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5942 NegatibleCost CostX = NegatibleCost::Expensive; 5943 SDValue NegX = 5944 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5945 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5946 NegatibleCost CostY = NegatibleCost::Expensive; 5947 SDValue NegY = 5948 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5949 5950 // Negate the X if its cost is less or equal than Y. 5951 if (NegX && (CostX <= CostY)) { 5952 Cost = CostX; 5953 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5954 if (NegY != N) 5955 RemoveDeadNode(NegY); 5956 return N; 5957 } 5958 5959 // Negate the Y if it is not expensive. 5960 if (NegY) { 5961 Cost = CostY; 5962 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5963 if (NegX != N) 5964 RemoveDeadNode(NegX); 5965 return N; 5966 } 5967 break; 5968 } 5969 case ISD::FSUB: { 5970 // We can't turn -(A-B) into B-A when we honor signed zeros. 5971 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5972 break; 5973 5974 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5975 // fold (fneg (fsub 0, Y)) -> Y 5976 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5977 if (C->isZero()) { 5978 Cost = NegatibleCost::Cheaper; 5979 return Y; 5980 } 5981 5982 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5983 Cost = NegatibleCost::Neutral; 5984 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5985 } 5986 case ISD::FMUL: 5987 case ISD::FDIV: { 5988 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5989 5990 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5991 NegatibleCost CostX = NegatibleCost::Expensive; 5992 SDValue NegX = 5993 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5994 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5995 NegatibleCost CostY = NegatibleCost::Expensive; 5996 SDValue NegY = 5997 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5998 5999 // Negate the X if its cost is less or equal than Y. 6000 if (NegX && (CostX <= CostY)) { 6001 Cost = CostX; 6002 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6003 if (NegY != N) 6004 RemoveDeadNode(NegY); 6005 return N; 6006 } 6007 6008 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6009 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6010 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6011 break; 6012 6013 // Negate the Y if it is not expensive. 6014 if (NegY) { 6015 Cost = CostY; 6016 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6017 if (NegX != N) 6018 RemoveDeadNode(NegX); 6019 return N; 6020 } 6021 break; 6022 } 6023 case ISD::FMA: 6024 case ISD::FMAD: { 6025 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6026 break; 6027 6028 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6029 NegatibleCost CostZ = NegatibleCost::Expensive; 6030 SDValue NegZ = 6031 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6032 // Give up if fail to negate the Z. 6033 if (!NegZ) 6034 break; 6035 6036 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6037 NegatibleCost CostX = NegatibleCost::Expensive; 6038 SDValue NegX = 6039 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6040 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6041 NegatibleCost CostY = NegatibleCost::Expensive; 6042 SDValue NegY = 6043 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6044 6045 // Negate the X if its cost is less or equal than Y. 6046 if (NegX && (CostX <= CostY)) { 6047 Cost = std::min(CostX, CostZ); 6048 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6049 if (NegY != N) 6050 RemoveDeadNode(NegY); 6051 return N; 6052 } 6053 6054 // Negate the Y if it is not expensive. 6055 if (NegY) { 6056 Cost = std::min(CostY, CostZ); 6057 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6058 if (NegX != N) 6059 RemoveDeadNode(NegX); 6060 return N; 6061 } 6062 break; 6063 } 6064 6065 case ISD::FP_EXTEND: 6066 case ISD::FSIN: 6067 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6068 OptForSize, Cost, Depth)) 6069 return DAG.getNode(Opcode, DL, VT, NegV); 6070 break; 6071 case ISD::FP_ROUND: 6072 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6073 OptForSize, Cost, Depth)) 6074 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6075 break; 6076 } 6077 6078 return SDValue(); 6079 } 6080 6081 //===----------------------------------------------------------------------===// 6082 // Legalization Utilities 6083 //===----------------------------------------------------------------------===// 6084 6085 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6086 SDValue LHS, SDValue RHS, 6087 SmallVectorImpl<SDValue> &Result, 6088 EVT HiLoVT, SelectionDAG &DAG, 6089 MulExpansionKind Kind, SDValue LL, 6090 SDValue LH, SDValue RL, SDValue RH) const { 6091 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6092 Opcode == ISD::SMUL_LOHI); 6093 6094 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6095 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6096 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6097 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6098 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6099 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6100 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6101 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6102 6103 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6104 return false; 6105 6106 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6107 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6108 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 6109 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 6110 6111 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6112 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6113 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6114 6115 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6116 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6117 bool Signed) -> bool { 6118 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6119 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6120 Hi = SDValue(Lo.getNode(), 1); 6121 return true; 6122 } 6123 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6124 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6125 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6126 return true; 6127 } 6128 return false; 6129 }; 6130 6131 SDValue Lo, Hi; 6132 6133 if (!LL.getNode() && !RL.getNode() && 6134 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6135 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6136 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6137 } 6138 6139 if (!LL.getNode()) 6140 return false; 6141 6142 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6143 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6144 DAG.MaskedValueIsZero(RHS, HighMask)) { 6145 // The inputs are both zero-extended. 6146 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6147 Result.push_back(Lo); 6148 Result.push_back(Hi); 6149 if (Opcode != ISD::MUL) { 6150 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6151 Result.push_back(Zero); 6152 Result.push_back(Zero); 6153 } 6154 return true; 6155 } 6156 } 6157 6158 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6159 RHSSB > InnerBitSize) { 6160 // The input values are both sign-extended. 6161 // TODO non-MUL case? 6162 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6163 Result.push_back(Lo); 6164 Result.push_back(Hi); 6165 return true; 6166 } 6167 } 6168 6169 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6170 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6171 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6172 // FIXME getShiftAmountTy does not always return a sensible result when VT 6173 // is an illegal type, and so the type may be too small to fit the shift 6174 // amount. Override it with i32. The shift will have to be legalized. 6175 ShiftAmountTy = MVT::i32; 6176 } 6177 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6178 6179 if (!LH.getNode() && !RH.getNode() && 6180 isOperationLegalOrCustom(ISD::SRL, VT) && 6181 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6182 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6183 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6184 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6185 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6186 } 6187 6188 if (!LH.getNode()) 6189 return false; 6190 6191 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6192 return false; 6193 6194 Result.push_back(Lo); 6195 6196 if (Opcode == ISD::MUL) { 6197 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6198 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6199 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6200 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6201 Result.push_back(Hi); 6202 return true; 6203 } 6204 6205 // Compute the full width result. 6206 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6207 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6208 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6209 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6210 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6211 }; 6212 6213 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6214 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6215 return false; 6216 6217 // This is effectively the add part of a multiply-add of half-sized operands, 6218 // so it cannot overflow. 6219 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6220 6221 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6222 return false; 6223 6224 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6225 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6226 6227 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6228 isOperationLegalOrCustom(ISD::ADDE, VT)); 6229 if (UseGlue) 6230 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6231 Merge(Lo, Hi)); 6232 else 6233 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6234 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6235 6236 SDValue Carry = Next.getValue(1); 6237 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6238 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6239 6240 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6241 return false; 6242 6243 if (UseGlue) 6244 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6245 Carry); 6246 else 6247 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6248 Zero, Carry); 6249 6250 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6251 6252 if (Opcode == ISD::SMUL_LOHI) { 6253 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6254 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6255 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6256 6257 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6258 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6259 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6260 } 6261 6262 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6263 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6264 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6265 return true; 6266 } 6267 6268 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6269 SelectionDAG &DAG, MulExpansionKind Kind, 6270 SDValue LL, SDValue LH, SDValue RL, 6271 SDValue RH) const { 6272 SmallVector<SDValue, 2> Result; 6273 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6274 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6275 DAG, Kind, LL, LH, RL, RH); 6276 if (Ok) { 6277 assert(Result.size() == 2); 6278 Lo = Result[0]; 6279 Hi = Result[1]; 6280 } 6281 return Ok; 6282 } 6283 6284 // Check that (every element of) Z is undef or not an exact multiple of BW. 6285 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6286 return ISD::matchUnaryPredicate( 6287 Z, 6288 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6289 true); 6290 } 6291 6292 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6293 SelectionDAG &DAG) const { 6294 EVT VT = Node->getValueType(0); 6295 6296 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6297 !isOperationLegalOrCustom(ISD::SRL, VT) || 6298 !isOperationLegalOrCustom(ISD::SUB, VT) || 6299 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6300 return false; 6301 6302 SDValue X = Node->getOperand(0); 6303 SDValue Y = Node->getOperand(1); 6304 SDValue Z = Node->getOperand(2); 6305 6306 unsigned BW = VT.getScalarSizeInBits(); 6307 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6308 SDLoc DL(SDValue(Node, 0)); 6309 6310 EVT ShVT = Z.getValueType(); 6311 6312 // If a funnel shift in the other direction is more supported, use it. 6313 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6314 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6315 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6316 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6317 // fshl X, Y, Z -> fshr X, Y, -Z 6318 // fshr X, Y, Z -> fshl X, Y, -Z 6319 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6320 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6321 } else { 6322 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6323 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6324 SDValue One = DAG.getConstant(1, DL, ShVT); 6325 if (IsFSHL) { 6326 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6327 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6328 } else { 6329 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6330 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6331 } 6332 Z = DAG.getNOT(DL, Z, ShVT); 6333 } 6334 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6335 return true; 6336 } 6337 6338 SDValue ShX, ShY; 6339 SDValue ShAmt, InvShAmt; 6340 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6341 // fshl: X << C | Y >> (BW - C) 6342 // fshr: X << (BW - C) | Y >> C 6343 // where C = Z % BW is not zero 6344 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6345 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6346 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6347 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6348 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6349 } else { 6350 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6351 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6352 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6353 if (isPowerOf2_32(BW)) { 6354 // Z % BW -> Z & (BW - 1) 6355 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6356 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6357 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6358 } else { 6359 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6360 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6361 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6362 } 6363 6364 SDValue One = DAG.getConstant(1, DL, ShVT); 6365 if (IsFSHL) { 6366 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6367 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6368 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6369 } else { 6370 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6371 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6372 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6373 } 6374 } 6375 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6376 return true; 6377 } 6378 6379 // TODO: Merge with expandFunnelShift. 6380 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6381 SDValue &Result, SelectionDAG &DAG) const { 6382 EVT VT = Node->getValueType(0); 6383 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6384 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6385 SDValue Op0 = Node->getOperand(0); 6386 SDValue Op1 = Node->getOperand(1); 6387 SDLoc DL(SDValue(Node, 0)); 6388 6389 EVT ShVT = Op1.getValueType(); 6390 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6391 6392 // If a rotate in the other direction is supported, use it. 6393 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6394 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6395 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6396 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6397 return true; 6398 } 6399 6400 if (!AllowVectorOps && VT.isVector() && 6401 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6402 !isOperationLegalOrCustom(ISD::SRL, VT) || 6403 !isOperationLegalOrCustom(ISD::SUB, VT) || 6404 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6405 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6406 return false; 6407 6408 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6409 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6410 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6411 SDValue ShVal; 6412 SDValue HsVal; 6413 if (isPowerOf2_32(EltSizeInBits)) { 6414 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6415 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6416 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6417 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6418 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6419 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6420 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6421 } else { 6422 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6423 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6424 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6425 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6426 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6427 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6428 SDValue One = DAG.getConstant(1, DL, ShVT); 6429 HsVal = 6430 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6431 } 6432 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6433 return true; 6434 } 6435 6436 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6437 SelectionDAG &DAG) const { 6438 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6439 SDValue Src = Node->getOperand(OpNo); 6440 EVT SrcVT = Src.getValueType(); 6441 EVT DstVT = Node->getValueType(0); 6442 SDLoc dl(SDValue(Node, 0)); 6443 6444 // FIXME: Only f32 to i64 conversions are supported. 6445 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6446 return false; 6447 6448 if (Node->isStrictFPOpcode()) 6449 // When a NaN is converted to an integer a trap is allowed. We can't 6450 // use this expansion here because it would eliminate that trap. Other 6451 // traps are also allowed and cannot be eliminated. See 6452 // IEEE 754-2008 sec 5.8. 6453 return false; 6454 6455 // Expand f32 -> i64 conversion 6456 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6457 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6458 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6459 EVT IntVT = SrcVT.changeTypeToInteger(); 6460 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6461 6462 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6463 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6464 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6465 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6466 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6467 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6468 6469 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6470 6471 SDValue ExponentBits = DAG.getNode( 6472 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6473 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6474 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6475 6476 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6477 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6478 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6479 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6480 6481 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6482 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6483 DAG.getConstant(0x00800000, dl, IntVT)); 6484 6485 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6486 6487 R = DAG.getSelectCC( 6488 dl, Exponent, ExponentLoBit, 6489 DAG.getNode(ISD::SHL, dl, DstVT, R, 6490 DAG.getZExtOrTrunc( 6491 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6492 dl, IntShVT)), 6493 DAG.getNode(ISD::SRL, dl, DstVT, R, 6494 DAG.getZExtOrTrunc( 6495 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6496 dl, IntShVT)), 6497 ISD::SETGT); 6498 6499 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6500 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6501 6502 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6503 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6504 return true; 6505 } 6506 6507 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6508 SDValue &Chain, 6509 SelectionDAG &DAG) const { 6510 SDLoc dl(SDValue(Node, 0)); 6511 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6512 SDValue Src = Node->getOperand(OpNo); 6513 6514 EVT SrcVT = Src.getValueType(); 6515 EVT DstVT = Node->getValueType(0); 6516 EVT SetCCVT = 6517 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6518 EVT DstSetCCVT = 6519 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6520 6521 // Only expand vector types if we have the appropriate vector bit operations. 6522 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6523 ISD::FP_TO_SINT; 6524 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6525 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6526 return false; 6527 6528 // If the maximum float value is smaller then the signed integer range, 6529 // the destination signmask can't be represented by the float, so we can 6530 // just use FP_TO_SINT directly. 6531 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6532 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6533 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6534 if (APFloat::opOverflow & 6535 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6536 if (Node->isStrictFPOpcode()) { 6537 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6538 { Node->getOperand(0), Src }); 6539 Chain = Result.getValue(1); 6540 } else 6541 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6542 return true; 6543 } 6544 6545 // Don't expand it if there isn't cheap fsub instruction. 6546 if (!isOperationLegalOrCustom( 6547 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6548 return false; 6549 6550 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6551 SDValue Sel; 6552 6553 if (Node->isStrictFPOpcode()) { 6554 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6555 Node->getOperand(0), /*IsSignaling*/ true); 6556 Chain = Sel.getValue(1); 6557 } else { 6558 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6559 } 6560 6561 bool Strict = Node->isStrictFPOpcode() || 6562 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6563 6564 if (Strict) { 6565 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6566 // signmask then offset (the result of which should be fully representable). 6567 // Sel = Src < 0x8000000000000000 6568 // FltOfs = select Sel, 0, 0x8000000000000000 6569 // IntOfs = select Sel, 0, 0x8000000000000000 6570 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6571 6572 // TODO: Should any fast-math-flags be set for the FSUB? 6573 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6574 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6575 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6576 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6577 DAG.getConstant(0, dl, DstVT), 6578 DAG.getConstant(SignMask, dl, DstVT)); 6579 SDValue SInt; 6580 if (Node->isStrictFPOpcode()) { 6581 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6582 { Chain, Src, FltOfs }); 6583 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6584 { Val.getValue(1), Val }); 6585 Chain = SInt.getValue(1); 6586 } else { 6587 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6588 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6589 } 6590 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6591 } else { 6592 // Expand based on maximum range of FP_TO_SINT: 6593 // True = fp_to_sint(Src) 6594 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6595 // Result = select (Src < 0x8000000000000000), True, False 6596 6597 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6598 // TODO: Should any fast-math-flags be set for the FSUB? 6599 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6600 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6601 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6602 DAG.getConstant(SignMask, dl, DstVT)); 6603 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6604 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6605 } 6606 return true; 6607 } 6608 6609 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6610 SDValue &Chain, 6611 SelectionDAG &DAG) const { 6612 // This transform is not correct for converting 0 when rounding mode is set 6613 // to round toward negative infinity which will produce -0.0. So disable under 6614 // strictfp. 6615 if (Node->isStrictFPOpcode()) 6616 return false; 6617 6618 SDValue Src = Node->getOperand(0); 6619 EVT SrcVT = Src.getValueType(); 6620 EVT DstVT = Node->getValueType(0); 6621 6622 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6623 return false; 6624 6625 // Only expand vector types if we have the appropriate vector bit operations. 6626 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6627 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6628 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6629 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6630 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6631 return false; 6632 6633 SDLoc dl(SDValue(Node, 0)); 6634 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6635 6636 // Implementation of unsigned i64 to f64 following the algorithm in 6637 // __floatundidf in compiler_rt. This implementation performs rounding 6638 // correctly in all rounding modes with the exception of converting 0 6639 // when rounding toward negative infinity. In that case the fsub will produce 6640 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6641 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6642 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6643 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6644 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6645 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6646 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6647 6648 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6649 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6650 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6651 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6652 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6653 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6654 SDValue HiSub = 6655 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6656 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6657 return true; 6658 } 6659 6660 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6661 SelectionDAG &DAG) const { 6662 SDLoc dl(Node); 6663 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6664 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6665 EVT VT = Node->getValueType(0); 6666 6667 if (VT.isScalableVector()) 6668 report_fatal_error( 6669 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6670 6671 if (isOperationLegalOrCustom(NewOp, VT)) { 6672 SDValue Quiet0 = Node->getOperand(0); 6673 SDValue Quiet1 = Node->getOperand(1); 6674 6675 if (!Node->getFlags().hasNoNaNs()) { 6676 // Insert canonicalizes if it's possible we need to quiet to get correct 6677 // sNaN behavior. 6678 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6679 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6680 Node->getFlags()); 6681 } 6682 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6683 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6684 Node->getFlags()); 6685 } 6686 } 6687 6688 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6689 } 6690 6691 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6692 // instead if there are no NaNs. 6693 if (Node->getFlags().hasNoNaNs()) { 6694 unsigned IEEE2018Op = 6695 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6696 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6697 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6698 Node->getOperand(1), Node->getFlags()); 6699 } 6700 } 6701 6702 // If none of the above worked, but there are no NaNs, then expand to 6703 // a compare/select sequence. This is required for correctness since 6704 // InstCombine might have canonicalized a fcmp+select sequence to a 6705 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6706 // expansion to libcall, we might introduce a link-time dependency 6707 // on libm into a file that originally did not have one. 6708 if (Node->getFlags().hasNoNaNs()) { 6709 ISD::CondCode Pred = 6710 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6711 SDValue Op1 = Node->getOperand(0); 6712 SDValue Op2 = Node->getOperand(1); 6713 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6714 // Copy FMF flags, but always set the no-signed-zeros flag 6715 // as this is implied by the FMINNUM/FMAXNUM semantics. 6716 SDNodeFlags Flags = Node->getFlags(); 6717 Flags.setNoSignedZeros(true); 6718 SelCC->setFlags(Flags); 6719 return SelCC; 6720 } 6721 6722 return SDValue(); 6723 } 6724 6725 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6726 SelectionDAG &DAG) const { 6727 SDLoc dl(Node); 6728 EVT VT = Node->getValueType(0); 6729 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6730 SDValue Op = Node->getOperand(0); 6731 unsigned Len = VT.getScalarSizeInBits(); 6732 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6733 6734 // TODO: Add support for irregular type lengths. 6735 if (!(Len <= 128 && Len % 8 == 0)) 6736 return false; 6737 6738 // Only expand vector types if we have the appropriate vector bit operations. 6739 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6740 !isOperationLegalOrCustom(ISD::SUB, VT) || 6741 !isOperationLegalOrCustom(ISD::SRL, VT) || 6742 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6743 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6744 return false; 6745 6746 // This is the "best" algorithm from 6747 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6748 SDValue Mask55 = 6749 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6750 SDValue Mask33 = 6751 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6752 SDValue Mask0F = 6753 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6754 SDValue Mask01 = 6755 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6756 6757 // v = v - ((v >> 1) & 0x55555555...) 6758 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6759 DAG.getNode(ISD::AND, dl, VT, 6760 DAG.getNode(ISD::SRL, dl, VT, Op, 6761 DAG.getConstant(1, dl, ShVT)), 6762 Mask55)); 6763 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6764 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6765 DAG.getNode(ISD::AND, dl, VT, 6766 DAG.getNode(ISD::SRL, dl, VT, Op, 6767 DAG.getConstant(2, dl, ShVT)), 6768 Mask33)); 6769 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6770 Op = DAG.getNode(ISD::AND, dl, VT, 6771 DAG.getNode(ISD::ADD, dl, VT, Op, 6772 DAG.getNode(ISD::SRL, dl, VT, Op, 6773 DAG.getConstant(4, dl, ShVT))), 6774 Mask0F); 6775 // v = (v * 0x01010101...) >> (Len - 8) 6776 if (Len > 8) 6777 Op = 6778 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6779 DAG.getConstant(Len - 8, dl, ShVT)); 6780 6781 Result = Op; 6782 return true; 6783 } 6784 6785 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6786 SelectionDAG &DAG) const { 6787 SDLoc dl(Node); 6788 EVT VT = Node->getValueType(0); 6789 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6790 SDValue Op = Node->getOperand(0); 6791 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6792 6793 // If the non-ZERO_UNDEF version is supported we can use that instead. 6794 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6795 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6796 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6797 return true; 6798 } 6799 6800 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6801 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6802 EVT SetCCVT = 6803 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6804 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6805 SDValue Zero = DAG.getConstant(0, dl, VT); 6806 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6807 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6808 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6809 return true; 6810 } 6811 6812 // Only expand vector types if we have the appropriate vector bit operations. 6813 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6814 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6815 !isOperationLegalOrCustom(ISD::SRL, VT) || 6816 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6817 return false; 6818 6819 // for now, we do this: 6820 // x = x | (x >> 1); 6821 // x = x | (x >> 2); 6822 // ... 6823 // x = x | (x >>16); 6824 // x = x | (x >>32); // for 64-bit input 6825 // return popcount(~x); 6826 // 6827 // Ref: "Hacker's Delight" by Henry Warren 6828 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6829 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6830 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6831 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6832 } 6833 Op = DAG.getNOT(dl, Op, VT); 6834 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6835 return true; 6836 } 6837 6838 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6839 SelectionDAG &DAG) const { 6840 SDLoc dl(Node); 6841 EVT VT = Node->getValueType(0); 6842 SDValue Op = Node->getOperand(0); 6843 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6844 6845 // If the non-ZERO_UNDEF version is supported we can use that instead. 6846 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6847 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6848 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6849 return true; 6850 } 6851 6852 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6853 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6854 EVT SetCCVT = 6855 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6856 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6857 SDValue Zero = DAG.getConstant(0, dl, VT); 6858 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6859 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6860 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6861 return true; 6862 } 6863 6864 // Only expand vector types if we have the appropriate vector bit operations. 6865 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6866 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6867 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6868 !isOperationLegalOrCustom(ISD::SUB, VT) || 6869 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6870 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6871 return false; 6872 6873 // for now, we use: { return popcount(~x & (x - 1)); } 6874 // unless the target has ctlz but not ctpop, in which case we use: 6875 // { return 32 - nlz(~x & (x-1)); } 6876 // Ref: "Hacker's Delight" by Henry Warren 6877 SDValue Tmp = DAG.getNode( 6878 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6879 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6880 6881 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6882 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6883 Result = 6884 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6885 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6886 return true; 6887 } 6888 6889 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6890 return true; 6891 } 6892 6893 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6894 SelectionDAG &DAG, bool IsNegative) const { 6895 SDLoc dl(N); 6896 EVT VT = N->getValueType(0); 6897 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6898 SDValue Op = N->getOperand(0); 6899 6900 // abs(x) -> smax(x,sub(0,x)) 6901 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 6902 isOperationLegal(ISD::SMAX, VT)) { 6903 SDValue Zero = DAG.getConstant(0, dl, VT); 6904 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 6905 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6906 return true; 6907 } 6908 6909 // abs(x) -> umin(x,sub(0,x)) 6910 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 6911 isOperationLegal(ISD::UMIN, VT)) { 6912 SDValue Zero = DAG.getConstant(0, dl, VT); 6913 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 6914 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6915 return true; 6916 } 6917 6918 // 0 - abs(x) -> smin(x, sub(0,x)) 6919 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 6920 isOperationLegal(ISD::SMIN, VT)) { 6921 SDValue Zero = DAG.getConstant(0, dl, VT); 6922 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 6923 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6924 return true; 6925 } 6926 6927 // Only expand vector types if we have the appropriate vector operations. 6928 if (VT.isVector() && 6929 (!isOperationLegalOrCustom(ISD::SRA, VT) || 6930 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 6931 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 6932 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6933 return false; 6934 6935 SDValue Shift = 6936 DAG.getNode(ISD::SRA, dl, VT, Op, 6937 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6938 if (!IsNegative) { 6939 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6940 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6941 } else { 6942 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 6943 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 6944 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 6945 } 6946 return true; 6947 } 6948 6949 std::pair<SDValue, SDValue> 6950 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6951 SelectionDAG &DAG) const { 6952 SDLoc SL(LD); 6953 SDValue Chain = LD->getChain(); 6954 SDValue BasePTR = LD->getBasePtr(); 6955 EVT SrcVT = LD->getMemoryVT(); 6956 EVT DstVT = LD->getValueType(0); 6957 ISD::LoadExtType ExtType = LD->getExtensionType(); 6958 6959 if (SrcVT.isScalableVector()) 6960 report_fatal_error("Cannot scalarize scalable vector loads"); 6961 6962 unsigned NumElem = SrcVT.getVectorNumElements(); 6963 6964 EVT SrcEltVT = SrcVT.getScalarType(); 6965 EVT DstEltVT = DstVT.getScalarType(); 6966 6967 // A vector must always be stored in memory as-is, i.e. without any padding 6968 // between the elements, since various code depend on it, e.g. in the 6969 // handling of a bitcast of a vector type to int, which may be done with a 6970 // vector store followed by an integer load. A vector that does not have 6971 // elements that are byte-sized must therefore be stored as an integer 6972 // built out of the extracted vector elements. 6973 if (!SrcEltVT.isByteSized()) { 6974 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6975 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6976 6977 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6978 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6979 6980 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6981 SDValue SrcEltBitMask = DAG.getConstant( 6982 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6983 6984 // Load the whole vector and avoid masking off the top bits as it makes 6985 // the codegen worse. 6986 SDValue Load = 6987 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6988 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 6989 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6990 6991 SmallVector<SDValue, 8> Vals; 6992 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6993 unsigned ShiftIntoIdx = 6994 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6995 SDValue ShiftAmount = 6996 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6997 LoadVT, SL, /*LegalTypes=*/false); 6998 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6999 SDValue Elt = 7000 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7001 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7002 7003 if (ExtType != ISD::NON_EXTLOAD) { 7004 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7005 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7006 } 7007 7008 Vals.push_back(Scalar); 7009 } 7010 7011 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7012 return std::make_pair(Value, Load.getValue(1)); 7013 } 7014 7015 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7016 assert(SrcEltVT.isByteSized()); 7017 7018 SmallVector<SDValue, 8> Vals; 7019 SmallVector<SDValue, 8> LoadChains; 7020 7021 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7022 SDValue ScalarLoad = 7023 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7024 LD->getPointerInfo().getWithOffset(Idx * Stride), 7025 SrcEltVT, LD->getOriginalAlign(), 7026 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7027 7028 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7029 7030 Vals.push_back(ScalarLoad.getValue(0)); 7031 LoadChains.push_back(ScalarLoad.getValue(1)); 7032 } 7033 7034 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7035 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7036 7037 return std::make_pair(Value, NewChain); 7038 } 7039 7040 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7041 SelectionDAG &DAG) const { 7042 SDLoc SL(ST); 7043 7044 SDValue Chain = ST->getChain(); 7045 SDValue BasePtr = ST->getBasePtr(); 7046 SDValue Value = ST->getValue(); 7047 EVT StVT = ST->getMemoryVT(); 7048 7049 if (StVT.isScalableVector()) 7050 report_fatal_error("Cannot scalarize scalable vector stores"); 7051 7052 // The type of the data we want to save 7053 EVT RegVT = Value.getValueType(); 7054 EVT RegSclVT = RegVT.getScalarType(); 7055 7056 // The type of data as saved in memory. 7057 EVT MemSclVT = StVT.getScalarType(); 7058 7059 unsigned NumElem = StVT.getVectorNumElements(); 7060 7061 // A vector must always be stored in memory as-is, i.e. without any padding 7062 // between the elements, since various code depend on it, e.g. in the 7063 // handling of a bitcast of a vector type to int, which may be done with a 7064 // vector store followed by an integer load. A vector that does not have 7065 // elements that are byte-sized must therefore be stored as an integer 7066 // built out of the extracted vector elements. 7067 if (!MemSclVT.isByteSized()) { 7068 unsigned NumBits = StVT.getSizeInBits(); 7069 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7070 7071 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7072 7073 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7074 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7075 DAG.getVectorIdxConstant(Idx, SL)); 7076 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7077 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7078 unsigned ShiftIntoIdx = 7079 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7080 SDValue ShiftAmount = 7081 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7082 SDValue ShiftedElt = 7083 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7084 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7085 } 7086 7087 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7088 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7089 ST->getAAInfo()); 7090 } 7091 7092 // Store Stride in bytes 7093 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7094 assert(Stride && "Zero stride!"); 7095 // Extract each of the elements from the original vector and save them into 7096 // memory individually. 7097 SmallVector<SDValue, 8> Stores; 7098 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7099 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7100 DAG.getVectorIdxConstant(Idx, SL)); 7101 7102 SDValue Ptr = 7103 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7104 7105 // This scalar TruncStore may be illegal, but we legalize it later. 7106 SDValue Store = DAG.getTruncStore( 7107 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7108 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7109 ST->getAAInfo()); 7110 7111 Stores.push_back(Store); 7112 } 7113 7114 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7115 } 7116 7117 std::pair<SDValue, SDValue> 7118 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7119 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7120 "unaligned indexed loads not implemented!"); 7121 SDValue Chain = LD->getChain(); 7122 SDValue Ptr = LD->getBasePtr(); 7123 EVT VT = LD->getValueType(0); 7124 EVT LoadedVT = LD->getMemoryVT(); 7125 SDLoc dl(LD); 7126 auto &MF = DAG.getMachineFunction(); 7127 7128 if (VT.isFloatingPoint() || VT.isVector()) { 7129 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7130 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7131 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7132 LoadedVT.isVector()) { 7133 // Scalarize the load and let the individual components be handled. 7134 return scalarizeVectorLoad(LD, DAG); 7135 } 7136 7137 // Expand to a (misaligned) integer load of the same size, 7138 // then bitconvert to floating point or vector. 7139 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7140 LD->getMemOperand()); 7141 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7142 if (LoadedVT != VT) 7143 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7144 ISD::ANY_EXTEND, dl, VT, Result); 7145 7146 return std::make_pair(Result, newLoad.getValue(1)); 7147 } 7148 7149 // Copy the value to a (aligned) stack slot using (unaligned) integer 7150 // loads and stores, then do a (aligned) load from the stack slot. 7151 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7152 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7153 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7154 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7155 7156 // Make sure the stack slot is also aligned for the register type. 7157 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7158 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7159 SmallVector<SDValue, 8> Stores; 7160 SDValue StackPtr = StackBase; 7161 unsigned Offset = 0; 7162 7163 EVT PtrVT = Ptr.getValueType(); 7164 EVT StackPtrVT = StackPtr.getValueType(); 7165 7166 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7167 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7168 7169 // Do all but one copies using the full register width. 7170 for (unsigned i = 1; i < NumRegs; i++) { 7171 // Load one integer register's worth from the original location. 7172 SDValue Load = DAG.getLoad( 7173 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7174 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7175 LD->getAAInfo()); 7176 // Follow the load with a store to the stack slot. Remember the store. 7177 Stores.push_back(DAG.getStore( 7178 Load.getValue(1), dl, Load, StackPtr, 7179 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7180 // Increment the pointers. 7181 Offset += RegBytes; 7182 7183 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7184 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7185 } 7186 7187 // The last copy may be partial. Do an extending load. 7188 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7189 8 * (LoadedBytes - Offset)); 7190 SDValue Load = 7191 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7192 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7193 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7194 LD->getAAInfo()); 7195 // Follow the load with a store to the stack slot. Remember the store. 7196 // On big-endian machines this requires a truncating store to ensure 7197 // that the bits end up in the right place. 7198 Stores.push_back(DAG.getTruncStore( 7199 Load.getValue(1), dl, Load, StackPtr, 7200 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7201 7202 // The order of the stores doesn't matter - say it with a TokenFactor. 7203 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7204 7205 // Finally, perform the original load only redirected to the stack slot. 7206 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7207 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7208 LoadedVT); 7209 7210 // Callers expect a MERGE_VALUES node. 7211 return std::make_pair(Load, TF); 7212 } 7213 7214 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7215 "Unaligned load of unsupported type."); 7216 7217 // Compute the new VT that is half the size of the old one. This is an 7218 // integer MVT. 7219 unsigned NumBits = LoadedVT.getSizeInBits(); 7220 EVT NewLoadedVT; 7221 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7222 NumBits >>= 1; 7223 7224 Align Alignment = LD->getOriginalAlign(); 7225 unsigned IncrementSize = NumBits / 8; 7226 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7227 7228 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7229 if (HiExtType == ISD::NON_EXTLOAD) 7230 HiExtType = ISD::ZEXTLOAD; 7231 7232 // Load the value in two parts 7233 SDValue Lo, Hi; 7234 if (DAG.getDataLayout().isLittleEndian()) { 7235 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7236 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7237 LD->getAAInfo()); 7238 7239 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7240 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7241 LD->getPointerInfo().getWithOffset(IncrementSize), 7242 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7243 LD->getAAInfo()); 7244 } else { 7245 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7246 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7247 LD->getAAInfo()); 7248 7249 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7250 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7251 LD->getPointerInfo().getWithOffset(IncrementSize), 7252 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7253 LD->getAAInfo()); 7254 } 7255 7256 // aggregate the two parts 7257 SDValue ShiftAmount = 7258 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7259 DAG.getDataLayout())); 7260 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7261 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7262 7263 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7264 Hi.getValue(1)); 7265 7266 return std::make_pair(Result, TF); 7267 } 7268 7269 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7270 SelectionDAG &DAG) const { 7271 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7272 "unaligned indexed stores not implemented!"); 7273 SDValue Chain = ST->getChain(); 7274 SDValue Ptr = ST->getBasePtr(); 7275 SDValue Val = ST->getValue(); 7276 EVT VT = Val.getValueType(); 7277 Align Alignment = ST->getOriginalAlign(); 7278 auto &MF = DAG.getMachineFunction(); 7279 EVT StoreMemVT = ST->getMemoryVT(); 7280 7281 SDLoc dl(ST); 7282 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7283 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7284 if (isTypeLegal(intVT)) { 7285 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7286 StoreMemVT.isVector()) { 7287 // Scalarize the store and let the individual components be handled. 7288 SDValue Result = scalarizeVectorStore(ST, DAG); 7289 return Result; 7290 } 7291 // Expand to a bitconvert of the value to the integer type of the 7292 // same size, then a (misaligned) int store. 7293 // FIXME: Does not handle truncating floating point stores! 7294 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7295 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7296 Alignment, ST->getMemOperand()->getFlags()); 7297 return Result; 7298 } 7299 // Do a (aligned) store to a stack slot, then copy from the stack slot 7300 // to the final destination using (unaligned) integer loads and stores. 7301 MVT RegVT = getRegisterType( 7302 *DAG.getContext(), 7303 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7304 EVT PtrVT = Ptr.getValueType(); 7305 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7306 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7307 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7308 7309 // Make sure the stack slot is also aligned for the register type. 7310 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7311 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7312 7313 // Perform the original store, only redirected to the stack slot. 7314 SDValue Store = DAG.getTruncStore( 7315 Chain, dl, Val, StackPtr, 7316 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7317 7318 EVT StackPtrVT = StackPtr.getValueType(); 7319 7320 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7321 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7322 SmallVector<SDValue, 8> Stores; 7323 unsigned Offset = 0; 7324 7325 // Do all but one copies using the full register width. 7326 for (unsigned i = 1; i < NumRegs; i++) { 7327 // Load one integer register's worth from the stack slot. 7328 SDValue Load = DAG.getLoad( 7329 RegVT, dl, Store, StackPtr, 7330 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7331 // Store it to the final location. Remember the store. 7332 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7333 ST->getPointerInfo().getWithOffset(Offset), 7334 ST->getOriginalAlign(), 7335 ST->getMemOperand()->getFlags())); 7336 // Increment the pointers. 7337 Offset += RegBytes; 7338 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7339 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7340 } 7341 7342 // The last store may be partial. Do a truncating store. On big-endian 7343 // machines this requires an extending load from the stack slot to ensure 7344 // that the bits are in the right place. 7345 EVT LoadMemVT = 7346 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7347 7348 // Load from the stack slot. 7349 SDValue Load = DAG.getExtLoad( 7350 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7351 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7352 7353 Stores.push_back( 7354 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7355 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7356 ST->getOriginalAlign(), 7357 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7358 // The order of the stores doesn't matter - say it with a TokenFactor. 7359 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7360 return Result; 7361 } 7362 7363 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7364 "Unaligned store of unknown type."); 7365 // Get the half-size VT 7366 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7367 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7368 unsigned IncrementSize = NumBits / 8; 7369 7370 // Divide the stored value in two parts. 7371 SDValue ShiftAmount = DAG.getConstant( 7372 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7373 SDValue Lo = Val; 7374 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7375 7376 // Store the two parts 7377 SDValue Store1, Store2; 7378 Store1 = DAG.getTruncStore(Chain, dl, 7379 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7380 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7381 ST->getMemOperand()->getFlags()); 7382 7383 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7384 Store2 = DAG.getTruncStore( 7385 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7386 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7387 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7388 7389 SDValue Result = 7390 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7391 return Result; 7392 } 7393 7394 SDValue 7395 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7396 const SDLoc &DL, EVT DataVT, 7397 SelectionDAG &DAG, 7398 bool IsCompressedMemory) const { 7399 SDValue Increment; 7400 EVT AddrVT = Addr.getValueType(); 7401 EVT MaskVT = Mask.getValueType(); 7402 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7403 "Incompatible types of Data and Mask"); 7404 if (IsCompressedMemory) { 7405 if (DataVT.isScalableVector()) 7406 report_fatal_error( 7407 "Cannot currently handle compressed memory with scalable vectors"); 7408 // Incrementing the pointer according to number of '1's in the mask. 7409 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7410 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7411 if (MaskIntVT.getSizeInBits() < 32) { 7412 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7413 MaskIntVT = MVT::i32; 7414 } 7415 7416 // Count '1's with POPCNT. 7417 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7418 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7419 // Scale is an element size in bytes. 7420 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7421 AddrVT); 7422 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7423 } else if (DataVT.isScalableVector()) { 7424 Increment = DAG.getVScale(DL, AddrVT, 7425 APInt(AddrVT.getFixedSizeInBits(), 7426 DataVT.getStoreSize().getKnownMinSize())); 7427 } else 7428 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7429 7430 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7431 } 7432 7433 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7434 SDValue Idx, 7435 EVT VecVT, 7436 const SDLoc &dl) { 7437 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7438 return Idx; 7439 7440 EVT IdxVT = Idx.getValueType(); 7441 unsigned NElts = VecVT.getVectorMinNumElements(); 7442 if (VecVT.isScalableVector()) { 7443 SDValue VS = DAG.getVScale(dl, IdxVT, 7444 APInt(IdxVT.getFixedSizeInBits(), 7445 NElts)); 7446 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7447 DAG.getConstant(1, dl, IdxVT)); 7448 7449 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7450 } else { 7451 if (isPowerOf2_32(NElts)) { 7452 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7453 Log2_32(NElts)); 7454 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7455 DAG.getConstant(Imm, dl, IdxVT)); 7456 } 7457 } 7458 7459 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7460 DAG.getConstant(NElts - 1, dl, IdxVT)); 7461 } 7462 7463 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7464 SDValue VecPtr, EVT VecVT, 7465 SDValue Index) const { 7466 SDLoc dl(Index); 7467 // Make sure the index type is big enough to compute in. 7468 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7469 7470 EVT EltVT = VecVT.getVectorElementType(); 7471 7472 // Calculate the element offset and add it to the pointer. 7473 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7474 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7475 "Converting bits to bytes lost precision"); 7476 7477 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7478 7479 EVT IdxVT = Index.getValueType(); 7480 7481 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7482 DAG.getConstant(EltSize, dl, IdxVT)); 7483 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7484 } 7485 7486 //===----------------------------------------------------------------------===// 7487 // Implementation of Emulated TLS Model 7488 //===----------------------------------------------------------------------===// 7489 7490 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7491 SelectionDAG &DAG) const { 7492 // Access to address of TLS varialbe xyz is lowered to a function call: 7493 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7494 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7495 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7496 SDLoc dl(GA); 7497 7498 ArgListTy Args; 7499 ArgListEntry Entry; 7500 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7501 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7502 StringRef EmuTlsVarName(NameString); 7503 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7504 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7505 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7506 Entry.Ty = VoidPtrType; 7507 Args.push_back(Entry); 7508 7509 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7510 7511 TargetLowering::CallLoweringInfo CLI(DAG); 7512 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7513 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7514 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7515 7516 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7517 // At last for X86 targets, maybe good for other targets too? 7518 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7519 MFI.setAdjustsStack(true); // Is this only for X86 target? 7520 MFI.setHasCalls(true); 7521 7522 assert((GA->getOffset() == 0) && 7523 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7524 return CallResult.first; 7525 } 7526 7527 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7528 SelectionDAG &DAG) const { 7529 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7530 if (!isCtlzFast()) 7531 return SDValue(); 7532 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7533 SDLoc dl(Op); 7534 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7535 if (C->isNullValue() && CC == ISD::SETEQ) { 7536 EVT VT = Op.getOperand(0).getValueType(); 7537 SDValue Zext = Op.getOperand(0); 7538 if (VT.bitsLT(MVT::i32)) { 7539 VT = MVT::i32; 7540 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7541 } 7542 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7543 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7544 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7545 DAG.getConstant(Log2b, dl, MVT::i32)); 7546 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7547 } 7548 } 7549 return SDValue(); 7550 } 7551 7552 // Convert redundant addressing modes (e.g. scaling is redundant 7553 // when accessing bytes). 7554 ISD::MemIndexType 7555 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7556 SDValue Offsets) const { 7557 bool IsScaledIndex = 7558 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7559 bool IsSignedIndex = 7560 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7561 7562 // Scaling is unimportant for bytes, canonicalize to unscaled. 7563 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7564 IsScaledIndex = false; 7565 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7566 } 7567 7568 return IndexType; 7569 } 7570 7571 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7572 SDValue Op0 = Node->getOperand(0); 7573 SDValue Op1 = Node->getOperand(1); 7574 EVT VT = Op0.getValueType(); 7575 unsigned Opcode = Node->getOpcode(); 7576 SDLoc DL(Node); 7577 7578 // umin(x,y) -> sub(x,usubsat(x,y)) 7579 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7580 isOperationLegal(ISD::USUBSAT, VT)) { 7581 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7582 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7583 } 7584 7585 // umax(x,y) -> add(x,usubsat(y,x)) 7586 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7587 isOperationLegal(ISD::USUBSAT, VT)) { 7588 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7589 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7590 } 7591 7592 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7593 ISD::CondCode CC; 7594 switch (Opcode) { 7595 default: llvm_unreachable("How did we get here?"); 7596 case ISD::SMAX: CC = ISD::SETGT; break; 7597 case ISD::SMIN: CC = ISD::SETLT; break; 7598 case ISD::UMAX: CC = ISD::SETUGT; break; 7599 case ISD::UMIN: CC = ISD::SETULT; break; 7600 } 7601 7602 // FIXME: Should really try to split the vector in case it's legal on a 7603 // subvector. 7604 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7605 return DAG.UnrollVectorOp(Node); 7606 7607 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7608 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7609 } 7610 7611 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7612 unsigned Opcode = Node->getOpcode(); 7613 SDValue LHS = Node->getOperand(0); 7614 SDValue RHS = Node->getOperand(1); 7615 EVT VT = LHS.getValueType(); 7616 SDLoc dl(Node); 7617 7618 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7619 assert(VT.isInteger() && "Expected operands to be integers"); 7620 7621 // usub.sat(a, b) -> umax(a, b) - b 7622 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7623 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7624 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7625 } 7626 7627 // uadd.sat(a, b) -> umin(a, ~b) + b 7628 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7629 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7630 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7631 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7632 } 7633 7634 unsigned OverflowOp; 7635 switch (Opcode) { 7636 case ISD::SADDSAT: 7637 OverflowOp = ISD::SADDO; 7638 break; 7639 case ISD::UADDSAT: 7640 OverflowOp = ISD::UADDO; 7641 break; 7642 case ISD::SSUBSAT: 7643 OverflowOp = ISD::SSUBO; 7644 break; 7645 case ISD::USUBSAT: 7646 OverflowOp = ISD::USUBO; 7647 break; 7648 default: 7649 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7650 "addition or subtraction node."); 7651 } 7652 7653 // FIXME: Should really try to split the vector in case it's legal on a 7654 // subvector. 7655 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7656 return DAG.UnrollVectorOp(Node); 7657 7658 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7659 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7660 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7661 LHS, RHS); 7662 SDValue SumDiff = Result.getValue(0); 7663 SDValue Overflow = Result.getValue(1); 7664 SDValue Zero = DAG.getConstant(0, dl, VT); 7665 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7666 7667 if (Opcode == ISD::UADDSAT) { 7668 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7669 // (LHS + RHS) | OverflowMask 7670 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7671 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7672 } 7673 // Overflow ? 0xffff.... : (LHS + RHS) 7674 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7675 } else if (Opcode == ISD::USUBSAT) { 7676 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7677 // (LHS - RHS) & ~OverflowMask 7678 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7679 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7680 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7681 } 7682 // Overflow ? 0 : (LHS - RHS) 7683 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7684 } else { 7685 // SatMax -> Overflow && SumDiff < 0 7686 // SatMin -> Overflow && SumDiff >= 0 7687 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7688 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7689 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7690 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7691 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7692 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7693 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7694 } 7695 } 7696 7697 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7698 unsigned Opcode = Node->getOpcode(); 7699 bool IsSigned = Opcode == ISD::SSHLSAT; 7700 SDValue LHS = Node->getOperand(0); 7701 SDValue RHS = Node->getOperand(1); 7702 EVT VT = LHS.getValueType(); 7703 SDLoc dl(Node); 7704 7705 assert((Node->getOpcode() == ISD::SSHLSAT || 7706 Node->getOpcode() == ISD::USHLSAT) && 7707 "Expected a SHLSAT opcode"); 7708 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7709 assert(VT.isInteger() && "Expected operands to be integers"); 7710 7711 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7712 7713 unsigned BW = VT.getScalarSizeInBits(); 7714 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7715 SDValue Orig = 7716 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7717 7718 SDValue SatVal; 7719 if (IsSigned) { 7720 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7721 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7722 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7723 SatMin, SatMax, ISD::SETLT); 7724 } else { 7725 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7726 } 7727 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7728 7729 return Result; 7730 } 7731 7732 SDValue 7733 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7734 assert((Node->getOpcode() == ISD::SMULFIX || 7735 Node->getOpcode() == ISD::UMULFIX || 7736 Node->getOpcode() == ISD::SMULFIXSAT || 7737 Node->getOpcode() == ISD::UMULFIXSAT) && 7738 "Expected a fixed point multiplication opcode"); 7739 7740 SDLoc dl(Node); 7741 SDValue LHS = Node->getOperand(0); 7742 SDValue RHS = Node->getOperand(1); 7743 EVT VT = LHS.getValueType(); 7744 unsigned Scale = Node->getConstantOperandVal(2); 7745 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7746 Node->getOpcode() == ISD::UMULFIXSAT); 7747 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7748 Node->getOpcode() == ISD::SMULFIXSAT); 7749 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7750 unsigned VTSize = VT.getScalarSizeInBits(); 7751 7752 if (!Scale) { 7753 // [us]mul.fix(a, b, 0) -> mul(a, b) 7754 if (!Saturating) { 7755 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7756 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7757 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7758 SDValue Result = 7759 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7760 SDValue Product = Result.getValue(0); 7761 SDValue Overflow = Result.getValue(1); 7762 SDValue Zero = DAG.getConstant(0, dl, VT); 7763 7764 APInt MinVal = APInt::getSignedMinValue(VTSize); 7765 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7766 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7767 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7768 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7769 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7770 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7771 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7772 SDValue Result = 7773 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7774 SDValue Product = Result.getValue(0); 7775 SDValue Overflow = Result.getValue(1); 7776 7777 APInt MaxVal = APInt::getMaxValue(VTSize); 7778 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7779 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7780 } 7781 } 7782 7783 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7784 "Expected scale to be less than the number of bits if signed or at " 7785 "most the number of bits if unsigned."); 7786 assert(LHS.getValueType() == RHS.getValueType() && 7787 "Expected both operands to be the same type"); 7788 7789 // Get the upper and lower bits of the result. 7790 SDValue Lo, Hi; 7791 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7792 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7793 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7794 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7795 Lo = Result.getValue(0); 7796 Hi = Result.getValue(1); 7797 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7798 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7799 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7800 } else if (VT.isVector()) { 7801 return SDValue(); 7802 } else { 7803 report_fatal_error("Unable to expand fixed point multiplication."); 7804 } 7805 7806 if (Scale == VTSize) 7807 // Result is just the top half since we'd be shifting by the width of the 7808 // operand. Overflow impossible so this works for both UMULFIX and 7809 // UMULFIXSAT. 7810 return Hi; 7811 7812 // The result will need to be shifted right by the scale since both operands 7813 // are scaled. The result is given to us in 2 halves, so we only want part of 7814 // both in the result. 7815 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7816 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7817 DAG.getConstant(Scale, dl, ShiftTy)); 7818 if (!Saturating) 7819 return Result; 7820 7821 if (!Signed) { 7822 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7823 // widened multiplication) aren't all zeroes. 7824 7825 // Saturate to max if ((Hi >> Scale) != 0), 7826 // which is the same as if (Hi > ((1 << Scale) - 1)) 7827 APInt MaxVal = APInt::getMaxValue(VTSize); 7828 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7829 dl, VT); 7830 Result = DAG.getSelectCC(dl, Hi, LowMask, 7831 DAG.getConstant(MaxVal, dl, VT), Result, 7832 ISD::SETUGT); 7833 7834 return Result; 7835 } 7836 7837 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7838 // widened multiplication) aren't all ones or all zeroes. 7839 7840 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7841 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7842 7843 if (Scale == 0) { 7844 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7845 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7846 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7847 // Saturated to SatMin if wide product is negative, and SatMax if wide 7848 // product is positive ... 7849 SDValue Zero = DAG.getConstant(0, dl, VT); 7850 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7851 ISD::SETLT); 7852 // ... but only if we overflowed. 7853 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7854 } 7855 7856 // We handled Scale==0 above so all the bits to examine is in Hi. 7857 7858 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7859 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7860 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7861 dl, VT); 7862 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7863 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7864 // which is the same as if (HI < (-1 << (Scale - 1)) 7865 SDValue HighMask = 7866 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7867 dl, VT); 7868 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7869 return Result; 7870 } 7871 7872 SDValue 7873 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7874 SDValue LHS, SDValue RHS, 7875 unsigned Scale, SelectionDAG &DAG) const { 7876 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7877 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7878 "Expected a fixed point division opcode"); 7879 7880 EVT VT = LHS.getValueType(); 7881 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7882 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7883 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7884 7885 // If there is enough room in the type to upscale the LHS or downscale the 7886 // RHS before the division, we can perform it in this type without having to 7887 // resize. For signed operations, the LHS headroom is the number of 7888 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7889 // The headroom for the RHS is the number of trailing zeroes. 7890 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7891 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7892 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7893 7894 // For signed saturating operations, we need to be able to detect true integer 7895 // division overflow; that is, when you have MIN / -EPS. However, this 7896 // is undefined behavior and if we emit divisions that could take such 7897 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7898 // example). 7899 // Avoid this by requiring an extra bit so that we never get this case. 7900 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7901 // signed saturating division, we need to emit a whopping 32-bit division. 7902 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7903 return SDValue(); 7904 7905 unsigned LHSShift = std::min(LHSLead, Scale); 7906 unsigned RHSShift = Scale - LHSShift; 7907 7908 // At this point, we know that if we shift the LHS up by LHSShift and the 7909 // RHS down by RHSShift, we can emit a regular division with a final scaling 7910 // factor of Scale. 7911 7912 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7913 if (LHSShift) 7914 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7915 DAG.getConstant(LHSShift, dl, ShiftTy)); 7916 if (RHSShift) 7917 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7918 DAG.getConstant(RHSShift, dl, ShiftTy)); 7919 7920 SDValue Quot; 7921 if (Signed) { 7922 // For signed operations, if the resulting quotient is negative and the 7923 // remainder is nonzero, subtract 1 from the quotient to round towards 7924 // negative infinity. 7925 SDValue Rem; 7926 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7927 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7928 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7929 if (isTypeLegal(VT) && 7930 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7931 Quot = DAG.getNode(ISD::SDIVREM, dl, 7932 DAG.getVTList(VT, VT), 7933 LHS, RHS); 7934 Rem = Quot.getValue(1); 7935 Quot = Quot.getValue(0); 7936 } else { 7937 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7938 LHS, RHS); 7939 Rem = DAG.getNode(ISD::SREM, dl, VT, 7940 LHS, RHS); 7941 } 7942 SDValue Zero = DAG.getConstant(0, dl, VT); 7943 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7944 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7945 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7946 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7947 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7948 DAG.getConstant(1, dl, VT)); 7949 Quot = DAG.getSelect(dl, VT, 7950 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7951 Sub1, Quot); 7952 } else 7953 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7954 LHS, RHS); 7955 7956 return Quot; 7957 } 7958 7959 void TargetLowering::expandUADDSUBO( 7960 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7961 SDLoc dl(Node); 7962 SDValue LHS = Node->getOperand(0); 7963 SDValue RHS = Node->getOperand(1); 7964 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7965 7966 // If ADD/SUBCARRY is legal, use that instead. 7967 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7968 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7969 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7970 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7971 { LHS, RHS, CarryIn }); 7972 Result = SDValue(NodeCarry.getNode(), 0); 7973 Overflow = SDValue(NodeCarry.getNode(), 1); 7974 return; 7975 } 7976 7977 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7978 LHS.getValueType(), LHS, RHS); 7979 7980 EVT ResultType = Node->getValueType(1); 7981 EVT SetCCType = getSetCCResultType( 7982 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7983 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7984 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7985 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7986 } 7987 7988 void TargetLowering::expandSADDSUBO( 7989 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7990 SDLoc dl(Node); 7991 SDValue LHS = Node->getOperand(0); 7992 SDValue RHS = Node->getOperand(1); 7993 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7994 7995 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7996 LHS.getValueType(), LHS, RHS); 7997 7998 EVT ResultType = Node->getValueType(1); 7999 EVT OType = getSetCCResultType( 8000 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8001 8002 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8003 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8004 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8005 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8006 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8007 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8008 return; 8009 } 8010 8011 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8012 8013 // For an addition, the result should be less than one of the operands (LHS) 8014 // if and only if the other operand (RHS) is negative, otherwise there will 8015 // be overflow. 8016 // For a subtraction, the result should be less than one of the operands 8017 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8018 // otherwise there will be overflow. 8019 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8020 SDValue ConditionRHS = 8021 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8022 8023 Overflow = DAG.getBoolExtOrTrunc( 8024 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8025 ResultType, ResultType); 8026 } 8027 8028 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8029 SDValue &Overflow, SelectionDAG &DAG) const { 8030 SDLoc dl(Node); 8031 EVT VT = Node->getValueType(0); 8032 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8033 SDValue LHS = Node->getOperand(0); 8034 SDValue RHS = Node->getOperand(1); 8035 bool isSigned = Node->getOpcode() == ISD::SMULO; 8036 8037 // For power-of-two multiplications we can use a simpler shift expansion. 8038 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8039 const APInt &C = RHSC->getAPIntValue(); 8040 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8041 if (C.isPowerOf2()) { 8042 // smulo(x, signed_min) is same as umulo(x, signed_min). 8043 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8044 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8045 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8046 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8047 Overflow = DAG.getSetCC(dl, SetCCVT, 8048 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8049 dl, VT, Result, ShiftAmt), 8050 LHS, ISD::SETNE); 8051 return true; 8052 } 8053 } 8054 8055 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8056 if (VT.isVector()) 8057 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8058 VT.getVectorNumElements()); 8059 8060 SDValue BottomHalf; 8061 SDValue TopHalf; 8062 static const unsigned Ops[2][3] = 8063 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8064 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8065 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8066 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8067 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8068 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8069 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8070 RHS); 8071 TopHalf = BottomHalf.getValue(1); 8072 } else if (isTypeLegal(WideVT)) { 8073 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8074 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8075 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8076 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8077 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8078 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8079 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8080 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8081 } else { 8082 if (VT.isVector()) 8083 return false; 8084 8085 // We can fall back to a libcall with an illegal type for the MUL if we 8086 // have a libcall big enough. 8087 // Also, we can fall back to a division in some cases, but that's a big 8088 // performance hit in the general case. 8089 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8090 if (WideVT == MVT::i16) 8091 LC = RTLIB::MUL_I16; 8092 else if (WideVT == MVT::i32) 8093 LC = RTLIB::MUL_I32; 8094 else if (WideVT == MVT::i64) 8095 LC = RTLIB::MUL_I64; 8096 else if (WideVT == MVT::i128) 8097 LC = RTLIB::MUL_I128; 8098 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8099 8100 SDValue HiLHS; 8101 SDValue HiRHS; 8102 if (isSigned) { 8103 // The high part is obtained by SRA'ing all but one of the bits of low 8104 // part. 8105 unsigned LoSize = VT.getFixedSizeInBits(); 8106 HiLHS = 8107 DAG.getNode(ISD::SRA, dl, VT, LHS, 8108 DAG.getConstant(LoSize - 1, dl, 8109 getPointerTy(DAG.getDataLayout()))); 8110 HiRHS = 8111 DAG.getNode(ISD::SRA, dl, VT, RHS, 8112 DAG.getConstant(LoSize - 1, dl, 8113 getPointerTy(DAG.getDataLayout()))); 8114 } else { 8115 HiLHS = DAG.getConstant(0, dl, VT); 8116 HiRHS = DAG.getConstant(0, dl, VT); 8117 } 8118 8119 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8120 // pre-lowered to the correct types. This all depends upon WideVT not 8121 // being a legal type for the architecture and thus has to be split to 8122 // two arguments. 8123 SDValue Ret; 8124 TargetLowering::MakeLibCallOptions CallOptions; 8125 CallOptions.setSExt(isSigned); 8126 CallOptions.setIsPostTypeLegalization(true); 8127 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8128 // Halves of WideVT are packed into registers in different order 8129 // depending on platform endianness. This is usually handled by 8130 // the C calling convention, but we can't defer to it in 8131 // the legalizer. 8132 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8133 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8134 } else { 8135 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8136 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8137 } 8138 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8139 "Ret value is a collection of constituent nodes holding result."); 8140 if (DAG.getDataLayout().isLittleEndian()) { 8141 // Same as above. 8142 BottomHalf = Ret.getOperand(0); 8143 TopHalf = Ret.getOperand(1); 8144 } else { 8145 BottomHalf = Ret.getOperand(1); 8146 TopHalf = Ret.getOperand(0); 8147 } 8148 } 8149 8150 Result = BottomHalf; 8151 if (isSigned) { 8152 SDValue ShiftAmt = DAG.getConstant( 8153 VT.getScalarSizeInBits() - 1, dl, 8154 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8155 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8156 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8157 } else { 8158 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8159 DAG.getConstant(0, dl, VT), ISD::SETNE); 8160 } 8161 8162 // Truncate the result if SetCC returns a larger type than needed. 8163 EVT RType = Node->getValueType(1); 8164 if (RType.bitsLT(Overflow.getValueType())) 8165 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8166 8167 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8168 "Unexpected result type for S/UMULO legalization"); 8169 return true; 8170 } 8171 8172 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8173 SDLoc dl(Node); 8174 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8175 SDValue Op = Node->getOperand(0); 8176 EVT VT = Op.getValueType(); 8177 8178 if (VT.isScalableVector()) 8179 report_fatal_error( 8180 "Expanding reductions for scalable vectors is undefined."); 8181 8182 // Try to use a shuffle reduction for power of two vectors. 8183 if (VT.isPow2VectorType()) { 8184 while (VT.getVectorNumElements() > 1) { 8185 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8186 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8187 break; 8188 8189 SDValue Lo, Hi; 8190 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8191 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8192 VT = HalfVT; 8193 } 8194 } 8195 8196 EVT EltVT = VT.getVectorElementType(); 8197 unsigned NumElts = VT.getVectorNumElements(); 8198 8199 SmallVector<SDValue, 8> Ops; 8200 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8201 8202 SDValue Res = Ops[0]; 8203 for (unsigned i = 1; i < NumElts; i++) 8204 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8205 8206 // Result type may be wider than element type. 8207 if (EltVT != Node->getValueType(0)) 8208 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8209 return Res; 8210 } 8211 8212 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8213 SDLoc dl(Node); 8214 SDValue AccOp = Node->getOperand(0); 8215 SDValue VecOp = Node->getOperand(1); 8216 SDNodeFlags Flags = Node->getFlags(); 8217 8218 EVT VT = VecOp.getValueType(); 8219 EVT EltVT = VT.getVectorElementType(); 8220 8221 if (VT.isScalableVector()) 8222 report_fatal_error( 8223 "Expanding reductions for scalable vectors is undefined."); 8224 8225 unsigned NumElts = VT.getVectorNumElements(); 8226 8227 SmallVector<SDValue, 8> Ops; 8228 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8229 8230 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8231 8232 SDValue Res = AccOp; 8233 for (unsigned i = 0; i < NumElts; i++) 8234 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8235 8236 return Res; 8237 } 8238 8239 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8240 SelectionDAG &DAG) const { 8241 EVT VT = Node->getValueType(0); 8242 SDLoc dl(Node); 8243 bool isSigned = Node->getOpcode() == ISD::SREM; 8244 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8245 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8246 SDValue Dividend = Node->getOperand(0); 8247 SDValue Divisor = Node->getOperand(1); 8248 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8249 SDVTList VTs = DAG.getVTList(VT, VT); 8250 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8251 return true; 8252 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8253 // X % Y -> X-X/Y*Y 8254 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8255 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8256 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8257 return true; 8258 } 8259 return false; 8260 } 8261 8262 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8263 SelectionDAG &DAG) const { 8264 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8265 SDLoc dl(SDValue(Node, 0)); 8266 SDValue Src = Node->getOperand(0); 8267 8268 // DstVT is the result type, while SatVT is the size to which we saturate 8269 EVT SrcVT = Src.getValueType(); 8270 EVT DstVT = Node->getValueType(0); 8271 8272 unsigned SatWidth = Node->getConstantOperandVal(1); 8273 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8274 assert(SatWidth <= DstWidth && 8275 "Expected saturation width smaller than result width"); 8276 8277 // Determine minimum and maximum integer values and their corresponding 8278 // floating-point values. 8279 APInt MinInt, MaxInt; 8280 if (IsSigned) { 8281 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8282 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8283 } else { 8284 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8285 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8286 } 8287 8288 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8289 // libcall emission cannot handle this. Large result types will fail. 8290 if (SrcVT == MVT::f16) { 8291 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8292 SrcVT = Src.getValueType(); 8293 } 8294 8295 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8296 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8297 8298 APFloat::opStatus MinStatus = 8299 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8300 APFloat::opStatus MaxStatus = 8301 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8302 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8303 !(MaxStatus & APFloat::opStatus::opInexact); 8304 8305 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8306 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8307 8308 // If the integer bounds are exactly representable as floats and min/max are 8309 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8310 // of comparisons and selects. 8311 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8312 isOperationLegal(ISD::FMAXNUM, SrcVT); 8313 if (AreExactFloatBounds && MinMaxLegal) { 8314 SDValue Clamped = Src; 8315 8316 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8317 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8318 // Clamp by MaxFloat from above. NaN cannot occur. 8319 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8320 // Convert clamped value to integer. 8321 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8322 dl, DstVT, Clamped); 8323 8324 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8325 // which will cast to zero. 8326 if (!IsSigned) 8327 return FpToInt; 8328 8329 // Otherwise, select 0 if Src is NaN. 8330 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8331 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8332 ISD::CondCode::SETUO); 8333 } 8334 8335 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8336 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8337 8338 // Result of direct conversion. The assumption here is that the operation is 8339 // non-trapping and it's fine to apply it to an out-of-range value if we 8340 // select it away later. 8341 SDValue FpToInt = 8342 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8343 8344 SDValue Select = FpToInt; 8345 8346 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8347 // MinInt if Src is NaN. 8348 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8349 ISD::CondCode::SETULT); 8350 // If Src OGT MaxFloat, select MaxInt. 8351 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8352 ISD::CondCode::SETOGT); 8353 8354 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8355 // is already zero. 8356 if (!IsSigned) 8357 return Select; 8358 8359 // Otherwise, select 0 if Src is NaN. 8360 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8361 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8362 } 8363