1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1366     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1367     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1368         (Op0.getOperand(0).isUndef() ||
1369          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1370         Op0->hasOneUse()) {
1371       unsigned NumSubElts =
1372           Op0.getOperand(1).getValueType().getVectorNumElements();
1373       unsigned SubIdx = Op0.getConstantOperandVal(2);
1374       APInt DemandedSub =
1375           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1376       KnownBits KnownSubMask =
1377           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1378       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1379         SDValue NewAnd =
1380             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1381         SDValue NewInsert =
1382             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1383                             Op0.getOperand(1), Op0.getOperand(2));
1384         return TLO.CombineTo(Op, NewInsert);
1385       }
1386     }
1387 
1388     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1393                              Known2, TLO, Depth + 1))
1394       return true;
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // Attempt to avoid multi-use ops if we don't need anything from them.
1398     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1399       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1400           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1401       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1402           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1403       if (DemandedOp0 || DemandedOp1) {
1404         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1405         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1406         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1407         return TLO.CombineTo(Op, NewOp);
1408       }
1409     }
1410 
1411     // If all of the demanded bits are known one on one side, return the other.
1412     // These bits cannot contribute to the result of the 'and'.
1413     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1414       return TLO.CombineTo(Op, Op0);
1415     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1416       return TLO.CombineTo(Op, Op1);
1417     // If all of the demanded bits in the inputs are known zeros, return zero.
1418     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1419       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1420     // If the RHS is a constant, see if we can simplify it.
1421     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1422                                TLO))
1423       return true;
1424     // If the operation can be done in a smaller type, do so.
1425     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1426       return true;
1427 
1428     Known &= Known2;
1429     break;
1430   }
1431   case ISD::OR: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434 
1435     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1436                              Depth + 1))
1437       return true;
1438     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1439     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1440                              Known2, TLO, Depth + 1))
1441       return true;
1442     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1443 
1444     // Attempt to avoid multi-use ops if we don't need anything from them.
1445     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1446       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1447           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1448       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1449           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1450       if (DemandedOp0 || DemandedOp1) {
1451         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1452         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1453         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1454         return TLO.CombineTo(Op, NewOp);
1455       }
1456     }
1457 
1458     // If all of the demanded bits are known zero on one side, return the other.
1459     // These bits cannot contribute to the result of the 'or'.
1460     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1461       return TLO.CombineTo(Op, Op0);
1462     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1463       return TLO.CombineTo(Op, Op1);
1464     // If the RHS is a constant, see if we can simplify it.
1465     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1466       return true;
1467     // If the operation can be done in a smaller type, do so.
1468     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1469       return true;
1470 
1471     Known |= Known2;
1472     break;
1473   }
1474   case ISD::XOR: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477 
1478     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1479                              Depth + 1))
1480       return true;
1481     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1482     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1483                              Depth + 1))
1484       return true;
1485     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1486 
1487     // Attempt to avoid multi-use ops if we don't need anything from them.
1488     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1489       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1490           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1491       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1492           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1493       if (DemandedOp0 || DemandedOp1) {
1494         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1495         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1496         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1497         return TLO.CombineTo(Op, NewOp);
1498       }
1499     }
1500 
1501     // If all of the demanded bits are known zero on one side, return the other.
1502     // These bits cannot contribute to the result of the 'xor'.
1503     if (DemandedBits.isSubsetOf(Known.Zero))
1504       return TLO.CombineTo(Op, Op0);
1505     if (DemandedBits.isSubsetOf(Known2.Zero))
1506       return TLO.CombineTo(Op, Op1);
1507     // If the operation can be done in a smaller type, do so.
1508     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1509       return true;
1510 
1511     // If all of the unknown bits are known to be zero on one side or the other
1512     // turn this into an *inclusive* or.
1513     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1514     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1515       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1516 
1517     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1518     if (C) {
1519       // If one side is a constant, and all of the set bits in the constant are
1520       // also known set on the other side, turn this into an AND, as we know
1521       // the bits will be cleared.
1522       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1523       // NB: it is okay if more bits are known than are requested
1524       if (C->getAPIntValue() == Known2.One) {
1525         SDValue ANDC =
1526             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1527         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1528       }
1529 
1530       // If the RHS is a constant, see if we can change it. Don't alter a -1
1531       // constant because that's a 'not' op, and that is better for combining
1532       // and codegen.
1533       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1534         // We're flipping all demanded bits. Flip the undemanded bits too.
1535         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1536         return TLO.CombineTo(Op, New);
1537       }
1538     }
1539 
1540     // If we can't turn this into a 'not', try to shrink the constant.
1541     if (!C || !C->isAllOnes())
1542       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1543         return true;
1544 
1545     Known ^= Known2;
1546     break;
1547   }
1548   case ISD::SELECT:
1549     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1550                              Depth + 1))
1551       return true;
1552     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1553                              Depth + 1))
1554       return true;
1555     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1556     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1557 
1558     // If the operands are constants, see if we can simplify them.
1559     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1560       return true;
1561 
1562     // Only known if known in both the LHS and RHS.
1563     Known = KnownBits::commonBits(Known, Known2);
1564     break;
1565   case ISD::VSELECT:
1566     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1567                              Known, TLO, Depth + 1))
1568       return true;
1569     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1570                              Known2, TLO, Depth + 1))
1571       return true;
1572     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1573     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1574 
1575     // Only known if known in both the LHS and RHS.
1576     Known = KnownBits::commonBits(Known, Known2);
1577     break;
1578   case ISD::SELECT_CC:
1579     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1580                              Depth + 1))
1581       return true;
1582     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1583                              Depth + 1))
1584       return true;
1585     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1586     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1587 
1588     // If the operands are constants, see if we can simplify them.
1589     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1590       return true;
1591 
1592     // Only known if known in both the LHS and RHS.
1593     Known = KnownBits::commonBits(Known, Known2);
1594     break;
1595   case ISD::SETCC: {
1596     SDValue Op0 = Op.getOperand(0);
1597     SDValue Op1 = Op.getOperand(1);
1598     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1599     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1600     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1601     // -1, we may be able to bypass the setcc.
1602     if (DemandedBits.isSignMask() &&
1603         Op0.getScalarValueSizeInBits() == BitWidth &&
1604         getBooleanContents(Op0.getValueType()) ==
1605             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1606       // If we're testing X < 0, then this compare isn't needed - just use X!
1607       // FIXME: We're limiting to integer types here, but this should also work
1608       // if we don't care about FP signed-zero. The use of SETLT with FP means
1609       // that we don't care about NaNs.
1610       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1611           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       // TODO: Should we check for other forms of sign-bit comparisons?
1615       // Examples: X <= -1, X >= 0
1616     }
1617     if (getBooleanContents(Op0.getValueType()) ==
1618             TargetLowering::ZeroOrOneBooleanContent &&
1619         BitWidth > 1)
1620       Known.Zero.setBitsFrom(1);
1621     break;
1622   }
1623   case ISD::SHL: {
1624     SDValue Op0 = Op.getOperand(0);
1625     SDValue Op1 = Op.getOperand(1);
1626     EVT ShiftVT = Op1.getValueType();
1627 
1628     if (const APInt *SA =
1629             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1630       unsigned ShAmt = SA->getZExtValue();
1631       if (ShAmt == 0)
1632         return TLO.CombineTo(Op, Op0);
1633 
1634       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1635       // single shift.  We can do this if the bottom bits (which are shifted
1636       // out) are never demanded.
1637       // TODO - support non-uniform vector amounts.
1638       if (Op0.getOpcode() == ISD::SRL) {
1639         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1640           if (const APInt *SA2 =
1641                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1642             unsigned C1 = SA2->getZExtValue();
1643             unsigned Opc = ISD::SHL;
1644             int Diff = ShAmt - C1;
1645             if (Diff < 0) {
1646               Diff = -Diff;
1647               Opc = ISD::SRL;
1648             }
1649             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1650             return TLO.CombineTo(
1651                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1652           }
1653         }
1654       }
1655 
1656       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1657       // are not demanded. This will likely allow the anyext to be folded away.
1658       // TODO - support non-uniform vector amounts.
1659       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1660         SDValue InnerOp = Op0.getOperand(0);
1661         EVT InnerVT = InnerOp.getValueType();
1662         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1663         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1664             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1665           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1666           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1667             ShTy = InnerVT;
1668           SDValue NarrowShl =
1669               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1670                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1671           return TLO.CombineTo(
1672               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1673         }
1674 
1675         // Repeat the SHL optimization above in cases where an extension
1676         // intervenes: (shl (anyext (shr x, c1)), c2) to
1677         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1678         // aren't demanded (as above) and that the shifted upper c1 bits of
1679         // x aren't demanded.
1680         // TODO - support non-uniform vector amounts.
1681         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1682             InnerOp.hasOneUse()) {
1683           if (const APInt *SA2 =
1684                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1685             unsigned InnerShAmt = SA2->getZExtValue();
1686             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1687                 DemandedBits.getActiveBits() <=
1688                     (InnerBits - InnerShAmt + ShAmt) &&
1689                 DemandedBits.countTrailingZeros() >= ShAmt) {
1690               SDValue NewSA =
1691                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1692               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1693                                                InnerOp.getOperand(0));
1694               return TLO.CombineTo(
1695                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1696             }
1697           }
1698         }
1699       }
1700 
1701       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1702       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706       Known.Zero <<= ShAmt;
1707       Known.One <<= ShAmt;
1708       // low bits known zero.
1709       Known.Zero.setLowBits(ShAmt);
1710 
1711       // Attempt to avoid multi-use ops if we don't need anything from them.
1712       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1713         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1714             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1715         if (DemandedOp0) {
1716           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1717           return TLO.CombineTo(Op, NewOp);
1718         }
1719       }
1720 
1721       // Try shrinking the operation as long as the shift amount will still be
1722       // in range.
1723       if ((ShAmt < DemandedBits.getActiveBits()) &&
1724           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1725         return true;
1726     }
1727 
1728     // If we are only demanding sign bits then we can use the shift source
1729     // directly.
1730     if (const APInt *MaxSA =
1731             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1732       unsigned ShAmt = MaxSA->getZExtValue();
1733       unsigned NumSignBits =
1734           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1735       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1736       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1737         return TLO.CombineTo(Op, Op0);
1738     }
1739     break;
1740   }
1741   case ISD::SRL: {
1742     SDValue Op0 = Op.getOperand(0);
1743     SDValue Op1 = Op.getOperand(1);
1744     EVT ShiftVT = Op1.getValueType();
1745 
1746     // Try to match AVG patterns.
1747     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1748                                         DemandedElts, Depth + 1))
1749       return TLO.CombineTo(Op, AVG);
1750 
1751     if (const APInt *SA =
1752             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1753       unsigned ShAmt = SA->getZExtValue();
1754       if (ShAmt == 0)
1755         return TLO.CombineTo(Op, Op0);
1756 
1757       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1758       // single shift.  We can do this if the top bits (which are shifted out)
1759       // are never demanded.
1760       // TODO - support non-uniform vector amounts.
1761       if (Op0.getOpcode() == ISD::SHL) {
1762         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1763           if (const APInt *SA2 =
1764                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1765             unsigned C1 = SA2->getZExtValue();
1766             unsigned Opc = ISD::SRL;
1767             int Diff = ShAmt - C1;
1768             if (Diff < 0) {
1769               Diff = -Diff;
1770               Opc = ISD::SHL;
1771             }
1772             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1773             return TLO.CombineTo(
1774                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1775           }
1776         }
1777       }
1778 
1779       APInt InDemandedMask = (DemandedBits << ShAmt);
1780 
1781       // If the shift is exact, then it does demand the low bits (and knows that
1782       // they are zero).
1783       if (Op->getFlags().hasExact())
1784         InDemandedMask.setLowBits(ShAmt);
1785 
1786       // Compute the new bits that are at the top now.
1787       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1788                                Depth + 1))
1789         return true;
1790       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1791       Known.Zero.lshrInPlace(ShAmt);
1792       Known.One.lshrInPlace(ShAmt);
1793       // High bits known zero.
1794       Known.Zero.setHighBits(ShAmt);
1795     }
1796     break;
1797   }
1798   case ISD::SRA: {
1799     SDValue Op0 = Op.getOperand(0);
1800     SDValue Op1 = Op.getOperand(1);
1801     EVT ShiftVT = Op1.getValueType();
1802 
1803     // If we only want bits that already match the signbit then we don't need
1804     // to shift.
1805     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1806     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1807         NumHiDemandedBits)
1808       return TLO.CombineTo(Op, Op0);
1809 
1810     // If this is an arithmetic shift right and only the low-bit is set, we can
1811     // always convert this into a logical shr, even if the shift amount is
1812     // variable.  The low bit of the shift cannot be an input sign bit unless
1813     // the shift amount is >= the size of the datatype, which is undefined.
1814     if (DemandedBits.isOne())
1815       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1816 
1817     // Try to match AVG patterns.
1818     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1819                                         DemandedElts, Depth + 1))
1820       return TLO.CombineTo(Op, AVG);
1821 
1822     if (const APInt *SA =
1823             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1824       unsigned ShAmt = SA->getZExtValue();
1825       if (ShAmt == 0)
1826         return TLO.CombineTo(Op, Op0);
1827 
1828       APInt InDemandedMask = (DemandedBits << ShAmt);
1829 
1830       // If the shift is exact, then it does demand the low bits (and knows that
1831       // they are zero).
1832       if (Op->getFlags().hasExact())
1833         InDemandedMask.setLowBits(ShAmt);
1834 
1835       // If any of the demanded bits are produced by the sign extension, we also
1836       // demand the input sign bit.
1837       if (DemandedBits.countLeadingZeros() < ShAmt)
1838         InDemandedMask.setSignBit();
1839 
1840       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1841                                Depth + 1))
1842         return true;
1843       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1844       Known.Zero.lshrInPlace(ShAmt);
1845       Known.One.lshrInPlace(ShAmt);
1846 
1847       // If the input sign bit is known to be zero, or if none of the top bits
1848       // are demanded, turn this into an unsigned shift right.
1849       if (Known.Zero[BitWidth - ShAmt - 1] ||
1850           DemandedBits.countLeadingZeros() >= ShAmt) {
1851         SDNodeFlags Flags;
1852         Flags.setExact(Op->getFlags().hasExact());
1853         return TLO.CombineTo(
1854             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1855       }
1856 
1857       int Log2 = DemandedBits.exactLogBase2();
1858       if (Log2 >= 0) {
1859         // The bit must come from the sign.
1860         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1861         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1862       }
1863 
1864       if (Known.One[BitWidth - ShAmt - 1])
1865         // New bits are known one.
1866         Known.One.setHighBits(ShAmt);
1867 
1868       // Attempt to avoid multi-use ops if we don't need anything from them.
1869       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1870         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1871             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1872         if (DemandedOp0) {
1873           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1874           return TLO.CombineTo(Op, NewOp);
1875         }
1876       }
1877     }
1878     break;
1879   }
1880   case ISD::FSHL:
1881   case ISD::FSHR: {
1882     SDValue Op0 = Op.getOperand(0);
1883     SDValue Op1 = Op.getOperand(1);
1884     SDValue Op2 = Op.getOperand(2);
1885     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1886 
1887     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1888       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1889 
1890       // For fshl, 0-shift returns the 1st arg.
1891       // For fshr, 0-shift returns the 2nd arg.
1892       if (Amt == 0) {
1893         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1894                                  Known, TLO, Depth + 1))
1895           return true;
1896         break;
1897       }
1898 
1899       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1900       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1901       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1902       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1903       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1904                                Depth + 1))
1905         return true;
1906       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1907                                Depth + 1))
1908         return true;
1909 
1910       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1911       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1912       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1913       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1914       Known.One |= Known2.One;
1915       Known.Zero |= Known2.Zero;
1916 
1917       // Attempt to avoid multi-use ops if we don't need anything from them.
1918       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1919           !DemandedElts.isAllOnes()) {
1920         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1921             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1922         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1923             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1924         if (DemandedOp0 || DemandedOp1) {
1925           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1926           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1927           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1928                                           DemandedOp1, Op2);
1929           return TLO.CombineTo(Op, NewOp);
1930         }
1931       }
1932     }
1933 
1934     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1935     if (isPowerOf2_32(BitWidth)) {
1936       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1937       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1938                                Known2, TLO, Depth + 1))
1939         return true;
1940     }
1941     break;
1942   }
1943   case ISD::ROTL:
1944   case ISD::ROTR: {
1945     SDValue Op0 = Op.getOperand(0);
1946     SDValue Op1 = Op.getOperand(1);
1947     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1948 
1949     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1950     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1951       return TLO.CombineTo(Op, Op0);
1952 
1953     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1954       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1955       unsigned RevAmt = BitWidth - Amt;
1956 
1957       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1958       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1959       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1960       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1961                                Depth + 1))
1962         return true;
1963 
1964       // rot*(x, 0) --> x
1965       if (Amt == 0)
1966         return TLO.CombineTo(Op, Op0);
1967 
1968       // See if we don't demand either half of the rotated bits.
1969       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1970           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1971         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1972         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1973       }
1974       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1975           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1976         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1977         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1978       }
1979     }
1980 
1981     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1982     if (isPowerOf2_32(BitWidth)) {
1983       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1984       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1985                                Depth + 1))
1986         return true;
1987     }
1988     break;
1989   }
1990   case ISD::UMIN: {
1991     // Check if one arg is always less than (or equal) to the other arg.
1992     SDValue Op0 = Op.getOperand(0);
1993     SDValue Op1 = Op.getOperand(1);
1994     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1995     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1996     Known = KnownBits::umin(Known0, Known1);
1997     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1998       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1999     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2000       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
2001     break;
2002   }
2003   case ISD::UMAX: {
2004     // Check if one arg is always greater than (or equal) to the other arg.
2005     SDValue Op0 = Op.getOperand(0);
2006     SDValue Op1 = Op.getOperand(1);
2007     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2008     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2009     Known = KnownBits::umax(Known0, Known1);
2010     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2011       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
2012     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2013       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
2014     break;
2015   }
2016   case ISD::BITREVERSE: {
2017     SDValue Src = Op.getOperand(0);
2018     APInt DemandedSrcBits = DemandedBits.reverseBits();
2019     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2020                              Depth + 1))
2021       return true;
2022     Known.One = Known2.One.reverseBits();
2023     Known.Zero = Known2.Zero.reverseBits();
2024     break;
2025   }
2026   case ISD::BSWAP: {
2027     SDValue Src = Op.getOperand(0);
2028 
2029     // If the only bits demanded come from one byte of the bswap result,
2030     // just shift the input byte into position to eliminate the bswap.
2031     unsigned NLZ = DemandedBits.countLeadingZeros();
2032     unsigned NTZ = DemandedBits.countTrailingZeros();
2033 
2034     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2035     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2036     // have 14 leading zeros, round to 8.
2037     NLZ = alignDown(NLZ, 8);
2038     NTZ = alignDown(NTZ, 8);
2039     // If we need exactly one byte, we can do this transformation.
2040     if (BitWidth - NLZ - NTZ == 8) {
2041       // Replace this with either a left or right shift to get the byte into
2042       // the right place.
2043       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2044       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2045         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2046         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2047         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2048         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2049         return TLO.CombineTo(Op, NewOp);
2050       }
2051     }
2052 
2053     APInt DemandedSrcBits = DemandedBits.byteSwap();
2054     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2055                              Depth + 1))
2056       return true;
2057     Known.One = Known2.One.byteSwap();
2058     Known.Zero = Known2.Zero.byteSwap();
2059     break;
2060   }
2061   case ISD::CTPOP: {
2062     // If only 1 bit is demanded, replace with PARITY as long as we're before
2063     // op legalization.
2064     // FIXME: Limit to scalars for now.
2065     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2066       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2067                                                Op.getOperand(0)));
2068 
2069     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2070     break;
2071   }
2072   case ISD::SIGN_EXTEND_INREG: {
2073     SDValue Op0 = Op.getOperand(0);
2074     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2075     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2076 
2077     // If we only care about the highest bit, don't bother shifting right.
2078     if (DemandedBits.isSignMask()) {
2079       unsigned MinSignedBits =
2080           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2081       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2082       // However if the input is already sign extended we expect the sign
2083       // extension to be dropped altogether later and do not simplify.
2084       if (!AlreadySignExtended) {
2085         // Compute the correct shift amount type, which must be getShiftAmountTy
2086         // for scalar types after legalization.
2087         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2088                                                getShiftAmountTy(VT, DL));
2089         return TLO.CombineTo(Op,
2090                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2091       }
2092     }
2093 
2094     // If none of the extended bits are demanded, eliminate the sextinreg.
2095     if (DemandedBits.getActiveBits() <= ExVTBits)
2096       return TLO.CombineTo(Op, Op0);
2097 
2098     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2099 
2100     // Since the sign extended bits are demanded, we know that the sign
2101     // bit is demanded.
2102     InputDemandedBits.setBit(ExVTBits - 1);
2103 
2104     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2105                              Depth + 1))
2106       return true;
2107     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2108 
2109     // If the sign bit of the input is known set or clear, then we know the
2110     // top bits of the result.
2111 
2112     // If the input sign bit is known zero, convert this into a zero extension.
2113     if (Known.Zero[ExVTBits - 1])
2114       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2115 
2116     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2117     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2118       Known.One.setBitsFrom(ExVTBits);
2119       Known.Zero &= Mask;
2120     } else { // Input sign bit unknown
2121       Known.Zero &= Mask;
2122       Known.One &= Mask;
2123     }
2124     break;
2125   }
2126   case ISD::BUILD_PAIR: {
2127     EVT HalfVT = Op.getOperand(0).getValueType();
2128     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2129 
2130     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2131     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2132 
2133     KnownBits KnownLo, KnownHi;
2134 
2135     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2136       return true;
2137 
2138     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2139       return true;
2140 
2141     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2142                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2143 
2144     Known.One = KnownLo.One.zext(BitWidth) |
2145                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2146     break;
2147   }
2148   case ISD::ZERO_EXTEND:
2149   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2150     SDValue Src = Op.getOperand(0);
2151     EVT SrcVT = Src.getValueType();
2152     unsigned InBits = SrcVT.getScalarSizeInBits();
2153     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2154     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2155 
2156     // If none of the top bits are demanded, convert this into an any_extend.
2157     if (DemandedBits.getActiveBits() <= InBits) {
2158       // If we only need the non-extended bits of the bottom element
2159       // then we can just bitcast to the result.
2160       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2161           VT.getSizeInBits() == SrcVT.getSizeInBits())
2162         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2163 
2164       unsigned Opc =
2165           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2166       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2167         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2168     }
2169 
2170     APInt InDemandedBits = DemandedBits.trunc(InBits);
2171     APInt InDemandedElts = DemandedElts.zext(InElts);
2172     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2173                              Depth + 1))
2174       return true;
2175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2176     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2177     Known = Known.zext(BitWidth);
2178 
2179     // Attempt to avoid multi-use ops if we don't need anything from them.
2180     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2181             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2182       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2183     break;
2184   }
2185   case ISD::SIGN_EXTEND:
2186   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2187     SDValue Src = Op.getOperand(0);
2188     EVT SrcVT = Src.getValueType();
2189     unsigned InBits = SrcVT.getScalarSizeInBits();
2190     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2191     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2192 
2193     // If none of the top bits are demanded, convert this into an any_extend.
2194     if (DemandedBits.getActiveBits() <= InBits) {
2195       // If we only need the non-extended bits of the bottom element
2196       // then we can just bitcast to the result.
2197       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2198           VT.getSizeInBits() == SrcVT.getSizeInBits())
2199         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2200 
2201       unsigned Opc =
2202           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2203       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2204         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2205     }
2206 
2207     APInt InDemandedBits = DemandedBits.trunc(InBits);
2208     APInt InDemandedElts = DemandedElts.zext(InElts);
2209 
2210     // Since some of the sign extended bits are demanded, we know that the sign
2211     // bit is demanded.
2212     InDemandedBits.setBit(InBits - 1);
2213 
2214     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2215                              Depth + 1))
2216       return true;
2217     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2218     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2219 
2220     // If the sign bit is known one, the top bits match.
2221     Known = Known.sext(BitWidth);
2222 
2223     // If the sign bit is known zero, convert this to a zero extend.
2224     if (Known.isNonNegative()) {
2225       unsigned Opc =
2226           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2227       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2228         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2229     }
2230 
2231     // Attempt to avoid multi-use ops if we don't need anything from them.
2232     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2233             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2234       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2235     break;
2236   }
2237   case ISD::ANY_EXTEND:
2238   case ISD::ANY_EXTEND_VECTOR_INREG: {
2239     SDValue Src = Op.getOperand(0);
2240     EVT SrcVT = Src.getValueType();
2241     unsigned InBits = SrcVT.getScalarSizeInBits();
2242     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2243     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2244 
2245     // If we only need the bottom element then we can just bitcast.
2246     // TODO: Handle ANY_EXTEND?
2247     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2248         VT.getSizeInBits() == SrcVT.getSizeInBits())
2249       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2250 
2251     APInt InDemandedBits = DemandedBits.trunc(InBits);
2252     APInt InDemandedElts = DemandedElts.zext(InElts);
2253     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2254                              Depth + 1))
2255       return true;
2256     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2257     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2258     Known = Known.anyext(BitWidth);
2259 
2260     // Attempt to avoid multi-use ops if we don't need anything from them.
2261     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2262             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2263       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2264     break;
2265   }
2266   case ISD::TRUNCATE: {
2267     SDValue Src = Op.getOperand(0);
2268 
2269     // Simplify the input, using demanded bit information, and compute the known
2270     // zero/one bits live out.
2271     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2272     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2273     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2274                              Depth + 1))
2275       return true;
2276     Known = Known.trunc(BitWidth);
2277 
2278     // Attempt to avoid multi-use ops if we don't need anything from them.
2279     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2280             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2281       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2282 
2283     // If the input is only used by this truncate, see if we can shrink it based
2284     // on the known demanded bits.
2285     if (Src.getNode()->hasOneUse()) {
2286       switch (Src.getOpcode()) {
2287       default:
2288         break;
2289       case ISD::SRL:
2290         // Shrink SRL by a constant if none of the high bits shifted in are
2291         // demanded.
2292         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2293           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2294           // undesirable.
2295           break;
2296 
2297         const APInt *ShAmtC =
2298             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2299         if (!ShAmtC || ShAmtC->uge(BitWidth))
2300           break;
2301         uint64_t ShVal = ShAmtC->getZExtValue();
2302 
2303         APInt HighBits =
2304             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2305         HighBits.lshrInPlace(ShVal);
2306         HighBits = HighBits.trunc(BitWidth);
2307 
2308         if (!(HighBits & DemandedBits)) {
2309           // None of the shifted in bits are needed.  Add a truncate of the
2310           // shift input, then shift it.
2311           SDValue NewShAmt = TLO.DAG.getConstant(
2312               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2313           SDValue NewTrunc =
2314               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2315           return TLO.CombineTo(
2316               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2317         }
2318         break;
2319       }
2320     }
2321 
2322     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2323     break;
2324   }
2325   case ISD::AssertZext: {
2326     // AssertZext demands all of the high bits, plus any of the low bits
2327     // demanded by its users.
2328     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2329     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2330     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2331                              TLO, Depth + 1))
2332       return true;
2333     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2334 
2335     Known.Zero |= ~InMask;
2336     break;
2337   }
2338   case ISD::EXTRACT_VECTOR_ELT: {
2339     SDValue Src = Op.getOperand(0);
2340     SDValue Idx = Op.getOperand(1);
2341     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2342     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2343 
2344     if (SrcEltCnt.isScalable())
2345       return false;
2346 
2347     // Demand the bits from every vector element without a constant index.
2348     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2349     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2350     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2351       if (CIdx->getAPIntValue().ult(NumSrcElts))
2352         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2353 
2354     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2355     // anything about the extended bits.
2356     APInt DemandedSrcBits = DemandedBits;
2357     if (BitWidth > EltBitWidth)
2358       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2359 
2360     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2361                              Depth + 1))
2362       return true;
2363 
2364     // Attempt to avoid multi-use ops if we don't need anything from them.
2365     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2366       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2367               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2368         SDValue NewOp =
2369             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     Known = Known2;
2375     if (BitWidth > EltBitWidth)
2376       Known = Known.anyext(BitWidth);
2377     break;
2378   }
2379   case ISD::BITCAST: {
2380     SDValue Src = Op.getOperand(0);
2381     EVT SrcVT = Src.getValueType();
2382     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2383 
2384     // If this is an FP->Int bitcast and if the sign bit is the only
2385     // thing demanded, turn this into a FGETSIGN.
2386     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2387         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2388         SrcVT.isFloatingPoint()) {
2389       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2390       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2391       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2392           SrcVT != MVT::f128) {
2393         // Cannot eliminate/lower SHL for f128 yet.
2394         EVT Ty = OpVTLegal ? VT : MVT::i32;
2395         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2396         // place.  We expect the SHL to be eliminated by other optimizations.
2397         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2398         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2399         if (!OpVTLegal && OpVTSizeInBits > 32)
2400           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2401         unsigned ShVal = Op.getValueSizeInBits() - 1;
2402         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2403         return TLO.CombineTo(Op,
2404                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2405       }
2406     }
2407 
2408     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2409     // Demand the elt/bit if any of the original elts/bits are demanded.
2410     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2411       unsigned Scale = BitWidth / NumSrcEltBits;
2412       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2413       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2414       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2415       for (unsigned i = 0; i != Scale; ++i) {
2416         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2417         unsigned BitOffset = EltOffset * NumSrcEltBits;
2418         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2419         if (!Sub.isZero()) {
2420           DemandedSrcBits |= Sub;
2421           for (unsigned j = 0; j != NumElts; ++j)
2422             if (DemandedElts[j])
2423               DemandedSrcElts.setBit((j * Scale) + i);
2424         }
2425       }
2426 
2427       APInt KnownSrcUndef, KnownSrcZero;
2428       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2429                                      KnownSrcZero, TLO, Depth + 1))
2430         return true;
2431 
2432       KnownBits KnownSrcBits;
2433       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2434                                KnownSrcBits, TLO, Depth + 1))
2435         return true;
2436     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2437       // TODO - bigendian once we have test coverage.
2438       unsigned Scale = NumSrcEltBits / BitWidth;
2439       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2440       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2441       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2442       for (unsigned i = 0; i != NumElts; ++i)
2443         if (DemandedElts[i]) {
2444           unsigned Offset = (i % Scale) * BitWidth;
2445           DemandedSrcBits.insertBits(DemandedBits, Offset);
2446           DemandedSrcElts.setBit(i / Scale);
2447         }
2448 
2449       if (SrcVT.isVector()) {
2450         APInt KnownSrcUndef, KnownSrcZero;
2451         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2452                                        KnownSrcZero, TLO, Depth + 1))
2453           return true;
2454       }
2455 
2456       KnownBits KnownSrcBits;
2457       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2458                                KnownSrcBits, TLO, Depth + 1))
2459         return true;
2460     }
2461 
2462     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2463     // recursive call where Known may be useful to the caller.
2464     if (Depth > 0) {
2465       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2466       return false;
2467     }
2468     break;
2469   }
2470   case ISD::MUL:
2471     if (DemandedBits.isPowerOf2()) {
2472       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2473       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2474       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2475       unsigned CTZ = DemandedBits.countTrailingZeros();
2476       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2477       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2478         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2479         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2480         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2481         return TLO.CombineTo(Op, Shl);
2482       }
2483     }
2484     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2485     // X * X is odd iff X is odd.
2486     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2487     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2488       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2489       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2490       return TLO.CombineTo(Op, And1);
2491     }
2492     LLVM_FALLTHROUGH;
2493   case ISD::ADD:
2494   case ISD::SUB: {
2495     // Add, Sub, and Mul don't demand any bits in positions beyond that
2496     // of the highest bit demanded of them.
2497     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2498     SDNodeFlags Flags = Op.getNode()->getFlags();
2499     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2500     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2501     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2502                              Depth + 1) ||
2503         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2504                              Depth + 1) ||
2505         // See if the operation should be performed at a smaller bit width.
2506         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2507       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2508         // Disable the nsw and nuw flags. We can no longer guarantee that we
2509         // won't wrap after simplification.
2510         Flags.setNoSignedWrap(false);
2511         Flags.setNoUnsignedWrap(false);
2512         Op->setFlags(Flags);
2513       }
2514       return true;
2515     }
2516 
2517     // Attempt to avoid multi-use ops if we don't need anything from them.
2518     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2519       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2520           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2521       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2522           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2523       if (DemandedOp0 || DemandedOp1) {
2524         Flags.setNoSignedWrap(false);
2525         Flags.setNoUnsignedWrap(false);
2526         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2527         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2528         SDValue NewOp =
2529             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2530         return TLO.CombineTo(Op, NewOp);
2531       }
2532     }
2533 
2534     // If we have a constant operand, we may be able to turn it into -1 if we
2535     // do not demand the high bits. This can make the constant smaller to
2536     // encode, allow more general folding, or match specialized instruction
2537     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2538     // is probably not useful (and could be detrimental).
2539     ConstantSDNode *C = isConstOrConstSplat(Op1);
2540     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2541     if (C && !C->isAllOnes() && !C->isOne() &&
2542         (C->getAPIntValue() | HighMask).isAllOnes()) {
2543       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2544       // Disable the nsw and nuw flags. We can no longer guarantee that we
2545       // won't wrap after simplification.
2546       Flags.setNoSignedWrap(false);
2547       Flags.setNoUnsignedWrap(false);
2548       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2549       return TLO.CombineTo(Op, NewOp);
2550     }
2551 
2552     // Match a multiply with a disguised negated-power-of-2 and convert to a
2553     // an equivalent shift-left amount.
2554     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2555     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2556       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2557         return 0;
2558 
2559       // Don't touch opaque constants. Also, ignore zero and power-of-2
2560       // multiplies. Those will get folded later.
2561       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2562       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2563           !MulC->getAPIntValue().isPowerOf2()) {
2564         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2565         if (UnmaskedC.isNegatedPowerOf2())
2566           return (-UnmaskedC).logBase2();
2567       }
2568       return 0;
2569     };
2570 
2571     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2572       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2573       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2574       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2575       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2576       return TLO.CombineTo(Op, Res);
2577     };
2578 
2579     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2580       if (Op.getOpcode() == ISD::ADD) {
2581         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2582         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2583           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2584         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2585         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2586           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2587       }
2588       if (Op.getOpcode() == ISD::SUB) {
2589         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2590         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2591           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2592       }
2593     }
2594 
2595     LLVM_FALLTHROUGH;
2596   }
2597   default:
2598     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2599       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2600                                             Known, TLO, Depth))
2601         return true;
2602       break;
2603     }
2604 
2605     // Just use computeKnownBits to compute output bits.
2606     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2607     break;
2608   }
2609 
2610   // If we know the value of all of the demanded bits, return this as a
2611   // constant.
2612   if (!isTargetCanonicalConstantNode(Op) &&
2613       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2614     // Avoid folding to a constant if any OpaqueConstant is involved.
2615     const SDNode *N = Op.getNode();
2616     for (SDNode *Op :
2617          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2618       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2619         if (C->isOpaque())
2620           return false;
2621     }
2622     if (VT.isInteger())
2623       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2624     if (VT.isFloatingPoint())
2625       return TLO.CombineTo(
2626           Op,
2627           TLO.DAG.getConstantFP(
2628               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2629   }
2630 
2631   return false;
2632 }
2633 
2634 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2635                                                 const APInt &DemandedElts,
2636                                                 DAGCombinerInfo &DCI) const {
2637   SelectionDAG &DAG = DCI.DAG;
2638   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2639                         !DCI.isBeforeLegalizeOps());
2640 
2641   APInt KnownUndef, KnownZero;
2642   bool Simplified =
2643       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2644   if (Simplified) {
2645     DCI.AddToWorklist(Op.getNode());
2646     DCI.CommitTargetLoweringOpt(TLO);
2647   }
2648 
2649   return Simplified;
2650 }
2651 
2652 /// Given a vector binary operation and known undefined elements for each input
2653 /// operand, compute whether each element of the output is undefined.
2654 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2655                                          const APInt &UndefOp0,
2656                                          const APInt &UndefOp1) {
2657   EVT VT = BO.getValueType();
2658   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2659          "Vector binop only");
2660 
2661   EVT EltVT = VT.getVectorElementType();
2662   unsigned NumElts = VT.getVectorNumElements();
2663   assert(UndefOp0.getBitWidth() == NumElts &&
2664          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2665 
2666   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2667                                    const APInt &UndefVals) {
2668     if (UndefVals[Index])
2669       return DAG.getUNDEF(EltVT);
2670 
2671     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2672       // Try hard to make sure that the getNode() call is not creating temporary
2673       // nodes. Ignore opaque integers because they do not constant fold.
2674       SDValue Elt = BV->getOperand(Index);
2675       auto *C = dyn_cast<ConstantSDNode>(Elt);
2676       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2677         return Elt;
2678     }
2679 
2680     return SDValue();
2681   };
2682 
2683   APInt KnownUndef = APInt::getZero(NumElts);
2684   for (unsigned i = 0; i != NumElts; ++i) {
2685     // If both inputs for this element are either constant or undef and match
2686     // the element type, compute the constant/undef result for this element of
2687     // the vector.
2688     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2689     // not handle FP constants. The code within getNode() should be refactored
2690     // to avoid the danger of creating a bogus temporary node here.
2691     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2692     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2693     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2694       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2695         KnownUndef.setBit(i);
2696   }
2697   return KnownUndef;
2698 }
2699 
2700 bool TargetLowering::SimplifyDemandedVectorElts(
2701     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2702     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2703     bool AssumeSingleUse) const {
2704   EVT VT = Op.getValueType();
2705   unsigned Opcode = Op.getOpcode();
2706   APInt DemandedElts = OriginalDemandedElts;
2707   unsigned NumElts = DemandedElts.getBitWidth();
2708   assert(VT.isVector() && "Expected vector op");
2709 
2710   KnownUndef = KnownZero = APInt::getZero(NumElts);
2711 
2712   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2713   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2714     return false;
2715 
2716   // TODO: For now we assume we know nothing about scalable vectors.
2717   if (VT.isScalableVector())
2718     return false;
2719 
2720   assert(VT.getVectorNumElements() == NumElts &&
2721          "Mask size mismatches value type element count!");
2722 
2723   // Undef operand.
2724   if (Op.isUndef()) {
2725     KnownUndef.setAllBits();
2726     return false;
2727   }
2728 
2729   // If Op has other users, assume that all elements are needed.
2730   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2731     DemandedElts.setAllBits();
2732 
2733   // Not demanding any elements from Op.
2734   if (DemandedElts == 0) {
2735     KnownUndef.setAllBits();
2736     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2737   }
2738 
2739   // Limit search depth.
2740   if (Depth >= SelectionDAG::MaxRecursionDepth)
2741     return false;
2742 
2743   SDLoc DL(Op);
2744   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2745   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2746 
2747   // Helper for demanding the specified elements and all the bits of both binary
2748   // operands.
2749   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2750     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2751                                                            TLO.DAG, Depth + 1);
2752     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2753                                                            TLO.DAG, Depth + 1);
2754     if (NewOp0 || NewOp1) {
2755       SDValue NewOp = TLO.DAG.getNode(
2756           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2757       return TLO.CombineTo(Op, NewOp);
2758     }
2759     return false;
2760   };
2761 
2762   switch (Opcode) {
2763   case ISD::SCALAR_TO_VECTOR: {
2764     if (!DemandedElts[0]) {
2765       KnownUndef.setAllBits();
2766       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2767     }
2768     SDValue ScalarSrc = Op.getOperand(0);
2769     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2770       SDValue Src = ScalarSrc.getOperand(0);
2771       SDValue Idx = ScalarSrc.getOperand(1);
2772       EVT SrcVT = Src.getValueType();
2773 
2774       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2775 
2776       if (SrcEltCnt.isScalable())
2777         return false;
2778 
2779       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2780       if (isNullConstant(Idx)) {
2781         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2782         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2783         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2784         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2785                                        TLO, Depth + 1))
2786           return true;
2787       }
2788     }
2789     KnownUndef.setHighBits(NumElts - 1);
2790     break;
2791   }
2792   case ISD::BITCAST: {
2793     SDValue Src = Op.getOperand(0);
2794     EVT SrcVT = Src.getValueType();
2795 
2796     // We only handle vectors here.
2797     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2798     if (!SrcVT.isVector())
2799       break;
2800 
2801     // Fast handling of 'identity' bitcasts.
2802     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2803     if (NumSrcElts == NumElts)
2804       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2805                                         KnownZero, TLO, Depth + 1);
2806 
2807     APInt SrcDemandedElts, SrcZero, SrcUndef;
2808 
2809     // Bitcast from 'large element' src vector to 'small element' vector, we
2810     // must demand a source element if any DemandedElt maps to it.
2811     if ((NumElts % NumSrcElts) == 0) {
2812       unsigned Scale = NumElts / NumSrcElts;
2813       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2814       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2815                                      TLO, Depth + 1))
2816         return true;
2817 
2818       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2819       // of the large element.
2820       // TODO - bigendian once we have test coverage.
2821       if (IsLE) {
2822         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2823         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2824         for (unsigned i = 0; i != NumElts; ++i)
2825           if (DemandedElts[i]) {
2826             unsigned Ofs = (i % Scale) * EltSizeInBits;
2827             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2828           }
2829 
2830         KnownBits Known;
2831         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2832                                  TLO, Depth + 1))
2833           return true;
2834 
2835         // The bitcast has split each wide element into a number of
2836         // narrow subelements. We have just computed the Known bits
2837         // for wide elements. See if element splitting results in
2838         // some subelements being zero. Only for demanded elements!
2839         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2840           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2841                    .isAllOnes())
2842             continue;
2843           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2844             unsigned Elt = Scale * SrcElt + SubElt;
2845             if (DemandedElts[Elt])
2846               KnownZero.setBit(Elt);
2847           }
2848         }
2849       }
2850 
2851       // If the src element is zero/undef then all the output elements will be -
2852       // only demanded elements are guaranteed to be correct.
2853       for (unsigned i = 0; i != NumSrcElts; ++i) {
2854         if (SrcDemandedElts[i]) {
2855           if (SrcZero[i])
2856             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2857           if (SrcUndef[i])
2858             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2859         }
2860       }
2861     }
2862 
2863     // Bitcast from 'small element' src vector to 'large element' vector, we
2864     // demand all smaller source elements covered by the larger demanded element
2865     // of this vector.
2866     if ((NumSrcElts % NumElts) == 0) {
2867       unsigned Scale = NumSrcElts / NumElts;
2868       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2869       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2870                                      TLO, Depth + 1))
2871         return true;
2872 
2873       // If all the src elements covering an output element are zero/undef, then
2874       // the output element will be as well, assuming it was demanded.
2875       for (unsigned i = 0; i != NumElts; ++i) {
2876         if (DemandedElts[i]) {
2877           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2878             KnownZero.setBit(i);
2879           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2880             KnownUndef.setBit(i);
2881         }
2882       }
2883     }
2884     break;
2885   }
2886   case ISD::BUILD_VECTOR: {
2887     // Check all elements and simplify any unused elements with UNDEF.
2888     if (!DemandedElts.isAllOnes()) {
2889       // Don't simplify BROADCASTS.
2890       if (llvm::any_of(Op->op_values(),
2891                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2892         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2893         bool Updated = false;
2894         for (unsigned i = 0; i != NumElts; ++i) {
2895           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2896             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2897             KnownUndef.setBit(i);
2898             Updated = true;
2899           }
2900         }
2901         if (Updated)
2902           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2903       }
2904     }
2905     for (unsigned i = 0; i != NumElts; ++i) {
2906       SDValue SrcOp = Op.getOperand(i);
2907       if (SrcOp.isUndef()) {
2908         KnownUndef.setBit(i);
2909       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2910                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2911         KnownZero.setBit(i);
2912       }
2913     }
2914     break;
2915   }
2916   case ISD::CONCAT_VECTORS: {
2917     EVT SubVT = Op.getOperand(0).getValueType();
2918     unsigned NumSubVecs = Op.getNumOperands();
2919     unsigned NumSubElts = SubVT.getVectorNumElements();
2920     for (unsigned i = 0; i != NumSubVecs; ++i) {
2921       SDValue SubOp = Op.getOperand(i);
2922       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2923       APInt SubUndef, SubZero;
2924       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2925                                      Depth + 1))
2926         return true;
2927       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2928       KnownZero.insertBits(SubZero, i * NumSubElts);
2929     }
2930 
2931     // Attempt to avoid multi-use ops if we don't need anything from them.
2932     if (!DemandedElts.isAllOnes()) {
2933       bool FoundNewSub = false;
2934       SmallVector<SDValue, 2> DemandedSubOps;
2935       for (unsigned i = 0; i != NumSubVecs; ++i) {
2936         SDValue SubOp = Op.getOperand(i);
2937         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2938         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2939             SubOp, SubElts, TLO.DAG, Depth + 1);
2940         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2941         FoundNewSub = NewSubOp ? true : FoundNewSub;
2942       }
2943       if (FoundNewSub) {
2944         SDValue NewOp =
2945             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2946         return TLO.CombineTo(Op, NewOp);
2947       }
2948     }
2949     break;
2950   }
2951   case ISD::INSERT_SUBVECTOR: {
2952     // Demand any elements from the subvector and the remainder from the src its
2953     // inserted into.
2954     SDValue Src = Op.getOperand(0);
2955     SDValue Sub = Op.getOperand(1);
2956     uint64_t Idx = Op.getConstantOperandVal(2);
2957     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2958     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2959     APInt DemandedSrcElts = DemandedElts;
2960     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2961 
2962     APInt SubUndef, SubZero;
2963     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2964                                    Depth + 1))
2965       return true;
2966 
2967     // If none of the src operand elements are demanded, replace it with undef.
2968     if (!DemandedSrcElts && !Src.isUndef())
2969       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2970                                                TLO.DAG.getUNDEF(VT), Sub,
2971                                                Op.getOperand(2)));
2972 
2973     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2974                                    TLO, Depth + 1))
2975       return true;
2976     KnownUndef.insertBits(SubUndef, Idx);
2977     KnownZero.insertBits(SubZero, Idx);
2978 
2979     // Attempt to avoid multi-use ops if we don't need anything from them.
2980     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2981       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2982           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2983       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2984           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2985       if (NewSrc || NewSub) {
2986         NewSrc = NewSrc ? NewSrc : Src;
2987         NewSub = NewSub ? NewSub : Sub;
2988         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2989                                         NewSub, Op.getOperand(2));
2990         return TLO.CombineTo(Op, NewOp);
2991       }
2992     }
2993     break;
2994   }
2995   case ISD::EXTRACT_SUBVECTOR: {
2996     // Offset the demanded elts by the subvector index.
2997     SDValue Src = Op.getOperand(0);
2998     if (Src.getValueType().isScalableVector())
2999       break;
3000     uint64_t Idx = Op.getConstantOperandVal(1);
3001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3002     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3003 
3004     APInt SrcUndef, SrcZero;
3005     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3006                                    Depth + 1))
3007       return true;
3008     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3009     KnownZero = SrcZero.extractBits(NumElts, Idx);
3010 
3011     // Attempt to avoid multi-use ops if we don't need anything from them.
3012     if (!DemandedElts.isAllOnes()) {
3013       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3014           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3015       if (NewSrc) {
3016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3017                                         Op.getOperand(1));
3018         return TLO.CombineTo(Op, NewOp);
3019       }
3020     }
3021     break;
3022   }
3023   case ISD::INSERT_VECTOR_ELT: {
3024     SDValue Vec = Op.getOperand(0);
3025     SDValue Scl = Op.getOperand(1);
3026     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3027 
3028     // For a legal, constant insertion index, if we don't need this insertion
3029     // then strip it, else remove it from the demanded elts.
3030     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3031       unsigned Idx = CIdx->getZExtValue();
3032       if (!DemandedElts[Idx])
3033         return TLO.CombineTo(Op, Vec);
3034 
3035       APInt DemandedVecElts(DemandedElts);
3036       DemandedVecElts.clearBit(Idx);
3037       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3038                                      KnownZero, TLO, Depth + 1))
3039         return true;
3040 
3041       KnownUndef.setBitVal(Idx, Scl.isUndef());
3042 
3043       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3044       break;
3045     }
3046 
3047     APInt VecUndef, VecZero;
3048     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3049                                    Depth + 1))
3050       return true;
3051     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3052     break;
3053   }
3054   case ISD::VSELECT: {
3055     // Try to transform the select condition based on the current demanded
3056     // elements.
3057     // TODO: If a condition element is undef, we can choose from one arm of the
3058     //       select (and if one arm is undef, then we can propagate that to the
3059     //       result).
3060     // TODO - add support for constant vselect masks (see IR version of this).
3061     APInt UnusedUndef, UnusedZero;
3062     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3063                                    UnusedZero, TLO, Depth + 1))
3064       return true;
3065 
3066     // See if we can simplify either vselect operand.
3067     APInt DemandedLHS(DemandedElts);
3068     APInt DemandedRHS(DemandedElts);
3069     APInt UndefLHS, ZeroLHS;
3070     APInt UndefRHS, ZeroRHS;
3071     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3072                                    ZeroLHS, TLO, Depth + 1))
3073       return true;
3074     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3075                                    ZeroRHS, TLO, Depth + 1))
3076       return true;
3077 
3078     KnownUndef = UndefLHS & UndefRHS;
3079     KnownZero = ZeroLHS & ZeroRHS;
3080     break;
3081   }
3082   case ISD::VECTOR_SHUFFLE: {
3083     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3084 
3085     // Collect demanded elements from shuffle operands..
3086     APInt DemandedLHS(NumElts, 0);
3087     APInt DemandedRHS(NumElts, 0);
3088     for (unsigned i = 0; i != NumElts; ++i) {
3089       int M = ShuffleMask[i];
3090       if (M < 0 || !DemandedElts[i])
3091         continue;
3092       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3093       if (M < (int)NumElts)
3094         DemandedLHS.setBit(M);
3095       else
3096         DemandedRHS.setBit(M - NumElts);
3097     }
3098 
3099     // See if we can simplify either shuffle operand.
3100     APInt UndefLHS, ZeroLHS;
3101     APInt UndefRHS, ZeroRHS;
3102     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3103                                    ZeroLHS, TLO, Depth + 1))
3104       return true;
3105     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3106                                    ZeroRHS, TLO, Depth + 1))
3107       return true;
3108 
3109     // Simplify mask using undef elements from LHS/RHS.
3110     bool Updated = false;
3111     bool IdentityLHS = true, IdentityRHS = true;
3112     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3113     for (unsigned i = 0; i != NumElts; ++i) {
3114       int &M = NewMask[i];
3115       if (M < 0)
3116         continue;
3117       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3118           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3119         Updated = true;
3120         M = -1;
3121       }
3122       IdentityLHS &= (M < 0) || (M == (int)i);
3123       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3124     }
3125 
3126     // Update legal shuffle masks based on demanded elements if it won't reduce
3127     // to Identity which can cause premature removal of the shuffle mask.
3128     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3129       SDValue LegalShuffle =
3130           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3131                                   NewMask, TLO.DAG);
3132       if (LegalShuffle)
3133         return TLO.CombineTo(Op, LegalShuffle);
3134     }
3135 
3136     // Propagate undef/zero elements from LHS/RHS.
3137     for (unsigned i = 0; i != NumElts; ++i) {
3138       int M = ShuffleMask[i];
3139       if (M < 0) {
3140         KnownUndef.setBit(i);
3141       } else if (M < (int)NumElts) {
3142         if (UndefLHS[M])
3143           KnownUndef.setBit(i);
3144         if (ZeroLHS[M])
3145           KnownZero.setBit(i);
3146       } else {
3147         if (UndefRHS[M - NumElts])
3148           KnownUndef.setBit(i);
3149         if (ZeroRHS[M - NumElts])
3150           KnownZero.setBit(i);
3151       }
3152     }
3153     break;
3154   }
3155   case ISD::ANY_EXTEND_VECTOR_INREG:
3156   case ISD::SIGN_EXTEND_VECTOR_INREG:
3157   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3158     APInt SrcUndef, SrcZero;
3159     SDValue Src = Op.getOperand(0);
3160     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3161     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3162     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3163                                    Depth + 1))
3164       return true;
3165     KnownZero = SrcZero.zextOrTrunc(NumElts);
3166     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3167 
3168     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3169         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3170         DemandedSrcElts == 1) {
3171       // aext - if we just need the bottom element then we can bitcast.
3172       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3173     }
3174 
3175     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3176       // zext(undef) upper bits are guaranteed to be zero.
3177       if (DemandedElts.isSubsetOf(KnownUndef))
3178         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3179       KnownUndef.clearAllBits();
3180 
3181       // zext - if we just need the bottom element then we can mask:
3182       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3183       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3184           Op->isOnlyUserOf(Src.getNode()) &&
3185           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3186         SDLoc DL(Op);
3187         EVT SrcVT = Src.getValueType();
3188         EVT SrcSVT = SrcVT.getScalarType();
3189         SmallVector<SDValue> MaskElts;
3190         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3191         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3192         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3193         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3194                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3195           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3196           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3197         }
3198       }
3199     }
3200     break;
3201   }
3202 
3203   // TODO: There are more binop opcodes that could be handled here - MIN,
3204   // MAX, saturated math, etc.
3205   case ISD::ADD: {
3206     SDValue Op0 = Op.getOperand(0);
3207     SDValue Op1 = Op.getOperand(1);
3208     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3209       APInt UndefLHS, ZeroLHS;
3210       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3211                                      Depth + 1, /*AssumeSingleUse*/ true))
3212         return true;
3213     }
3214     LLVM_FALLTHROUGH;
3215   }
3216   case ISD::OR:
3217   case ISD::XOR:
3218   case ISD::SUB:
3219   case ISD::FADD:
3220   case ISD::FSUB:
3221   case ISD::FMUL:
3222   case ISD::FDIV:
3223   case ISD::FREM: {
3224     SDValue Op0 = Op.getOperand(0);
3225     SDValue Op1 = Op.getOperand(1);
3226 
3227     APInt UndefRHS, ZeroRHS;
3228     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3229                                    Depth + 1))
3230       return true;
3231     APInt UndefLHS, ZeroLHS;
3232     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3233                                    Depth + 1))
3234       return true;
3235 
3236     KnownZero = ZeroLHS & ZeroRHS;
3237     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3238 
3239     // Attempt to avoid multi-use ops if we don't need anything from them.
3240     // TODO - use KnownUndef to relax the demandedelts?
3241     if (!DemandedElts.isAllOnes())
3242       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3243         return true;
3244     break;
3245   }
3246   case ISD::SHL:
3247   case ISD::SRL:
3248   case ISD::SRA:
3249   case ISD::ROTL:
3250   case ISD::ROTR: {
3251     SDValue Op0 = Op.getOperand(0);
3252     SDValue Op1 = Op.getOperand(1);
3253 
3254     APInt UndefRHS, ZeroRHS;
3255     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3256                                    Depth + 1))
3257       return true;
3258     APInt UndefLHS, ZeroLHS;
3259     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3260                                    Depth + 1))
3261       return true;
3262 
3263     KnownZero = ZeroLHS;
3264     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3265 
3266     // Attempt to avoid multi-use ops if we don't need anything from them.
3267     // TODO - use KnownUndef to relax the demandedelts?
3268     if (!DemandedElts.isAllOnes())
3269       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3270         return true;
3271     break;
3272   }
3273   case ISD::MUL:
3274   case ISD::AND: {
3275     SDValue Op0 = Op.getOperand(0);
3276     SDValue Op1 = Op.getOperand(1);
3277 
3278     APInt SrcUndef, SrcZero;
3279     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3280                                    Depth + 1))
3281       return true;
3282     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3283                                    TLO, Depth + 1))
3284       return true;
3285 
3286     // If either side has a zero element, then the result element is zero, even
3287     // if the other is an UNDEF.
3288     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3289     // and then handle 'and' nodes with the rest of the binop opcodes.
3290     KnownZero |= SrcZero;
3291     KnownUndef &= SrcUndef;
3292     KnownUndef &= ~KnownZero;
3293 
3294     // Attempt to avoid multi-use ops if we don't need anything from them.
3295     // TODO - use KnownUndef to relax the demandedelts?
3296     if (!DemandedElts.isAllOnes())
3297       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3298         return true;
3299     break;
3300   }
3301   case ISD::TRUNCATE:
3302   case ISD::SIGN_EXTEND:
3303   case ISD::ZERO_EXTEND:
3304     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3305                                    KnownZero, TLO, Depth + 1))
3306       return true;
3307 
3308     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3309       // zext(undef) upper bits are guaranteed to be zero.
3310       if (DemandedElts.isSubsetOf(KnownUndef))
3311         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3312       KnownUndef.clearAllBits();
3313     }
3314     break;
3315   default: {
3316     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3317       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3318                                                   KnownZero, TLO, Depth))
3319         return true;
3320     } else {
3321       KnownBits Known;
3322       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3323       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3324                                TLO, Depth, AssumeSingleUse))
3325         return true;
3326     }
3327     break;
3328   }
3329   }
3330   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3331 
3332   // Constant fold all undef cases.
3333   // TODO: Handle zero cases as well.
3334   if (DemandedElts.isSubsetOf(KnownUndef))
3335     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3336 
3337   return false;
3338 }
3339 
3340 /// Determine which of the bits specified in Mask are known to be either zero or
3341 /// one and return them in the Known.
3342 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3343                                                    KnownBits &Known,
3344                                                    const APInt &DemandedElts,
3345                                                    const SelectionDAG &DAG,
3346                                                    unsigned Depth) const {
3347   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3348           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3349           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3350           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3351          "Should use MaskedValueIsZero if you don't know whether Op"
3352          " is a target node!");
3353   Known.resetAll();
3354 }
3355 
3356 void TargetLowering::computeKnownBitsForTargetInstr(
3357     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3358     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3359     unsigned Depth) const {
3360   Known.resetAll();
3361 }
3362 
3363 void TargetLowering::computeKnownBitsForFrameIndex(
3364   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3365   // The low bits are known zero if the pointer is aligned.
3366   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3367 }
3368 
3369 Align TargetLowering::computeKnownAlignForTargetInstr(
3370   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3371   unsigned Depth) const {
3372   return Align(1);
3373 }
3374 
3375 /// This method can be implemented by targets that want to expose additional
3376 /// information about sign bits to the DAG Combiner.
3377 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3378                                                          const APInt &,
3379                                                          const SelectionDAG &,
3380                                                          unsigned Depth) const {
3381   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3382           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3383           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3384           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3385          "Should use ComputeNumSignBits if you don't know whether Op"
3386          " is a target node!");
3387   return 1;
3388 }
3389 
3390 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3391   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3392   const MachineRegisterInfo &MRI, unsigned Depth) const {
3393   return 1;
3394 }
3395 
3396 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3397     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3398     TargetLoweringOpt &TLO, unsigned Depth) const {
3399   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3400           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3401           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3402           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3403          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3404          " is a target node!");
3405   return false;
3406 }
3407 
3408 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3409     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3410     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3411   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3412           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3413           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3414           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3415          "Should use SimplifyDemandedBits if you don't know whether Op"
3416          " is a target node!");
3417   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3418   return false;
3419 }
3420 
3421 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3422     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3423     SelectionDAG &DAG, unsigned Depth) const {
3424   assert(
3425       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3426        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3427        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3428        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3429       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3430       " is a target node!");
3431   return SDValue();
3432 }
3433 
3434 SDValue
3435 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3436                                         SDValue N1, MutableArrayRef<int> Mask,
3437                                         SelectionDAG &DAG) const {
3438   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3439   if (!LegalMask) {
3440     std::swap(N0, N1);
3441     ShuffleVectorSDNode::commuteMask(Mask);
3442     LegalMask = isShuffleMaskLegal(Mask, VT);
3443   }
3444 
3445   if (!LegalMask)
3446     return SDValue();
3447 
3448   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3449 }
3450 
3451 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3452   return nullptr;
3453 }
3454 
3455 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3456     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3457     bool PoisonOnly, unsigned Depth) const {
3458   assert(
3459       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3460        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3461        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3462        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3463       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3464       " is a target node!");
3465   return false;
3466 }
3467 
3468 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3469                                                   const SelectionDAG &DAG,
3470                                                   bool SNaN,
3471                                                   unsigned Depth) const {
3472   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3473           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3474           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3475           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3476          "Should use isKnownNeverNaN if you don't know whether Op"
3477          " is a target node!");
3478   return false;
3479 }
3480 
3481 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3482                                                const APInt &DemandedElts,
3483                                                APInt &UndefElts,
3484                                                unsigned Depth) const {
3485   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3486           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3487           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3488           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3489          "Should use isSplatValue if you don't know whether Op"
3490          " is a target node!");
3491   return false;
3492 }
3493 
3494 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3495 // work with truncating build vectors and vectors with elements of less than
3496 // 8 bits.
3497 bool TargetLowering::isConstTrueVal(SDValue N) const {
3498   if (!N)
3499     return false;
3500 
3501   unsigned EltWidth;
3502   APInt CVal;
3503   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3504                                                /*AllowTruncation=*/true)) {
3505     CVal = CN->getAPIntValue();
3506     EltWidth = N.getValueType().getScalarSizeInBits();
3507   } else
3508     return false;
3509 
3510   // If this is a truncating splat, truncate the splat value.
3511   // Otherwise, we may fail to match the expected values below.
3512   if (EltWidth < CVal.getBitWidth())
3513     CVal = CVal.trunc(EltWidth);
3514 
3515   switch (getBooleanContents(N.getValueType())) {
3516   case UndefinedBooleanContent:
3517     return CVal[0];
3518   case ZeroOrOneBooleanContent:
3519     return CVal.isOne();
3520   case ZeroOrNegativeOneBooleanContent:
3521     return CVal.isAllOnes();
3522   }
3523 
3524   llvm_unreachable("Invalid boolean contents");
3525 }
3526 
3527 bool TargetLowering::isConstFalseVal(SDValue N) const {
3528   if (!N)
3529     return false;
3530 
3531   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3532   if (!CN) {
3533     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3534     if (!BV)
3535       return false;
3536 
3537     // Only interested in constant splats, we don't care about undef
3538     // elements in identifying boolean constants and getConstantSplatNode
3539     // returns NULL if all ops are undef;
3540     CN = BV->getConstantSplatNode();
3541     if (!CN)
3542       return false;
3543   }
3544 
3545   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3546     return !CN->getAPIntValue()[0];
3547 
3548   return CN->isZero();
3549 }
3550 
3551 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3552                                        bool SExt) const {
3553   if (VT == MVT::i1)
3554     return N->isOne();
3555 
3556   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3557   switch (Cnt) {
3558   case TargetLowering::ZeroOrOneBooleanContent:
3559     // An extended value of 1 is always true, unless its original type is i1,
3560     // in which case it will be sign extended to -1.
3561     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3562   case TargetLowering::UndefinedBooleanContent:
3563   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3564     return N->isAllOnes() && SExt;
3565   }
3566   llvm_unreachable("Unexpected enumeration.");
3567 }
3568 
3569 /// This helper function of SimplifySetCC tries to optimize the comparison when
3570 /// either operand of the SetCC node is a bitwise-and instruction.
3571 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3572                                          ISD::CondCode Cond, const SDLoc &DL,
3573                                          DAGCombinerInfo &DCI) const {
3574   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3575     std::swap(N0, N1);
3576 
3577   SelectionDAG &DAG = DCI.DAG;
3578   EVT OpVT = N0.getValueType();
3579   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3580       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3581     return SDValue();
3582 
3583   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3584   // iff everything but LSB is known zero:
3585   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3586       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3587        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3588     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3589     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3590     if (DAG.MaskedValueIsZero(N0, UpperBits))
3591       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3592   }
3593 
3594   // Match these patterns in any of their permutations:
3595   // (X & Y) == Y
3596   // (X & Y) != Y
3597   SDValue X, Y;
3598   if (N0.getOperand(0) == N1) {
3599     X = N0.getOperand(1);
3600     Y = N0.getOperand(0);
3601   } else if (N0.getOperand(1) == N1) {
3602     X = N0.getOperand(0);
3603     Y = N0.getOperand(1);
3604   } else {
3605     return SDValue();
3606   }
3607 
3608   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3609   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3610     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3611     // Note that where Y is variable and is known to have at most one bit set
3612     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3613     // equivalent when Y == 0.
3614     assert(OpVT.isInteger());
3615     Cond = ISD::getSetCCInverse(Cond, OpVT);
3616     if (DCI.isBeforeLegalizeOps() ||
3617         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3618       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3619   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3620     // If the target supports an 'and-not' or 'and-complement' logic operation,
3621     // try to use that to make a comparison operation more efficient.
3622     // But don't do this transform if the mask is a single bit because there are
3623     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3624     // 'rlwinm' on PPC).
3625 
3626     // Bail out if the compare operand that we want to turn into a zero is
3627     // already a zero (otherwise, infinite loop).
3628     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3629     if (YConst && YConst->isZero())
3630       return SDValue();
3631 
3632     // Transform this into: ~X & Y == 0.
3633     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3634     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3635     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3636   }
3637 
3638   return SDValue();
3639 }
3640 
3641 /// There are multiple IR patterns that could be checking whether certain
3642 /// truncation of a signed number would be lossy or not. The pattern which is
3643 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3644 /// We are looking for the following pattern: (KeptBits is a constant)
3645 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3646 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3647 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3648 /// We will unfold it into the natural trunc+sext pattern:
3649 ///   ((%x << C) a>> C) dstcond %x
3650 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3651 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3652     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3653     const SDLoc &DL) const {
3654   // We must be comparing with a constant.
3655   ConstantSDNode *C1;
3656   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3657     return SDValue();
3658 
3659   // N0 should be:  add %x, (1 << (KeptBits-1))
3660   if (N0->getOpcode() != ISD::ADD)
3661     return SDValue();
3662 
3663   // And we must be 'add'ing a constant.
3664   ConstantSDNode *C01;
3665   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3666     return SDValue();
3667 
3668   SDValue X = N0->getOperand(0);
3669   EVT XVT = X.getValueType();
3670 
3671   // Validate constants ...
3672 
3673   APInt I1 = C1->getAPIntValue();
3674 
3675   ISD::CondCode NewCond;
3676   if (Cond == ISD::CondCode::SETULT) {
3677     NewCond = ISD::CondCode::SETEQ;
3678   } else if (Cond == ISD::CondCode::SETULE) {
3679     NewCond = ISD::CondCode::SETEQ;
3680     // But need to 'canonicalize' the constant.
3681     I1 += 1;
3682   } else if (Cond == ISD::CondCode::SETUGT) {
3683     NewCond = ISD::CondCode::SETNE;
3684     // But need to 'canonicalize' the constant.
3685     I1 += 1;
3686   } else if (Cond == ISD::CondCode::SETUGE) {
3687     NewCond = ISD::CondCode::SETNE;
3688   } else
3689     return SDValue();
3690 
3691   APInt I01 = C01->getAPIntValue();
3692 
3693   auto checkConstants = [&I1, &I01]() -> bool {
3694     // Both of them must be power-of-two, and the constant from setcc is bigger.
3695     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3696   };
3697 
3698   if (checkConstants()) {
3699     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3700   } else {
3701     // What if we invert constants? (and the target predicate)
3702     I1.negate();
3703     I01.negate();
3704     assert(XVT.isInteger());
3705     NewCond = getSetCCInverse(NewCond, XVT);
3706     if (!checkConstants())
3707       return SDValue();
3708     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3709   }
3710 
3711   // They are power-of-two, so which bit is set?
3712   const unsigned KeptBits = I1.logBase2();
3713   const unsigned KeptBitsMinusOne = I01.logBase2();
3714 
3715   // Magic!
3716   if (KeptBits != (KeptBitsMinusOne + 1))
3717     return SDValue();
3718   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3719 
3720   // We don't want to do this in every single case.
3721   SelectionDAG &DAG = DCI.DAG;
3722   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3723           XVT, KeptBits))
3724     return SDValue();
3725 
3726   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3727   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3728 
3729   // Unfold into:  ((%x << C) a>> C) cond %x
3730   // Where 'cond' will be either 'eq' or 'ne'.
3731   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3732   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3733   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3734   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3735 
3736   return T2;
3737 }
3738 
3739 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3740 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3741     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3742     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3743   assert(isConstOrConstSplat(N1C) &&
3744          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3745          "Should be a comparison with 0.");
3746   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3747          "Valid only for [in]equality comparisons.");
3748 
3749   unsigned NewShiftOpcode;
3750   SDValue X, C, Y;
3751 
3752   SelectionDAG &DAG = DCI.DAG;
3753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3754 
3755   // Look for '(C l>>/<< Y)'.
3756   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3757     // The shift should be one-use.
3758     if (!V.hasOneUse())
3759       return false;
3760     unsigned OldShiftOpcode = V.getOpcode();
3761     switch (OldShiftOpcode) {
3762     case ISD::SHL:
3763       NewShiftOpcode = ISD::SRL;
3764       break;
3765     case ISD::SRL:
3766       NewShiftOpcode = ISD::SHL;
3767       break;
3768     default:
3769       return false; // must be a logical shift.
3770     }
3771     // We should be shifting a constant.
3772     // FIXME: best to use isConstantOrConstantVector().
3773     C = V.getOperand(0);
3774     ConstantSDNode *CC =
3775         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3776     if (!CC)
3777       return false;
3778     Y = V.getOperand(1);
3779 
3780     ConstantSDNode *XC =
3781         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3782     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3783         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3784   };
3785 
3786   // LHS of comparison should be an one-use 'and'.
3787   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3788     return SDValue();
3789 
3790   X = N0.getOperand(0);
3791   SDValue Mask = N0.getOperand(1);
3792 
3793   // 'and' is commutative!
3794   if (!Match(Mask)) {
3795     std::swap(X, Mask);
3796     if (!Match(Mask))
3797       return SDValue();
3798   }
3799 
3800   EVT VT = X.getValueType();
3801 
3802   // Produce:
3803   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3804   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3805   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3806   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3807   return T2;
3808 }
3809 
3810 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3811 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3812 /// handle the commuted versions of these patterns.
3813 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3814                                            ISD::CondCode Cond, const SDLoc &DL,
3815                                            DAGCombinerInfo &DCI) const {
3816   unsigned BOpcode = N0.getOpcode();
3817   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3818          "Unexpected binop");
3819   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3820 
3821   // (X + Y) == X --> Y == 0
3822   // (X - Y) == X --> Y == 0
3823   // (X ^ Y) == X --> Y == 0
3824   SelectionDAG &DAG = DCI.DAG;
3825   EVT OpVT = N0.getValueType();
3826   SDValue X = N0.getOperand(0);
3827   SDValue Y = N0.getOperand(1);
3828   if (X == N1)
3829     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3830 
3831   if (Y != N1)
3832     return SDValue();
3833 
3834   // (X + Y) == Y --> X == 0
3835   // (X ^ Y) == Y --> X == 0
3836   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3837     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3838 
3839   // The shift would not be valid if the operands are boolean (i1).
3840   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3841     return SDValue();
3842 
3843   // (X - Y) == Y --> X == Y << 1
3844   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3845                                  !DCI.isBeforeLegalize());
3846   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3847   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3848   if (!DCI.isCalledByLegalizer())
3849     DCI.AddToWorklist(YShl1.getNode());
3850   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3851 }
3852 
3853 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3854                                       SDValue N0, const APInt &C1,
3855                                       ISD::CondCode Cond, const SDLoc &dl,
3856                                       SelectionDAG &DAG) {
3857   // Look through truncs that don't change the value of a ctpop.
3858   // FIXME: Add vector support? Need to be careful with setcc result type below.
3859   SDValue CTPOP = N0;
3860   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3861       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3862     CTPOP = N0.getOperand(0);
3863 
3864   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3865     return SDValue();
3866 
3867   EVT CTVT = CTPOP.getValueType();
3868   SDValue CTOp = CTPOP.getOperand(0);
3869 
3870   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3871   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3872   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3873     return SDValue();
3874 
3875   // (ctpop x) u< 2 -> (x & x-1) == 0
3876   // (ctpop x) u> 1 -> (x & x-1) != 0
3877   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3878     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3879     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3880       return SDValue();
3881     if (C1 == 0 && (Cond == ISD::SETULT))
3882       return SDValue(); // This is handled elsewhere.
3883 
3884     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3885 
3886     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3887     SDValue Result = CTOp;
3888     for (unsigned i = 0; i < Passes; i++) {
3889       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3890       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3891     }
3892     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3893     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3894   }
3895 
3896   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3897   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3898     // For scalars, keep CTPOP if it is legal or custom.
3899     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3900       return SDValue();
3901     // This is based on X86's custom lowering for CTPOP which produces more
3902     // instructions than the expansion here.
3903 
3904     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3905     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3906     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3907     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3908     assert(CTVT.isInteger());
3909     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3910     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3911     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3912     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3913     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3914     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3915     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3916   }
3917 
3918   return SDValue();
3919 }
3920 
3921 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3922                                    ISD::CondCode Cond, const SDLoc &dl,
3923                                    SelectionDAG &DAG) {
3924   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3925     return SDValue();
3926 
3927   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3928   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3929     return SDValue();
3930 
3931   auto getRotateSource = [](SDValue X) {
3932     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3933       return X.getOperand(0);
3934     return SDValue();
3935   };
3936 
3937   // Peek through a rotated value compared against 0 or -1:
3938   // (rot X, Y) == 0/-1 --> X == 0/-1
3939   // (rot X, Y) != 0/-1 --> X != 0/-1
3940   if (SDValue R = getRotateSource(N0))
3941     return DAG.getSetCC(dl, VT, R, N1, Cond);
3942 
3943   // Peek through an 'or' of a rotated value compared against 0:
3944   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3945   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3946   //
3947   // TODO: Add the 'and' with -1 sibling.
3948   // TODO: Recurse through a series of 'or' ops to find the rotate.
3949   EVT OpVT = N0.getValueType();
3950   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3951     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3952       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3953       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3954     }
3955     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3956       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3957       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3958     }
3959   }
3960 
3961   return SDValue();
3962 }
3963 
3964 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3965                                         ISD::CondCode Cond, const SDLoc &dl,
3966                                         SelectionDAG &DAG) {
3967   // If we are testing for all-bits-clear, we might be able to do that with
3968   // less shifting since bit-order does not matter.
3969   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3970     return SDValue();
3971 
3972   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3973   if (!C1 || !C1->isZero())
3974     return SDValue();
3975 
3976   if (!N0.hasOneUse() ||
3977       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3978     return SDValue();
3979 
3980   unsigned BitWidth = N0.getScalarValueSizeInBits();
3981   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3982   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3983     return SDValue();
3984 
3985   // Canonicalize fshr as fshl to reduce pattern-matching.
3986   unsigned ShAmt = ShAmtC->getZExtValue();
3987   if (N0.getOpcode() == ISD::FSHR)
3988     ShAmt = BitWidth - ShAmt;
3989 
3990   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3991   SDValue X, Y;
3992   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3993     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3994       return false;
3995     if (Or.getOperand(0) == Other) {
3996       X = Or.getOperand(0);
3997       Y = Or.getOperand(1);
3998       return true;
3999     }
4000     if (Or.getOperand(1) == Other) {
4001       X = Or.getOperand(1);
4002       Y = Or.getOperand(0);
4003       return true;
4004     }
4005     return false;
4006   };
4007 
4008   EVT OpVT = N0.getValueType();
4009   EVT ShAmtVT = N0.getOperand(2).getValueType();
4010   SDValue F0 = N0.getOperand(0);
4011   SDValue F1 = N0.getOperand(1);
4012   if (matchOr(F0, F1)) {
4013     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4014     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4015     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4016     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4017     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4018   }
4019   if (matchOr(F1, F0)) {
4020     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4021     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4022     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4023     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4024     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4025   }
4026 
4027   return SDValue();
4028 }
4029 
4030 /// Try to simplify a setcc built with the specified operands and cc. If it is
4031 /// unable to simplify it, return a null SDValue.
4032 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4033                                       ISD::CondCode Cond, bool foldBooleans,
4034                                       DAGCombinerInfo &DCI,
4035                                       const SDLoc &dl) const {
4036   SelectionDAG &DAG = DCI.DAG;
4037   const DataLayout &Layout = DAG.getDataLayout();
4038   EVT OpVT = N0.getValueType();
4039 
4040   // Constant fold or commute setcc.
4041   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4042     return Fold;
4043 
4044   bool N0ConstOrSplat =
4045       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4046   bool N1ConstOrSplat =
4047       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4048 
4049   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4050   // TODO: Handle non-splat vector constants. All undef causes trouble.
4051   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4052   // infinite loop here when we encounter one.
4053   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4054   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4055       (DCI.isBeforeLegalizeOps() ||
4056        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4057     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4058 
4059   // If we have a subtract with the same 2 non-constant operands as this setcc
4060   // -- but in reverse order -- then try to commute the operands of this setcc
4061   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4062   // instruction on some targets.
4063   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4064       (DCI.isBeforeLegalizeOps() ||
4065        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4066       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4067       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4068     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4069 
4070   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4071     return V;
4072 
4073   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4074     return V;
4075 
4076   if (auto *N1C = isConstOrConstSplat(N1)) {
4077     const APInt &C1 = N1C->getAPIntValue();
4078 
4079     // Optimize some CTPOP cases.
4080     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4081       return V;
4082 
4083     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4084     // equality comparison, then we're just comparing whether X itself is
4085     // zero.
4086     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4087         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4088         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4089       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4090         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4091             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4092           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4093             // (srl (ctlz x), 5) == 0  -> X != 0
4094             // (srl (ctlz x), 5) != 1  -> X != 0
4095             Cond = ISD::SETNE;
4096           } else {
4097             // (srl (ctlz x), 5) != 0  -> X == 0
4098             // (srl (ctlz x), 5) == 1  -> X == 0
4099             Cond = ISD::SETEQ;
4100           }
4101           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4102           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4103                               Cond);
4104         }
4105       }
4106     }
4107   }
4108 
4109   // FIXME: Support vectors.
4110   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4111     const APInt &C1 = N1C->getAPIntValue();
4112 
4113     // (zext x) == C --> x == (trunc C)
4114     // (sext x) == C --> x == (trunc C)
4115     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4116         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4117       unsigned MinBits = N0.getValueSizeInBits();
4118       SDValue PreExt;
4119       bool Signed = false;
4120       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4121         // ZExt
4122         MinBits = N0->getOperand(0).getValueSizeInBits();
4123         PreExt = N0->getOperand(0);
4124       } else if (N0->getOpcode() == ISD::AND) {
4125         // DAGCombine turns costly ZExts into ANDs
4126         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4127           if ((C->getAPIntValue()+1).isPowerOf2()) {
4128             MinBits = C->getAPIntValue().countTrailingOnes();
4129             PreExt = N0->getOperand(0);
4130           }
4131       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4132         // SExt
4133         MinBits = N0->getOperand(0).getValueSizeInBits();
4134         PreExt = N0->getOperand(0);
4135         Signed = true;
4136       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4137         // ZEXTLOAD / SEXTLOAD
4138         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4139           MinBits = LN0->getMemoryVT().getSizeInBits();
4140           PreExt = N0;
4141         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4142           Signed = true;
4143           MinBits = LN0->getMemoryVT().getSizeInBits();
4144           PreExt = N0;
4145         }
4146       }
4147 
4148       // Figure out how many bits we need to preserve this constant.
4149       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4150 
4151       // Make sure we're not losing bits from the constant.
4152       if (MinBits > 0 &&
4153           MinBits < C1.getBitWidth() &&
4154           MinBits >= ReqdBits) {
4155         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4156         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4157           // Will get folded away.
4158           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4159           if (MinBits == 1 && C1 == 1)
4160             // Invert the condition.
4161             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4162                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4163           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4164           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4165         }
4166 
4167         // If truncating the setcc operands is not desirable, we can still
4168         // simplify the expression in some cases:
4169         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4170         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4171         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4172         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4173         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4174         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4175         SDValue TopSetCC = N0->getOperand(0);
4176         unsigned N0Opc = N0->getOpcode();
4177         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4178         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4179             TopSetCC.getOpcode() == ISD::SETCC &&
4180             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4181             (isConstFalseVal(N1) ||
4182              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4183 
4184           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4185                          (!N1C->isZero() && Cond == ISD::SETNE);
4186 
4187           if (!Inverse)
4188             return TopSetCC;
4189 
4190           ISD::CondCode InvCond = ISD::getSetCCInverse(
4191               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4192               TopSetCC.getOperand(0).getValueType());
4193           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4194                                       TopSetCC.getOperand(1),
4195                                       InvCond);
4196         }
4197       }
4198     }
4199 
4200     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4201     // equality or unsigned, and all 1 bits of the const are in the same
4202     // partial word, see if we can shorten the load.
4203     if (DCI.isBeforeLegalize() &&
4204         !ISD::isSignedIntSetCC(Cond) &&
4205         N0.getOpcode() == ISD::AND && C1 == 0 &&
4206         N0.getNode()->hasOneUse() &&
4207         isa<LoadSDNode>(N0.getOperand(0)) &&
4208         N0.getOperand(0).getNode()->hasOneUse() &&
4209         isa<ConstantSDNode>(N0.getOperand(1))) {
4210       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4211       APInt bestMask;
4212       unsigned bestWidth = 0, bestOffset = 0;
4213       if (Lod->isSimple() && Lod->isUnindexed()) {
4214         unsigned origWidth = N0.getValueSizeInBits();
4215         unsigned maskWidth = origWidth;
4216         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4217         // 8 bits, but have to be careful...
4218         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4219           origWidth = Lod->getMemoryVT().getSizeInBits();
4220         const APInt &Mask = N0.getConstantOperandAPInt(1);
4221         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4222           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4223           for (unsigned offset=0; offset<origWidth/width; offset++) {
4224             if (Mask.isSubsetOf(newMask)) {
4225               if (Layout.isLittleEndian())
4226                 bestOffset = (uint64_t)offset * (width/8);
4227               else
4228                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4229               bestMask = Mask.lshr(offset * (width/8) * 8);
4230               bestWidth = width;
4231               break;
4232             }
4233             newMask <<= width;
4234           }
4235         }
4236       }
4237       if (bestWidth) {
4238         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4239         if (newVT.isRound() &&
4240             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4241           SDValue Ptr = Lod->getBasePtr();
4242           if (bestOffset != 0)
4243             Ptr =
4244                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4245           SDValue NewLoad =
4246               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4247                           Lod->getPointerInfo().getWithOffset(bestOffset),
4248                           Lod->getOriginalAlign());
4249           return DAG.getSetCC(dl, VT,
4250                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4251                                       DAG.getConstant(bestMask.trunc(bestWidth),
4252                                                       dl, newVT)),
4253                               DAG.getConstant(0LL, dl, newVT), Cond);
4254         }
4255       }
4256     }
4257 
4258     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4259     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4260       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4261 
4262       // If the comparison constant has bits in the upper part, the
4263       // zero-extended value could never match.
4264       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4265                                               C1.getBitWidth() - InSize))) {
4266         switch (Cond) {
4267         case ISD::SETUGT:
4268         case ISD::SETUGE:
4269         case ISD::SETEQ:
4270           return DAG.getConstant(0, dl, VT);
4271         case ISD::SETULT:
4272         case ISD::SETULE:
4273         case ISD::SETNE:
4274           return DAG.getConstant(1, dl, VT);
4275         case ISD::SETGT:
4276         case ISD::SETGE:
4277           // True if the sign bit of C1 is set.
4278           return DAG.getConstant(C1.isNegative(), dl, VT);
4279         case ISD::SETLT:
4280         case ISD::SETLE:
4281           // True if the sign bit of C1 isn't set.
4282           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4283         default:
4284           break;
4285         }
4286       }
4287 
4288       // Otherwise, we can perform the comparison with the low bits.
4289       switch (Cond) {
4290       case ISD::SETEQ:
4291       case ISD::SETNE:
4292       case ISD::SETUGT:
4293       case ISD::SETUGE:
4294       case ISD::SETULT:
4295       case ISD::SETULE: {
4296         EVT newVT = N0.getOperand(0).getValueType();
4297         if (DCI.isBeforeLegalizeOps() ||
4298             (isOperationLegal(ISD::SETCC, newVT) &&
4299              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4300           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4301           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4302 
4303           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4304                                           NewConst, Cond);
4305           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4306         }
4307         break;
4308       }
4309       default:
4310         break; // todo, be more careful with signed comparisons
4311       }
4312     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4313                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4314                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4315                                       OpVT)) {
4316       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4317       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4318       EVT ExtDstTy = N0.getValueType();
4319       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4320 
4321       // If the constant doesn't fit into the number of bits for the source of
4322       // the sign extension, it is impossible for both sides to be equal.
4323       if (C1.getMinSignedBits() > ExtSrcTyBits)
4324         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4325 
4326       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4327              ExtDstTy != ExtSrcTy && "Unexpected types!");
4328       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4329       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4330                                    DAG.getConstant(Imm, dl, ExtDstTy));
4331       if (!DCI.isCalledByLegalizer())
4332         DCI.AddToWorklist(ZextOp.getNode());
4333       // Otherwise, make this a use of a zext.
4334       return DAG.getSetCC(dl, VT, ZextOp,
4335                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4336     } else if ((N1C->isZero() || N1C->isOne()) &&
4337                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4338       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4339       if (N0.getOpcode() == ISD::SETCC &&
4340           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4341           (N0.getValueType() == MVT::i1 ||
4342            getBooleanContents(N0.getOperand(0).getValueType()) ==
4343                        ZeroOrOneBooleanContent)) {
4344         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4345         if (TrueWhenTrue)
4346           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4347         // Invert the condition.
4348         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4349         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4350         if (DCI.isBeforeLegalizeOps() ||
4351             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4352           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4353       }
4354 
4355       if ((N0.getOpcode() == ISD::XOR ||
4356            (N0.getOpcode() == ISD::AND &&
4357             N0.getOperand(0).getOpcode() == ISD::XOR &&
4358             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4359           isOneConstant(N0.getOperand(1))) {
4360         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4361         // can only do this if the top bits are known zero.
4362         unsigned BitWidth = N0.getValueSizeInBits();
4363         if (DAG.MaskedValueIsZero(N0,
4364                                   APInt::getHighBitsSet(BitWidth,
4365                                                         BitWidth-1))) {
4366           // Okay, get the un-inverted input value.
4367           SDValue Val;
4368           if (N0.getOpcode() == ISD::XOR) {
4369             Val = N0.getOperand(0);
4370           } else {
4371             assert(N0.getOpcode() == ISD::AND &&
4372                     N0.getOperand(0).getOpcode() == ISD::XOR);
4373             // ((X^1)&1)^1 -> X & 1
4374             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4375                               N0.getOperand(0).getOperand(0),
4376                               N0.getOperand(1));
4377           }
4378 
4379           return DAG.getSetCC(dl, VT, Val, N1,
4380                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4381         }
4382       } else if (N1C->isOne()) {
4383         SDValue Op0 = N0;
4384         if (Op0.getOpcode() == ISD::TRUNCATE)
4385           Op0 = Op0.getOperand(0);
4386 
4387         if ((Op0.getOpcode() == ISD::XOR) &&
4388             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4389             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4390           SDValue XorLHS = Op0.getOperand(0);
4391           SDValue XorRHS = Op0.getOperand(1);
4392           // Ensure that the input setccs return an i1 type or 0/1 value.
4393           if (Op0.getValueType() == MVT::i1 ||
4394               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4395                       ZeroOrOneBooleanContent &&
4396                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4397                         ZeroOrOneBooleanContent)) {
4398             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4399             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4400             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4401           }
4402         }
4403         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4404           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4405           if (Op0.getValueType().bitsGT(VT))
4406             Op0 = DAG.getNode(ISD::AND, dl, VT,
4407                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4408                           DAG.getConstant(1, dl, VT));
4409           else if (Op0.getValueType().bitsLT(VT))
4410             Op0 = DAG.getNode(ISD::AND, dl, VT,
4411                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4412                         DAG.getConstant(1, dl, VT));
4413 
4414           return DAG.getSetCC(dl, VT, Op0,
4415                               DAG.getConstant(0, dl, Op0.getValueType()),
4416                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4417         }
4418         if (Op0.getOpcode() == ISD::AssertZext &&
4419             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4420           return DAG.getSetCC(dl, VT, Op0,
4421                               DAG.getConstant(0, dl, Op0.getValueType()),
4422                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4423       }
4424     }
4425 
4426     // Given:
4427     //   icmp eq/ne (urem %x, %y), 0
4428     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4429     //   icmp eq/ne %x, 0
4430     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4431         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4432       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4433       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4434       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4435         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4436     }
4437 
4438     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4439     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4440     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4441         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4442         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4443         N1C && N1C->isAllOnes()) {
4444       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4445                           DAG.getConstant(0, dl, OpVT),
4446                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4447     }
4448 
4449     if (SDValue V =
4450             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4451       return V;
4452   }
4453 
4454   // These simplifications apply to splat vectors as well.
4455   // TODO: Handle more splat vector cases.
4456   if (auto *N1C = isConstOrConstSplat(N1)) {
4457     const APInt &C1 = N1C->getAPIntValue();
4458 
4459     APInt MinVal, MaxVal;
4460     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4461     if (ISD::isSignedIntSetCC(Cond)) {
4462       MinVal = APInt::getSignedMinValue(OperandBitSize);
4463       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4464     } else {
4465       MinVal = APInt::getMinValue(OperandBitSize);
4466       MaxVal = APInt::getMaxValue(OperandBitSize);
4467     }
4468 
4469     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4470     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4471       // X >= MIN --> true
4472       if (C1 == MinVal)
4473         return DAG.getBoolConstant(true, dl, VT, OpVT);
4474 
4475       if (!VT.isVector()) { // TODO: Support this for vectors.
4476         // X >= C0 --> X > (C0 - 1)
4477         APInt C = C1 - 1;
4478         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4479         if ((DCI.isBeforeLegalizeOps() ||
4480              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4481             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4482                                   isLegalICmpImmediate(C.getSExtValue())))) {
4483           return DAG.getSetCC(dl, VT, N0,
4484                               DAG.getConstant(C, dl, N1.getValueType()),
4485                               NewCC);
4486         }
4487       }
4488     }
4489 
4490     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4491       // X <= MAX --> true
4492       if (C1 == MaxVal)
4493         return DAG.getBoolConstant(true, dl, VT, OpVT);
4494 
4495       // X <= C0 --> X < (C0 + 1)
4496       if (!VT.isVector()) { // TODO: Support this for vectors.
4497         APInt C = C1 + 1;
4498         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4499         if ((DCI.isBeforeLegalizeOps() ||
4500              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4501             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4502                                   isLegalICmpImmediate(C.getSExtValue())))) {
4503           return DAG.getSetCC(dl, VT, N0,
4504                               DAG.getConstant(C, dl, N1.getValueType()),
4505                               NewCC);
4506         }
4507       }
4508     }
4509 
4510     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4511       if (C1 == MinVal)
4512         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4513 
4514       // TODO: Support this for vectors after legalize ops.
4515       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4516         // Canonicalize setlt X, Max --> setne X, Max
4517         if (C1 == MaxVal)
4518           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4519 
4520         // If we have setult X, 1, turn it into seteq X, 0
4521         if (C1 == MinVal+1)
4522           return DAG.getSetCC(dl, VT, N0,
4523                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4524                               ISD::SETEQ);
4525       }
4526     }
4527 
4528     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4529       if (C1 == MaxVal)
4530         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4531 
4532       // TODO: Support this for vectors after legalize ops.
4533       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4534         // Canonicalize setgt X, Min --> setne X, Min
4535         if (C1 == MinVal)
4536           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4537 
4538         // If we have setugt X, Max-1, turn it into seteq X, Max
4539         if (C1 == MaxVal-1)
4540           return DAG.getSetCC(dl, VT, N0,
4541                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4542                               ISD::SETEQ);
4543       }
4544     }
4545 
4546     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4547       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4548       if (C1.isZero())
4549         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4550                 VT, N0, N1, Cond, DCI, dl))
4551           return CC;
4552 
4553       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4554       // For example, when high 32-bits of i64 X are known clear:
4555       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4556       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4557       bool CmpZero = N1C->getAPIntValue().isZero();
4558       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4559       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4560         // Match or(lo,shl(hi,bw/2)) pattern.
4561         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4562           unsigned EltBits = V.getScalarValueSizeInBits();
4563           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4564             return false;
4565           SDValue LHS = V.getOperand(0);
4566           SDValue RHS = V.getOperand(1);
4567           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4568           // Unshifted element must have zero upperbits.
4569           if (RHS.getOpcode() == ISD::SHL &&
4570               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4571               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4572               DAG.MaskedValueIsZero(LHS, HiBits)) {
4573             Lo = LHS;
4574             Hi = RHS.getOperand(0);
4575             return true;
4576           }
4577           if (LHS.getOpcode() == ISD::SHL &&
4578               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4579               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4580               DAG.MaskedValueIsZero(RHS, HiBits)) {
4581             Lo = RHS;
4582             Hi = LHS.getOperand(0);
4583             return true;
4584           }
4585           return false;
4586         };
4587 
4588         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4589           unsigned EltBits = N0.getScalarValueSizeInBits();
4590           unsigned HalfBits = EltBits / 2;
4591           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4592           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4593           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4594           SDValue NewN0 =
4595               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4596           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4597           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4598         };
4599 
4600         SDValue Lo, Hi;
4601         if (IsConcat(N0, Lo, Hi))
4602           return MergeConcat(Lo, Hi);
4603 
4604         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4605           SDValue Lo0, Lo1, Hi0, Hi1;
4606           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4607               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4608             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4609                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4610           }
4611         }
4612       }
4613     }
4614 
4615     // If we have "setcc X, C0", check to see if we can shrink the immediate
4616     // by changing cc.
4617     // TODO: Support this for vectors after legalize ops.
4618     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4619       // SETUGT X, SINTMAX  -> SETLT X, 0
4620       // SETUGE X, SINTMIN -> SETLT X, 0
4621       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4622           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4623         return DAG.getSetCC(dl, VT, N0,
4624                             DAG.getConstant(0, dl, N1.getValueType()),
4625                             ISD::SETLT);
4626 
4627       // SETULT X, SINTMIN  -> SETGT X, -1
4628       // SETULE X, SINTMAX  -> SETGT X, -1
4629       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4630           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4631         return DAG.getSetCC(dl, VT, N0,
4632                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4633                             ISD::SETGT);
4634     }
4635   }
4636 
4637   // Back to non-vector simplifications.
4638   // TODO: Can we do these for vector splats?
4639   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4640     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4641     const APInt &C1 = N1C->getAPIntValue();
4642     EVT ShValTy = N0.getValueType();
4643 
4644     // Fold bit comparisons when we can. This will result in an
4645     // incorrect value when boolean false is negative one, unless
4646     // the bitsize is 1 in which case the false value is the same
4647     // in practice regardless of the representation.
4648     if ((VT.getSizeInBits() == 1 ||
4649          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4650         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4651         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4652         N0.getOpcode() == ISD::AND) {
4653       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4654         EVT ShiftTy =
4655             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4656         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4657           // Perform the xform if the AND RHS is a single bit.
4658           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4659           if (AndRHS->getAPIntValue().isPowerOf2() &&
4660               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4661             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4662                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4663                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4664           }
4665         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4666           // (X & 8) == 8  -->  (X & 8) >> 3
4667           // Perform the xform if C1 is a single bit.
4668           unsigned ShCt = C1.logBase2();
4669           if (C1.isPowerOf2() &&
4670               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4671             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4672                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4673                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4674           }
4675         }
4676       }
4677     }
4678 
4679     if (C1.getMinSignedBits() <= 64 &&
4680         !isLegalICmpImmediate(C1.getSExtValue())) {
4681       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4682       // (X & -256) == 256 -> (X >> 8) == 1
4683       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4684           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4685         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4686           const APInt &AndRHSC = AndRHS->getAPIntValue();
4687           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4688             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4689             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4690               SDValue Shift =
4691                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4692                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4693               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4694               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4695             }
4696           }
4697         }
4698       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4699                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4700         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4701         // X <  0x100000000 -> (X >> 32) <  1
4702         // X >= 0x100000000 -> (X >> 32) >= 1
4703         // X <= 0x0ffffffff -> (X >> 32) <  1
4704         // X >  0x0ffffffff -> (X >> 32) >= 1
4705         unsigned ShiftBits;
4706         APInt NewC = C1;
4707         ISD::CondCode NewCond = Cond;
4708         if (AdjOne) {
4709           ShiftBits = C1.countTrailingOnes();
4710           NewC = NewC + 1;
4711           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4712         } else {
4713           ShiftBits = C1.countTrailingZeros();
4714         }
4715         NewC.lshrInPlace(ShiftBits);
4716         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4717             isLegalICmpImmediate(NewC.getSExtValue()) &&
4718             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4719           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4720                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4721           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4722           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4723         }
4724       }
4725     }
4726   }
4727 
4728   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4729     auto *CFP = cast<ConstantFPSDNode>(N1);
4730     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4731 
4732     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4733     // constant if knowing that the operand is non-nan is enough.  We prefer to
4734     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4735     // materialize 0.0.
4736     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4737       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4738 
4739     // setcc (fneg x), C -> setcc swap(pred) x, -C
4740     if (N0.getOpcode() == ISD::FNEG) {
4741       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4742       if (DCI.isBeforeLegalizeOps() ||
4743           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4744         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4745         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4746       }
4747     }
4748 
4749     // If the condition is not legal, see if we can find an equivalent one
4750     // which is legal.
4751     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4752       // If the comparison was an awkward floating-point == or != and one of
4753       // the comparison operands is infinity or negative infinity, convert the
4754       // condition to a less-awkward <= or >=.
4755       if (CFP->getValueAPF().isInfinity()) {
4756         bool IsNegInf = CFP->getValueAPF().isNegative();
4757         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4758         switch (Cond) {
4759         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4760         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4761         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4762         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4763         default: break;
4764         }
4765         if (NewCond != ISD::SETCC_INVALID &&
4766             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4767           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4768       }
4769     }
4770   }
4771 
4772   if (N0 == N1) {
4773     // The sext(setcc()) => setcc() optimization relies on the appropriate
4774     // constant being emitted.
4775     assert(!N0.getValueType().isInteger() &&
4776            "Integer types should be handled by FoldSetCC");
4777 
4778     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4779     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4780     if (UOF == 2) // FP operators that are undefined on NaNs.
4781       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4782     if (UOF == unsigned(EqTrue))
4783       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4784     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4785     // if it is not already.
4786     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4787     if (NewCond != Cond &&
4788         (DCI.isBeforeLegalizeOps() ||
4789                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4790       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4791   }
4792 
4793   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4794       N0.getValueType().isInteger()) {
4795     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4796         N0.getOpcode() == ISD::XOR) {
4797       // Simplify (X+Y) == (X+Z) -->  Y == Z
4798       if (N0.getOpcode() == N1.getOpcode()) {
4799         if (N0.getOperand(0) == N1.getOperand(0))
4800           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4801         if (N0.getOperand(1) == N1.getOperand(1))
4802           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4803         if (isCommutativeBinOp(N0.getOpcode())) {
4804           // If X op Y == Y op X, try other combinations.
4805           if (N0.getOperand(0) == N1.getOperand(1))
4806             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4807                                 Cond);
4808           if (N0.getOperand(1) == N1.getOperand(0))
4809             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4810                                 Cond);
4811         }
4812       }
4813 
4814       // If RHS is a legal immediate value for a compare instruction, we need
4815       // to be careful about increasing register pressure needlessly.
4816       bool LegalRHSImm = false;
4817 
4818       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4819         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4820           // Turn (X+C1) == C2 --> X == C2-C1
4821           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4822             return DAG.getSetCC(
4823                 dl, VT, N0.getOperand(0),
4824                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4825                                 dl, N0.getValueType()),
4826                 Cond);
4827 
4828           // Turn (X^C1) == C2 --> X == C1^C2
4829           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4830             return DAG.getSetCC(
4831                 dl, VT, N0.getOperand(0),
4832                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4833                                 dl, N0.getValueType()),
4834                 Cond);
4835         }
4836 
4837         // Turn (C1-X) == C2 --> X == C1-C2
4838         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4839           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4840             return DAG.getSetCC(
4841                 dl, VT, N0.getOperand(1),
4842                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4843                                 dl, N0.getValueType()),
4844                 Cond);
4845 
4846         // Could RHSC fold directly into a compare?
4847         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4848           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4849       }
4850 
4851       // (X+Y) == X --> Y == 0 and similar folds.
4852       // Don't do this if X is an immediate that can fold into a cmp
4853       // instruction and X+Y has other uses. It could be an induction variable
4854       // chain, and the transform would increase register pressure.
4855       if (!LegalRHSImm || N0.hasOneUse())
4856         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4857           return V;
4858     }
4859 
4860     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4861         N1.getOpcode() == ISD::XOR)
4862       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4863         return V;
4864 
4865     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4866       return V;
4867   }
4868 
4869   // Fold remainder of division by a constant.
4870   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4871       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4872     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4873 
4874     // When division is cheap or optimizing for minimum size,
4875     // fall through to DIVREM creation by skipping this fold.
4876     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4877       if (N0.getOpcode() == ISD::UREM) {
4878         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4879           return Folded;
4880       } else if (N0.getOpcode() == ISD::SREM) {
4881         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4882           return Folded;
4883       }
4884     }
4885   }
4886 
4887   // Fold away ALL boolean setcc's.
4888   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4889     SDValue Temp;
4890     switch (Cond) {
4891     default: llvm_unreachable("Unknown integer setcc!");
4892     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4893       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4894       N0 = DAG.getNOT(dl, Temp, OpVT);
4895       if (!DCI.isCalledByLegalizer())
4896         DCI.AddToWorklist(Temp.getNode());
4897       break;
4898     case ISD::SETNE:  // X != Y   -->  (X^Y)
4899       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4900       break;
4901     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4902     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4903       Temp = DAG.getNOT(dl, N0, OpVT);
4904       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4905       if (!DCI.isCalledByLegalizer())
4906         DCI.AddToWorklist(Temp.getNode());
4907       break;
4908     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4909     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4910       Temp = DAG.getNOT(dl, N1, OpVT);
4911       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4912       if (!DCI.isCalledByLegalizer())
4913         DCI.AddToWorklist(Temp.getNode());
4914       break;
4915     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4916     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4917       Temp = DAG.getNOT(dl, N0, OpVT);
4918       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4919       if (!DCI.isCalledByLegalizer())
4920         DCI.AddToWorklist(Temp.getNode());
4921       break;
4922     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4923     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4924       Temp = DAG.getNOT(dl, N1, OpVT);
4925       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4926       break;
4927     }
4928     if (VT.getScalarType() != MVT::i1) {
4929       if (!DCI.isCalledByLegalizer())
4930         DCI.AddToWorklist(N0.getNode());
4931       // FIXME: If running after legalize, we probably can't do this.
4932       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4933       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4934     }
4935     return N0;
4936   }
4937 
4938   // Could not fold it.
4939   return SDValue();
4940 }
4941 
4942 /// Returns true (and the GlobalValue and the offset) if the node is a
4943 /// GlobalAddress + offset.
4944 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4945                                     int64_t &Offset) const {
4946 
4947   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4948 
4949   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4950     GA = GASD->getGlobal();
4951     Offset += GASD->getOffset();
4952     return true;
4953   }
4954 
4955   if (N->getOpcode() == ISD::ADD) {
4956     SDValue N1 = N->getOperand(0);
4957     SDValue N2 = N->getOperand(1);
4958     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4959       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4960         Offset += V->getSExtValue();
4961         return true;
4962       }
4963     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4964       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4965         Offset += V->getSExtValue();
4966         return true;
4967       }
4968     }
4969   }
4970 
4971   return false;
4972 }
4973 
4974 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4975                                           DAGCombinerInfo &DCI) const {
4976   // Default implementation: no optimization.
4977   return SDValue();
4978 }
4979 
4980 //===----------------------------------------------------------------------===//
4981 //  Inline Assembler Implementation Methods
4982 //===----------------------------------------------------------------------===//
4983 
4984 TargetLowering::ConstraintType
4985 TargetLowering::getConstraintType(StringRef Constraint) const {
4986   unsigned S = Constraint.size();
4987 
4988   if (S == 1) {
4989     switch (Constraint[0]) {
4990     default: break;
4991     case 'r':
4992       return C_RegisterClass;
4993     case 'm': // memory
4994     case 'o': // offsetable
4995     case 'V': // not offsetable
4996       return C_Memory;
4997     case 'p': // Address.
4998       return C_Address;
4999     case 'n': // Simple Integer
5000     case 'E': // Floating Point Constant
5001     case 'F': // Floating Point Constant
5002       return C_Immediate;
5003     case 'i': // Simple Integer or Relocatable Constant
5004     case 's': // Relocatable Constant
5005     case 'X': // Allow ANY value.
5006     case 'I': // Target registers.
5007     case 'J':
5008     case 'K':
5009     case 'L':
5010     case 'M':
5011     case 'N':
5012     case 'O':
5013     case 'P':
5014     case '<':
5015     case '>':
5016       return C_Other;
5017     }
5018   }
5019 
5020   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5021     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5022       return C_Memory;
5023     return C_Register;
5024   }
5025   return C_Unknown;
5026 }
5027 
5028 /// Try to replace an X constraint, which matches anything, with another that
5029 /// has more specific requirements based on the type of the corresponding
5030 /// operand.
5031 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5032   if (ConstraintVT.isInteger())
5033     return "r";
5034   if (ConstraintVT.isFloatingPoint())
5035     return "f"; // works for many targets
5036   return nullptr;
5037 }
5038 
5039 SDValue TargetLowering::LowerAsmOutputForConstraint(
5040     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5041     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5042   return SDValue();
5043 }
5044 
5045 /// Lower the specified operand into the Ops vector.
5046 /// If it is invalid, don't add anything to Ops.
5047 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5048                                                   std::string &Constraint,
5049                                                   std::vector<SDValue> &Ops,
5050                                                   SelectionDAG &DAG) const {
5051 
5052   if (Constraint.length() > 1) return;
5053 
5054   char ConstraintLetter = Constraint[0];
5055   switch (ConstraintLetter) {
5056   default: break;
5057   case 'X':    // Allows any operand
5058   case 'i':    // Simple Integer or Relocatable Constant
5059   case 'n':    // Simple Integer
5060   case 's': {  // Relocatable Constant
5061 
5062     ConstantSDNode *C;
5063     uint64_t Offset = 0;
5064 
5065     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5066     // etc., since getelementpointer is variadic. We can't use
5067     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5068     // while in this case the GA may be furthest from the root node which is
5069     // likely an ISD::ADD.
5070     while (true) {
5071       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5072         // gcc prints these as sign extended.  Sign extend value to 64 bits
5073         // now; without this it would get ZExt'd later in
5074         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5075         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5076         BooleanContent BCont = getBooleanContents(MVT::i64);
5077         ISD::NodeType ExtOpc =
5078             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5079         int64_t ExtVal =
5080             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5081         Ops.push_back(
5082             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5083         return;
5084       }
5085       if (ConstraintLetter != 'n') {
5086         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5087           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5088                                                    GA->getValueType(0),
5089                                                    Offset + GA->getOffset()));
5090           return;
5091         }
5092         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5093           Ops.push_back(DAG.getTargetBlockAddress(
5094               BA->getBlockAddress(), BA->getValueType(0),
5095               Offset + BA->getOffset(), BA->getTargetFlags()));
5096           return;
5097         }
5098         if (isa<BasicBlockSDNode>(Op)) {
5099           Ops.push_back(Op);
5100           return;
5101         }
5102       }
5103       const unsigned OpCode = Op.getOpcode();
5104       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5105         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5106           Op = Op.getOperand(1);
5107         // Subtraction is not commutative.
5108         else if (OpCode == ISD::ADD &&
5109                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5110           Op = Op.getOperand(0);
5111         else
5112           return;
5113         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5114         continue;
5115       }
5116       return;
5117     }
5118     break;
5119   }
5120   }
5121 }
5122 
5123 std::pair<unsigned, const TargetRegisterClass *>
5124 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5125                                              StringRef Constraint,
5126                                              MVT VT) const {
5127   if (Constraint.empty() || Constraint[0] != '{')
5128     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5129   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5130 
5131   // Remove the braces from around the name.
5132   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5133 
5134   std::pair<unsigned, const TargetRegisterClass *> R =
5135       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5136 
5137   // Figure out which register class contains this reg.
5138   for (const TargetRegisterClass *RC : RI->regclasses()) {
5139     // If none of the value types for this register class are valid, we
5140     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5141     if (!isLegalRC(*RI, *RC))
5142       continue;
5143 
5144     for (const MCPhysReg &PR : *RC) {
5145       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5146         std::pair<unsigned, const TargetRegisterClass *> S =
5147             std::make_pair(PR, RC);
5148 
5149         // If this register class has the requested value type, return it,
5150         // otherwise keep searching and return the first class found
5151         // if no other is found which explicitly has the requested type.
5152         if (RI->isTypeLegalForClass(*RC, VT))
5153           return S;
5154         if (!R.second)
5155           R = S;
5156       }
5157     }
5158   }
5159 
5160   return R;
5161 }
5162 
5163 //===----------------------------------------------------------------------===//
5164 // Constraint Selection.
5165 
5166 /// Return true of this is an input operand that is a matching constraint like
5167 /// "4".
5168 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5169   assert(!ConstraintCode.empty() && "No known constraint!");
5170   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5171 }
5172 
5173 /// If this is an input matching constraint, this method returns the output
5174 /// operand it matches.
5175 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5176   assert(!ConstraintCode.empty() && "No known constraint!");
5177   return atoi(ConstraintCode.c_str());
5178 }
5179 
5180 /// Split up the constraint string from the inline assembly value into the
5181 /// specific constraints and their prefixes, and also tie in the associated
5182 /// operand values.
5183 /// If this returns an empty vector, and if the constraint string itself
5184 /// isn't empty, there was an error parsing.
5185 TargetLowering::AsmOperandInfoVector
5186 TargetLowering::ParseConstraints(const DataLayout &DL,
5187                                  const TargetRegisterInfo *TRI,
5188                                  const CallBase &Call) const {
5189   /// Information about all of the constraints.
5190   AsmOperandInfoVector ConstraintOperands;
5191   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5192   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5193 
5194   // Do a prepass over the constraints, canonicalizing them, and building up the
5195   // ConstraintOperands list.
5196   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5197   unsigned ResNo = 0; // ResNo - The result number of the next output.
5198 
5199   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5200     ConstraintOperands.emplace_back(std::move(CI));
5201     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5202 
5203     // Update multiple alternative constraint count.
5204     if (OpInfo.multipleAlternatives.size() > maCount)
5205       maCount = OpInfo.multipleAlternatives.size();
5206 
5207     OpInfo.ConstraintVT = MVT::Other;
5208 
5209     // Compute the value type for each operand.
5210     switch (OpInfo.Type) {
5211     case InlineAsm::isOutput:
5212       // Indirect outputs just consume an argument.
5213       if (OpInfo.isIndirect) {
5214         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5215         break;
5216       }
5217 
5218       // The return value of the call is this value.  As such, there is no
5219       // corresponding argument.
5220       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5221       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5222         OpInfo.ConstraintVT =
5223             getSimpleValueType(DL, STy->getElementType(ResNo));
5224       } else {
5225         assert(ResNo == 0 && "Asm only has one result!");
5226         OpInfo.ConstraintVT =
5227             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5228       }
5229       ++ResNo;
5230       break;
5231     case InlineAsm::isInput:
5232       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5233       break;
5234     case InlineAsm::isClobber:
5235       // Nothing to do.
5236       break;
5237     }
5238 
5239     if (OpInfo.CallOperandVal) {
5240       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5241       if (OpInfo.isIndirect) {
5242         OpTy = Call.getParamElementType(ArgNo);
5243         assert(OpTy && "Indirect operand must have elementtype attribute");
5244       }
5245 
5246       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5247       if (StructType *STy = dyn_cast<StructType>(OpTy))
5248         if (STy->getNumElements() == 1)
5249           OpTy = STy->getElementType(0);
5250 
5251       // If OpTy is not a single value, it may be a struct/union that we
5252       // can tile with integers.
5253       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5254         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5255         switch (BitSize) {
5256         default: break;
5257         case 1:
5258         case 8:
5259         case 16:
5260         case 32:
5261         case 64:
5262         case 128:
5263           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5264           break;
5265         }
5266       }
5267 
5268       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5269       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5270       ArgNo++;
5271     }
5272   }
5273 
5274   // If we have multiple alternative constraints, select the best alternative.
5275   if (!ConstraintOperands.empty()) {
5276     if (maCount) {
5277       unsigned bestMAIndex = 0;
5278       int bestWeight = -1;
5279       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5280       int weight = -1;
5281       unsigned maIndex;
5282       // Compute the sums of the weights for each alternative, keeping track
5283       // of the best (highest weight) one so far.
5284       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5285         int weightSum = 0;
5286         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5287              cIndex != eIndex; ++cIndex) {
5288           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5289           if (OpInfo.Type == InlineAsm::isClobber)
5290             continue;
5291 
5292           // If this is an output operand with a matching input operand,
5293           // look up the matching input. If their types mismatch, e.g. one
5294           // is an integer, the other is floating point, or their sizes are
5295           // different, flag it as an maCantMatch.
5296           if (OpInfo.hasMatchingInput()) {
5297             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5298             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5299               if ((OpInfo.ConstraintVT.isInteger() !=
5300                    Input.ConstraintVT.isInteger()) ||
5301                   (OpInfo.ConstraintVT.getSizeInBits() !=
5302                    Input.ConstraintVT.getSizeInBits())) {
5303                 weightSum = -1; // Can't match.
5304                 break;
5305               }
5306             }
5307           }
5308           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5309           if (weight == -1) {
5310             weightSum = -1;
5311             break;
5312           }
5313           weightSum += weight;
5314         }
5315         // Update best.
5316         if (weightSum > bestWeight) {
5317           bestWeight = weightSum;
5318           bestMAIndex = maIndex;
5319         }
5320       }
5321 
5322       // Now select chosen alternative in each constraint.
5323       for (AsmOperandInfo &cInfo : ConstraintOperands)
5324         if (cInfo.Type != InlineAsm::isClobber)
5325           cInfo.selectAlternative(bestMAIndex);
5326     }
5327   }
5328 
5329   // Check and hook up tied operands, choose constraint code to use.
5330   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5331        cIndex != eIndex; ++cIndex) {
5332     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5333 
5334     // If this is an output operand with a matching input operand, look up the
5335     // matching input. If their types mismatch, e.g. one is an integer, the
5336     // other is floating point, or their sizes are different, flag it as an
5337     // error.
5338     if (OpInfo.hasMatchingInput()) {
5339       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5340 
5341       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5342         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5343             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5344                                          OpInfo.ConstraintVT);
5345         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5346             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5347                                          Input.ConstraintVT);
5348         if ((OpInfo.ConstraintVT.isInteger() !=
5349              Input.ConstraintVT.isInteger()) ||
5350             (MatchRC.second != InputRC.second)) {
5351           report_fatal_error("Unsupported asm: input constraint"
5352                              " with a matching output constraint of"
5353                              " incompatible type!");
5354         }
5355       }
5356     }
5357   }
5358 
5359   return ConstraintOperands;
5360 }
5361 
5362 /// Return an integer indicating how general CT is.
5363 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5364   switch (CT) {
5365   case TargetLowering::C_Immediate:
5366   case TargetLowering::C_Other:
5367   case TargetLowering::C_Unknown:
5368     return 0;
5369   case TargetLowering::C_Register:
5370     return 1;
5371   case TargetLowering::C_RegisterClass:
5372     return 2;
5373   case TargetLowering::C_Memory:
5374   case TargetLowering::C_Address:
5375     return 3;
5376   }
5377   llvm_unreachable("Invalid constraint type");
5378 }
5379 
5380 /// Examine constraint type and operand type and determine a weight value.
5381 /// This object must already have been set up with the operand type
5382 /// and the current alternative constraint selected.
5383 TargetLowering::ConstraintWeight
5384   TargetLowering::getMultipleConstraintMatchWeight(
5385     AsmOperandInfo &info, int maIndex) const {
5386   InlineAsm::ConstraintCodeVector *rCodes;
5387   if (maIndex >= (int)info.multipleAlternatives.size())
5388     rCodes = &info.Codes;
5389   else
5390     rCodes = &info.multipleAlternatives[maIndex].Codes;
5391   ConstraintWeight BestWeight = CW_Invalid;
5392 
5393   // Loop over the options, keeping track of the most general one.
5394   for (const std::string &rCode : *rCodes) {
5395     ConstraintWeight weight =
5396         getSingleConstraintMatchWeight(info, rCode.c_str());
5397     if (weight > BestWeight)
5398       BestWeight = weight;
5399   }
5400 
5401   return BestWeight;
5402 }
5403 
5404 /// Examine constraint type and operand type and determine a weight value.
5405 /// This object must already have been set up with the operand type
5406 /// and the current alternative constraint selected.
5407 TargetLowering::ConstraintWeight
5408   TargetLowering::getSingleConstraintMatchWeight(
5409     AsmOperandInfo &info, const char *constraint) const {
5410   ConstraintWeight weight = CW_Invalid;
5411   Value *CallOperandVal = info.CallOperandVal;
5412     // If we don't have a value, we can't do a match,
5413     // but allow it at the lowest weight.
5414   if (!CallOperandVal)
5415     return CW_Default;
5416   // Look at the constraint type.
5417   switch (*constraint) {
5418     case 'i': // immediate integer.
5419     case 'n': // immediate integer with a known value.
5420       if (isa<ConstantInt>(CallOperandVal))
5421         weight = CW_Constant;
5422       break;
5423     case 's': // non-explicit intregal immediate.
5424       if (isa<GlobalValue>(CallOperandVal))
5425         weight = CW_Constant;
5426       break;
5427     case 'E': // immediate float if host format.
5428     case 'F': // immediate float.
5429       if (isa<ConstantFP>(CallOperandVal))
5430         weight = CW_Constant;
5431       break;
5432     case '<': // memory operand with autodecrement.
5433     case '>': // memory operand with autoincrement.
5434     case 'm': // memory operand.
5435     case 'o': // offsettable memory operand
5436     case 'V': // non-offsettable memory operand
5437       weight = CW_Memory;
5438       break;
5439     case 'r': // general register.
5440     case 'g': // general register, memory operand or immediate integer.
5441               // note: Clang converts "g" to "imr".
5442       if (CallOperandVal->getType()->isIntegerTy())
5443         weight = CW_Register;
5444       break;
5445     case 'X': // any operand.
5446   default:
5447     weight = CW_Default;
5448     break;
5449   }
5450   return weight;
5451 }
5452 
5453 /// If there are multiple different constraints that we could pick for this
5454 /// operand (e.g. "imr") try to pick the 'best' one.
5455 /// This is somewhat tricky: constraints fall into four classes:
5456 ///    Other         -> immediates and magic values
5457 ///    Register      -> one specific register
5458 ///    RegisterClass -> a group of regs
5459 ///    Memory        -> memory
5460 /// Ideally, we would pick the most specific constraint possible: if we have
5461 /// something that fits into a register, we would pick it.  The problem here
5462 /// is that if we have something that could either be in a register or in
5463 /// memory that use of the register could cause selection of *other*
5464 /// operands to fail: they might only succeed if we pick memory.  Because of
5465 /// this the heuristic we use is:
5466 ///
5467 ///  1) If there is an 'other' constraint, and if the operand is valid for
5468 ///     that constraint, use it.  This makes us take advantage of 'i'
5469 ///     constraints when available.
5470 ///  2) Otherwise, pick the most general constraint present.  This prefers
5471 ///     'm' over 'r', for example.
5472 ///
5473 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5474                              const TargetLowering &TLI,
5475                              SDValue Op, SelectionDAG *DAG) {
5476   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5477   unsigned BestIdx = 0;
5478   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5479   int BestGenerality = -1;
5480 
5481   // Loop over the options, keeping track of the most general one.
5482   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5483     TargetLowering::ConstraintType CType =
5484       TLI.getConstraintType(OpInfo.Codes[i]);
5485 
5486     // Indirect 'other' or 'immediate' constraints are not allowed.
5487     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5488                                CType == TargetLowering::C_Register ||
5489                                CType == TargetLowering::C_RegisterClass))
5490       continue;
5491 
5492     // If this is an 'other' or 'immediate' constraint, see if the operand is
5493     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5494     // the operand is an integer in the range [0..31] we want to use I (saving a
5495     // load of a register), otherwise we must use 'r'.
5496     if ((CType == TargetLowering::C_Other ||
5497          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5498       assert(OpInfo.Codes[i].size() == 1 &&
5499              "Unhandled multi-letter 'other' constraint");
5500       std::vector<SDValue> ResultOps;
5501       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5502                                        ResultOps, *DAG);
5503       if (!ResultOps.empty()) {
5504         BestType = CType;
5505         BestIdx = i;
5506         break;
5507       }
5508     }
5509 
5510     // Things with matching constraints can only be registers, per gcc
5511     // documentation.  This mainly affects "g" constraints.
5512     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5513       continue;
5514 
5515     // This constraint letter is more general than the previous one, use it.
5516     int Generality = getConstraintGenerality(CType);
5517     if (Generality > BestGenerality) {
5518       BestType = CType;
5519       BestIdx = i;
5520       BestGenerality = Generality;
5521     }
5522   }
5523 
5524   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5525   OpInfo.ConstraintType = BestType;
5526 }
5527 
5528 /// Determines the constraint code and constraint type to use for the specific
5529 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5530 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5531                                             SDValue Op,
5532                                             SelectionDAG *DAG) const {
5533   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5534 
5535   // Single-letter constraints ('r') are very common.
5536   if (OpInfo.Codes.size() == 1) {
5537     OpInfo.ConstraintCode = OpInfo.Codes[0];
5538     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5539   } else {
5540     ChooseConstraint(OpInfo, *this, Op, DAG);
5541   }
5542 
5543   // 'X' matches anything.
5544   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5545     // Constants are handled elsewhere.  For Functions, the type here is the
5546     // type of the result, which is not what we want to look at; leave them
5547     // alone.
5548     Value *v = OpInfo.CallOperandVal;
5549     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5550       return;
5551     }
5552 
5553     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5554       OpInfo.ConstraintCode = "i";
5555       return;
5556     }
5557 
5558     // Otherwise, try to resolve it to something we know about by looking at
5559     // the actual operand type.
5560     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5561       OpInfo.ConstraintCode = Repl;
5562       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5563     }
5564   }
5565 }
5566 
5567 /// Given an exact SDIV by a constant, create a multiplication
5568 /// with the multiplicative inverse of the constant.
5569 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5570                               const SDLoc &dl, SelectionDAG &DAG,
5571                               SmallVectorImpl<SDNode *> &Created) {
5572   SDValue Op0 = N->getOperand(0);
5573   SDValue Op1 = N->getOperand(1);
5574   EVT VT = N->getValueType(0);
5575   EVT SVT = VT.getScalarType();
5576   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5577   EVT ShSVT = ShVT.getScalarType();
5578 
5579   bool UseSRA = false;
5580   SmallVector<SDValue, 16> Shifts, Factors;
5581 
5582   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5583     if (C->isZero())
5584       return false;
5585     APInt Divisor = C->getAPIntValue();
5586     unsigned Shift = Divisor.countTrailingZeros();
5587     if (Shift) {
5588       Divisor.ashrInPlace(Shift);
5589       UseSRA = true;
5590     }
5591     // Calculate the multiplicative inverse, using Newton's method.
5592     APInt t;
5593     APInt Factor = Divisor;
5594     while ((t = Divisor * Factor) != 1)
5595       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5596     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5597     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5598     return true;
5599   };
5600 
5601   // Collect all magic values from the build vector.
5602   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5603     return SDValue();
5604 
5605   SDValue Shift, Factor;
5606   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5607     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5608     Factor = DAG.getBuildVector(VT, dl, Factors);
5609   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5610     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5611            "Expected matchUnaryPredicate to return one element for scalable "
5612            "vectors");
5613     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5614     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5615   } else {
5616     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5617     Shift = Shifts[0];
5618     Factor = Factors[0];
5619   }
5620 
5621   SDValue Res = Op0;
5622 
5623   // Shift the value upfront if it is even, so the LSB is one.
5624   if (UseSRA) {
5625     // TODO: For UDIV use SRL instead of SRA.
5626     SDNodeFlags Flags;
5627     Flags.setExact(true);
5628     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5629     Created.push_back(Res.getNode());
5630   }
5631 
5632   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5633 }
5634 
5635 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5636                               SelectionDAG &DAG,
5637                               SmallVectorImpl<SDNode *> &Created) const {
5638   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5640   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5641     return SDValue(N, 0); // Lower SDIV as SDIV
5642   return SDValue();
5643 }
5644 
5645 SDValue
5646 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5647                               SelectionDAG &DAG,
5648                               SmallVectorImpl<SDNode *> &Created) const {
5649   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5651   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5652     return SDValue(N, 0); // Lower SREM as SREM
5653   return SDValue();
5654 }
5655 
5656 /// Given an ISD::SDIV node expressing a divide by constant,
5657 /// return a DAG expression to select that will generate the same value by
5658 /// multiplying by a magic number.
5659 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5660 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5661                                   bool IsAfterLegalization,
5662                                   SmallVectorImpl<SDNode *> &Created) const {
5663   SDLoc dl(N);
5664   EVT VT = N->getValueType(0);
5665   EVT SVT = VT.getScalarType();
5666   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5667   EVT ShSVT = ShVT.getScalarType();
5668   unsigned EltBits = VT.getScalarSizeInBits();
5669   EVT MulVT;
5670 
5671   // Check to see if we can do this.
5672   // FIXME: We should be more aggressive here.
5673   if (!isTypeLegal(VT)) {
5674     // Limit this to simple scalars for now.
5675     if (VT.isVector() || !VT.isSimple())
5676       return SDValue();
5677 
5678     // If this type will be promoted to a large enough type with a legal
5679     // multiply operation, we can go ahead and do this transform.
5680     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5681       return SDValue();
5682 
5683     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5684     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5685         !isOperationLegal(ISD::MUL, MulVT))
5686       return SDValue();
5687   }
5688 
5689   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5690   if (N->getFlags().hasExact())
5691     return BuildExactSDIV(*this, N, dl, DAG, Created);
5692 
5693   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5694 
5695   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5696     if (C->isZero())
5697       return false;
5698 
5699     const APInt &Divisor = C->getAPIntValue();
5700     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5701     int NumeratorFactor = 0;
5702     int ShiftMask = -1;
5703 
5704     if (Divisor.isOne() || Divisor.isAllOnes()) {
5705       // If d is +1/-1, we just multiply the numerator by +1/-1.
5706       NumeratorFactor = Divisor.getSExtValue();
5707       magics.Magic = 0;
5708       magics.ShiftAmount = 0;
5709       ShiftMask = 0;
5710     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5711       // If d > 0 and m < 0, add the numerator.
5712       NumeratorFactor = 1;
5713     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5714       // If d < 0 and m > 0, subtract the numerator.
5715       NumeratorFactor = -1;
5716     }
5717 
5718     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5719     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5720     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5721     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5722     return true;
5723   };
5724 
5725   SDValue N0 = N->getOperand(0);
5726   SDValue N1 = N->getOperand(1);
5727 
5728   // Collect the shifts / magic values from each element.
5729   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5730     return SDValue();
5731 
5732   SDValue MagicFactor, Factor, Shift, ShiftMask;
5733   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5734     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5735     Factor = DAG.getBuildVector(VT, dl, Factors);
5736     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5737     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5738   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5739     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5740            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5741            "Expected matchUnaryPredicate to return one element for scalable "
5742            "vectors");
5743     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5744     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5745     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5746     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5747   } else {
5748     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5749     MagicFactor = MagicFactors[0];
5750     Factor = Factors[0];
5751     Shift = Shifts[0];
5752     ShiftMask = ShiftMasks[0];
5753   }
5754 
5755   // Multiply the numerator (operand 0) by the magic value.
5756   // FIXME: We should support doing a MUL in a wider type.
5757   auto GetMULHS = [&](SDValue X, SDValue Y) {
5758     // If the type isn't legal, use a wider mul of the the type calculated
5759     // earlier.
5760     if (!isTypeLegal(VT)) {
5761       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5762       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5763       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5764       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5765                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5766       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5767     }
5768 
5769     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5770       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5771     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5772       SDValue LoHi =
5773           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5774       return SDValue(LoHi.getNode(), 1);
5775     }
5776     return SDValue();
5777   };
5778 
5779   SDValue Q = GetMULHS(N0, MagicFactor);
5780   if (!Q)
5781     return SDValue();
5782 
5783   Created.push_back(Q.getNode());
5784 
5785   // (Optionally) Add/subtract the numerator using Factor.
5786   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5787   Created.push_back(Factor.getNode());
5788   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5789   Created.push_back(Q.getNode());
5790 
5791   // Shift right algebraic by shift value.
5792   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5793   Created.push_back(Q.getNode());
5794 
5795   // Extract the sign bit, mask it and add it to the quotient.
5796   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5797   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5798   Created.push_back(T.getNode());
5799   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5800   Created.push_back(T.getNode());
5801   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5802 }
5803 
5804 /// Given an ISD::UDIV node expressing a divide by constant,
5805 /// return a DAG expression to select that will generate the same value by
5806 /// multiplying by a magic number.
5807 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5808 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5809                                   bool IsAfterLegalization,
5810                                   SmallVectorImpl<SDNode *> &Created) const {
5811   SDLoc dl(N);
5812   EVT VT = N->getValueType(0);
5813   EVT SVT = VT.getScalarType();
5814   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5815   EVT ShSVT = ShVT.getScalarType();
5816   unsigned EltBits = VT.getScalarSizeInBits();
5817   EVT MulVT;
5818 
5819   // Check to see if we can do this.
5820   // FIXME: We should be more aggressive here.
5821   if (!isTypeLegal(VT)) {
5822     // Limit this to simple scalars for now.
5823     if (VT.isVector() || !VT.isSimple())
5824       return SDValue();
5825 
5826     // If this type will be promoted to a large enough type with a legal
5827     // multiply operation, we can go ahead and do this transform.
5828     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5829       return SDValue();
5830 
5831     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5832     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5833         !isOperationLegal(ISD::MUL, MulVT))
5834       return SDValue();
5835   }
5836 
5837   bool UseNPQ = false;
5838   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5839 
5840   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5841     if (C->isZero())
5842       return false;
5843     // FIXME: We should use a narrower constant when the upper
5844     // bits are known to be zero.
5845     const APInt& Divisor = C->getAPIntValue();
5846     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5847     unsigned PreShift = 0, PostShift = 0;
5848 
5849     // If the divisor is even, we can avoid using the expensive fixup by
5850     // shifting the divided value upfront.
5851     if (magics.IsAdd != 0 && !Divisor[0]) {
5852       PreShift = Divisor.countTrailingZeros();
5853       // Get magic number for the shifted divisor.
5854       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5855       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5856     }
5857 
5858     APInt Magic = magics.Magic;
5859 
5860     unsigned SelNPQ;
5861     if (magics.IsAdd == 0 || Divisor.isOne()) {
5862       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5863              "We shouldn't generate an undefined shift!");
5864       PostShift = magics.ShiftAmount;
5865       SelNPQ = false;
5866     } else {
5867       PostShift = magics.ShiftAmount - 1;
5868       SelNPQ = true;
5869     }
5870 
5871     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5872     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5873     NPQFactors.push_back(
5874         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5875                                : APInt::getZero(EltBits),
5876                         dl, SVT));
5877     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5878     UseNPQ |= SelNPQ;
5879     return true;
5880   };
5881 
5882   SDValue N0 = N->getOperand(0);
5883   SDValue N1 = N->getOperand(1);
5884 
5885   // Collect the shifts/magic values from each element.
5886   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5887     return SDValue();
5888 
5889   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5890   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5891     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5892     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5893     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5894     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5895   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5896     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5897            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5898            "Expected matchUnaryPredicate to return one for scalable vectors");
5899     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5900     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5901     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5902     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5903   } else {
5904     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5905     PreShift = PreShifts[0];
5906     MagicFactor = MagicFactors[0];
5907     PostShift = PostShifts[0];
5908   }
5909 
5910   SDValue Q = N0;
5911   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5912   Created.push_back(Q.getNode());
5913 
5914   // FIXME: We should support doing a MUL in a wider type.
5915   auto GetMULHU = [&](SDValue X, SDValue Y) {
5916     // If the type isn't legal, use a wider mul of the the type calculated
5917     // earlier.
5918     if (!isTypeLegal(VT)) {
5919       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5920       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5921       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5922       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5923                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5924       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5925     }
5926 
5927     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5928       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5929     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5930       SDValue LoHi =
5931           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5932       return SDValue(LoHi.getNode(), 1);
5933     }
5934     return SDValue(); // No mulhu or equivalent
5935   };
5936 
5937   // Multiply the numerator (operand 0) by the magic value.
5938   Q = GetMULHU(Q, MagicFactor);
5939   if (!Q)
5940     return SDValue();
5941 
5942   Created.push_back(Q.getNode());
5943 
5944   if (UseNPQ) {
5945     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5946     Created.push_back(NPQ.getNode());
5947 
5948     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5949     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5950     if (VT.isVector())
5951       NPQ = GetMULHU(NPQ, NPQFactor);
5952     else
5953       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5954 
5955     Created.push_back(NPQ.getNode());
5956 
5957     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5958     Created.push_back(Q.getNode());
5959   }
5960 
5961   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5962   Created.push_back(Q.getNode());
5963 
5964   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5965 
5966   SDValue One = DAG.getConstant(1, dl, VT);
5967   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5968   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5969 }
5970 
5971 /// If all values in Values that *don't* match the predicate are same 'splat'
5972 /// value, then replace all values with that splat value.
5973 /// Else, if AlternativeReplacement was provided, then replace all values that
5974 /// do match predicate with AlternativeReplacement value.
5975 static void
5976 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5977                           std::function<bool(SDValue)> Predicate,
5978                           SDValue AlternativeReplacement = SDValue()) {
5979   SDValue Replacement;
5980   // Is there a value for which the Predicate does *NOT* match? What is it?
5981   auto SplatValue = llvm::find_if_not(Values, Predicate);
5982   if (SplatValue != Values.end()) {
5983     // Does Values consist only of SplatValue's and values matching Predicate?
5984     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5985           return Value == *SplatValue || Predicate(Value);
5986         })) // Then we shall replace values matching predicate with SplatValue.
5987       Replacement = *SplatValue;
5988   }
5989   if (!Replacement) {
5990     // Oops, we did not find the "baseline" splat value.
5991     if (!AlternativeReplacement)
5992       return; // Nothing to do.
5993     // Let's replace with provided value then.
5994     Replacement = AlternativeReplacement;
5995   }
5996   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5997 }
5998 
5999 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6000 /// where the divisor is constant and the comparison target is zero,
6001 /// return a DAG expression that will generate the same comparison result
6002 /// using only multiplications, additions and shifts/rotations.
6003 /// Ref: "Hacker's Delight" 10-17.
6004 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6005                                         SDValue CompTargetNode,
6006                                         ISD::CondCode Cond,
6007                                         DAGCombinerInfo &DCI,
6008                                         const SDLoc &DL) const {
6009   SmallVector<SDNode *, 5> Built;
6010   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6011                                          DCI, DL, Built)) {
6012     for (SDNode *N : Built)
6013       DCI.AddToWorklist(N);
6014     return Folded;
6015   }
6016 
6017   return SDValue();
6018 }
6019 
6020 SDValue
6021 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6022                                   SDValue CompTargetNode, ISD::CondCode Cond,
6023                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6024                                   SmallVectorImpl<SDNode *> &Created) const {
6025   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6026   // - D must be constant, with D = D0 * 2^K where D0 is odd
6027   // - P is the multiplicative inverse of D0 modulo 2^W
6028   // - Q = floor(((2^W) - 1) / D)
6029   // where W is the width of the common type of N and D.
6030   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6031          "Only applicable for (in)equality comparisons.");
6032 
6033   SelectionDAG &DAG = DCI.DAG;
6034 
6035   EVT VT = REMNode.getValueType();
6036   EVT SVT = VT.getScalarType();
6037   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6038   EVT ShSVT = ShVT.getScalarType();
6039 
6040   // If MUL is unavailable, we cannot proceed in any case.
6041   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6042     return SDValue();
6043 
6044   bool ComparingWithAllZeros = true;
6045   bool AllComparisonsWithNonZerosAreTautological = true;
6046   bool HadTautologicalLanes = false;
6047   bool AllLanesAreTautological = true;
6048   bool HadEvenDivisor = false;
6049   bool AllDivisorsArePowerOfTwo = true;
6050   bool HadTautologicalInvertedLanes = false;
6051   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6052 
6053   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6054     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6055     if (CDiv->isZero())
6056       return false;
6057 
6058     const APInt &D = CDiv->getAPIntValue();
6059     const APInt &Cmp = CCmp->getAPIntValue();
6060 
6061     ComparingWithAllZeros &= Cmp.isZero();
6062 
6063     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6064     // if C2 is not less than C1, the comparison is always false.
6065     // But we will only be able to produce the comparison that will give the
6066     // opposive tautological answer. So this lane would need to be fixed up.
6067     bool TautologicalInvertedLane = D.ule(Cmp);
6068     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6069 
6070     // If all lanes are tautological (either all divisors are ones, or divisor
6071     // is not greater than the constant we are comparing with),
6072     // we will prefer to avoid the fold.
6073     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6074     HadTautologicalLanes |= TautologicalLane;
6075     AllLanesAreTautological &= TautologicalLane;
6076 
6077     // If we are comparing with non-zero, we need'll need  to subtract said
6078     // comparison value from the LHS. But there is no point in doing that if
6079     // every lane where we are comparing with non-zero is tautological..
6080     if (!Cmp.isZero())
6081       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6082 
6083     // Decompose D into D0 * 2^K
6084     unsigned K = D.countTrailingZeros();
6085     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6086     APInt D0 = D.lshr(K);
6087 
6088     // D is even if it has trailing zeros.
6089     HadEvenDivisor |= (K != 0);
6090     // D is a power-of-two if D0 is one.
6091     // If all divisors are power-of-two, we will prefer to avoid the fold.
6092     AllDivisorsArePowerOfTwo &= D0.isOne();
6093 
6094     // P = inv(D0, 2^W)
6095     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6096     unsigned W = D.getBitWidth();
6097     APInt P = D0.zext(W + 1)
6098                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6099                   .trunc(W);
6100     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6101     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6102 
6103     // Q = floor((2^W - 1) u/ D)
6104     // R = ((2^W - 1) u% D)
6105     APInt Q, R;
6106     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6107 
6108     // If we are comparing with zero, then that comparison constant is okay,
6109     // else it may need to be one less than that.
6110     if (Cmp.ugt(R))
6111       Q -= 1;
6112 
6113     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6114            "We are expecting that K is always less than all-ones for ShSVT");
6115 
6116     // If the lane is tautological the result can be constant-folded.
6117     if (TautologicalLane) {
6118       // Set P and K amount to a bogus values so we can try to splat them.
6119       P = 0;
6120       K = -1;
6121       // And ensure that comparison constant is tautological,
6122       // it will always compare true/false.
6123       Q = -1;
6124     }
6125 
6126     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6127     KAmts.push_back(
6128         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6129     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6130     return true;
6131   };
6132 
6133   SDValue N = REMNode.getOperand(0);
6134   SDValue D = REMNode.getOperand(1);
6135 
6136   // Collect the values from each element.
6137   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6138     return SDValue();
6139 
6140   // If all lanes are tautological, the result can be constant-folded.
6141   if (AllLanesAreTautological)
6142     return SDValue();
6143 
6144   // If this is a urem by a powers-of-two, avoid the fold since it can be
6145   // best implemented as a bit test.
6146   if (AllDivisorsArePowerOfTwo)
6147     return SDValue();
6148 
6149   SDValue PVal, KVal, QVal;
6150   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6151     if (HadTautologicalLanes) {
6152       // Try to turn PAmts into a splat, since we don't care about the values
6153       // that are currently '0'. If we can't, just keep '0'`s.
6154       turnVectorIntoSplatVector(PAmts, isNullConstant);
6155       // Try to turn KAmts into a splat, since we don't care about the values
6156       // that are currently '-1'. If we can't, change them to '0'`s.
6157       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6158                                 DAG.getConstant(0, DL, ShSVT));
6159     }
6160 
6161     PVal = DAG.getBuildVector(VT, DL, PAmts);
6162     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6163     QVal = DAG.getBuildVector(VT, DL, QAmts);
6164   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6165     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6166            "Expected matchBinaryPredicate to return one element for "
6167            "SPLAT_VECTORs");
6168     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6169     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6170     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6171   } else {
6172     PVal = PAmts[0];
6173     KVal = KAmts[0];
6174     QVal = QAmts[0];
6175   }
6176 
6177   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6178     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6179       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6180     assert(CompTargetNode.getValueType() == N.getValueType() &&
6181            "Expecting that the types on LHS and RHS of comparisons match.");
6182     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6183   }
6184 
6185   // (mul N, P)
6186   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6187   Created.push_back(Op0.getNode());
6188 
6189   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6190   // divisors as a performance improvement, since rotating by 0 is a no-op.
6191   if (HadEvenDivisor) {
6192     // We need ROTR to do this.
6193     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6194       return SDValue();
6195     // UREM: (rotr (mul N, P), K)
6196     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6197     Created.push_back(Op0.getNode());
6198   }
6199 
6200   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6201   SDValue NewCC =
6202       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6203                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6204   if (!HadTautologicalInvertedLanes)
6205     return NewCC;
6206 
6207   // If any lanes previously compared always-false, the NewCC will give
6208   // always-true result for them, so we need to fixup those lanes.
6209   // Or the other way around for inequality predicate.
6210   assert(VT.isVector() && "Can/should only get here for vectors.");
6211   Created.push_back(NewCC.getNode());
6212 
6213   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6214   // if C2 is not less than C1, the comparison is always false.
6215   // But we have produced the comparison that will give the
6216   // opposive tautological answer. So these lanes would need to be fixed up.
6217   SDValue TautologicalInvertedChannels =
6218       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6219   Created.push_back(TautologicalInvertedChannels.getNode());
6220 
6221   // NOTE: we avoid letting illegal types through even if we're before legalize
6222   // ops – legalization has a hard time producing good code for this.
6223   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6224     // If we have a vector select, let's replace the comparison results in the
6225     // affected lanes with the correct tautological result.
6226     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6227                                               DL, SETCCVT, SETCCVT);
6228     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6229                        Replacement, NewCC);
6230   }
6231 
6232   // Else, we can just invert the comparison result in the appropriate lanes.
6233   //
6234   // NOTE: see the note above VSELECT above.
6235   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6236     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6237                        TautologicalInvertedChannels);
6238 
6239   return SDValue(); // Don't know how to lower.
6240 }
6241 
6242 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6243 /// where the divisor is constant and the comparison target is zero,
6244 /// return a DAG expression that will generate the same comparison result
6245 /// using only multiplications, additions and shifts/rotations.
6246 /// Ref: "Hacker's Delight" 10-17.
6247 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6248                                         SDValue CompTargetNode,
6249                                         ISD::CondCode Cond,
6250                                         DAGCombinerInfo &DCI,
6251                                         const SDLoc &DL) const {
6252   SmallVector<SDNode *, 7> Built;
6253   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6254                                          DCI, DL, Built)) {
6255     assert(Built.size() <= 7 && "Max size prediction failed.");
6256     for (SDNode *N : Built)
6257       DCI.AddToWorklist(N);
6258     return Folded;
6259   }
6260 
6261   return SDValue();
6262 }
6263 
6264 SDValue
6265 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6266                                   SDValue CompTargetNode, ISD::CondCode Cond,
6267                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6268                                   SmallVectorImpl<SDNode *> &Created) const {
6269   // Fold:
6270   //   (seteq/ne (srem N, D), 0)
6271   // To:
6272   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6273   //
6274   // - D must be constant, with D = D0 * 2^K where D0 is odd
6275   // - P is the multiplicative inverse of D0 modulo 2^W
6276   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6277   // - Q = floor((2 * A) / (2^K))
6278   // where W is the width of the common type of N and D.
6279   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6280          "Only applicable for (in)equality comparisons.");
6281 
6282   SelectionDAG &DAG = DCI.DAG;
6283 
6284   EVT VT = REMNode.getValueType();
6285   EVT SVT = VT.getScalarType();
6286   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6287   EVT ShSVT = ShVT.getScalarType();
6288 
6289   // If we are after ops legalization, and MUL is unavailable, we can not
6290   // proceed.
6291   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6292     return SDValue();
6293 
6294   // TODO: Could support comparing with non-zero too.
6295   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6296   if (!CompTarget || !CompTarget->isZero())
6297     return SDValue();
6298 
6299   bool HadIntMinDivisor = false;
6300   bool HadOneDivisor = false;
6301   bool AllDivisorsAreOnes = true;
6302   bool HadEvenDivisor = false;
6303   bool NeedToApplyOffset = false;
6304   bool AllDivisorsArePowerOfTwo = true;
6305   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6306 
6307   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6308     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6309     if (C->isZero())
6310       return false;
6311 
6312     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6313 
6314     // WARNING: this fold is only valid for positive divisors!
6315     APInt D = C->getAPIntValue();
6316     if (D.isNegative())
6317       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6318 
6319     HadIntMinDivisor |= D.isMinSignedValue();
6320 
6321     // If all divisors are ones, we will prefer to avoid the fold.
6322     HadOneDivisor |= D.isOne();
6323     AllDivisorsAreOnes &= D.isOne();
6324 
6325     // Decompose D into D0 * 2^K
6326     unsigned K = D.countTrailingZeros();
6327     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6328     APInt D0 = D.lshr(K);
6329 
6330     if (!D.isMinSignedValue()) {
6331       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6332       // we don't care about this lane in this fold, we'll special-handle it.
6333       HadEvenDivisor |= (K != 0);
6334     }
6335 
6336     // D is a power-of-two if D0 is one. This includes INT_MIN.
6337     // If all divisors are power-of-two, we will prefer to avoid the fold.
6338     AllDivisorsArePowerOfTwo &= D0.isOne();
6339 
6340     // P = inv(D0, 2^W)
6341     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6342     unsigned W = D.getBitWidth();
6343     APInt P = D0.zext(W + 1)
6344                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6345                   .trunc(W);
6346     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6347     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6348 
6349     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6350     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6351     A.clearLowBits(K);
6352 
6353     if (!D.isMinSignedValue()) {
6354       // If divisor INT_MIN, then we don't care about this lane in this fold,
6355       // we'll special-handle it.
6356       NeedToApplyOffset |= A != 0;
6357     }
6358 
6359     // Q = floor((2 * A) / (2^K))
6360     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6361 
6362     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6363            "We are expecting that A is always less than all-ones for SVT");
6364     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6365            "We are expecting that K is always less than all-ones for ShSVT");
6366 
6367     // If the divisor is 1 the result can be constant-folded. Likewise, we
6368     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6369     if (D.isOne()) {
6370       // Set P, A and K to a bogus values so we can try to splat them.
6371       P = 0;
6372       A = -1;
6373       K = -1;
6374 
6375       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6376       Q = -1;
6377     }
6378 
6379     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6380     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6381     KAmts.push_back(
6382         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6383     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6384     return true;
6385   };
6386 
6387   SDValue N = REMNode.getOperand(0);
6388   SDValue D = REMNode.getOperand(1);
6389 
6390   // Collect the values from each element.
6391   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6392     return SDValue();
6393 
6394   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6395   if (AllDivisorsAreOnes)
6396     return SDValue();
6397 
6398   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6399   // since it can be best implemented as a bit test.
6400   if (AllDivisorsArePowerOfTwo)
6401     return SDValue();
6402 
6403   SDValue PVal, AVal, KVal, QVal;
6404   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6405     if (HadOneDivisor) {
6406       // Try to turn PAmts into a splat, since we don't care about the values
6407       // that are currently '0'. If we can't, just keep '0'`s.
6408       turnVectorIntoSplatVector(PAmts, isNullConstant);
6409       // Try to turn AAmts into a splat, since we don't care about the
6410       // values that are currently '-1'. If we can't, change them to '0'`s.
6411       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6412                                 DAG.getConstant(0, DL, SVT));
6413       // Try to turn KAmts into a splat, since we don't care about the values
6414       // that are currently '-1'. If we can't, change them to '0'`s.
6415       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6416                                 DAG.getConstant(0, DL, ShSVT));
6417     }
6418 
6419     PVal = DAG.getBuildVector(VT, DL, PAmts);
6420     AVal = DAG.getBuildVector(VT, DL, AAmts);
6421     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6422     QVal = DAG.getBuildVector(VT, DL, QAmts);
6423   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6424     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6425            QAmts.size() == 1 &&
6426            "Expected matchUnaryPredicate to return one element for scalable "
6427            "vectors");
6428     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6429     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6430     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6431     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6432   } else {
6433     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6434     PVal = PAmts[0];
6435     AVal = AAmts[0];
6436     KVal = KAmts[0];
6437     QVal = QAmts[0];
6438   }
6439 
6440   // (mul N, P)
6441   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6442   Created.push_back(Op0.getNode());
6443 
6444   if (NeedToApplyOffset) {
6445     // We need ADD to do this.
6446     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6447       return SDValue();
6448 
6449     // (add (mul N, P), A)
6450     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6451     Created.push_back(Op0.getNode());
6452   }
6453 
6454   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6455   // divisors as a performance improvement, since rotating by 0 is a no-op.
6456   if (HadEvenDivisor) {
6457     // We need ROTR to do this.
6458     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6459       return SDValue();
6460     // SREM: (rotr (add (mul N, P), A), K)
6461     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6462     Created.push_back(Op0.getNode());
6463   }
6464 
6465   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6466   SDValue Fold =
6467       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6468                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6469 
6470   // If we didn't have lanes with INT_MIN divisor, then we're done.
6471   if (!HadIntMinDivisor)
6472     return Fold;
6473 
6474   // That fold is only valid for positive divisors. Which effectively means,
6475   // it is invalid for INT_MIN divisors. So if we have such a lane,
6476   // we must fix-up results for said lanes.
6477   assert(VT.isVector() && "Can/should only get here for vectors.");
6478 
6479   // NOTE: we avoid letting illegal types through even if we're before legalize
6480   // ops – legalization has a hard time producing good code for the code that
6481   // follows.
6482   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6483       !isOperationLegalOrCustom(ISD::AND, VT) ||
6484       !isOperationLegalOrCustom(Cond, VT) ||
6485       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6486     return SDValue();
6487 
6488   Created.push_back(Fold.getNode());
6489 
6490   SDValue IntMin = DAG.getConstant(
6491       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6492   SDValue IntMax = DAG.getConstant(
6493       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6494   SDValue Zero =
6495       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6496 
6497   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6498   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6499   Created.push_back(DivisorIsIntMin.getNode());
6500 
6501   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6502   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6503   Created.push_back(Masked.getNode());
6504   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6505   Created.push_back(MaskedIsZero.getNode());
6506 
6507   // To produce final result we need to blend 2 vectors: 'SetCC' and
6508   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6509   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6510   // constant-folded, select can get lowered to a shuffle with constant mask.
6511   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6512                                 MaskedIsZero, Fold);
6513 
6514   return Blended;
6515 }
6516 
6517 bool TargetLowering::
6518 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6519   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6520     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6521                                 "be a constant integer");
6522     return true;
6523   }
6524 
6525   return false;
6526 }
6527 
6528 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6529                                          const DenormalMode &Mode) const {
6530   SDLoc DL(Op);
6531   EVT VT = Op.getValueType();
6532   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6533   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6534   // Testing it with denormal inputs to avoid wrong estimate.
6535   if (Mode.Input == DenormalMode::IEEE) {
6536     // This is specifically a check for the handling of denormal inputs,
6537     // not the result.
6538 
6539     // Test = fabs(X) < SmallestNormal
6540     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6541     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6542     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6543     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6544     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6545   }
6546   // Test = X == 0.0
6547   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6548 }
6549 
6550 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6551                                              bool LegalOps, bool OptForSize,
6552                                              NegatibleCost &Cost,
6553                                              unsigned Depth) const {
6554   // fneg is removable even if it has multiple uses.
6555   if (Op.getOpcode() == ISD::FNEG) {
6556     Cost = NegatibleCost::Cheaper;
6557     return Op.getOperand(0);
6558   }
6559 
6560   // Don't recurse exponentially.
6561   if (Depth > SelectionDAG::MaxRecursionDepth)
6562     return SDValue();
6563 
6564   // Pre-increment recursion depth for use in recursive calls.
6565   ++Depth;
6566   const SDNodeFlags Flags = Op->getFlags();
6567   const TargetOptions &Options = DAG.getTarget().Options;
6568   EVT VT = Op.getValueType();
6569   unsigned Opcode = Op.getOpcode();
6570 
6571   // Don't allow anything with multiple uses unless we know it is free.
6572   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6573     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6574                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6575     if (!IsFreeExtend)
6576       return SDValue();
6577   }
6578 
6579   auto RemoveDeadNode = [&](SDValue N) {
6580     if (N && N.getNode()->use_empty())
6581       DAG.RemoveDeadNode(N.getNode());
6582   };
6583 
6584   SDLoc DL(Op);
6585 
6586   // Because getNegatedExpression can delete nodes we need a handle to keep
6587   // temporary nodes alive in case the recursion manages to create an identical
6588   // node.
6589   std::list<HandleSDNode> Handles;
6590 
6591   switch (Opcode) {
6592   case ISD::ConstantFP: {
6593     // Don't invert constant FP values after legalization unless the target says
6594     // the negated constant is legal.
6595     bool IsOpLegal =
6596         isOperationLegal(ISD::ConstantFP, VT) ||
6597         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6598                      OptForSize);
6599 
6600     if (LegalOps && !IsOpLegal)
6601       break;
6602 
6603     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6604     V.changeSign();
6605     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6606 
6607     // If we already have the use of the negated floating constant, it is free
6608     // to negate it even it has multiple uses.
6609     if (!Op.hasOneUse() && CFP.use_empty())
6610       break;
6611     Cost = NegatibleCost::Neutral;
6612     return CFP;
6613   }
6614   case ISD::BUILD_VECTOR: {
6615     // Only permit BUILD_VECTOR of constants.
6616     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6617           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6618         }))
6619       break;
6620 
6621     bool IsOpLegal =
6622         (isOperationLegal(ISD::ConstantFP, VT) &&
6623          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6624         llvm::all_of(Op->op_values(), [&](SDValue N) {
6625           return N.isUndef() ||
6626                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6627                               OptForSize);
6628         });
6629 
6630     if (LegalOps && !IsOpLegal)
6631       break;
6632 
6633     SmallVector<SDValue, 4> Ops;
6634     for (SDValue C : Op->op_values()) {
6635       if (C.isUndef()) {
6636         Ops.push_back(C);
6637         continue;
6638       }
6639       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6640       V.changeSign();
6641       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6642     }
6643     Cost = NegatibleCost::Neutral;
6644     return DAG.getBuildVector(VT, DL, Ops);
6645   }
6646   case ISD::FADD: {
6647     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6648       break;
6649 
6650     // After operation legalization, it might not be legal to create new FSUBs.
6651     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6652       break;
6653     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6654 
6655     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6656     NegatibleCost CostX = NegatibleCost::Expensive;
6657     SDValue NegX =
6658         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6659     // Prevent this node from being deleted by the next call.
6660     if (NegX)
6661       Handles.emplace_back(NegX);
6662 
6663     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6664     NegatibleCost CostY = NegatibleCost::Expensive;
6665     SDValue NegY =
6666         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6667 
6668     // We're done with the handles.
6669     Handles.clear();
6670 
6671     // Negate the X if its cost is less or equal than Y.
6672     if (NegX && (CostX <= CostY)) {
6673       Cost = CostX;
6674       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6675       if (NegY != N)
6676         RemoveDeadNode(NegY);
6677       return N;
6678     }
6679 
6680     // Negate the Y if it is not expensive.
6681     if (NegY) {
6682       Cost = CostY;
6683       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6684       if (NegX != N)
6685         RemoveDeadNode(NegX);
6686       return N;
6687     }
6688     break;
6689   }
6690   case ISD::FSUB: {
6691     // We can't turn -(A-B) into B-A when we honor signed zeros.
6692     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6693       break;
6694 
6695     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6696     // fold (fneg (fsub 0, Y)) -> Y
6697     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6698       if (C->isZero()) {
6699         Cost = NegatibleCost::Cheaper;
6700         return Y;
6701       }
6702 
6703     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6704     Cost = NegatibleCost::Neutral;
6705     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6706   }
6707   case ISD::FMUL:
6708   case ISD::FDIV: {
6709     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6710 
6711     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6712     NegatibleCost CostX = NegatibleCost::Expensive;
6713     SDValue NegX =
6714         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6715     // Prevent this node from being deleted by the next call.
6716     if (NegX)
6717       Handles.emplace_back(NegX);
6718 
6719     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6720     NegatibleCost CostY = NegatibleCost::Expensive;
6721     SDValue NegY =
6722         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6723 
6724     // We're done with the handles.
6725     Handles.clear();
6726 
6727     // Negate the X if its cost is less or equal than Y.
6728     if (NegX && (CostX <= CostY)) {
6729       Cost = CostX;
6730       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6731       if (NegY != N)
6732         RemoveDeadNode(NegY);
6733       return N;
6734     }
6735 
6736     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6737     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6738       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6739         break;
6740 
6741     // Negate the Y if it is not expensive.
6742     if (NegY) {
6743       Cost = CostY;
6744       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6745       if (NegX != N)
6746         RemoveDeadNode(NegX);
6747       return N;
6748     }
6749     break;
6750   }
6751   case ISD::FMA:
6752   case ISD::FMAD: {
6753     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6754       break;
6755 
6756     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6757     NegatibleCost CostZ = NegatibleCost::Expensive;
6758     SDValue NegZ =
6759         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6760     // Give up if fail to negate the Z.
6761     if (!NegZ)
6762       break;
6763 
6764     // Prevent this node from being deleted by the next two calls.
6765     Handles.emplace_back(NegZ);
6766 
6767     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6768     NegatibleCost CostX = NegatibleCost::Expensive;
6769     SDValue NegX =
6770         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6771     // Prevent this node from being deleted by the next call.
6772     if (NegX)
6773       Handles.emplace_back(NegX);
6774 
6775     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6776     NegatibleCost CostY = NegatibleCost::Expensive;
6777     SDValue NegY =
6778         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6779 
6780     // We're done with the handles.
6781     Handles.clear();
6782 
6783     // Negate the X if its cost is less or equal than Y.
6784     if (NegX && (CostX <= CostY)) {
6785       Cost = std::min(CostX, CostZ);
6786       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6787       if (NegY != N)
6788         RemoveDeadNode(NegY);
6789       return N;
6790     }
6791 
6792     // Negate the Y if it is not expensive.
6793     if (NegY) {
6794       Cost = std::min(CostY, CostZ);
6795       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6796       if (NegX != N)
6797         RemoveDeadNode(NegX);
6798       return N;
6799     }
6800     break;
6801   }
6802 
6803   case ISD::FP_EXTEND:
6804   case ISD::FSIN:
6805     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6806                                             OptForSize, Cost, Depth))
6807       return DAG.getNode(Opcode, DL, VT, NegV);
6808     break;
6809   case ISD::FP_ROUND:
6810     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6811                                             OptForSize, Cost, Depth))
6812       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6813     break;
6814   }
6815 
6816   return SDValue();
6817 }
6818 
6819 //===----------------------------------------------------------------------===//
6820 // Legalization Utilities
6821 //===----------------------------------------------------------------------===//
6822 
6823 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6824                                     SDValue LHS, SDValue RHS,
6825                                     SmallVectorImpl<SDValue> &Result,
6826                                     EVT HiLoVT, SelectionDAG &DAG,
6827                                     MulExpansionKind Kind, SDValue LL,
6828                                     SDValue LH, SDValue RL, SDValue RH) const {
6829   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6830          Opcode == ISD::SMUL_LOHI);
6831 
6832   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6833                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6834   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6835                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6836   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6837                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6838   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6839                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6840 
6841   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6842     return false;
6843 
6844   unsigned OuterBitSize = VT.getScalarSizeInBits();
6845   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6846 
6847   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6848   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6849          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6850 
6851   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6852   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6853                           bool Signed) -> bool {
6854     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6855       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6856       Hi = SDValue(Lo.getNode(), 1);
6857       return true;
6858     }
6859     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6860       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6861       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6862       return true;
6863     }
6864     return false;
6865   };
6866 
6867   SDValue Lo, Hi;
6868 
6869   if (!LL.getNode() && !RL.getNode() &&
6870       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6871     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6872     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6873   }
6874 
6875   if (!LL.getNode())
6876     return false;
6877 
6878   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6879   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6880       DAG.MaskedValueIsZero(RHS, HighMask)) {
6881     // The inputs are both zero-extended.
6882     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6883       Result.push_back(Lo);
6884       Result.push_back(Hi);
6885       if (Opcode != ISD::MUL) {
6886         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6887         Result.push_back(Zero);
6888         Result.push_back(Zero);
6889       }
6890       return true;
6891     }
6892   }
6893 
6894   if (!VT.isVector() && Opcode == ISD::MUL &&
6895       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6896       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6897     // The input values are both sign-extended.
6898     // TODO non-MUL case?
6899     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6900       Result.push_back(Lo);
6901       Result.push_back(Hi);
6902       return true;
6903     }
6904   }
6905 
6906   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6907   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6908   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6909 
6910   if (!LH.getNode() && !RH.getNode() &&
6911       isOperationLegalOrCustom(ISD::SRL, VT) &&
6912       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6913     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6914     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6915     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6916     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6917   }
6918 
6919   if (!LH.getNode())
6920     return false;
6921 
6922   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6923     return false;
6924 
6925   Result.push_back(Lo);
6926 
6927   if (Opcode == ISD::MUL) {
6928     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6929     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6930     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6931     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6932     Result.push_back(Hi);
6933     return true;
6934   }
6935 
6936   // Compute the full width result.
6937   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6938     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6939     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6940     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6941     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6942   };
6943 
6944   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6945   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6946     return false;
6947 
6948   // This is effectively the add part of a multiply-add of half-sized operands,
6949   // so it cannot overflow.
6950   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6951 
6952   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6953     return false;
6954 
6955   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6956   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6957 
6958   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6959                   isOperationLegalOrCustom(ISD::ADDE, VT));
6960   if (UseGlue)
6961     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6962                        Merge(Lo, Hi));
6963   else
6964     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6965                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6966 
6967   SDValue Carry = Next.getValue(1);
6968   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6969   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6970 
6971   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6972     return false;
6973 
6974   if (UseGlue)
6975     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6976                      Carry);
6977   else
6978     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6979                      Zero, Carry);
6980 
6981   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6982 
6983   if (Opcode == ISD::SMUL_LOHI) {
6984     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6985                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6986     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6987 
6988     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6989                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6990     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6991   }
6992 
6993   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6994   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6995   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6996   return true;
6997 }
6998 
6999 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7000                                SelectionDAG &DAG, MulExpansionKind Kind,
7001                                SDValue LL, SDValue LH, SDValue RL,
7002                                SDValue RH) const {
7003   SmallVector<SDValue, 2> Result;
7004   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7005                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7006                            DAG, Kind, LL, LH, RL, RH);
7007   if (Ok) {
7008     assert(Result.size() == 2);
7009     Lo = Result[0];
7010     Hi = Result[1];
7011   }
7012   return Ok;
7013 }
7014 
7015 // Check that (every element of) Z is undef or not an exact multiple of BW.
7016 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7017   return ISD::matchUnaryPredicate(
7018       Z,
7019       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7020       true);
7021 }
7022 
7023 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7024                                           SelectionDAG &DAG) const {
7025   EVT VT = Node->getValueType(0);
7026 
7027   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7028                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7029                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7030                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7031     return SDValue();
7032 
7033   SDValue X = Node->getOperand(0);
7034   SDValue Y = Node->getOperand(1);
7035   SDValue Z = Node->getOperand(2);
7036 
7037   unsigned BW = VT.getScalarSizeInBits();
7038   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7039   SDLoc DL(SDValue(Node, 0));
7040 
7041   EVT ShVT = Z.getValueType();
7042 
7043   // If a funnel shift in the other direction is more supported, use it.
7044   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7045   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7046       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7047     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7048       // fshl X, Y, Z -> fshr X, Y, -Z
7049       // fshr X, Y, Z -> fshl X, Y, -Z
7050       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7051       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7052     } else {
7053       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7054       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7055       SDValue One = DAG.getConstant(1, DL, ShVT);
7056       if (IsFSHL) {
7057         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7058         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7059       } else {
7060         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7061         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7062       }
7063       Z = DAG.getNOT(DL, Z, ShVT);
7064     }
7065     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7066   }
7067 
7068   SDValue ShX, ShY;
7069   SDValue ShAmt, InvShAmt;
7070   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7071     // fshl: X << C | Y >> (BW - C)
7072     // fshr: X << (BW - C) | Y >> C
7073     // where C = Z % BW is not zero
7074     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7075     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7076     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7077     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7078     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7079   } else {
7080     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7081     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7082     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7083     if (isPowerOf2_32(BW)) {
7084       // Z % BW -> Z & (BW - 1)
7085       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7086       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7087       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7088     } else {
7089       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7090       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7091       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7092     }
7093 
7094     SDValue One = DAG.getConstant(1, DL, ShVT);
7095     if (IsFSHL) {
7096       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7097       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7098       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7099     } else {
7100       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7101       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7102       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7103     }
7104   }
7105   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7106 }
7107 
7108 // TODO: Merge with expandFunnelShift.
7109 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7110                                   SelectionDAG &DAG) const {
7111   EVT VT = Node->getValueType(0);
7112   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7113   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7114   SDValue Op0 = Node->getOperand(0);
7115   SDValue Op1 = Node->getOperand(1);
7116   SDLoc DL(SDValue(Node, 0));
7117 
7118   EVT ShVT = Op1.getValueType();
7119   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7120 
7121   // If a rotate in the other direction is more supported, use it.
7122   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7123   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7124       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7125     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7126     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7127   }
7128 
7129   if (!AllowVectorOps && VT.isVector() &&
7130       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7131        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7132        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7133        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7134        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7135     return SDValue();
7136 
7137   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7138   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7139   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7140   SDValue ShVal;
7141   SDValue HsVal;
7142   if (isPowerOf2_32(EltSizeInBits)) {
7143     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7144     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7145     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7146     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7147     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7148     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7149     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7150   } else {
7151     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7152     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7153     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7154     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7155     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7156     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7157     SDValue One = DAG.getConstant(1, DL, ShVT);
7158     HsVal =
7159         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7160   }
7161   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7162 }
7163 
7164 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7165                                       SelectionDAG &DAG) const {
7166   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7167   EVT VT = Node->getValueType(0);
7168   unsigned VTBits = VT.getScalarSizeInBits();
7169   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7170 
7171   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7172   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7173   SDValue ShOpLo = Node->getOperand(0);
7174   SDValue ShOpHi = Node->getOperand(1);
7175   SDValue ShAmt = Node->getOperand(2);
7176   EVT ShAmtVT = ShAmt.getValueType();
7177   EVT ShAmtCCVT =
7178       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7179   SDLoc dl(Node);
7180 
7181   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7182   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7183   // away during isel.
7184   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7185                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7186   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7187                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7188                        : DAG.getConstant(0, dl, VT);
7189 
7190   SDValue Tmp2, Tmp3;
7191   if (IsSHL) {
7192     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7193     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7194   } else {
7195     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7196     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7197   }
7198 
7199   // If the shift amount is larger or equal than the width of a part we don't
7200   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7201   // values for large shift amounts.
7202   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7203                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7204   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7205                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7206 
7207   if (IsSHL) {
7208     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7209     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7210   } else {
7211     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7212     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7213   }
7214 }
7215 
7216 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7217                                       SelectionDAG &DAG) const {
7218   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7219   SDValue Src = Node->getOperand(OpNo);
7220   EVT SrcVT = Src.getValueType();
7221   EVT DstVT = Node->getValueType(0);
7222   SDLoc dl(SDValue(Node, 0));
7223 
7224   // FIXME: Only f32 to i64 conversions are supported.
7225   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7226     return false;
7227 
7228   if (Node->isStrictFPOpcode())
7229     // When a NaN is converted to an integer a trap is allowed. We can't
7230     // use this expansion here because it would eliminate that trap. Other
7231     // traps are also allowed and cannot be eliminated. See
7232     // IEEE 754-2008 sec 5.8.
7233     return false;
7234 
7235   // Expand f32 -> i64 conversion
7236   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7237   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7238   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7239   EVT IntVT = SrcVT.changeTypeToInteger();
7240   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7241 
7242   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7243   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7244   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7245   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7246   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7247   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7248 
7249   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7250 
7251   SDValue ExponentBits = DAG.getNode(
7252       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7253       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7254   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7255 
7256   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7257                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7258                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7259   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7260 
7261   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7262                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7263                           DAG.getConstant(0x00800000, dl, IntVT));
7264 
7265   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7266 
7267   R = DAG.getSelectCC(
7268       dl, Exponent, ExponentLoBit,
7269       DAG.getNode(ISD::SHL, dl, DstVT, R,
7270                   DAG.getZExtOrTrunc(
7271                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7272                       dl, IntShVT)),
7273       DAG.getNode(ISD::SRL, dl, DstVT, R,
7274                   DAG.getZExtOrTrunc(
7275                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7276                       dl, IntShVT)),
7277       ISD::SETGT);
7278 
7279   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7280                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7281 
7282   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7283                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7284   return true;
7285 }
7286 
7287 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7288                                       SDValue &Chain,
7289                                       SelectionDAG &DAG) const {
7290   SDLoc dl(SDValue(Node, 0));
7291   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7292   SDValue Src = Node->getOperand(OpNo);
7293 
7294   EVT SrcVT = Src.getValueType();
7295   EVT DstVT = Node->getValueType(0);
7296   EVT SetCCVT =
7297       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7298   EVT DstSetCCVT =
7299       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7300 
7301   // Only expand vector types if we have the appropriate vector bit operations.
7302   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7303                                                    ISD::FP_TO_SINT;
7304   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7305                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7306     return false;
7307 
7308   // If the maximum float value is smaller then the signed integer range,
7309   // the destination signmask can't be represented by the float, so we can
7310   // just use FP_TO_SINT directly.
7311   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7312   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7313   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7314   if (APFloat::opOverflow &
7315       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7316     if (Node->isStrictFPOpcode()) {
7317       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7318                            { Node->getOperand(0), Src });
7319       Chain = Result.getValue(1);
7320     } else
7321       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7322     return true;
7323   }
7324 
7325   // Don't expand it if there isn't cheap fsub instruction.
7326   if (!isOperationLegalOrCustom(
7327           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7328     return false;
7329 
7330   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7331   SDValue Sel;
7332 
7333   if (Node->isStrictFPOpcode()) {
7334     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7335                        Node->getOperand(0), /*IsSignaling*/ true);
7336     Chain = Sel.getValue(1);
7337   } else {
7338     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7339   }
7340 
7341   bool Strict = Node->isStrictFPOpcode() ||
7342                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7343 
7344   if (Strict) {
7345     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7346     // signmask then offset (the result of which should be fully representable).
7347     // Sel = Src < 0x8000000000000000
7348     // FltOfs = select Sel, 0, 0x8000000000000000
7349     // IntOfs = select Sel, 0, 0x8000000000000000
7350     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7351 
7352     // TODO: Should any fast-math-flags be set for the FSUB?
7353     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7354                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7355     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7356     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7357                                    DAG.getConstant(0, dl, DstVT),
7358                                    DAG.getConstant(SignMask, dl, DstVT));
7359     SDValue SInt;
7360     if (Node->isStrictFPOpcode()) {
7361       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7362                                 { Chain, Src, FltOfs });
7363       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7364                          { Val.getValue(1), Val });
7365       Chain = SInt.getValue(1);
7366     } else {
7367       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7368       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7369     }
7370     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7371   } else {
7372     // Expand based on maximum range of FP_TO_SINT:
7373     // True = fp_to_sint(Src)
7374     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7375     // Result = select (Src < 0x8000000000000000), True, False
7376 
7377     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7378     // TODO: Should any fast-math-flags be set for the FSUB?
7379     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7380                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7381     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7382                         DAG.getConstant(SignMask, dl, DstVT));
7383     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7384     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7385   }
7386   return true;
7387 }
7388 
7389 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7390                                       SDValue &Chain,
7391                                       SelectionDAG &DAG) const {
7392   // This transform is not correct for converting 0 when rounding mode is set
7393   // to round toward negative infinity which will produce -0.0. So disable under
7394   // strictfp.
7395   if (Node->isStrictFPOpcode())
7396     return false;
7397 
7398   SDValue Src = Node->getOperand(0);
7399   EVT SrcVT = Src.getValueType();
7400   EVT DstVT = Node->getValueType(0);
7401 
7402   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7403     return false;
7404 
7405   // Only expand vector types if we have the appropriate vector bit operations.
7406   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7407                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7408                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7409                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7410                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7411     return false;
7412 
7413   SDLoc dl(SDValue(Node, 0));
7414   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7415 
7416   // Implementation of unsigned i64 to f64 following the algorithm in
7417   // __floatundidf in compiler_rt.  This implementation performs rounding
7418   // correctly in all rounding modes with the exception of converting 0
7419   // when rounding toward negative infinity. In that case the fsub will produce
7420   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7421   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7422   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7423       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7424   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7425   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7426   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7427 
7428   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7429   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7430   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7431   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7432   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7433   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7434   SDValue HiSub =
7435       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7436   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7437   return true;
7438 }
7439 
7440 SDValue
7441 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7442                                                SelectionDAG &DAG) const {
7443   unsigned Opcode = Node->getOpcode();
7444   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7445           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7446          "Wrong opcode");
7447 
7448   if (Node->getFlags().hasNoNaNs()) {
7449     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7450     SDValue Op1 = Node->getOperand(0);
7451     SDValue Op2 = Node->getOperand(1);
7452     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7453     // Copy FMF flags, but always set the no-signed-zeros flag
7454     // as this is implied by the FMINNUM/FMAXNUM semantics.
7455     SDNodeFlags Flags = Node->getFlags();
7456     Flags.setNoSignedZeros(true);
7457     SelCC->setFlags(Flags);
7458     return SelCC;
7459   }
7460 
7461   return SDValue();
7462 }
7463 
7464 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7465                                               SelectionDAG &DAG) const {
7466   SDLoc dl(Node);
7467   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7468     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7469   EVT VT = Node->getValueType(0);
7470 
7471   if (VT.isScalableVector())
7472     report_fatal_error(
7473         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7474 
7475   if (isOperationLegalOrCustom(NewOp, VT)) {
7476     SDValue Quiet0 = Node->getOperand(0);
7477     SDValue Quiet1 = Node->getOperand(1);
7478 
7479     if (!Node->getFlags().hasNoNaNs()) {
7480       // Insert canonicalizes if it's possible we need to quiet to get correct
7481       // sNaN behavior.
7482       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7483         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7484                              Node->getFlags());
7485       }
7486       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7487         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7488                              Node->getFlags());
7489       }
7490     }
7491 
7492     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7493   }
7494 
7495   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7496   // instead if there are no NaNs.
7497   if (Node->getFlags().hasNoNaNs()) {
7498     unsigned IEEE2018Op =
7499         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7500     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7501       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7502                          Node->getOperand(1), Node->getFlags());
7503     }
7504   }
7505 
7506   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7507     return SelCC;
7508 
7509   return SDValue();
7510 }
7511 
7512 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7513                                          unsigned Test, SDNodeFlags Flags,
7514                                          const SDLoc &DL,
7515                                          SelectionDAG &DAG) const {
7516   EVT OperandVT = Op.getValueType();
7517   assert(OperandVT.isFloatingPoint());
7518 
7519   // Degenerated cases.
7520   if (Test == 0)
7521     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7522   if ((Test & fcAllFlags) == fcAllFlags)
7523     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7524 
7525   // PPC double double is a pair of doubles, of which the higher part determines
7526   // the value class.
7527   if (OperandVT == MVT::ppcf128) {
7528     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7529                      DAG.getConstant(1, DL, MVT::i32));
7530     OperandVT = MVT::f64;
7531   }
7532 
7533   // Some checks may be represented as inversion of simpler check, for example
7534   // "inf|normal|subnormal|zero" => !"nan".
7535   bool IsInverted = false;
7536   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7537     IsInverted = true;
7538     Test = InvertedCheck;
7539   }
7540 
7541   // Floating-point type properties.
7542   EVT ScalarFloatVT = OperandVT.getScalarType();
7543   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7544   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7545   bool IsF80 = (ScalarFloatVT == MVT::f80);
7546 
7547   // Some checks can be implemented using float comparisons, if floating point
7548   // exceptions are ignored.
7549   if (Flags.hasNoFPExcept() &&
7550       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7551     if (Test == fcZero)
7552       return DAG.getSetCC(DL, ResultVT, Op,
7553                           DAG.getConstantFP(0.0, DL, OperandVT),
7554                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7555     if (Test == fcNan)
7556       return DAG.getSetCC(DL, ResultVT, Op, Op,
7557                           IsInverted ? ISD::SETO : ISD::SETUO);
7558   }
7559 
7560   // In the general case use integer operations.
7561   unsigned BitSize = OperandVT.getScalarSizeInBits();
7562   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7563   if (OperandVT.isVector())
7564     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7565                              OperandVT.getVectorElementCount());
7566   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7567 
7568   // Various masks.
7569   APInt SignBit = APInt::getSignMask(BitSize);
7570   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7571   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7572   const unsigned ExplicitIntBitInF80 = 63;
7573   APInt ExpMask = Inf;
7574   if (IsF80)
7575     ExpMask.clearBit(ExplicitIntBitInF80);
7576   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7577   APInt QNaNBitMask =
7578       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7579   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7580 
7581   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7582   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7583   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7584   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7585   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7586   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7587 
7588   SDValue Res;
7589   const auto appendResult = [&](SDValue PartialRes) {
7590     if (PartialRes) {
7591       if (Res)
7592         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7593       else
7594         Res = PartialRes;
7595     }
7596   };
7597 
7598   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7599   const auto getIntBitIsSet = [&]() -> SDValue {
7600     if (!IntBitIsSetV) {
7601       APInt IntBitMask(BitSize, 0);
7602       IntBitMask.setBit(ExplicitIntBitInF80);
7603       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7604       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7605       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7606     }
7607     return IntBitIsSetV;
7608   };
7609 
7610   // Split the value into sign bit and absolute value.
7611   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7612   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7613                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7614 
7615   // Tests that involve more than one class should be processed first.
7616   SDValue PartialRes;
7617 
7618   if (IsF80)
7619     ; // Detect finite numbers of f80 by checking individual classes because
7620       // they have different settings of the explicit integer bit.
7621   else if ((Test & fcFinite) == fcFinite) {
7622     // finite(V) ==> abs(V) < exp_mask
7623     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7624     Test &= ~fcFinite;
7625   } else if ((Test & fcFinite) == fcPosFinite) {
7626     // finite(V) && V > 0 ==> V < exp_mask
7627     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7628     Test &= ~fcPosFinite;
7629   } else if ((Test & fcFinite) == fcNegFinite) {
7630     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7631     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7632     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7633     Test &= ~fcNegFinite;
7634   }
7635   appendResult(PartialRes);
7636 
7637   // Check for individual classes.
7638 
7639   if (unsigned PartialCheck = Test & fcZero) {
7640     if (PartialCheck == fcPosZero)
7641       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7642     else if (PartialCheck == fcZero)
7643       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7644     else // ISD::fcNegZero
7645       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7646     appendResult(PartialRes);
7647   }
7648 
7649   if (unsigned PartialCheck = Test & fcInf) {
7650     if (PartialCheck == fcPosInf)
7651       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7652     else if (PartialCheck == fcInf)
7653       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7654     else { // ISD::fcNegInf
7655       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7656       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7657       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7658     }
7659     appendResult(PartialRes);
7660   }
7661 
7662   if (unsigned PartialCheck = Test & fcNan) {
7663     APInt InfWithQnanBit = Inf | QNaNBitMask;
7664     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7665     if (PartialCheck == fcNan) {
7666       // isnan(V) ==> abs(V) > int(inf)
7667       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7668       if (IsF80) {
7669         // Recognize unsupported values as NaNs for compatibility with glibc.
7670         // In them (exp(V)==0) == int_bit.
7671         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7672         SDValue ExpIsZero =
7673             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7674         SDValue IsPseudo =
7675             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7676         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7677       }
7678     } else if (PartialCheck == fcQNan) {
7679       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7680       PartialRes =
7681           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7682     } else { // ISD::fcSNan
7683       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7684       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7685       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7686       SDValue IsNotQnan =
7687           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7688       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7689     }
7690     appendResult(PartialRes);
7691   }
7692 
7693   if (unsigned PartialCheck = Test & fcSubnormal) {
7694     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7695     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7696     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7697     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7698     SDValue VMinusOneV =
7699         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7700     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7701     if (PartialCheck == fcNegSubnormal)
7702       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7703     appendResult(PartialRes);
7704   }
7705 
7706   if (unsigned PartialCheck = Test & fcNormal) {
7707     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7708     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7709     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7710     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7711     APInt ExpLimit = ExpMask - ExpLSB;
7712     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7713     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7714     if (PartialCheck == fcNegNormal)
7715       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7716     else if (PartialCheck == fcPosNormal) {
7717       SDValue PosSignV =
7718           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7719       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7720     }
7721     if (IsF80)
7722       PartialRes =
7723           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7724     appendResult(PartialRes);
7725   }
7726 
7727   if (!Res)
7728     return DAG.getConstant(IsInverted, DL, ResultVT);
7729   if (IsInverted)
7730     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7731   return Res;
7732 }
7733 
7734 // Only expand vector types if we have the appropriate vector bit operations.
7735 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7736   assert(VT.isVector() && "Expected vector type");
7737   unsigned Len = VT.getScalarSizeInBits();
7738   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7739          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7740          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7741          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7742          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7743 }
7744 
7745 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7746   SDLoc dl(Node);
7747   EVT VT = Node->getValueType(0);
7748   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7749   SDValue Op = Node->getOperand(0);
7750   unsigned Len = VT.getScalarSizeInBits();
7751   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7752 
7753   // TODO: Add support for irregular type lengths.
7754   if (!(Len <= 128 && Len % 8 == 0))
7755     return SDValue();
7756 
7757   // Only expand vector types if we have the appropriate vector bit operations.
7758   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7759     return SDValue();
7760 
7761   // This is the "best" algorithm from
7762   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7763   SDValue Mask55 =
7764       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7765   SDValue Mask33 =
7766       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7767   SDValue Mask0F =
7768       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7769 
7770   // v = v - ((v >> 1) & 0x55555555...)
7771   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7772                    DAG.getNode(ISD::AND, dl, VT,
7773                                DAG.getNode(ISD::SRL, dl, VT, Op,
7774                                            DAG.getConstant(1, dl, ShVT)),
7775                                Mask55));
7776   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7777   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7778                    DAG.getNode(ISD::AND, dl, VT,
7779                                DAG.getNode(ISD::SRL, dl, VT, Op,
7780                                            DAG.getConstant(2, dl, ShVT)),
7781                                Mask33));
7782   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7783   Op = DAG.getNode(ISD::AND, dl, VT,
7784                    DAG.getNode(ISD::ADD, dl, VT, Op,
7785                                DAG.getNode(ISD::SRL, dl, VT, Op,
7786                                            DAG.getConstant(4, dl, ShVT))),
7787                    Mask0F);
7788 
7789   if (Len <= 8)
7790     return Op;
7791 
7792   // Avoid the multiply if we only have 2 bytes to add.
7793   // TODO: Only doing this for scalars because vectors weren't as obviously
7794   // improved.
7795   if (Len == 16 && !VT.isVector()) {
7796     // v = (v + (v >> 8)) & 0x00FF;
7797     return DAG.getNode(ISD::AND, dl, VT,
7798                      DAG.getNode(ISD::ADD, dl, VT, Op,
7799                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7800                                              DAG.getConstant(8, dl, ShVT))),
7801                      DAG.getConstant(0xFF, dl, VT));
7802   }
7803 
7804   // v = (v * 0x01010101...) >> (Len - 8)
7805   SDValue Mask01 =
7806       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7807   return DAG.getNode(ISD::SRL, dl, VT,
7808                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7809                      DAG.getConstant(Len - 8, dl, ShVT));
7810 }
7811 
7812 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7813   SDLoc dl(Node);
7814   EVT VT = Node->getValueType(0);
7815   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7816   SDValue Op = Node->getOperand(0);
7817   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7818 
7819   // If the non-ZERO_UNDEF version is supported we can use that instead.
7820   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7821       isOperationLegalOrCustom(ISD::CTLZ, VT))
7822     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7823 
7824   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7825   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7826     EVT SetCCVT =
7827         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7828     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7829     SDValue Zero = DAG.getConstant(0, dl, VT);
7830     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7831     return DAG.getSelect(dl, VT, SrcIsZero,
7832                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7833   }
7834 
7835   // Only expand vector types if we have the appropriate vector bit operations.
7836   // This includes the operations needed to expand CTPOP if it isn't supported.
7837   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7838                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7839                          !canExpandVectorCTPOP(*this, VT)) ||
7840                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7841                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7842     return SDValue();
7843 
7844   // for now, we do this:
7845   // x = x | (x >> 1);
7846   // x = x | (x >> 2);
7847   // ...
7848   // x = x | (x >>16);
7849   // x = x | (x >>32); // for 64-bit input
7850   // return popcount(~x);
7851   //
7852   // Ref: "Hacker's Delight" by Henry Warren
7853   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7854     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7855     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7856                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7857   }
7858   Op = DAG.getNOT(dl, Op, VT);
7859   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7860 }
7861 
7862 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7863   SDLoc dl(Node);
7864   EVT VT = Node->getValueType(0);
7865   SDValue Op = Node->getOperand(0);
7866   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7867 
7868   // If the non-ZERO_UNDEF version is supported we can use that instead.
7869   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7870       isOperationLegalOrCustom(ISD::CTTZ, VT))
7871     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7872 
7873   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7874   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7875     EVT SetCCVT =
7876         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7877     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7878     SDValue Zero = DAG.getConstant(0, dl, VT);
7879     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7880     return DAG.getSelect(dl, VT, SrcIsZero,
7881                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7882   }
7883 
7884   // Only expand vector types if we have the appropriate vector bit operations.
7885   // This includes the operations needed to expand CTPOP if it isn't supported.
7886   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7887                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7888                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7889                          !canExpandVectorCTPOP(*this, VT)) ||
7890                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7891                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7892                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7893     return SDValue();
7894 
7895   // for now, we use: { return popcount(~x & (x - 1)); }
7896   // unless the target has ctlz but not ctpop, in which case we use:
7897   // { return 32 - nlz(~x & (x-1)); }
7898   // Ref: "Hacker's Delight" by Henry Warren
7899   SDValue Tmp = DAG.getNode(
7900       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7901       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7902 
7903   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7904   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7905     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7906                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7907   }
7908 
7909   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7910 }
7911 
7912 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7913                                   bool IsNegative) const {
7914   SDLoc dl(N);
7915   EVT VT = N->getValueType(0);
7916   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7917   SDValue Op = N->getOperand(0);
7918 
7919   // abs(x) -> smax(x,sub(0,x))
7920   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7921       isOperationLegal(ISD::SMAX, VT)) {
7922     SDValue Zero = DAG.getConstant(0, dl, VT);
7923     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7924                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7925   }
7926 
7927   // abs(x) -> umin(x,sub(0,x))
7928   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7929       isOperationLegal(ISD::UMIN, VT)) {
7930     SDValue Zero = DAG.getConstant(0, dl, VT);
7931     Op = DAG.getFreeze(Op);
7932     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7933                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7934   }
7935 
7936   // 0 - abs(x) -> smin(x, sub(0,x))
7937   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7938       isOperationLegal(ISD::SMIN, VT)) {
7939     Op = DAG.getFreeze(Op);
7940     SDValue Zero = DAG.getConstant(0, dl, VT);
7941     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7942                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7943   }
7944 
7945   // Only expand vector types if we have the appropriate vector operations.
7946   if (VT.isVector() &&
7947       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7948        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7949        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7950        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7951     return SDValue();
7952 
7953   Op = DAG.getFreeze(Op);
7954   SDValue Shift =
7955       DAG.getNode(ISD::SRA, dl, VT, Op,
7956                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7957   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7958 
7959   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7960   if (!IsNegative)
7961     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7962 
7963   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7964   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7965 }
7966 
7967 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7968   SDLoc dl(N);
7969   EVT VT = N->getValueType(0);
7970   SDValue Op = N->getOperand(0);
7971 
7972   if (!VT.isSimple())
7973     return SDValue();
7974 
7975   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7976   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7977   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7978   default:
7979     return SDValue();
7980   case MVT::i16:
7981     // Use a rotate by 8. This can be further expanded if necessary.
7982     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7983   case MVT::i32:
7984     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7985     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7986     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7987     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7988     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7989                        DAG.getConstant(0xFF0000, dl, VT));
7990     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7991     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7992     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7993     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7994   case MVT::i64:
7995     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7996     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7997     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7998     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7999     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8000     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8001     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8002     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8003     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8004                        DAG.getConstant(255ULL<<48, dl, VT));
8005     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8006                        DAG.getConstant(255ULL<<40, dl, VT));
8007     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8008                        DAG.getConstant(255ULL<<32, dl, VT));
8009     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8010                        DAG.getConstant(255ULL<<24, dl, VT));
8011     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8012                        DAG.getConstant(255ULL<<16, dl, VT));
8013     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8014                        DAG.getConstant(255ULL<<8 , dl, VT));
8015     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8016     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8017     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8018     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8019     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8020     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8021     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8022   }
8023 }
8024 
8025 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8026   SDLoc dl(N);
8027   EVT VT = N->getValueType(0);
8028   SDValue Op = N->getOperand(0);
8029   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8030   unsigned Sz = VT.getScalarSizeInBits();
8031 
8032   SDValue Tmp, Tmp2, Tmp3;
8033 
8034   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8035   // and finally the i1 pairs.
8036   // TODO: We can easily support i4/i2 legal types if any target ever does.
8037   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8038     // Create the masks - repeating the pattern every byte.
8039     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8040     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8041     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8042 
8043     // BSWAP if the type is wider than a single byte.
8044     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8045 
8046     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8047     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8048     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8049     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8050     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8051     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8052 
8053     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8054     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8055     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8056     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8057     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8058     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8059 
8060     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8061     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8062     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8063     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8064     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8065     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8066     return Tmp;
8067   }
8068 
8069   Tmp = DAG.getConstant(0, dl, VT);
8070   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8071     if (I < J)
8072       Tmp2 =
8073           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8074     else
8075       Tmp2 =
8076           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8077 
8078     APInt Shift(Sz, 1);
8079     Shift <<= J;
8080     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8081     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8082   }
8083 
8084   return Tmp;
8085 }
8086 
8087 std::pair<SDValue, SDValue>
8088 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8089                                     SelectionDAG &DAG) const {
8090   SDLoc SL(LD);
8091   SDValue Chain = LD->getChain();
8092   SDValue BasePTR = LD->getBasePtr();
8093   EVT SrcVT = LD->getMemoryVT();
8094   EVT DstVT = LD->getValueType(0);
8095   ISD::LoadExtType ExtType = LD->getExtensionType();
8096 
8097   if (SrcVT.isScalableVector())
8098     report_fatal_error("Cannot scalarize scalable vector loads");
8099 
8100   unsigned NumElem = SrcVT.getVectorNumElements();
8101 
8102   EVT SrcEltVT = SrcVT.getScalarType();
8103   EVT DstEltVT = DstVT.getScalarType();
8104 
8105   // A vector must always be stored in memory as-is, i.e. without any padding
8106   // between the elements, since various code depend on it, e.g. in the
8107   // handling of a bitcast of a vector type to int, which may be done with a
8108   // vector store followed by an integer load. A vector that does not have
8109   // elements that are byte-sized must therefore be stored as an integer
8110   // built out of the extracted vector elements.
8111   if (!SrcEltVT.isByteSized()) {
8112     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8113     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8114 
8115     unsigned NumSrcBits = SrcVT.getSizeInBits();
8116     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8117 
8118     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8119     SDValue SrcEltBitMask = DAG.getConstant(
8120         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8121 
8122     // Load the whole vector and avoid masking off the top bits as it makes
8123     // the codegen worse.
8124     SDValue Load =
8125         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8126                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8127                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8128 
8129     SmallVector<SDValue, 8> Vals;
8130     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8131       unsigned ShiftIntoIdx =
8132           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8133       SDValue ShiftAmount =
8134           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8135                                      LoadVT, SL, /*LegalTypes=*/false);
8136       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8137       SDValue Elt =
8138           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8139       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8140 
8141       if (ExtType != ISD::NON_EXTLOAD) {
8142         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8143         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8144       }
8145 
8146       Vals.push_back(Scalar);
8147     }
8148 
8149     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8150     return std::make_pair(Value, Load.getValue(1));
8151   }
8152 
8153   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8154   assert(SrcEltVT.isByteSized());
8155 
8156   SmallVector<SDValue, 8> Vals;
8157   SmallVector<SDValue, 8> LoadChains;
8158 
8159   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8160     SDValue ScalarLoad =
8161         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8162                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8163                        SrcEltVT, LD->getOriginalAlign(),
8164                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8165 
8166     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8167 
8168     Vals.push_back(ScalarLoad.getValue(0));
8169     LoadChains.push_back(ScalarLoad.getValue(1));
8170   }
8171 
8172   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8173   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8174 
8175   return std::make_pair(Value, NewChain);
8176 }
8177 
8178 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8179                                              SelectionDAG &DAG) const {
8180   SDLoc SL(ST);
8181 
8182   SDValue Chain = ST->getChain();
8183   SDValue BasePtr = ST->getBasePtr();
8184   SDValue Value = ST->getValue();
8185   EVT StVT = ST->getMemoryVT();
8186 
8187   if (StVT.isScalableVector())
8188     report_fatal_error("Cannot scalarize scalable vector stores");
8189 
8190   // The type of the data we want to save
8191   EVT RegVT = Value.getValueType();
8192   EVT RegSclVT = RegVT.getScalarType();
8193 
8194   // The type of data as saved in memory.
8195   EVT MemSclVT = StVT.getScalarType();
8196 
8197   unsigned NumElem = StVT.getVectorNumElements();
8198 
8199   // A vector must always be stored in memory as-is, i.e. without any padding
8200   // between the elements, since various code depend on it, e.g. in the
8201   // handling of a bitcast of a vector type to int, which may be done with a
8202   // vector store followed by an integer load. A vector that does not have
8203   // elements that are byte-sized must therefore be stored as an integer
8204   // built out of the extracted vector elements.
8205   if (!MemSclVT.isByteSized()) {
8206     unsigned NumBits = StVT.getSizeInBits();
8207     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8208 
8209     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8210 
8211     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8212       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8213                                 DAG.getVectorIdxConstant(Idx, SL));
8214       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8215       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8216       unsigned ShiftIntoIdx =
8217           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8218       SDValue ShiftAmount =
8219           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8220       SDValue ShiftedElt =
8221           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8222       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8223     }
8224 
8225     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8226                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8227                         ST->getAAInfo());
8228   }
8229 
8230   // Store Stride in bytes
8231   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8232   assert(Stride && "Zero stride!");
8233   // Extract each of the elements from the original vector and save them into
8234   // memory individually.
8235   SmallVector<SDValue, 8> Stores;
8236   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8237     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8238                               DAG.getVectorIdxConstant(Idx, SL));
8239 
8240     SDValue Ptr =
8241         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8242 
8243     // This scalar TruncStore may be illegal, but we legalize it later.
8244     SDValue Store = DAG.getTruncStore(
8245         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8246         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8247         ST->getAAInfo());
8248 
8249     Stores.push_back(Store);
8250   }
8251 
8252   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8253 }
8254 
8255 std::pair<SDValue, SDValue>
8256 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8257   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8258          "unaligned indexed loads not implemented!");
8259   SDValue Chain = LD->getChain();
8260   SDValue Ptr = LD->getBasePtr();
8261   EVT VT = LD->getValueType(0);
8262   EVT LoadedVT = LD->getMemoryVT();
8263   SDLoc dl(LD);
8264   auto &MF = DAG.getMachineFunction();
8265 
8266   if (VT.isFloatingPoint() || VT.isVector()) {
8267     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8268     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8269       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8270           LoadedVT.isVector()) {
8271         // Scalarize the load and let the individual components be handled.
8272         return scalarizeVectorLoad(LD, DAG);
8273       }
8274 
8275       // Expand to a (misaligned) integer load of the same size,
8276       // then bitconvert to floating point or vector.
8277       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8278                                     LD->getMemOperand());
8279       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8280       if (LoadedVT != VT)
8281         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8282                              ISD::ANY_EXTEND, dl, VT, Result);
8283 
8284       return std::make_pair(Result, newLoad.getValue(1));
8285     }
8286 
8287     // Copy the value to a (aligned) stack slot using (unaligned) integer
8288     // loads and stores, then do a (aligned) load from the stack slot.
8289     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8290     unsigned LoadedBytes = LoadedVT.getStoreSize();
8291     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8292     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8293 
8294     // Make sure the stack slot is also aligned for the register type.
8295     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8296     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8297     SmallVector<SDValue, 8> Stores;
8298     SDValue StackPtr = StackBase;
8299     unsigned Offset = 0;
8300 
8301     EVT PtrVT = Ptr.getValueType();
8302     EVT StackPtrVT = StackPtr.getValueType();
8303 
8304     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8305     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8306 
8307     // Do all but one copies using the full register width.
8308     for (unsigned i = 1; i < NumRegs; i++) {
8309       // Load one integer register's worth from the original location.
8310       SDValue Load = DAG.getLoad(
8311           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8312           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8313           LD->getAAInfo());
8314       // Follow the load with a store to the stack slot.  Remember the store.
8315       Stores.push_back(DAG.getStore(
8316           Load.getValue(1), dl, Load, StackPtr,
8317           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8318       // Increment the pointers.
8319       Offset += RegBytes;
8320 
8321       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8322       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8323     }
8324 
8325     // The last copy may be partial.  Do an extending load.
8326     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8327                                   8 * (LoadedBytes - Offset));
8328     SDValue Load =
8329         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8330                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8331                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8332                        LD->getAAInfo());
8333     // Follow the load with a store to the stack slot.  Remember the store.
8334     // On big-endian machines this requires a truncating store to ensure
8335     // that the bits end up in the right place.
8336     Stores.push_back(DAG.getTruncStore(
8337         Load.getValue(1), dl, Load, StackPtr,
8338         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8339 
8340     // The order of the stores doesn't matter - say it with a TokenFactor.
8341     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8342 
8343     // Finally, perform the original load only redirected to the stack slot.
8344     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8345                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8346                           LoadedVT);
8347 
8348     // Callers expect a MERGE_VALUES node.
8349     return std::make_pair(Load, TF);
8350   }
8351 
8352   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8353          "Unaligned load of unsupported type.");
8354 
8355   // Compute the new VT that is half the size of the old one.  This is an
8356   // integer MVT.
8357   unsigned NumBits = LoadedVT.getSizeInBits();
8358   EVT NewLoadedVT;
8359   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8360   NumBits >>= 1;
8361 
8362   Align Alignment = LD->getOriginalAlign();
8363   unsigned IncrementSize = NumBits / 8;
8364   ISD::LoadExtType HiExtType = LD->getExtensionType();
8365 
8366   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8367   if (HiExtType == ISD::NON_EXTLOAD)
8368     HiExtType = ISD::ZEXTLOAD;
8369 
8370   // Load the value in two parts
8371   SDValue Lo, Hi;
8372   if (DAG.getDataLayout().isLittleEndian()) {
8373     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8374                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8375                         LD->getAAInfo());
8376 
8377     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8378     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8379                         LD->getPointerInfo().getWithOffset(IncrementSize),
8380                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8381                         LD->getAAInfo());
8382   } else {
8383     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8384                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8385                         LD->getAAInfo());
8386 
8387     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8388     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8389                         LD->getPointerInfo().getWithOffset(IncrementSize),
8390                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8391                         LD->getAAInfo());
8392   }
8393 
8394   // aggregate the two parts
8395   SDValue ShiftAmount =
8396       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8397                                                     DAG.getDataLayout()));
8398   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8399   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8400 
8401   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8402                              Hi.getValue(1));
8403 
8404   return std::make_pair(Result, TF);
8405 }
8406 
8407 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8408                                              SelectionDAG &DAG) const {
8409   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8410          "unaligned indexed stores not implemented!");
8411   SDValue Chain = ST->getChain();
8412   SDValue Ptr = ST->getBasePtr();
8413   SDValue Val = ST->getValue();
8414   EVT VT = Val.getValueType();
8415   Align Alignment = ST->getOriginalAlign();
8416   auto &MF = DAG.getMachineFunction();
8417   EVT StoreMemVT = ST->getMemoryVT();
8418 
8419   SDLoc dl(ST);
8420   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8421     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8422     if (isTypeLegal(intVT)) {
8423       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8424           StoreMemVT.isVector()) {
8425         // Scalarize the store and let the individual components be handled.
8426         SDValue Result = scalarizeVectorStore(ST, DAG);
8427         return Result;
8428       }
8429       // Expand to a bitconvert of the value to the integer type of the
8430       // same size, then a (misaligned) int store.
8431       // FIXME: Does not handle truncating floating point stores!
8432       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8433       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8434                             Alignment, ST->getMemOperand()->getFlags());
8435       return Result;
8436     }
8437     // Do a (aligned) store to a stack slot, then copy from the stack slot
8438     // to the final destination using (unaligned) integer loads and stores.
8439     MVT RegVT = getRegisterType(
8440         *DAG.getContext(),
8441         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8442     EVT PtrVT = Ptr.getValueType();
8443     unsigned StoredBytes = StoreMemVT.getStoreSize();
8444     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8445     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8446 
8447     // Make sure the stack slot is also aligned for the register type.
8448     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8449     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8450 
8451     // Perform the original store, only redirected to the stack slot.
8452     SDValue Store = DAG.getTruncStore(
8453         Chain, dl, Val, StackPtr,
8454         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8455 
8456     EVT StackPtrVT = StackPtr.getValueType();
8457 
8458     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8459     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8460     SmallVector<SDValue, 8> Stores;
8461     unsigned Offset = 0;
8462 
8463     // Do all but one copies using the full register width.
8464     for (unsigned i = 1; i < NumRegs; i++) {
8465       // Load one integer register's worth from the stack slot.
8466       SDValue Load = DAG.getLoad(
8467           RegVT, dl, Store, StackPtr,
8468           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8469       // Store it to the final location.  Remember the store.
8470       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8471                                     ST->getPointerInfo().getWithOffset(Offset),
8472                                     ST->getOriginalAlign(),
8473                                     ST->getMemOperand()->getFlags()));
8474       // Increment the pointers.
8475       Offset += RegBytes;
8476       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8477       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8478     }
8479 
8480     // The last store may be partial.  Do a truncating store.  On big-endian
8481     // machines this requires an extending load from the stack slot to ensure
8482     // that the bits are in the right place.
8483     EVT LoadMemVT =
8484         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8485 
8486     // Load from the stack slot.
8487     SDValue Load = DAG.getExtLoad(
8488         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8489         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8490 
8491     Stores.push_back(
8492         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8493                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8494                           ST->getOriginalAlign(),
8495                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8496     // The order of the stores doesn't matter - say it with a TokenFactor.
8497     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8498     return Result;
8499   }
8500 
8501   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8502          "Unaligned store of unknown type.");
8503   // Get the half-size VT
8504   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8505   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8506   unsigned IncrementSize = NumBits / 8;
8507 
8508   // Divide the stored value in two parts.
8509   SDValue ShiftAmount = DAG.getConstant(
8510       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8511   SDValue Lo = Val;
8512   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8513 
8514   // Store the two parts
8515   SDValue Store1, Store2;
8516   Store1 = DAG.getTruncStore(Chain, dl,
8517                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8518                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8519                              ST->getMemOperand()->getFlags());
8520 
8521   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8522   Store2 = DAG.getTruncStore(
8523       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8524       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8525       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8526 
8527   SDValue Result =
8528       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8529   return Result;
8530 }
8531 
8532 SDValue
8533 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8534                                        const SDLoc &DL, EVT DataVT,
8535                                        SelectionDAG &DAG,
8536                                        bool IsCompressedMemory) const {
8537   SDValue Increment;
8538   EVT AddrVT = Addr.getValueType();
8539   EVT MaskVT = Mask.getValueType();
8540   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8541          "Incompatible types of Data and Mask");
8542   if (IsCompressedMemory) {
8543     if (DataVT.isScalableVector())
8544       report_fatal_error(
8545           "Cannot currently handle compressed memory with scalable vectors");
8546     // Incrementing the pointer according to number of '1's in the mask.
8547     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8548     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8549     if (MaskIntVT.getSizeInBits() < 32) {
8550       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8551       MaskIntVT = MVT::i32;
8552     }
8553 
8554     // Count '1's with POPCNT.
8555     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8556     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8557     // Scale is an element size in bytes.
8558     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8559                                     AddrVT);
8560     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8561   } else if (DataVT.isScalableVector()) {
8562     Increment = DAG.getVScale(DL, AddrVT,
8563                               APInt(AddrVT.getFixedSizeInBits(),
8564                                     DataVT.getStoreSize().getKnownMinSize()));
8565   } else
8566     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8567 
8568   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8569 }
8570 
8571 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8572                                        EVT VecVT, const SDLoc &dl,
8573                                        ElementCount SubEC) {
8574   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8575          "Cannot index a scalable vector within a fixed-width vector");
8576 
8577   unsigned NElts = VecVT.getVectorMinNumElements();
8578   unsigned NumSubElts = SubEC.getKnownMinValue();
8579   EVT IdxVT = Idx.getValueType();
8580 
8581   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8582     // If this is a constant index and we know the value plus the number of the
8583     // elements in the subvector minus one is less than the minimum number of
8584     // elements then it's safe to return Idx.
8585     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8586       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8587         return Idx;
8588     SDValue VS =
8589         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8590     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8591     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8592                               DAG.getConstant(NumSubElts, dl, IdxVT));
8593     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8594   }
8595   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8596     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8597     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8598                        DAG.getConstant(Imm, dl, IdxVT));
8599   }
8600   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8601   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8602                      DAG.getConstant(MaxIndex, dl, IdxVT));
8603 }
8604 
8605 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8606                                                 SDValue VecPtr, EVT VecVT,
8607                                                 SDValue Index) const {
8608   return getVectorSubVecPointer(
8609       DAG, VecPtr, VecVT,
8610       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8611       Index);
8612 }
8613 
8614 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8615                                                SDValue VecPtr, EVT VecVT,
8616                                                EVT SubVecVT,
8617                                                SDValue Index) const {
8618   SDLoc dl(Index);
8619   // Make sure the index type is big enough to compute in.
8620   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8621 
8622   EVT EltVT = VecVT.getVectorElementType();
8623 
8624   // Calculate the element offset and add it to the pointer.
8625   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8626   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8627          "Converting bits to bytes lost precision");
8628   assert(SubVecVT.getVectorElementType() == EltVT &&
8629          "Sub-vector must be a vector with matching element type");
8630   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8631                                   SubVecVT.getVectorElementCount());
8632 
8633   EVT IdxVT = Index.getValueType();
8634   if (SubVecVT.isScalableVector())
8635     Index =
8636         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8637                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8638 
8639   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8640                       DAG.getConstant(EltSize, dl, IdxVT));
8641   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8642 }
8643 
8644 //===----------------------------------------------------------------------===//
8645 // Implementation of Emulated TLS Model
8646 //===----------------------------------------------------------------------===//
8647 
8648 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8649                                                 SelectionDAG &DAG) const {
8650   // Access to address of TLS varialbe xyz is lowered to a function call:
8651   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8652   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8653   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8654   SDLoc dl(GA);
8655 
8656   ArgListTy Args;
8657   ArgListEntry Entry;
8658   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8659   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8660   StringRef EmuTlsVarName(NameString);
8661   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8662   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8663   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8664   Entry.Ty = VoidPtrType;
8665   Args.push_back(Entry);
8666 
8667   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8668 
8669   TargetLowering::CallLoweringInfo CLI(DAG);
8670   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8671   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8672   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8673 
8674   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8675   // At last for X86 targets, maybe good for other targets too?
8676   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8677   MFI.setAdjustsStack(true); // Is this only for X86 target?
8678   MFI.setHasCalls(true);
8679 
8680   assert((GA->getOffset() == 0) &&
8681          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8682   return CallResult.first;
8683 }
8684 
8685 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8686                                                 SelectionDAG &DAG) const {
8687   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8688   if (!isCtlzFast())
8689     return SDValue();
8690   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8691   SDLoc dl(Op);
8692   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8693     if (C->isZero() && CC == ISD::SETEQ) {
8694       EVT VT = Op.getOperand(0).getValueType();
8695       SDValue Zext = Op.getOperand(0);
8696       if (VT.bitsLT(MVT::i32)) {
8697         VT = MVT::i32;
8698         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8699       }
8700       unsigned Log2b = Log2_32(VT.getSizeInBits());
8701       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8702       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8703                                 DAG.getConstant(Log2b, dl, MVT::i32));
8704       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8705     }
8706   }
8707   return SDValue();
8708 }
8709 
8710 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8711   SDValue Op0 = Node->getOperand(0);
8712   SDValue Op1 = Node->getOperand(1);
8713   EVT VT = Op0.getValueType();
8714   unsigned Opcode = Node->getOpcode();
8715   SDLoc DL(Node);
8716 
8717   // umin(x,y) -> sub(x,usubsat(x,y))
8718   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8719       isOperationLegal(ISD::USUBSAT, VT)) {
8720     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8721                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8722   }
8723 
8724   // umax(x,y) -> add(x,usubsat(y,x))
8725   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8726       isOperationLegal(ISD::USUBSAT, VT)) {
8727     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8728                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8729   }
8730 
8731   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8732   ISD::CondCode CC;
8733   switch (Opcode) {
8734   default: llvm_unreachable("How did we get here?");
8735   case ISD::SMAX: CC = ISD::SETGT; break;
8736   case ISD::SMIN: CC = ISD::SETLT; break;
8737   case ISD::UMAX: CC = ISD::SETUGT; break;
8738   case ISD::UMIN: CC = ISD::SETULT; break;
8739   }
8740 
8741   // FIXME: Should really try to split the vector in case it's legal on a
8742   // subvector.
8743   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8744     return DAG.UnrollVectorOp(Node);
8745 
8746   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8747   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8748   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8749 }
8750 
8751 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8752   unsigned Opcode = Node->getOpcode();
8753   SDValue LHS = Node->getOperand(0);
8754   SDValue RHS = Node->getOperand(1);
8755   EVT VT = LHS.getValueType();
8756   SDLoc dl(Node);
8757 
8758   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8759   assert(VT.isInteger() && "Expected operands to be integers");
8760 
8761   // usub.sat(a, b) -> umax(a, b) - b
8762   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8763     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8764     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8765   }
8766 
8767   // uadd.sat(a, b) -> umin(a, ~b) + b
8768   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8769     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8770     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8771     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8772   }
8773 
8774   unsigned OverflowOp;
8775   switch (Opcode) {
8776   case ISD::SADDSAT:
8777     OverflowOp = ISD::SADDO;
8778     break;
8779   case ISD::UADDSAT:
8780     OverflowOp = ISD::UADDO;
8781     break;
8782   case ISD::SSUBSAT:
8783     OverflowOp = ISD::SSUBO;
8784     break;
8785   case ISD::USUBSAT:
8786     OverflowOp = ISD::USUBO;
8787     break;
8788   default:
8789     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8790                      "addition or subtraction node.");
8791   }
8792 
8793   // FIXME: Should really try to split the vector in case it's legal on a
8794   // subvector.
8795   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8796     return DAG.UnrollVectorOp(Node);
8797 
8798   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8799   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8800   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8801   SDValue SumDiff = Result.getValue(0);
8802   SDValue Overflow = Result.getValue(1);
8803   SDValue Zero = DAG.getConstant(0, dl, VT);
8804   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8805 
8806   if (Opcode == ISD::UADDSAT) {
8807     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8808       // (LHS + RHS) | OverflowMask
8809       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8810       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8811     }
8812     // Overflow ? 0xffff.... : (LHS + RHS)
8813     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8814   }
8815 
8816   if (Opcode == ISD::USUBSAT) {
8817     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8818       // (LHS - RHS) & ~OverflowMask
8819       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8820       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8821       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8822     }
8823     // Overflow ? 0 : (LHS - RHS)
8824     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8825   }
8826 
8827   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8828   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8829   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8830   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8831                               DAG.getConstant(BitWidth - 1, dl, VT));
8832   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8833   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8834 }
8835 
8836 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8837   unsigned Opcode = Node->getOpcode();
8838   bool IsSigned = Opcode == ISD::SSHLSAT;
8839   SDValue LHS = Node->getOperand(0);
8840   SDValue RHS = Node->getOperand(1);
8841   EVT VT = LHS.getValueType();
8842   SDLoc dl(Node);
8843 
8844   assert((Node->getOpcode() == ISD::SSHLSAT ||
8845           Node->getOpcode() == ISD::USHLSAT) &&
8846           "Expected a SHLSAT opcode");
8847   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8848   assert(VT.isInteger() && "Expected operands to be integers");
8849 
8850   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8851 
8852   unsigned BW = VT.getScalarSizeInBits();
8853   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8854   SDValue Orig =
8855       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8856 
8857   SDValue SatVal;
8858   if (IsSigned) {
8859     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8860     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8861     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8862                              SatMin, SatMax, ISD::SETLT);
8863   } else {
8864     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8865   }
8866   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8867 
8868   return Result;
8869 }
8870 
8871 SDValue
8872 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8873   assert((Node->getOpcode() == ISD::SMULFIX ||
8874           Node->getOpcode() == ISD::UMULFIX ||
8875           Node->getOpcode() == ISD::SMULFIXSAT ||
8876           Node->getOpcode() == ISD::UMULFIXSAT) &&
8877          "Expected a fixed point multiplication opcode");
8878 
8879   SDLoc dl(Node);
8880   SDValue LHS = Node->getOperand(0);
8881   SDValue RHS = Node->getOperand(1);
8882   EVT VT = LHS.getValueType();
8883   unsigned Scale = Node->getConstantOperandVal(2);
8884   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8885                      Node->getOpcode() == ISD::UMULFIXSAT);
8886   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8887                  Node->getOpcode() == ISD::SMULFIXSAT);
8888   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8889   unsigned VTSize = VT.getScalarSizeInBits();
8890 
8891   if (!Scale) {
8892     // [us]mul.fix(a, b, 0) -> mul(a, b)
8893     if (!Saturating) {
8894       if (isOperationLegalOrCustom(ISD::MUL, VT))
8895         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8896     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8897       SDValue Result =
8898           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8899       SDValue Product = Result.getValue(0);
8900       SDValue Overflow = Result.getValue(1);
8901       SDValue Zero = DAG.getConstant(0, dl, VT);
8902 
8903       APInt MinVal = APInt::getSignedMinValue(VTSize);
8904       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8905       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8906       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8907       // Xor the inputs, if resulting sign bit is 0 the product will be
8908       // positive, else negative.
8909       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8910       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8911       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8912       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8913     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8914       SDValue Result =
8915           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8916       SDValue Product = Result.getValue(0);
8917       SDValue Overflow = Result.getValue(1);
8918 
8919       APInt MaxVal = APInt::getMaxValue(VTSize);
8920       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8921       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8922     }
8923   }
8924 
8925   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8926          "Expected scale to be less than the number of bits if signed or at "
8927          "most the number of bits if unsigned.");
8928   assert(LHS.getValueType() == RHS.getValueType() &&
8929          "Expected both operands to be the same type");
8930 
8931   // Get the upper and lower bits of the result.
8932   SDValue Lo, Hi;
8933   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8934   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8935   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8936     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8937     Lo = Result.getValue(0);
8938     Hi = Result.getValue(1);
8939   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8940     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8941     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8942   } else if (VT.isVector()) {
8943     return SDValue();
8944   } else {
8945     report_fatal_error("Unable to expand fixed point multiplication.");
8946   }
8947 
8948   if (Scale == VTSize)
8949     // Result is just the top half since we'd be shifting by the width of the
8950     // operand. Overflow impossible so this works for both UMULFIX and
8951     // UMULFIXSAT.
8952     return Hi;
8953 
8954   // The result will need to be shifted right by the scale since both operands
8955   // are scaled. The result is given to us in 2 halves, so we only want part of
8956   // both in the result.
8957   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8958   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8959                                DAG.getConstant(Scale, dl, ShiftTy));
8960   if (!Saturating)
8961     return Result;
8962 
8963   if (!Signed) {
8964     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8965     // widened multiplication) aren't all zeroes.
8966 
8967     // Saturate to max if ((Hi >> Scale) != 0),
8968     // which is the same as if (Hi > ((1 << Scale) - 1))
8969     APInt MaxVal = APInt::getMaxValue(VTSize);
8970     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8971                                       dl, VT);
8972     Result = DAG.getSelectCC(dl, Hi, LowMask,
8973                              DAG.getConstant(MaxVal, dl, VT), Result,
8974                              ISD::SETUGT);
8975 
8976     return Result;
8977   }
8978 
8979   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8980   // widened multiplication) aren't all ones or all zeroes.
8981 
8982   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8983   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8984 
8985   if (Scale == 0) {
8986     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8987                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8988     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8989     // Saturated to SatMin if wide product is negative, and SatMax if wide
8990     // product is positive ...
8991     SDValue Zero = DAG.getConstant(0, dl, VT);
8992     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8993                                                ISD::SETLT);
8994     // ... but only if we overflowed.
8995     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8996   }
8997 
8998   //  We handled Scale==0 above so all the bits to examine is in Hi.
8999 
9000   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9001   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9002   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9003                                     dl, VT);
9004   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9005   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9006   // which is the same as if (HI < (-1 << (Scale - 1))
9007   SDValue HighMask =
9008       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9009                       dl, VT);
9010   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9011   return Result;
9012 }
9013 
9014 SDValue
9015 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9016                                     SDValue LHS, SDValue RHS,
9017                                     unsigned Scale, SelectionDAG &DAG) const {
9018   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9019           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9020          "Expected a fixed point division opcode");
9021 
9022   EVT VT = LHS.getValueType();
9023   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9024   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9025   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9026 
9027   // If there is enough room in the type to upscale the LHS or downscale the
9028   // RHS before the division, we can perform it in this type without having to
9029   // resize. For signed operations, the LHS headroom is the number of
9030   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9031   // The headroom for the RHS is the number of trailing zeroes.
9032   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9033                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9034   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9035 
9036   // For signed saturating operations, we need to be able to detect true integer
9037   // division overflow; that is, when you have MIN / -EPS. However, this
9038   // is undefined behavior and if we emit divisions that could take such
9039   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9040   // example).
9041   // Avoid this by requiring an extra bit so that we never get this case.
9042   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9043   // signed saturating division, we need to emit a whopping 32-bit division.
9044   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9045     return SDValue();
9046 
9047   unsigned LHSShift = std::min(LHSLead, Scale);
9048   unsigned RHSShift = Scale - LHSShift;
9049 
9050   // At this point, we know that if we shift the LHS up by LHSShift and the
9051   // RHS down by RHSShift, we can emit a regular division with a final scaling
9052   // factor of Scale.
9053 
9054   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9055   if (LHSShift)
9056     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9057                       DAG.getConstant(LHSShift, dl, ShiftTy));
9058   if (RHSShift)
9059     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9060                       DAG.getConstant(RHSShift, dl, ShiftTy));
9061 
9062   SDValue Quot;
9063   if (Signed) {
9064     // For signed operations, if the resulting quotient is negative and the
9065     // remainder is nonzero, subtract 1 from the quotient to round towards
9066     // negative infinity.
9067     SDValue Rem;
9068     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9069     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9070     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9071     if (isTypeLegal(VT) &&
9072         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9073       Quot = DAG.getNode(ISD::SDIVREM, dl,
9074                          DAG.getVTList(VT, VT),
9075                          LHS, RHS);
9076       Rem = Quot.getValue(1);
9077       Quot = Quot.getValue(0);
9078     } else {
9079       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9080                          LHS, RHS);
9081       Rem = DAG.getNode(ISD::SREM, dl, VT,
9082                         LHS, RHS);
9083     }
9084     SDValue Zero = DAG.getConstant(0, dl, VT);
9085     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9086     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9087     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9088     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9089     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9090                                DAG.getConstant(1, dl, VT));
9091     Quot = DAG.getSelect(dl, VT,
9092                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9093                          Sub1, Quot);
9094   } else
9095     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9096                        LHS, RHS);
9097 
9098   return Quot;
9099 }
9100 
9101 void TargetLowering::expandUADDSUBO(
9102     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9103   SDLoc dl(Node);
9104   SDValue LHS = Node->getOperand(0);
9105   SDValue RHS = Node->getOperand(1);
9106   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9107 
9108   // If ADD/SUBCARRY is legal, use that instead.
9109   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9110   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9111     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9112     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9113                                     { LHS, RHS, CarryIn });
9114     Result = SDValue(NodeCarry.getNode(), 0);
9115     Overflow = SDValue(NodeCarry.getNode(), 1);
9116     return;
9117   }
9118 
9119   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9120                             LHS.getValueType(), LHS, RHS);
9121 
9122   EVT ResultType = Node->getValueType(1);
9123   EVT SetCCType = getSetCCResultType(
9124       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9125   SDValue SetCC;
9126   if (IsAdd && isOneConstant(RHS)) {
9127     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9128     // the live range of X. We assume comparing with 0 is cheap.
9129     // The general case (X + C) < C is not necessarily beneficial. Although we
9130     // reduce the live range of X, we may introduce the materialization of
9131     // constant C.
9132     SetCC =
9133         DAG.getSetCC(dl, SetCCType, Result,
9134                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9135   } else {
9136     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9137     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9138   }
9139   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9140 }
9141 
9142 void TargetLowering::expandSADDSUBO(
9143     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9144   SDLoc dl(Node);
9145   SDValue LHS = Node->getOperand(0);
9146   SDValue RHS = Node->getOperand(1);
9147   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9148 
9149   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9150                             LHS.getValueType(), LHS, RHS);
9151 
9152   EVT ResultType = Node->getValueType(1);
9153   EVT OType = getSetCCResultType(
9154       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9155 
9156   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9157   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9158   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9159     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9160     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9161     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9162     return;
9163   }
9164 
9165   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9166 
9167   // For an addition, the result should be less than one of the operands (LHS)
9168   // if and only if the other operand (RHS) is negative, otherwise there will
9169   // be overflow.
9170   // For a subtraction, the result should be less than one of the operands
9171   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9172   // otherwise there will be overflow.
9173   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9174   SDValue ConditionRHS =
9175       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9176 
9177   Overflow = DAG.getBoolExtOrTrunc(
9178       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9179       ResultType, ResultType);
9180 }
9181 
9182 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9183                                 SDValue &Overflow, SelectionDAG &DAG) const {
9184   SDLoc dl(Node);
9185   EVT VT = Node->getValueType(0);
9186   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9187   SDValue LHS = Node->getOperand(0);
9188   SDValue RHS = Node->getOperand(1);
9189   bool isSigned = Node->getOpcode() == ISD::SMULO;
9190 
9191   // For power-of-two multiplications we can use a simpler shift expansion.
9192   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9193     const APInt &C = RHSC->getAPIntValue();
9194     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9195     if (C.isPowerOf2()) {
9196       // smulo(x, signed_min) is same as umulo(x, signed_min).
9197       bool UseArithShift = isSigned && !C.isMinSignedValue();
9198       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9199       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9200       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9201       Overflow = DAG.getSetCC(dl, SetCCVT,
9202           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9203                       dl, VT, Result, ShiftAmt),
9204           LHS, ISD::SETNE);
9205       return true;
9206     }
9207   }
9208 
9209   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9210   if (VT.isVector())
9211     WideVT =
9212         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9213 
9214   SDValue BottomHalf;
9215   SDValue TopHalf;
9216   static const unsigned Ops[2][3] =
9217       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9218         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9219   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9220     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9221     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9222   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9223     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9224                              RHS);
9225     TopHalf = BottomHalf.getValue(1);
9226   } else if (isTypeLegal(WideVT)) {
9227     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9228     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9229     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9230     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9231     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9232         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9233     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9234                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9235   } else {
9236     if (VT.isVector())
9237       return false;
9238 
9239     // We can fall back to a libcall with an illegal type for the MUL if we
9240     // have a libcall big enough.
9241     // Also, we can fall back to a division in some cases, but that's a big
9242     // performance hit in the general case.
9243     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9244     if (WideVT == MVT::i16)
9245       LC = RTLIB::MUL_I16;
9246     else if (WideVT == MVT::i32)
9247       LC = RTLIB::MUL_I32;
9248     else if (WideVT == MVT::i64)
9249       LC = RTLIB::MUL_I64;
9250     else if (WideVT == MVT::i128)
9251       LC = RTLIB::MUL_I128;
9252     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9253 
9254     SDValue HiLHS;
9255     SDValue HiRHS;
9256     if (isSigned) {
9257       // The high part is obtained by SRA'ing all but one of the bits of low
9258       // part.
9259       unsigned LoSize = VT.getFixedSizeInBits();
9260       HiLHS =
9261           DAG.getNode(ISD::SRA, dl, VT, LHS,
9262                       DAG.getConstant(LoSize - 1, dl,
9263                                       getPointerTy(DAG.getDataLayout())));
9264       HiRHS =
9265           DAG.getNode(ISD::SRA, dl, VT, RHS,
9266                       DAG.getConstant(LoSize - 1, dl,
9267                                       getPointerTy(DAG.getDataLayout())));
9268     } else {
9269         HiLHS = DAG.getConstant(0, dl, VT);
9270         HiRHS = DAG.getConstant(0, dl, VT);
9271     }
9272 
9273     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9274     // pre-lowered to the correct types. This all depends upon WideVT not
9275     // being a legal type for the architecture and thus has to be split to
9276     // two arguments.
9277     SDValue Ret;
9278     TargetLowering::MakeLibCallOptions CallOptions;
9279     CallOptions.setSExt(isSigned);
9280     CallOptions.setIsPostTypeLegalization(true);
9281     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9282       // Halves of WideVT are packed into registers in different order
9283       // depending on platform endianness. This is usually handled by
9284       // the C calling convention, but we can't defer to it in
9285       // the legalizer.
9286       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9287       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9288     } else {
9289       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9290       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9291     }
9292     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9293            "Ret value is a collection of constituent nodes holding result.");
9294     if (DAG.getDataLayout().isLittleEndian()) {
9295       // Same as above.
9296       BottomHalf = Ret.getOperand(0);
9297       TopHalf = Ret.getOperand(1);
9298     } else {
9299       BottomHalf = Ret.getOperand(1);
9300       TopHalf = Ret.getOperand(0);
9301     }
9302   }
9303 
9304   Result = BottomHalf;
9305   if (isSigned) {
9306     SDValue ShiftAmt = DAG.getConstant(
9307         VT.getScalarSizeInBits() - 1, dl,
9308         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9309     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9310     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9311   } else {
9312     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9313                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9314   }
9315 
9316   // Truncate the result if SetCC returns a larger type than needed.
9317   EVT RType = Node->getValueType(1);
9318   if (RType.bitsLT(Overflow.getValueType()))
9319     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9320 
9321   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9322          "Unexpected result type for S/UMULO legalization");
9323   return true;
9324 }
9325 
9326 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9327   SDLoc dl(Node);
9328   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9329   SDValue Op = Node->getOperand(0);
9330   EVT VT = Op.getValueType();
9331 
9332   if (VT.isScalableVector())
9333     report_fatal_error(
9334         "Expanding reductions for scalable vectors is undefined.");
9335 
9336   // Try to use a shuffle reduction for power of two vectors.
9337   if (VT.isPow2VectorType()) {
9338     while (VT.getVectorNumElements() > 1) {
9339       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9340       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9341         break;
9342 
9343       SDValue Lo, Hi;
9344       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9345       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9346       VT = HalfVT;
9347     }
9348   }
9349 
9350   EVT EltVT = VT.getVectorElementType();
9351   unsigned NumElts = VT.getVectorNumElements();
9352 
9353   SmallVector<SDValue, 8> Ops;
9354   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9355 
9356   SDValue Res = Ops[0];
9357   for (unsigned i = 1; i < NumElts; i++)
9358     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9359 
9360   // Result type may be wider than element type.
9361   if (EltVT != Node->getValueType(0))
9362     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9363   return Res;
9364 }
9365 
9366 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9367   SDLoc dl(Node);
9368   SDValue AccOp = Node->getOperand(0);
9369   SDValue VecOp = Node->getOperand(1);
9370   SDNodeFlags Flags = Node->getFlags();
9371 
9372   EVT VT = VecOp.getValueType();
9373   EVT EltVT = VT.getVectorElementType();
9374 
9375   if (VT.isScalableVector())
9376     report_fatal_error(
9377         "Expanding reductions for scalable vectors is undefined.");
9378 
9379   unsigned NumElts = VT.getVectorNumElements();
9380 
9381   SmallVector<SDValue, 8> Ops;
9382   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9383 
9384   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9385 
9386   SDValue Res = AccOp;
9387   for (unsigned i = 0; i < NumElts; i++)
9388     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9389 
9390   return Res;
9391 }
9392 
9393 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9394                                SelectionDAG &DAG) const {
9395   EVT VT = Node->getValueType(0);
9396   SDLoc dl(Node);
9397   bool isSigned = Node->getOpcode() == ISD::SREM;
9398   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9399   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9400   SDValue Dividend = Node->getOperand(0);
9401   SDValue Divisor = Node->getOperand(1);
9402   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9403     SDVTList VTs = DAG.getVTList(VT, VT);
9404     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9405     return true;
9406   }
9407   if (isOperationLegalOrCustom(DivOpc, VT)) {
9408     // X % Y -> X-X/Y*Y
9409     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9410     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9411     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9412     return true;
9413   }
9414   return false;
9415 }
9416 
9417 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9418                                             SelectionDAG &DAG) const {
9419   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9420   SDLoc dl(SDValue(Node, 0));
9421   SDValue Src = Node->getOperand(0);
9422 
9423   // DstVT is the result type, while SatVT is the size to which we saturate
9424   EVT SrcVT = Src.getValueType();
9425   EVT DstVT = Node->getValueType(0);
9426 
9427   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9428   unsigned SatWidth = SatVT.getScalarSizeInBits();
9429   unsigned DstWidth = DstVT.getScalarSizeInBits();
9430   assert(SatWidth <= DstWidth &&
9431          "Expected saturation width smaller than result width");
9432 
9433   // Determine minimum and maximum integer values and their corresponding
9434   // floating-point values.
9435   APInt MinInt, MaxInt;
9436   if (IsSigned) {
9437     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9438     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9439   } else {
9440     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9441     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9442   }
9443 
9444   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9445   // libcall emission cannot handle this. Large result types will fail.
9446   if (SrcVT == MVT::f16) {
9447     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9448     SrcVT = Src.getValueType();
9449   }
9450 
9451   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9452   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9453 
9454   APFloat::opStatus MinStatus =
9455       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9456   APFloat::opStatus MaxStatus =
9457       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9458   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9459                              !(MaxStatus & APFloat::opStatus::opInexact);
9460 
9461   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9462   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9463 
9464   // If the integer bounds are exactly representable as floats and min/max are
9465   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9466   // of comparisons and selects.
9467   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9468                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9469   if (AreExactFloatBounds && MinMaxLegal) {
9470     SDValue Clamped = Src;
9471 
9472     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9473     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9474     // Clamp by MaxFloat from above. NaN cannot occur.
9475     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9476     // Convert clamped value to integer.
9477     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9478                                   dl, DstVT, Clamped);
9479 
9480     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9481     // which will cast to zero.
9482     if (!IsSigned)
9483       return FpToInt;
9484 
9485     // Otherwise, select 0 if Src is NaN.
9486     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9487     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9488                            ISD::CondCode::SETUO);
9489   }
9490 
9491   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9492   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9493 
9494   // Result of direct conversion. The assumption here is that the operation is
9495   // non-trapping and it's fine to apply it to an out-of-range value if we
9496   // select it away later.
9497   SDValue FpToInt =
9498       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9499 
9500   SDValue Select = FpToInt;
9501 
9502   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9503   // MinInt if Src is NaN.
9504   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9505                            ISD::CondCode::SETULT);
9506   // If Src OGT MaxFloat, select MaxInt.
9507   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9508                            ISD::CondCode::SETOGT);
9509 
9510   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9511   // is already zero.
9512   if (!IsSigned)
9513     return Select;
9514 
9515   // Otherwise, select 0 if Src is NaN.
9516   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9517   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9518 }
9519 
9520 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9521                                            SelectionDAG &DAG) const {
9522   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9523   assert(Node->getValueType(0).isScalableVector() &&
9524          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9525 
9526   EVT VT = Node->getValueType(0);
9527   SDValue V1 = Node->getOperand(0);
9528   SDValue V2 = Node->getOperand(1);
9529   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9530   SDLoc DL(Node);
9531 
9532   // Expand through memory thusly:
9533   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9534   //  Store V1, Ptr
9535   //  Store V2, Ptr + sizeof(V1)
9536   //  If (Imm < 0)
9537   //    TrailingElts = -Imm
9538   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9539   //  else
9540   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9541   //  Res = Load Ptr
9542 
9543   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9544 
9545   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9546                                VT.getVectorElementCount() * 2);
9547   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9548   EVT PtrVT = StackPtr.getValueType();
9549   auto &MF = DAG.getMachineFunction();
9550   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9551   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9552 
9553   // Store the lo part of CONCAT_VECTORS(V1, V2)
9554   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9555   // Store the hi part of CONCAT_VECTORS(V1, V2)
9556   SDValue OffsetToV2 = DAG.getVScale(
9557       DL, PtrVT,
9558       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9559   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9560   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9561 
9562   if (Imm >= 0) {
9563     // Load back the required element. getVectorElementPointer takes care of
9564     // clamping the index if it's out-of-bounds.
9565     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9566     // Load the spliced result
9567     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9568                        MachinePointerInfo::getUnknownStack(MF));
9569   }
9570 
9571   uint64_t TrailingElts = -Imm;
9572 
9573   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9574   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9575   SDValue TrailingBytes =
9576       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9577 
9578   if (TrailingElts > VT.getVectorMinNumElements()) {
9579     SDValue VLBytes = DAG.getVScale(
9580         DL, PtrVT,
9581         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9582     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9583   }
9584 
9585   // Calculate the start address of the spliced result.
9586   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9587 
9588   // Load the spliced result
9589   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9590                      MachinePointerInfo::getUnknownStack(MF));
9591 }
9592 
9593 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9594                                            SDValue &LHS, SDValue &RHS,
9595                                            SDValue &CC, SDValue Mask,
9596                                            SDValue EVL, bool &NeedInvert,
9597                                            const SDLoc &dl, SDValue &Chain,
9598                                            bool IsSignaling) const {
9599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9600   MVT OpVT = LHS.getSimpleValueType();
9601   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9602   NeedInvert = false;
9603   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9604   bool IsNonVP = !EVL;
9605   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9606   default:
9607     llvm_unreachable("Unknown condition code action!");
9608   case TargetLowering::Legal:
9609     // Nothing to do.
9610     break;
9611   case TargetLowering::Expand: {
9612     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9613     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9614       std::swap(LHS, RHS);
9615       CC = DAG.getCondCode(InvCC);
9616       return true;
9617     }
9618     // Swapping operands didn't work. Try inverting the condition.
9619     bool NeedSwap = false;
9620     InvCC = getSetCCInverse(CCCode, OpVT);
9621     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9622       // If inverting the condition is not enough, try swapping operands
9623       // on top of it.
9624       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9625       NeedSwap = true;
9626     }
9627     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9628       CC = DAG.getCondCode(InvCC);
9629       NeedInvert = true;
9630       if (NeedSwap)
9631         std::swap(LHS, RHS);
9632       return true;
9633     }
9634 
9635     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9636     unsigned Opc = 0;
9637     switch (CCCode) {
9638     default:
9639       llvm_unreachable("Don't know how to expand this condition!");
9640     case ISD::SETUO:
9641       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9642         CC1 = ISD::SETUNE;
9643         CC2 = ISD::SETUNE;
9644         Opc = ISD::OR;
9645         break;
9646       }
9647       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9648              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9649       NeedInvert = true;
9650       LLVM_FALLTHROUGH;
9651     case ISD::SETO:
9652       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9653              "If SETO is expanded, SETOEQ must be legal!");
9654       CC1 = ISD::SETOEQ;
9655       CC2 = ISD::SETOEQ;
9656       Opc = ISD::AND;
9657       break;
9658     case ISD::SETONE:
9659     case ISD::SETUEQ:
9660       // If the SETUO or SETO CC isn't legal, we might be able to use
9661       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9662       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9663       // the operands.
9664       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9665       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9666           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9667            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9668         CC1 = ISD::SETOGT;
9669         CC2 = ISD::SETOLT;
9670         Opc = ISD::OR;
9671         NeedInvert = ((unsigned)CCCode & 0x8U);
9672         break;
9673       }
9674       LLVM_FALLTHROUGH;
9675     case ISD::SETOEQ:
9676     case ISD::SETOGT:
9677     case ISD::SETOGE:
9678     case ISD::SETOLT:
9679     case ISD::SETOLE:
9680     case ISD::SETUNE:
9681     case ISD::SETUGT:
9682     case ISD::SETUGE:
9683     case ISD::SETULT:
9684     case ISD::SETULE:
9685       // If we are floating point, assign and break, otherwise fall through.
9686       if (!OpVT.isInteger()) {
9687         // We can use the 4th bit to tell if we are the unordered
9688         // or ordered version of the opcode.
9689         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9690         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9691         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9692         break;
9693       }
9694       // Fallthrough if we are unsigned integer.
9695       LLVM_FALLTHROUGH;
9696     case ISD::SETLE:
9697     case ISD::SETGT:
9698     case ISD::SETGE:
9699     case ISD::SETLT:
9700     case ISD::SETNE:
9701     case ISD::SETEQ:
9702       // If all combinations of inverting the condition and swapping operands
9703       // didn't work then we have no means to expand the condition.
9704       llvm_unreachable("Don't know how to expand this condition!");
9705     }
9706 
9707     SDValue SetCC1, SetCC2;
9708     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9709       // If we aren't the ordered or unorder operation,
9710       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9711       if (IsNonVP) {
9712         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9713         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9714       } else {
9715         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9716         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9717       }
9718     } else {
9719       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9720       if (IsNonVP) {
9721         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9722         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9723       } else {
9724         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9725         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9726       }
9727     }
9728     if (Chain)
9729       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9730                           SetCC2.getValue(1));
9731     if (IsNonVP)
9732       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9733     else {
9734       // Transform the binary opcode to the VP equivalent.
9735       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9736       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9737       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9738     }
9739     RHS = SDValue();
9740     CC = SDValue();
9741     return true;
9742   }
9743   }
9744   return false;
9745 }
9746