1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeList CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60           .removeAttribute(Attribute::NoAlias)
61           .hasAttributes())
62     return false;
63 
64   // It's not safe to eliminate the sign / zero extension of the return value.
65   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
66       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
67     return false;
68 
69   // Check if the only use is a function return node.
70   return isUsedByReturnOnly(Node, Chain);
71 }
72 
73 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
74     const uint32_t *CallerPreservedMask,
75     const SmallVectorImpl<CCValAssign> &ArgLocs,
76     const SmallVectorImpl<SDValue> &OutVals) const {
77   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
78     const CCValAssign &ArgLoc = ArgLocs[I];
79     if (!ArgLoc.isRegLoc())
80       continue;
81     unsigned Reg = ArgLoc.getLocReg();
82     // Only look at callee saved registers.
83     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
84       continue;
85     // Check that we pass the value used for the caller.
86     // (We look for a CopyFromReg reading a virtual register that is used
87     //  for the function live-in value of register Reg)
88     SDValue Value = OutVals[I];
89     if (Value->getOpcode() != ISD::CopyFromReg)
90       return false;
91     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
92     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
93       return false;
94   }
95   return true;
96 }
97 
98 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
99 /// and called function attributes.
100 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
101                                                      unsigned ArgIdx) {
102   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
103   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
104   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
105   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
106   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
107   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
108   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
109   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
110   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
111   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
112   // FIXME: getParamAlignment is off by one from argument index.
113   Alignment  = CS->getParamAlignment(ArgIdx + 1);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(
346     SDValue Op, const APInt &Demanded) {
347   SDLoc DL(Op);
348   unsigned Opcode = Op.getOpcode();
349 
350   // FIXME: ISD::SELECT, ISD::SELECT_CC
351   switch (Opcode) {
352   default:
353     break;
354   case ISD::XOR:
355   case ISD::AND:
356   case ISD::OR: {
357     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
358     if (!Op1C)
359       return false;
360 
361     // If this is a 'not' op, don't touch it because that's a canonical form.
362     const APInt &C = Op1C->getAPIntValue();
363     if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue())
364       return false;
365 
366     if (C.intersects(~Demanded)) {
367       EVT VT = Op.getValueType();
368       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
369       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
370       return CombineTo(Op, NewOp);
371     }
372 
373     break;
374   }
375   }
376 
377   return false;
378 }
379 
380 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
381 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
382 /// generalized for targets with other types of implicit widening casts.
383 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
384                                                          unsigned BitWidth,
385                                                          const APInt &Demanded,
386                                                          const SDLoc &dl) {
387   assert(Op.getNumOperands() == 2 &&
388          "ShrinkDemandedOp only supports binary operators!");
389   assert(Op.getNode()->getNumValues() == 1 &&
390          "ShrinkDemandedOp only supports nodes with one result!");
391 
392   // Early return, as this function cannot handle vector types.
393   if (Op.getValueType().isVector())
394     return false;
395 
396   // Don't do this if the node has another user, which may require the
397   // full value.
398   if (!Op.getNode()->hasOneUse())
399     return false;
400 
401   // Search for the smallest integer type with free casts to and from
402   // Op's type. For expedience, just check power-of-2 integer types.
403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
404   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
405   unsigned SmallVTBits = DemandedSize;
406   if (!isPowerOf2_32(SmallVTBits))
407     SmallVTBits = NextPowerOf2(SmallVTBits);
408   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
409     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
410     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
411         TLI.isZExtFree(SmallVT, Op.getValueType())) {
412       // We found a type with free casts.
413       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
414                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
415                                           Op.getNode()->getOperand(0)),
416                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
417                                           Op.getNode()->getOperand(1)));
418       bool NeedZext = DemandedSize > SmallVTBits;
419       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
420                               dl, Op.getValueType(), X);
421       return CombineTo(Op, Z);
422     }
423   }
424   return false;
425 }
426 
427 bool
428 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
429                                                         unsigned OpIdx,
430                                                         const APInt &Demanded,
431                                                         DAGCombinerInfo &DCI) {
432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
433   SDValue Op = User->getOperand(OpIdx);
434   APInt KnownZero, KnownOne;
435 
436   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
437                                 *this, 0, true))
438     return false;
439 
440 
441   // Old will not always be the same as Op.  For example:
442   //
443   // Demanded = 0xffffff
444   // Op = i64 truncate (i32 and x, 0xffffff)
445   // In this case simplify demand bits will want to replace the 'and' node
446   // with the value 'x', which will give us:
447   // Old = i32 and x, 0xffffff
448   // New = x
449   if (Old.hasOneUse()) {
450     // For the one use case, we just commit the change.
451     DCI.CommitTargetLoweringOpt(*this);
452     return true;
453   }
454 
455   // If Old has more than one use then it must be Op, because the
456   // AssumeSingleUse flag is not propogated to recursive calls of
457   // SimplifyDemanded bits, so the only node with multiple use that
458   // it will attempt to combine will be opt.
459   assert(Old == Op);
460 
461   SmallVector <SDValue, 4> NewOps;
462   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
463     if (i == OpIdx) {
464       NewOps.push_back(New);
465       continue;
466     }
467     NewOps.push_back(User->getOperand(i));
468   }
469   DAG.UpdateNodeOperands(User, NewOps);
470   // Op has less users now, so we may be able to perform additional combines
471   // with it.
472   DCI.AddToWorklist(Op.getNode());
473   // User's operands have been updated, so we may be able to do new combines
474   // with it.
475   DCI.AddToWorklist(User);
476   return true;
477 }
478 
479 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask,
480                                           DAGCombinerInfo &DCI) const {
481 
482   SelectionDAG &DAG = DCI.DAG;
483   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
484                         !DCI.isBeforeLegalizeOps());
485   APInt KnownZero, KnownOne;
486 
487   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne,
488                                          TLO);
489   if (Simplified)
490     DCI.CommitTargetLoweringOpt(TLO);
491   return Simplified;
492 }
493 
494 /// Look at Op. At this point, we know that only the DemandedMask bits of the
495 /// result of Op are ever used downstream. If we can use this information to
496 /// simplify Op, create a new simplified DAG node and return true, returning the
497 /// original and new nodes in Old and New. Otherwise, analyze the expression and
498 /// return a mask of KnownOne and KnownZero bits for the expression (used to
499 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
500 /// bits in the DemandedMask.
501 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
502                                           const APInt &DemandedMask,
503                                           APInt &KnownZero,
504                                           APInt &KnownOne,
505                                           TargetLoweringOpt &TLO,
506                                           unsigned Depth,
507                                           bool AssumeSingleUse) const {
508   unsigned BitWidth = DemandedMask.getBitWidth();
509   assert(Op.getScalarValueSizeInBits() == BitWidth &&
510          "Mask size mismatches value type size!");
511   APInt NewMask = DemandedMask;
512   SDLoc dl(Op);
513   auto &DL = TLO.DAG.getDataLayout();
514 
515   // Don't know anything.
516   KnownZero = KnownOne = APInt(BitWidth, 0);
517 
518   // Other users may use these bits.
519   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
520     if (Depth != 0) {
521       // If not at the root, Just compute the KnownZero/KnownOne bits to
522       // simplify things downstream.
523       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
524       return false;
525     }
526     // If this is the root being simplified, allow it to have multiple uses,
527     // just set the NewMask to all bits.
528     NewMask = APInt::getAllOnesValue(BitWidth);
529   } else if (DemandedMask == 0) {
530     // Not demanding any bits from Op.
531     if (!Op.isUndef())
532       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
533     return false;
534   } else if (Depth == 6) {        // Limit search depth.
535     return false;
536   }
537 
538   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
539   switch (Op.getOpcode()) {
540   case ISD::Constant:
541     // We know all of the bits for a constant!
542     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
543     KnownZero = ~KnownOne;
544     return false;   // Don't fall through, will infinitely loop.
545   case ISD::BUILD_VECTOR:
546     // Collect the known bits that are shared by every constant vector element.
547     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
548     for (SDValue SrcOp : Op->ops()) {
549       if (!isa<ConstantSDNode>(SrcOp)) {
550         // We can only handle all constant values - bail out with no known bits.
551         KnownZero = KnownOne = APInt(BitWidth, 0);
552         return false;
553       }
554       KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
555       KnownZero2 = ~KnownOne2;
556 
557       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
558       if (KnownOne2.getBitWidth() != BitWidth) {
559         assert(KnownOne2.getBitWidth() > BitWidth &&
560                KnownZero2.getBitWidth() > BitWidth &&
561                "Expected BUILD_VECTOR implicit truncation");
562         KnownOne2 = KnownOne2.trunc(BitWidth);
563         KnownZero2 = KnownZero2.trunc(BitWidth);
564       }
565 
566       // Known bits are the values that are shared by every element.
567       // TODO: support per-element known bits.
568       KnownOne &= KnownOne2;
569       KnownZero &= KnownZero2;
570     }
571     return false;   // Don't fall through, will infinitely loop.
572   case ISD::AND:
573     // If the RHS is a constant, check to see if the LHS would be zero without
574     // using the bits from the RHS.  Below, we use knowledge about the RHS to
575     // simplify the LHS, here we're using information from the LHS to simplify
576     // the RHS.
577     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
578       SDValue Op0 = Op.getOperand(0);
579       APInt LHSZero, LHSOne;
580       // Do not increment Depth here; that can cause an infinite loop.
581       TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth);
582       // If the LHS already has zeros where RHSC does, this and is dead.
583       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
584         return TLO.CombineTo(Op, Op0);
585 
586       // If any of the set bits in the RHS are known zero on the LHS, shrink
587       // the constant.
588       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
589         return true;
590 
591       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
592       // constant, but if this 'and' is only clearing bits that were just set by
593       // the xor, then this 'and' can be eliminated by shrinking the mask of
594       // the xor. For example, for a 32-bit X:
595       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
596       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
597           LHSOne == ~RHSC->getAPIntValue()) {
598         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
599                                       Op0.getOperand(0), Op.getOperand(1));
600         return TLO.CombineTo(Op, Xor);
601       }
602     }
603 
604     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
605                              KnownOne, TLO, Depth+1))
606       return true;
607     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
608     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
609                              KnownZero2, KnownOne2, TLO, Depth+1))
610       return true;
611     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
612 
613     // If all of the demanded bits are known one on one side, return the other.
614     // These bits cannot contribute to the result of the 'and'.
615     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
616       return TLO.CombineTo(Op, Op.getOperand(0));
617     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
618       return TLO.CombineTo(Op, Op.getOperand(1));
619     // If all of the demanded bits in the inputs are known zeros, return zero.
620     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
621       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
622     // If the RHS is a constant, see if we can simplify it.
623     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
624       return true;
625     // If the operation can be done in a smaller type, do so.
626     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
627       return true;
628 
629     // Output known-1 bits are only known if set in both the LHS & RHS.
630     KnownOne &= KnownOne2;
631     // Output known-0 are known to be clear if zero in either the LHS | RHS.
632     KnownZero |= KnownZero2;
633     break;
634   case ISD::OR:
635     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
636                              KnownOne, TLO, Depth+1))
637       return true;
638     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
639     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
640                              KnownZero2, KnownOne2, TLO, Depth+1))
641       return true;
642     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
643 
644     // If all of the demanded bits are known zero on one side, return the other.
645     // These bits cannot contribute to the result of the 'or'.
646     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
647       return TLO.CombineTo(Op, Op.getOperand(0));
648     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
649       return TLO.CombineTo(Op, Op.getOperand(1));
650     // If all of the potentially set bits on one side are known to be set on
651     // the other side, just use the 'other' side.
652     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
653       return TLO.CombineTo(Op, Op.getOperand(0));
654     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
655       return TLO.CombineTo(Op, Op.getOperand(1));
656     // If the RHS is a constant, see if we can simplify it.
657     if (TLO.ShrinkDemandedConstant(Op, NewMask))
658       return true;
659     // If the operation can be done in a smaller type, do so.
660     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
661       return true;
662 
663     // Output known-0 bits are only known if clear in both the LHS & RHS.
664     KnownZero &= KnownZero2;
665     // Output known-1 are known to be set if set in either the LHS | RHS.
666     KnownOne |= KnownOne2;
667     break;
668   case ISD::XOR:
669     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
670                              KnownOne, TLO, Depth+1))
671       return true;
672     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
673     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
674                              KnownOne2, TLO, Depth+1))
675       return true;
676     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
677 
678     // If all of the demanded bits are known zero on one side, return the other.
679     // These bits cannot contribute to the result of the 'xor'.
680     if ((KnownZero & NewMask) == NewMask)
681       return TLO.CombineTo(Op, Op.getOperand(0));
682     if ((KnownZero2 & NewMask) == NewMask)
683       return TLO.CombineTo(Op, Op.getOperand(1));
684     // If the operation can be done in a smaller type, do so.
685     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
686       return true;
687 
688     // If all of the unknown bits are known to be zero on one side or the other
689     // (but not both) turn this into an *inclusive* or.
690     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
691     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
692       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
693                                                Op.getOperand(0),
694                                                Op.getOperand(1)));
695 
696     // Output known-0 bits are known if clear or set in both the LHS & RHS.
697     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
698     // Output known-1 are known to be set if set in only one of the LHS, RHS.
699     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
700 
701     // If all of the demanded bits on one side are known, and all of the set
702     // bits on that side are also known to be set on the other side, turn this
703     // into an AND, as we know the bits will be cleared.
704     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
705     // NB: it is okay if more bits are known than are requested
706     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
707       if (KnownOne == KnownOne2) { // set bits are the same on both sides
708         EVT VT = Op.getValueType();
709         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
710         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
711                                                  Op.getOperand(0), ANDC));
712       }
713     }
714 
715     // If the RHS is a constant, see if we can simplify it.
716     // for XOR, we prefer to force bits to 1 if they will make a -1.
717     // If we can't force bits, try to shrink the constant.
718     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
719       APInt Expanded = C->getAPIntValue() | (~NewMask);
720       // If we can expand it to have all bits set, do it.
721       if (Expanded.isAllOnesValue()) {
722         if (Expanded != C->getAPIntValue()) {
723           EVT VT = Op.getValueType();
724           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
725                                         TLO.DAG.getConstant(Expanded, dl, VT));
726           return TLO.CombineTo(Op, New);
727         }
728         // If it already has all the bits set, nothing to change
729         // but don't shrink either!
730       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
731         return true;
732       }
733     }
734 
735     KnownZero = std::move(KnownZeroOut);
736     KnownOne  = std::move(KnownOneOut);
737     break;
738   case ISD::SELECT:
739     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
740                              KnownOne, TLO, Depth+1))
741       return true;
742     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
743                              KnownOne2, TLO, Depth+1))
744       return true;
745     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
746     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (TLO.ShrinkDemandedConstant(Op, NewMask))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     KnownOne &= KnownOne2;
754     KnownZero &= KnownZero2;
755     break;
756   case ISD::SELECT_CC:
757     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
758                              KnownOne, TLO, Depth+1))
759       return true;
760     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
761                              KnownOne2, TLO, Depth+1))
762       return true;
763     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
764     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
765 
766     // If the operands are constants, see if we can simplify them.
767     if (TLO.ShrinkDemandedConstant(Op, NewMask))
768       return true;
769 
770     // Only known if known in both the LHS and RHS.
771     KnownOne &= KnownOne2;
772     KnownZero &= KnownZero2;
773     break;
774   case ISD::SETCC: {
775     SDValue Op0 = Op.getOperand(0);
776     SDValue Op1 = Op.getOperand(1);
777     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
778     // If (1) we only need the sign-bit, (2) the setcc operands are the same
779     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
780     // -1, we may be able to bypass the setcc.
781     if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth &&
782         getBooleanContents(Op.getValueType()) ==
783             BooleanContent::ZeroOrNegativeOneBooleanContent) {
784       // If we're testing X < 0, then this compare isn't needed - just use X!
785       // FIXME: We're limiting to integer types here, but this should also work
786       // if we don't care about FP signed-zero. The use of SETLT with FP means
787       // that we don't care about NaNs.
788       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
789           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
790         return TLO.CombineTo(Op, Op0);
791 
792       // TODO: Should we check for other forms of sign-bit comparisons?
793       // Examples: X <= -1, X >= 0
794     }
795     if (getBooleanContents(Op0.getValueType()) ==
796             TargetLowering::ZeroOrOneBooleanContent &&
797         BitWidth > 1)
798       KnownZero.setBitsFrom(1);
799     break;
800   }
801   case ISD::SHL:
802     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
803       unsigned ShAmt = SA->getZExtValue();
804       SDValue InOp = Op.getOperand(0);
805 
806       // If the shift count is an invalid immediate, don't do anything.
807       if (ShAmt >= BitWidth)
808         break;
809 
810       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
811       // single shift.  We can do this if the bottom bits (which are shifted
812       // out) are never demanded.
813       if (InOp.getOpcode() == ISD::SRL &&
814           isa<ConstantSDNode>(InOp.getOperand(1))) {
815         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
816           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
817           unsigned Opc = ISD::SHL;
818           int Diff = ShAmt-C1;
819           if (Diff < 0) {
820             Diff = -Diff;
821             Opc = ISD::SRL;
822           }
823 
824           SDValue NewSA =
825             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
826           EVT VT = Op.getValueType();
827           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
828                                                    InOp.getOperand(0), NewSA));
829         }
830       }
831 
832       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
833                                KnownZero, KnownOne, TLO, Depth+1))
834         return true;
835 
836       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
837       // are not demanded. This will likely allow the anyext to be folded away.
838       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
839         SDValue InnerOp = InOp.getNode()->getOperand(0);
840         EVT InnerVT = InnerOp.getValueType();
841         unsigned InnerBits = InnerVT.getSizeInBits();
842         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
843             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
844           EVT ShTy = getShiftAmountTy(InnerVT, DL);
845           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
846             ShTy = InnerVT;
847           SDValue NarrowShl =
848             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
849                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
850           return
851             TLO.CombineTo(Op,
852                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
853                                           NarrowShl));
854         }
855         // Repeat the SHL optimization above in cases where an extension
856         // intervenes: (shl (anyext (shr x, c1)), c2) to
857         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
858         // aren't demanded (as above) and that the shifted upper c1 bits of
859         // x aren't demanded.
860         if (InOp.hasOneUse() &&
861             InnerOp.getOpcode() == ISD::SRL &&
862             InnerOp.hasOneUse() &&
863             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
864           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
865             ->getZExtValue();
866           if (InnerShAmt < ShAmt &&
867               InnerShAmt < InnerBits &&
868               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
869               NewMask.trunc(ShAmt) == 0) {
870             SDValue NewSA =
871               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
872                                   Op.getOperand(1).getValueType());
873             EVT VT = Op.getValueType();
874             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
875                                              InnerOp.getOperand(0));
876             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
877                                                      NewExt, NewSA));
878           }
879         }
880       }
881 
882       KnownZero <<= SA->getZExtValue();
883       KnownOne  <<= SA->getZExtValue();
884       // low bits known zero.
885       KnownZero.setLowBits(SA->getZExtValue());
886     }
887     break;
888   case ISD::SRL:
889     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
890       EVT VT = Op.getValueType();
891       unsigned ShAmt = SA->getZExtValue();
892       unsigned VTSize = VT.getSizeInBits();
893       SDValue InOp = Op.getOperand(0);
894 
895       // If the shift count is an invalid immediate, don't do anything.
896       if (ShAmt >= BitWidth)
897         break;
898 
899       APInt InDemandedMask = (NewMask << ShAmt);
900 
901       // If the shift is exact, then it does demand the low bits (and knows that
902       // they are zero).
903       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
904         InDemandedMask.setLowBits(ShAmt);
905 
906       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
907       // single shift.  We can do this if the top bits (which are shifted out)
908       // are never demanded.
909       if (InOp.getOpcode() == ISD::SHL &&
910           isa<ConstantSDNode>(InOp.getOperand(1))) {
911         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
912           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
913           unsigned Opc = ISD::SRL;
914           int Diff = ShAmt-C1;
915           if (Diff < 0) {
916             Diff = -Diff;
917             Opc = ISD::SHL;
918           }
919 
920           SDValue NewSA =
921             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
922           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
923                                                    InOp.getOperand(0), NewSA));
924         }
925       }
926 
927       // Compute the new bits that are at the top now.
928       if (SimplifyDemandedBits(InOp, InDemandedMask,
929                                KnownZero, KnownOne, TLO, Depth+1))
930         return true;
931       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
932       KnownZero.lshrInPlace(ShAmt);
933       KnownOne.lshrInPlace(ShAmt);
934 
935       KnownZero.setHighBits(ShAmt);  // High bits known zero.
936     }
937     break;
938   case ISD::SRA:
939     // If this is an arithmetic shift right and only the low-bit is set, we can
940     // always convert this into a logical shr, even if the shift amount is
941     // variable.  The low bit of the shift cannot be an input sign bit unless
942     // the shift amount is >= the size of the datatype, which is undefined.
943     if (NewMask == 1)
944       return TLO.CombineTo(Op,
945                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
946                                            Op.getOperand(0), Op.getOperand(1)));
947 
948     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
949       EVT VT = Op.getValueType();
950       unsigned ShAmt = SA->getZExtValue();
951 
952       // If the shift count is an invalid immediate, don't do anything.
953       if (ShAmt >= BitWidth)
954         break;
955 
956       APInt InDemandedMask = (NewMask << ShAmt);
957 
958       // If the shift is exact, then it does demand the low bits (and knows that
959       // they are zero).
960       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
961         InDemandedMask.setLowBits(ShAmt);
962 
963       // If any of the demanded bits are produced by the sign extension, we also
964       // demand the input sign bit.
965       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
966       if (HighBits.intersects(NewMask))
967         InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits());
968 
969       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
970                                KnownZero, KnownOne, TLO, Depth+1))
971         return true;
972       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
973       KnownZero.lshrInPlace(ShAmt);
974       KnownOne.lshrInPlace(ShAmt);
975 
976       // Handle the sign bit, adjusted to where it is now in the mask.
977       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
978 
979       // If the input sign bit is known to be zero, or if none of the top bits
980       // are demanded, turn this into an unsigned shift right.
981       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
982         SDNodeFlags Flags;
983         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
984         return TLO.CombineTo(Op,
985                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
986                                              Op.getOperand(1), &Flags));
987       }
988 
989       int Log2 = NewMask.exactLogBase2();
990       if (Log2 >= 0) {
991         // The bit must come from the sign.
992         SDValue NewSA =
993           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
994                               Op.getOperand(1).getValueType());
995         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
996                                                  Op.getOperand(0), NewSA));
997       }
998 
999       if (KnownOne.intersects(SignBit))
1000         // New bits are known one.
1001         KnownOne |= HighBits;
1002     }
1003     break;
1004   case ISD::SIGN_EXTEND_INREG: {
1005     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1006 
1007     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1008     // If we only care about the highest bit, don't bother shifting right.
1009     if (MsbMask == NewMask) {
1010       unsigned ShAmt = ExVT.getScalarSizeInBits();
1011       SDValue InOp = Op.getOperand(0);
1012       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
1013       bool AlreadySignExtended =
1014         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
1015       // However if the input is already sign extended we expect the sign
1016       // extension to be dropped altogether later and do not simplify.
1017       if (!AlreadySignExtended) {
1018         // Compute the correct shift amount type, which must be getShiftAmountTy
1019         // for scalar types after legalization.
1020         EVT ShiftAmtTy = Op.getValueType();
1021         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1022           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1023 
1024         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
1025                                                ShiftAmtTy);
1026         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1027                                                  Op.getValueType(), InOp,
1028                                                  ShiftAmt));
1029       }
1030     }
1031 
1032     // Sign extension.  Compute the demanded bits in the result that are not
1033     // present in the input.
1034     APInt NewBits =
1035       APInt::getHighBitsSet(BitWidth,
1036                             BitWidth - ExVT.getScalarSizeInBits());
1037 
1038     // If none of the extended bits are demanded, eliminate the sextinreg.
1039     if ((NewBits & NewMask) == 0)
1040       return TLO.CombineTo(Op, Op.getOperand(0));
1041 
1042     APInt InSignBit =
1043       APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth);
1044     APInt InputDemandedBits =
1045       APInt::getLowBitsSet(BitWidth,
1046                            ExVT.getScalarSizeInBits()) &
1047       NewMask;
1048 
1049     // Since the sign extended bits are demanded, we know that the sign
1050     // bit is demanded.
1051     InputDemandedBits |= InSignBit;
1052 
1053     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1054                              KnownZero, KnownOne, TLO, Depth+1))
1055       return true;
1056     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1057 
1058     // If the sign bit of the input is known set or clear, then we know the
1059     // top bits of the result.
1060 
1061     // If the input sign bit is known zero, convert this into a zero extension.
1062     if (KnownZero.intersects(InSignBit))
1063       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1064                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1065 
1066     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1067       KnownOne |= NewBits;
1068       KnownZero &= ~NewBits;
1069     } else {                       // Input sign bit unknown
1070       KnownZero &= ~NewBits;
1071       KnownOne &= ~NewBits;
1072     }
1073     break;
1074   }
1075   case ISD::BUILD_PAIR: {
1076     EVT HalfVT = Op.getOperand(0).getValueType();
1077     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1078 
1079     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1080     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1081 
1082     APInt KnownZeroLo, KnownOneLo;
1083     APInt KnownZeroHi, KnownOneHi;
1084 
1085     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
1086                              KnownOneLo, TLO, Depth + 1))
1087       return true;
1088 
1089     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
1090                              KnownOneHi, TLO, Depth + 1))
1091       return true;
1092 
1093     KnownZero = KnownZeroLo.zext(BitWidth) |
1094                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
1095 
1096     KnownOne = KnownOneLo.zext(BitWidth) |
1097                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
1098     break;
1099   }
1100   case ISD::ZERO_EXTEND: {
1101     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1102     APInt InMask = NewMask.trunc(OperandBitWidth);
1103 
1104     // If none of the top bits are demanded, convert this into an any_extend.
1105     APInt NewBits =
1106       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1107     if (!NewBits.intersects(NewMask))
1108       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1109                                                Op.getValueType(),
1110                                                Op.getOperand(0)));
1111 
1112     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1113                              KnownZero, KnownOne, TLO, Depth+1))
1114       return true;
1115     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1116     KnownZero = KnownZero.zext(BitWidth);
1117     KnownOne = KnownOne.zext(BitWidth);
1118     KnownZero |= NewBits;
1119     break;
1120   }
1121   case ISD::SIGN_EXTEND: {
1122     EVT InVT = Op.getOperand(0).getValueType();
1123     unsigned InBits = InVT.getScalarSizeInBits();
1124     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1125     APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1);
1126     APInt NewBits   = ~InMask & NewMask;
1127 
1128     // If none of the top bits are demanded, convert this into an any_extend.
1129     if (NewBits == 0)
1130       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1131                                               Op.getValueType(),
1132                                               Op.getOperand(0)));
1133 
1134     // Since some of the sign extended bits are demanded, we know that the sign
1135     // bit is demanded.
1136     APInt InDemandedBits = InMask & NewMask;
1137     InDemandedBits |= InSignBit;
1138     InDemandedBits = InDemandedBits.trunc(InBits);
1139 
1140     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1141                              KnownOne, TLO, Depth+1))
1142       return true;
1143     KnownZero = KnownZero.zext(BitWidth);
1144     KnownOne = KnownOne.zext(BitWidth);
1145 
1146     // If the sign bit is known zero, convert this to a zero extend.
1147     if (KnownZero.intersects(InSignBit))
1148       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1149                                                Op.getValueType(),
1150                                                Op.getOperand(0)));
1151 
1152     // If the sign bit is known one, the top bits match.
1153     if (KnownOne.intersects(InSignBit)) {
1154       KnownOne |= NewBits;
1155       assert((KnownZero & NewBits) == 0);
1156     } else {   // Otherwise, top bits aren't known.
1157       assert((KnownOne & NewBits) == 0);
1158       assert((KnownZero & NewBits) == 0);
1159     }
1160     break;
1161   }
1162   case ISD::ANY_EXTEND: {
1163     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1164     APInt InMask = NewMask.trunc(OperandBitWidth);
1165     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1166                              KnownZero, KnownOne, TLO, Depth+1))
1167       return true;
1168     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1169     KnownZero = KnownZero.zext(BitWidth);
1170     KnownOne = KnownOne.zext(BitWidth);
1171     break;
1172   }
1173   case ISD::TRUNCATE: {
1174     // Simplify the input, using demanded bit information, and compute the known
1175     // zero/one bits live out.
1176     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1177     APInt TruncMask = NewMask.zext(OperandBitWidth);
1178     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1179                              KnownZero, KnownOne, TLO, Depth+1))
1180       return true;
1181     KnownZero = KnownZero.trunc(BitWidth);
1182     KnownOne = KnownOne.trunc(BitWidth);
1183 
1184     // If the input is only used by this truncate, see if we can shrink it based
1185     // on the known demanded bits.
1186     if (Op.getOperand(0).getNode()->hasOneUse()) {
1187       SDValue In = Op.getOperand(0);
1188       switch (In.getOpcode()) {
1189       default: break;
1190       case ISD::SRL:
1191         // Shrink SRL by a constant if none of the high bits shifted in are
1192         // demanded.
1193         if (TLO.LegalTypes() &&
1194             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1195           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1196           // undesirable.
1197           break;
1198         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1199         if (!ShAmt)
1200           break;
1201         SDValue Shift = In.getOperand(1);
1202         if (TLO.LegalTypes()) {
1203           uint64_t ShVal = ShAmt->getZExtValue();
1204           Shift = TLO.DAG.getConstant(ShVal, dl,
1205                                       getShiftAmountTy(Op.getValueType(), DL));
1206         }
1207 
1208         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1209                                                OperandBitWidth - BitWidth);
1210         HighBits.lshrInPlace(ShAmt->getZExtValue());
1211         HighBits = HighBits.trunc(BitWidth);
1212 
1213         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1214           // None of the shifted in bits are needed.  Add a truncate of the
1215           // shift input, then shift it.
1216           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1217                                              Op.getValueType(),
1218                                              In.getOperand(0));
1219           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1220                                                    Op.getValueType(),
1221                                                    NewTrunc,
1222                                                    Shift));
1223         }
1224         break;
1225       }
1226     }
1227 
1228     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1229     break;
1230   }
1231   case ISD::AssertZext: {
1232     // AssertZext demands all of the high bits, plus any of the low bits
1233     // demanded by its users.
1234     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1235     APInt InMask = APInt::getLowBitsSet(BitWidth,
1236                                         VT.getSizeInBits());
1237     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1238                              KnownZero, KnownOne, TLO, Depth+1))
1239       return true;
1240     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1241 
1242     KnownZero |= ~InMask;
1243     break;
1244   }
1245   case ISD::BITCAST:
1246     // If this is an FP->Int bitcast and if the sign bit is the only
1247     // thing demanded, turn this into a FGETSIGN.
1248     if (!TLO.LegalOperations() &&
1249         !Op.getValueType().isVector() &&
1250         !Op.getOperand(0).getValueType().isVector() &&
1251         NewMask == APInt::getSignBit(Op.getValueSizeInBits()) &&
1252         Op.getOperand(0).getValueType().isFloatingPoint()) {
1253       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1254       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1255       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1256            Op.getOperand(0).getValueType() != MVT::f128) {
1257         // Cannot eliminate/lower SHL for f128 yet.
1258         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1259         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1260         // place.  We expect the SHL to be eliminated by other optimizations.
1261         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1262         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1263         if (!OpVTLegal && OpVTSizeInBits > 32)
1264           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1265         unsigned ShVal = Op.getValueSizeInBits() - 1;
1266         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1267         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1268                                                  Op.getValueType(),
1269                                                  Sign, ShAmt));
1270       }
1271     }
1272     break;
1273   case ISD::ADD:
1274   case ISD::MUL:
1275   case ISD::SUB: {
1276     // Add, Sub, and Mul don't demand any bits in positions beyond that
1277     // of the highest bit demanded of them.
1278     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1279                                         BitWidth - NewMask.countLeadingZeros());
1280     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1281                              KnownOne2, TLO, Depth+1) ||
1282         SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1283                              KnownOne2, TLO, Depth+1) ||
1284         // See if the operation should be performed at a smaller bit width.
1285         TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
1286       const SDNodeFlags *Flags = Op.getNode()->getFlags();
1287       if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
1288         // Disable the nsw and nuw flags. We can no longer guarantee that we
1289         // won't wrap after simplification.
1290         SDNodeFlags NewFlags = *Flags;
1291         NewFlags.setNoSignedWrap(false);
1292         NewFlags.setNoUnsignedWrap(false);
1293         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1294                                         Op.getOperand(0), Op.getOperand(1),
1295                                         &NewFlags);
1296         return TLO.CombineTo(Op, NewOp);
1297       }
1298       return true;
1299     }
1300     LLVM_FALLTHROUGH;
1301   }
1302   default:
1303     // Just use computeKnownBits to compute output bits.
1304     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1305     break;
1306   }
1307 
1308   // If we know the value of all of the demanded bits, return this as a
1309   // constant.
1310   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1311     // Avoid folding to a constant if any OpaqueConstant is involved.
1312     const SDNode *N = Op.getNode();
1313     for (SDNodeIterator I = SDNodeIterator::begin(N),
1314          E = SDNodeIterator::end(N); I != E; ++I) {
1315       SDNode *Op = *I;
1316       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1317         if (C->isOpaque())
1318           return false;
1319     }
1320     return TLO.CombineTo(Op,
1321                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1322   }
1323 
1324   return false;
1325 }
1326 
1327 /// Determine which of the bits specified in Mask are known to be either zero or
1328 /// one and return them in the KnownZero/KnownOne bitsets.
1329 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1330                                                    APInt &KnownZero,
1331                                                    APInt &KnownOne,
1332                                                    const APInt &DemandedElts,
1333                                                    const SelectionDAG &DAG,
1334                                                    unsigned Depth) const {
1335   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1336           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1337           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1338           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1339          "Should use MaskedValueIsZero if you don't know whether Op"
1340          " is a target node!");
1341   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1342 }
1343 
1344 /// This method can be implemented by targets that want to expose additional
1345 /// information about sign bits to the DAG Combiner.
1346 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1347                                                          const APInt &,
1348                                                          const SelectionDAG &,
1349                                                          unsigned Depth) const {
1350   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1351           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1352           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1353           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1354          "Should use ComputeNumSignBits if you don't know whether Op"
1355          " is a target node!");
1356   return 1;
1357 }
1358 
1359 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1360   if (!N)
1361     return false;
1362 
1363   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1364   if (!CN) {
1365     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1366     if (!BV)
1367       return false;
1368 
1369     // Only interested in constant splats, we don't care about undef
1370     // elements in identifying boolean constants and getConstantSplatNode
1371     // returns NULL if all ops are undef;
1372     CN = BV->getConstantSplatNode();
1373     if (!CN)
1374       return false;
1375   }
1376 
1377   switch (getBooleanContents(N->getValueType(0))) {
1378   case UndefinedBooleanContent:
1379     return CN->getAPIntValue()[0];
1380   case ZeroOrOneBooleanContent:
1381     return CN->isOne();
1382   case ZeroOrNegativeOneBooleanContent:
1383     return CN->isAllOnesValue();
1384   }
1385 
1386   llvm_unreachable("Invalid boolean contents");
1387 }
1388 
1389 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1390                                         const SDLoc &DL) const {
1391   unsigned ElementWidth = VT.getScalarSizeInBits();
1392   APInt TrueInt =
1393       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1394           ? APInt(ElementWidth, 1)
1395           : APInt::getAllOnesValue(ElementWidth);
1396   return DAG.getConstant(TrueInt, DL, VT);
1397 }
1398 
1399 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1400   if (!N)
1401     return false;
1402 
1403   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1404   if (!CN) {
1405     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1406     if (!BV)
1407       return false;
1408 
1409     // Only interested in constant splats, we don't care about undef
1410     // elements in identifying boolean constants and getConstantSplatNode
1411     // returns NULL if all ops are undef;
1412     CN = BV->getConstantSplatNode();
1413     if (!CN)
1414       return false;
1415   }
1416 
1417   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1418     return !CN->getAPIntValue()[0];
1419 
1420   return CN->isNullValue();
1421 }
1422 
1423 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1424                                        bool SExt) const {
1425   if (VT == MVT::i1)
1426     return N->isOne();
1427 
1428   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1429   switch (Cnt) {
1430   case TargetLowering::ZeroOrOneBooleanContent:
1431     // An extended value of 1 is always true, unless its original type is i1,
1432     // in which case it will be sign extended to -1.
1433     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1434   case TargetLowering::UndefinedBooleanContent:
1435   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1436     return N->isAllOnesValue() && SExt;
1437   }
1438   llvm_unreachable("Unexpected enumeration.");
1439 }
1440 
1441 /// This helper function of SimplifySetCC tries to optimize the comparison when
1442 /// either operand of the SetCC node is a bitwise-and instruction.
1443 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1444                                              ISD::CondCode Cond,
1445                                              DAGCombinerInfo &DCI,
1446                                              const SDLoc &DL) const {
1447   // Match these patterns in any of their permutations:
1448   // (X & Y) == Y
1449   // (X & Y) != Y
1450   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1451     std::swap(N0, N1);
1452 
1453   EVT OpVT = N0.getValueType();
1454   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1455       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1456     return SDValue();
1457 
1458   SDValue X, Y;
1459   if (N0.getOperand(0) == N1) {
1460     X = N0.getOperand(1);
1461     Y = N0.getOperand(0);
1462   } else if (N0.getOperand(1) == N1) {
1463     X = N0.getOperand(0);
1464     Y = N0.getOperand(1);
1465   } else {
1466     return SDValue();
1467   }
1468 
1469   SelectionDAG &DAG = DCI.DAG;
1470   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1471   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1472     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1473     // Note that where Y is variable and is known to have at most one bit set
1474     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1475     // equivalent when Y == 0.
1476     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1477     if (DCI.isBeforeLegalizeOps() ||
1478         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1479       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1480   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1481     // If the target supports an 'and-not' or 'and-complement' logic operation,
1482     // try to use that to make a comparison operation more efficient.
1483     // But don't do this transform if the mask is a single bit because there are
1484     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1485     // 'rlwinm' on PPC).
1486 
1487     // Bail out if the compare operand that we want to turn into a zero is
1488     // already a zero (otherwise, infinite loop).
1489     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1490     if (YConst && YConst->isNullValue())
1491       return SDValue();
1492 
1493     // Transform this into: ~X & Y == 0.
1494     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1495     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1496     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1497   }
1498 
1499   return SDValue();
1500 }
1501 
1502 /// Try to simplify a setcc built with the specified operands and cc. If it is
1503 /// unable to simplify it, return a null SDValue.
1504 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1505                                       ISD::CondCode Cond, bool foldBooleans,
1506                                       DAGCombinerInfo &DCI,
1507                                       const SDLoc &dl) const {
1508   SelectionDAG &DAG = DCI.DAG;
1509 
1510   // These setcc operations always fold.
1511   switch (Cond) {
1512   default: break;
1513   case ISD::SETFALSE:
1514   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1515   case ISD::SETTRUE:
1516   case ISD::SETTRUE2: {
1517     TargetLowering::BooleanContent Cnt =
1518         getBooleanContents(N0->getValueType(0));
1519     return DAG.getConstant(
1520         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1521         VT);
1522   }
1523   }
1524 
1525   // Ensure that the constant occurs on the RHS, and fold constant
1526   // comparisons.
1527   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1528   if (isa<ConstantSDNode>(N0.getNode()) &&
1529       (DCI.isBeforeLegalizeOps() ||
1530        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1531     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1532 
1533   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1534     const APInt &C1 = N1C->getAPIntValue();
1535 
1536     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1537     // equality comparison, then we're just comparing whether X itself is
1538     // zero.
1539     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1540         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1541         N0.getOperand(1).getOpcode() == ISD::Constant) {
1542       const APInt &ShAmt
1543         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1544       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1545           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1546         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1547           // (srl (ctlz x), 5) == 0  -> X != 0
1548           // (srl (ctlz x), 5) != 1  -> X != 0
1549           Cond = ISD::SETNE;
1550         } else {
1551           // (srl (ctlz x), 5) != 0  -> X == 0
1552           // (srl (ctlz x), 5) == 1  -> X == 0
1553           Cond = ISD::SETEQ;
1554         }
1555         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1556         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1557                             Zero, Cond);
1558       }
1559     }
1560 
1561     SDValue CTPOP = N0;
1562     // Look through truncs that don't change the value of a ctpop.
1563     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1564       CTPOP = N0.getOperand(0);
1565 
1566     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1567         (N0 == CTPOP ||
1568          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1569       EVT CTVT = CTPOP.getValueType();
1570       SDValue CTOp = CTPOP.getOperand(0);
1571 
1572       // (ctpop x) u< 2 -> (x & x-1) == 0
1573       // (ctpop x) u> 1 -> (x & x-1) != 0
1574       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1575         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1576                                   DAG.getConstant(1, dl, CTVT));
1577         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1578         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1579         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1580       }
1581 
1582       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1583     }
1584 
1585     // (zext x) == C --> x == (trunc C)
1586     // (sext x) == C --> x == (trunc C)
1587     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1588         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1589       unsigned MinBits = N0.getValueSizeInBits();
1590       SDValue PreExt;
1591       bool Signed = false;
1592       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1593         // ZExt
1594         MinBits = N0->getOperand(0).getValueSizeInBits();
1595         PreExt = N0->getOperand(0);
1596       } else if (N0->getOpcode() == ISD::AND) {
1597         // DAGCombine turns costly ZExts into ANDs
1598         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1599           if ((C->getAPIntValue()+1).isPowerOf2()) {
1600             MinBits = C->getAPIntValue().countTrailingOnes();
1601             PreExt = N0->getOperand(0);
1602           }
1603       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1604         // SExt
1605         MinBits = N0->getOperand(0).getValueSizeInBits();
1606         PreExt = N0->getOperand(0);
1607         Signed = true;
1608       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1609         // ZEXTLOAD / SEXTLOAD
1610         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1611           MinBits = LN0->getMemoryVT().getSizeInBits();
1612           PreExt = N0;
1613         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1614           Signed = true;
1615           MinBits = LN0->getMemoryVT().getSizeInBits();
1616           PreExt = N0;
1617         }
1618       }
1619 
1620       // Figure out how many bits we need to preserve this constant.
1621       unsigned ReqdBits = Signed ?
1622         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1623         C1.getActiveBits();
1624 
1625       // Make sure we're not losing bits from the constant.
1626       if (MinBits > 0 &&
1627           MinBits < C1.getBitWidth() &&
1628           MinBits >= ReqdBits) {
1629         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1630         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1631           // Will get folded away.
1632           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1633           if (MinBits == 1 && C1 == 1)
1634             // Invert the condition.
1635             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1636                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1637           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1638           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1639         }
1640 
1641         // If truncating the setcc operands is not desirable, we can still
1642         // simplify the expression in some cases:
1643         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1644         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1645         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1646         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1647         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1648         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1649         SDValue TopSetCC = N0->getOperand(0);
1650         unsigned N0Opc = N0->getOpcode();
1651         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1652         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1653             TopSetCC.getOpcode() == ISD::SETCC &&
1654             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1655             (isConstFalseVal(N1C) ||
1656              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1657 
1658           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1659                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1660 
1661           if (!Inverse)
1662             return TopSetCC;
1663 
1664           ISD::CondCode InvCond = ISD::getSetCCInverse(
1665               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1666               TopSetCC.getOperand(0).getValueType().isInteger());
1667           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1668                                       TopSetCC.getOperand(1),
1669                                       InvCond);
1670 
1671         }
1672       }
1673     }
1674 
1675     // If the LHS is '(and load, const)', the RHS is 0,
1676     // the test is for equality or unsigned, and all 1 bits of the const are
1677     // in the same partial word, see if we can shorten the load.
1678     if (DCI.isBeforeLegalize() &&
1679         !ISD::isSignedIntSetCC(Cond) &&
1680         N0.getOpcode() == ISD::AND && C1 == 0 &&
1681         N0.getNode()->hasOneUse() &&
1682         isa<LoadSDNode>(N0.getOperand(0)) &&
1683         N0.getOperand(0).getNode()->hasOneUse() &&
1684         isa<ConstantSDNode>(N0.getOperand(1))) {
1685       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1686       APInt bestMask;
1687       unsigned bestWidth = 0, bestOffset = 0;
1688       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1689         unsigned origWidth = N0.getValueSizeInBits();
1690         unsigned maskWidth = origWidth;
1691         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1692         // 8 bits, but have to be careful...
1693         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1694           origWidth = Lod->getMemoryVT().getSizeInBits();
1695         const APInt &Mask =
1696           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1697         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1698           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1699           for (unsigned offset=0; offset<origWidth/width; offset++) {
1700             if ((newMask & Mask) == Mask) {
1701               if (!DAG.getDataLayout().isLittleEndian())
1702                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1703               else
1704                 bestOffset = (uint64_t)offset * (width/8);
1705               bestMask = Mask.lshr(offset * (width/8) * 8);
1706               bestWidth = width;
1707               break;
1708             }
1709             newMask = newMask << width;
1710           }
1711         }
1712       }
1713       if (bestWidth) {
1714         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1715         if (newVT.isRound()) {
1716           EVT PtrType = Lod->getOperand(1).getValueType();
1717           SDValue Ptr = Lod->getBasePtr();
1718           if (bestOffset != 0)
1719             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1720                               DAG.getConstant(bestOffset, dl, PtrType));
1721           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1722           SDValue NewLoad = DAG.getLoad(
1723               newVT, dl, Lod->getChain(), Ptr,
1724               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1725           return DAG.getSetCC(dl, VT,
1726                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1727                                       DAG.getConstant(bestMask.trunc(bestWidth),
1728                                                       dl, newVT)),
1729                               DAG.getConstant(0LL, dl, newVT), Cond);
1730         }
1731       }
1732     }
1733 
1734     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1735     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1736       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1737 
1738       // If the comparison constant has bits in the upper part, the
1739       // zero-extended value could never match.
1740       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1741                                               C1.getBitWidth() - InSize))) {
1742         switch (Cond) {
1743         case ISD::SETUGT:
1744         case ISD::SETUGE:
1745         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1746         case ISD::SETULT:
1747         case ISD::SETULE:
1748         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1749         case ISD::SETGT:
1750         case ISD::SETGE:
1751           // True if the sign bit of C1 is set.
1752           return DAG.getConstant(C1.isNegative(), dl, VT);
1753         case ISD::SETLT:
1754         case ISD::SETLE:
1755           // True if the sign bit of C1 isn't set.
1756           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1757         default:
1758           break;
1759         }
1760       }
1761 
1762       // Otherwise, we can perform the comparison with the low bits.
1763       switch (Cond) {
1764       case ISD::SETEQ:
1765       case ISD::SETNE:
1766       case ISD::SETUGT:
1767       case ISD::SETUGE:
1768       case ISD::SETULT:
1769       case ISD::SETULE: {
1770         EVT newVT = N0.getOperand(0).getValueType();
1771         if (DCI.isBeforeLegalizeOps() ||
1772             (isOperationLegal(ISD::SETCC, newVT) &&
1773              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1774           EVT NewSetCCVT =
1775               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1776           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1777 
1778           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1779                                           NewConst, Cond);
1780           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1781         }
1782         break;
1783       }
1784       default:
1785         break;   // todo, be more careful with signed comparisons
1786       }
1787     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1788                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1789       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1790       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1791       EVT ExtDstTy = N0.getValueType();
1792       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1793 
1794       // If the constant doesn't fit into the number of bits for the source of
1795       // the sign extension, it is impossible for both sides to be equal.
1796       if (C1.getMinSignedBits() > ExtSrcTyBits)
1797         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1798 
1799       SDValue ZextOp;
1800       EVT Op0Ty = N0.getOperand(0).getValueType();
1801       if (Op0Ty == ExtSrcTy) {
1802         ZextOp = N0.getOperand(0);
1803       } else {
1804         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1805         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1806                               DAG.getConstant(Imm, dl, Op0Ty));
1807       }
1808       if (!DCI.isCalledByLegalizer())
1809         DCI.AddToWorklist(ZextOp.getNode());
1810       // Otherwise, make this a use of a zext.
1811       return DAG.getSetCC(dl, VT, ZextOp,
1812                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1813                                                               ExtDstTyBits,
1814                                                               ExtSrcTyBits),
1815                                           dl, ExtDstTy),
1816                           Cond);
1817     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1818                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1819       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1820       if (N0.getOpcode() == ISD::SETCC &&
1821           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1822         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1823         if (TrueWhenTrue)
1824           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1825         // Invert the condition.
1826         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1827         CC = ISD::getSetCCInverse(CC,
1828                                   N0.getOperand(0).getValueType().isInteger());
1829         if (DCI.isBeforeLegalizeOps() ||
1830             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1831           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1832       }
1833 
1834       if ((N0.getOpcode() == ISD::XOR ||
1835            (N0.getOpcode() == ISD::AND &&
1836             N0.getOperand(0).getOpcode() == ISD::XOR &&
1837             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1838           isa<ConstantSDNode>(N0.getOperand(1)) &&
1839           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1840         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1841         // can only do this if the top bits are known zero.
1842         unsigned BitWidth = N0.getValueSizeInBits();
1843         if (DAG.MaskedValueIsZero(N0,
1844                                   APInt::getHighBitsSet(BitWidth,
1845                                                         BitWidth-1))) {
1846           // Okay, get the un-inverted input value.
1847           SDValue Val;
1848           if (N0.getOpcode() == ISD::XOR)
1849             Val = N0.getOperand(0);
1850           else {
1851             assert(N0.getOpcode() == ISD::AND &&
1852                     N0.getOperand(0).getOpcode() == ISD::XOR);
1853             // ((X^1)&1)^1 -> X & 1
1854             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1855                               N0.getOperand(0).getOperand(0),
1856                               N0.getOperand(1));
1857           }
1858 
1859           return DAG.getSetCC(dl, VT, Val, N1,
1860                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1861         }
1862       } else if (N1C->getAPIntValue() == 1 &&
1863                  (VT == MVT::i1 ||
1864                   getBooleanContents(N0->getValueType(0)) ==
1865                       ZeroOrOneBooleanContent)) {
1866         SDValue Op0 = N0;
1867         if (Op0.getOpcode() == ISD::TRUNCATE)
1868           Op0 = Op0.getOperand(0);
1869 
1870         if ((Op0.getOpcode() == ISD::XOR) &&
1871             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1872             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1873           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1874           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1875           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1876                               Cond);
1877         }
1878         if (Op0.getOpcode() == ISD::AND &&
1879             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1880             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1881           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1882           if (Op0.getValueType().bitsGT(VT))
1883             Op0 = DAG.getNode(ISD::AND, dl, VT,
1884                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1885                           DAG.getConstant(1, dl, VT));
1886           else if (Op0.getValueType().bitsLT(VT))
1887             Op0 = DAG.getNode(ISD::AND, dl, VT,
1888                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1889                         DAG.getConstant(1, dl, VT));
1890 
1891           return DAG.getSetCC(dl, VT, Op0,
1892                               DAG.getConstant(0, dl, Op0.getValueType()),
1893                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1894         }
1895         if (Op0.getOpcode() == ISD::AssertZext &&
1896             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1897           return DAG.getSetCC(dl, VT, Op0,
1898                               DAG.getConstant(0, dl, Op0.getValueType()),
1899                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1900       }
1901     }
1902 
1903     APInt MinVal, MaxVal;
1904     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1905     if (ISD::isSignedIntSetCC(Cond)) {
1906       MinVal = APInt::getSignedMinValue(OperandBitSize);
1907       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1908     } else {
1909       MinVal = APInt::getMinValue(OperandBitSize);
1910       MaxVal = APInt::getMaxValue(OperandBitSize);
1911     }
1912 
1913     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1914     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1915       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1916       // X >= C0 --> X > (C0 - 1)
1917       APInt C = C1 - 1;
1918       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1919       if ((DCI.isBeforeLegalizeOps() ||
1920            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1921           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1922                                 isLegalICmpImmediate(C.getSExtValue())))) {
1923         return DAG.getSetCC(dl, VT, N0,
1924                             DAG.getConstant(C, dl, N1.getValueType()),
1925                             NewCC);
1926       }
1927     }
1928 
1929     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1930       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1931       // X <= C0 --> X < (C0 + 1)
1932       APInt C = C1 + 1;
1933       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1934       if ((DCI.isBeforeLegalizeOps() ||
1935            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1936           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1937                                 isLegalICmpImmediate(C.getSExtValue())))) {
1938         return DAG.getSetCC(dl, VT, N0,
1939                             DAG.getConstant(C, dl, N1.getValueType()),
1940                             NewCC);
1941       }
1942     }
1943 
1944     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1945       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1946     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1947       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1948     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1949       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1950     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1951       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1952 
1953     // Canonicalize setgt X, Min --> setne X, Min
1954     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1955       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1956     // Canonicalize setlt X, Max --> setne X, Max
1957     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1958       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1959 
1960     // If we have setult X, 1, turn it into seteq X, 0
1961     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1962       return DAG.getSetCC(dl, VT, N0,
1963                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1964                           ISD::SETEQ);
1965     // If we have setugt X, Max-1, turn it into seteq X, Max
1966     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1967       return DAG.getSetCC(dl, VT, N0,
1968                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1969                           ISD::SETEQ);
1970 
1971     // If we have "setcc X, C0", check to see if we can shrink the immediate
1972     // by changing cc.
1973 
1974     // SETUGT X, SINTMAX  -> SETLT X, 0
1975     if (Cond == ISD::SETUGT &&
1976         C1 == APInt::getSignedMaxValue(OperandBitSize))
1977       return DAG.getSetCC(dl, VT, N0,
1978                           DAG.getConstant(0, dl, N1.getValueType()),
1979                           ISD::SETLT);
1980 
1981     // SETULT X, SINTMIN  -> SETGT X, -1
1982     if (Cond == ISD::SETULT &&
1983         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1984       SDValue ConstMinusOne =
1985           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1986                           N1.getValueType());
1987       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1988     }
1989 
1990     // Fold bit comparisons when we can.
1991     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1992         (VT == N0.getValueType() ||
1993          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1994         N0.getOpcode() == ISD::AND) {
1995       auto &DL = DAG.getDataLayout();
1996       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1997         EVT ShiftTy = DCI.isBeforeLegalize()
1998                           ? getPointerTy(DL)
1999                           : getShiftAmountTy(N0.getValueType(), DL);
2000         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2001           // Perform the xform if the AND RHS is a single bit.
2002           if (AndRHS->getAPIntValue().isPowerOf2()) {
2003             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2004                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2005                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2006                                    ShiftTy)));
2007           }
2008         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2009           // (X & 8) == 8  -->  (X & 8) >> 3
2010           // Perform the xform if C1 is a single bit.
2011           if (C1.isPowerOf2()) {
2012             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2013                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2014                                       DAG.getConstant(C1.logBase2(), dl,
2015                                                       ShiftTy)));
2016           }
2017         }
2018       }
2019     }
2020 
2021     if (C1.getMinSignedBits() <= 64 &&
2022         !isLegalICmpImmediate(C1.getSExtValue())) {
2023       // (X & -256) == 256 -> (X >> 8) == 1
2024       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2025           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2026         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2027           const APInt &AndRHSC = AndRHS->getAPIntValue();
2028           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2029             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2030             auto &DL = DAG.getDataLayout();
2031             EVT ShiftTy = DCI.isBeforeLegalize()
2032                               ? getPointerTy(DL)
2033                               : getShiftAmountTy(N0.getValueType(), DL);
2034             EVT CmpTy = N0.getValueType();
2035             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2036                                         DAG.getConstant(ShiftBits, dl,
2037                                                         ShiftTy));
2038             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2039             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2040           }
2041         }
2042       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2043                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2044         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2045         // X <  0x100000000 -> (X >> 32) <  1
2046         // X >= 0x100000000 -> (X >> 32) >= 1
2047         // X <= 0x0ffffffff -> (X >> 32) <  1
2048         // X >  0x0ffffffff -> (X >> 32) >= 1
2049         unsigned ShiftBits;
2050         APInt NewC = C1;
2051         ISD::CondCode NewCond = Cond;
2052         if (AdjOne) {
2053           ShiftBits = C1.countTrailingOnes();
2054           NewC = NewC + 1;
2055           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2056         } else {
2057           ShiftBits = C1.countTrailingZeros();
2058         }
2059         NewC.lshrInPlace(ShiftBits);
2060         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2061           isLegalICmpImmediate(NewC.getSExtValue())) {
2062           auto &DL = DAG.getDataLayout();
2063           EVT ShiftTy = DCI.isBeforeLegalize()
2064                             ? getPointerTy(DL)
2065                             : getShiftAmountTy(N0.getValueType(), DL);
2066           EVT CmpTy = N0.getValueType();
2067           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2068                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2069           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2070           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2071         }
2072       }
2073     }
2074   }
2075 
2076   if (isa<ConstantFPSDNode>(N0.getNode())) {
2077     // Constant fold or commute setcc.
2078     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2079     if (O.getNode()) return O;
2080   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2081     // If the RHS of an FP comparison is a constant, simplify it away in
2082     // some cases.
2083     if (CFP->getValueAPF().isNaN()) {
2084       // If an operand is known to be a nan, we can fold it.
2085       switch (ISD::getUnorderedFlavor(Cond)) {
2086       default: llvm_unreachable("Unknown flavor!");
2087       case 0:  // Known false.
2088         return DAG.getConstant(0, dl, VT);
2089       case 1:  // Known true.
2090         return DAG.getConstant(1, dl, VT);
2091       case 2:  // Undefined.
2092         return DAG.getUNDEF(VT);
2093       }
2094     }
2095 
2096     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2097     // constant if knowing that the operand is non-nan is enough.  We prefer to
2098     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2099     // materialize 0.0.
2100     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2101       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2102 
2103     // setcc (fneg x), C -> setcc swap(pred) x, -C
2104     if (N0.getOpcode() == ISD::FNEG) {
2105       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2106       if (DCI.isBeforeLegalizeOps() ||
2107           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2108         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2109         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2110       }
2111     }
2112 
2113     // If the condition is not legal, see if we can find an equivalent one
2114     // which is legal.
2115     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2116       // If the comparison was an awkward floating-point == or != and one of
2117       // the comparison operands is infinity or negative infinity, convert the
2118       // condition to a less-awkward <= or >=.
2119       if (CFP->getValueAPF().isInfinity()) {
2120         if (CFP->getValueAPF().isNegative()) {
2121           if (Cond == ISD::SETOEQ &&
2122               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2123             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2124           if (Cond == ISD::SETUEQ &&
2125               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2126             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2127           if (Cond == ISD::SETUNE &&
2128               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2129             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2130           if (Cond == ISD::SETONE &&
2131               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2132             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2133         } else {
2134           if (Cond == ISD::SETOEQ &&
2135               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2136             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2137           if (Cond == ISD::SETUEQ &&
2138               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2139             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2140           if (Cond == ISD::SETUNE &&
2141               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2142             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2143           if (Cond == ISD::SETONE &&
2144               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2145             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2146         }
2147       }
2148     }
2149   }
2150 
2151   if (N0 == N1) {
2152     // The sext(setcc()) => setcc() optimization relies on the appropriate
2153     // constant being emitted.
2154     uint64_t EqVal = 0;
2155     switch (getBooleanContents(N0.getValueType())) {
2156     case UndefinedBooleanContent:
2157     case ZeroOrOneBooleanContent:
2158       EqVal = ISD::isTrueWhenEqual(Cond);
2159       break;
2160     case ZeroOrNegativeOneBooleanContent:
2161       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2162       break;
2163     }
2164 
2165     // We can always fold X == X for integer setcc's.
2166     if (N0.getValueType().isInteger()) {
2167       return DAG.getConstant(EqVal, dl, VT);
2168     }
2169     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2170     if (UOF == 2)   // FP operators that are undefined on NaNs.
2171       return DAG.getConstant(EqVal, dl, VT);
2172     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2173       return DAG.getConstant(EqVal, dl, VT);
2174     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2175     // if it is not already.
2176     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2177     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2178           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2179       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2180   }
2181 
2182   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2183       N0.getValueType().isInteger()) {
2184     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2185         N0.getOpcode() == ISD::XOR) {
2186       // Simplify (X+Y) == (X+Z) -->  Y == Z
2187       if (N0.getOpcode() == N1.getOpcode()) {
2188         if (N0.getOperand(0) == N1.getOperand(0))
2189           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2190         if (N0.getOperand(1) == N1.getOperand(1))
2191           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2192         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2193           // If X op Y == Y op X, try other combinations.
2194           if (N0.getOperand(0) == N1.getOperand(1))
2195             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2196                                 Cond);
2197           if (N0.getOperand(1) == N1.getOperand(0))
2198             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2199                                 Cond);
2200         }
2201       }
2202 
2203       // If RHS is a legal immediate value for a compare instruction, we need
2204       // to be careful about increasing register pressure needlessly.
2205       bool LegalRHSImm = false;
2206 
2207       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2208         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2209           // Turn (X+C1) == C2 --> X == C2-C1
2210           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2211             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2212                                 DAG.getConstant(RHSC->getAPIntValue()-
2213                                                 LHSR->getAPIntValue(),
2214                                 dl, N0.getValueType()), Cond);
2215           }
2216 
2217           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2218           if (N0.getOpcode() == ISD::XOR)
2219             // If we know that all of the inverted bits are zero, don't bother
2220             // performing the inversion.
2221             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2222               return
2223                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2224                              DAG.getConstant(LHSR->getAPIntValue() ^
2225                                                RHSC->getAPIntValue(),
2226                                              dl, N0.getValueType()),
2227                              Cond);
2228         }
2229 
2230         // Turn (C1-X) == C2 --> X == C1-C2
2231         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2232           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2233             return
2234               DAG.getSetCC(dl, VT, N0.getOperand(1),
2235                            DAG.getConstant(SUBC->getAPIntValue() -
2236                                              RHSC->getAPIntValue(),
2237                                            dl, N0.getValueType()),
2238                            Cond);
2239           }
2240         }
2241 
2242         // Could RHSC fold directly into a compare?
2243         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2244           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2245       }
2246 
2247       // Simplify (X+Z) == X -->  Z == 0
2248       // Don't do this if X is an immediate that can fold into a cmp
2249       // instruction and X+Z has other uses. It could be an induction variable
2250       // chain, and the transform would increase register pressure.
2251       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2252         if (N0.getOperand(0) == N1)
2253           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2254                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2255         if (N0.getOperand(1) == N1) {
2256           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2257             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2258                                 DAG.getConstant(0, dl, N0.getValueType()),
2259                                 Cond);
2260           if (N0.getNode()->hasOneUse()) {
2261             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2262             auto &DL = DAG.getDataLayout();
2263             // (Z-X) == X  --> Z == X<<1
2264             SDValue SH = DAG.getNode(
2265                 ISD::SHL, dl, N1.getValueType(), N1,
2266                 DAG.getConstant(1, dl,
2267                                 getShiftAmountTy(N1.getValueType(), DL)));
2268             if (!DCI.isCalledByLegalizer())
2269               DCI.AddToWorklist(SH.getNode());
2270             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2271           }
2272         }
2273       }
2274     }
2275 
2276     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2277         N1.getOpcode() == ISD::XOR) {
2278       // Simplify  X == (X+Z) -->  Z == 0
2279       if (N1.getOperand(0) == N0)
2280         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2281                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2282       if (N1.getOperand(1) == N0) {
2283         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2284           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2285                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2286         if (N1.getNode()->hasOneUse()) {
2287           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2288           auto &DL = DAG.getDataLayout();
2289           // X == (Z-X)  --> X<<1 == Z
2290           SDValue SH = DAG.getNode(
2291               ISD::SHL, dl, N1.getValueType(), N0,
2292               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2293           if (!DCI.isCalledByLegalizer())
2294             DCI.AddToWorklist(SH.getNode());
2295           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2296         }
2297       }
2298     }
2299 
2300     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2301       return V;
2302   }
2303 
2304   // Fold away ALL boolean setcc's.
2305   SDValue Temp;
2306   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2307     switch (Cond) {
2308     default: llvm_unreachable("Unknown integer setcc!");
2309     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2310       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2311       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2312       if (!DCI.isCalledByLegalizer())
2313         DCI.AddToWorklist(Temp.getNode());
2314       break;
2315     case ISD::SETNE:  // X != Y   -->  (X^Y)
2316       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2317       break;
2318     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2319     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2320       Temp = DAG.getNOT(dl, N0, MVT::i1);
2321       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2322       if (!DCI.isCalledByLegalizer())
2323         DCI.AddToWorklist(Temp.getNode());
2324       break;
2325     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2326     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2327       Temp = DAG.getNOT(dl, N1, MVT::i1);
2328       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2329       if (!DCI.isCalledByLegalizer())
2330         DCI.AddToWorklist(Temp.getNode());
2331       break;
2332     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2333     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2334       Temp = DAG.getNOT(dl, N0, MVT::i1);
2335       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2336       if (!DCI.isCalledByLegalizer())
2337         DCI.AddToWorklist(Temp.getNode());
2338       break;
2339     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2340     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2341       Temp = DAG.getNOT(dl, N1, MVT::i1);
2342       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2343       break;
2344     }
2345     if (VT != MVT::i1) {
2346       if (!DCI.isCalledByLegalizer())
2347         DCI.AddToWorklist(N0.getNode());
2348       // FIXME: If running after legalize, we probably can't do this.
2349       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2350     }
2351     return N0;
2352   }
2353 
2354   // Could not fold it.
2355   return SDValue();
2356 }
2357 
2358 /// Returns true (and the GlobalValue and the offset) if the node is a
2359 /// GlobalAddress + offset.
2360 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2361                                     int64_t &Offset) const {
2362   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2363     GA = GASD->getGlobal();
2364     Offset += GASD->getOffset();
2365     return true;
2366   }
2367 
2368   if (N->getOpcode() == ISD::ADD) {
2369     SDValue N1 = N->getOperand(0);
2370     SDValue N2 = N->getOperand(1);
2371     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2372       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2373         Offset += V->getSExtValue();
2374         return true;
2375       }
2376     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2377       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2378         Offset += V->getSExtValue();
2379         return true;
2380       }
2381     }
2382   }
2383 
2384   return false;
2385 }
2386 
2387 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2388                                           DAGCombinerInfo &DCI) const {
2389   // Default implementation: no optimization.
2390   return SDValue();
2391 }
2392 
2393 //===----------------------------------------------------------------------===//
2394 //  Inline Assembler Implementation Methods
2395 //===----------------------------------------------------------------------===//
2396 
2397 TargetLowering::ConstraintType
2398 TargetLowering::getConstraintType(StringRef Constraint) const {
2399   unsigned S = Constraint.size();
2400 
2401   if (S == 1) {
2402     switch (Constraint[0]) {
2403     default: break;
2404     case 'r': return C_RegisterClass;
2405     case 'm':    // memory
2406     case 'o':    // offsetable
2407     case 'V':    // not offsetable
2408       return C_Memory;
2409     case 'i':    // Simple Integer or Relocatable Constant
2410     case 'n':    // Simple Integer
2411     case 'E':    // Floating Point Constant
2412     case 'F':    // Floating Point Constant
2413     case 's':    // Relocatable Constant
2414     case 'p':    // Address.
2415     case 'X':    // Allow ANY value.
2416     case 'I':    // Target registers.
2417     case 'J':
2418     case 'K':
2419     case 'L':
2420     case 'M':
2421     case 'N':
2422     case 'O':
2423     case 'P':
2424     case '<':
2425     case '>':
2426       return C_Other;
2427     }
2428   }
2429 
2430   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2431     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2432       return C_Memory;
2433     return C_Register;
2434   }
2435   return C_Unknown;
2436 }
2437 
2438 /// Try to replace an X constraint, which matches anything, with another that
2439 /// has more specific requirements based on the type of the corresponding
2440 /// operand.
2441 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2442   if (ConstraintVT.isInteger())
2443     return "r";
2444   if (ConstraintVT.isFloatingPoint())
2445     return "f";      // works for many targets
2446   return nullptr;
2447 }
2448 
2449 /// Lower the specified operand into the Ops vector.
2450 /// If it is invalid, don't add anything to Ops.
2451 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2452                                                   std::string &Constraint,
2453                                                   std::vector<SDValue> &Ops,
2454                                                   SelectionDAG &DAG) const {
2455 
2456   if (Constraint.length() > 1) return;
2457 
2458   char ConstraintLetter = Constraint[0];
2459   switch (ConstraintLetter) {
2460   default: break;
2461   case 'X':     // Allows any operand; labels (basic block) use this.
2462     if (Op.getOpcode() == ISD::BasicBlock) {
2463       Ops.push_back(Op);
2464       return;
2465     }
2466     LLVM_FALLTHROUGH;
2467   case 'i':    // Simple Integer or Relocatable Constant
2468   case 'n':    // Simple Integer
2469   case 's': {  // Relocatable Constant
2470     // These operands are interested in values of the form (GV+C), where C may
2471     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2472     // is possible and fine if either GV or C are missing.
2473     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2474     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2475 
2476     // If we have "(add GV, C)", pull out GV/C
2477     if (Op.getOpcode() == ISD::ADD) {
2478       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2479       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2480       if (!C || !GA) {
2481         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2482         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2483       }
2484       if (!C || !GA) {
2485         C = nullptr;
2486         GA = nullptr;
2487       }
2488     }
2489 
2490     // If we find a valid operand, map to the TargetXXX version so that the
2491     // value itself doesn't get selected.
2492     if (GA) {   // Either &GV   or   &GV+C
2493       if (ConstraintLetter != 'n') {
2494         int64_t Offs = GA->getOffset();
2495         if (C) Offs += C->getZExtValue();
2496         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2497                                                  C ? SDLoc(C) : SDLoc(),
2498                                                  Op.getValueType(), Offs));
2499       }
2500       return;
2501     }
2502     if (C) {   // just C, no GV.
2503       // Simple constants are not allowed for 's'.
2504       if (ConstraintLetter != 's') {
2505         // gcc prints these as sign extended.  Sign extend value to 64 bits
2506         // now; without this it would get ZExt'd later in
2507         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2508         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2509                                             SDLoc(C), MVT::i64));
2510       }
2511       return;
2512     }
2513     break;
2514   }
2515   }
2516 }
2517 
2518 std::pair<unsigned, const TargetRegisterClass *>
2519 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2520                                              StringRef Constraint,
2521                                              MVT VT) const {
2522   if (Constraint.empty() || Constraint[0] != '{')
2523     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2524   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2525 
2526   // Remove the braces from around the name.
2527   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2528 
2529   std::pair<unsigned, const TargetRegisterClass*> R =
2530     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2531 
2532   // Figure out which register class contains this reg.
2533   for (const TargetRegisterClass *RC : RI->regclasses()) {
2534     // If none of the value types for this register class are valid, we
2535     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2536     if (!isLegalRC(RC))
2537       continue;
2538 
2539     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2540          I != E; ++I) {
2541       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2542         std::pair<unsigned, const TargetRegisterClass*> S =
2543           std::make_pair(*I, RC);
2544 
2545         // If this register class has the requested value type, return it,
2546         // otherwise keep searching and return the first class found
2547         // if no other is found which explicitly has the requested type.
2548         if (RC->hasType(VT))
2549           return S;
2550         else if (!R.second)
2551           R = S;
2552       }
2553     }
2554   }
2555 
2556   return R;
2557 }
2558 
2559 //===----------------------------------------------------------------------===//
2560 // Constraint Selection.
2561 
2562 /// Return true of this is an input operand that is a matching constraint like
2563 /// "4".
2564 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2565   assert(!ConstraintCode.empty() && "No known constraint!");
2566   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2567 }
2568 
2569 /// If this is an input matching constraint, this method returns the output
2570 /// operand it matches.
2571 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2572   assert(!ConstraintCode.empty() && "No known constraint!");
2573   return atoi(ConstraintCode.c_str());
2574 }
2575 
2576 /// Split up the constraint string from the inline assembly value into the
2577 /// specific constraints and their prefixes, and also tie in the associated
2578 /// operand values.
2579 /// If this returns an empty vector, and if the constraint string itself
2580 /// isn't empty, there was an error parsing.
2581 TargetLowering::AsmOperandInfoVector
2582 TargetLowering::ParseConstraints(const DataLayout &DL,
2583                                  const TargetRegisterInfo *TRI,
2584                                  ImmutableCallSite CS) const {
2585   /// Information about all of the constraints.
2586   AsmOperandInfoVector ConstraintOperands;
2587   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2588   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2589 
2590   // Do a prepass over the constraints, canonicalizing them, and building up the
2591   // ConstraintOperands list.
2592   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2593   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2594 
2595   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2596     ConstraintOperands.emplace_back(std::move(CI));
2597     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2598 
2599     // Update multiple alternative constraint count.
2600     if (OpInfo.multipleAlternatives.size() > maCount)
2601       maCount = OpInfo.multipleAlternatives.size();
2602 
2603     OpInfo.ConstraintVT = MVT::Other;
2604 
2605     // Compute the value type for each operand.
2606     switch (OpInfo.Type) {
2607     case InlineAsm::isOutput:
2608       // Indirect outputs just consume an argument.
2609       if (OpInfo.isIndirect) {
2610         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2611         break;
2612       }
2613 
2614       // The return value of the call is this value.  As such, there is no
2615       // corresponding argument.
2616       assert(!CS.getType()->isVoidTy() &&
2617              "Bad inline asm!");
2618       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2619         OpInfo.ConstraintVT =
2620             getSimpleValueType(DL, STy->getElementType(ResNo));
2621       } else {
2622         assert(ResNo == 0 && "Asm only has one result!");
2623         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2624       }
2625       ++ResNo;
2626       break;
2627     case InlineAsm::isInput:
2628       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2629       break;
2630     case InlineAsm::isClobber:
2631       // Nothing to do.
2632       break;
2633     }
2634 
2635     if (OpInfo.CallOperandVal) {
2636       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2637       if (OpInfo.isIndirect) {
2638         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2639         if (!PtrTy)
2640           report_fatal_error("Indirect operand for inline asm not a pointer!");
2641         OpTy = PtrTy->getElementType();
2642       }
2643 
2644       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2645       if (StructType *STy = dyn_cast<StructType>(OpTy))
2646         if (STy->getNumElements() == 1)
2647           OpTy = STy->getElementType(0);
2648 
2649       // If OpTy is not a single value, it may be a struct/union that we
2650       // can tile with integers.
2651       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2652         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2653         switch (BitSize) {
2654         default: break;
2655         case 1:
2656         case 8:
2657         case 16:
2658         case 32:
2659         case 64:
2660         case 128:
2661           OpInfo.ConstraintVT =
2662             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2663           break;
2664         }
2665       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2666         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2667         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2668       } else {
2669         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2670       }
2671     }
2672   }
2673 
2674   // If we have multiple alternative constraints, select the best alternative.
2675   if (!ConstraintOperands.empty()) {
2676     if (maCount) {
2677       unsigned bestMAIndex = 0;
2678       int bestWeight = -1;
2679       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2680       int weight = -1;
2681       unsigned maIndex;
2682       // Compute the sums of the weights for each alternative, keeping track
2683       // of the best (highest weight) one so far.
2684       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2685         int weightSum = 0;
2686         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2687             cIndex != eIndex; ++cIndex) {
2688           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2689           if (OpInfo.Type == InlineAsm::isClobber)
2690             continue;
2691 
2692           // If this is an output operand with a matching input operand,
2693           // look up the matching input. If their types mismatch, e.g. one
2694           // is an integer, the other is floating point, or their sizes are
2695           // different, flag it as an maCantMatch.
2696           if (OpInfo.hasMatchingInput()) {
2697             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2698             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2699               if ((OpInfo.ConstraintVT.isInteger() !=
2700                    Input.ConstraintVT.isInteger()) ||
2701                   (OpInfo.ConstraintVT.getSizeInBits() !=
2702                    Input.ConstraintVT.getSizeInBits())) {
2703                 weightSum = -1;  // Can't match.
2704                 break;
2705               }
2706             }
2707           }
2708           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2709           if (weight == -1) {
2710             weightSum = -1;
2711             break;
2712           }
2713           weightSum += weight;
2714         }
2715         // Update best.
2716         if (weightSum > bestWeight) {
2717           bestWeight = weightSum;
2718           bestMAIndex = maIndex;
2719         }
2720       }
2721 
2722       // Now select chosen alternative in each constraint.
2723       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2724           cIndex != eIndex; ++cIndex) {
2725         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2726         if (cInfo.Type == InlineAsm::isClobber)
2727           continue;
2728         cInfo.selectAlternative(bestMAIndex);
2729       }
2730     }
2731   }
2732 
2733   // Check and hook up tied operands, choose constraint code to use.
2734   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2735       cIndex != eIndex; ++cIndex) {
2736     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2737 
2738     // If this is an output operand with a matching input operand, look up the
2739     // matching input. If their types mismatch, e.g. one is an integer, the
2740     // other is floating point, or their sizes are different, flag it as an
2741     // error.
2742     if (OpInfo.hasMatchingInput()) {
2743       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2744 
2745       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2746         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2747             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2748                                          OpInfo.ConstraintVT);
2749         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2750             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2751                                          Input.ConstraintVT);
2752         if ((OpInfo.ConstraintVT.isInteger() !=
2753              Input.ConstraintVT.isInteger()) ||
2754             (MatchRC.second != InputRC.second)) {
2755           report_fatal_error("Unsupported asm: input constraint"
2756                              " with a matching output constraint of"
2757                              " incompatible type!");
2758         }
2759       }
2760     }
2761   }
2762 
2763   return ConstraintOperands;
2764 }
2765 
2766 /// Return an integer indicating how general CT is.
2767 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2768   switch (CT) {
2769   case TargetLowering::C_Other:
2770   case TargetLowering::C_Unknown:
2771     return 0;
2772   case TargetLowering::C_Register:
2773     return 1;
2774   case TargetLowering::C_RegisterClass:
2775     return 2;
2776   case TargetLowering::C_Memory:
2777     return 3;
2778   }
2779   llvm_unreachable("Invalid constraint type");
2780 }
2781 
2782 /// Examine constraint type and operand type and determine a weight value.
2783 /// This object must already have been set up with the operand type
2784 /// and the current alternative constraint selected.
2785 TargetLowering::ConstraintWeight
2786   TargetLowering::getMultipleConstraintMatchWeight(
2787     AsmOperandInfo &info, int maIndex) const {
2788   InlineAsm::ConstraintCodeVector *rCodes;
2789   if (maIndex >= (int)info.multipleAlternatives.size())
2790     rCodes = &info.Codes;
2791   else
2792     rCodes = &info.multipleAlternatives[maIndex].Codes;
2793   ConstraintWeight BestWeight = CW_Invalid;
2794 
2795   // Loop over the options, keeping track of the most general one.
2796   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2797     ConstraintWeight weight =
2798       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2799     if (weight > BestWeight)
2800       BestWeight = weight;
2801   }
2802 
2803   return BestWeight;
2804 }
2805 
2806 /// Examine constraint type and operand type and determine a weight value.
2807 /// This object must already have been set up with the operand type
2808 /// and the current alternative constraint selected.
2809 TargetLowering::ConstraintWeight
2810   TargetLowering::getSingleConstraintMatchWeight(
2811     AsmOperandInfo &info, const char *constraint) const {
2812   ConstraintWeight weight = CW_Invalid;
2813   Value *CallOperandVal = info.CallOperandVal;
2814     // If we don't have a value, we can't do a match,
2815     // but allow it at the lowest weight.
2816   if (!CallOperandVal)
2817     return CW_Default;
2818   // Look at the constraint type.
2819   switch (*constraint) {
2820     case 'i': // immediate integer.
2821     case 'n': // immediate integer with a known value.
2822       if (isa<ConstantInt>(CallOperandVal))
2823         weight = CW_Constant;
2824       break;
2825     case 's': // non-explicit intregal immediate.
2826       if (isa<GlobalValue>(CallOperandVal))
2827         weight = CW_Constant;
2828       break;
2829     case 'E': // immediate float if host format.
2830     case 'F': // immediate float.
2831       if (isa<ConstantFP>(CallOperandVal))
2832         weight = CW_Constant;
2833       break;
2834     case '<': // memory operand with autodecrement.
2835     case '>': // memory operand with autoincrement.
2836     case 'm': // memory operand.
2837     case 'o': // offsettable memory operand
2838     case 'V': // non-offsettable memory operand
2839       weight = CW_Memory;
2840       break;
2841     case 'r': // general register.
2842     case 'g': // general register, memory operand or immediate integer.
2843               // note: Clang converts "g" to "imr".
2844       if (CallOperandVal->getType()->isIntegerTy())
2845         weight = CW_Register;
2846       break;
2847     case 'X': // any operand.
2848     default:
2849       weight = CW_Default;
2850       break;
2851   }
2852   return weight;
2853 }
2854 
2855 /// If there are multiple different constraints that we could pick for this
2856 /// operand (e.g. "imr") try to pick the 'best' one.
2857 /// This is somewhat tricky: constraints fall into four classes:
2858 ///    Other         -> immediates and magic values
2859 ///    Register      -> one specific register
2860 ///    RegisterClass -> a group of regs
2861 ///    Memory        -> memory
2862 /// Ideally, we would pick the most specific constraint possible: if we have
2863 /// something that fits into a register, we would pick it.  The problem here
2864 /// is that if we have something that could either be in a register or in
2865 /// memory that use of the register could cause selection of *other*
2866 /// operands to fail: they might only succeed if we pick memory.  Because of
2867 /// this the heuristic we use is:
2868 ///
2869 ///  1) If there is an 'other' constraint, and if the operand is valid for
2870 ///     that constraint, use it.  This makes us take advantage of 'i'
2871 ///     constraints when available.
2872 ///  2) Otherwise, pick the most general constraint present.  This prefers
2873 ///     'm' over 'r', for example.
2874 ///
2875 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2876                              const TargetLowering &TLI,
2877                              SDValue Op, SelectionDAG *DAG) {
2878   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2879   unsigned BestIdx = 0;
2880   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2881   int BestGenerality = -1;
2882 
2883   // Loop over the options, keeping track of the most general one.
2884   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2885     TargetLowering::ConstraintType CType =
2886       TLI.getConstraintType(OpInfo.Codes[i]);
2887 
2888     // If this is an 'other' constraint, see if the operand is valid for it.
2889     // For example, on X86 we might have an 'rI' constraint.  If the operand
2890     // is an integer in the range [0..31] we want to use I (saving a load
2891     // of a register), otherwise we must use 'r'.
2892     if (CType == TargetLowering::C_Other && Op.getNode()) {
2893       assert(OpInfo.Codes[i].size() == 1 &&
2894              "Unhandled multi-letter 'other' constraint");
2895       std::vector<SDValue> ResultOps;
2896       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2897                                        ResultOps, *DAG);
2898       if (!ResultOps.empty()) {
2899         BestType = CType;
2900         BestIdx = i;
2901         break;
2902       }
2903     }
2904 
2905     // Things with matching constraints can only be registers, per gcc
2906     // documentation.  This mainly affects "g" constraints.
2907     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2908       continue;
2909 
2910     // This constraint letter is more general than the previous one, use it.
2911     int Generality = getConstraintGenerality(CType);
2912     if (Generality > BestGenerality) {
2913       BestType = CType;
2914       BestIdx = i;
2915       BestGenerality = Generality;
2916     }
2917   }
2918 
2919   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2920   OpInfo.ConstraintType = BestType;
2921 }
2922 
2923 /// Determines the constraint code and constraint type to use for the specific
2924 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2925 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2926                                             SDValue Op,
2927                                             SelectionDAG *DAG) const {
2928   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2929 
2930   // Single-letter constraints ('r') are very common.
2931   if (OpInfo.Codes.size() == 1) {
2932     OpInfo.ConstraintCode = OpInfo.Codes[0];
2933     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2934   } else {
2935     ChooseConstraint(OpInfo, *this, Op, DAG);
2936   }
2937 
2938   // 'X' matches anything.
2939   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2940     // Labels and constants are handled elsewhere ('X' is the only thing
2941     // that matches labels).  For Functions, the type here is the type of
2942     // the result, which is not what we want to look at; leave them alone.
2943     Value *v = OpInfo.CallOperandVal;
2944     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2945       OpInfo.CallOperandVal = v;
2946       return;
2947     }
2948 
2949     // Otherwise, try to resolve it to something we know about by looking at
2950     // the actual operand type.
2951     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2952       OpInfo.ConstraintCode = Repl;
2953       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2954     }
2955   }
2956 }
2957 
2958 /// \brief Given an exact SDIV by a constant, create a multiplication
2959 /// with the multiplicative inverse of the constant.
2960 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2961                               const SDLoc &dl, SelectionDAG &DAG,
2962                               std::vector<SDNode *> &Created) {
2963   assert(d != 0 && "Division by zero!");
2964 
2965   // Shift the value upfront if it is even, so the LSB is one.
2966   unsigned ShAmt = d.countTrailingZeros();
2967   if (ShAmt) {
2968     // TODO: For UDIV use SRL instead of SRA.
2969     SDValue Amt =
2970         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2971                                                         DAG.getDataLayout()));
2972     SDNodeFlags Flags;
2973     Flags.setExact(true);
2974     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2975     Created.push_back(Op1.getNode());
2976     d = d.ashr(ShAmt);
2977   }
2978 
2979   // Calculate the multiplicative inverse, using Newton's method.
2980   APInt t, xn = d;
2981   while ((t = d*xn) != 1)
2982     xn *= APInt(d.getBitWidth(), 2) - t;
2983 
2984   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2985   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2986   Created.push_back(Mul.getNode());
2987   return Mul;
2988 }
2989 
2990 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2991                                       SelectionDAG &DAG,
2992                                       std::vector<SDNode *> *Created) const {
2993   AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2994   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2995   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2996     return SDValue(N,0); // Lower SDIV as SDIV
2997   return SDValue();
2998 }
2999 
3000 /// \brief Given an ISD::SDIV node expressing a divide by constant,
3001 /// return a DAG expression to select that will generate the same value by
3002 /// multiplying by a magic number.
3003 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3004 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
3005                                   SelectionDAG &DAG, bool IsAfterLegalization,
3006                                   std::vector<SDNode *> *Created) const {
3007   assert(Created && "No vector to hold sdiv ops.");
3008 
3009   EVT VT = N->getValueType(0);
3010   SDLoc dl(N);
3011 
3012   // Check to see if we can do this.
3013   // FIXME: We should be more aggressive here.
3014   if (!isTypeLegal(VT))
3015     return SDValue();
3016 
3017   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3018   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
3019     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
3020 
3021   APInt::ms magics = Divisor.magic();
3022 
3023   // Multiply the numerator (operand 0) by the magic value
3024   // FIXME: We should support doing a MUL in a wider type
3025   SDValue Q;
3026   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3027                             isOperationLegalOrCustom(ISD::MULHS, VT))
3028     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3029                     DAG.getConstant(magics.m, dl, VT));
3030   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3031                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3032     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3033                               N->getOperand(0),
3034                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3035   else
3036     return SDValue();       // No mulhs or equvialent
3037   // If d > 0 and m < 0, add the numerator
3038   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3039     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3040     Created->push_back(Q.getNode());
3041   }
3042   // If d < 0 and m > 0, subtract the numerator.
3043   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3044     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3045     Created->push_back(Q.getNode());
3046   }
3047   auto &DL = DAG.getDataLayout();
3048   // Shift right algebraic if shift value is nonzero
3049   if (magics.s > 0) {
3050     Q = DAG.getNode(
3051         ISD::SRA, dl, VT, Q,
3052         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3053     Created->push_back(Q.getNode());
3054   }
3055   // Extract the sign bit and add it to the quotient
3056   SDValue T =
3057       DAG.getNode(ISD::SRL, dl, VT, Q,
3058                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3059                                   getShiftAmountTy(Q.getValueType(), DL)));
3060   Created->push_back(T.getNode());
3061   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3062 }
3063 
3064 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3065 /// return a DAG expression to select that will generate the same value by
3066 /// multiplying by a magic number.
3067 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3068 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3069                                   SelectionDAG &DAG, bool IsAfterLegalization,
3070                                   std::vector<SDNode *> *Created) const {
3071   assert(Created && "No vector to hold udiv ops.");
3072 
3073   EVT VT = N->getValueType(0);
3074   SDLoc dl(N);
3075   auto &DL = DAG.getDataLayout();
3076 
3077   // Check to see if we can do this.
3078   // FIXME: We should be more aggressive here.
3079   if (!isTypeLegal(VT))
3080     return SDValue();
3081 
3082   // FIXME: We should use a narrower constant when the upper
3083   // bits are known to be zero.
3084   APInt::mu magics = Divisor.magicu();
3085 
3086   SDValue Q = N->getOperand(0);
3087 
3088   // If the divisor is even, we can avoid using the expensive fixup by shifting
3089   // the divided value upfront.
3090   if (magics.a != 0 && !Divisor[0]) {
3091     unsigned Shift = Divisor.countTrailingZeros();
3092     Q = DAG.getNode(
3093         ISD::SRL, dl, VT, Q,
3094         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3095     Created->push_back(Q.getNode());
3096 
3097     // Get magic number for the shifted divisor.
3098     magics = Divisor.lshr(Shift).magicu(Shift);
3099     assert(magics.a == 0 && "Should use cheap fixup now");
3100   }
3101 
3102   // Multiply the numerator (operand 0) by the magic value
3103   // FIXME: We should support doing a MUL in a wider type
3104   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3105                             isOperationLegalOrCustom(ISD::MULHU, VT))
3106     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3107   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3108                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3109     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3110                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3111   else
3112     return SDValue();       // No mulhu or equivalent
3113 
3114   Created->push_back(Q.getNode());
3115 
3116   if (magics.a == 0) {
3117     assert(magics.s < Divisor.getBitWidth() &&
3118            "We shouldn't generate an undefined shift!");
3119     return DAG.getNode(
3120         ISD::SRL, dl, VT, Q,
3121         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3122   } else {
3123     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3124     Created->push_back(NPQ.getNode());
3125     NPQ = DAG.getNode(
3126         ISD::SRL, dl, VT, NPQ,
3127         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3128     Created->push_back(NPQ.getNode());
3129     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3130     Created->push_back(NPQ.getNode());
3131     return DAG.getNode(
3132         ISD::SRL, dl, VT, NPQ,
3133         DAG.getConstant(magics.s - 1, dl,
3134                         getShiftAmountTy(NPQ.getValueType(), DL)));
3135   }
3136 }
3137 
3138 bool TargetLowering::
3139 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3140   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3141     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3142                                 "be a constant integer");
3143     return true;
3144   }
3145 
3146   return false;
3147 }
3148 
3149 //===----------------------------------------------------------------------===//
3150 // Legalization Utilities
3151 //===----------------------------------------------------------------------===//
3152 
3153 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3154                                     SDValue LHS, SDValue RHS,
3155                                     SmallVectorImpl<SDValue> &Result,
3156                                     EVT HiLoVT, SelectionDAG &DAG,
3157                                     MulExpansionKind Kind, SDValue LL,
3158                                     SDValue LH, SDValue RL, SDValue RH) const {
3159   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3160          Opcode == ISD::SMUL_LOHI);
3161 
3162   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3163                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3164   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3165                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3166   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3167                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3168   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3169                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3170 
3171   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3172     return false;
3173 
3174   unsigned OuterBitSize = VT.getScalarSizeInBits();
3175   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3176   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3177   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3178 
3179   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3180   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3181          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3182 
3183   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3184   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3185                           bool Signed) -> bool {
3186     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3187       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3188       Hi = SDValue(Lo.getNode(), 1);
3189       return true;
3190     }
3191     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3192       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3193       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3194       return true;
3195     }
3196     return false;
3197   };
3198 
3199   SDValue Lo, Hi;
3200 
3201   if (!LL.getNode() && !RL.getNode() &&
3202       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3203     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3204     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3205   }
3206 
3207   if (!LL.getNode())
3208     return false;
3209 
3210   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3211   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3212       DAG.MaskedValueIsZero(RHS, HighMask)) {
3213     // The inputs are both zero-extended.
3214     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3215       Result.push_back(Lo);
3216       Result.push_back(Hi);
3217       if (Opcode != ISD::MUL) {
3218         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3219         Result.push_back(Zero);
3220         Result.push_back(Zero);
3221       }
3222       return true;
3223     }
3224   }
3225 
3226   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3227       RHSSB > InnerBitSize) {
3228     // The input values are both sign-extended.
3229     // TODO non-MUL case?
3230     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3231       Result.push_back(Lo);
3232       Result.push_back(Hi);
3233       return true;
3234     }
3235   }
3236 
3237   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3238   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3239   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3240     // FIXME getShiftAmountTy does not always return a sensible result when VT
3241     // is an illegal type, and so the type may be too small to fit the shift
3242     // amount. Override it with i32. The shift will have to be legalized.
3243     ShiftAmountTy = MVT::i32;
3244   }
3245   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3246 
3247   if (!LH.getNode() && !RH.getNode() &&
3248       isOperationLegalOrCustom(ISD::SRL, VT) &&
3249       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3250     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3251     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3252     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3253     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3254   }
3255 
3256   if (!LH.getNode())
3257     return false;
3258 
3259   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3260     return false;
3261 
3262   Result.push_back(Lo);
3263 
3264   if (Opcode == ISD::MUL) {
3265     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3266     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3267     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3268     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3269     Result.push_back(Hi);
3270     return true;
3271   }
3272 
3273   // Compute the full width result.
3274   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3275     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3276     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3277     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3278     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3279   };
3280 
3281   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3282   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3283     return false;
3284 
3285   // This is effectively the add part of a multiply-add of half-sized operands,
3286   // so it cannot overflow.
3287   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3288 
3289   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3290     return false;
3291 
3292   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3293                      Merge(Lo, Hi));
3294 
3295   SDValue Carry = Next.getValue(1);
3296   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3297   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3298 
3299   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3300     return false;
3301 
3302   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3303   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3304                    Carry);
3305   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3306 
3307   if (Opcode == ISD::SMUL_LOHI) {
3308     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3309                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3310     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3311 
3312     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3313                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3314     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3315   }
3316 
3317   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3318   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3319   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3320   return true;
3321 }
3322 
3323 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3324                                SelectionDAG &DAG, MulExpansionKind Kind,
3325                                SDValue LL, SDValue LH, SDValue RL,
3326                                SDValue RH) const {
3327   SmallVector<SDValue, 2> Result;
3328   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3329                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3330                            DAG, Kind, LL, LH, RL, RH);
3331   if (Ok) {
3332     assert(Result.size() == 2);
3333     Lo = Result[0];
3334     Hi = Result[1];
3335   }
3336   return Ok;
3337 }
3338 
3339 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3340                                SelectionDAG &DAG) const {
3341   EVT VT = Node->getOperand(0).getValueType();
3342   EVT NVT = Node->getValueType(0);
3343   SDLoc dl(SDValue(Node, 0));
3344 
3345   // FIXME: Only f32 to i64 conversions are supported.
3346   if (VT != MVT::f32 || NVT != MVT::i64)
3347     return false;
3348 
3349   // Expand f32 -> i64 conversion
3350   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3351   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3352   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3353                                 VT.getSizeInBits());
3354   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3355   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3356   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3357   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3358                                      IntVT);
3359   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3360   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3361 
3362   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3363 
3364   auto &DL = DAG.getDataLayout();
3365   SDValue ExponentBits = DAG.getNode(
3366       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3367       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3368   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3369 
3370   SDValue Sign = DAG.getNode(
3371       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3372       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3373   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3374 
3375   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3376       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3377       DAG.getConstant(0x00800000, dl, IntVT));
3378 
3379   R = DAG.getZExtOrTrunc(R, dl, NVT);
3380 
3381   R = DAG.getSelectCC(
3382       dl, Exponent, ExponentLoBit,
3383       DAG.getNode(ISD::SHL, dl, NVT, R,
3384                   DAG.getZExtOrTrunc(
3385                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3386                       dl, getShiftAmountTy(IntVT, DL))),
3387       DAG.getNode(ISD::SRL, dl, NVT, R,
3388                   DAG.getZExtOrTrunc(
3389                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3390                       dl, getShiftAmountTy(IntVT, DL))),
3391       ISD::SETGT);
3392 
3393   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3394       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3395       Sign);
3396 
3397   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3398       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3399   return true;
3400 }
3401 
3402 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3403                                             SelectionDAG &DAG) const {
3404   SDLoc SL(LD);
3405   SDValue Chain = LD->getChain();
3406   SDValue BasePTR = LD->getBasePtr();
3407   EVT SrcVT = LD->getMemoryVT();
3408   ISD::LoadExtType ExtType = LD->getExtensionType();
3409 
3410   unsigned NumElem = SrcVT.getVectorNumElements();
3411 
3412   EVT SrcEltVT = SrcVT.getScalarType();
3413   EVT DstEltVT = LD->getValueType(0).getScalarType();
3414 
3415   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3416   assert(SrcEltVT.isByteSized());
3417 
3418   EVT PtrVT = BasePTR.getValueType();
3419 
3420   SmallVector<SDValue, 8> Vals;
3421   SmallVector<SDValue, 8> LoadChains;
3422 
3423   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3424     SDValue ScalarLoad =
3425         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3426                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3427                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3428                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3429 
3430     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3431                           DAG.getConstant(Stride, SL, PtrVT));
3432 
3433     Vals.push_back(ScalarLoad.getValue(0));
3434     LoadChains.push_back(ScalarLoad.getValue(1));
3435   }
3436 
3437   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3438   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3439 
3440   return DAG.getMergeValues({ Value, NewChain }, SL);
3441 }
3442 
3443 // FIXME: This relies on each element having a byte size, otherwise the stride
3444 // is 0 and just overwrites the same location. ExpandStore currently expects
3445 // this broken behavior.
3446 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3447                                              SelectionDAG &DAG) const {
3448   SDLoc SL(ST);
3449 
3450   SDValue Chain = ST->getChain();
3451   SDValue BasePtr = ST->getBasePtr();
3452   SDValue Value = ST->getValue();
3453   EVT StVT = ST->getMemoryVT();
3454 
3455   // The type of the data we want to save
3456   EVT RegVT = Value.getValueType();
3457   EVT RegSclVT = RegVT.getScalarType();
3458 
3459   // The type of data as saved in memory.
3460   EVT MemSclVT = StVT.getScalarType();
3461 
3462   EVT PtrVT = BasePtr.getValueType();
3463 
3464   // Store Stride in bytes
3465   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3466   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3467   unsigned NumElem = StVT.getVectorNumElements();
3468 
3469   // Extract each of the elements from the original vector and save them into
3470   // memory individually.
3471   SmallVector<SDValue, 8> Stores;
3472   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3473     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3474                               DAG.getConstant(Idx, SL, IdxVT));
3475 
3476     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3477                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3478 
3479     // This scalar TruncStore may be illegal, but we legalize it later.
3480     SDValue Store = DAG.getTruncStore(
3481         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3482         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3483         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3484 
3485     Stores.push_back(Store);
3486   }
3487 
3488   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3489 }
3490 
3491 std::pair<SDValue, SDValue>
3492 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3493   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3494          "unaligned indexed loads not implemented!");
3495   SDValue Chain = LD->getChain();
3496   SDValue Ptr = LD->getBasePtr();
3497   EVT VT = LD->getValueType(0);
3498   EVT LoadedVT = LD->getMemoryVT();
3499   SDLoc dl(LD);
3500   if (VT.isFloatingPoint() || VT.isVector()) {
3501     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3502     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3503       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3504         // Scalarize the load and let the individual components be handled.
3505         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3506         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3507       }
3508 
3509       // Expand to a (misaligned) integer load of the same size,
3510       // then bitconvert to floating point or vector.
3511       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3512                                     LD->getMemOperand());
3513       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3514       if (LoadedVT != VT)
3515         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3516                              ISD::ANY_EXTEND, dl, VT, Result);
3517 
3518       return std::make_pair(Result, newLoad.getValue(1));
3519     }
3520 
3521     // Copy the value to a (aligned) stack slot using (unaligned) integer
3522     // loads and stores, then do a (aligned) load from the stack slot.
3523     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3524     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3525     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3526     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3527 
3528     // Make sure the stack slot is also aligned for the register type.
3529     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3530 
3531     SmallVector<SDValue, 8> Stores;
3532     SDValue StackPtr = StackBase;
3533     unsigned Offset = 0;
3534 
3535     EVT PtrVT = Ptr.getValueType();
3536     EVT StackPtrVT = StackPtr.getValueType();
3537 
3538     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3539     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3540 
3541     // Do all but one copies using the full register width.
3542     for (unsigned i = 1; i < NumRegs; i++) {
3543       // Load one integer register's worth from the original location.
3544       SDValue Load = DAG.getLoad(
3545           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3546           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3547           LD->getAAInfo());
3548       // Follow the load with a store to the stack slot.  Remember the store.
3549       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3550                                     MachinePointerInfo()));
3551       // Increment the pointers.
3552       Offset += RegBytes;
3553       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3554       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3555                              StackPtrIncrement);
3556     }
3557 
3558     // The last copy may be partial.  Do an extending load.
3559     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3560                                   8 * (LoadedBytes - Offset));
3561     SDValue Load =
3562         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3563                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3564                        MinAlign(LD->getAlignment(), Offset),
3565                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3566     // Follow the load with a store to the stack slot.  Remember the store.
3567     // On big-endian machines this requires a truncating store to ensure
3568     // that the bits end up in the right place.
3569     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3570                                        MachinePointerInfo(), MemVT));
3571 
3572     // The order of the stores doesn't matter - say it with a TokenFactor.
3573     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3574 
3575     // Finally, perform the original load only redirected to the stack slot.
3576     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3577                           MachinePointerInfo(), LoadedVT);
3578 
3579     // Callers expect a MERGE_VALUES node.
3580     return std::make_pair(Load, TF);
3581   }
3582 
3583   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3584          "Unaligned load of unsupported type.");
3585 
3586   // Compute the new VT that is half the size of the old one.  This is an
3587   // integer MVT.
3588   unsigned NumBits = LoadedVT.getSizeInBits();
3589   EVT NewLoadedVT;
3590   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3591   NumBits >>= 1;
3592 
3593   unsigned Alignment = LD->getAlignment();
3594   unsigned IncrementSize = NumBits / 8;
3595   ISD::LoadExtType HiExtType = LD->getExtensionType();
3596 
3597   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3598   if (HiExtType == ISD::NON_EXTLOAD)
3599     HiExtType = ISD::ZEXTLOAD;
3600 
3601   // Load the value in two parts
3602   SDValue Lo, Hi;
3603   if (DAG.getDataLayout().isLittleEndian()) {
3604     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3605                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3606                         LD->getAAInfo());
3607     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3608                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3609     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3610                         LD->getPointerInfo().getWithOffset(IncrementSize),
3611                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3612                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3613   } else {
3614     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3615                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3616                         LD->getAAInfo());
3617     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3618                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3619     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3620                         LD->getPointerInfo().getWithOffset(IncrementSize),
3621                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3622                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3623   }
3624 
3625   // aggregate the two parts
3626   SDValue ShiftAmount =
3627       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3628                                                     DAG.getDataLayout()));
3629   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3630   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3631 
3632   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3633                              Hi.getValue(1));
3634 
3635   return std::make_pair(Result, TF);
3636 }
3637 
3638 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3639                                              SelectionDAG &DAG) const {
3640   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3641          "unaligned indexed stores not implemented!");
3642   SDValue Chain = ST->getChain();
3643   SDValue Ptr = ST->getBasePtr();
3644   SDValue Val = ST->getValue();
3645   EVT VT = Val.getValueType();
3646   int Alignment = ST->getAlignment();
3647 
3648   SDLoc dl(ST);
3649   if (ST->getMemoryVT().isFloatingPoint() ||
3650       ST->getMemoryVT().isVector()) {
3651     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3652     if (isTypeLegal(intVT)) {
3653       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3654         // Scalarize the store and let the individual components be handled.
3655         SDValue Result = scalarizeVectorStore(ST, DAG);
3656 
3657         return Result;
3658       }
3659       // Expand to a bitconvert of the value to the integer type of the
3660       // same size, then a (misaligned) int store.
3661       // FIXME: Does not handle truncating floating point stores!
3662       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3663       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3664                             Alignment, ST->getMemOperand()->getFlags());
3665       return Result;
3666     }
3667     // Do a (aligned) store to a stack slot, then copy from the stack slot
3668     // to the final destination using (unaligned) integer loads and stores.
3669     EVT StoredVT = ST->getMemoryVT();
3670     MVT RegVT =
3671       getRegisterType(*DAG.getContext(),
3672                       EVT::getIntegerVT(*DAG.getContext(),
3673                                         StoredVT.getSizeInBits()));
3674     EVT PtrVT = Ptr.getValueType();
3675     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3676     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3677     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3678 
3679     // Make sure the stack slot is also aligned for the register type.
3680     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3681 
3682     // Perform the original store, only redirected to the stack slot.
3683     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3684                                       MachinePointerInfo(), StoredVT);
3685 
3686     EVT StackPtrVT = StackPtr.getValueType();
3687 
3688     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3689     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3690     SmallVector<SDValue, 8> Stores;
3691     unsigned Offset = 0;
3692 
3693     // Do all but one copies using the full register width.
3694     for (unsigned i = 1; i < NumRegs; i++) {
3695       // Load one integer register's worth from the stack slot.
3696       SDValue Load =
3697           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3698       // Store it to the final location.  Remember the store.
3699       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3700                                     ST->getPointerInfo().getWithOffset(Offset),
3701                                     MinAlign(ST->getAlignment(), Offset),
3702                                     ST->getMemOperand()->getFlags()));
3703       // Increment the pointers.
3704       Offset += RegBytes;
3705       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3706                              StackPtr, StackPtrIncrement);
3707       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3708     }
3709 
3710     // The last store may be partial.  Do a truncating store.  On big-endian
3711     // machines this requires an extending load from the stack slot to ensure
3712     // that the bits are in the right place.
3713     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3714                                   8 * (StoredBytes - Offset));
3715 
3716     // Load from the stack slot.
3717     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3718                                   MachinePointerInfo(), MemVT);
3719 
3720     Stores.push_back(
3721         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3722                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3723                           MinAlign(ST->getAlignment(), Offset),
3724                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3725     // The order of the stores doesn't matter - say it with a TokenFactor.
3726     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3727     return Result;
3728   }
3729 
3730   assert(ST->getMemoryVT().isInteger() &&
3731          !ST->getMemoryVT().isVector() &&
3732          "Unaligned store of unknown type.");
3733   // Get the half-size VT
3734   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3735   int NumBits = NewStoredVT.getSizeInBits();
3736   int IncrementSize = NumBits / 8;
3737 
3738   // Divide the stored value in two parts.
3739   SDValue ShiftAmount =
3740       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3741                                                     DAG.getDataLayout()));
3742   SDValue Lo = Val;
3743   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3744 
3745   // Store the two parts
3746   SDValue Store1, Store2;
3747   Store1 = DAG.getTruncStore(Chain, dl,
3748                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3749                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3750                              ST->getMemOperand()->getFlags());
3751 
3752   EVT PtrVT = Ptr.getValueType();
3753   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3754                     DAG.getConstant(IncrementSize, dl, PtrVT));
3755   Alignment = MinAlign(Alignment, IncrementSize);
3756   Store2 = DAG.getTruncStore(
3757       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3758       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3759       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3760 
3761   SDValue Result =
3762     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3763   return Result;
3764 }
3765 
3766 SDValue
3767 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3768                                        const SDLoc &DL, EVT DataVT,
3769                                        SelectionDAG &DAG,
3770                                        bool IsCompressedMemory) const {
3771   SDValue Increment;
3772   EVT AddrVT = Addr.getValueType();
3773   EVT MaskVT = Mask.getValueType();
3774   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3775          "Incompatible types of Data and Mask");
3776   if (IsCompressedMemory) {
3777     // Incrementing the pointer according to number of '1's in the mask.
3778     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3779     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3780     if (MaskIntVT.getSizeInBits() < 32) {
3781       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3782       MaskIntVT = MVT::i32;
3783     }
3784 
3785     // Count '1's with POPCNT.
3786     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3787     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3788     // Scale is an element size in bytes.
3789     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3790                                     AddrVT);
3791     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3792   } else
3793     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3794 
3795   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3796 }
3797 
3798 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3799                                        SDValue Idx,
3800                                        EVT VecVT,
3801                                        const SDLoc &dl) {
3802   if (isa<ConstantSDNode>(Idx))
3803     return Idx;
3804 
3805   EVT IdxVT = Idx.getValueType();
3806   unsigned NElts = VecVT.getVectorNumElements();
3807   if (isPowerOf2_32(NElts)) {
3808     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3809                                      Log2_32(NElts));
3810     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3811                        DAG.getConstant(Imm, dl, IdxVT));
3812   }
3813 
3814   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3815                      DAG.getConstant(NElts - 1, dl, IdxVT));
3816 }
3817 
3818 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3819                                                 SDValue VecPtr, EVT VecVT,
3820                                                 SDValue Index) const {
3821   SDLoc dl(Index);
3822   // Make sure the index type is big enough to compute in.
3823   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3824 
3825   EVT EltVT = VecVT.getVectorElementType();
3826 
3827   // Calculate the element offset and add it to the pointer.
3828   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3829   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3830          "Converting bits to bytes lost precision");
3831 
3832   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3833 
3834   EVT IdxVT = Index.getValueType();
3835 
3836   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3837                       DAG.getConstant(EltSize, dl, IdxVT));
3838   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3839 }
3840 
3841 //===----------------------------------------------------------------------===//
3842 // Implementation of Emulated TLS Model
3843 //===----------------------------------------------------------------------===//
3844 
3845 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3846                                                 SelectionDAG &DAG) const {
3847   // Access to address of TLS varialbe xyz is lowered to a function call:
3848   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3849   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3850   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3851   SDLoc dl(GA);
3852 
3853   ArgListTy Args;
3854   ArgListEntry Entry;
3855   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3856   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3857   StringRef EmuTlsVarName(NameString);
3858   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3859   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3860   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3861   Entry.Ty = VoidPtrType;
3862   Args.push_back(Entry);
3863 
3864   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3865 
3866   TargetLowering::CallLoweringInfo CLI(DAG);
3867   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3868   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3869   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3870 
3871   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3872   // At last for X86 targets, maybe good for other targets too?
3873   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3874   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3875   MFI.setHasCalls(true);
3876 
3877   assert((GA->getOffset() == 0) &&
3878          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3879   return CallResult.first;
3880 }
3881 
3882 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3883                                                 SelectionDAG &DAG) const {
3884   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3885   if (!isCtlzFast())
3886     return SDValue();
3887   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3888   SDLoc dl(Op);
3889   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3890     if (C->isNullValue() && CC == ISD::SETEQ) {
3891       EVT VT = Op.getOperand(0).getValueType();
3892       SDValue Zext = Op.getOperand(0);
3893       if (VT.bitsLT(MVT::i32)) {
3894         VT = MVT::i32;
3895         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3896       }
3897       unsigned Log2b = Log2_32(VT.getSizeInBits());
3898       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3899       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3900                                 DAG.getConstant(Log2b, dl, MVT::i32));
3901       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3902     }
3903   }
3904   return SDValue();
3905 }
3906