1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 909 /// result of Op are ever used downstream. If we can use this information to 910 /// simplify Op, create a new simplified DAG node and return true, returning the 911 /// original and new nodes in Old and New. Otherwise, analyze the expression and 912 /// return a mask of Known bits for the expression (used to simplify the 913 /// caller). The Known bits may only be accurate for those bits in the 914 /// OriginalDemandedBits and OriginalDemandedElts. 915 bool TargetLowering::SimplifyDemandedBits( 916 SDValue Op, const APInt &OriginalDemandedBits, 917 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 918 unsigned Depth, bool AssumeSingleUse) const { 919 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 920 assert(Op.getScalarValueSizeInBits() == BitWidth && 921 "Mask size mismatches value type size!"); 922 923 // Don't know anything. 924 Known = KnownBits(BitWidth); 925 926 // TODO: We can probably do more work on calculating the known bits and 927 // simplifying the operations for scalable vectors, but for now we just 928 // bail out. 929 if (Op.getValueType().isScalableVector()) 930 return false; 931 932 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 933 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 934 assert((!Op.getValueType().isVector() || 935 NumElts == Op.getValueType().getVectorNumElements()) && 936 "Unexpected vector size"); 937 938 APInt DemandedBits = OriginalDemandedBits; 939 APInt DemandedElts = OriginalDemandedElts; 940 SDLoc dl(Op); 941 auto &DL = TLO.DAG.getDataLayout(); 942 943 // Undef operand. 944 if (Op.isUndef()) 945 return false; 946 947 if (Op.getOpcode() == ISD::Constant) { 948 // We know all of the bits for a constant! 949 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 950 return false; 951 } 952 953 if (Op.getOpcode() == ISD::ConstantFP) { 954 // We know all of the bits for a floating point constant! 955 Known = KnownBits::makeConstant( 956 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 957 return false; 958 } 959 960 // Other users may use these bits. 961 EVT VT = Op.getValueType(); 962 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 963 if (Depth != 0) { 964 // If not at the root, Just compute the Known bits to 965 // simplify things downstream. 966 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 967 return false; 968 } 969 // If this is the root being simplified, allow it to have multiple uses, 970 // just set the DemandedBits/Elts to all bits. 971 DemandedBits = APInt::getAllOnes(BitWidth); 972 DemandedElts = APInt::getAllOnes(NumElts); 973 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 974 // Not demanding any bits/elts from Op. 975 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 976 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 977 // Limit search depth. 978 return false; 979 } 980 981 KnownBits Known2; 982 switch (Op.getOpcode()) { 983 case ISD::TargetConstant: 984 llvm_unreachable("Can't simplify this node"); 985 case ISD::SCALAR_TO_VECTOR: { 986 if (!DemandedElts[0]) 987 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 988 989 KnownBits SrcKnown; 990 SDValue Src = Op.getOperand(0); 991 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 992 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 993 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 994 return true; 995 996 // Upper elements are undef, so only get the knownbits if we just demand 997 // the bottom element. 998 if (DemandedElts == 1) 999 Known = SrcKnown.anyextOrTrunc(BitWidth); 1000 break; 1001 } 1002 case ISD::BUILD_VECTOR: 1003 // Collect the known bits that are shared by every demanded element. 1004 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1006 return false; // Don't fall through, will infinitely loop. 1007 case ISD::LOAD: { 1008 auto *LD = cast<LoadSDNode>(Op); 1009 if (getTargetConstantFromLoad(LD)) { 1010 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1011 return false; // Don't fall through, will infinitely loop. 1012 } 1013 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1014 // If this is a ZEXTLoad and we are looking at the loaded value. 1015 EVT MemVT = LD->getMemoryVT(); 1016 unsigned MemBits = MemVT.getScalarSizeInBits(); 1017 Known.Zero.setBitsFrom(MemBits); 1018 return false; // Don't fall through, will infinitely loop. 1019 } 1020 break; 1021 } 1022 case ISD::INSERT_VECTOR_ELT: { 1023 SDValue Vec = Op.getOperand(0); 1024 SDValue Scl = Op.getOperand(1); 1025 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1026 EVT VecVT = Vec.getValueType(); 1027 1028 // If index isn't constant, assume we need all vector elements AND the 1029 // inserted element. 1030 APInt DemandedVecElts(DemandedElts); 1031 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1032 unsigned Idx = CIdx->getZExtValue(); 1033 DemandedVecElts.clearBit(Idx); 1034 1035 // Inserted element is not required. 1036 if (!DemandedElts[Idx]) 1037 return TLO.CombineTo(Op, Vec); 1038 } 1039 1040 KnownBits KnownScl; 1041 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1042 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1043 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1044 return true; 1045 1046 Known = KnownScl.anyextOrTrunc(BitWidth); 1047 1048 KnownBits KnownVec; 1049 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1050 Depth + 1)) 1051 return true; 1052 1053 if (!!DemandedVecElts) 1054 Known = KnownBits::commonBits(Known, KnownVec); 1055 1056 return false; 1057 } 1058 case ISD::INSERT_SUBVECTOR: { 1059 // Demand any elements from the subvector and the remainder from the src its 1060 // inserted into. 1061 SDValue Src = Op.getOperand(0); 1062 SDValue Sub = Op.getOperand(1); 1063 uint64_t Idx = Op.getConstantOperandVal(2); 1064 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1065 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1066 APInt DemandedSrcElts = DemandedElts; 1067 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1068 1069 KnownBits KnownSub, KnownSrc; 1070 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1071 Depth + 1)) 1072 return true; 1073 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1074 Depth + 1)) 1075 return true; 1076 1077 Known.Zero.setAllBits(); 1078 Known.One.setAllBits(); 1079 if (!!DemandedSubElts) 1080 Known = KnownBits::commonBits(Known, KnownSub); 1081 if (!!DemandedSrcElts) 1082 Known = KnownBits::commonBits(Known, KnownSrc); 1083 1084 // Attempt to avoid multi-use src if we don't need anything from it. 1085 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1086 !DemandedSrcElts.isAllOnes()) { 1087 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1088 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1089 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1090 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1091 if (NewSub || NewSrc) { 1092 NewSub = NewSub ? NewSub : Sub; 1093 NewSrc = NewSrc ? NewSrc : Src; 1094 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1095 Op.getOperand(2)); 1096 return TLO.CombineTo(Op, NewOp); 1097 } 1098 } 1099 break; 1100 } 1101 case ISD::EXTRACT_SUBVECTOR: { 1102 // Offset the demanded elts by the subvector index. 1103 SDValue Src = Op.getOperand(0); 1104 if (Src.getValueType().isScalableVector()) 1105 break; 1106 uint64_t Idx = Op.getConstantOperandVal(1); 1107 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1108 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1109 1110 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1111 Depth + 1)) 1112 return true; 1113 1114 // Attempt to avoid multi-use src if we don't need anything from it. 1115 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1116 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1117 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1118 if (DemandedSrc) { 1119 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1120 Op.getOperand(1)); 1121 return TLO.CombineTo(Op, NewOp); 1122 } 1123 } 1124 break; 1125 } 1126 case ISD::CONCAT_VECTORS: { 1127 Known.Zero.setAllBits(); 1128 Known.One.setAllBits(); 1129 EVT SubVT = Op.getOperand(0).getValueType(); 1130 unsigned NumSubVecs = Op.getNumOperands(); 1131 unsigned NumSubElts = SubVT.getVectorNumElements(); 1132 for (unsigned i = 0; i != NumSubVecs; ++i) { 1133 APInt DemandedSubElts = 1134 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1135 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1136 Known2, TLO, Depth + 1)) 1137 return true; 1138 // Known bits are shared by every demanded subvector element. 1139 if (!!DemandedSubElts) 1140 Known = KnownBits::commonBits(Known, Known2); 1141 } 1142 break; 1143 } 1144 case ISD::VECTOR_SHUFFLE: { 1145 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1146 1147 // Collect demanded elements from shuffle operands.. 1148 APInt DemandedLHS(NumElts, 0); 1149 APInt DemandedRHS(NumElts, 0); 1150 for (unsigned i = 0; i != NumElts; ++i) { 1151 if (!DemandedElts[i]) 1152 continue; 1153 int M = ShuffleMask[i]; 1154 if (M < 0) { 1155 // For UNDEF elements, we don't know anything about the common state of 1156 // the shuffle result. 1157 DemandedLHS.clearAllBits(); 1158 DemandedRHS.clearAllBits(); 1159 break; 1160 } 1161 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1162 if (M < (int)NumElts) 1163 DemandedLHS.setBit(M); 1164 else 1165 DemandedRHS.setBit(M - NumElts); 1166 } 1167 1168 if (!!DemandedLHS || !!DemandedRHS) { 1169 SDValue Op0 = Op.getOperand(0); 1170 SDValue Op1 = Op.getOperand(1); 1171 1172 Known.Zero.setAllBits(); 1173 Known.One.setAllBits(); 1174 if (!!DemandedLHS) { 1175 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1176 Depth + 1)) 1177 return true; 1178 Known = KnownBits::commonBits(Known, Known2); 1179 } 1180 if (!!DemandedRHS) { 1181 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1182 Depth + 1)) 1183 return true; 1184 Known = KnownBits::commonBits(Known, Known2); 1185 } 1186 1187 // Attempt to avoid multi-use ops if we don't need anything from them. 1188 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1189 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1190 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1191 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1192 if (DemandedOp0 || DemandedOp1) { 1193 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1194 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1195 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1196 return TLO.CombineTo(Op, NewOp); 1197 } 1198 } 1199 break; 1200 } 1201 case ISD::AND: { 1202 SDValue Op0 = Op.getOperand(0); 1203 SDValue Op1 = Op.getOperand(1); 1204 1205 // If the RHS is a constant, check to see if the LHS would be zero without 1206 // using the bits from the RHS. Below, we use knowledge about the RHS to 1207 // simplify the LHS, here we're using information from the LHS to simplify 1208 // the RHS. 1209 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1210 // Do not increment Depth here; that can cause an infinite loop. 1211 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1212 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1213 if ((LHSKnown.Zero & DemandedBits) == 1214 (~RHSC->getAPIntValue() & DemandedBits)) 1215 return TLO.CombineTo(Op, Op0); 1216 1217 // If any of the set bits in the RHS are known zero on the LHS, shrink 1218 // the constant. 1219 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1220 DemandedElts, TLO)) 1221 return true; 1222 1223 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1224 // constant, but if this 'and' is only clearing bits that were just set by 1225 // the xor, then this 'and' can be eliminated by shrinking the mask of 1226 // the xor. For example, for a 32-bit X: 1227 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1228 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1229 LHSKnown.One == ~RHSC->getAPIntValue()) { 1230 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1231 return TLO.CombineTo(Op, Xor); 1232 } 1233 } 1234 1235 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1236 Depth + 1)) 1237 return true; 1238 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1239 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1240 Known2, TLO, Depth + 1)) 1241 return true; 1242 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1243 1244 // Attempt to avoid multi-use ops if we don't need anything from them. 1245 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1246 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1247 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1248 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1249 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1250 if (DemandedOp0 || DemandedOp1) { 1251 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1252 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1253 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1254 return TLO.CombineTo(Op, NewOp); 1255 } 1256 } 1257 1258 // If all of the demanded bits are known one on one side, return the other. 1259 // These bits cannot contribute to the result of the 'and'. 1260 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1261 return TLO.CombineTo(Op, Op0); 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1263 return TLO.CombineTo(Op, Op1); 1264 // If all of the demanded bits in the inputs are known zeros, return zero. 1265 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1266 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1267 // If the RHS is a constant, see if we can simplify it. 1268 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1269 TLO)) 1270 return true; 1271 // If the operation can be done in a smaller type, do so. 1272 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1273 return true; 1274 1275 Known &= Known2; 1276 break; 1277 } 1278 case ISD::OR: { 1279 SDValue Op0 = Op.getOperand(0); 1280 SDValue Op1 = Op.getOperand(1); 1281 1282 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1283 Depth + 1)) 1284 return true; 1285 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1286 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1287 Known2, TLO, Depth + 1)) 1288 return true; 1289 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1290 1291 // Attempt to avoid multi-use ops if we don't need anything from them. 1292 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1293 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1294 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1295 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1296 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1297 if (DemandedOp0 || DemandedOp1) { 1298 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1299 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1300 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1301 return TLO.CombineTo(Op, NewOp); 1302 } 1303 } 1304 1305 // If all of the demanded bits are known zero on one side, return the other. 1306 // These bits cannot contribute to the result of the 'or'. 1307 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1308 return TLO.CombineTo(Op, Op0); 1309 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1310 return TLO.CombineTo(Op, Op1); 1311 // If the RHS is a constant, see if we can simplify it. 1312 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1313 return true; 1314 // If the operation can be done in a smaller type, do so. 1315 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1316 return true; 1317 1318 Known |= Known2; 1319 break; 1320 } 1321 case ISD::XOR: { 1322 SDValue Op0 = Op.getOperand(0); 1323 SDValue Op1 = Op.getOperand(1); 1324 1325 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1326 Depth + 1)) 1327 return true; 1328 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1329 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1330 Depth + 1)) 1331 return true; 1332 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1333 1334 // Attempt to avoid multi-use ops if we don't need anything from them. 1335 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1336 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1337 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1338 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1339 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1340 if (DemandedOp0 || DemandedOp1) { 1341 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1342 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1343 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1344 return TLO.CombineTo(Op, NewOp); 1345 } 1346 } 1347 1348 // If all of the demanded bits are known zero on one side, return the other. 1349 // These bits cannot contribute to the result of the 'xor'. 1350 if (DemandedBits.isSubsetOf(Known.Zero)) 1351 return TLO.CombineTo(Op, Op0); 1352 if (DemandedBits.isSubsetOf(Known2.Zero)) 1353 return TLO.CombineTo(Op, Op1); 1354 // If the operation can be done in a smaller type, do so. 1355 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1356 return true; 1357 1358 // If all of the unknown bits are known to be zero on one side or the other 1359 // turn this into an *inclusive* or. 1360 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1361 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1362 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1363 1364 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1365 if (C) { 1366 // If one side is a constant, and all of the set bits in the constant are 1367 // also known set on the other side, turn this into an AND, as we know 1368 // the bits will be cleared. 1369 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1370 // NB: it is okay if more bits are known than are requested 1371 if (C->getAPIntValue() == Known2.One) { 1372 SDValue ANDC = 1373 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1374 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1375 } 1376 1377 // If the RHS is a constant, see if we can change it. Don't alter a -1 1378 // constant because that's a 'not' op, and that is better for combining 1379 // and codegen. 1380 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1381 // We're flipping all demanded bits. Flip the undemanded bits too. 1382 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1383 return TLO.CombineTo(Op, New); 1384 } 1385 } 1386 1387 // If we can't turn this into a 'not', try to shrink the constant. 1388 if (!C || !C->isAllOnes()) 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 Known ^= Known2; 1393 break; 1394 } 1395 case ISD::SELECT: 1396 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SELECT_CC: 1413 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1414 Depth + 1)) 1415 return true; 1416 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1417 Depth + 1)) 1418 return true; 1419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1420 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1421 1422 // If the operands are constants, see if we can simplify them. 1423 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1424 return true; 1425 1426 // Only known if known in both the LHS and RHS. 1427 Known = KnownBits::commonBits(Known, Known2); 1428 break; 1429 case ISD::SETCC: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1433 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1434 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1435 // -1, we may be able to bypass the setcc. 1436 if (DemandedBits.isSignMask() && 1437 Op0.getScalarValueSizeInBits() == BitWidth && 1438 getBooleanContents(Op0.getValueType()) == 1439 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1440 // If we're testing X < 0, then this compare isn't needed - just use X! 1441 // FIXME: We're limiting to integer types here, but this should also work 1442 // if we don't care about FP signed-zero. The use of SETLT with FP means 1443 // that we don't care about NaNs. 1444 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1445 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1446 return TLO.CombineTo(Op, Op0); 1447 1448 // TODO: Should we check for other forms of sign-bit comparisons? 1449 // Examples: X <= -1, X >= 0 1450 } 1451 if (getBooleanContents(Op0.getValueType()) == 1452 TargetLowering::ZeroOrOneBooleanContent && 1453 BitWidth > 1) 1454 Known.Zero.setBitsFrom(1); 1455 break; 1456 } 1457 case ISD::SHL: { 1458 SDValue Op0 = Op.getOperand(0); 1459 SDValue Op1 = Op.getOperand(1); 1460 EVT ShiftVT = Op1.getValueType(); 1461 1462 if (const APInt *SA = 1463 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1464 unsigned ShAmt = SA->getZExtValue(); 1465 if (ShAmt == 0) 1466 return TLO.CombineTo(Op, Op0); 1467 1468 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1469 // single shift. We can do this if the bottom bits (which are shifted 1470 // out) are never demanded. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::SRL) { 1473 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1474 if (const APInt *SA2 = 1475 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1476 unsigned C1 = SA2->getZExtValue(); 1477 unsigned Opc = ISD::SHL; 1478 int Diff = ShAmt - C1; 1479 if (Diff < 0) { 1480 Diff = -Diff; 1481 Opc = ISD::SRL; 1482 } 1483 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1486 } 1487 } 1488 } 1489 1490 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1491 // are not demanded. This will likely allow the anyext to be folded away. 1492 // TODO - support non-uniform vector amounts. 1493 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1494 SDValue InnerOp = Op0.getOperand(0); 1495 EVT InnerVT = InnerOp.getValueType(); 1496 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1497 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1498 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1499 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1500 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1501 ShTy = InnerVT; 1502 SDValue NarrowShl = 1503 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1504 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1505 return TLO.CombineTo( 1506 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1507 } 1508 1509 // Repeat the SHL optimization above in cases where an extension 1510 // intervenes: (shl (anyext (shr x, c1)), c2) to 1511 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1512 // aren't demanded (as above) and that the shifted upper c1 bits of 1513 // x aren't demanded. 1514 // TODO - support non-uniform vector amounts. 1515 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1516 InnerOp.hasOneUse()) { 1517 if (const APInt *SA2 = 1518 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1519 unsigned InnerShAmt = SA2->getZExtValue(); 1520 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1521 DemandedBits.getActiveBits() <= 1522 (InnerBits - InnerShAmt + ShAmt) && 1523 DemandedBits.countTrailingZeros() >= ShAmt) { 1524 SDValue NewSA = 1525 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1526 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1527 InnerOp.getOperand(0)); 1528 return TLO.CombineTo( 1529 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1530 } 1531 } 1532 } 1533 } 1534 1535 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1536 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1537 Depth + 1)) 1538 return true; 1539 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1540 Known.Zero <<= ShAmt; 1541 Known.One <<= ShAmt; 1542 // low bits known zero. 1543 Known.Zero.setLowBits(ShAmt); 1544 1545 // Try shrinking the operation as long as the shift amount will still be 1546 // in range. 1547 if ((ShAmt < DemandedBits.getActiveBits()) && 1548 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1549 return true; 1550 } 1551 1552 // If we are only demanding sign bits then we can use the shift source 1553 // directly. 1554 if (const APInt *MaxSA = 1555 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1556 unsigned ShAmt = MaxSA->getZExtValue(); 1557 unsigned NumSignBits = 1558 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1559 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1560 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1561 return TLO.CombineTo(Op, Op0); 1562 } 1563 break; 1564 } 1565 case ISD::SRL: { 1566 SDValue Op0 = Op.getOperand(0); 1567 SDValue Op1 = Op.getOperand(1); 1568 EVT ShiftVT = Op1.getValueType(); 1569 1570 if (const APInt *SA = 1571 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1572 unsigned ShAmt = SA->getZExtValue(); 1573 if (ShAmt == 0) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1577 // single shift. We can do this if the top bits (which are shifted out) 1578 // are never demanded. 1579 // TODO - support non-uniform vector amounts. 1580 if (Op0.getOpcode() == ISD::SHL) { 1581 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1582 if (const APInt *SA2 = 1583 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1584 unsigned C1 = SA2->getZExtValue(); 1585 unsigned Opc = ISD::SRL; 1586 int Diff = ShAmt - C1; 1587 if (Diff < 0) { 1588 Diff = -Diff; 1589 Opc = ISD::SHL; 1590 } 1591 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1592 return TLO.CombineTo( 1593 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1594 } 1595 } 1596 } 1597 1598 APInt InDemandedMask = (DemandedBits << ShAmt); 1599 1600 // If the shift is exact, then it does demand the low bits (and knows that 1601 // they are zero). 1602 if (Op->getFlags().hasExact()) 1603 InDemandedMask.setLowBits(ShAmt); 1604 1605 // Compute the new bits that are at the top now. 1606 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1607 Depth + 1)) 1608 return true; 1609 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1610 Known.Zero.lshrInPlace(ShAmt); 1611 Known.One.lshrInPlace(ShAmt); 1612 // High bits known zero. 1613 Known.Zero.setHighBits(ShAmt); 1614 } 1615 break; 1616 } 1617 case ISD::SRA: { 1618 SDValue Op0 = Op.getOperand(0); 1619 SDValue Op1 = Op.getOperand(1); 1620 EVT ShiftVT = Op1.getValueType(); 1621 1622 // If we only want bits that already match the signbit then we don't need 1623 // to shift. 1624 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1625 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1626 NumHiDemandedBits) 1627 return TLO.CombineTo(Op, Op0); 1628 1629 // If this is an arithmetic shift right and only the low-bit is set, we can 1630 // always convert this into a logical shr, even if the shift amount is 1631 // variable. The low bit of the shift cannot be an input sign bit unless 1632 // the shift amount is >= the size of the datatype, which is undefined. 1633 if (DemandedBits.isOne()) 1634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1635 1636 if (const APInt *SA = 1637 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1638 unsigned ShAmt = SA->getZExtValue(); 1639 if (ShAmt == 0) 1640 return TLO.CombineTo(Op, Op0); 1641 1642 APInt InDemandedMask = (DemandedBits << ShAmt); 1643 1644 // If the shift is exact, then it does demand the low bits (and knows that 1645 // they are zero). 1646 if (Op->getFlags().hasExact()) 1647 InDemandedMask.setLowBits(ShAmt); 1648 1649 // If any of the demanded bits are produced by the sign extension, we also 1650 // demand the input sign bit. 1651 if (DemandedBits.countLeadingZeros() < ShAmt) 1652 InDemandedMask.setSignBit(); 1653 1654 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1655 Depth + 1)) 1656 return true; 1657 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1658 Known.Zero.lshrInPlace(ShAmt); 1659 Known.One.lshrInPlace(ShAmt); 1660 1661 // If the input sign bit is known to be zero, or if none of the top bits 1662 // are demanded, turn this into an unsigned shift right. 1663 if (Known.Zero[BitWidth - ShAmt - 1] || 1664 DemandedBits.countLeadingZeros() >= ShAmt) { 1665 SDNodeFlags Flags; 1666 Flags.setExact(Op->getFlags().hasExact()); 1667 return TLO.CombineTo( 1668 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1669 } 1670 1671 int Log2 = DemandedBits.exactLogBase2(); 1672 if (Log2 >= 0) { 1673 // The bit must come from the sign. 1674 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1675 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1676 } 1677 1678 if (Known.One[BitWidth - ShAmt - 1]) 1679 // New bits are known one. 1680 Known.One.setHighBits(ShAmt); 1681 1682 // Attempt to avoid multi-use ops if we don't need anything from them. 1683 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1684 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1685 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1686 if (DemandedOp0) { 1687 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1688 return TLO.CombineTo(Op, NewOp); 1689 } 1690 } 1691 } 1692 break; 1693 } 1694 case ISD::FSHL: 1695 case ISD::FSHR: { 1696 SDValue Op0 = Op.getOperand(0); 1697 SDValue Op1 = Op.getOperand(1); 1698 SDValue Op2 = Op.getOperand(2); 1699 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1700 1701 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1702 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1703 1704 // For fshl, 0-shift returns the 1st arg. 1705 // For fshr, 0-shift returns the 2nd arg. 1706 if (Amt == 0) { 1707 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1708 Known, TLO, Depth + 1)) 1709 return true; 1710 break; 1711 } 1712 1713 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1714 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1715 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1716 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1717 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1718 Depth + 1)) 1719 return true; 1720 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1721 Depth + 1)) 1722 return true; 1723 1724 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1725 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1726 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1727 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1728 Known.One |= Known2.One; 1729 Known.Zero |= Known2.Zero; 1730 } 1731 1732 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1733 if (isPowerOf2_32(BitWidth)) { 1734 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1735 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1736 Known2, TLO, Depth + 1)) 1737 return true; 1738 } 1739 break; 1740 } 1741 case ISD::ROTL: 1742 case ISD::ROTR: { 1743 SDValue Op0 = Op.getOperand(0); 1744 SDValue Op1 = Op.getOperand(1); 1745 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1746 1747 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1748 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1749 return TLO.CombineTo(Op, Op0); 1750 1751 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1752 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1753 unsigned RevAmt = BitWidth - Amt; 1754 1755 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1756 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1757 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1758 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1759 Depth + 1)) 1760 return true; 1761 1762 // rot*(x, 0) --> x 1763 if (Amt == 0) 1764 return TLO.CombineTo(Op, Op0); 1765 1766 // See if we don't demand either half of the rotated bits. 1767 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1768 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1769 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1770 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1771 } 1772 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1773 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1774 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1776 } 1777 } 1778 1779 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1780 if (isPowerOf2_32(BitWidth)) { 1781 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1782 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1783 Depth + 1)) 1784 return true; 1785 } 1786 break; 1787 } 1788 case ISD::UMIN: { 1789 // Check if one arg is always less than (or equal) to the other arg. 1790 SDValue Op0 = Op.getOperand(0); 1791 SDValue Op1 = Op.getOperand(1); 1792 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1793 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1794 Known = KnownBits::umin(Known0, Known1); 1795 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1796 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1797 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1798 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1799 break; 1800 } 1801 case ISD::UMAX: { 1802 // Check if one arg is always greater than (or equal) to the other arg. 1803 SDValue Op0 = Op.getOperand(0); 1804 SDValue Op1 = Op.getOperand(1); 1805 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1806 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1807 Known = KnownBits::umax(Known0, Known1); 1808 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1809 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1810 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1811 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1812 break; 1813 } 1814 case ISD::BITREVERSE: { 1815 SDValue Src = Op.getOperand(0); 1816 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1818 Depth + 1)) 1819 return true; 1820 Known.One = Known2.One.reverseBits(); 1821 Known.Zero = Known2.Zero.reverseBits(); 1822 break; 1823 } 1824 case ISD::BSWAP: { 1825 SDValue Src = Op.getOperand(0); 1826 1827 // If the only bits demanded come from one byte of the bswap result, 1828 // just shift the input byte into position to eliminate the bswap. 1829 unsigned NLZ = DemandedBits.countLeadingZeros(); 1830 unsigned NTZ = DemandedBits.countTrailingZeros(); 1831 1832 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1833 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1834 // have 14 leading zeros, round to 8. 1835 NLZ = alignDown(NLZ, 8); 1836 NTZ = alignDown(NTZ, 8); 1837 // If we need exactly one byte, we can do this transformation. 1838 if (BitWidth - NLZ - NTZ == 8) { 1839 // Replace this with either a left or right shift to get the byte into 1840 // the right place. 1841 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1842 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1843 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1844 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1845 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1846 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1847 return TLO.CombineTo(Op, NewOp); 1848 } 1849 } 1850 1851 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1852 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1853 Depth + 1)) 1854 return true; 1855 Known.One = Known2.One.byteSwap(); 1856 Known.Zero = Known2.Zero.byteSwap(); 1857 break; 1858 } 1859 case ISD::CTPOP: { 1860 // If only 1 bit is demanded, replace with PARITY as long as we're before 1861 // op legalization. 1862 // FIXME: Limit to scalars for now. 1863 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1865 Op.getOperand(0))); 1866 1867 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1868 break; 1869 } 1870 case ISD::SIGN_EXTEND_INREG: { 1871 SDValue Op0 = Op.getOperand(0); 1872 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1873 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1874 1875 // If we only care about the highest bit, don't bother shifting right. 1876 if (DemandedBits.isSignMask()) { 1877 unsigned MinSignedBits = 1878 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1879 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1880 // However if the input is already sign extended we expect the sign 1881 // extension to be dropped altogether later and do not simplify. 1882 if (!AlreadySignExtended) { 1883 // Compute the correct shift amount type, which must be getShiftAmountTy 1884 // for scalar types after legalization. 1885 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1886 getShiftAmountTy(VT, DL)); 1887 return TLO.CombineTo(Op, 1888 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1889 } 1890 } 1891 1892 // If none of the extended bits are demanded, eliminate the sextinreg. 1893 if (DemandedBits.getActiveBits() <= ExVTBits) 1894 return TLO.CombineTo(Op, Op0); 1895 1896 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1897 1898 // Since the sign extended bits are demanded, we know that the sign 1899 // bit is demanded. 1900 InputDemandedBits.setBit(ExVTBits - 1); 1901 1902 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1903 return true; 1904 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1905 1906 // If the sign bit of the input is known set or clear, then we know the 1907 // top bits of the result. 1908 1909 // If the input sign bit is known zero, convert this into a zero extension. 1910 if (Known.Zero[ExVTBits - 1]) 1911 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1912 1913 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1914 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1915 Known.One.setBitsFrom(ExVTBits); 1916 Known.Zero &= Mask; 1917 } else { // Input sign bit unknown 1918 Known.Zero &= Mask; 1919 Known.One &= Mask; 1920 } 1921 break; 1922 } 1923 case ISD::BUILD_PAIR: { 1924 EVT HalfVT = Op.getOperand(0).getValueType(); 1925 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1926 1927 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1928 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1929 1930 KnownBits KnownLo, KnownHi; 1931 1932 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1933 return true; 1934 1935 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1936 return true; 1937 1938 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1939 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1940 1941 Known.One = KnownLo.One.zext(BitWidth) | 1942 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1943 break; 1944 } 1945 case ISD::ZERO_EXTEND: 1946 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1947 SDValue Src = Op.getOperand(0); 1948 EVT SrcVT = Src.getValueType(); 1949 unsigned InBits = SrcVT.getScalarSizeInBits(); 1950 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1951 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1952 1953 // If none of the top bits are demanded, convert this into an any_extend. 1954 if (DemandedBits.getActiveBits() <= InBits) { 1955 // If we only need the non-extended bits of the bottom element 1956 // then we can just bitcast to the result. 1957 if (IsLE && IsVecInReg && DemandedElts == 1 && 1958 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1959 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1960 1961 unsigned Opc = 1962 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1963 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1964 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1965 } 1966 1967 APInt InDemandedBits = DemandedBits.trunc(InBits); 1968 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1969 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1970 Depth + 1)) 1971 return true; 1972 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1973 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1974 Known = Known.zext(BitWidth); 1975 1976 // Attempt to avoid multi-use ops if we don't need anything from them. 1977 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1978 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1979 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1980 break; 1981 } 1982 case ISD::SIGN_EXTEND: 1983 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1984 SDValue Src = Op.getOperand(0); 1985 EVT SrcVT = Src.getValueType(); 1986 unsigned InBits = SrcVT.getScalarSizeInBits(); 1987 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1988 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1989 1990 // If none of the top bits are demanded, convert this into an any_extend. 1991 if (DemandedBits.getActiveBits() <= InBits) { 1992 // If we only need the non-extended bits of the bottom element 1993 // then we can just bitcast to the result. 1994 if (IsLE && IsVecInReg && DemandedElts == 1 && 1995 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1996 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1997 1998 unsigned Opc = 1999 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2000 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2001 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2002 } 2003 2004 APInt InDemandedBits = DemandedBits.trunc(InBits); 2005 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2006 2007 // Since some of the sign extended bits are demanded, we know that the sign 2008 // bit is demanded. 2009 InDemandedBits.setBit(InBits - 1); 2010 2011 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2012 Depth + 1)) 2013 return true; 2014 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2015 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2016 2017 // If the sign bit is known one, the top bits match. 2018 Known = Known.sext(BitWidth); 2019 2020 // If the sign bit is known zero, convert this to a zero extend. 2021 if (Known.isNonNegative()) { 2022 unsigned Opc = 2023 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2024 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2025 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2026 } 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2030 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2031 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2032 break; 2033 } 2034 case ISD::ANY_EXTEND: 2035 case ISD::ANY_EXTEND_VECTOR_INREG: { 2036 SDValue Src = Op.getOperand(0); 2037 EVT SrcVT = Src.getValueType(); 2038 unsigned InBits = SrcVT.getScalarSizeInBits(); 2039 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2040 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2041 2042 // If we only need the bottom element then we can just bitcast. 2043 // TODO: Handle ANY_EXTEND? 2044 if (IsLE && IsVecInReg && DemandedElts == 1 && 2045 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2046 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2047 2048 APInt InDemandedBits = DemandedBits.trunc(InBits); 2049 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2050 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2051 Depth + 1)) 2052 return true; 2053 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2054 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2055 Known = Known.anyext(BitWidth); 2056 2057 // Attempt to avoid multi-use ops if we don't need anything from them. 2058 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2059 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2060 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2061 break; 2062 } 2063 case ISD::TRUNCATE: { 2064 SDValue Src = Op.getOperand(0); 2065 2066 // Simplify the input, using demanded bit information, and compute the known 2067 // zero/one bits live out. 2068 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2069 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2070 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2071 Depth + 1)) 2072 return true; 2073 Known = Known.trunc(BitWidth); 2074 2075 // Attempt to avoid multi-use ops if we don't need anything from them. 2076 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2077 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2078 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2079 2080 // If the input is only used by this truncate, see if we can shrink it based 2081 // on the known demanded bits. 2082 if (Src.getNode()->hasOneUse()) { 2083 switch (Src.getOpcode()) { 2084 default: 2085 break; 2086 case ISD::SRL: 2087 // Shrink SRL by a constant if none of the high bits shifted in are 2088 // demanded. 2089 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2090 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2091 // undesirable. 2092 break; 2093 2094 const APInt *ShAmtC = 2095 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2096 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2097 break; 2098 uint64_t ShVal = ShAmtC->getZExtValue(); 2099 2100 APInt HighBits = 2101 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2102 HighBits.lshrInPlace(ShVal); 2103 HighBits = HighBits.trunc(BitWidth); 2104 2105 if (!(HighBits & DemandedBits)) { 2106 // None of the shifted in bits are needed. Add a truncate of the 2107 // shift input, then shift it. 2108 SDValue NewShAmt = TLO.DAG.getConstant( 2109 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2110 SDValue NewTrunc = 2111 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2112 return TLO.CombineTo( 2113 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2114 } 2115 break; 2116 } 2117 } 2118 2119 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2120 break; 2121 } 2122 case ISD::AssertZext: { 2123 // AssertZext demands all of the high bits, plus any of the low bits 2124 // demanded by its users. 2125 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2126 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2127 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2128 TLO, Depth + 1)) 2129 return true; 2130 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2131 2132 Known.Zero |= ~InMask; 2133 break; 2134 } 2135 case ISD::EXTRACT_VECTOR_ELT: { 2136 SDValue Src = Op.getOperand(0); 2137 SDValue Idx = Op.getOperand(1); 2138 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2139 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2140 2141 if (SrcEltCnt.isScalable()) 2142 return false; 2143 2144 // Demand the bits from every vector element without a constant index. 2145 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2146 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2147 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2148 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2149 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2150 2151 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2152 // anything about the extended bits. 2153 APInt DemandedSrcBits = DemandedBits; 2154 if (BitWidth > EltBitWidth) 2155 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2156 2157 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2158 Depth + 1)) 2159 return true; 2160 2161 // Attempt to avoid multi-use ops if we don't need anything from them. 2162 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2163 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2164 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2165 SDValue NewOp = 2166 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2167 return TLO.CombineTo(Op, NewOp); 2168 } 2169 } 2170 2171 Known = Known2; 2172 if (BitWidth > EltBitWidth) 2173 Known = Known.anyext(BitWidth); 2174 break; 2175 } 2176 case ISD::BITCAST: { 2177 SDValue Src = Op.getOperand(0); 2178 EVT SrcVT = Src.getValueType(); 2179 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2180 2181 // If this is an FP->Int bitcast and if the sign bit is the only 2182 // thing demanded, turn this into a FGETSIGN. 2183 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2184 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2185 SrcVT.isFloatingPoint()) { 2186 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2187 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2188 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2189 SrcVT != MVT::f128) { 2190 // Cannot eliminate/lower SHL for f128 yet. 2191 EVT Ty = OpVTLegal ? VT : MVT::i32; 2192 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2193 // place. We expect the SHL to be eliminated by other optimizations. 2194 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2195 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2196 if (!OpVTLegal && OpVTSizeInBits > 32) 2197 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2198 unsigned ShVal = Op.getValueSizeInBits() - 1; 2199 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2200 return TLO.CombineTo(Op, 2201 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2202 } 2203 } 2204 2205 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2206 // Demand the elt/bit if any of the original elts/bits are demanded. 2207 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2208 unsigned Scale = BitWidth / NumSrcEltBits; 2209 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2210 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2211 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2212 for (unsigned i = 0; i != Scale; ++i) { 2213 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2214 unsigned BitOffset = EltOffset * NumSrcEltBits; 2215 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2216 if (!Sub.isZero()) { 2217 DemandedSrcBits |= Sub; 2218 for (unsigned j = 0; j != NumElts; ++j) 2219 if (DemandedElts[j]) 2220 DemandedSrcElts.setBit((j * Scale) + i); 2221 } 2222 } 2223 2224 APInt KnownSrcUndef, KnownSrcZero; 2225 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2226 KnownSrcZero, TLO, Depth + 1)) 2227 return true; 2228 2229 KnownBits KnownSrcBits; 2230 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2231 KnownSrcBits, TLO, Depth + 1)) 2232 return true; 2233 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2234 // TODO - bigendian once we have test coverage. 2235 unsigned Scale = NumSrcEltBits / BitWidth; 2236 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2237 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2238 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2239 for (unsigned i = 0; i != NumElts; ++i) 2240 if (DemandedElts[i]) { 2241 unsigned Offset = (i % Scale) * BitWidth; 2242 DemandedSrcBits.insertBits(DemandedBits, Offset); 2243 DemandedSrcElts.setBit(i / Scale); 2244 } 2245 2246 if (SrcVT.isVector()) { 2247 APInt KnownSrcUndef, KnownSrcZero; 2248 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2249 KnownSrcZero, TLO, Depth + 1)) 2250 return true; 2251 } 2252 2253 KnownBits KnownSrcBits; 2254 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2255 KnownSrcBits, TLO, Depth + 1)) 2256 return true; 2257 } 2258 2259 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2260 // recursive call where Known may be useful to the caller. 2261 if (Depth > 0) { 2262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2263 return false; 2264 } 2265 break; 2266 } 2267 case ISD::MUL: 2268 // 'Quadratic Reciprocity': mul(x,x) -> 0 if we're only demanding bit[1] 2269 if (DemandedBits == 2 && Op.getOperand(0) == Op.getOperand(1)) 2270 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 2271 LLVM_FALLTHROUGH; 2272 case ISD::ADD: 2273 case ISD::SUB: { 2274 // Add, Sub, and Mul don't demand any bits in positions beyond that 2275 // of the highest bit demanded of them. 2276 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2277 SDNodeFlags Flags = Op.getNode()->getFlags(); 2278 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2279 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2280 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2281 Depth + 1) || 2282 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2283 Depth + 1) || 2284 // See if the operation should be performed at a smaller bit width. 2285 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2286 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2287 // Disable the nsw and nuw flags. We can no longer guarantee that we 2288 // won't wrap after simplification. 2289 Flags.setNoSignedWrap(false); 2290 Flags.setNoUnsignedWrap(false); 2291 SDValue NewOp = 2292 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2293 return TLO.CombineTo(Op, NewOp); 2294 } 2295 return true; 2296 } 2297 2298 // Attempt to avoid multi-use ops if we don't need anything from them. 2299 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2300 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2301 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2302 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2303 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2304 if (DemandedOp0 || DemandedOp1) { 2305 Flags.setNoSignedWrap(false); 2306 Flags.setNoUnsignedWrap(false); 2307 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2308 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2309 SDValue NewOp = 2310 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2311 return TLO.CombineTo(Op, NewOp); 2312 } 2313 } 2314 2315 // If we have a constant operand, we may be able to turn it into -1 if we 2316 // do not demand the high bits. This can make the constant smaller to 2317 // encode, allow more general folding, or match specialized instruction 2318 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2319 // is probably not useful (and could be detrimental). 2320 ConstantSDNode *C = isConstOrConstSplat(Op1); 2321 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2322 if (C && !C->isAllOnes() && !C->isOne() && 2323 (C->getAPIntValue() | HighMask).isAllOnes()) { 2324 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2325 // Disable the nsw and nuw flags. We can no longer guarantee that we 2326 // won't wrap after simplification. 2327 Flags.setNoSignedWrap(false); 2328 Flags.setNoUnsignedWrap(false); 2329 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2330 return TLO.CombineTo(Op, NewOp); 2331 } 2332 2333 LLVM_FALLTHROUGH; 2334 } 2335 default: 2336 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2337 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2338 Known, TLO, Depth)) 2339 return true; 2340 break; 2341 } 2342 2343 // Just use computeKnownBits to compute output bits. 2344 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2345 break; 2346 } 2347 2348 // If we know the value of all of the demanded bits, return this as a 2349 // constant. 2350 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2351 // Avoid folding to a constant if any OpaqueConstant is involved. 2352 const SDNode *N = Op.getNode(); 2353 for (SDNode *Op : 2354 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2355 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2356 if (C->isOpaque()) 2357 return false; 2358 } 2359 if (VT.isInteger()) 2360 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2361 if (VT.isFloatingPoint()) 2362 return TLO.CombineTo( 2363 Op, 2364 TLO.DAG.getConstantFP( 2365 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2366 } 2367 2368 return false; 2369 } 2370 2371 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2372 const APInt &DemandedElts, 2373 DAGCombinerInfo &DCI) const { 2374 SelectionDAG &DAG = DCI.DAG; 2375 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2376 !DCI.isBeforeLegalizeOps()); 2377 2378 APInt KnownUndef, KnownZero; 2379 bool Simplified = 2380 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2381 if (Simplified) { 2382 DCI.AddToWorklist(Op.getNode()); 2383 DCI.CommitTargetLoweringOpt(TLO); 2384 } 2385 2386 return Simplified; 2387 } 2388 2389 /// Given a vector binary operation and known undefined elements for each input 2390 /// operand, compute whether each element of the output is undefined. 2391 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2392 const APInt &UndefOp0, 2393 const APInt &UndefOp1) { 2394 EVT VT = BO.getValueType(); 2395 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2396 "Vector binop only"); 2397 2398 EVT EltVT = VT.getVectorElementType(); 2399 unsigned NumElts = VT.getVectorNumElements(); 2400 assert(UndefOp0.getBitWidth() == NumElts && 2401 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2402 2403 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2404 const APInt &UndefVals) { 2405 if (UndefVals[Index]) 2406 return DAG.getUNDEF(EltVT); 2407 2408 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2409 // Try hard to make sure that the getNode() call is not creating temporary 2410 // nodes. Ignore opaque integers because they do not constant fold. 2411 SDValue Elt = BV->getOperand(Index); 2412 auto *C = dyn_cast<ConstantSDNode>(Elt); 2413 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2414 return Elt; 2415 } 2416 2417 return SDValue(); 2418 }; 2419 2420 APInt KnownUndef = APInt::getZero(NumElts); 2421 for (unsigned i = 0; i != NumElts; ++i) { 2422 // If both inputs for this element are either constant or undef and match 2423 // the element type, compute the constant/undef result for this element of 2424 // the vector. 2425 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2426 // not handle FP constants. The code within getNode() should be refactored 2427 // to avoid the danger of creating a bogus temporary node here. 2428 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2429 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2430 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2431 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2432 KnownUndef.setBit(i); 2433 } 2434 return KnownUndef; 2435 } 2436 2437 bool TargetLowering::SimplifyDemandedVectorElts( 2438 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2439 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2440 bool AssumeSingleUse) const { 2441 EVT VT = Op.getValueType(); 2442 unsigned Opcode = Op.getOpcode(); 2443 APInt DemandedElts = OriginalDemandedElts; 2444 unsigned NumElts = DemandedElts.getBitWidth(); 2445 assert(VT.isVector() && "Expected vector op"); 2446 2447 KnownUndef = KnownZero = APInt::getZero(NumElts); 2448 2449 // TODO: For now we assume we know nothing about scalable vectors. 2450 if (VT.isScalableVector()) 2451 return false; 2452 2453 assert(VT.getVectorNumElements() == NumElts && 2454 "Mask size mismatches value type element count!"); 2455 2456 // Undef operand. 2457 if (Op.isUndef()) { 2458 KnownUndef.setAllBits(); 2459 return false; 2460 } 2461 2462 // If Op has other users, assume that all elements are needed. 2463 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2464 DemandedElts.setAllBits(); 2465 2466 // Not demanding any elements from Op. 2467 if (DemandedElts == 0) { 2468 KnownUndef.setAllBits(); 2469 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2470 } 2471 2472 // Limit search depth. 2473 if (Depth >= SelectionDAG::MaxRecursionDepth) 2474 return false; 2475 2476 SDLoc DL(Op); 2477 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2478 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2479 2480 // Helper for demanding the specified elements and all the bits of both binary 2481 // operands. 2482 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2483 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2484 TLO.DAG, Depth + 1); 2485 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2486 TLO.DAG, Depth + 1); 2487 if (NewOp0 || NewOp1) { 2488 SDValue NewOp = TLO.DAG.getNode( 2489 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2490 return TLO.CombineTo(Op, NewOp); 2491 } 2492 return false; 2493 }; 2494 2495 switch (Opcode) { 2496 case ISD::SCALAR_TO_VECTOR: { 2497 if (!DemandedElts[0]) { 2498 KnownUndef.setAllBits(); 2499 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2500 } 2501 SDValue ScalarSrc = Op.getOperand(0); 2502 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2503 SDValue Src = ScalarSrc.getOperand(0); 2504 SDValue Idx = ScalarSrc.getOperand(1); 2505 EVT SrcVT = Src.getValueType(); 2506 2507 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2508 2509 if (SrcEltCnt.isScalable()) 2510 return false; 2511 2512 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2513 if (isNullConstant(Idx)) { 2514 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2515 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2516 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2517 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2518 TLO, Depth + 1)) 2519 return true; 2520 } 2521 } 2522 KnownUndef.setHighBits(NumElts - 1); 2523 break; 2524 } 2525 case ISD::BITCAST: { 2526 SDValue Src = Op.getOperand(0); 2527 EVT SrcVT = Src.getValueType(); 2528 2529 // We only handle vectors here. 2530 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2531 if (!SrcVT.isVector()) 2532 break; 2533 2534 // Fast handling of 'identity' bitcasts. 2535 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2536 if (NumSrcElts == NumElts) 2537 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2538 KnownZero, TLO, Depth + 1); 2539 2540 APInt SrcDemandedElts, SrcZero, SrcUndef; 2541 2542 // Bitcast from 'large element' src vector to 'small element' vector, we 2543 // must demand a source element if any DemandedElt maps to it. 2544 if ((NumElts % NumSrcElts) == 0) { 2545 unsigned Scale = NumElts / NumSrcElts; 2546 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2547 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2548 TLO, Depth + 1)) 2549 return true; 2550 2551 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2552 // of the large element. 2553 // TODO - bigendian once we have test coverage. 2554 if (IsLE) { 2555 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2556 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2557 for (unsigned i = 0; i != NumElts; ++i) 2558 if (DemandedElts[i]) { 2559 unsigned Ofs = (i % Scale) * EltSizeInBits; 2560 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2561 } 2562 2563 KnownBits Known; 2564 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2565 TLO, Depth + 1)) 2566 return true; 2567 } 2568 2569 // If the src element is zero/undef then all the output elements will be - 2570 // only demanded elements are guaranteed to be correct. 2571 for (unsigned i = 0; i != NumSrcElts; ++i) { 2572 if (SrcDemandedElts[i]) { 2573 if (SrcZero[i]) 2574 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2575 if (SrcUndef[i]) 2576 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2577 } 2578 } 2579 } 2580 2581 // Bitcast from 'small element' src vector to 'large element' vector, we 2582 // demand all smaller source elements covered by the larger demanded element 2583 // of this vector. 2584 if ((NumSrcElts % NumElts) == 0) { 2585 unsigned Scale = NumSrcElts / NumElts; 2586 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2587 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2588 TLO, Depth + 1)) 2589 return true; 2590 2591 // If all the src elements covering an output element are zero/undef, then 2592 // the output element will be as well, assuming it was demanded. 2593 for (unsigned i = 0; i != NumElts; ++i) { 2594 if (DemandedElts[i]) { 2595 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2596 KnownZero.setBit(i); 2597 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2598 KnownUndef.setBit(i); 2599 } 2600 } 2601 } 2602 break; 2603 } 2604 case ISD::BUILD_VECTOR: { 2605 // Check all elements and simplify any unused elements with UNDEF. 2606 if (!DemandedElts.isAllOnes()) { 2607 // Don't simplify BROADCASTS. 2608 if (llvm::any_of(Op->op_values(), 2609 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2610 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2611 bool Updated = false; 2612 for (unsigned i = 0; i != NumElts; ++i) { 2613 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2614 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2615 KnownUndef.setBit(i); 2616 Updated = true; 2617 } 2618 } 2619 if (Updated) 2620 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2621 } 2622 } 2623 for (unsigned i = 0; i != NumElts; ++i) { 2624 SDValue SrcOp = Op.getOperand(i); 2625 if (SrcOp.isUndef()) { 2626 KnownUndef.setBit(i); 2627 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2628 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2629 KnownZero.setBit(i); 2630 } 2631 } 2632 break; 2633 } 2634 case ISD::CONCAT_VECTORS: { 2635 EVT SubVT = Op.getOperand(0).getValueType(); 2636 unsigned NumSubVecs = Op.getNumOperands(); 2637 unsigned NumSubElts = SubVT.getVectorNumElements(); 2638 for (unsigned i = 0; i != NumSubVecs; ++i) { 2639 SDValue SubOp = Op.getOperand(i); 2640 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2641 APInt SubUndef, SubZero; 2642 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2643 Depth + 1)) 2644 return true; 2645 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2646 KnownZero.insertBits(SubZero, i * NumSubElts); 2647 } 2648 break; 2649 } 2650 case ISD::INSERT_SUBVECTOR: { 2651 // Demand any elements from the subvector and the remainder from the src its 2652 // inserted into. 2653 SDValue Src = Op.getOperand(0); 2654 SDValue Sub = Op.getOperand(1); 2655 uint64_t Idx = Op.getConstantOperandVal(2); 2656 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2657 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2658 APInt DemandedSrcElts = DemandedElts; 2659 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2660 2661 APInt SubUndef, SubZero; 2662 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2663 Depth + 1)) 2664 return true; 2665 2666 // If none of the src operand elements are demanded, replace it with undef. 2667 if (!DemandedSrcElts && !Src.isUndef()) 2668 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2669 TLO.DAG.getUNDEF(VT), Sub, 2670 Op.getOperand(2))); 2671 2672 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2673 TLO, Depth + 1)) 2674 return true; 2675 KnownUndef.insertBits(SubUndef, Idx); 2676 KnownZero.insertBits(SubZero, Idx); 2677 2678 // Attempt to avoid multi-use ops if we don't need anything from them. 2679 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2680 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2681 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2682 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2683 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2684 if (NewSrc || NewSub) { 2685 NewSrc = NewSrc ? NewSrc : Src; 2686 NewSub = NewSub ? NewSub : Sub; 2687 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2688 NewSub, Op.getOperand(2)); 2689 return TLO.CombineTo(Op, NewOp); 2690 } 2691 } 2692 break; 2693 } 2694 case ISD::EXTRACT_SUBVECTOR: { 2695 // Offset the demanded elts by the subvector index. 2696 SDValue Src = Op.getOperand(0); 2697 if (Src.getValueType().isScalableVector()) 2698 break; 2699 uint64_t Idx = Op.getConstantOperandVal(1); 2700 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2701 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2702 2703 APInt SrcUndef, SrcZero; 2704 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2705 Depth + 1)) 2706 return true; 2707 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2708 KnownZero = SrcZero.extractBits(NumElts, Idx); 2709 2710 // Attempt to avoid multi-use ops if we don't need anything from them. 2711 if (!DemandedElts.isAllOnes()) { 2712 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2713 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2714 if (NewSrc) { 2715 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2716 Op.getOperand(1)); 2717 return TLO.CombineTo(Op, NewOp); 2718 } 2719 } 2720 break; 2721 } 2722 case ISD::INSERT_VECTOR_ELT: { 2723 SDValue Vec = Op.getOperand(0); 2724 SDValue Scl = Op.getOperand(1); 2725 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2726 2727 // For a legal, constant insertion index, if we don't need this insertion 2728 // then strip it, else remove it from the demanded elts. 2729 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2730 unsigned Idx = CIdx->getZExtValue(); 2731 if (!DemandedElts[Idx]) 2732 return TLO.CombineTo(Op, Vec); 2733 2734 APInt DemandedVecElts(DemandedElts); 2735 DemandedVecElts.clearBit(Idx); 2736 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2737 KnownZero, TLO, Depth + 1)) 2738 return true; 2739 2740 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2741 2742 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2743 break; 2744 } 2745 2746 APInt VecUndef, VecZero; 2747 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2748 Depth + 1)) 2749 return true; 2750 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2751 break; 2752 } 2753 case ISD::VSELECT: { 2754 // Try to transform the select condition based on the current demanded 2755 // elements. 2756 // TODO: If a condition element is undef, we can choose from one arm of the 2757 // select (and if one arm is undef, then we can propagate that to the 2758 // result). 2759 // TODO - add support for constant vselect masks (see IR version of this). 2760 APInt UnusedUndef, UnusedZero; 2761 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2762 UnusedZero, TLO, Depth + 1)) 2763 return true; 2764 2765 // See if we can simplify either vselect operand. 2766 APInt DemandedLHS(DemandedElts); 2767 APInt DemandedRHS(DemandedElts); 2768 APInt UndefLHS, ZeroLHS; 2769 APInt UndefRHS, ZeroRHS; 2770 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2771 ZeroLHS, TLO, Depth + 1)) 2772 return true; 2773 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2774 ZeroRHS, TLO, Depth + 1)) 2775 return true; 2776 2777 KnownUndef = UndefLHS & UndefRHS; 2778 KnownZero = ZeroLHS & ZeroRHS; 2779 break; 2780 } 2781 case ISD::VECTOR_SHUFFLE: { 2782 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2783 2784 // Collect demanded elements from shuffle operands.. 2785 APInt DemandedLHS(NumElts, 0); 2786 APInt DemandedRHS(NumElts, 0); 2787 for (unsigned i = 0; i != NumElts; ++i) { 2788 int M = ShuffleMask[i]; 2789 if (M < 0 || !DemandedElts[i]) 2790 continue; 2791 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2792 if (M < (int)NumElts) 2793 DemandedLHS.setBit(M); 2794 else 2795 DemandedRHS.setBit(M - NumElts); 2796 } 2797 2798 // See if we can simplify either shuffle operand. 2799 APInt UndefLHS, ZeroLHS; 2800 APInt UndefRHS, ZeroRHS; 2801 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2802 ZeroLHS, TLO, Depth + 1)) 2803 return true; 2804 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2805 ZeroRHS, TLO, Depth + 1)) 2806 return true; 2807 2808 // Simplify mask using undef elements from LHS/RHS. 2809 bool Updated = false; 2810 bool IdentityLHS = true, IdentityRHS = true; 2811 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2812 for (unsigned i = 0; i != NumElts; ++i) { 2813 int &M = NewMask[i]; 2814 if (M < 0) 2815 continue; 2816 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2817 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2818 Updated = true; 2819 M = -1; 2820 } 2821 IdentityLHS &= (M < 0) || (M == (int)i); 2822 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2823 } 2824 2825 // Update legal shuffle masks based on demanded elements if it won't reduce 2826 // to Identity which can cause premature removal of the shuffle mask. 2827 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2828 SDValue LegalShuffle = 2829 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2830 NewMask, TLO.DAG); 2831 if (LegalShuffle) 2832 return TLO.CombineTo(Op, LegalShuffle); 2833 } 2834 2835 // Propagate undef/zero elements from LHS/RHS. 2836 for (unsigned i = 0; i != NumElts; ++i) { 2837 int M = ShuffleMask[i]; 2838 if (M < 0) { 2839 KnownUndef.setBit(i); 2840 } else if (M < (int)NumElts) { 2841 if (UndefLHS[M]) 2842 KnownUndef.setBit(i); 2843 if (ZeroLHS[M]) 2844 KnownZero.setBit(i); 2845 } else { 2846 if (UndefRHS[M - NumElts]) 2847 KnownUndef.setBit(i); 2848 if (ZeroRHS[M - NumElts]) 2849 KnownZero.setBit(i); 2850 } 2851 } 2852 break; 2853 } 2854 case ISD::ANY_EXTEND_VECTOR_INREG: 2855 case ISD::SIGN_EXTEND_VECTOR_INREG: 2856 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2857 APInt SrcUndef, SrcZero; 2858 SDValue Src = Op.getOperand(0); 2859 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2860 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2861 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2862 Depth + 1)) 2863 return true; 2864 KnownZero = SrcZero.zextOrTrunc(NumElts); 2865 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2866 2867 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2868 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2869 DemandedSrcElts == 1) { 2870 // aext - if we just need the bottom element then we can bitcast. 2871 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2872 } 2873 2874 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2875 // zext(undef) upper bits are guaranteed to be zero. 2876 if (DemandedElts.isSubsetOf(KnownUndef)) 2877 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2878 KnownUndef.clearAllBits(); 2879 2880 // zext - if we just need the bottom element then we can mask: 2881 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2882 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2883 Op->isOnlyUserOf(Src.getNode()) && 2884 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2885 SDLoc DL(Op); 2886 EVT SrcVT = Src.getValueType(); 2887 EVT SrcSVT = SrcVT.getScalarType(); 2888 SmallVector<SDValue> MaskElts; 2889 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2890 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2891 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2892 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2893 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2894 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2895 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2896 } 2897 } 2898 } 2899 break; 2900 } 2901 2902 // TODO: There are more binop opcodes that could be handled here - MIN, 2903 // MAX, saturated math, etc. 2904 case ISD::ADD: { 2905 SDValue Op0 = Op.getOperand(0); 2906 SDValue Op1 = Op.getOperand(1); 2907 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2908 APInt UndefLHS, ZeroLHS; 2909 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2910 Depth + 1, /*AssumeSingleUse*/ true)) 2911 return true; 2912 } 2913 LLVM_FALLTHROUGH; 2914 } 2915 case ISD::OR: 2916 case ISD::XOR: 2917 case ISD::SUB: 2918 case ISD::FADD: 2919 case ISD::FSUB: 2920 case ISD::FMUL: 2921 case ISD::FDIV: 2922 case ISD::FREM: { 2923 SDValue Op0 = Op.getOperand(0); 2924 SDValue Op1 = Op.getOperand(1); 2925 2926 APInt UndefRHS, ZeroRHS; 2927 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2928 Depth + 1)) 2929 return true; 2930 APInt UndefLHS, ZeroLHS; 2931 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2932 Depth + 1)) 2933 return true; 2934 2935 KnownZero = ZeroLHS & ZeroRHS; 2936 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2937 2938 // Attempt to avoid multi-use ops if we don't need anything from them. 2939 // TODO - use KnownUndef to relax the demandedelts? 2940 if (!DemandedElts.isAllOnes()) 2941 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2942 return true; 2943 break; 2944 } 2945 case ISD::SHL: 2946 case ISD::SRL: 2947 case ISD::SRA: 2948 case ISD::ROTL: 2949 case ISD::ROTR: { 2950 SDValue Op0 = Op.getOperand(0); 2951 SDValue Op1 = Op.getOperand(1); 2952 2953 APInt UndefRHS, ZeroRHS; 2954 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2955 Depth + 1)) 2956 return true; 2957 APInt UndefLHS, ZeroLHS; 2958 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2959 Depth + 1)) 2960 return true; 2961 2962 KnownZero = ZeroLHS; 2963 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2964 2965 // Attempt to avoid multi-use ops if we don't need anything from them. 2966 // TODO - use KnownUndef to relax the demandedelts? 2967 if (!DemandedElts.isAllOnes()) 2968 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2969 return true; 2970 break; 2971 } 2972 case ISD::MUL: 2973 case ISD::AND: { 2974 SDValue Op0 = Op.getOperand(0); 2975 SDValue Op1 = Op.getOperand(1); 2976 2977 APInt SrcUndef, SrcZero; 2978 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2979 Depth + 1)) 2980 return true; 2981 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2982 TLO, Depth + 1)) 2983 return true; 2984 2985 // If either side has a zero element, then the result element is zero, even 2986 // if the other is an UNDEF. 2987 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2988 // and then handle 'and' nodes with the rest of the binop opcodes. 2989 KnownZero |= SrcZero; 2990 KnownUndef &= SrcUndef; 2991 KnownUndef &= ~KnownZero; 2992 2993 // Attempt to avoid multi-use ops if we don't need anything from them. 2994 // TODO - use KnownUndef to relax the demandedelts? 2995 if (!DemandedElts.isAllOnes()) 2996 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2997 return true; 2998 break; 2999 } 3000 case ISD::TRUNCATE: 3001 case ISD::SIGN_EXTEND: 3002 case ISD::ZERO_EXTEND: 3003 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3004 KnownZero, TLO, Depth + 1)) 3005 return true; 3006 3007 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3008 // zext(undef) upper bits are guaranteed to be zero. 3009 if (DemandedElts.isSubsetOf(KnownUndef)) 3010 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3011 KnownUndef.clearAllBits(); 3012 } 3013 break; 3014 default: { 3015 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3016 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3017 KnownZero, TLO, Depth)) 3018 return true; 3019 } else { 3020 KnownBits Known; 3021 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3022 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3023 TLO, Depth, AssumeSingleUse)) 3024 return true; 3025 } 3026 break; 3027 } 3028 } 3029 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3030 3031 // Constant fold all undef cases. 3032 // TODO: Handle zero cases as well. 3033 if (DemandedElts.isSubsetOf(KnownUndef)) 3034 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3035 3036 return false; 3037 } 3038 3039 /// Determine which of the bits specified in Mask are known to be either zero or 3040 /// one and return them in the Known. 3041 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3042 KnownBits &Known, 3043 const APInt &DemandedElts, 3044 const SelectionDAG &DAG, 3045 unsigned Depth) const { 3046 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3047 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3048 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3049 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3050 "Should use MaskedValueIsZero if you don't know whether Op" 3051 " is a target node!"); 3052 Known.resetAll(); 3053 } 3054 3055 void TargetLowering::computeKnownBitsForTargetInstr( 3056 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3057 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3058 unsigned Depth) const { 3059 Known.resetAll(); 3060 } 3061 3062 void TargetLowering::computeKnownBitsForFrameIndex( 3063 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3064 // The low bits are known zero if the pointer is aligned. 3065 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3066 } 3067 3068 Align TargetLowering::computeKnownAlignForTargetInstr( 3069 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3070 unsigned Depth) const { 3071 return Align(1); 3072 } 3073 3074 /// This method can be implemented by targets that want to expose additional 3075 /// information about sign bits to the DAG Combiner. 3076 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3077 const APInt &, 3078 const SelectionDAG &, 3079 unsigned Depth) const { 3080 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3081 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3082 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3083 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3084 "Should use ComputeNumSignBits if you don't know whether Op" 3085 " is a target node!"); 3086 return 1; 3087 } 3088 3089 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3090 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3091 const MachineRegisterInfo &MRI, unsigned Depth) const { 3092 return 1; 3093 } 3094 3095 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3096 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3097 TargetLoweringOpt &TLO, unsigned Depth) const { 3098 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3099 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3100 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3101 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3102 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3103 " is a target node!"); 3104 return false; 3105 } 3106 3107 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3108 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3109 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3110 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3111 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3112 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3113 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3114 "Should use SimplifyDemandedBits if you don't know whether Op" 3115 " is a target node!"); 3116 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3117 return false; 3118 } 3119 3120 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3121 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3122 SelectionDAG &DAG, unsigned Depth) const { 3123 assert( 3124 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3125 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3126 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3127 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3128 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3129 " is a target node!"); 3130 return SDValue(); 3131 } 3132 3133 SDValue 3134 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3135 SDValue N1, MutableArrayRef<int> Mask, 3136 SelectionDAG &DAG) const { 3137 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3138 if (!LegalMask) { 3139 std::swap(N0, N1); 3140 ShuffleVectorSDNode::commuteMask(Mask); 3141 LegalMask = isShuffleMaskLegal(Mask, VT); 3142 } 3143 3144 if (!LegalMask) 3145 return SDValue(); 3146 3147 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3148 } 3149 3150 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3151 return nullptr; 3152 } 3153 3154 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3155 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3156 bool PoisonOnly, unsigned Depth) const { 3157 assert( 3158 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3159 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3160 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3161 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3162 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3163 " is a target node!"); 3164 return false; 3165 } 3166 3167 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3168 const SelectionDAG &DAG, 3169 bool SNaN, 3170 unsigned Depth) const { 3171 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3172 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3173 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3174 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3175 "Should use isKnownNeverNaN if you don't know whether Op" 3176 " is a target node!"); 3177 return false; 3178 } 3179 3180 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3181 const APInt &DemandedElts, 3182 APInt &UndefElts, 3183 unsigned Depth) const { 3184 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3185 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3186 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3187 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3188 "Should use isSplatValue if you don't know whether Op" 3189 " is a target node!"); 3190 return false; 3191 } 3192 3193 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3194 // work with truncating build vectors and vectors with elements of less than 3195 // 8 bits. 3196 bool TargetLowering::isConstTrueVal(SDValue N) const { 3197 if (!N) 3198 return false; 3199 3200 unsigned EltWidth; 3201 APInt CVal; 3202 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3203 /*AllowTruncation=*/true)) { 3204 CVal = CN->getAPIntValue(); 3205 EltWidth = N.getValueType().getScalarSizeInBits(); 3206 } else 3207 return false; 3208 3209 // If this is a truncating splat, truncate the splat value. 3210 // Otherwise, we may fail to match the expected values below. 3211 if (EltWidth < CVal.getBitWidth()) 3212 CVal = CVal.trunc(EltWidth); 3213 3214 switch (getBooleanContents(N.getValueType())) { 3215 case UndefinedBooleanContent: 3216 return CVal[0]; 3217 case ZeroOrOneBooleanContent: 3218 return CVal.isOne(); 3219 case ZeroOrNegativeOneBooleanContent: 3220 return CVal.isAllOnes(); 3221 } 3222 3223 llvm_unreachable("Invalid boolean contents"); 3224 } 3225 3226 bool TargetLowering::isConstFalseVal(SDValue N) const { 3227 if (!N) 3228 return false; 3229 3230 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3231 if (!CN) { 3232 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3233 if (!BV) 3234 return false; 3235 3236 // Only interested in constant splats, we don't care about undef 3237 // elements in identifying boolean constants and getConstantSplatNode 3238 // returns NULL if all ops are undef; 3239 CN = BV->getConstantSplatNode(); 3240 if (!CN) 3241 return false; 3242 } 3243 3244 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3245 return !CN->getAPIntValue()[0]; 3246 3247 return CN->isZero(); 3248 } 3249 3250 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3251 bool SExt) const { 3252 if (VT == MVT::i1) 3253 return N->isOne(); 3254 3255 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3256 switch (Cnt) { 3257 case TargetLowering::ZeroOrOneBooleanContent: 3258 // An extended value of 1 is always true, unless its original type is i1, 3259 // in which case it will be sign extended to -1. 3260 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3261 case TargetLowering::UndefinedBooleanContent: 3262 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3263 return N->isAllOnes() && SExt; 3264 } 3265 llvm_unreachable("Unexpected enumeration."); 3266 } 3267 3268 /// This helper function of SimplifySetCC tries to optimize the comparison when 3269 /// either operand of the SetCC node is a bitwise-and instruction. 3270 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3271 ISD::CondCode Cond, const SDLoc &DL, 3272 DAGCombinerInfo &DCI) const { 3273 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3274 std::swap(N0, N1); 3275 3276 SelectionDAG &DAG = DCI.DAG; 3277 EVT OpVT = N0.getValueType(); 3278 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3279 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3280 return SDValue(); 3281 3282 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3283 // iff everything but LSB is known zero: 3284 if (Cond == ISD::SETNE && isNullConstant(N1) && 3285 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3286 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3287 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3288 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3289 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3290 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3291 } 3292 3293 // Match these patterns in any of their permutations: 3294 // (X & Y) == Y 3295 // (X & Y) != Y 3296 SDValue X, Y; 3297 if (N0.getOperand(0) == N1) { 3298 X = N0.getOperand(1); 3299 Y = N0.getOperand(0); 3300 } else if (N0.getOperand(1) == N1) { 3301 X = N0.getOperand(0); 3302 Y = N0.getOperand(1); 3303 } else { 3304 return SDValue(); 3305 } 3306 3307 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3308 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3309 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3310 // Note that where Y is variable and is known to have at most one bit set 3311 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3312 // equivalent when Y == 0. 3313 assert(OpVT.isInteger()); 3314 Cond = ISD::getSetCCInverse(Cond, OpVT); 3315 if (DCI.isBeforeLegalizeOps() || 3316 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3317 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3318 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3319 // If the target supports an 'and-not' or 'and-complement' logic operation, 3320 // try to use that to make a comparison operation more efficient. 3321 // But don't do this transform if the mask is a single bit because there are 3322 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3323 // 'rlwinm' on PPC). 3324 3325 // Bail out if the compare operand that we want to turn into a zero is 3326 // already a zero (otherwise, infinite loop). 3327 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3328 if (YConst && YConst->isZero()) 3329 return SDValue(); 3330 3331 // Transform this into: ~X & Y == 0. 3332 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3333 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3334 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3335 } 3336 3337 return SDValue(); 3338 } 3339 3340 /// There are multiple IR patterns that could be checking whether certain 3341 /// truncation of a signed number would be lossy or not. The pattern which is 3342 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3343 /// We are looking for the following pattern: (KeptBits is a constant) 3344 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3345 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3346 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3347 /// We will unfold it into the natural trunc+sext pattern: 3348 /// ((%x << C) a>> C) dstcond %x 3349 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3350 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3351 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3352 const SDLoc &DL) const { 3353 // We must be comparing with a constant. 3354 ConstantSDNode *C1; 3355 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3356 return SDValue(); 3357 3358 // N0 should be: add %x, (1 << (KeptBits-1)) 3359 if (N0->getOpcode() != ISD::ADD) 3360 return SDValue(); 3361 3362 // And we must be 'add'ing a constant. 3363 ConstantSDNode *C01; 3364 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3365 return SDValue(); 3366 3367 SDValue X = N0->getOperand(0); 3368 EVT XVT = X.getValueType(); 3369 3370 // Validate constants ... 3371 3372 APInt I1 = C1->getAPIntValue(); 3373 3374 ISD::CondCode NewCond; 3375 if (Cond == ISD::CondCode::SETULT) { 3376 NewCond = ISD::CondCode::SETEQ; 3377 } else if (Cond == ISD::CondCode::SETULE) { 3378 NewCond = ISD::CondCode::SETEQ; 3379 // But need to 'canonicalize' the constant. 3380 I1 += 1; 3381 } else if (Cond == ISD::CondCode::SETUGT) { 3382 NewCond = ISD::CondCode::SETNE; 3383 // But need to 'canonicalize' the constant. 3384 I1 += 1; 3385 } else if (Cond == ISD::CondCode::SETUGE) { 3386 NewCond = ISD::CondCode::SETNE; 3387 } else 3388 return SDValue(); 3389 3390 APInt I01 = C01->getAPIntValue(); 3391 3392 auto checkConstants = [&I1, &I01]() -> bool { 3393 // Both of them must be power-of-two, and the constant from setcc is bigger. 3394 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3395 }; 3396 3397 if (checkConstants()) { 3398 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3399 } else { 3400 // What if we invert constants? (and the target predicate) 3401 I1.negate(); 3402 I01.negate(); 3403 assert(XVT.isInteger()); 3404 NewCond = getSetCCInverse(NewCond, XVT); 3405 if (!checkConstants()) 3406 return SDValue(); 3407 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3408 } 3409 3410 // They are power-of-two, so which bit is set? 3411 const unsigned KeptBits = I1.logBase2(); 3412 const unsigned KeptBitsMinusOne = I01.logBase2(); 3413 3414 // Magic! 3415 if (KeptBits != (KeptBitsMinusOne + 1)) 3416 return SDValue(); 3417 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3418 3419 // We don't want to do this in every single case. 3420 SelectionDAG &DAG = DCI.DAG; 3421 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3422 XVT, KeptBits)) 3423 return SDValue(); 3424 3425 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3426 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3427 3428 // Unfold into: ((%x << C) a>> C) cond %x 3429 // Where 'cond' will be either 'eq' or 'ne'. 3430 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3431 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3432 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3433 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3434 3435 return T2; 3436 } 3437 3438 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3439 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3440 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3441 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3442 assert(isConstOrConstSplat(N1C) && 3443 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3444 "Should be a comparison with 0."); 3445 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3446 "Valid only for [in]equality comparisons."); 3447 3448 unsigned NewShiftOpcode; 3449 SDValue X, C, Y; 3450 3451 SelectionDAG &DAG = DCI.DAG; 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 3454 // Look for '(C l>>/<< Y)'. 3455 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3456 // The shift should be one-use. 3457 if (!V.hasOneUse()) 3458 return false; 3459 unsigned OldShiftOpcode = V.getOpcode(); 3460 switch (OldShiftOpcode) { 3461 case ISD::SHL: 3462 NewShiftOpcode = ISD::SRL; 3463 break; 3464 case ISD::SRL: 3465 NewShiftOpcode = ISD::SHL; 3466 break; 3467 default: 3468 return false; // must be a logical shift. 3469 } 3470 // We should be shifting a constant. 3471 // FIXME: best to use isConstantOrConstantVector(). 3472 C = V.getOperand(0); 3473 ConstantSDNode *CC = 3474 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3475 if (!CC) 3476 return false; 3477 Y = V.getOperand(1); 3478 3479 ConstantSDNode *XC = 3480 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3481 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3482 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3483 }; 3484 3485 // LHS of comparison should be an one-use 'and'. 3486 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3487 return SDValue(); 3488 3489 X = N0.getOperand(0); 3490 SDValue Mask = N0.getOperand(1); 3491 3492 // 'and' is commutative! 3493 if (!Match(Mask)) { 3494 std::swap(X, Mask); 3495 if (!Match(Mask)) 3496 return SDValue(); 3497 } 3498 3499 EVT VT = X.getValueType(); 3500 3501 // Produce: 3502 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3503 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3504 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3505 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3506 return T2; 3507 } 3508 3509 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3510 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3511 /// handle the commuted versions of these patterns. 3512 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3513 ISD::CondCode Cond, const SDLoc &DL, 3514 DAGCombinerInfo &DCI) const { 3515 unsigned BOpcode = N0.getOpcode(); 3516 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3517 "Unexpected binop"); 3518 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3519 3520 // (X + Y) == X --> Y == 0 3521 // (X - Y) == X --> Y == 0 3522 // (X ^ Y) == X --> Y == 0 3523 SelectionDAG &DAG = DCI.DAG; 3524 EVT OpVT = N0.getValueType(); 3525 SDValue X = N0.getOperand(0); 3526 SDValue Y = N0.getOperand(1); 3527 if (X == N1) 3528 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3529 3530 if (Y != N1) 3531 return SDValue(); 3532 3533 // (X + Y) == Y --> X == 0 3534 // (X ^ Y) == Y --> X == 0 3535 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3536 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3537 3538 // The shift would not be valid if the operands are boolean (i1). 3539 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3540 return SDValue(); 3541 3542 // (X - Y) == Y --> X == Y << 1 3543 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3544 !DCI.isBeforeLegalize()); 3545 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3546 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3547 if (!DCI.isCalledByLegalizer()) 3548 DCI.AddToWorklist(YShl1.getNode()); 3549 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3550 } 3551 3552 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3553 SDValue N0, const APInt &C1, 3554 ISD::CondCode Cond, const SDLoc &dl, 3555 SelectionDAG &DAG) { 3556 // Look through truncs that don't change the value of a ctpop. 3557 // FIXME: Add vector support? Need to be careful with setcc result type below. 3558 SDValue CTPOP = N0; 3559 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3560 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3561 CTPOP = N0.getOperand(0); 3562 3563 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3564 return SDValue(); 3565 3566 EVT CTVT = CTPOP.getValueType(); 3567 SDValue CTOp = CTPOP.getOperand(0); 3568 3569 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3570 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3571 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3572 return SDValue(); 3573 3574 // (ctpop x) u< 2 -> (x & x-1) == 0 3575 // (ctpop x) u> 1 -> (x & x-1) != 0 3576 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3577 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3578 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3579 return SDValue(); 3580 if (C1 == 0 && (Cond == ISD::SETULT)) 3581 return SDValue(); // This is handled elsewhere. 3582 3583 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3584 3585 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3586 SDValue Result = CTOp; 3587 for (unsigned i = 0; i < Passes; i++) { 3588 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3589 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3590 } 3591 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3592 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3593 } 3594 3595 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3596 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3597 // For scalars, keep CTPOP if it is legal or custom. 3598 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3599 return SDValue(); 3600 // This is based on X86's custom lowering for CTPOP which produces more 3601 // instructions than the expansion here. 3602 3603 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3604 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3605 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3606 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3607 assert(CTVT.isInteger()); 3608 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3609 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3610 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3611 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3612 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3613 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3614 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3615 } 3616 3617 return SDValue(); 3618 } 3619 3620 /// Try to simplify a setcc built with the specified operands and cc. If it is 3621 /// unable to simplify it, return a null SDValue. 3622 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3623 ISD::CondCode Cond, bool foldBooleans, 3624 DAGCombinerInfo &DCI, 3625 const SDLoc &dl) const { 3626 SelectionDAG &DAG = DCI.DAG; 3627 const DataLayout &Layout = DAG.getDataLayout(); 3628 EVT OpVT = N0.getValueType(); 3629 3630 // Constant fold or commute setcc. 3631 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3632 return Fold; 3633 3634 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3635 // TODO: Handle non-splat vector constants. All undef causes trouble. 3636 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3637 // infinite loop here when we encounter one. 3638 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3639 if (isConstOrConstSplat(N0) && 3640 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3641 (DCI.isBeforeLegalizeOps() || 3642 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3643 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3644 3645 // If we have a subtract with the same 2 non-constant operands as this setcc 3646 // -- but in reverse order -- then try to commute the operands of this setcc 3647 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3648 // instruction on some targets. 3649 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3650 (DCI.isBeforeLegalizeOps() || 3651 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3652 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3653 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3654 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3655 3656 if (auto *N1C = isConstOrConstSplat(N1)) { 3657 const APInt &C1 = N1C->getAPIntValue(); 3658 3659 // Optimize some CTPOP cases. 3660 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3661 return V; 3662 3663 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3664 // equality comparison, then we're just comparing whether X itself is 3665 // zero. 3666 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3667 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3668 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3669 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3670 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3671 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3672 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3673 // (srl (ctlz x), 5) == 0 -> X != 0 3674 // (srl (ctlz x), 5) != 1 -> X != 0 3675 Cond = ISD::SETNE; 3676 } else { 3677 // (srl (ctlz x), 5) != 0 -> X == 0 3678 // (srl (ctlz x), 5) == 1 -> X == 0 3679 Cond = ISD::SETEQ; 3680 } 3681 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3682 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3683 Cond); 3684 } 3685 } 3686 } 3687 } 3688 3689 // FIXME: Support vectors. 3690 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3691 const APInt &C1 = N1C->getAPIntValue(); 3692 3693 // (zext x) == C --> x == (trunc C) 3694 // (sext x) == C --> x == (trunc C) 3695 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3696 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3697 unsigned MinBits = N0.getValueSizeInBits(); 3698 SDValue PreExt; 3699 bool Signed = false; 3700 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3701 // ZExt 3702 MinBits = N0->getOperand(0).getValueSizeInBits(); 3703 PreExt = N0->getOperand(0); 3704 } else if (N0->getOpcode() == ISD::AND) { 3705 // DAGCombine turns costly ZExts into ANDs 3706 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3707 if ((C->getAPIntValue()+1).isPowerOf2()) { 3708 MinBits = C->getAPIntValue().countTrailingOnes(); 3709 PreExt = N0->getOperand(0); 3710 } 3711 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3712 // SExt 3713 MinBits = N0->getOperand(0).getValueSizeInBits(); 3714 PreExt = N0->getOperand(0); 3715 Signed = true; 3716 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3717 // ZEXTLOAD / SEXTLOAD 3718 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3719 MinBits = LN0->getMemoryVT().getSizeInBits(); 3720 PreExt = N0; 3721 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3722 Signed = true; 3723 MinBits = LN0->getMemoryVT().getSizeInBits(); 3724 PreExt = N0; 3725 } 3726 } 3727 3728 // Figure out how many bits we need to preserve this constant. 3729 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3730 3731 // Make sure we're not losing bits from the constant. 3732 if (MinBits > 0 && 3733 MinBits < C1.getBitWidth() && 3734 MinBits >= ReqdBits) { 3735 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3736 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3737 // Will get folded away. 3738 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3739 if (MinBits == 1 && C1 == 1) 3740 // Invert the condition. 3741 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3742 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3743 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3744 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3745 } 3746 3747 // If truncating the setcc operands is not desirable, we can still 3748 // simplify the expression in some cases: 3749 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3750 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3751 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3752 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3753 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3754 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3755 SDValue TopSetCC = N0->getOperand(0); 3756 unsigned N0Opc = N0->getOpcode(); 3757 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3758 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3759 TopSetCC.getOpcode() == ISD::SETCC && 3760 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3761 (isConstFalseVal(N1) || 3762 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3763 3764 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3765 (!N1C->isZero() && Cond == ISD::SETNE); 3766 3767 if (!Inverse) 3768 return TopSetCC; 3769 3770 ISD::CondCode InvCond = ISD::getSetCCInverse( 3771 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3772 TopSetCC.getOperand(0).getValueType()); 3773 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3774 TopSetCC.getOperand(1), 3775 InvCond); 3776 } 3777 } 3778 } 3779 3780 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3781 // equality or unsigned, and all 1 bits of the const are in the same 3782 // partial word, see if we can shorten the load. 3783 if (DCI.isBeforeLegalize() && 3784 !ISD::isSignedIntSetCC(Cond) && 3785 N0.getOpcode() == ISD::AND && C1 == 0 && 3786 N0.getNode()->hasOneUse() && 3787 isa<LoadSDNode>(N0.getOperand(0)) && 3788 N0.getOperand(0).getNode()->hasOneUse() && 3789 isa<ConstantSDNode>(N0.getOperand(1))) { 3790 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3791 APInt bestMask; 3792 unsigned bestWidth = 0, bestOffset = 0; 3793 if (Lod->isSimple() && Lod->isUnindexed()) { 3794 unsigned origWidth = N0.getValueSizeInBits(); 3795 unsigned maskWidth = origWidth; 3796 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3797 // 8 bits, but have to be careful... 3798 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3799 origWidth = Lod->getMemoryVT().getSizeInBits(); 3800 const APInt &Mask = N0.getConstantOperandAPInt(1); 3801 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3802 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3803 for (unsigned offset=0; offset<origWidth/width; offset++) { 3804 if (Mask.isSubsetOf(newMask)) { 3805 if (Layout.isLittleEndian()) 3806 bestOffset = (uint64_t)offset * (width/8); 3807 else 3808 bestOffset = (origWidth/width - offset - 1) * (width/8); 3809 bestMask = Mask.lshr(offset * (width/8) * 8); 3810 bestWidth = width; 3811 break; 3812 } 3813 newMask <<= width; 3814 } 3815 } 3816 } 3817 if (bestWidth) { 3818 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3819 if (newVT.isRound() && 3820 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3821 SDValue Ptr = Lod->getBasePtr(); 3822 if (bestOffset != 0) 3823 Ptr = 3824 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3825 SDValue NewLoad = 3826 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3827 Lod->getPointerInfo().getWithOffset(bestOffset), 3828 Lod->getOriginalAlign()); 3829 return DAG.getSetCC(dl, VT, 3830 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3831 DAG.getConstant(bestMask.trunc(bestWidth), 3832 dl, newVT)), 3833 DAG.getConstant(0LL, dl, newVT), Cond); 3834 } 3835 } 3836 } 3837 3838 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3839 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3840 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3841 3842 // If the comparison constant has bits in the upper part, the 3843 // zero-extended value could never match. 3844 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3845 C1.getBitWidth() - InSize))) { 3846 switch (Cond) { 3847 case ISD::SETUGT: 3848 case ISD::SETUGE: 3849 case ISD::SETEQ: 3850 return DAG.getConstant(0, dl, VT); 3851 case ISD::SETULT: 3852 case ISD::SETULE: 3853 case ISD::SETNE: 3854 return DAG.getConstant(1, dl, VT); 3855 case ISD::SETGT: 3856 case ISD::SETGE: 3857 // True if the sign bit of C1 is set. 3858 return DAG.getConstant(C1.isNegative(), dl, VT); 3859 case ISD::SETLT: 3860 case ISD::SETLE: 3861 // True if the sign bit of C1 isn't set. 3862 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3863 default: 3864 break; 3865 } 3866 } 3867 3868 // Otherwise, we can perform the comparison with the low bits. 3869 switch (Cond) { 3870 case ISD::SETEQ: 3871 case ISD::SETNE: 3872 case ISD::SETUGT: 3873 case ISD::SETUGE: 3874 case ISD::SETULT: 3875 case ISD::SETULE: { 3876 EVT newVT = N0.getOperand(0).getValueType(); 3877 if (DCI.isBeforeLegalizeOps() || 3878 (isOperationLegal(ISD::SETCC, newVT) && 3879 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3880 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3881 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3882 3883 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3884 NewConst, Cond); 3885 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3886 } 3887 break; 3888 } 3889 default: 3890 break; // todo, be more careful with signed comparisons 3891 } 3892 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3893 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3894 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3895 OpVT)) { 3896 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3897 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3898 EVT ExtDstTy = N0.getValueType(); 3899 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3900 3901 // If the constant doesn't fit into the number of bits for the source of 3902 // the sign extension, it is impossible for both sides to be equal. 3903 if (C1.getMinSignedBits() > ExtSrcTyBits) 3904 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3905 3906 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3907 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3908 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3909 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3910 DAG.getConstant(Imm, dl, ExtDstTy)); 3911 if (!DCI.isCalledByLegalizer()) 3912 DCI.AddToWorklist(ZextOp.getNode()); 3913 // Otherwise, make this a use of a zext. 3914 return DAG.getSetCC(dl, VT, ZextOp, 3915 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3916 } else if ((N1C->isZero() || N1C->isOne()) && 3917 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3918 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3919 if (N0.getOpcode() == ISD::SETCC && 3920 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3921 (N0.getValueType() == MVT::i1 || 3922 getBooleanContents(N0.getOperand(0).getValueType()) == 3923 ZeroOrOneBooleanContent)) { 3924 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3925 if (TrueWhenTrue) 3926 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3927 // Invert the condition. 3928 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3929 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3930 if (DCI.isBeforeLegalizeOps() || 3931 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3932 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3933 } 3934 3935 if ((N0.getOpcode() == ISD::XOR || 3936 (N0.getOpcode() == ISD::AND && 3937 N0.getOperand(0).getOpcode() == ISD::XOR && 3938 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3939 isOneConstant(N0.getOperand(1))) { 3940 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3941 // can only do this if the top bits are known zero. 3942 unsigned BitWidth = N0.getValueSizeInBits(); 3943 if (DAG.MaskedValueIsZero(N0, 3944 APInt::getHighBitsSet(BitWidth, 3945 BitWidth-1))) { 3946 // Okay, get the un-inverted input value. 3947 SDValue Val; 3948 if (N0.getOpcode() == ISD::XOR) { 3949 Val = N0.getOperand(0); 3950 } else { 3951 assert(N0.getOpcode() == ISD::AND && 3952 N0.getOperand(0).getOpcode() == ISD::XOR); 3953 // ((X^1)&1)^1 -> X & 1 3954 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3955 N0.getOperand(0).getOperand(0), 3956 N0.getOperand(1)); 3957 } 3958 3959 return DAG.getSetCC(dl, VT, Val, N1, 3960 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3961 } 3962 } else if (N1C->isOne()) { 3963 SDValue Op0 = N0; 3964 if (Op0.getOpcode() == ISD::TRUNCATE) 3965 Op0 = Op0.getOperand(0); 3966 3967 if ((Op0.getOpcode() == ISD::XOR) && 3968 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3969 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3970 SDValue XorLHS = Op0.getOperand(0); 3971 SDValue XorRHS = Op0.getOperand(1); 3972 // Ensure that the input setccs return an i1 type or 0/1 value. 3973 if (Op0.getValueType() == MVT::i1 || 3974 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3975 ZeroOrOneBooleanContent && 3976 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3977 ZeroOrOneBooleanContent)) { 3978 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3979 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3980 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3981 } 3982 } 3983 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3984 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3985 if (Op0.getValueType().bitsGT(VT)) 3986 Op0 = DAG.getNode(ISD::AND, dl, VT, 3987 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3988 DAG.getConstant(1, dl, VT)); 3989 else if (Op0.getValueType().bitsLT(VT)) 3990 Op0 = DAG.getNode(ISD::AND, dl, VT, 3991 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3992 DAG.getConstant(1, dl, VT)); 3993 3994 return DAG.getSetCC(dl, VT, Op0, 3995 DAG.getConstant(0, dl, Op0.getValueType()), 3996 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3997 } 3998 if (Op0.getOpcode() == ISD::AssertZext && 3999 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4000 return DAG.getSetCC(dl, VT, Op0, 4001 DAG.getConstant(0, dl, Op0.getValueType()), 4002 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4003 } 4004 } 4005 4006 // Given: 4007 // icmp eq/ne (urem %x, %y), 0 4008 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4009 // icmp eq/ne %x, 0 4010 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4011 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4012 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4013 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4014 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4015 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4016 } 4017 4018 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4019 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4020 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4021 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4022 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4023 N1C && N1C->isAllOnes()) { 4024 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4025 DAG.getConstant(0, dl, OpVT), 4026 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4027 } 4028 4029 if (SDValue V = 4030 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4031 return V; 4032 } 4033 4034 // These simplifications apply to splat vectors as well. 4035 // TODO: Handle more splat vector cases. 4036 if (auto *N1C = isConstOrConstSplat(N1)) { 4037 const APInt &C1 = N1C->getAPIntValue(); 4038 4039 APInt MinVal, MaxVal; 4040 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4041 if (ISD::isSignedIntSetCC(Cond)) { 4042 MinVal = APInt::getSignedMinValue(OperandBitSize); 4043 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4044 } else { 4045 MinVal = APInt::getMinValue(OperandBitSize); 4046 MaxVal = APInt::getMaxValue(OperandBitSize); 4047 } 4048 4049 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4050 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4051 // X >= MIN --> true 4052 if (C1 == MinVal) 4053 return DAG.getBoolConstant(true, dl, VT, OpVT); 4054 4055 if (!VT.isVector()) { // TODO: Support this for vectors. 4056 // X >= C0 --> X > (C0 - 1) 4057 APInt C = C1 - 1; 4058 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4059 if ((DCI.isBeforeLegalizeOps() || 4060 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4061 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4062 isLegalICmpImmediate(C.getSExtValue())))) { 4063 return DAG.getSetCC(dl, VT, N0, 4064 DAG.getConstant(C, dl, N1.getValueType()), 4065 NewCC); 4066 } 4067 } 4068 } 4069 4070 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4071 // X <= MAX --> true 4072 if (C1 == MaxVal) 4073 return DAG.getBoolConstant(true, dl, VT, OpVT); 4074 4075 // X <= C0 --> X < (C0 + 1) 4076 if (!VT.isVector()) { // TODO: Support this for vectors. 4077 APInt C = C1 + 1; 4078 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4079 if ((DCI.isBeforeLegalizeOps() || 4080 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4081 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4082 isLegalICmpImmediate(C.getSExtValue())))) { 4083 return DAG.getSetCC(dl, VT, N0, 4084 DAG.getConstant(C, dl, N1.getValueType()), 4085 NewCC); 4086 } 4087 } 4088 } 4089 4090 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4091 if (C1 == MinVal) 4092 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4093 4094 // TODO: Support this for vectors after legalize ops. 4095 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4096 // Canonicalize setlt X, Max --> setne X, Max 4097 if (C1 == MaxVal) 4098 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4099 4100 // If we have setult X, 1, turn it into seteq X, 0 4101 if (C1 == MinVal+1) 4102 return DAG.getSetCC(dl, VT, N0, 4103 DAG.getConstant(MinVal, dl, N0.getValueType()), 4104 ISD::SETEQ); 4105 } 4106 } 4107 4108 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4109 if (C1 == MaxVal) 4110 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4111 4112 // TODO: Support this for vectors after legalize ops. 4113 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4114 // Canonicalize setgt X, Min --> setne X, Min 4115 if (C1 == MinVal) 4116 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4117 4118 // If we have setugt X, Max-1, turn it into seteq X, Max 4119 if (C1 == MaxVal-1) 4120 return DAG.getSetCC(dl, VT, N0, 4121 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4122 ISD::SETEQ); 4123 } 4124 } 4125 4126 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4127 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4128 if (C1.isZero()) 4129 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4130 VT, N0, N1, Cond, DCI, dl)) 4131 return CC; 4132 4133 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4134 // For example, when high 32-bits of i64 X are known clear: 4135 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4136 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4137 bool CmpZero = N1C->getAPIntValue().isZero(); 4138 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4139 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4140 // Match or(lo,shl(hi,bw/2)) pattern. 4141 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4142 unsigned EltBits = V.getScalarValueSizeInBits(); 4143 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4144 return false; 4145 SDValue LHS = V.getOperand(0); 4146 SDValue RHS = V.getOperand(1); 4147 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4148 // Unshifted element must have zero upperbits. 4149 if (RHS.getOpcode() == ISD::SHL && 4150 isa<ConstantSDNode>(RHS.getOperand(1)) && 4151 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4152 DAG.MaskedValueIsZero(LHS, HiBits)) { 4153 Lo = LHS; 4154 Hi = RHS.getOperand(0); 4155 return true; 4156 } 4157 if (LHS.getOpcode() == ISD::SHL && 4158 isa<ConstantSDNode>(LHS.getOperand(1)) && 4159 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4160 DAG.MaskedValueIsZero(RHS, HiBits)) { 4161 Lo = RHS; 4162 Hi = LHS.getOperand(0); 4163 return true; 4164 } 4165 return false; 4166 }; 4167 4168 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4169 unsigned EltBits = N0.getScalarValueSizeInBits(); 4170 unsigned HalfBits = EltBits / 2; 4171 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4172 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4173 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4174 SDValue NewN0 = 4175 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4176 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4177 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4178 }; 4179 4180 SDValue Lo, Hi; 4181 if (IsConcat(N0, Lo, Hi)) 4182 return MergeConcat(Lo, Hi); 4183 4184 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4185 SDValue Lo0, Lo1, Hi0, Hi1; 4186 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4187 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4188 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4189 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4190 } 4191 } 4192 } 4193 } 4194 4195 // If we have "setcc X, C0", check to see if we can shrink the immediate 4196 // by changing cc. 4197 // TODO: Support this for vectors after legalize ops. 4198 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4199 // SETUGT X, SINTMAX -> SETLT X, 0 4200 // SETUGE X, SINTMIN -> SETLT X, 0 4201 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4202 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4203 return DAG.getSetCC(dl, VT, N0, 4204 DAG.getConstant(0, dl, N1.getValueType()), 4205 ISD::SETLT); 4206 4207 // SETULT X, SINTMIN -> SETGT X, -1 4208 // SETULE X, SINTMAX -> SETGT X, -1 4209 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4210 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4211 return DAG.getSetCC(dl, VT, N0, 4212 DAG.getAllOnesConstant(dl, N1.getValueType()), 4213 ISD::SETGT); 4214 } 4215 } 4216 4217 // Back to non-vector simplifications. 4218 // TODO: Can we do these for vector splats? 4219 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4221 const APInt &C1 = N1C->getAPIntValue(); 4222 EVT ShValTy = N0.getValueType(); 4223 4224 // Fold bit comparisons when we can. This will result in an 4225 // incorrect value when boolean false is negative one, unless 4226 // the bitsize is 1 in which case the false value is the same 4227 // in practice regardless of the representation. 4228 if ((VT.getSizeInBits() == 1 || 4229 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4230 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4231 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4232 N0.getOpcode() == ISD::AND) { 4233 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4234 EVT ShiftTy = 4235 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4236 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4237 // Perform the xform if the AND RHS is a single bit. 4238 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4239 if (AndRHS->getAPIntValue().isPowerOf2() && 4240 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4241 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4242 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4243 DAG.getConstant(ShCt, dl, ShiftTy))); 4244 } 4245 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4246 // (X & 8) == 8 --> (X & 8) >> 3 4247 // Perform the xform if C1 is a single bit. 4248 unsigned ShCt = C1.logBase2(); 4249 if (C1.isPowerOf2() && 4250 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4251 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4252 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4253 DAG.getConstant(ShCt, dl, ShiftTy))); 4254 } 4255 } 4256 } 4257 } 4258 4259 if (C1.getMinSignedBits() <= 64 && 4260 !isLegalICmpImmediate(C1.getSExtValue())) { 4261 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4262 // (X & -256) == 256 -> (X >> 8) == 1 4263 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4264 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4265 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4266 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4267 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4268 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4269 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4270 SDValue Shift = 4271 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4272 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4273 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4274 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4275 } 4276 } 4277 } 4278 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4279 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4280 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4281 // X < 0x100000000 -> (X >> 32) < 1 4282 // X >= 0x100000000 -> (X >> 32) >= 1 4283 // X <= 0x0ffffffff -> (X >> 32) < 1 4284 // X > 0x0ffffffff -> (X >> 32) >= 1 4285 unsigned ShiftBits; 4286 APInt NewC = C1; 4287 ISD::CondCode NewCond = Cond; 4288 if (AdjOne) { 4289 ShiftBits = C1.countTrailingOnes(); 4290 NewC = NewC + 1; 4291 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4292 } else { 4293 ShiftBits = C1.countTrailingZeros(); 4294 } 4295 NewC.lshrInPlace(ShiftBits); 4296 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4297 isLegalICmpImmediate(NewC.getSExtValue()) && 4298 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4299 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4300 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4301 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4302 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4303 } 4304 } 4305 } 4306 } 4307 4308 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4309 auto *CFP = cast<ConstantFPSDNode>(N1); 4310 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4311 4312 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4313 // constant if knowing that the operand is non-nan is enough. We prefer to 4314 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4315 // materialize 0.0. 4316 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4317 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4318 4319 // setcc (fneg x), C -> setcc swap(pred) x, -C 4320 if (N0.getOpcode() == ISD::FNEG) { 4321 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4322 if (DCI.isBeforeLegalizeOps() || 4323 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4324 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4325 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4326 } 4327 } 4328 4329 // If the condition is not legal, see if we can find an equivalent one 4330 // which is legal. 4331 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4332 // If the comparison was an awkward floating-point == or != and one of 4333 // the comparison operands is infinity or negative infinity, convert the 4334 // condition to a less-awkward <= or >=. 4335 if (CFP->getValueAPF().isInfinity()) { 4336 bool IsNegInf = CFP->getValueAPF().isNegative(); 4337 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4338 switch (Cond) { 4339 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4340 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4341 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4342 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4343 default: break; 4344 } 4345 if (NewCond != ISD::SETCC_INVALID && 4346 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4347 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4348 } 4349 } 4350 } 4351 4352 if (N0 == N1) { 4353 // The sext(setcc()) => setcc() optimization relies on the appropriate 4354 // constant being emitted. 4355 assert(!N0.getValueType().isInteger() && 4356 "Integer types should be handled by FoldSetCC"); 4357 4358 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4359 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4360 if (UOF == 2) // FP operators that are undefined on NaNs. 4361 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4362 if (UOF == unsigned(EqTrue)) 4363 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4364 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4365 // if it is not already. 4366 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4367 if (NewCond != Cond && 4368 (DCI.isBeforeLegalizeOps() || 4369 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4370 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4371 } 4372 4373 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4374 N0.getValueType().isInteger()) { 4375 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4376 N0.getOpcode() == ISD::XOR) { 4377 // Simplify (X+Y) == (X+Z) --> Y == Z 4378 if (N0.getOpcode() == N1.getOpcode()) { 4379 if (N0.getOperand(0) == N1.getOperand(0)) 4380 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4381 if (N0.getOperand(1) == N1.getOperand(1)) 4382 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4383 if (isCommutativeBinOp(N0.getOpcode())) { 4384 // If X op Y == Y op X, try other combinations. 4385 if (N0.getOperand(0) == N1.getOperand(1)) 4386 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4387 Cond); 4388 if (N0.getOperand(1) == N1.getOperand(0)) 4389 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4390 Cond); 4391 } 4392 } 4393 4394 // If RHS is a legal immediate value for a compare instruction, we need 4395 // to be careful about increasing register pressure needlessly. 4396 bool LegalRHSImm = false; 4397 4398 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4399 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4400 // Turn (X+C1) == C2 --> X == C2-C1 4401 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4402 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4403 DAG.getConstant(RHSC->getAPIntValue()- 4404 LHSR->getAPIntValue(), 4405 dl, N0.getValueType()), Cond); 4406 } 4407 4408 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4409 if (N0.getOpcode() == ISD::XOR) 4410 // If we know that all of the inverted bits are zero, don't bother 4411 // performing the inversion. 4412 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4413 return 4414 DAG.getSetCC(dl, VT, N0.getOperand(0), 4415 DAG.getConstant(LHSR->getAPIntValue() ^ 4416 RHSC->getAPIntValue(), 4417 dl, N0.getValueType()), 4418 Cond); 4419 } 4420 4421 // Turn (C1-X) == C2 --> X == C1-C2 4422 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4423 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4424 return 4425 DAG.getSetCC(dl, VT, N0.getOperand(1), 4426 DAG.getConstant(SUBC->getAPIntValue() - 4427 RHSC->getAPIntValue(), 4428 dl, N0.getValueType()), 4429 Cond); 4430 } 4431 } 4432 4433 // Could RHSC fold directly into a compare? 4434 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4435 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4436 } 4437 4438 // (X+Y) == X --> Y == 0 and similar folds. 4439 // Don't do this if X is an immediate that can fold into a cmp 4440 // instruction and X+Y has other uses. It could be an induction variable 4441 // chain, and the transform would increase register pressure. 4442 if (!LegalRHSImm || N0.hasOneUse()) 4443 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4444 return V; 4445 } 4446 4447 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4448 N1.getOpcode() == ISD::XOR) 4449 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4450 return V; 4451 4452 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4453 return V; 4454 } 4455 4456 // Fold remainder of division by a constant. 4457 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4458 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4459 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4460 4461 // When division is cheap or optimizing for minimum size, 4462 // fall through to DIVREM creation by skipping this fold. 4463 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4464 if (N0.getOpcode() == ISD::UREM) { 4465 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4466 return Folded; 4467 } else if (N0.getOpcode() == ISD::SREM) { 4468 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4469 return Folded; 4470 } 4471 } 4472 } 4473 4474 // Fold away ALL boolean setcc's. 4475 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4476 SDValue Temp; 4477 switch (Cond) { 4478 default: llvm_unreachable("Unknown integer setcc!"); 4479 case ISD::SETEQ: // X == Y -> ~(X^Y) 4480 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4481 N0 = DAG.getNOT(dl, Temp, OpVT); 4482 if (!DCI.isCalledByLegalizer()) 4483 DCI.AddToWorklist(Temp.getNode()); 4484 break; 4485 case ISD::SETNE: // X != Y --> (X^Y) 4486 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4487 break; 4488 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4489 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4490 Temp = DAG.getNOT(dl, N0, OpVT); 4491 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4492 if (!DCI.isCalledByLegalizer()) 4493 DCI.AddToWorklist(Temp.getNode()); 4494 break; 4495 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4496 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4497 Temp = DAG.getNOT(dl, N1, OpVT); 4498 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4499 if (!DCI.isCalledByLegalizer()) 4500 DCI.AddToWorklist(Temp.getNode()); 4501 break; 4502 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4503 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4504 Temp = DAG.getNOT(dl, N0, OpVT); 4505 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4506 if (!DCI.isCalledByLegalizer()) 4507 DCI.AddToWorklist(Temp.getNode()); 4508 break; 4509 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4510 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4511 Temp = DAG.getNOT(dl, N1, OpVT); 4512 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4513 break; 4514 } 4515 if (VT.getScalarType() != MVT::i1) { 4516 if (!DCI.isCalledByLegalizer()) 4517 DCI.AddToWorklist(N0.getNode()); 4518 // FIXME: If running after legalize, we probably can't do this. 4519 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4520 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4521 } 4522 return N0; 4523 } 4524 4525 // Could not fold it. 4526 return SDValue(); 4527 } 4528 4529 /// Returns true (and the GlobalValue and the offset) if the node is a 4530 /// GlobalAddress + offset. 4531 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4532 int64_t &Offset) const { 4533 4534 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4535 4536 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4537 GA = GASD->getGlobal(); 4538 Offset += GASD->getOffset(); 4539 return true; 4540 } 4541 4542 if (N->getOpcode() == ISD::ADD) { 4543 SDValue N1 = N->getOperand(0); 4544 SDValue N2 = N->getOperand(1); 4545 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4546 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4547 Offset += V->getSExtValue(); 4548 return true; 4549 } 4550 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4551 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4552 Offset += V->getSExtValue(); 4553 return true; 4554 } 4555 } 4556 } 4557 4558 return false; 4559 } 4560 4561 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4562 DAGCombinerInfo &DCI) const { 4563 // Default implementation: no optimization. 4564 return SDValue(); 4565 } 4566 4567 //===----------------------------------------------------------------------===// 4568 // Inline Assembler Implementation Methods 4569 //===----------------------------------------------------------------------===// 4570 4571 TargetLowering::ConstraintType 4572 TargetLowering::getConstraintType(StringRef Constraint) const { 4573 unsigned S = Constraint.size(); 4574 4575 if (S == 1) { 4576 switch (Constraint[0]) { 4577 default: break; 4578 case 'r': 4579 return C_RegisterClass; 4580 case 'm': // memory 4581 case 'o': // offsetable 4582 case 'V': // not offsetable 4583 return C_Memory; 4584 case 'n': // Simple Integer 4585 case 'E': // Floating Point Constant 4586 case 'F': // Floating Point Constant 4587 return C_Immediate; 4588 case 'i': // Simple Integer or Relocatable Constant 4589 case 's': // Relocatable Constant 4590 case 'p': // Address. 4591 case 'X': // Allow ANY value. 4592 case 'I': // Target registers. 4593 case 'J': 4594 case 'K': 4595 case 'L': 4596 case 'M': 4597 case 'N': 4598 case 'O': 4599 case 'P': 4600 case '<': 4601 case '>': 4602 return C_Other; 4603 } 4604 } 4605 4606 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4607 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4608 return C_Memory; 4609 return C_Register; 4610 } 4611 return C_Unknown; 4612 } 4613 4614 /// Try to replace an X constraint, which matches anything, with another that 4615 /// has more specific requirements based on the type of the corresponding 4616 /// operand. 4617 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4618 if (ConstraintVT.isInteger()) 4619 return "r"; 4620 if (ConstraintVT.isFloatingPoint()) 4621 return "f"; // works for many targets 4622 return nullptr; 4623 } 4624 4625 SDValue TargetLowering::LowerAsmOutputForConstraint( 4626 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4627 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4628 return SDValue(); 4629 } 4630 4631 /// Lower the specified operand into the Ops vector. 4632 /// If it is invalid, don't add anything to Ops. 4633 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4634 std::string &Constraint, 4635 std::vector<SDValue> &Ops, 4636 SelectionDAG &DAG) const { 4637 4638 if (Constraint.length() > 1) return; 4639 4640 char ConstraintLetter = Constraint[0]; 4641 switch (ConstraintLetter) { 4642 default: break; 4643 case 'X': // Allows any operand 4644 case 'i': // Simple Integer or Relocatable Constant 4645 case 'n': // Simple Integer 4646 case 's': { // Relocatable Constant 4647 4648 ConstantSDNode *C; 4649 uint64_t Offset = 0; 4650 4651 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4652 // etc., since getelementpointer is variadic. We can't use 4653 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4654 // while in this case the GA may be furthest from the root node which is 4655 // likely an ISD::ADD. 4656 while (true) { 4657 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4658 // gcc prints these as sign extended. Sign extend value to 64 bits 4659 // now; without this it would get ZExt'd later in 4660 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4661 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4662 BooleanContent BCont = getBooleanContents(MVT::i64); 4663 ISD::NodeType ExtOpc = 4664 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4665 int64_t ExtVal = 4666 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4667 Ops.push_back( 4668 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4669 return; 4670 } 4671 if (ConstraintLetter != 'n') { 4672 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4673 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4674 GA->getValueType(0), 4675 Offset + GA->getOffset())); 4676 return; 4677 } 4678 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4679 Ops.push_back(DAG.getTargetBlockAddress( 4680 BA->getBlockAddress(), BA->getValueType(0), 4681 Offset + BA->getOffset(), BA->getTargetFlags())); 4682 return; 4683 } 4684 if (isa<BasicBlockSDNode>(Op)) { 4685 Ops.push_back(Op); 4686 return; 4687 } 4688 } 4689 const unsigned OpCode = Op.getOpcode(); 4690 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4691 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4692 Op = Op.getOperand(1); 4693 // Subtraction is not commutative. 4694 else if (OpCode == ISD::ADD && 4695 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4696 Op = Op.getOperand(0); 4697 else 4698 return; 4699 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4700 continue; 4701 } 4702 return; 4703 } 4704 break; 4705 } 4706 } 4707 } 4708 4709 std::pair<unsigned, const TargetRegisterClass *> 4710 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4711 StringRef Constraint, 4712 MVT VT) const { 4713 if (Constraint.empty() || Constraint[0] != '{') 4714 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4715 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4716 4717 // Remove the braces from around the name. 4718 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4719 4720 std::pair<unsigned, const TargetRegisterClass *> R = 4721 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4722 4723 // Figure out which register class contains this reg. 4724 for (const TargetRegisterClass *RC : RI->regclasses()) { 4725 // If none of the value types for this register class are valid, we 4726 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4727 if (!isLegalRC(*RI, *RC)) 4728 continue; 4729 4730 for (const MCPhysReg &PR : *RC) { 4731 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4732 std::pair<unsigned, const TargetRegisterClass *> S = 4733 std::make_pair(PR, RC); 4734 4735 // If this register class has the requested value type, return it, 4736 // otherwise keep searching and return the first class found 4737 // if no other is found which explicitly has the requested type. 4738 if (RI->isTypeLegalForClass(*RC, VT)) 4739 return S; 4740 if (!R.second) 4741 R = S; 4742 } 4743 } 4744 } 4745 4746 return R; 4747 } 4748 4749 //===----------------------------------------------------------------------===// 4750 // Constraint Selection. 4751 4752 /// Return true of this is an input operand that is a matching constraint like 4753 /// "4". 4754 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4755 assert(!ConstraintCode.empty() && "No known constraint!"); 4756 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4757 } 4758 4759 /// If this is an input matching constraint, this method returns the output 4760 /// operand it matches. 4761 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4762 assert(!ConstraintCode.empty() && "No known constraint!"); 4763 return atoi(ConstraintCode.c_str()); 4764 } 4765 4766 /// Split up the constraint string from the inline assembly value into the 4767 /// specific constraints and their prefixes, and also tie in the associated 4768 /// operand values. 4769 /// If this returns an empty vector, and if the constraint string itself 4770 /// isn't empty, there was an error parsing. 4771 TargetLowering::AsmOperandInfoVector 4772 TargetLowering::ParseConstraints(const DataLayout &DL, 4773 const TargetRegisterInfo *TRI, 4774 const CallBase &Call) const { 4775 /// Information about all of the constraints. 4776 AsmOperandInfoVector ConstraintOperands; 4777 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4778 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4779 4780 // Do a prepass over the constraints, canonicalizing them, and building up the 4781 // ConstraintOperands list. 4782 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4783 unsigned ResNo = 0; // ResNo - The result number of the next output. 4784 4785 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4786 ConstraintOperands.emplace_back(std::move(CI)); 4787 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4788 4789 // Update multiple alternative constraint count. 4790 if (OpInfo.multipleAlternatives.size() > maCount) 4791 maCount = OpInfo.multipleAlternatives.size(); 4792 4793 OpInfo.ConstraintVT = MVT::Other; 4794 4795 // Compute the value type for each operand. 4796 switch (OpInfo.Type) { 4797 case InlineAsm::isOutput: 4798 // Indirect outputs just consume an argument. 4799 if (OpInfo.isIndirect) { 4800 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4801 break; 4802 } 4803 4804 // The return value of the call is this value. As such, there is no 4805 // corresponding argument. 4806 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4807 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4808 OpInfo.ConstraintVT = 4809 getSimpleValueType(DL, STy->getElementType(ResNo)); 4810 } else { 4811 assert(ResNo == 0 && "Asm only has one result!"); 4812 OpInfo.ConstraintVT = 4813 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4814 } 4815 ++ResNo; 4816 break; 4817 case InlineAsm::isInput: 4818 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4819 break; 4820 case InlineAsm::isClobber: 4821 // Nothing to do. 4822 break; 4823 } 4824 4825 if (OpInfo.CallOperandVal) { 4826 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4827 if (OpInfo.isIndirect) { 4828 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4829 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4830 } 4831 4832 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4833 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4834 if (STy->getNumElements() == 1) 4835 OpTy = STy->getElementType(0); 4836 4837 // If OpTy is not a single value, it may be a struct/union that we 4838 // can tile with integers. 4839 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4840 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4841 switch (BitSize) { 4842 default: break; 4843 case 1: 4844 case 8: 4845 case 16: 4846 case 32: 4847 case 64: 4848 case 128: 4849 OpInfo.ConstraintVT = 4850 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4851 break; 4852 } 4853 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4854 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4855 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4856 } else { 4857 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4858 } 4859 4860 ArgNo++; 4861 } 4862 } 4863 4864 // If we have multiple alternative constraints, select the best alternative. 4865 if (!ConstraintOperands.empty()) { 4866 if (maCount) { 4867 unsigned bestMAIndex = 0; 4868 int bestWeight = -1; 4869 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4870 int weight = -1; 4871 unsigned maIndex; 4872 // Compute the sums of the weights for each alternative, keeping track 4873 // of the best (highest weight) one so far. 4874 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4875 int weightSum = 0; 4876 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4877 cIndex != eIndex; ++cIndex) { 4878 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4879 if (OpInfo.Type == InlineAsm::isClobber) 4880 continue; 4881 4882 // If this is an output operand with a matching input operand, 4883 // look up the matching input. If their types mismatch, e.g. one 4884 // is an integer, the other is floating point, or their sizes are 4885 // different, flag it as an maCantMatch. 4886 if (OpInfo.hasMatchingInput()) { 4887 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4888 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4889 if ((OpInfo.ConstraintVT.isInteger() != 4890 Input.ConstraintVT.isInteger()) || 4891 (OpInfo.ConstraintVT.getSizeInBits() != 4892 Input.ConstraintVT.getSizeInBits())) { 4893 weightSum = -1; // Can't match. 4894 break; 4895 } 4896 } 4897 } 4898 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4899 if (weight == -1) { 4900 weightSum = -1; 4901 break; 4902 } 4903 weightSum += weight; 4904 } 4905 // Update best. 4906 if (weightSum > bestWeight) { 4907 bestWeight = weightSum; 4908 bestMAIndex = maIndex; 4909 } 4910 } 4911 4912 // Now select chosen alternative in each constraint. 4913 for (AsmOperandInfo &cInfo : ConstraintOperands) 4914 if (cInfo.Type != InlineAsm::isClobber) 4915 cInfo.selectAlternative(bestMAIndex); 4916 } 4917 } 4918 4919 // Check and hook up tied operands, choose constraint code to use. 4920 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4921 cIndex != eIndex; ++cIndex) { 4922 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4923 4924 // If this is an output operand with a matching input operand, look up the 4925 // matching input. If their types mismatch, e.g. one is an integer, the 4926 // other is floating point, or their sizes are different, flag it as an 4927 // error. 4928 if (OpInfo.hasMatchingInput()) { 4929 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4930 4931 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4932 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4933 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4934 OpInfo.ConstraintVT); 4935 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4936 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4937 Input.ConstraintVT); 4938 if ((OpInfo.ConstraintVT.isInteger() != 4939 Input.ConstraintVT.isInteger()) || 4940 (MatchRC.second != InputRC.second)) { 4941 report_fatal_error("Unsupported asm: input constraint" 4942 " with a matching output constraint of" 4943 " incompatible type!"); 4944 } 4945 } 4946 } 4947 } 4948 4949 return ConstraintOperands; 4950 } 4951 4952 /// Return an integer indicating how general CT is. 4953 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4954 switch (CT) { 4955 case TargetLowering::C_Immediate: 4956 case TargetLowering::C_Other: 4957 case TargetLowering::C_Unknown: 4958 return 0; 4959 case TargetLowering::C_Register: 4960 return 1; 4961 case TargetLowering::C_RegisterClass: 4962 return 2; 4963 case TargetLowering::C_Memory: 4964 return 3; 4965 } 4966 llvm_unreachable("Invalid constraint type"); 4967 } 4968 4969 /// Examine constraint type and operand type and determine a weight value. 4970 /// This object must already have been set up with the operand type 4971 /// and the current alternative constraint selected. 4972 TargetLowering::ConstraintWeight 4973 TargetLowering::getMultipleConstraintMatchWeight( 4974 AsmOperandInfo &info, int maIndex) const { 4975 InlineAsm::ConstraintCodeVector *rCodes; 4976 if (maIndex >= (int)info.multipleAlternatives.size()) 4977 rCodes = &info.Codes; 4978 else 4979 rCodes = &info.multipleAlternatives[maIndex].Codes; 4980 ConstraintWeight BestWeight = CW_Invalid; 4981 4982 // Loop over the options, keeping track of the most general one. 4983 for (const std::string &rCode : *rCodes) { 4984 ConstraintWeight weight = 4985 getSingleConstraintMatchWeight(info, rCode.c_str()); 4986 if (weight > BestWeight) 4987 BestWeight = weight; 4988 } 4989 4990 return BestWeight; 4991 } 4992 4993 /// Examine constraint type and operand type and determine a weight value. 4994 /// This object must already have been set up with the operand type 4995 /// and the current alternative constraint selected. 4996 TargetLowering::ConstraintWeight 4997 TargetLowering::getSingleConstraintMatchWeight( 4998 AsmOperandInfo &info, const char *constraint) const { 4999 ConstraintWeight weight = CW_Invalid; 5000 Value *CallOperandVal = info.CallOperandVal; 5001 // If we don't have a value, we can't do a match, 5002 // but allow it at the lowest weight. 5003 if (!CallOperandVal) 5004 return CW_Default; 5005 // Look at the constraint type. 5006 switch (*constraint) { 5007 case 'i': // immediate integer. 5008 case 'n': // immediate integer with a known value. 5009 if (isa<ConstantInt>(CallOperandVal)) 5010 weight = CW_Constant; 5011 break; 5012 case 's': // non-explicit intregal immediate. 5013 if (isa<GlobalValue>(CallOperandVal)) 5014 weight = CW_Constant; 5015 break; 5016 case 'E': // immediate float if host format. 5017 case 'F': // immediate float. 5018 if (isa<ConstantFP>(CallOperandVal)) 5019 weight = CW_Constant; 5020 break; 5021 case '<': // memory operand with autodecrement. 5022 case '>': // memory operand with autoincrement. 5023 case 'm': // memory operand. 5024 case 'o': // offsettable memory operand 5025 case 'V': // non-offsettable memory operand 5026 weight = CW_Memory; 5027 break; 5028 case 'r': // general register. 5029 case 'g': // general register, memory operand or immediate integer. 5030 // note: Clang converts "g" to "imr". 5031 if (CallOperandVal->getType()->isIntegerTy()) 5032 weight = CW_Register; 5033 break; 5034 case 'X': // any operand. 5035 default: 5036 weight = CW_Default; 5037 break; 5038 } 5039 return weight; 5040 } 5041 5042 /// If there are multiple different constraints that we could pick for this 5043 /// operand (e.g. "imr") try to pick the 'best' one. 5044 /// This is somewhat tricky: constraints fall into four classes: 5045 /// Other -> immediates and magic values 5046 /// Register -> one specific register 5047 /// RegisterClass -> a group of regs 5048 /// Memory -> memory 5049 /// Ideally, we would pick the most specific constraint possible: if we have 5050 /// something that fits into a register, we would pick it. The problem here 5051 /// is that if we have something that could either be in a register or in 5052 /// memory that use of the register could cause selection of *other* 5053 /// operands to fail: they might only succeed if we pick memory. Because of 5054 /// this the heuristic we use is: 5055 /// 5056 /// 1) If there is an 'other' constraint, and if the operand is valid for 5057 /// that constraint, use it. This makes us take advantage of 'i' 5058 /// constraints when available. 5059 /// 2) Otherwise, pick the most general constraint present. This prefers 5060 /// 'm' over 'r', for example. 5061 /// 5062 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5063 const TargetLowering &TLI, 5064 SDValue Op, SelectionDAG *DAG) { 5065 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5066 unsigned BestIdx = 0; 5067 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5068 int BestGenerality = -1; 5069 5070 // Loop over the options, keeping track of the most general one. 5071 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5072 TargetLowering::ConstraintType CType = 5073 TLI.getConstraintType(OpInfo.Codes[i]); 5074 5075 // Indirect 'other' or 'immediate' constraints are not allowed. 5076 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5077 CType == TargetLowering::C_Register || 5078 CType == TargetLowering::C_RegisterClass)) 5079 continue; 5080 5081 // If this is an 'other' or 'immediate' constraint, see if the operand is 5082 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5083 // the operand is an integer in the range [0..31] we want to use I (saving a 5084 // load of a register), otherwise we must use 'r'. 5085 if ((CType == TargetLowering::C_Other || 5086 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5087 assert(OpInfo.Codes[i].size() == 1 && 5088 "Unhandled multi-letter 'other' constraint"); 5089 std::vector<SDValue> ResultOps; 5090 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5091 ResultOps, *DAG); 5092 if (!ResultOps.empty()) { 5093 BestType = CType; 5094 BestIdx = i; 5095 break; 5096 } 5097 } 5098 5099 // Things with matching constraints can only be registers, per gcc 5100 // documentation. This mainly affects "g" constraints. 5101 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5102 continue; 5103 5104 // This constraint letter is more general than the previous one, use it. 5105 int Generality = getConstraintGenerality(CType); 5106 if (Generality > BestGenerality) { 5107 BestType = CType; 5108 BestIdx = i; 5109 BestGenerality = Generality; 5110 } 5111 } 5112 5113 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5114 OpInfo.ConstraintType = BestType; 5115 } 5116 5117 /// Determines the constraint code and constraint type to use for the specific 5118 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5119 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5120 SDValue Op, 5121 SelectionDAG *DAG) const { 5122 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5123 5124 // Single-letter constraints ('r') are very common. 5125 if (OpInfo.Codes.size() == 1) { 5126 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5127 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5128 } else { 5129 ChooseConstraint(OpInfo, *this, Op, DAG); 5130 } 5131 5132 // 'X' matches anything. 5133 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5134 // Constants are handled elsewhere. For Functions, the type here is the 5135 // type of the result, which is not what we want to look at; leave them 5136 // alone. 5137 Value *v = OpInfo.CallOperandVal; 5138 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5139 return; 5140 } 5141 5142 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5143 OpInfo.ConstraintCode = "i"; 5144 return; 5145 } 5146 5147 // Otherwise, try to resolve it to something we know about by looking at 5148 // the actual operand type. 5149 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5150 OpInfo.ConstraintCode = Repl; 5151 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5152 } 5153 } 5154 } 5155 5156 /// Given an exact SDIV by a constant, create a multiplication 5157 /// with the multiplicative inverse of the constant. 5158 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5159 const SDLoc &dl, SelectionDAG &DAG, 5160 SmallVectorImpl<SDNode *> &Created) { 5161 SDValue Op0 = N->getOperand(0); 5162 SDValue Op1 = N->getOperand(1); 5163 EVT VT = N->getValueType(0); 5164 EVT SVT = VT.getScalarType(); 5165 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5166 EVT ShSVT = ShVT.getScalarType(); 5167 5168 bool UseSRA = false; 5169 SmallVector<SDValue, 16> Shifts, Factors; 5170 5171 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5172 if (C->isZero()) 5173 return false; 5174 APInt Divisor = C->getAPIntValue(); 5175 unsigned Shift = Divisor.countTrailingZeros(); 5176 if (Shift) { 5177 Divisor.ashrInPlace(Shift); 5178 UseSRA = true; 5179 } 5180 // Calculate the multiplicative inverse, using Newton's method. 5181 APInt t; 5182 APInt Factor = Divisor; 5183 while ((t = Divisor * Factor) != 1) 5184 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5185 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5186 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5187 return true; 5188 }; 5189 5190 // Collect all magic values from the build vector. 5191 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5192 return SDValue(); 5193 5194 SDValue Shift, Factor; 5195 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5196 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5197 Factor = DAG.getBuildVector(VT, dl, Factors); 5198 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5199 assert(Shifts.size() == 1 && Factors.size() == 1 && 5200 "Expected matchUnaryPredicate to return one element for scalable " 5201 "vectors"); 5202 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5203 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5204 } else { 5205 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5206 Shift = Shifts[0]; 5207 Factor = Factors[0]; 5208 } 5209 5210 SDValue Res = Op0; 5211 5212 // Shift the value upfront if it is even, so the LSB is one. 5213 if (UseSRA) { 5214 // TODO: For UDIV use SRL instead of SRA. 5215 SDNodeFlags Flags; 5216 Flags.setExact(true); 5217 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5218 Created.push_back(Res.getNode()); 5219 } 5220 5221 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5222 } 5223 5224 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5225 SelectionDAG &DAG, 5226 SmallVectorImpl<SDNode *> &Created) const { 5227 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5228 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5229 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5230 return SDValue(N, 0); // Lower SDIV as SDIV 5231 return SDValue(); 5232 } 5233 5234 /// Given an ISD::SDIV node expressing a divide by constant, 5235 /// return a DAG expression to select that will generate the same value by 5236 /// multiplying by a magic number. 5237 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5238 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5239 bool IsAfterLegalization, 5240 SmallVectorImpl<SDNode *> &Created) const { 5241 SDLoc dl(N); 5242 EVT VT = N->getValueType(0); 5243 EVT SVT = VT.getScalarType(); 5244 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5245 EVT ShSVT = ShVT.getScalarType(); 5246 unsigned EltBits = VT.getScalarSizeInBits(); 5247 EVT MulVT; 5248 5249 // Check to see if we can do this. 5250 // FIXME: We should be more aggressive here. 5251 if (!isTypeLegal(VT)) { 5252 // Limit this to simple scalars for now. 5253 if (VT.isVector() || !VT.isSimple()) 5254 return SDValue(); 5255 5256 // If this type will be promoted to a large enough type with a legal 5257 // multiply operation, we can go ahead and do this transform. 5258 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5259 return SDValue(); 5260 5261 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5262 if (MulVT.getSizeInBits() < (2 * EltBits) || 5263 !isOperationLegal(ISD::MUL, MulVT)) 5264 return SDValue(); 5265 } 5266 5267 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5268 if (N->getFlags().hasExact()) 5269 return BuildExactSDIV(*this, N, dl, DAG, Created); 5270 5271 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5272 5273 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5274 if (C->isZero()) 5275 return false; 5276 5277 const APInt &Divisor = C->getAPIntValue(); 5278 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5279 int NumeratorFactor = 0; 5280 int ShiftMask = -1; 5281 5282 if (Divisor.isOne() || Divisor.isAllOnes()) { 5283 // If d is +1/-1, we just multiply the numerator by +1/-1. 5284 NumeratorFactor = Divisor.getSExtValue(); 5285 magics.Magic = 0; 5286 magics.ShiftAmount = 0; 5287 ShiftMask = 0; 5288 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5289 // If d > 0 and m < 0, add the numerator. 5290 NumeratorFactor = 1; 5291 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5292 // If d < 0 and m > 0, subtract the numerator. 5293 NumeratorFactor = -1; 5294 } 5295 5296 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5297 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5298 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5299 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5300 return true; 5301 }; 5302 5303 SDValue N0 = N->getOperand(0); 5304 SDValue N1 = N->getOperand(1); 5305 5306 // Collect the shifts / magic values from each element. 5307 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5308 return SDValue(); 5309 5310 SDValue MagicFactor, Factor, Shift, ShiftMask; 5311 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5312 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5313 Factor = DAG.getBuildVector(VT, dl, Factors); 5314 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5315 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5316 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5317 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5318 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5319 "Expected matchUnaryPredicate to return one element for scalable " 5320 "vectors"); 5321 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5322 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5323 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5324 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5325 } else { 5326 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5327 MagicFactor = MagicFactors[0]; 5328 Factor = Factors[0]; 5329 Shift = Shifts[0]; 5330 ShiftMask = ShiftMasks[0]; 5331 } 5332 5333 // Multiply the numerator (operand 0) by the magic value. 5334 // FIXME: We should support doing a MUL in a wider type. 5335 auto GetMULHS = [&](SDValue X, SDValue Y) { 5336 // If the type isn't legal, use a wider mul of the the type calculated 5337 // earlier. 5338 if (!isTypeLegal(VT)) { 5339 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5340 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5341 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5342 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5343 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5344 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5345 } 5346 5347 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5348 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5349 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5350 SDValue LoHi = 5351 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5352 return SDValue(LoHi.getNode(), 1); 5353 } 5354 return SDValue(); 5355 }; 5356 5357 SDValue Q = GetMULHS(N0, MagicFactor); 5358 if (!Q) 5359 return SDValue(); 5360 5361 Created.push_back(Q.getNode()); 5362 5363 // (Optionally) Add/subtract the numerator using Factor. 5364 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5365 Created.push_back(Factor.getNode()); 5366 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5367 Created.push_back(Q.getNode()); 5368 5369 // Shift right algebraic by shift value. 5370 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5371 Created.push_back(Q.getNode()); 5372 5373 // Extract the sign bit, mask it and add it to the quotient. 5374 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5375 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5376 Created.push_back(T.getNode()); 5377 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5378 Created.push_back(T.getNode()); 5379 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5380 } 5381 5382 /// Given an ISD::UDIV node expressing a divide by constant, 5383 /// return a DAG expression to select that will generate the same value by 5384 /// multiplying by a magic number. 5385 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5386 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5387 bool IsAfterLegalization, 5388 SmallVectorImpl<SDNode *> &Created) const { 5389 SDLoc dl(N); 5390 EVT VT = N->getValueType(0); 5391 EVT SVT = VT.getScalarType(); 5392 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5393 EVT ShSVT = ShVT.getScalarType(); 5394 unsigned EltBits = VT.getScalarSizeInBits(); 5395 EVT MulVT; 5396 5397 // Check to see if we can do this. 5398 // FIXME: We should be more aggressive here. 5399 if (!isTypeLegal(VT)) { 5400 // Limit this to simple scalars for now. 5401 if (VT.isVector() || !VT.isSimple()) 5402 return SDValue(); 5403 5404 // If this type will be promoted to a large enough type with a legal 5405 // multiply operation, we can go ahead and do this transform. 5406 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5407 return SDValue(); 5408 5409 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5410 if (MulVT.getSizeInBits() < (2 * EltBits) || 5411 !isOperationLegal(ISD::MUL, MulVT)) 5412 return SDValue(); 5413 } 5414 5415 bool UseNPQ = false; 5416 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5417 5418 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5419 if (C->isZero()) 5420 return false; 5421 // FIXME: We should use a narrower constant when the upper 5422 // bits are known to be zero. 5423 const APInt& Divisor = C->getAPIntValue(); 5424 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5425 unsigned PreShift = 0, PostShift = 0; 5426 5427 // If the divisor is even, we can avoid using the expensive fixup by 5428 // shifting the divided value upfront. 5429 if (magics.IsAdd != 0 && !Divisor[0]) { 5430 PreShift = Divisor.countTrailingZeros(); 5431 // Get magic number for the shifted divisor. 5432 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5433 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5434 } 5435 5436 APInt Magic = magics.Magic; 5437 5438 unsigned SelNPQ; 5439 if (magics.IsAdd == 0 || Divisor.isOne()) { 5440 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5441 "We shouldn't generate an undefined shift!"); 5442 PostShift = magics.ShiftAmount; 5443 SelNPQ = false; 5444 } else { 5445 PostShift = magics.ShiftAmount - 1; 5446 SelNPQ = true; 5447 } 5448 5449 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5450 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5451 NPQFactors.push_back( 5452 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5453 : APInt::getZero(EltBits), 5454 dl, SVT)); 5455 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5456 UseNPQ |= SelNPQ; 5457 return true; 5458 }; 5459 5460 SDValue N0 = N->getOperand(0); 5461 SDValue N1 = N->getOperand(1); 5462 5463 // Collect the shifts/magic values from each element. 5464 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5465 return SDValue(); 5466 5467 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5468 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5469 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5470 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5471 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5472 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5473 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5474 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5475 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5476 "Expected matchUnaryPredicate to return one for scalable vectors"); 5477 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5478 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5479 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5480 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5481 } else { 5482 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5483 PreShift = PreShifts[0]; 5484 MagicFactor = MagicFactors[0]; 5485 PostShift = PostShifts[0]; 5486 } 5487 5488 SDValue Q = N0; 5489 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5490 Created.push_back(Q.getNode()); 5491 5492 // FIXME: We should support doing a MUL in a wider type. 5493 auto GetMULHU = [&](SDValue X, SDValue Y) { 5494 // If the type isn't legal, use a wider mul of the the type calculated 5495 // earlier. 5496 if (!isTypeLegal(VT)) { 5497 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5498 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5499 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5500 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5501 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5502 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5503 } 5504 5505 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5506 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5507 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5508 SDValue LoHi = 5509 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5510 return SDValue(LoHi.getNode(), 1); 5511 } 5512 return SDValue(); // No mulhu or equivalent 5513 }; 5514 5515 // Multiply the numerator (operand 0) by the magic value. 5516 Q = GetMULHU(Q, MagicFactor); 5517 if (!Q) 5518 return SDValue(); 5519 5520 Created.push_back(Q.getNode()); 5521 5522 if (UseNPQ) { 5523 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5524 Created.push_back(NPQ.getNode()); 5525 5526 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5527 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5528 if (VT.isVector()) 5529 NPQ = GetMULHU(NPQ, NPQFactor); 5530 else 5531 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5532 5533 Created.push_back(NPQ.getNode()); 5534 5535 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5536 Created.push_back(Q.getNode()); 5537 } 5538 5539 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5540 Created.push_back(Q.getNode()); 5541 5542 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5543 5544 SDValue One = DAG.getConstant(1, dl, VT); 5545 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5546 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5547 } 5548 5549 /// If all values in Values that *don't* match the predicate are same 'splat' 5550 /// value, then replace all values with that splat value. 5551 /// Else, if AlternativeReplacement was provided, then replace all values that 5552 /// do match predicate with AlternativeReplacement value. 5553 static void 5554 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5555 std::function<bool(SDValue)> Predicate, 5556 SDValue AlternativeReplacement = SDValue()) { 5557 SDValue Replacement; 5558 // Is there a value for which the Predicate does *NOT* match? What is it? 5559 auto SplatValue = llvm::find_if_not(Values, Predicate); 5560 if (SplatValue != Values.end()) { 5561 // Does Values consist only of SplatValue's and values matching Predicate? 5562 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5563 return Value == *SplatValue || Predicate(Value); 5564 })) // Then we shall replace values matching predicate with SplatValue. 5565 Replacement = *SplatValue; 5566 } 5567 if (!Replacement) { 5568 // Oops, we did not find the "baseline" splat value. 5569 if (!AlternativeReplacement) 5570 return; // Nothing to do. 5571 // Let's replace with provided value then. 5572 Replacement = AlternativeReplacement; 5573 } 5574 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5575 } 5576 5577 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5578 /// where the divisor is constant and the comparison target is zero, 5579 /// return a DAG expression that will generate the same comparison result 5580 /// using only multiplications, additions and shifts/rotations. 5581 /// Ref: "Hacker's Delight" 10-17. 5582 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5583 SDValue CompTargetNode, 5584 ISD::CondCode Cond, 5585 DAGCombinerInfo &DCI, 5586 const SDLoc &DL) const { 5587 SmallVector<SDNode *, 5> Built; 5588 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5589 DCI, DL, Built)) { 5590 for (SDNode *N : Built) 5591 DCI.AddToWorklist(N); 5592 return Folded; 5593 } 5594 5595 return SDValue(); 5596 } 5597 5598 SDValue 5599 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5600 SDValue CompTargetNode, ISD::CondCode Cond, 5601 DAGCombinerInfo &DCI, const SDLoc &DL, 5602 SmallVectorImpl<SDNode *> &Created) const { 5603 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5604 // - D must be constant, with D = D0 * 2^K where D0 is odd 5605 // - P is the multiplicative inverse of D0 modulo 2^W 5606 // - Q = floor(((2^W) - 1) / D) 5607 // where W is the width of the common type of N and D. 5608 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5609 "Only applicable for (in)equality comparisons."); 5610 5611 SelectionDAG &DAG = DCI.DAG; 5612 5613 EVT VT = REMNode.getValueType(); 5614 EVT SVT = VT.getScalarType(); 5615 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5616 EVT ShSVT = ShVT.getScalarType(); 5617 5618 // If MUL is unavailable, we cannot proceed in any case. 5619 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5620 return SDValue(); 5621 5622 bool ComparingWithAllZeros = true; 5623 bool AllComparisonsWithNonZerosAreTautological = true; 5624 bool HadTautologicalLanes = false; 5625 bool AllLanesAreTautological = true; 5626 bool HadEvenDivisor = false; 5627 bool AllDivisorsArePowerOfTwo = true; 5628 bool HadTautologicalInvertedLanes = false; 5629 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5630 5631 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5632 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5633 if (CDiv->isZero()) 5634 return false; 5635 5636 const APInt &D = CDiv->getAPIntValue(); 5637 const APInt &Cmp = CCmp->getAPIntValue(); 5638 5639 ComparingWithAllZeros &= Cmp.isZero(); 5640 5641 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5642 // if C2 is not less than C1, the comparison is always false. 5643 // But we will only be able to produce the comparison that will give the 5644 // opposive tautological answer. So this lane would need to be fixed up. 5645 bool TautologicalInvertedLane = D.ule(Cmp); 5646 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5647 5648 // If all lanes are tautological (either all divisors are ones, or divisor 5649 // is not greater than the constant we are comparing with), 5650 // we will prefer to avoid the fold. 5651 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5652 HadTautologicalLanes |= TautologicalLane; 5653 AllLanesAreTautological &= TautologicalLane; 5654 5655 // If we are comparing with non-zero, we need'll need to subtract said 5656 // comparison value from the LHS. But there is no point in doing that if 5657 // every lane where we are comparing with non-zero is tautological.. 5658 if (!Cmp.isZero()) 5659 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5660 5661 // Decompose D into D0 * 2^K 5662 unsigned K = D.countTrailingZeros(); 5663 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5664 APInt D0 = D.lshr(K); 5665 5666 // D is even if it has trailing zeros. 5667 HadEvenDivisor |= (K != 0); 5668 // D is a power-of-two if D0 is one. 5669 // If all divisors are power-of-two, we will prefer to avoid the fold. 5670 AllDivisorsArePowerOfTwo &= D0.isOne(); 5671 5672 // P = inv(D0, 2^W) 5673 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5674 unsigned W = D.getBitWidth(); 5675 APInt P = D0.zext(W + 1) 5676 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5677 .trunc(W); 5678 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5679 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5680 5681 // Q = floor((2^W - 1) u/ D) 5682 // R = ((2^W - 1) u% D) 5683 APInt Q, R; 5684 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5685 5686 // If we are comparing with zero, then that comparison constant is okay, 5687 // else it may need to be one less than that. 5688 if (Cmp.ugt(R)) 5689 Q -= 1; 5690 5691 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5692 "We are expecting that K is always less than all-ones for ShSVT"); 5693 5694 // If the lane is tautological the result can be constant-folded. 5695 if (TautologicalLane) { 5696 // Set P and K amount to a bogus values so we can try to splat them. 5697 P = 0; 5698 K = -1; 5699 // And ensure that comparison constant is tautological, 5700 // it will always compare true/false. 5701 Q = -1; 5702 } 5703 5704 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5705 KAmts.push_back( 5706 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5707 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5708 return true; 5709 }; 5710 5711 SDValue N = REMNode.getOperand(0); 5712 SDValue D = REMNode.getOperand(1); 5713 5714 // Collect the values from each element. 5715 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5716 return SDValue(); 5717 5718 // If all lanes are tautological, the result can be constant-folded. 5719 if (AllLanesAreTautological) 5720 return SDValue(); 5721 5722 // If this is a urem by a powers-of-two, avoid the fold since it can be 5723 // best implemented as a bit test. 5724 if (AllDivisorsArePowerOfTwo) 5725 return SDValue(); 5726 5727 SDValue PVal, KVal, QVal; 5728 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5729 if (HadTautologicalLanes) { 5730 // Try to turn PAmts into a splat, since we don't care about the values 5731 // that are currently '0'. If we can't, just keep '0'`s. 5732 turnVectorIntoSplatVector(PAmts, isNullConstant); 5733 // Try to turn KAmts into a splat, since we don't care about the values 5734 // that are currently '-1'. If we can't, change them to '0'`s. 5735 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5736 DAG.getConstant(0, DL, ShSVT)); 5737 } 5738 5739 PVal = DAG.getBuildVector(VT, DL, PAmts); 5740 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5741 QVal = DAG.getBuildVector(VT, DL, QAmts); 5742 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5743 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5744 "Expected matchBinaryPredicate to return one element for " 5745 "SPLAT_VECTORs"); 5746 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5747 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5748 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5749 } else { 5750 PVal = PAmts[0]; 5751 KVal = KAmts[0]; 5752 QVal = QAmts[0]; 5753 } 5754 5755 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5756 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5757 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5758 assert(CompTargetNode.getValueType() == N.getValueType() && 5759 "Expecting that the types on LHS and RHS of comparisons match."); 5760 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5761 } 5762 5763 // (mul N, P) 5764 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5765 Created.push_back(Op0.getNode()); 5766 5767 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5768 // divisors as a performance improvement, since rotating by 0 is a no-op. 5769 if (HadEvenDivisor) { 5770 // We need ROTR to do this. 5771 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5772 return SDValue(); 5773 // UREM: (rotr (mul N, P), K) 5774 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5775 Created.push_back(Op0.getNode()); 5776 } 5777 5778 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5779 SDValue NewCC = 5780 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5781 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5782 if (!HadTautologicalInvertedLanes) 5783 return NewCC; 5784 5785 // If any lanes previously compared always-false, the NewCC will give 5786 // always-true result for them, so we need to fixup those lanes. 5787 // Or the other way around for inequality predicate. 5788 assert(VT.isVector() && "Can/should only get here for vectors."); 5789 Created.push_back(NewCC.getNode()); 5790 5791 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5792 // if C2 is not less than C1, the comparison is always false. 5793 // But we have produced the comparison that will give the 5794 // opposive tautological answer. So these lanes would need to be fixed up. 5795 SDValue TautologicalInvertedChannels = 5796 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5797 Created.push_back(TautologicalInvertedChannels.getNode()); 5798 5799 // NOTE: we avoid letting illegal types through even if we're before legalize 5800 // ops – legalization has a hard time producing good code for this. 5801 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5802 // If we have a vector select, let's replace the comparison results in the 5803 // affected lanes with the correct tautological result. 5804 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5805 DL, SETCCVT, SETCCVT); 5806 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5807 Replacement, NewCC); 5808 } 5809 5810 // Else, we can just invert the comparison result in the appropriate lanes. 5811 // 5812 // NOTE: see the note above VSELECT above. 5813 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5814 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5815 TautologicalInvertedChannels); 5816 5817 return SDValue(); // Don't know how to lower. 5818 } 5819 5820 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5821 /// where the divisor is constant and the comparison target is zero, 5822 /// return a DAG expression that will generate the same comparison result 5823 /// using only multiplications, additions and shifts/rotations. 5824 /// Ref: "Hacker's Delight" 10-17. 5825 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5826 SDValue CompTargetNode, 5827 ISD::CondCode Cond, 5828 DAGCombinerInfo &DCI, 5829 const SDLoc &DL) const { 5830 SmallVector<SDNode *, 7> Built; 5831 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5832 DCI, DL, Built)) { 5833 assert(Built.size() <= 7 && "Max size prediction failed."); 5834 for (SDNode *N : Built) 5835 DCI.AddToWorklist(N); 5836 return Folded; 5837 } 5838 5839 return SDValue(); 5840 } 5841 5842 SDValue 5843 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5844 SDValue CompTargetNode, ISD::CondCode Cond, 5845 DAGCombinerInfo &DCI, const SDLoc &DL, 5846 SmallVectorImpl<SDNode *> &Created) const { 5847 // Fold: 5848 // (seteq/ne (srem N, D), 0) 5849 // To: 5850 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5851 // 5852 // - D must be constant, with D = D0 * 2^K where D0 is odd 5853 // - P is the multiplicative inverse of D0 modulo 2^W 5854 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5855 // - Q = floor((2 * A) / (2^K)) 5856 // where W is the width of the common type of N and D. 5857 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5858 "Only applicable for (in)equality comparisons."); 5859 5860 SelectionDAG &DAG = DCI.DAG; 5861 5862 EVT VT = REMNode.getValueType(); 5863 EVT SVT = VT.getScalarType(); 5864 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5865 EVT ShSVT = ShVT.getScalarType(); 5866 5867 // If we are after ops legalization, and MUL is unavailable, we can not 5868 // proceed. 5869 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5870 return SDValue(); 5871 5872 // TODO: Could support comparing with non-zero too. 5873 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5874 if (!CompTarget || !CompTarget->isZero()) 5875 return SDValue(); 5876 5877 bool HadIntMinDivisor = false; 5878 bool HadOneDivisor = false; 5879 bool AllDivisorsAreOnes = true; 5880 bool HadEvenDivisor = false; 5881 bool NeedToApplyOffset = false; 5882 bool AllDivisorsArePowerOfTwo = true; 5883 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5884 5885 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5886 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5887 if (C->isZero()) 5888 return false; 5889 5890 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5891 5892 // WARNING: this fold is only valid for positive divisors! 5893 APInt D = C->getAPIntValue(); 5894 if (D.isNegative()) 5895 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5896 5897 HadIntMinDivisor |= D.isMinSignedValue(); 5898 5899 // If all divisors are ones, we will prefer to avoid the fold. 5900 HadOneDivisor |= D.isOne(); 5901 AllDivisorsAreOnes &= D.isOne(); 5902 5903 // Decompose D into D0 * 2^K 5904 unsigned K = D.countTrailingZeros(); 5905 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5906 APInt D0 = D.lshr(K); 5907 5908 if (!D.isMinSignedValue()) { 5909 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5910 // we don't care about this lane in this fold, we'll special-handle it. 5911 HadEvenDivisor |= (K != 0); 5912 } 5913 5914 // D is a power-of-two if D0 is one. This includes INT_MIN. 5915 // If all divisors are power-of-two, we will prefer to avoid the fold. 5916 AllDivisorsArePowerOfTwo &= D0.isOne(); 5917 5918 // P = inv(D0, 2^W) 5919 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5920 unsigned W = D.getBitWidth(); 5921 APInt P = D0.zext(W + 1) 5922 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5923 .trunc(W); 5924 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5925 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5926 5927 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5928 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5929 A.clearLowBits(K); 5930 5931 if (!D.isMinSignedValue()) { 5932 // If divisor INT_MIN, then we don't care about this lane in this fold, 5933 // we'll special-handle it. 5934 NeedToApplyOffset |= A != 0; 5935 } 5936 5937 // Q = floor((2 * A) / (2^K)) 5938 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5939 5940 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5941 "We are expecting that A is always less than all-ones for SVT"); 5942 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5943 "We are expecting that K is always less than all-ones for ShSVT"); 5944 5945 // If the divisor is 1 the result can be constant-folded. Likewise, we 5946 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5947 if (D.isOne()) { 5948 // Set P, A and K to a bogus values so we can try to splat them. 5949 P = 0; 5950 A = -1; 5951 K = -1; 5952 5953 // x ?% 1 == 0 <--> true <--> x u<= -1 5954 Q = -1; 5955 } 5956 5957 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5958 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5959 KAmts.push_back( 5960 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5961 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5962 return true; 5963 }; 5964 5965 SDValue N = REMNode.getOperand(0); 5966 SDValue D = REMNode.getOperand(1); 5967 5968 // Collect the values from each element. 5969 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5970 return SDValue(); 5971 5972 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5973 if (AllDivisorsAreOnes) 5974 return SDValue(); 5975 5976 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5977 // since it can be best implemented as a bit test. 5978 if (AllDivisorsArePowerOfTwo) 5979 return SDValue(); 5980 5981 SDValue PVal, AVal, KVal, QVal; 5982 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5983 if (HadOneDivisor) { 5984 // Try to turn PAmts into a splat, since we don't care about the values 5985 // that are currently '0'. If we can't, just keep '0'`s. 5986 turnVectorIntoSplatVector(PAmts, isNullConstant); 5987 // Try to turn AAmts into a splat, since we don't care about the 5988 // values that are currently '-1'. If we can't, change them to '0'`s. 5989 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5990 DAG.getConstant(0, DL, SVT)); 5991 // Try to turn KAmts into a splat, since we don't care about the values 5992 // that are currently '-1'. If we can't, change them to '0'`s. 5993 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5994 DAG.getConstant(0, DL, ShSVT)); 5995 } 5996 5997 PVal = DAG.getBuildVector(VT, DL, PAmts); 5998 AVal = DAG.getBuildVector(VT, DL, AAmts); 5999 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6000 QVal = DAG.getBuildVector(VT, DL, QAmts); 6001 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6002 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6003 QAmts.size() == 1 && 6004 "Expected matchUnaryPredicate to return one element for scalable " 6005 "vectors"); 6006 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6007 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6008 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6009 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6010 } else { 6011 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6012 PVal = PAmts[0]; 6013 AVal = AAmts[0]; 6014 KVal = KAmts[0]; 6015 QVal = QAmts[0]; 6016 } 6017 6018 // (mul N, P) 6019 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6020 Created.push_back(Op0.getNode()); 6021 6022 if (NeedToApplyOffset) { 6023 // We need ADD to do this. 6024 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6025 return SDValue(); 6026 6027 // (add (mul N, P), A) 6028 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6029 Created.push_back(Op0.getNode()); 6030 } 6031 6032 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6033 // divisors as a performance improvement, since rotating by 0 is a no-op. 6034 if (HadEvenDivisor) { 6035 // We need ROTR to do this. 6036 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6037 return SDValue(); 6038 // SREM: (rotr (add (mul N, P), A), K) 6039 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6040 Created.push_back(Op0.getNode()); 6041 } 6042 6043 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6044 SDValue Fold = 6045 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6046 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6047 6048 // If we didn't have lanes with INT_MIN divisor, then we're done. 6049 if (!HadIntMinDivisor) 6050 return Fold; 6051 6052 // That fold is only valid for positive divisors. Which effectively means, 6053 // it is invalid for INT_MIN divisors. So if we have such a lane, 6054 // we must fix-up results for said lanes. 6055 assert(VT.isVector() && "Can/should only get here for vectors."); 6056 6057 // NOTE: we avoid letting illegal types through even if we're before legalize 6058 // ops – legalization has a hard time producing good code for the code that 6059 // follows. 6060 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6061 !isOperationLegalOrCustom(ISD::AND, VT) || 6062 !isOperationLegalOrCustom(Cond, VT) || 6063 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6064 return SDValue(); 6065 6066 Created.push_back(Fold.getNode()); 6067 6068 SDValue IntMin = DAG.getConstant( 6069 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6070 SDValue IntMax = DAG.getConstant( 6071 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6072 SDValue Zero = 6073 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6074 6075 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6076 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6077 Created.push_back(DivisorIsIntMin.getNode()); 6078 6079 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6080 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6081 Created.push_back(Masked.getNode()); 6082 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6083 Created.push_back(MaskedIsZero.getNode()); 6084 6085 // To produce final result we need to blend 2 vectors: 'SetCC' and 6086 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6087 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6088 // constant-folded, select can get lowered to a shuffle with constant mask. 6089 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6090 MaskedIsZero, Fold); 6091 6092 return Blended; 6093 } 6094 6095 bool TargetLowering:: 6096 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6097 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6098 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6099 "be a constant integer"); 6100 return true; 6101 } 6102 6103 return false; 6104 } 6105 6106 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6107 const DenormalMode &Mode) const { 6108 SDLoc DL(Op); 6109 EVT VT = Op.getValueType(); 6110 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6111 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6112 // Testing it with denormal inputs to avoid wrong estimate. 6113 if (Mode.Input == DenormalMode::IEEE) { 6114 // This is specifically a check for the handling of denormal inputs, 6115 // not the result. 6116 6117 // Test = fabs(X) < SmallestNormal 6118 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6119 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6120 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6121 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6122 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6123 } 6124 // Test = X == 0.0 6125 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6126 } 6127 6128 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6129 bool LegalOps, bool OptForSize, 6130 NegatibleCost &Cost, 6131 unsigned Depth) const { 6132 // fneg is removable even if it has multiple uses. 6133 if (Op.getOpcode() == ISD::FNEG) { 6134 Cost = NegatibleCost::Cheaper; 6135 return Op.getOperand(0); 6136 } 6137 6138 // Don't recurse exponentially. 6139 if (Depth > SelectionDAG::MaxRecursionDepth) 6140 return SDValue(); 6141 6142 // Pre-increment recursion depth for use in recursive calls. 6143 ++Depth; 6144 const SDNodeFlags Flags = Op->getFlags(); 6145 const TargetOptions &Options = DAG.getTarget().Options; 6146 EVT VT = Op.getValueType(); 6147 unsigned Opcode = Op.getOpcode(); 6148 6149 // Don't allow anything with multiple uses unless we know it is free. 6150 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6151 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6152 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6153 if (!IsFreeExtend) 6154 return SDValue(); 6155 } 6156 6157 auto RemoveDeadNode = [&](SDValue N) { 6158 if (N && N.getNode()->use_empty()) 6159 DAG.RemoveDeadNode(N.getNode()); 6160 }; 6161 6162 SDLoc DL(Op); 6163 6164 // Because getNegatedExpression can delete nodes we need a handle to keep 6165 // temporary nodes alive in case the recursion manages to create an identical 6166 // node. 6167 std::list<HandleSDNode> Handles; 6168 6169 switch (Opcode) { 6170 case ISD::ConstantFP: { 6171 // Don't invert constant FP values after legalization unless the target says 6172 // the negated constant is legal. 6173 bool IsOpLegal = 6174 isOperationLegal(ISD::ConstantFP, VT) || 6175 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6176 OptForSize); 6177 6178 if (LegalOps && !IsOpLegal) 6179 break; 6180 6181 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6182 V.changeSign(); 6183 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6184 6185 // If we already have the use of the negated floating constant, it is free 6186 // to negate it even it has multiple uses. 6187 if (!Op.hasOneUse() && CFP.use_empty()) 6188 break; 6189 Cost = NegatibleCost::Neutral; 6190 return CFP; 6191 } 6192 case ISD::BUILD_VECTOR: { 6193 // Only permit BUILD_VECTOR of constants. 6194 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6195 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6196 })) 6197 break; 6198 6199 bool IsOpLegal = 6200 (isOperationLegal(ISD::ConstantFP, VT) && 6201 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6202 llvm::all_of(Op->op_values(), [&](SDValue N) { 6203 return N.isUndef() || 6204 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6205 OptForSize); 6206 }); 6207 6208 if (LegalOps && !IsOpLegal) 6209 break; 6210 6211 SmallVector<SDValue, 4> Ops; 6212 for (SDValue C : Op->op_values()) { 6213 if (C.isUndef()) { 6214 Ops.push_back(C); 6215 continue; 6216 } 6217 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6218 V.changeSign(); 6219 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6220 } 6221 Cost = NegatibleCost::Neutral; 6222 return DAG.getBuildVector(VT, DL, Ops); 6223 } 6224 case ISD::FADD: { 6225 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6226 break; 6227 6228 // After operation legalization, it might not be legal to create new FSUBs. 6229 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6230 break; 6231 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6232 6233 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6234 NegatibleCost CostX = NegatibleCost::Expensive; 6235 SDValue NegX = 6236 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6237 // Prevent this node from being deleted by the next call. 6238 if (NegX) 6239 Handles.emplace_back(NegX); 6240 6241 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6242 NegatibleCost CostY = NegatibleCost::Expensive; 6243 SDValue NegY = 6244 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6245 6246 // We're done with the handles. 6247 Handles.clear(); 6248 6249 // Negate the X if its cost is less or equal than Y. 6250 if (NegX && (CostX <= CostY)) { 6251 Cost = CostX; 6252 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6253 if (NegY != N) 6254 RemoveDeadNode(NegY); 6255 return N; 6256 } 6257 6258 // Negate the Y if it is not expensive. 6259 if (NegY) { 6260 Cost = CostY; 6261 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6262 if (NegX != N) 6263 RemoveDeadNode(NegX); 6264 return N; 6265 } 6266 break; 6267 } 6268 case ISD::FSUB: { 6269 // We can't turn -(A-B) into B-A when we honor signed zeros. 6270 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6271 break; 6272 6273 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6274 // fold (fneg (fsub 0, Y)) -> Y 6275 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6276 if (C->isZero()) { 6277 Cost = NegatibleCost::Cheaper; 6278 return Y; 6279 } 6280 6281 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6282 Cost = NegatibleCost::Neutral; 6283 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6284 } 6285 case ISD::FMUL: 6286 case ISD::FDIV: { 6287 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6288 6289 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6290 NegatibleCost CostX = NegatibleCost::Expensive; 6291 SDValue NegX = 6292 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6293 // Prevent this node from being deleted by the next call. 6294 if (NegX) 6295 Handles.emplace_back(NegX); 6296 6297 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6298 NegatibleCost CostY = NegatibleCost::Expensive; 6299 SDValue NegY = 6300 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6301 6302 // We're done with the handles. 6303 Handles.clear(); 6304 6305 // Negate the X if its cost is less or equal than Y. 6306 if (NegX && (CostX <= CostY)) { 6307 Cost = CostX; 6308 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6309 if (NegY != N) 6310 RemoveDeadNode(NegY); 6311 return N; 6312 } 6313 6314 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6315 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6316 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6317 break; 6318 6319 // Negate the Y if it is not expensive. 6320 if (NegY) { 6321 Cost = CostY; 6322 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6323 if (NegX != N) 6324 RemoveDeadNode(NegX); 6325 return N; 6326 } 6327 break; 6328 } 6329 case ISD::FMA: 6330 case ISD::FMAD: { 6331 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6332 break; 6333 6334 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6335 NegatibleCost CostZ = NegatibleCost::Expensive; 6336 SDValue NegZ = 6337 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6338 // Give up if fail to negate the Z. 6339 if (!NegZ) 6340 break; 6341 6342 // Prevent this node from being deleted by the next two calls. 6343 Handles.emplace_back(NegZ); 6344 6345 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6346 NegatibleCost CostX = NegatibleCost::Expensive; 6347 SDValue NegX = 6348 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6349 // Prevent this node from being deleted by the next call. 6350 if (NegX) 6351 Handles.emplace_back(NegX); 6352 6353 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6354 NegatibleCost CostY = NegatibleCost::Expensive; 6355 SDValue NegY = 6356 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6357 6358 // We're done with the handles. 6359 Handles.clear(); 6360 6361 // Negate the X if its cost is less or equal than Y. 6362 if (NegX && (CostX <= CostY)) { 6363 Cost = std::min(CostX, CostZ); 6364 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6365 if (NegY != N) 6366 RemoveDeadNode(NegY); 6367 return N; 6368 } 6369 6370 // Negate the Y if it is not expensive. 6371 if (NegY) { 6372 Cost = std::min(CostY, CostZ); 6373 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6374 if (NegX != N) 6375 RemoveDeadNode(NegX); 6376 return N; 6377 } 6378 break; 6379 } 6380 6381 case ISD::FP_EXTEND: 6382 case ISD::FSIN: 6383 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6384 OptForSize, Cost, Depth)) 6385 return DAG.getNode(Opcode, DL, VT, NegV); 6386 break; 6387 case ISD::FP_ROUND: 6388 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6389 OptForSize, Cost, Depth)) 6390 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6391 break; 6392 } 6393 6394 return SDValue(); 6395 } 6396 6397 //===----------------------------------------------------------------------===// 6398 // Legalization Utilities 6399 //===----------------------------------------------------------------------===// 6400 6401 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6402 SDValue LHS, SDValue RHS, 6403 SmallVectorImpl<SDValue> &Result, 6404 EVT HiLoVT, SelectionDAG &DAG, 6405 MulExpansionKind Kind, SDValue LL, 6406 SDValue LH, SDValue RL, SDValue RH) const { 6407 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6408 Opcode == ISD::SMUL_LOHI); 6409 6410 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6411 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6412 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6413 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6414 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6415 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6416 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6417 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6418 6419 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6420 return false; 6421 6422 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6423 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6424 6425 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6426 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6427 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6428 6429 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6430 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6431 bool Signed) -> bool { 6432 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6433 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6434 Hi = SDValue(Lo.getNode(), 1); 6435 return true; 6436 } 6437 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6438 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6439 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6440 return true; 6441 } 6442 return false; 6443 }; 6444 6445 SDValue Lo, Hi; 6446 6447 if (!LL.getNode() && !RL.getNode() && 6448 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6449 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6450 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6451 } 6452 6453 if (!LL.getNode()) 6454 return false; 6455 6456 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6457 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6458 DAG.MaskedValueIsZero(RHS, HighMask)) { 6459 // The inputs are both zero-extended. 6460 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6461 Result.push_back(Lo); 6462 Result.push_back(Hi); 6463 if (Opcode != ISD::MUL) { 6464 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6465 Result.push_back(Zero); 6466 Result.push_back(Zero); 6467 } 6468 return true; 6469 } 6470 } 6471 6472 if (!VT.isVector() && Opcode == ISD::MUL && 6473 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6474 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6475 // The input values are both sign-extended. 6476 // TODO non-MUL case? 6477 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6478 Result.push_back(Lo); 6479 Result.push_back(Hi); 6480 return true; 6481 } 6482 } 6483 6484 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6485 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6486 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6487 6488 if (!LH.getNode() && !RH.getNode() && 6489 isOperationLegalOrCustom(ISD::SRL, VT) && 6490 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6491 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6492 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6493 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6494 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6495 } 6496 6497 if (!LH.getNode()) 6498 return false; 6499 6500 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6501 return false; 6502 6503 Result.push_back(Lo); 6504 6505 if (Opcode == ISD::MUL) { 6506 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6507 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6508 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6509 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6510 Result.push_back(Hi); 6511 return true; 6512 } 6513 6514 // Compute the full width result. 6515 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6516 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6517 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6518 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6519 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6520 }; 6521 6522 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6523 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6524 return false; 6525 6526 // This is effectively the add part of a multiply-add of half-sized operands, 6527 // so it cannot overflow. 6528 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6529 6530 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6531 return false; 6532 6533 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6534 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6535 6536 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6537 isOperationLegalOrCustom(ISD::ADDE, VT)); 6538 if (UseGlue) 6539 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6540 Merge(Lo, Hi)); 6541 else 6542 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6543 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6544 6545 SDValue Carry = Next.getValue(1); 6546 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6547 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6548 6549 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6550 return false; 6551 6552 if (UseGlue) 6553 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6554 Carry); 6555 else 6556 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6557 Zero, Carry); 6558 6559 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6560 6561 if (Opcode == ISD::SMUL_LOHI) { 6562 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6563 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6564 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6565 6566 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6567 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6568 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6569 } 6570 6571 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6572 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6573 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6574 return true; 6575 } 6576 6577 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6578 SelectionDAG &DAG, MulExpansionKind Kind, 6579 SDValue LL, SDValue LH, SDValue RL, 6580 SDValue RH) const { 6581 SmallVector<SDValue, 2> Result; 6582 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6583 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6584 DAG, Kind, LL, LH, RL, RH); 6585 if (Ok) { 6586 assert(Result.size() == 2); 6587 Lo = Result[0]; 6588 Hi = Result[1]; 6589 } 6590 return Ok; 6591 } 6592 6593 // Check that (every element of) Z is undef or not an exact multiple of BW. 6594 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6595 return ISD::matchUnaryPredicate( 6596 Z, 6597 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6598 true); 6599 } 6600 6601 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6602 SelectionDAG &DAG) const { 6603 EVT VT = Node->getValueType(0); 6604 6605 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6606 !isOperationLegalOrCustom(ISD::SRL, VT) || 6607 !isOperationLegalOrCustom(ISD::SUB, VT) || 6608 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6609 return SDValue(); 6610 6611 SDValue X = Node->getOperand(0); 6612 SDValue Y = Node->getOperand(1); 6613 SDValue Z = Node->getOperand(2); 6614 6615 unsigned BW = VT.getScalarSizeInBits(); 6616 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6617 SDLoc DL(SDValue(Node, 0)); 6618 6619 EVT ShVT = Z.getValueType(); 6620 6621 // If a funnel shift in the other direction is more supported, use it. 6622 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6623 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6624 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6625 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6626 // fshl X, Y, Z -> fshr X, Y, -Z 6627 // fshr X, Y, Z -> fshl X, Y, -Z 6628 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6629 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6630 } else { 6631 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6632 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6633 SDValue One = DAG.getConstant(1, DL, ShVT); 6634 if (IsFSHL) { 6635 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6636 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6637 } else { 6638 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6639 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6640 } 6641 Z = DAG.getNOT(DL, Z, ShVT); 6642 } 6643 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6644 } 6645 6646 SDValue ShX, ShY; 6647 SDValue ShAmt, InvShAmt; 6648 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6649 // fshl: X << C | Y >> (BW - C) 6650 // fshr: X << (BW - C) | Y >> C 6651 // where C = Z % BW is not zero 6652 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6653 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6654 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6655 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6656 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6657 } else { 6658 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6659 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6660 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6661 if (isPowerOf2_32(BW)) { 6662 // Z % BW -> Z & (BW - 1) 6663 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6664 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6665 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6666 } else { 6667 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6668 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6669 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6670 } 6671 6672 SDValue One = DAG.getConstant(1, DL, ShVT); 6673 if (IsFSHL) { 6674 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6675 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6676 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6677 } else { 6678 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6679 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6680 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6681 } 6682 } 6683 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6684 } 6685 6686 // TODO: Merge with expandFunnelShift. 6687 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6688 SelectionDAG &DAG) const { 6689 EVT VT = Node->getValueType(0); 6690 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6691 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6692 SDValue Op0 = Node->getOperand(0); 6693 SDValue Op1 = Node->getOperand(1); 6694 SDLoc DL(SDValue(Node, 0)); 6695 6696 EVT ShVT = Op1.getValueType(); 6697 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6698 6699 // If a rotate in the other direction is more supported, use it. 6700 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6701 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6702 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6703 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6704 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6705 } 6706 6707 if (!AllowVectorOps && VT.isVector() && 6708 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6709 !isOperationLegalOrCustom(ISD::SRL, VT) || 6710 !isOperationLegalOrCustom(ISD::SUB, VT) || 6711 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6712 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6713 return SDValue(); 6714 6715 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6716 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6717 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6718 SDValue ShVal; 6719 SDValue HsVal; 6720 if (isPowerOf2_32(EltSizeInBits)) { 6721 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6722 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6723 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6724 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6725 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6726 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6727 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6728 } else { 6729 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6730 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6731 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6732 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6733 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6734 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6735 SDValue One = DAG.getConstant(1, DL, ShVT); 6736 HsVal = 6737 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6738 } 6739 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6740 } 6741 6742 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6743 SelectionDAG &DAG) const { 6744 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6745 EVT VT = Node->getValueType(0); 6746 unsigned VTBits = VT.getScalarSizeInBits(); 6747 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6748 6749 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6750 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6751 SDValue ShOpLo = Node->getOperand(0); 6752 SDValue ShOpHi = Node->getOperand(1); 6753 SDValue ShAmt = Node->getOperand(2); 6754 EVT ShAmtVT = ShAmt.getValueType(); 6755 EVT ShAmtCCVT = 6756 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6757 SDLoc dl(Node); 6758 6759 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6760 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6761 // away during isel. 6762 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6763 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6764 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6765 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6766 : DAG.getConstant(0, dl, VT); 6767 6768 SDValue Tmp2, Tmp3; 6769 if (IsSHL) { 6770 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6771 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6772 } else { 6773 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6774 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6775 } 6776 6777 // If the shift amount is larger or equal than the width of a part we don't 6778 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6779 // values for large shift amounts. 6780 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6781 DAG.getConstant(VTBits, dl, ShAmtVT)); 6782 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6783 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6784 6785 if (IsSHL) { 6786 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6787 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6788 } else { 6789 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6790 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6791 } 6792 } 6793 6794 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6795 SelectionDAG &DAG) const { 6796 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6797 SDValue Src = Node->getOperand(OpNo); 6798 EVT SrcVT = Src.getValueType(); 6799 EVT DstVT = Node->getValueType(0); 6800 SDLoc dl(SDValue(Node, 0)); 6801 6802 // FIXME: Only f32 to i64 conversions are supported. 6803 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6804 return false; 6805 6806 if (Node->isStrictFPOpcode()) 6807 // When a NaN is converted to an integer a trap is allowed. We can't 6808 // use this expansion here because it would eliminate that trap. Other 6809 // traps are also allowed and cannot be eliminated. See 6810 // IEEE 754-2008 sec 5.8. 6811 return false; 6812 6813 // Expand f32 -> i64 conversion 6814 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6815 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6816 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6817 EVT IntVT = SrcVT.changeTypeToInteger(); 6818 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6819 6820 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6821 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6822 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6823 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6824 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6825 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6826 6827 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6828 6829 SDValue ExponentBits = DAG.getNode( 6830 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6831 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6832 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6833 6834 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6835 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6836 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6837 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6838 6839 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6840 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6841 DAG.getConstant(0x00800000, dl, IntVT)); 6842 6843 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6844 6845 R = DAG.getSelectCC( 6846 dl, Exponent, ExponentLoBit, 6847 DAG.getNode(ISD::SHL, dl, DstVT, R, 6848 DAG.getZExtOrTrunc( 6849 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6850 dl, IntShVT)), 6851 DAG.getNode(ISD::SRL, dl, DstVT, R, 6852 DAG.getZExtOrTrunc( 6853 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6854 dl, IntShVT)), 6855 ISD::SETGT); 6856 6857 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6858 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6859 6860 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6861 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6862 return true; 6863 } 6864 6865 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6866 SDValue &Chain, 6867 SelectionDAG &DAG) const { 6868 SDLoc dl(SDValue(Node, 0)); 6869 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6870 SDValue Src = Node->getOperand(OpNo); 6871 6872 EVT SrcVT = Src.getValueType(); 6873 EVT DstVT = Node->getValueType(0); 6874 EVT SetCCVT = 6875 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6876 EVT DstSetCCVT = 6877 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6878 6879 // Only expand vector types if we have the appropriate vector bit operations. 6880 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6881 ISD::FP_TO_SINT; 6882 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6883 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6884 return false; 6885 6886 // If the maximum float value is smaller then the signed integer range, 6887 // the destination signmask can't be represented by the float, so we can 6888 // just use FP_TO_SINT directly. 6889 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6890 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6891 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6892 if (APFloat::opOverflow & 6893 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6894 if (Node->isStrictFPOpcode()) { 6895 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6896 { Node->getOperand(0), Src }); 6897 Chain = Result.getValue(1); 6898 } else 6899 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6900 return true; 6901 } 6902 6903 // Don't expand it if there isn't cheap fsub instruction. 6904 if (!isOperationLegalOrCustom( 6905 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6906 return false; 6907 6908 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6909 SDValue Sel; 6910 6911 if (Node->isStrictFPOpcode()) { 6912 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6913 Node->getOperand(0), /*IsSignaling*/ true); 6914 Chain = Sel.getValue(1); 6915 } else { 6916 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6917 } 6918 6919 bool Strict = Node->isStrictFPOpcode() || 6920 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6921 6922 if (Strict) { 6923 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6924 // signmask then offset (the result of which should be fully representable). 6925 // Sel = Src < 0x8000000000000000 6926 // FltOfs = select Sel, 0, 0x8000000000000000 6927 // IntOfs = select Sel, 0, 0x8000000000000000 6928 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6929 6930 // TODO: Should any fast-math-flags be set for the FSUB? 6931 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6932 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6933 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6934 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6935 DAG.getConstant(0, dl, DstVT), 6936 DAG.getConstant(SignMask, dl, DstVT)); 6937 SDValue SInt; 6938 if (Node->isStrictFPOpcode()) { 6939 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6940 { Chain, Src, FltOfs }); 6941 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6942 { Val.getValue(1), Val }); 6943 Chain = SInt.getValue(1); 6944 } else { 6945 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6946 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6947 } 6948 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6949 } else { 6950 // Expand based on maximum range of FP_TO_SINT: 6951 // True = fp_to_sint(Src) 6952 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6953 // Result = select (Src < 0x8000000000000000), True, False 6954 6955 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6956 // TODO: Should any fast-math-flags be set for the FSUB? 6957 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6958 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6959 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6960 DAG.getConstant(SignMask, dl, DstVT)); 6961 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6962 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6963 } 6964 return true; 6965 } 6966 6967 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6968 SDValue &Chain, 6969 SelectionDAG &DAG) const { 6970 // This transform is not correct for converting 0 when rounding mode is set 6971 // to round toward negative infinity which will produce -0.0. So disable under 6972 // strictfp. 6973 if (Node->isStrictFPOpcode()) 6974 return false; 6975 6976 SDValue Src = Node->getOperand(0); 6977 EVT SrcVT = Src.getValueType(); 6978 EVT DstVT = Node->getValueType(0); 6979 6980 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6981 return false; 6982 6983 // Only expand vector types if we have the appropriate vector bit operations. 6984 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6985 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6986 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6987 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6988 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6989 return false; 6990 6991 SDLoc dl(SDValue(Node, 0)); 6992 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6993 6994 // Implementation of unsigned i64 to f64 following the algorithm in 6995 // __floatundidf in compiler_rt. This implementation performs rounding 6996 // correctly in all rounding modes with the exception of converting 0 6997 // when rounding toward negative infinity. In that case the fsub will produce 6998 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6999 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7000 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7001 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7002 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7003 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7004 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7005 7006 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7007 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7008 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7009 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7010 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7011 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7012 SDValue HiSub = 7013 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7014 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7015 return true; 7016 } 7017 7018 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7019 SelectionDAG &DAG) const { 7020 SDLoc dl(Node); 7021 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7022 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7023 EVT VT = Node->getValueType(0); 7024 7025 if (VT.isScalableVector()) 7026 report_fatal_error( 7027 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7028 7029 if (isOperationLegalOrCustom(NewOp, VT)) { 7030 SDValue Quiet0 = Node->getOperand(0); 7031 SDValue Quiet1 = Node->getOperand(1); 7032 7033 if (!Node->getFlags().hasNoNaNs()) { 7034 // Insert canonicalizes if it's possible we need to quiet to get correct 7035 // sNaN behavior. 7036 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7037 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7038 Node->getFlags()); 7039 } 7040 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7041 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7042 Node->getFlags()); 7043 } 7044 } 7045 7046 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7047 } 7048 7049 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7050 // instead if there are no NaNs. 7051 if (Node->getFlags().hasNoNaNs()) { 7052 unsigned IEEE2018Op = 7053 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7054 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7055 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7056 Node->getOperand(1), Node->getFlags()); 7057 } 7058 } 7059 7060 // If none of the above worked, but there are no NaNs, then expand to 7061 // a compare/select sequence. This is required for correctness since 7062 // InstCombine might have canonicalized a fcmp+select sequence to a 7063 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7064 // expansion to libcall, we might introduce a link-time dependency 7065 // on libm into a file that originally did not have one. 7066 if (Node->getFlags().hasNoNaNs()) { 7067 ISD::CondCode Pred = 7068 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7069 SDValue Op1 = Node->getOperand(0); 7070 SDValue Op2 = Node->getOperand(1); 7071 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7072 // Copy FMF flags, but always set the no-signed-zeros flag 7073 // as this is implied by the FMINNUM/FMAXNUM semantics. 7074 SDNodeFlags Flags = Node->getFlags(); 7075 Flags.setNoSignedZeros(true); 7076 SelCC->setFlags(Flags); 7077 return SelCC; 7078 } 7079 7080 return SDValue(); 7081 } 7082 7083 // Only expand vector types if we have the appropriate vector bit operations. 7084 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7085 assert(VT.isVector() && "Expected vector type"); 7086 unsigned Len = VT.getScalarSizeInBits(); 7087 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7088 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7089 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7090 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7091 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7092 } 7093 7094 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7095 SDLoc dl(Node); 7096 EVT VT = Node->getValueType(0); 7097 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7098 SDValue Op = Node->getOperand(0); 7099 unsigned Len = VT.getScalarSizeInBits(); 7100 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7101 7102 // TODO: Add support for irregular type lengths. 7103 if (!(Len <= 128 && Len % 8 == 0)) 7104 return SDValue(); 7105 7106 // Only expand vector types if we have the appropriate vector bit operations. 7107 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7108 return SDValue(); 7109 7110 // This is the "best" algorithm from 7111 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7112 SDValue Mask55 = 7113 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7114 SDValue Mask33 = 7115 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7116 SDValue Mask0F = 7117 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7118 SDValue Mask01 = 7119 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7120 7121 // v = v - ((v >> 1) & 0x55555555...) 7122 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7123 DAG.getNode(ISD::AND, dl, VT, 7124 DAG.getNode(ISD::SRL, dl, VT, Op, 7125 DAG.getConstant(1, dl, ShVT)), 7126 Mask55)); 7127 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7128 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7129 DAG.getNode(ISD::AND, dl, VT, 7130 DAG.getNode(ISD::SRL, dl, VT, Op, 7131 DAG.getConstant(2, dl, ShVT)), 7132 Mask33)); 7133 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7134 Op = DAG.getNode(ISD::AND, dl, VT, 7135 DAG.getNode(ISD::ADD, dl, VT, Op, 7136 DAG.getNode(ISD::SRL, dl, VT, Op, 7137 DAG.getConstant(4, dl, ShVT))), 7138 Mask0F); 7139 // v = (v * 0x01010101...) >> (Len - 8) 7140 if (Len > 8) 7141 Op = 7142 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7143 DAG.getConstant(Len - 8, dl, ShVT)); 7144 7145 return Op; 7146 } 7147 7148 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7149 SDLoc dl(Node); 7150 EVT VT = Node->getValueType(0); 7151 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7152 SDValue Op = Node->getOperand(0); 7153 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7154 7155 // If the non-ZERO_UNDEF version is supported we can use that instead. 7156 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7157 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7158 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7159 7160 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7161 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7162 EVT SetCCVT = 7163 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7164 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7165 SDValue Zero = DAG.getConstant(0, dl, VT); 7166 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7167 return DAG.getSelect(dl, VT, SrcIsZero, 7168 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7169 } 7170 7171 // Only expand vector types if we have the appropriate vector bit operations. 7172 // This includes the operations needed to expand CTPOP if it isn't supported. 7173 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7174 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7175 !canExpandVectorCTPOP(*this, VT)) || 7176 !isOperationLegalOrCustom(ISD::SRL, VT) || 7177 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7178 return SDValue(); 7179 7180 // for now, we do this: 7181 // x = x | (x >> 1); 7182 // x = x | (x >> 2); 7183 // ... 7184 // x = x | (x >>16); 7185 // x = x | (x >>32); // for 64-bit input 7186 // return popcount(~x); 7187 // 7188 // Ref: "Hacker's Delight" by Henry Warren 7189 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7190 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7191 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7192 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7193 } 7194 Op = DAG.getNOT(dl, Op, VT); 7195 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7196 } 7197 7198 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7199 SDLoc dl(Node); 7200 EVT VT = Node->getValueType(0); 7201 SDValue Op = Node->getOperand(0); 7202 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7203 7204 // If the non-ZERO_UNDEF version is supported we can use that instead. 7205 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7206 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7207 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7208 7209 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7210 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7211 EVT SetCCVT = 7212 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7213 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7214 SDValue Zero = DAG.getConstant(0, dl, VT); 7215 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7216 return DAG.getSelect(dl, VT, SrcIsZero, 7217 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7218 } 7219 7220 // Only expand vector types if we have the appropriate vector bit operations. 7221 // This includes the operations needed to expand CTPOP if it isn't supported. 7222 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7223 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7224 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7225 !canExpandVectorCTPOP(*this, VT)) || 7226 !isOperationLegalOrCustom(ISD::SUB, VT) || 7227 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7228 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7229 return SDValue(); 7230 7231 // for now, we use: { return popcount(~x & (x - 1)); } 7232 // unless the target has ctlz but not ctpop, in which case we use: 7233 // { return 32 - nlz(~x & (x-1)); } 7234 // Ref: "Hacker's Delight" by Henry Warren 7235 SDValue Tmp = DAG.getNode( 7236 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7237 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7238 7239 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7240 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7241 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7242 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7243 } 7244 7245 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7246 } 7247 7248 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7249 bool IsNegative) const { 7250 SDLoc dl(N); 7251 EVT VT = N->getValueType(0); 7252 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7253 SDValue Op = N->getOperand(0); 7254 7255 // abs(x) -> smax(x,sub(0,x)) 7256 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7257 isOperationLegal(ISD::SMAX, VT)) { 7258 SDValue Zero = DAG.getConstant(0, dl, VT); 7259 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7260 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7261 } 7262 7263 // abs(x) -> umin(x,sub(0,x)) 7264 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7265 isOperationLegal(ISD::UMIN, VT)) { 7266 SDValue Zero = DAG.getConstant(0, dl, VT); 7267 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7268 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7269 } 7270 7271 // 0 - abs(x) -> smin(x, sub(0,x)) 7272 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7273 isOperationLegal(ISD::SMIN, VT)) { 7274 SDValue Zero = DAG.getConstant(0, dl, VT); 7275 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7276 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7277 } 7278 7279 // Only expand vector types if we have the appropriate vector operations. 7280 if (VT.isVector() && 7281 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7282 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7283 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7284 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7285 return SDValue(); 7286 7287 SDValue Shift = 7288 DAG.getNode(ISD::SRA, dl, VT, Op, 7289 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7290 if (!IsNegative) { 7291 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7292 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7293 } 7294 7295 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7296 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7297 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7298 } 7299 7300 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7301 SDLoc dl(N); 7302 EVT VT = N->getValueType(0); 7303 SDValue Op = N->getOperand(0); 7304 7305 if (!VT.isSimple()) 7306 return SDValue(); 7307 7308 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7309 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7310 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7311 default: 7312 return SDValue(); 7313 case MVT::i16: 7314 // Use a rotate by 8. This can be further expanded if necessary. 7315 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7316 case MVT::i32: 7317 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7318 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7319 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7320 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7321 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7322 DAG.getConstant(0xFF0000, dl, VT)); 7323 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7324 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7325 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7326 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7327 case MVT::i64: 7328 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7329 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7330 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7331 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7332 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7333 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7334 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7335 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7336 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7337 DAG.getConstant(255ULL<<48, dl, VT)); 7338 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7339 DAG.getConstant(255ULL<<40, dl, VT)); 7340 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7341 DAG.getConstant(255ULL<<32, dl, VT)); 7342 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7343 DAG.getConstant(255ULL<<24, dl, VT)); 7344 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7345 DAG.getConstant(255ULL<<16, dl, VT)); 7346 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7347 DAG.getConstant(255ULL<<8 , dl, VT)); 7348 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7349 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7350 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7351 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7352 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7353 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7354 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7355 } 7356 } 7357 7358 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7359 SDLoc dl(N); 7360 EVT VT = N->getValueType(0); 7361 SDValue Op = N->getOperand(0); 7362 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7363 unsigned Sz = VT.getScalarSizeInBits(); 7364 7365 SDValue Tmp, Tmp2, Tmp3; 7366 7367 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7368 // and finally the i1 pairs. 7369 // TODO: We can easily support i4/i2 legal types if any target ever does. 7370 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7371 // Create the masks - repeating the pattern every byte. 7372 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7373 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7374 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7375 7376 // BSWAP if the type is wider than a single byte. 7377 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7378 7379 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7380 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7381 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7382 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7383 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7384 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7385 7386 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7387 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7388 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7389 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7390 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7391 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7392 7393 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7394 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7395 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7396 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7397 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7398 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7399 return Tmp; 7400 } 7401 7402 Tmp = DAG.getConstant(0, dl, VT); 7403 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7404 if (I < J) 7405 Tmp2 = 7406 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7407 else 7408 Tmp2 = 7409 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7410 7411 APInt Shift(Sz, 1); 7412 Shift <<= J; 7413 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7414 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7415 } 7416 7417 return Tmp; 7418 } 7419 7420 std::pair<SDValue, SDValue> 7421 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7422 SelectionDAG &DAG) const { 7423 SDLoc SL(LD); 7424 SDValue Chain = LD->getChain(); 7425 SDValue BasePTR = LD->getBasePtr(); 7426 EVT SrcVT = LD->getMemoryVT(); 7427 EVT DstVT = LD->getValueType(0); 7428 ISD::LoadExtType ExtType = LD->getExtensionType(); 7429 7430 if (SrcVT.isScalableVector()) 7431 report_fatal_error("Cannot scalarize scalable vector loads"); 7432 7433 unsigned NumElem = SrcVT.getVectorNumElements(); 7434 7435 EVT SrcEltVT = SrcVT.getScalarType(); 7436 EVT DstEltVT = DstVT.getScalarType(); 7437 7438 // A vector must always be stored in memory as-is, i.e. without any padding 7439 // between the elements, since various code depend on it, e.g. in the 7440 // handling of a bitcast of a vector type to int, which may be done with a 7441 // vector store followed by an integer load. A vector that does not have 7442 // elements that are byte-sized must therefore be stored as an integer 7443 // built out of the extracted vector elements. 7444 if (!SrcEltVT.isByteSized()) { 7445 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7446 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7447 7448 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7449 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7450 7451 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7452 SDValue SrcEltBitMask = DAG.getConstant( 7453 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7454 7455 // Load the whole vector and avoid masking off the top bits as it makes 7456 // the codegen worse. 7457 SDValue Load = 7458 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7459 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7460 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7461 7462 SmallVector<SDValue, 8> Vals; 7463 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7464 unsigned ShiftIntoIdx = 7465 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7466 SDValue ShiftAmount = 7467 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7468 LoadVT, SL, /*LegalTypes=*/false); 7469 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7470 SDValue Elt = 7471 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7472 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7473 7474 if (ExtType != ISD::NON_EXTLOAD) { 7475 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7476 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7477 } 7478 7479 Vals.push_back(Scalar); 7480 } 7481 7482 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7483 return std::make_pair(Value, Load.getValue(1)); 7484 } 7485 7486 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7487 assert(SrcEltVT.isByteSized()); 7488 7489 SmallVector<SDValue, 8> Vals; 7490 SmallVector<SDValue, 8> LoadChains; 7491 7492 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7493 SDValue ScalarLoad = 7494 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7495 LD->getPointerInfo().getWithOffset(Idx * Stride), 7496 SrcEltVT, LD->getOriginalAlign(), 7497 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7498 7499 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7500 7501 Vals.push_back(ScalarLoad.getValue(0)); 7502 LoadChains.push_back(ScalarLoad.getValue(1)); 7503 } 7504 7505 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7506 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7507 7508 return std::make_pair(Value, NewChain); 7509 } 7510 7511 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7512 SelectionDAG &DAG) const { 7513 SDLoc SL(ST); 7514 7515 SDValue Chain = ST->getChain(); 7516 SDValue BasePtr = ST->getBasePtr(); 7517 SDValue Value = ST->getValue(); 7518 EVT StVT = ST->getMemoryVT(); 7519 7520 if (StVT.isScalableVector()) 7521 report_fatal_error("Cannot scalarize scalable vector stores"); 7522 7523 // The type of the data we want to save 7524 EVT RegVT = Value.getValueType(); 7525 EVT RegSclVT = RegVT.getScalarType(); 7526 7527 // The type of data as saved in memory. 7528 EVT MemSclVT = StVT.getScalarType(); 7529 7530 unsigned NumElem = StVT.getVectorNumElements(); 7531 7532 // A vector must always be stored in memory as-is, i.e. without any padding 7533 // between the elements, since various code depend on it, e.g. in the 7534 // handling of a bitcast of a vector type to int, which may be done with a 7535 // vector store followed by an integer load. A vector that does not have 7536 // elements that are byte-sized must therefore be stored as an integer 7537 // built out of the extracted vector elements. 7538 if (!MemSclVT.isByteSized()) { 7539 unsigned NumBits = StVT.getSizeInBits(); 7540 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7541 7542 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7543 7544 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7545 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7546 DAG.getVectorIdxConstant(Idx, SL)); 7547 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7548 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7549 unsigned ShiftIntoIdx = 7550 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7551 SDValue ShiftAmount = 7552 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7553 SDValue ShiftedElt = 7554 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7555 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7556 } 7557 7558 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7559 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7560 ST->getAAInfo()); 7561 } 7562 7563 // Store Stride in bytes 7564 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7565 assert(Stride && "Zero stride!"); 7566 // Extract each of the elements from the original vector and save them into 7567 // memory individually. 7568 SmallVector<SDValue, 8> Stores; 7569 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7570 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7571 DAG.getVectorIdxConstant(Idx, SL)); 7572 7573 SDValue Ptr = 7574 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7575 7576 // This scalar TruncStore may be illegal, but we legalize it later. 7577 SDValue Store = DAG.getTruncStore( 7578 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7579 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7580 ST->getAAInfo()); 7581 7582 Stores.push_back(Store); 7583 } 7584 7585 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7586 } 7587 7588 std::pair<SDValue, SDValue> 7589 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7590 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7591 "unaligned indexed loads not implemented!"); 7592 SDValue Chain = LD->getChain(); 7593 SDValue Ptr = LD->getBasePtr(); 7594 EVT VT = LD->getValueType(0); 7595 EVT LoadedVT = LD->getMemoryVT(); 7596 SDLoc dl(LD); 7597 auto &MF = DAG.getMachineFunction(); 7598 7599 if (VT.isFloatingPoint() || VT.isVector()) { 7600 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7601 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7602 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7603 LoadedVT.isVector()) { 7604 // Scalarize the load and let the individual components be handled. 7605 return scalarizeVectorLoad(LD, DAG); 7606 } 7607 7608 // Expand to a (misaligned) integer load of the same size, 7609 // then bitconvert to floating point or vector. 7610 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7611 LD->getMemOperand()); 7612 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7613 if (LoadedVT != VT) 7614 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7615 ISD::ANY_EXTEND, dl, VT, Result); 7616 7617 return std::make_pair(Result, newLoad.getValue(1)); 7618 } 7619 7620 // Copy the value to a (aligned) stack slot using (unaligned) integer 7621 // loads and stores, then do a (aligned) load from the stack slot. 7622 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7623 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7624 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7625 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7626 7627 // Make sure the stack slot is also aligned for the register type. 7628 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7629 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7630 SmallVector<SDValue, 8> Stores; 7631 SDValue StackPtr = StackBase; 7632 unsigned Offset = 0; 7633 7634 EVT PtrVT = Ptr.getValueType(); 7635 EVT StackPtrVT = StackPtr.getValueType(); 7636 7637 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7638 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7639 7640 // Do all but one copies using the full register width. 7641 for (unsigned i = 1; i < NumRegs; i++) { 7642 // Load one integer register's worth from the original location. 7643 SDValue Load = DAG.getLoad( 7644 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7645 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7646 LD->getAAInfo()); 7647 // Follow the load with a store to the stack slot. Remember the store. 7648 Stores.push_back(DAG.getStore( 7649 Load.getValue(1), dl, Load, StackPtr, 7650 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7651 // Increment the pointers. 7652 Offset += RegBytes; 7653 7654 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7655 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7656 } 7657 7658 // The last copy may be partial. Do an extending load. 7659 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7660 8 * (LoadedBytes - Offset)); 7661 SDValue Load = 7662 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7663 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7664 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7665 LD->getAAInfo()); 7666 // Follow the load with a store to the stack slot. Remember the store. 7667 // On big-endian machines this requires a truncating store to ensure 7668 // that the bits end up in the right place. 7669 Stores.push_back(DAG.getTruncStore( 7670 Load.getValue(1), dl, Load, StackPtr, 7671 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7672 7673 // The order of the stores doesn't matter - say it with a TokenFactor. 7674 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7675 7676 // Finally, perform the original load only redirected to the stack slot. 7677 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7678 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7679 LoadedVT); 7680 7681 // Callers expect a MERGE_VALUES node. 7682 return std::make_pair(Load, TF); 7683 } 7684 7685 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7686 "Unaligned load of unsupported type."); 7687 7688 // Compute the new VT that is half the size of the old one. This is an 7689 // integer MVT. 7690 unsigned NumBits = LoadedVT.getSizeInBits(); 7691 EVT NewLoadedVT; 7692 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7693 NumBits >>= 1; 7694 7695 Align Alignment = LD->getOriginalAlign(); 7696 unsigned IncrementSize = NumBits / 8; 7697 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7698 7699 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7700 if (HiExtType == ISD::NON_EXTLOAD) 7701 HiExtType = ISD::ZEXTLOAD; 7702 7703 // Load the value in two parts 7704 SDValue Lo, Hi; 7705 if (DAG.getDataLayout().isLittleEndian()) { 7706 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7707 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7708 LD->getAAInfo()); 7709 7710 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7711 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7712 LD->getPointerInfo().getWithOffset(IncrementSize), 7713 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7714 LD->getAAInfo()); 7715 } else { 7716 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7717 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7718 LD->getAAInfo()); 7719 7720 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7721 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7722 LD->getPointerInfo().getWithOffset(IncrementSize), 7723 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7724 LD->getAAInfo()); 7725 } 7726 7727 // aggregate the two parts 7728 SDValue ShiftAmount = 7729 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7730 DAG.getDataLayout())); 7731 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7732 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7733 7734 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7735 Hi.getValue(1)); 7736 7737 return std::make_pair(Result, TF); 7738 } 7739 7740 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7741 SelectionDAG &DAG) const { 7742 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7743 "unaligned indexed stores not implemented!"); 7744 SDValue Chain = ST->getChain(); 7745 SDValue Ptr = ST->getBasePtr(); 7746 SDValue Val = ST->getValue(); 7747 EVT VT = Val.getValueType(); 7748 Align Alignment = ST->getOriginalAlign(); 7749 auto &MF = DAG.getMachineFunction(); 7750 EVT StoreMemVT = ST->getMemoryVT(); 7751 7752 SDLoc dl(ST); 7753 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7754 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7755 if (isTypeLegal(intVT)) { 7756 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7757 StoreMemVT.isVector()) { 7758 // Scalarize the store and let the individual components be handled. 7759 SDValue Result = scalarizeVectorStore(ST, DAG); 7760 return Result; 7761 } 7762 // Expand to a bitconvert of the value to the integer type of the 7763 // same size, then a (misaligned) int store. 7764 // FIXME: Does not handle truncating floating point stores! 7765 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7766 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7767 Alignment, ST->getMemOperand()->getFlags()); 7768 return Result; 7769 } 7770 // Do a (aligned) store to a stack slot, then copy from the stack slot 7771 // to the final destination using (unaligned) integer loads and stores. 7772 MVT RegVT = getRegisterType( 7773 *DAG.getContext(), 7774 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7775 EVT PtrVT = Ptr.getValueType(); 7776 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7777 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7778 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7779 7780 // Make sure the stack slot is also aligned for the register type. 7781 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7782 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7783 7784 // Perform the original store, only redirected to the stack slot. 7785 SDValue Store = DAG.getTruncStore( 7786 Chain, dl, Val, StackPtr, 7787 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7788 7789 EVT StackPtrVT = StackPtr.getValueType(); 7790 7791 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7792 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7793 SmallVector<SDValue, 8> Stores; 7794 unsigned Offset = 0; 7795 7796 // Do all but one copies using the full register width. 7797 for (unsigned i = 1; i < NumRegs; i++) { 7798 // Load one integer register's worth from the stack slot. 7799 SDValue Load = DAG.getLoad( 7800 RegVT, dl, Store, StackPtr, 7801 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7802 // Store it to the final location. Remember the store. 7803 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7804 ST->getPointerInfo().getWithOffset(Offset), 7805 ST->getOriginalAlign(), 7806 ST->getMemOperand()->getFlags())); 7807 // Increment the pointers. 7808 Offset += RegBytes; 7809 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7810 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7811 } 7812 7813 // The last store may be partial. Do a truncating store. On big-endian 7814 // machines this requires an extending load from the stack slot to ensure 7815 // that the bits are in the right place. 7816 EVT LoadMemVT = 7817 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7818 7819 // Load from the stack slot. 7820 SDValue Load = DAG.getExtLoad( 7821 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7822 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7823 7824 Stores.push_back( 7825 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7826 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7827 ST->getOriginalAlign(), 7828 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7829 // The order of the stores doesn't matter - say it with a TokenFactor. 7830 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7831 return Result; 7832 } 7833 7834 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7835 "Unaligned store of unknown type."); 7836 // Get the half-size VT 7837 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7838 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7839 unsigned IncrementSize = NumBits / 8; 7840 7841 // Divide the stored value in two parts. 7842 SDValue ShiftAmount = DAG.getConstant( 7843 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7844 SDValue Lo = Val; 7845 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7846 7847 // Store the two parts 7848 SDValue Store1, Store2; 7849 Store1 = DAG.getTruncStore(Chain, dl, 7850 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7851 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7852 ST->getMemOperand()->getFlags()); 7853 7854 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7855 Store2 = DAG.getTruncStore( 7856 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7857 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7858 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7859 7860 SDValue Result = 7861 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7862 return Result; 7863 } 7864 7865 SDValue 7866 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7867 const SDLoc &DL, EVT DataVT, 7868 SelectionDAG &DAG, 7869 bool IsCompressedMemory) const { 7870 SDValue Increment; 7871 EVT AddrVT = Addr.getValueType(); 7872 EVT MaskVT = Mask.getValueType(); 7873 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7874 "Incompatible types of Data and Mask"); 7875 if (IsCompressedMemory) { 7876 if (DataVT.isScalableVector()) 7877 report_fatal_error( 7878 "Cannot currently handle compressed memory with scalable vectors"); 7879 // Incrementing the pointer according to number of '1's in the mask. 7880 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7881 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7882 if (MaskIntVT.getSizeInBits() < 32) { 7883 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7884 MaskIntVT = MVT::i32; 7885 } 7886 7887 // Count '1's with POPCNT. 7888 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7889 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7890 // Scale is an element size in bytes. 7891 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7892 AddrVT); 7893 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7894 } else if (DataVT.isScalableVector()) { 7895 Increment = DAG.getVScale(DL, AddrVT, 7896 APInt(AddrVT.getFixedSizeInBits(), 7897 DataVT.getStoreSize().getKnownMinSize())); 7898 } else 7899 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7900 7901 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7902 } 7903 7904 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7905 EVT VecVT, const SDLoc &dl, 7906 ElementCount SubEC) { 7907 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7908 "Cannot index a scalable vector within a fixed-width vector"); 7909 7910 unsigned NElts = VecVT.getVectorMinNumElements(); 7911 unsigned NumSubElts = SubEC.getKnownMinValue(); 7912 EVT IdxVT = Idx.getValueType(); 7913 7914 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7915 // If this is a constant index and we know the value plus the number of the 7916 // elements in the subvector minus one is less than the minimum number of 7917 // elements then it's safe to return Idx. 7918 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7919 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7920 return Idx; 7921 SDValue VS = 7922 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7923 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7924 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7925 DAG.getConstant(NumSubElts, dl, IdxVT)); 7926 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7927 } 7928 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7929 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7930 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7931 DAG.getConstant(Imm, dl, IdxVT)); 7932 } 7933 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7934 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7935 DAG.getConstant(MaxIndex, dl, IdxVT)); 7936 } 7937 7938 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7939 SDValue VecPtr, EVT VecVT, 7940 SDValue Index) const { 7941 return getVectorSubVecPointer( 7942 DAG, VecPtr, VecVT, 7943 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7944 Index); 7945 } 7946 7947 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7948 SDValue VecPtr, EVT VecVT, 7949 EVT SubVecVT, 7950 SDValue Index) const { 7951 SDLoc dl(Index); 7952 // Make sure the index type is big enough to compute in. 7953 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7954 7955 EVT EltVT = VecVT.getVectorElementType(); 7956 7957 // Calculate the element offset and add it to the pointer. 7958 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7959 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7960 "Converting bits to bytes lost precision"); 7961 assert(SubVecVT.getVectorElementType() == EltVT && 7962 "Sub-vector must be a vector with matching element type"); 7963 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7964 SubVecVT.getVectorElementCount()); 7965 7966 EVT IdxVT = Index.getValueType(); 7967 if (SubVecVT.isScalableVector()) 7968 Index = 7969 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7970 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7971 7972 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7973 DAG.getConstant(EltSize, dl, IdxVT)); 7974 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7975 } 7976 7977 //===----------------------------------------------------------------------===// 7978 // Implementation of Emulated TLS Model 7979 //===----------------------------------------------------------------------===// 7980 7981 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7982 SelectionDAG &DAG) const { 7983 // Access to address of TLS varialbe xyz is lowered to a function call: 7984 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7985 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7986 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7987 SDLoc dl(GA); 7988 7989 ArgListTy Args; 7990 ArgListEntry Entry; 7991 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7992 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7993 StringRef EmuTlsVarName(NameString); 7994 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7995 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7996 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7997 Entry.Ty = VoidPtrType; 7998 Args.push_back(Entry); 7999 8000 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8001 8002 TargetLowering::CallLoweringInfo CLI(DAG); 8003 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8004 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8005 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8006 8007 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8008 // At last for X86 targets, maybe good for other targets too? 8009 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8010 MFI.setAdjustsStack(true); // Is this only for X86 target? 8011 MFI.setHasCalls(true); 8012 8013 assert((GA->getOffset() == 0) && 8014 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8015 return CallResult.first; 8016 } 8017 8018 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8019 SelectionDAG &DAG) const { 8020 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8021 if (!isCtlzFast()) 8022 return SDValue(); 8023 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8024 SDLoc dl(Op); 8025 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8026 if (C->isZero() && CC == ISD::SETEQ) { 8027 EVT VT = Op.getOperand(0).getValueType(); 8028 SDValue Zext = Op.getOperand(0); 8029 if (VT.bitsLT(MVT::i32)) { 8030 VT = MVT::i32; 8031 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8032 } 8033 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8034 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8035 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8036 DAG.getConstant(Log2b, dl, MVT::i32)); 8037 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8038 } 8039 } 8040 return SDValue(); 8041 } 8042 8043 // Convert redundant addressing modes (e.g. scaling is redundant 8044 // when accessing bytes). 8045 ISD::MemIndexType 8046 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8047 SDValue Offsets) const { 8048 bool IsScaledIndex = 8049 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8050 bool IsSignedIndex = 8051 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8052 8053 // Scaling is unimportant for bytes, canonicalize to unscaled. 8054 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8055 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8056 8057 return IndexType; 8058 } 8059 8060 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8061 SDValue Op0 = Node->getOperand(0); 8062 SDValue Op1 = Node->getOperand(1); 8063 EVT VT = Op0.getValueType(); 8064 unsigned Opcode = Node->getOpcode(); 8065 SDLoc DL(Node); 8066 8067 // umin(x,y) -> sub(x,usubsat(x,y)) 8068 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8069 isOperationLegal(ISD::USUBSAT, VT)) { 8070 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8071 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8072 } 8073 8074 // umax(x,y) -> add(x,usubsat(y,x)) 8075 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8076 isOperationLegal(ISD::USUBSAT, VT)) { 8077 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8078 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8079 } 8080 8081 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8082 ISD::CondCode CC; 8083 switch (Opcode) { 8084 default: llvm_unreachable("How did we get here?"); 8085 case ISD::SMAX: CC = ISD::SETGT; break; 8086 case ISD::SMIN: CC = ISD::SETLT; break; 8087 case ISD::UMAX: CC = ISD::SETUGT; break; 8088 case ISD::UMIN: CC = ISD::SETULT; break; 8089 } 8090 8091 // FIXME: Should really try to split the vector in case it's legal on a 8092 // subvector. 8093 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8094 return DAG.UnrollVectorOp(Node); 8095 8096 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8097 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8098 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8099 } 8100 8101 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8102 unsigned Opcode = Node->getOpcode(); 8103 SDValue LHS = Node->getOperand(0); 8104 SDValue RHS = Node->getOperand(1); 8105 EVT VT = LHS.getValueType(); 8106 SDLoc dl(Node); 8107 8108 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8109 assert(VT.isInteger() && "Expected operands to be integers"); 8110 8111 // usub.sat(a, b) -> umax(a, b) - b 8112 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8113 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8114 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8115 } 8116 8117 // uadd.sat(a, b) -> umin(a, ~b) + b 8118 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8119 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8120 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8121 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8122 } 8123 8124 unsigned OverflowOp; 8125 switch (Opcode) { 8126 case ISD::SADDSAT: 8127 OverflowOp = ISD::SADDO; 8128 break; 8129 case ISD::UADDSAT: 8130 OverflowOp = ISD::UADDO; 8131 break; 8132 case ISD::SSUBSAT: 8133 OverflowOp = ISD::SSUBO; 8134 break; 8135 case ISD::USUBSAT: 8136 OverflowOp = ISD::USUBO; 8137 break; 8138 default: 8139 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8140 "addition or subtraction node."); 8141 } 8142 8143 // FIXME: Should really try to split the vector in case it's legal on a 8144 // subvector. 8145 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8146 return DAG.UnrollVectorOp(Node); 8147 8148 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8149 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8150 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8151 SDValue SumDiff = Result.getValue(0); 8152 SDValue Overflow = Result.getValue(1); 8153 SDValue Zero = DAG.getConstant(0, dl, VT); 8154 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8155 8156 if (Opcode == ISD::UADDSAT) { 8157 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8158 // (LHS + RHS) | OverflowMask 8159 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8160 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8161 } 8162 // Overflow ? 0xffff.... : (LHS + RHS) 8163 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8164 } 8165 8166 if (Opcode == ISD::USUBSAT) { 8167 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8168 // (LHS - RHS) & ~OverflowMask 8169 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8170 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8171 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8172 } 8173 // Overflow ? 0 : (LHS - RHS) 8174 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8175 } 8176 8177 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8178 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8179 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8180 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8181 DAG.getConstant(BitWidth - 1, dl, VT)); 8182 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8183 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8184 } 8185 8186 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8187 unsigned Opcode = Node->getOpcode(); 8188 bool IsSigned = Opcode == ISD::SSHLSAT; 8189 SDValue LHS = Node->getOperand(0); 8190 SDValue RHS = Node->getOperand(1); 8191 EVT VT = LHS.getValueType(); 8192 SDLoc dl(Node); 8193 8194 assert((Node->getOpcode() == ISD::SSHLSAT || 8195 Node->getOpcode() == ISD::USHLSAT) && 8196 "Expected a SHLSAT opcode"); 8197 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8198 assert(VT.isInteger() && "Expected operands to be integers"); 8199 8200 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8201 8202 unsigned BW = VT.getScalarSizeInBits(); 8203 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8204 SDValue Orig = 8205 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8206 8207 SDValue SatVal; 8208 if (IsSigned) { 8209 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8210 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8211 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8212 SatMin, SatMax, ISD::SETLT); 8213 } else { 8214 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8215 } 8216 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8217 8218 return Result; 8219 } 8220 8221 SDValue 8222 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8223 assert((Node->getOpcode() == ISD::SMULFIX || 8224 Node->getOpcode() == ISD::UMULFIX || 8225 Node->getOpcode() == ISD::SMULFIXSAT || 8226 Node->getOpcode() == ISD::UMULFIXSAT) && 8227 "Expected a fixed point multiplication opcode"); 8228 8229 SDLoc dl(Node); 8230 SDValue LHS = Node->getOperand(0); 8231 SDValue RHS = Node->getOperand(1); 8232 EVT VT = LHS.getValueType(); 8233 unsigned Scale = Node->getConstantOperandVal(2); 8234 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8235 Node->getOpcode() == ISD::UMULFIXSAT); 8236 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8237 Node->getOpcode() == ISD::SMULFIXSAT); 8238 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8239 unsigned VTSize = VT.getScalarSizeInBits(); 8240 8241 if (!Scale) { 8242 // [us]mul.fix(a, b, 0) -> mul(a, b) 8243 if (!Saturating) { 8244 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8245 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8246 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8247 SDValue Result = 8248 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8249 SDValue Product = Result.getValue(0); 8250 SDValue Overflow = Result.getValue(1); 8251 SDValue Zero = DAG.getConstant(0, dl, VT); 8252 8253 APInt MinVal = APInt::getSignedMinValue(VTSize); 8254 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8255 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8256 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8257 // Xor the inputs, if resulting sign bit is 0 the product will be 8258 // positive, else negative. 8259 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8260 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8261 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8262 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8263 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8264 SDValue Result = 8265 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8266 SDValue Product = Result.getValue(0); 8267 SDValue Overflow = Result.getValue(1); 8268 8269 APInt MaxVal = APInt::getMaxValue(VTSize); 8270 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8271 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8272 } 8273 } 8274 8275 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8276 "Expected scale to be less than the number of bits if signed or at " 8277 "most the number of bits if unsigned."); 8278 assert(LHS.getValueType() == RHS.getValueType() && 8279 "Expected both operands to be the same type"); 8280 8281 // Get the upper and lower bits of the result. 8282 SDValue Lo, Hi; 8283 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8284 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8285 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8286 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8287 Lo = Result.getValue(0); 8288 Hi = Result.getValue(1); 8289 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8290 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8291 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8292 } else if (VT.isVector()) { 8293 return SDValue(); 8294 } else { 8295 report_fatal_error("Unable to expand fixed point multiplication."); 8296 } 8297 8298 if (Scale == VTSize) 8299 // Result is just the top half since we'd be shifting by the width of the 8300 // operand. Overflow impossible so this works for both UMULFIX and 8301 // UMULFIXSAT. 8302 return Hi; 8303 8304 // The result will need to be shifted right by the scale since both operands 8305 // are scaled. The result is given to us in 2 halves, so we only want part of 8306 // both in the result. 8307 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8308 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8309 DAG.getConstant(Scale, dl, ShiftTy)); 8310 if (!Saturating) 8311 return Result; 8312 8313 if (!Signed) { 8314 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8315 // widened multiplication) aren't all zeroes. 8316 8317 // Saturate to max if ((Hi >> Scale) != 0), 8318 // which is the same as if (Hi > ((1 << Scale) - 1)) 8319 APInt MaxVal = APInt::getMaxValue(VTSize); 8320 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8321 dl, VT); 8322 Result = DAG.getSelectCC(dl, Hi, LowMask, 8323 DAG.getConstant(MaxVal, dl, VT), Result, 8324 ISD::SETUGT); 8325 8326 return Result; 8327 } 8328 8329 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8330 // widened multiplication) aren't all ones or all zeroes. 8331 8332 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8333 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8334 8335 if (Scale == 0) { 8336 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8337 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8338 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8339 // Saturated to SatMin if wide product is negative, and SatMax if wide 8340 // product is positive ... 8341 SDValue Zero = DAG.getConstant(0, dl, VT); 8342 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8343 ISD::SETLT); 8344 // ... but only if we overflowed. 8345 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8346 } 8347 8348 // We handled Scale==0 above so all the bits to examine is in Hi. 8349 8350 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8351 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8352 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8353 dl, VT); 8354 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8355 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8356 // which is the same as if (HI < (-1 << (Scale - 1)) 8357 SDValue HighMask = 8358 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8359 dl, VT); 8360 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8361 return Result; 8362 } 8363 8364 SDValue 8365 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8366 SDValue LHS, SDValue RHS, 8367 unsigned Scale, SelectionDAG &DAG) const { 8368 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8369 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8370 "Expected a fixed point division opcode"); 8371 8372 EVT VT = LHS.getValueType(); 8373 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8374 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8375 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8376 8377 // If there is enough room in the type to upscale the LHS or downscale the 8378 // RHS before the division, we can perform it in this type without having to 8379 // resize. For signed operations, the LHS headroom is the number of 8380 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8381 // The headroom for the RHS is the number of trailing zeroes. 8382 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8383 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8384 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8385 8386 // For signed saturating operations, we need to be able to detect true integer 8387 // division overflow; that is, when you have MIN / -EPS. However, this 8388 // is undefined behavior and if we emit divisions that could take such 8389 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8390 // example). 8391 // Avoid this by requiring an extra bit so that we never get this case. 8392 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8393 // signed saturating division, we need to emit a whopping 32-bit division. 8394 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8395 return SDValue(); 8396 8397 unsigned LHSShift = std::min(LHSLead, Scale); 8398 unsigned RHSShift = Scale - LHSShift; 8399 8400 // At this point, we know that if we shift the LHS up by LHSShift and the 8401 // RHS down by RHSShift, we can emit a regular division with a final scaling 8402 // factor of Scale. 8403 8404 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8405 if (LHSShift) 8406 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8407 DAG.getConstant(LHSShift, dl, ShiftTy)); 8408 if (RHSShift) 8409 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8410 DAG.getConstant(RHSShift, dl, ShiftTy)); 8411 8412 SDValue Quot; 8413 if (Signed) { 8414 // For signed operations, if the resulting quotient is negative and the 8415 // remainder is nonzero, subtract 1 from the quotient to round towards 8416 // negative infinity. 8417 SDValue Rem; 8418 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8419 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8420 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8421 if (isTypeLegal(VT) && 8422 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8423 Quot = DAG.getNode(ISD::SDIVREM, dl, 8424 DAG.getVTList(VT, VT), 8425 LHS, RHS); 8426 Rem = Quot.getValue(1); 8427 Quot = Quot.getValue(0); 8428 } else { 8429 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8430 LHS, RHS); 8431 Rem = DAG.getNode(ISD::SREM, dl, VT, 8432 LHS, RHS); 8433 } 8434 SDValue Zero = DAG.getConstant(0, dl, VT); 8435 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8436 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8437 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8438 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8439 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8440 DAG.getConstant(1, dl, VT)); 8441 Quot = DAG.getSelect(dl, VT, 8442 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8443 Sub1, Quot); 8444 } else 8445 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8446 LHS, RHS); 8447 8448 return Quot; 8449 } 8450 8451 void TargetLowering::expandUADDSUBO( 8452 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8453 SDLoc dl(Node); 8454 SDValue LHS = Node->getOperand(0); 8455 SDValue RHS = Node->getOperand(1); 8456 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8457 8458 // If ADD/SUBCARRY is legal, use that instead. 8459 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8460 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8461 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8462 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8463 { LHS, RHS, CarryIn }); 8464 Result = SDValue(NodeCarry.getNode(), 0); 8465 Overflow = SDValue(NodeCarry.getNode(), 1); 8466 return; 8467 } 8468 8469 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8470 LHS.getValueType(), LHS, RHS); 8471 8472 EVT ResultType = Node->getValueType(1); 8473 EVT SetCCType = getSetCCResultType( 8474 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8475 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8476 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8477 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8478 } 8479 8480 void TargetLowering::expandSADDSUBO( 8481 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8482 SDLoc dl(Node); 8483 SDValue LHS = Node->getOperand(0); 8484 SDValue RHS = Node->getOperand(1); 8485 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8486 8487 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8488 LHS.getValueType(), LHS, RHS); 8489 8490 EVT ResultType = Node->getValueType(1); 8491 EVT OType = getSetCCResultType( 8492 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8493 8494 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8495 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8496 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8497 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8498 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8499 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8500 return; 8501 } 8502 8503 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8504 8505 // For an addition, the result should be less than one of the operands (LHS) 8506 // if and only if the other operand (RHS) is negative, otherwise there will 8507 // be overflow. 8508 // For a subtraction, the result should be less than one of the operands 8509 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8510 // otherwise there will be overflow. 8511 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8512 SDValue ConditionRHS = 8513 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8514 8515 Overflow = DAG.getBoolExtOrTrunc( 8516 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8517 ResultType, ResultType); 8518 } 8519 8520 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8521 SDValue &Overflow, SelectionDAG &DAG) const { 8522 SDLoc dl(Node); 8523 EVT VT = Node->getValueType(0); 8524 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8525 SDValue LHS = Node->getOperand(0); 8526 SDValue RHS = Node->getOperand(1); 8527 bool isSigned = Node->getOpcode() == ISD::SMULO; 8528 8529 // For power-of-two multiplications we can use a simpler shift expansion. 8530 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8531 const APInt &C = RHSC->getAPIntValue(); 8532 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8533 if (C.isPowerOf2()) { 8534 // smulo(x, signed_min) is same as umulo(x, signed_min). 8535 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8536 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8537 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8538 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8539 Overflow = DAG.getSetCC(dl, SetCCVT, 8540 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8541 dl, VT, Result, ShiftAmt), 8542 LHS, ISD::SETNE); 8543 return true; 8544 } 8545 } 8546 8547 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8548 if (VT.isVector()) 8549 WideVT = 8550 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8551 8552 SDValue BottomHalf; 8553 SDValue TopHalf; 8554 static const unsigned Ops[2][3] = 8555 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8556 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8557 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8558 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8559 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8560 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8561 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8562 RHS); 8563 TopHalf = BottomHalf.getValue(1); 8564 } else if (isTypeLegal(WideVT)) { 8565 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8566 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8567 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8568 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8569 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8570 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8571 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8572 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8573 } else { 8574 if (VT.isVector()) 8575 return false; 8576 8577 // We can fall back to a libcall with an illegal type for the MUL if we 8578 // have a libcall big enough. 8579 // Also, we can fall back to a division in some cases, but that's a big 8580 // performance hit in the general case. 8581 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8582 if (WideVT == MVT::i16) 8583 LC = RTLIB::MUL_I16; 8584 else if (WideVT == MVT::i32) 8585 LC = RTLIB::MUL_I32; 8586 else if (WideVT == MVT::i64) 8587 LC = RTLIB::MUL_I64; 8588 else if (WideVT == MVT::i128) 8589 LC = RTLIB::MUL_I128; 8590 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8591 8592 SDValue HiLHS; 8593 SDValue HiRHS; 8594 if (isSigned) { 8595 // The high part is obtained by SRA'ing all but one of the bits of low 8596 // part. 8597 unsigned LoSize = VT.getFixedSizeInBits(); 8598 HiLHS = 8599 DAG.getNode(ISD::SRA, dl, VT, LHS, 8600 DAG.getConstant(LoSize - 1, dl, 8601 getPointerTy(DAG.getDataLayout()))); 8602 HiRHS = 8603 DAG.getNode(ISD::SRA, dl, VT, RHS, 8604 DAG.getConstant(LoSize - 1, dl, 8605 getPointerTy(DAG.getDataLayout()))); 8606 } else { 8607 HiLHS = DAG.getConstant(0, dl, VT); 8608 HiRHS = DAG.getConstant(0, dl, VT); 8609 } 8610 8611 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8612 // pre-lowered to the correct types. This all depends upon WideVT not 8613 // being a legal type for the architecture and thus has to be split to 8614 // two arguments. 8615 SDValue Ret; 8616 TargetLowering::MakeLibCallOptions CallOptions; 8617 CallOptions.setSExt(isSigned); 8618 CallOptions.setIsPostTypeLegalization(true); 8619 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8620 // Halves of WideVT are packed into registers in different order 8621 // depending on platform endianness. This is usually handled by 8622 // the C calling convention, but we can't defer to it in 8623 // the legalizer. 8624 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8625 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8626 } else { 8627 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8628 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8629 } 8630 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8631 "Ret value is a collection of constituent nodes holding result."); 8632 if (DAG.getDataLayout().isLittleEndian()) { 8633 // Same as above. 8634 BottomHalf = Ret.getOperand(0); 8635 TopHalf = Ret.getOperand(1); 8636 } else { 8637 BottomHalf = Ret.getOperand(1); 8638 TopHalf = Ret.getOperand(0); 8639 } 8640 } 8641 8642 Result = BottomHalf; 8643 if (isSigned) { 8644 SDValue ShiftAmt = DAG.getConstant( 8645 VT.getScalarSizeInBits() - 1, dl, 8646 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8647 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8648 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8649 } else { 8650 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8651 DAG.getConstant(0, dl, VT), ISD::SETNE); 8652 } 8653 8654 // Truncate the result if SetCC returns a larger type than needed. 8655 EVT RType = Node->getValueType(1); 8656 if (RType.bitsLT(Overflow.getValueType())) 8657 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8658 8659 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8660 "Unexpected result type for S/UMULO legalization"); 8661 return true; 8662 } 8663 8664 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8665 SDLoc dl(Node); 8666 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8667 SDValue Op = Node->getOperand(0); 8668 EVT VT = Op.getValueType(); 8669 8670 if (VT.isScalableVector()) 8671 report_fatal_error( 8672 "Expanding reductions for scalable vectors is undefined."); 8673 8674 // Try to use a shuffle reduction for power of two vectors. 8675 if (VT.isPow2VectorType()) { 8676 while (VT.getVectorNumElements() > 1) { 8677 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8678 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8679 break; 8680 8681 SDValue Lo, Hi; 8682 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8683 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8684 VT = HalfVT; 8685 } 8686 } 8687 8688 EVT EltVT = VT.getVectorElementType(); 8689 unsigned NumElts = VT.getVectorNumElements(); 8690 8691 SmallVector<SDValue, 8> Ops; 8692 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8693 8694 SDValue Res = Ops[0]; 8695 for (unsigned i = 1; i < NumElts; i++) 8696 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8697 8698 // Result type may be wider than element type. 8699 if (EltVT != Node->getValueType(0)) 8700 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8701 return Res; 8702 } 8703 8704 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8705 SDLoc dl(Node); 8706 SDValue AccOp = Node->getOperand(0); 8707 SDValue VecOp = Node->getOperand(1); 8708 SDNodeFlags Flags = Node->getFlags(); 8709 8710 EVT VT = VecOp.getValueType(); 8711 EVT EltVT = VT.getVectorElementType(); 8712 8713 if (VT.isScalableVector()) 8714 report_fatal_error( 8715 "Expanding reductions for scalable vectors is undefined."); 8716 8717 unsigned NumElts = VT.getVectorNumElements(); 8718 8719 SmallVector<SDValue, 8> Ops; 8720 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8721 8722 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8723 8724 SDValue Res = AccOp; 8725 for (unsigned i = 0; i < NumElts; i++) 8726 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8727 8728 return Res; 8729 } 8730 8731 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8732 SelectionDAG &DAG) const { 8733 EVT VT = Node->getValueType(0); 8734 SDLoc dl(Node); 8735 bool isSigned = Node->getOpcode() == ISD::SREM; 8736 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8737 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8738 SDValue Dividend = Node->getOperand(0); 8739 SDValue Divisor = Node->getOperand(1); 8740 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8741 SDVTList VTs = DAG.getVTList(VT, VT); 8742 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8743 return true; 8744 } 8745 if (isOperationLegalOrCustom(DivOpc, VT)) { 8746 // X % Y -> X-X/Y*Y 8747 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8748 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8749 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8750 return true; 8751 } 8752 return false; 8753 } 8754 8755 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8756 SelectionDAG &DAG) const { 8757 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8758 SDLoc dl(SDValue(Node, 0)); 8759 SDValue Src = Node->getOperand(0); 8760 8761 // DstVT is the result type, while SatVT is the size to which we saturate 8762 EVT SrcVT = Src.getValueType(); 8763 EVT DstVT = Node->getValueType(0); 8764 8765 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8766 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8767 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8768 assert(SatWidth <= DstWidth && 8769 "Expected saturation width smaller than result width"); 8770 8771 // Determine minimum and maximum integer values and their corresponding 8772 // floating-point values. 8773 APInt MinInt, MaxInt; 8774 if (IsSigned) { 8775 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8776 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8777 } else { 8778 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8779 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8780 } 8781 8782 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8783 // libcall emission cannot handle this. Large result types will fail. 8784 if (SrcVT == MVT::f16) { 8785 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8786 SrcVT = Src.getValueType(); 8787 } 8788 8789 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8790 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8791 8792 APFloat::opStatus MinStatus = 8793 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8794 APFloat::opStatus MaxStatus = 8795 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8796 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8797 !(MaxStatus & APFloat::opStatus::opInexact); 8798 8799 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8800 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8801 8802 // If the integer bounds are exactly representable as floats and min/max are 8803 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8804 // of comparisons and selects. 8805 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8806 isOperationLegal(ISD::FMAXNUM, SrcVT); 8807 if (AreExactFloatBounds && MinMaxLegal) { 8808 SDValue Clamped = Src; 8809 8810 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8811 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8812 // Clamp by MaxFloat from above. NaN cannot occur. 8813 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8814 // Convert clamped value to integer. 8815 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8816 dl, DstVT, Clamped); 8817 8818 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8819 // which will cast to zero. 8820 if (!IsSigned) 8821 return FpToInt; 8822 8823 // Otherwise, select 0 if Src is NaN. 8824 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8825 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8826 ISD::CondCode::SETUO); 8827 } 8828 8829 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8830 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8831 8832 // Result of direct conversion. The assumption here is that the operation is 8833 // non-trapping and it's fine to apply it to an out-of-range value if we 8834 // select it away later. 8835 SDValue FpToInt = 8836 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8837 8838 SDValue Select = FpToInt; 8839 8840 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8841 // MinInt if Src is NaN. 8842 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8843 ISD::CondCode::SETULT); 8844 // If Src OGT MaxFloat, select MaxInt. 8845 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8846 ISD::CondCode::SETOGT); 8847 8848 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8849 // is already zero. 8850 if (!IsSigned) 8851 return Select; 8852 8853 // Otherwise, select 0 if Src is NaN. 8854 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8855 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8856 } 8857 8858 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8859 SelectionDAG &DAG) const { 8860 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8861 assert(Node->getValueType(0).isScalableVector() && 8862 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8863 8864 EVT VT = Node->getValueType(0); 8865 SDValue V1 = Node->getOperand(0); 8866 SDValue V2 = Node->getOperand(1); 8867 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8868 SDLoc DL(Node); 8869 8870 // Expand through memory thusly: 8871 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8872 // Store V1, Ptr 8873 // Store V2, Ptr + sizeof(V1) 8874 // If (Imm < 0) 8875 // TrailingElts = -Imm 8876 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8877 // else 8878 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8879 // Res = Load Ptr 8880 8881 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8882 8883 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8884 VT.getVectorElementCount() * 2); 8885 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8886 EVT PtrVT = StackPtr.getValueType(); 8887 auto &MF = DAG.getMachineFunction(); 8888 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8889 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8890 8891 // Store the lo part of CONCAT_VECTORS(V1, V2) 8892 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8893 // Store the hi part of CONCAT_VECTORS(V1, V2) 8894 SDValue OffsetToV2 = DAG.getVScale( 8895 DL, PtrVT, 8896 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8897 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8898 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8899 8900 if (Imm >= 0) { 8901 // Load back the required element. getVectorElementPointer takes care of 8902 // clamping the index if it's out-of-bounds. 8903 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8904 // Load the spliced result 8905 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8906 MachinePointerInfo::getUnknownStack(MF)); 8907 } 8908 8909 uint64_t TrailingElts = -Imm; 8910 8911 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8912 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8913 SDValue TrailingBytes = 8914 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8915 8916 if (TrailingElts > VT.getVectorMinNumElements()) { 8917 SDValue VLBytes = DAG.getVScale( 8918 DL, PtrVT, 8919 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8920 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8921 } 8922 8923 // Calculate the start address of the spliced result. 8924 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8925 8926 // Load the spliced result 8927 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8928 MachinePointerInfo::getUnknownStack(MF)); 8929 } 8930 8931 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8932 SDValue &LHS, SDValue &RHS, 8933 SDValue &CC, bool &NeedInvert, 8934 const SDLoc &dl, SDValue &Chain, 8935 bool IsSignaling) const { 8936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8937 MVT OpVT = LHS.getSimpleValueType(); 8938 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8939 NeedInvert = false; 8940 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8941 default: 8942 llvm_unreachable("Unknown condition code action!"); 8943 case TargetLowering::Legal: 8944 // Nothing to do. 8945 break; 8946 case TargetLowering::Expand: { 8947 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8948 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8949 std::swap(LHS, RHS); 8950 CC = DAG.getCondCode(InvCC); 8951 return true; 8952 } 8953 // Swapping operands didn't work. Try inverting the condition. 8954 bool NeedSwap = false; 8955 InvCC = getSetCCInverse(CCCode, OpVT); 8956 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8957 // If inverting the condition is not enough, try swapping operands 8958 // on top of it. 8959 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8960 NeedSwap = true; 8961 } 8962 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8963 CC = DAG.getCondCode(InvCC); 8964 NeedInvert = true; 8965 if (NeedSwap) 8966 std::swap(LHS, RHS); 8967 return true; 8968 } 8969 8970 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8971 unsigned Opc = 0; 8972 switch (CCCode) { 8973 default: 8974 llvm_unreachable("Don't know how to expand this condition!"); 8975 case ISD::SETUO: 8976 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8977 CC1 = ISD::SETUNE; 8978 CC2 = ISD::SETUNE; 8979 Opc = ISD::OR; 8980 break; 8981 } 8982 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8983 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8984 NeedInvert = true; 8985 LLVM_FALLTHROUGH; 8986 case ISD::SETO: 8987 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8988 "If SETO is expanded, SETOEQ must be legal!"); 8989 CC1 = ISD::SETOEQ; 8990 CC2 = ISD::SETOEQ; 8991 Opc = ISD::AND; 8992 break; 8993 case ISD::SETONE: 8994 case ISD::SETUEQ: 8995 // If the SETUO or SETO CC isn't legal, we might be able to use 8996 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8997 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8998 // the operands. 8999 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9000 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9001 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9002 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9003 CC1 = ISD::SETOGT; 9004 CC2 = ISD::SETOLT; 9005 Opc = ISD::OR; 9006 NeedInvert = ((unsigned)CCCode & 0x8U); 9007 break; 9008 } 9009 LLVM_FALLTHROUGH; 9010 case ISD::SETOEQ: 9011 case ISD::SETOGT: 9012 case ISD::SETOGE: 9013 case ISD::SETOLT: 9014 case ISD::SETOLE: 9015 case ISD::SETUNE: 9016 case ISD::SETUGT: 9017 case ISD::SETUGE: 9018 case ISD::SETULT: 9019 case ISD::SETULE: 9020 // If we are floating point, assign and break, otherwise fall through. 9021 if (!OpVT.isInteger()) { 9022 // We can use the 4th bit to tell if we are the unordered 9023 // or ordered version of the opcode. 9024 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9025 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9026 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9027 break; 9028 } 9029 // Fallthrough if we are unsigned integer. 9030 LLVM_FALLTHROUGH; 9031 case ISD::SETLE: 9032 case ISD::SETGT: 9033 case ISD::SETGE: 9034 case ISD::SETLT: 9035 case ISD::SETNE: 9036 case ISD::SETEQ: 9037 // If all combinations of inverting the condition and swapping operands 9038 // didn't work then we have no means to expand the condition. 9039 llvm_unreachable("Don't know how to expand this condition!"); 9040 } 9041 9042 SDValue SetCC1, SetCC2; 9043 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9044 // If we aren't the ordered or unorder operation, 9045 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9046 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9047 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9048 } else { 9049 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9050 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9051 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9052 } 9053 if (Chain) 9054 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9055 SetCC2.getValue(1)); 9056 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9057 RHS = SDValue(); 9058 CC = SDValue(); 9059 return true; 9060 } 9061 } 9062 return false; 9063 } 9064