1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // Output known-1 bits are only known if set in both the LHS & RHS. 1175 Known.One &= Known2.One; 1176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1177 Known.Zero |= Known2.Zero; 1178 break; 1179 } 1180 case ISD::OR: { 1181 SDValue Op0 = Op.getOperand(0); 1182 SDValue Op1 = Op.getOperand(1); 1183 1184 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1185 Depth + 1)) 1186 return true; 1187 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1188 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1189 Known2, TLO, Depth + 1)) 1190 return true; 1191 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1192 1193 // Attempt to avoid multi-use ops if we don't need anything from them. 1194 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1195 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1196 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1198 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1199 if (DemandedOp0 || DemandedOp1) { 1200 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1201 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1202 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1203 return TLO.CombineTo(Op, NewOp); 1204 } 1205 } 1206 1207 // If all of the demanded bits are known zero on one side, return the other. 1208 // These bits cannot contribute to the result of the 'or'. 1209 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1210 return TLO.CombineTo(Op, Op0); 1211 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1212 return TLO.CombineTo(Op, Op1); 1213 // If the RHS is a constant, see if we can simplify it. 1214 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1215 return true; 1216 // If the operation can be done in a smaller type, do so. 1217 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1218 return true; 1219 1220 // Output known-0 bits are only known if clear in both the LHS & RHS. 1221 Known.Zero &= Known2.Zero; 1222 // Output known-1 are known to be set if set in either the LHS | RHS. 1223 Known.One |= Known2.One; 1224 break; 1225 } 1226 case ISD::XOR: { 1227 SDValue Op0 = Op.getOperand(0); 1228 SDValue Op1 = Op.getOperand(1); 1229 1230 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1234 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1235 Depth + 1)) 1236 return true; 1237 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1238 1239 // Attempt to avoid multi-use ops if we don't need anything from them. 1240 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1241 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1242 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1243 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1244 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1245 if (DemandedOp0 || DemandedOp1) { 1246 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1247 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 1253 // If all of the demanded bits are known zero on one side, return the other. 1254 // These bits cannot contribute to the result of the 'xor'. 1255 if (DemandedBits.isSubsetOf(Known.Zero)) 1256 return TLO.CombineTo(Op, Op0); 1257 if (DemandedBits.isSubsetOf(Known2.Zero)) 1258 return TLO.CombineTo(Op, Op1); 1259 // If the operation can be done in a smaller type, do so. 1260 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1261 return true; 1262 1263 // If all of the unknown bits are known to be zero on one side or the other 1264 // (but not both) turn this into an *inclusive* or. 1265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1266 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1268 1269 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1270 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1271 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1272 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1273 1274 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1275 // If one side is a constant, and all of the known set bits on the other 1276 // side are also set in the constant, turn this into an AND, as we know 1277 // the bits will be cleared. 1278 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1279 // NB: it is okay if more bits are known than are requested 1280 if (C->getAPIntValue() == Known2.One) { 1281 SDValue ANDC = 1282 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1283 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1284 } 1285 1286 // If the RHS is a constant, see if we can change it. Don't alter a -1 1287 // constant because that's a 'not' op, and that is better for combining 1288 // and codegen. 1289 if (!C->isAllOnesValue()) { 1290 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1291 // We're flipping all demanded bits. Flip the undemanded bits too. 1292 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1293 return TLO.CombineTo(Op, New); 1294 } 1295 // If we can't turn this into a 'not', try to shrink the constant. 1296 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1297 return true; 1298 } 1299 } 1300 1301 Known = std::move(KnownOut); 1302 break; 1303 } 1304 case ISD::SELECT: 1305 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SELECT_CC: 1323 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1324 Depth + 1)) 1325 return true; 1326 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1327 Depth + 1)) 1328 return true; 1329 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1330 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1331 1332 // If the operands are constants, see if we can simplify them. 1333 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1334 return true; 1335 1336 // Only known if known in both the LHS and RHS. 1337 Known.One &= Known2.One; 1338 Known.Zero &= Known2.Zero; 1339 break; 1340 case ISD::SETCC: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1344 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1345 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1346 // -1, we may be able to bypass the setcc. 1347 if (DemandedBits.isSignMask() && 1348 Op0.getScalarValueSizeInBits() == BitWidth && 1349 getBooleanContents(Op0.getValueType()) == 1350 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1351 // If we're testing X < 0, then this compare isn't needed - just use X! 1352 // FIXME: We're limiting to integer types here, but this should also work 1353 // if we don't care about FP signed-zero. The use of SETLT with FP means 1354 // that we don't care about NaNs. 1355 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1356 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1357 return TLO.CombineTo(Op, Op0); 1358 1359 // TODO: Should we check for other forms of sign-bit comparisons? 1360 // Examples: X <= -1, X >= 0 1361 } 1362 if (getBooleanContents(Op0.getValueType()) == 1363 TargetLowering::ZeroOrOneBooleanContent && 1364 BitWidth > 1) 1365 Known.Zero.setBitsFrom(1); 1366 break; 1367 } 1368 case ISD::SHL: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 EVT ShiftVT = Op1.getValueType(); 1372 1373 if (const APInt *SA = 1374 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1375 unsigned ShAmt = SA->getZExtValue(); 1376 if (ShAmt == 0) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1380 // single shift. We can do this if the bottom bits (which are shifted 1381 // out) are never demanded. 1382 // TODO - support non-uniform vector amounts. 1383 if (Op0.getOpcode() == ISD::SRL) { 1384 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1385 if (const APInt *SA2 = 1386 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1387 if (SA2->ult(BitWidth)) { 1388 unsigned C1 = SA2->getZExtValue(); 1389 unsigned Opc = ISD::SHL; 1390 int Diff = ShAmt - C1; 1391 if (Diff < 0) { 1392 Diff = -Diff; 1393 Opc = ISD::SRL; 1394 } 1395 1396 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1397 return TLO.CombineTo( 1398 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1399 } 1400 } 1401 } 1402 } 1403 1404 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1405 // are not demanded. This will likely allow the anyext to be folded away. 1406 // TODO - support non-uniform vector amounts. 1407 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1408 SDValue InnerOp = Op0.getOperand(0); 1409 EVT InnerVT = InnerOp.getValueType(); 1410 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1411 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1412 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1413 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1414 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1415 ShTy = InnerVT; 1416 SDValue NarrowShl = 1417 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1418 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1419 return TLO.CombineTo( 1420 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1421 } 1422 1423 // Repeat the SHL optimization above in cases where an extension 1424 // intervenes: (shl (anyext (shr x, c1)), c2) to 1425 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1426 // aren't demanded (as above) and that the shifted upper c1 bits of 1427 // x aren't demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1430 InnerOp.hasOneUse()) { 1431 if (const APInt *SA2 = 1432 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1433 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1434 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1435 DemandedBits.getActiveBits() <= 1436 (InnerBits - InnerShAmt + ShAmt) && 1437 DemandedBits.countTrailingZeros() >= ShAmt) { 1438 SDValue NewSA = 1439 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1440 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1441 InnerOp.getOperand(0)); 1442 return TLO.CombineTo( 1443 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1444 } 1445 } 1446 } 1447 } 1448 1449 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1450 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 Known.Zero <<= ShAmt; 1455 Known.One <<= ShAmt; 1456 // low bits known zero. 1457 Known.Zero.setLowBits(ShAmt); 1458 1459 // Try shrinking the operation as long as the shift amount will still be 1460 // in range. 1461 if ((ShAmt < DemandedBits.getActiveBits()) && 1462 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1463 return true; 1464 } 1465 break; 1466 } 1467 case ISD::SRL: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 EVT ShiftVT = Op1.getValueType(); 1471 1472 if (const APInt *SA = 1473 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1474 unsigned ShAmt = SA->getZExtValue(); 1475 if (ShAmt == 0) 1476 return TLO.CombineTo(Op, Op0); 1477 1478 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1479 // single shift. We can do this if the top bits (which are shifted out) 1480 // are never demanded. 1481 // TODO - support non-uniform vector amounts. 1482 if (Op0.getOpcode() == ISD::SHL) { 1483 if (const APInt *SA2 = 1484 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1485 if (!DemandedBits.intersects( 1486 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1487 if (SA2->ult(BitWidth)) { 1488 unsigned C1 = SA2->getZExtValue(); 1489 unsigned Opc = ISD::SRL; 1490 int Diff = ShAmt - C1; 1491 if (Diff < 0) { 1492 Diff = -Diff; 1493 Opc = ISD::SHL; 1494 } 1495 1496 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1497 return TLO.CombineTo( 1498 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1499 } 1500 } 1501 } 1502 } 1503 1504 APInt InDemandedMask = (DemandedBits << ShAmt); 1505 1506 // If the shift is exact, then it does demand the low bits (and knows that 1507 // they are zero). 1508 if (Op->getFlags().hasExact()) 1509 InDemandedMask.setLowBits(ShAmt); 1510 1511 // Compute the new bits that are at the top now. 1512 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1513 Depth + 1)) 1514 return true; 1515 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1516 Known.Zero.lshrInPlace(ShAmt); 1517 Known.One.lshrInPlace(ShAmt); 1518 // High bits known zero. 1519 Known.Zero.setHighBits(ShAmt); 1520 } 1521 break; 1522 } 1523 case ISD::SRA: { 1524 SDValue Op0 = Op.getOperand(0); 1525 SDValue Op1 = Op.getOperand(1); 1526 EVT ShiftVT = Op1.getValueType(); 1527 1528 // If we only want bits that already match the signbit then we don't need 1529 // to shift. 1530 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1532 NumHiDemandedBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 // If this is an arithmetic shift right and only the low-bit is set, we can 1536 // always convert this into a logical shr, even if the shift amount is 1537 // variable. The low bit of the shift cannot be an input sign bit unless 1538 // the shift amount is >= the size of the datatype, which is undefined. 1539 if (DemandedBits.isOneValue()) 1540 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1582 } 1583 1584 if (Known.One[BitWidth - ShAmt - 1]) 1585 // New bits are known one. 1586 Known.One.setHighBits(ShAmt); 1587 1588 // Attempt to avoid multi-use ops if we don't need anything from them. 1589 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1590 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1591 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1592 if (DemandedOp0) { 1593 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1594 return TLO.CombineTo(Op, NewOp); 1595 } 1596 } 1597 } 1598 break; 1599 } 1600 case ISD::FSHL: 1601 case ISD::FSHR: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 SDValue Op2 = Op.getOperand(2); 1605 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1606 1607 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1608 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1609 1610 // For fshl, 0-shift returns the 1st arg. 1611 // For fshr, 0-shift returns the 2nd arg. 1612 if (Amt == 0) { 1613 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1614 Known, TLO, Depth + 1)) 1615 return true; 1616 break; 1617 } 1618 1619 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1620 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1621 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1622 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1623 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1624 Depth + 1)) 1625 return true; 1626 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 1630 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1631 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1633 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.One |= Known2.One; 1635 Known.Zero |= Known2.Zero; 1636 } 1637 break; 1638 } 1639 case ISD::ROTL: 1640 case ISD::ROTR: { 1641 SDValue Op0 = Op.getOperand(0); 1642 1643 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1644 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1645 return TLO.CombineTo(Op, Op0); 1646 break; 1647 } 1648 case ISD::BITREVERSE: { 1649 SDValue Src = Op.getOperand(0); 1650 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1651 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1652 Depth + 1)) 1653 return true; 1654 Known.One = Known2.One.reverseBits(); 1655 Known.Zero = Known2.Zero.reverseBits(); 1656 break; 1657 } 1658 case ISD::BSWAP: { 1659 SDValue Src = Op.getOperand(0); 1660 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1661 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1662 Depth + 1)) 1663 return true; 1664 Known.One = Known2.One.byteSwap(); 1665 Known.Zero = Known2.Zero.byteSwap(); 1666 break; 1667 } 1668 case ISD::SIGN_EXTEND_INREG: { 1669 SDValue Op0 = Op.getOperand(0); 1670 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1671 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1672 1673 // If we only care about the highest bit, don't bother shifting right. 1674 if (DemandedBits.isSignMask()) { 1675 unsigned NumSignBits = 1676 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1677 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1678 // However if the input is already sign extended we expect the sign 1679 // extension to be dropped altogether later and do not simplify. 1680 if (!AlreadySignExtended) { 1681 // Compute the correct shift amount type, which must be getShiftAmountTy 1682 // for scalar types after legalization. 1683 EVT ShiftAmtTy = VT; 1684 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1685 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1686 1687 SDValue ShiftAmt = 1688 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1689 return TLO.CombineTo(Op, 1690 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1691 } 1692 } 1693 1694 // If none of the extended bits are demanded, eliminate the sextinreg. 1695 if (DemandedBits.getActiveBits() <= ExVTBits) 1696 return TLO.CombineTo(Op, Op0); 1697 1698 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1699 1700 // Since the sign extended bits are demanded, we know that the sign 1701 // bit is demanded. 1702 InputDemandedBits.setBit(ExVTBits - 1); 1703 1704 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1705 return true; 1706 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1707 1708 // If the sign bit of the input is known set or clear, then we know the 1709 // top bits of the result. 1710 1711 // If the input sign bit is known zero, convert this into a zero extension. 1712 if (Known.Zero[ExVTBits - 1]) 1713 return TLO.CombineTo( 1714 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1715 1716 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1717 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1718 Known.One.setBitsFrom(ExVTBits); 1719 Known.Zero &= Mask; 1720 } else { // Input sign bit unknown 1721 Known.Zero &= Mask; 1722 Known.One &= Mask; 1723 } 1724 break; 1725 } 1726 case ISD::BUILD_PAIR: { 1727 EVT HalfVT = Op.getOperand(0).getValueType(); 1728 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1729 1730 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1731 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1732 1733 KnownBits KnownLo, KnownHi; 1734 1735 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1736 return true; 1737 1738 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1739 return true; 1740 1741 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1742 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1743 1744 Known.One = KnownLo.One.zext(BitWidth) | 1745 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1746 break; 1747 } 1748 case ISD::ZERO_EXTEND: 1749 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1750 SDValue Src = Op.getOperand(0); 1751 EVT SrcVT = Src.getValueType(); 1752 unsigned InBits = SrcVT.getScalarSizeInBits(); 1753 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1754 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1755 1756 // If none of the top bits are demanded, convert this into an any_extend. 1757 if (DemandedBits.getActiveBits() <= InBits) { 1758 // If we only need the non-extended bits of the bottom element 1759 // then we can just bitcast to the result. 1760 if (IsVecInReg && DemandedElts == 1 && 1761 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1762 TLO.DAG.getDataLayout().isLittleEndian()) 1763 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1764 1765 unsigned Opc = 1766 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1767 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1768 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1769 } 1770 1771 APInt InDemandedBits = DemandedBits.trunc(InBits); 1772 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1773 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1774 Depth + 1)) 1775 return true; 1776 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1777 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1778 Known = Known.zext(BitWidth); 1779 break; 1780 } 1781 case ISD::SIGN_EXTEND: 1782 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1783 SDValue Src = Op.getOperand(0); 1784 EVT SrcVT = Src.getValueType(); 1785 unsigned InBits = SrcVT.getScalarSizeInBits(); 1786 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1787 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1788 1789 // If none of the top bits are demanded, convert this into an any_extend. 1790 if (DemandedBits.getActiveBits() <= InBits) { 1791 // If we only need the non-extended bits of the bottom element 1792 // then we can just bitcast to the result. 1793 if (IsVecInReg && DemandedElts == 1 && 1794 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1795 TLO.DAG.getDataLayout().isLittleEndian()) 1796 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1797 1798 unsigned Opc = 1799 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1800 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1801 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1802 } 1803 1804 APInt InDemandedBits = DemandedBits.trunc(InBits); 1805 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1806 1807 // Since some of the sign extended bits are demanded, we know that the sign 1808 // bit is demanded. 1809 InDemandedBits.setBit(InBits - 1); 1810 1811 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1812 Depth + 1)) 1813 return true; 1814 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1815 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1816 1817 // If the sign bit is known one, the top bits match. 1818 Known = Known.sext(BitWidth); 1819 1820 // If the sign bit is known zero, convert this to a zero extend. 1821 if (Known.isNonNegative()) { 1822 unsigned Opc = 1823 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1824 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1825 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1826 } 1827 break; 1828 } 1829 case ISD::ANY_EXTEND: 1830 case ISD::ANY_EXTEND_VECTOR_INREG: { 1831 SDValue Src = Op.getOperand(0); 1832 EVT SrcVT = Src.getValueType(); 1833 unsigned InBits = SrcVT.getScalarSizeInBits(); 1834 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1835 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1836 1837 // If we only need the bottom element then we can just bitcast. 1838 // TODO: Handle ANY_EXTEND? 1839 if (IsVecInReg && DemandedElts == 1 && 1840 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1841 TLO.DAG.getDataLayout().isLittleEndian()) 1842 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1843 1844 APInt InDemandedBits = DemandedBits.trunc(InBits); 1845 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1846 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1847 Depth + 1)) 1848 return true; 1849 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1850 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1851 Known = Known.anyext(BitWidth); 1852 1853 // Attempt to avoid multi-use ops if we don't need anything from them. 1854 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1855 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1856 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1857 break; 1858 } 1859 case ISD::TRUNCATE: { 1860 SDValue Src = Op.getOperand(0); 1861 1862 // Simplify the input, using demanded bit information, and compute the known 1863 // zero/one bits live out. 1864 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1865 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1866 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1867 return true; 1868 Known = Known.trunc(BitWidth); 1869 1870 // Attempt to avoid multi-use ops if we don't need anything from them. 1871 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1872 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1873 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1874 1875 // If the input is only used by this truncate, see if we can shrink it based 1876 // on the known demanded bits. 1877 if (Src.getNode()->hasOneUse()) { 1878 switch (Src.getOpcode()) { 1879 default: 1880 break; 1881 case ISD::SRL: 1882 // Shrink SRL by a constant if none of the high bits shifted in are 1883 // demanded. 1884 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1885 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1886 // undesirable. 1887 break; 1888 1889 SDValue ShAmt = Src.getOperand(1); 1890 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1891 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1892 break; 1893 uint64_t ShVal = ShAmtC->getZExtValue(); 1894 1895 APInt HighBits = 1896 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1897 HighBits.lshrInPlace(ShVal); 1898 HighBits = HighBits.trunc(BitWidth); 1899 1900 if (!(HighBits & DemandedBits)) { 1901 // None of the shifted in bits are needed. Add a truncate of the 1902 // shift input, then shift it. 1903 if (TLO.LegalTypes()) 1904 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1905 SDValue NewTrunc = 1906 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1907 return TLO.CombineTo( 1908 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1909 } 1910 break; 1911 } 1912 } 1913 1914 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1915 break; 1916 } 1917 case ISD::AssertZext: { 1918 // AssertZext demands all of the high bits, plus any of the low bits 1919 // demanded by its users. 1920 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1921 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1922 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1923 TLO, Depth + 1)) 1924 return true; 1925 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1926 1927 Known.Zero |= ~InMask; 1928 break; 1929 } 1930 case ISD::EXTRACT_VECTOR_ELT: { 1931 SDValue Src = Op.getOperand(0); 1932 SDValue Idx = Op.getOperand(1); 1933 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1934 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1935 1936 // Demand the bits from every vector element without a constant index. 1937 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1938 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1939 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1940 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1941 1942 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1943 // anything about the extended bits. 1944 APInt DemandedSrcBits = DemandedBits; 1945 if (BitWidth > EltBitWidth) 1946 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1947 1948 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1949 Depth + 1)) 1950 return true; 1951 1952 // Attempt to avoid multi-use ops if we don't need anything from them. 1953 if (!DemandedSrcBits.isAllOnesValue() || 1954 !DemandedSrcElts.isAllOnesValue()) { 1955 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1956 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1957 SDValue NewOp = 1958 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1959 return TLO.CombineTo(Op, NewOp); 1960 } 1961 } 1962 1963 Known = Known2; 1964 if (BitWidth > EltBitWidth) 1965 Known = Known.anyext(BitWidth); 1966 break; 1967 } 1968 case ISD::BITCAST: { 1969 SDValue Src = Op.getOperand(0); 1970 EVT SrcVT = Src.getValueType(); 1971 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1972 1973 // If this is an FP->Int bitcast and if the sign bit is the only 1974 // thing demanded, turn this into a FGETSIGN. 1975 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1976 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1977 SrcVT.isFloatingPoint()) { 1978 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1979 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1980 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1981 SrcVT != MVT::f128) { 1982 // Cannot eliminate/lower SHL for f128 yet. 1983 EVT Ty = OpVTLegal ? VT : MVT::i32; 1984 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1985 // place. We expect the SHL to be eliminated by other optimizations. 1986 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1987 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1988 if (!OpVTLegal && OpVTSizeInBits > 32) 1989 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1990 unsigned ShVal = Op.getValueSizeInBits() - 1; 1991 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1992 return TLO.CombineTo(Op, 1993 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1994 } 1995 } 1996 1997 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1998 // Demand the elt/bit if any of the original elts/bits are demanded. 1999 // TODO - bigendian once we have test coverage. 2000 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2001 TLO.DAG.getDataLayout().isLittleEndian()) { 2002 unsigned Scale = BitWidth / NumSrcEltBits; 2003 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2004 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2005 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2006 for (unsigned i = 0; i != Scale; ++i) { 2007 unsigned Offset = i * NumSrcEltBits; 2008 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2009 if (!Sub.isNullValue()) { 2010 DemandedSrcBits |= Sub; 2011 for (unsigned j = 0; j != NumElts; ++j) 2012 if (DemandedElts[j]) 2013 DemandedSrcElts.setBit((j * Scale) + i); 2014 } 2015 } 2016 2017 APInt KnownSrcUndef, KnownSrcZero; 2018 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2019 KnownSrcZero, TLO, Depth + 1)) 2020 return true; 2021 2022 KnownBits KnownSrcBits; 2023 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2024 KnownSrcBits, TLO, Depth + 1)) 2025 return true; 2026 } else if ((NumSrcEltBits % BitWidth) == 0 && 2027 TLO.DAG.getDataLayout().isLittleEndian()) { 2028 unsigned Scale = NumSrcEltBits / BitWidth; 2029 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2030 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2031 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2032 for (unsigned i = 0; i != NumElts; ++i) 2033 if (DemandedElts[i]) { 2034 unsigned Offset = (i % Scale) * BitWidth; 2035 DemandedSrcBits.insertBits(DemandedBits, Offset); 2036 DemandedSrcElts.setBit(i / Scale); 2037 } 2038 2039 if (SrcVT.isVector()) { 2040 APInt KnownSrcUndef, KnownSrcZero; 2041 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2042 KnownSrcZero, TLO, Depth + 1)) 2043 return true; 2044 } 2045 2046 KnownBits KnownSrcBits; 2047 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2048 KnownSrcBits, TLO, Depth + 1)) 2049 return true; 2050 } 2051 2052 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2053 // recursive call where Known may be useful to the caller. 2054 if (Depth > 0) { 2055 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2056 return false; 2057 } 2058 break; 2059 } 2060 case ISD::ADD: 2061 case ISD::MUL: 2062 case ISD::SUB: { 2063 // Add, Sub, and Mul don't demand any bits in positions beyond that 2064 // of the highest bit demanded of them. 2065 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2066 SDNodeFlags Flags = Op.getNode()->getFlags(); 2067 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2068 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2069 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2070 Depth + 1) || 2071 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2072 Depth + 1) || 2073 // See if the operation should be performed at a smaller bit width. 2074 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2075 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2076 // Disable the nsw and nuw flags. We can no longer guarantee that we 2077 // won't wrap after simplification. 2078 Flags.setNoSignedWrap(false); 2079 Flags.setNoUnsignedWrap(false); 2080 SDValue NewOp = 2081 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2082 return TLO.CombineTo(Op, NewOp); 2083 } 2084 return true; 2085 } 2086 2087 // Attempt to avoid multi-use ops if we don't need anything from them. 2088 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2090 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2092 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2093 if (DemandedOp0 || DemandedOp1) { 2094 Flags.setNoSignedWrap(false); 2095 Flags.setNoUnsignedWrap(false); 2096 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2097 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2098 SDValue NewOp = 2099 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2100 return TLO.CombineTo(Op, NewOp); 2101 } 2102 } 2103 2104 // If we have a constant operand, we may be able to turn it into -1 if we 2105 // do not demand the high bits. This can make the constant smaller to 2106 // encode, allow more general folding, or match specialized instruction 2107 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2108 // is probably not useful (and could be detrimental). 2109 ConstantSDNode *C = isConstOrConstSplat(Op1); 2110 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2111 if (C && !C->isAllOnesValue() && !C->isOne() && 2112 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2113 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2114 // Disable the nsw and nuw flags. We can no longer guarantee that we 2115 // won't wrap after simplification. 2116 Flags.setNoSignedWrap(false); 2117 Flags.setNoUnsignedWrap(false); 2118 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2119 return TLO.CombineTo(Op, NewOp); 2120 } 2121 2122 LLVM_FALLTHROUGH; 2123 } 2124 default: 2125 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2126 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2127 Known, TLO, Depth)) 2128 return true; 2129 break; 2130 } 2131 2132 // Just use computeKnownBits to compute output bits. 2133 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2134 break; 2135 } 2136 2137 // If we know the value of all of the demanded bits, return this as a 2138 // constant. 2139 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2140 // Avoid folding to a constant if any OpaqueConstant is involved. 2141 const SDNode *N = Op.getNode(); 2142 for (SDNodeIterator I = SDNodeIterator::begin(N), 2143 E = SDNodeIterator::end(N); 2144 I != E; ++I) { 2145 SDNode *Op = *I; 2146 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2147 if (C->isOpaque()) 2148 return false; 2149 } 2150 // TODO: Handle float bits as well. 2151 if (VT.isInteger()) 2152 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2153 } 2154 2155 return false; 2156 } 2157 2158 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2159 const APInt &DemandedElts, 2160 APInt &KnownUndef, 2161 APInt &KnownZero, 2162 DAGCombinerInfo &DCI) const { 2163 SelectionDAG &DAG = DCI.DAG; 2164 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2165 !DCI.isBeforeLegalizeOps()); 2166 2167 bool Simplified = 2168 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2169 if (Simplified) { 2170 DCI.AddToWorklist(Op.getNode()); 2171 DCI.CommitTargetLoweringOpt(TLO); 2172 } 2173 2174 return Simplified; 2175 } 2176 2177 /// Given a vector binary operation and known undefined elements for each input 2178 /// operand, compute whether each element of the output is undefined. 2179 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2180 const APInt &UndefOp0, 2181 const APInt &UndefOp1) { 2182 EVT VT = BO.getValueType(); 2183 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2184 "Vector binop only"); 2185 2186 EVT EltVT = VT.getVectorElementType(); 2187 unsigned NumElts = VT.getVectorNumElements(); 2188 assert(UndefOp0.getBitWidth() == NumElts && 2189 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2190 2191 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2192 const APInt &UndefVals) { 2193 if (UndefVals[Index]) 2194 return DAG.getUNDEF(EltVT); 2195 2196 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2197 // Try hard to make sure that the getNode() call is not creating temporary 2198 // nodes. Ignore opaque integers because they do not constant fold. 2199 SDValue Elt = BV->getOperand(Index); 2200 auto *C = dyn_cast<ConstantSDNode>(Elt); 2201 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2202 return Elt; 2203 } 2204 2205 return SDValue(); 2206 }; 2207 2208 APInt KnownUndef = APInt::getNullValue(NumElts); 2209 for (unsigned i = 0; i != NumElts; ++i) { 2210 // If both inputs for this element are either constant or undef and match 2211 // the element type, compute the constant/undef result for this element of 2212 // the vector. 2213 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2214 // not handle FP constants. The code within getNode() should be refactored 2215 // to avoid the danger of creating a bogus temporary node here. 2216 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2217 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2218 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2219 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2220 KnownUndef.setBit(i); 2221 } 2222 return KnownUndef; 2223 } 2224 2225 bool TargetLowering::SimplifyDemandedVectorElts( 2226 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2227 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2228 bool AssumeSingleUse) const { 2229 EVT VT = Op.getValueType(); 2230 APInt DemandedElts = OriginalDemandedElts; 2231 unsigned NumElts = DemandedElts.getBitWidth(); 2232 assert(VT.isVector() && "Expected vector op"); 2233 assert(VT.getVectorNumElements() == NumElts && 2234 "Mask size mismatches value type element count!"); 2235 2236 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2237 2238 // Undef operand. 2239 if (Op.isUndef()) { 2240 KnownUndef.setAllBits(); 2241 return false; 2242 } 2243 2244 // If Op has other users, assume that all elements are needed. 2245 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2246 DemandedElts.setAllBits(); 2247 2248 // Not demanding any elements from Op. 2249 if (DemandedElts == 0) { 2250 KnownUndef.setAllBits(); 2251 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2252 } 2253 2254 // Limit search depth. 2255 if (Depth >= SelectionDAG::MaxRecursionDepth) 2256 return false; 2257 2258 SDLoc DL(Op); 2259 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2260 2261 switch (Op.getOpcode()) { 2262 case ISD::SCALAR_TO_VECTOR: { 2263 if (!DemandedElts[0]) { 2264 KnownUndef.setAllBits(); 2265 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2266 } 2267 KnownUndef.setHighBits(NumElts - 1); 2268 break; 2269 } 2270 case ISD::BITCAST: { 2271 SDValue Src = Op.getOperand(0); 2272 EVT SrcVT = Src.getValueType(); 2273 2274 // We only handle vectors here. 2275 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2276 if (!SrcVT.isVector()) 2277 break; 2278 2279 // Fast handling of 'identity' bitcasts. 2280 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2281 if (NumSrcElts == NumElts) 2282 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2283 KnownZero, TLO, Depth + 1); 2284 2285 APInt SrcZero, SrcUndef; 2286 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2287 2288 // Bitcast from 'large element' src vector to 'small element' vector, we 2289 // must demand a source element if any DemandedElt maps to it. 2290 if ((NumElts % NumSrcElts) == 0) { 2291 unsigned Scale = NumElts / NumSrcElts; 2292 for (unsigned i = 0; i != NumElts; ++i) 2293 if (DemandedElts[i]) 2294 SrcDemandedElts.setBit(i / Scale); 2295 2296 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2297 TLO, Depth + 1)) 2298 return true; 2299 2300 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2301 // of the large element. 2302 // TODO - bigendian once we have test coverage. 2303 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2304 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2305 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2306 for (unsigned i = 0; i != NumElts; ++i) 2307 if (DemandedElts[i]) { 2308 unsigned Ofs = (i % Scale) * EltSizeInBits; 2309 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2310 } 2311 2312 KnownBits Known; 2313 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2314 return true; 2315 } 2316 2317 // If the src element is zero/undef then all the output elements will be - 2318 // only demanded elements are guaranteed to be correct. 2319 for (unsigned i = 0; i != NumSrcElts; ++i) { 2320 if (SrcDemandedElts[i]) { 2321 if (SrcZero[i]) 2322 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2323 if (SrcUndef[i]) 2324 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2325 } 2326 } 2327 } 2328 2329 // Bitcast from 'small element' src vector to 'large element' vector, we 2330 // demand all smaller source elements covered by the larger demanded element 2331 // of this vector. 2332 if ((NumSrcElts % NumElts) == 0) { 2333 unsigned Scale = NumSrcElts / NumElts; 2334 for (unsigned i = 0; i != NumElts; ++i) 2335 if (DemandedElts[i]) 2336 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2337 2338 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2339 TLO, Depth + 1)) 2340 return true; 2341 2342 // If all the src elements covering an output element are zero/undef, then 2343 // the output element will be as well, assuming it was demanded. 2344 for (unsigned i = 0; i != NumElts; ++i) { 2345 if (DemandedElts[i]) { 2346 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2347 KnownZero.setBit(i); 2348 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2349 KnownUndef.setBit(i); 2350 } 2351 } 2352 } 2353 break; 2354 } 2355 case ISD::BUILD_VECTOR: { 2356 // Check all elements and simplify any unused elements with UNDEF. 2357 if (!DemandedElts.isAllOnesValue()) { 2358 // Don't simplify BROADCASTS. 2359 if (llvm::any_of(Op->op_values(), 2360 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2361 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2362 bool Updated = false; 2363 for (unsigned i = 0; i != NumElts; ++i) { 2364 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2365 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2366 KnownUndef.setBit(i); 2367 Updated = true; 2368 } 2369 } 2370 if (Updated) 2371 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2372 } 2373 } 2374 for (unsigned i = 0; i != NumElts; ++i) { 2375 SDValue SrcOp = Op.getOperand(i); 2376 if (SrcOp.isUndef()) { 2377 KnownUndef.setBit(i); 2378 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2379 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2380 KnownZero.setBit(i); 2381 } 2382 } 2383 break; 2384 } 2385 case ISD::CONCAT_VECTORS: { 2386 EVT SubVT = Op.getOperand(0).getValueType(); 2387 unsigned NumSubVecs = Op.getNumOperands(); 2388 unsigned NumSubElts = SubVT.getVectorNumElements(); 2389 for (unsigned i = 0; i != NumSubVecs; ++i) { 2390 SDValue SubOp = Op.getOperand(i); 2391 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2392 APInt SubUndef, SubZero; 2393 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2394 Depth + 1)) 2395 return true; 2396 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2397 KnownZero.insertBits(SubZero, i * NumSubElts); 2398 } 2399 break; 2400 } 2401 case ISD::INSERT_SUBVECTOR: { 2402 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2403 break; 2404 SDValue Base = Op.getOperand(0); 2405 SDValue Sub = Op.getOperand(1); 2406 EVT SubVT = Sub.getValueType(); 2407 unsigned NumSubElts = SubVT.getVectorNumElements(); 2408 const APInt &Idx = Op.getConstantOperandAPInt(2); 2409 if (Idx.ugt(NumElts - NumSubElts)) 2410 break; 2411 unsigned SubIdx = Idx.getZExtValue(); 2412 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2413 APInt SubUndef, SubZero; 2414 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2415 Depth + 1)) 2416 return true; 2417 APInt BaseElts = DemandedElts; 2418 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2419 2420 // If none of the base operand elements are demanded, replace it with undef. 2421 if (!BaseElts && !Base.isUndef()) 2422 return TLO.CombineTo(Op, 2423 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2424 TLO.DAG.getUNDEF(VT), 2425 Op.getOperand(1), 2426 Op.getOperand(2))); 2427 2428 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2429 Depth + 1)) 2430 return true; 2431 KnownUndef.insertBits(SubUndef, SubIdx); 2432 KnownZero.insertBits(SubZero, SubIdx); 2433 break; 2434 } 2435 case ISD::EXTRACT_SUBVECTOR: { 2436 SDValue Src = Op.getOperand(0); 2437 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2438 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2439 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2440 // Offset the demanded elts by the subvector index. 2441 uint64_t Idx = SubIdx->getZExtValue(); 2442 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2443 APInt SrcUndef, SrcZero; 2444 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2445 Depth + 1)) 2446 return true; 2447 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2448 KnownZero = SrcZero.extractBits(NumElts, Idx); 2449 } 2450 break; 2451 } 2452 case ISD::INSERT_VECTOR_ELT: { 2453 SDValue Vec = Op.getOperand(0); 2454 SDValue Scl = Op.getOperand(1); 2455 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2456 2457 // For a legal, constant insertion index, if we don't need this insertion 2458 // then strip it, else remove it from the demanded elts. 2459 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2460 unsigned Idx = CIdx->getZExtValue(); 2461 if (!DemandedElts[Idx]) 2462 return TLO.CombineTo(Op, Vec); 2463 2464 APInt DemandedVecElts(DemandedElts); 2465 DemandedVecElts.clearBit(Idx); 2466 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2467 KnownZero, TLO, Depth + 1)) 2468 return true; 2469 2470 KnownUndef.clearBit(Idx); 2471 if (Scl.isUndef()) 2472 KnownUndef.setBit(Idx); 2473 2474 KnownZero.clearBit(Idx); 2475 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2476 KnownZero.setBit(Idx); 2477 break; 2478 } 2479 2480 APInt VecUndef, VecZero; 2481 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2482 Depth + 1)) 2483 return true; 2484 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2485 break; 2486 } 2487 case ISD::VSELECT: { 2488 // Try to transform the select condition based on the current demanded 2489 // elements. 2490 // TODO: If a condition element is undef, we can choose from one arm of the 2491 // select (and if one arm is undef, then we can propagate that to the 2492 // result). 2493 // TODO - add support for constant vselect masks (see IR version of this). 2494 APInt UnusedUndef, UnusedZero; 2495 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2496 UnusedZero, TLO, Depth + 1)) 2497 return true; 2498 2499 // See if we can simplify either vselect operand. 2500 APInt DemandedLHS(DemandedElts); 2501 APInt DemandedRHS(DemandedElts); 2502 APInt UndefLHS, ZeroLHS; 2503 APInt UndefRHS, ZeroRHS; 2504 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2505 ZeroLHS, TLO, Depth + 1)) 2506 return true; 2507 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2508 ZeroRHS, TLO, Depth + 1)) 2509 return true; 2510 2511 KnownUndef = UndefLHS & UndefRHS; 2512 KnownZero = ZeroLHS & ZeroRHS; 2513 break; 2514 } 2515 case ISD::VECTOR_SHUFFLE: { 2516 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2517 2518 // Collect demanded elements from shuffle operands.. 2519 APInt DemandedLHS(NumElts, 0); 2520 APInt DemandedRHS(NumElts, 0); 2521 for (unsigned i = 0; i != NumElts; ++i) { 2522 int M = ShuffleMask[i]; 2523 if (M < 0 || !DemandedElts[i]) 2524 continue; 2525 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2526 if (M < (int)NumElts) 2527 DemandedLHS.setBit(M); 2528 else 2529 DemandedRHS.setBit(M - NumElts); 2530 } 2531 2532 // See if we can simplify either shuffle operand. 2533 APInt UndefLHS, ZeroLHS; 2534 APInt UndefRHS, ZeroRHS; 2535 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2536 ZeroLHS, TLO, Depth + 1)) 2537 return true; 2538 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2539 ZeroRHS, TLO, Depth + 1)) 2540 return true; 2541 2542 // Simplify mask using undef elements from LHS/RHS. 2543 bool Updated = false; 2544 bool IdentityLHS = true, IdentityRHS = true; 2545 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2546 for (unsigned i = 0; i != NumElts; ++i) { 2547 int &M = NewMask[i]; 2548 if (M < 0) 2549 continue; 2550 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2551 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2552 Updated = true; 2553 M = -1; 2554 } 2555 IdentityLHS &= (M < 0) || (M == (int)i); 2556 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2557 } 2558 2559 // Update legal shuffle masks based on demanded elements if it won't reduce 2560 // to Identity which can cause premature removal of the shuffle mask. 2561 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2562 SDValue LegalShuffle = 2563 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2564 NewMask, TLO.DAG); 2565 if (LegalShuffle) 2566 return TLO.CombineTo(Op, LegalShuffle); 2567 } 2568 2569 // Propagate undef/zero elements from LHS/RHS. 2570 for (unsigned i = 0; i != NumElts; ++i) { 2571 int M = ShuffleMask[i]; 2572 if (M < 0) { 2573 KnownUndef.setBit(i); 2574 } else if (M < (int)NumElts) { 2575 if (UndefLHS[M]) 2576 KnownUndef.setBit(i); 2577 if (ZeroLHS[M]) 2578 KnownZero.setBit(i); 2579 } else { 2580 if (UndefRHS[M - NumElts]) 2581 KnownUndef.setBit(i); 2582 if (ZeroRHS[M - NumElts]) 2583 KnownZero.setBit(i); 2584 } 2585 } 2586 break; 2587 } 2588 case ISD::ANY_EXTEND_VECTOR_INREG: 2589 case ISD::SIGN_EXTEND_VECTOR_INREG: 2590 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2591 APInt SrcUndef, SrcZero; 2592 SDValue Src = Op.getOperand(0); 2593 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2594 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2595 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2596 Depth + 1)) 2597 return true; 2598 KnownZero = SrcZero.zextOrTrunc(NumElts); 2599 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2600 2601 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2602 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2603 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2604 // aext - if we just need the bottom element then we can bitcast. 2605 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2606 } 2607 2608 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2609 // zext(undef) upper bits are guaranteed to be zero. 2610 if (DemandedElts.isSubsetOf(KnownUndef)) 2611 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2612 KnownUndef.clearAllBits(); 2613 } 2614 break; 2615 } 2616 2617 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2618 // MAX, saturated math, etc. 2619 case ISD::OR: 2620 case ISD::XOR: 2621 case ISD::ADD: 2622 case ISD::SUB: 2623 case ISD::FADD: 2624 case ISD::FSUB: 2625 case ISD::FMUL: 2626 case ISD::FDIV: 2627 case ISD::FREM: { 2628 APInt UndefRHS, ZeroRHS; 2629 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2630 ZeroRHS, TLO, Depth + 1)) 2631 return true; 2632 APInt UndefLHS, ZeroLHS; 2633 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2634 ZeroLHS, TLO, Depth + 1)) 2635 return true; 2636 2637 KnownZero = ZeroLHS & ZeroRHS; 2638 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2639 break; 2640 } 2641 case ISD::SHL: 2642 case ISD::SRL: 2643 case ISD::SRA: 2644 case ISD::ROTL: 2645 case ISD::ROTR: { 2646 APInt UndefRHS, ZeroRHS; 2647 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2648 ZeroRHS, TLO, Depth + 1)) 2649 return true; 2650 APInt UndefLHS, ZeroLHS; 2651 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2652 ZeroLHS, TLO, Depth + 1)) 2653 return true; 2654 2655 KnownZero = ZeroLHS; 2656 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2657 break; 2658 } 2659 case ISD::MUL: 2660 case ISD::AND: { 2661 APInt SrcUndef, SrcZero; 2662 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2663 SrcZero, TLO, Depth + 1)) 2664 return true; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2666 KnownZero, TLO, Depth + 1)) 2667 return true; 2668 2669 // If either side has a zero element, then the result element is zero, even 2670 // if the other is an UNDEF. 2671 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2672 // and then handle 'and' nodes with the rest of the binop opcodes. 2673 KnownZero |= SrcZero; 2674 KnownUndef &= SrcUndef; 2675 KnownUndef &= ~KnownZero; 2676 break; 2677 } 2678 case ISD::TRUNCATE: 2679 case ISD::SIGN_EXTEND: 2680 case ISD::ZERO_EXTEND: 2681 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2682 KnownZero, TLO, Depth + 1)) 2683 return true; 2684 2685 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2686 // zext(undef) upper bits are guaranteed to be zero. 2687 if (DemandedElts.isSubsetOf(KnownUndef)) 2688 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2689 KnownUndef.clearAllBits(); 2690 } 2691 break; 2692 default: { 2693 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2694 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2695 KnownZero, TLO, Depth)) 2696 return true; 2697 } else { 2698 KnownBits Known; 2699 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2700 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2701 TLO, Depth, AssumeSingleUse)) 2702 return true; 2703 } 2704 break; 2705 } 2706 } 2707 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2708 2709 // Constant fold all undef cases. 2710 // TODO: Handle zero cases as well. 2711 if (DemandedElts.isSubsetOf(KnownUndef)) 2712 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2713 2714 return false; 2715 } 2716 2717 /// Determine which of the bits specified in Mask are known to be either zero or 2718 /// one and return them in the Known. 2719 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2720 KnownBits &Known, 2721 const APInt &DemandedElts, 2722 const SelectionDAG &DAG, 2723 unsigned Depth) const { 2724 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2725 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2726 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2727 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2728 "Should use MaskedValueIsZero if you don't know whether Op" 2729 " is a target node!"); 2730 Known.resetAll(); 2731 } 2732 2733 void TargetLowering::computeKnownBitsForTargetInstr( 2734 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2735 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2736 unsigned Depth) const { 2737 Known.resetAll(); 2738 } 2739 2740 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2741 KnownBits &Known, 2742 const APInt &DemandedElts, 2743 const SelectionDAG &DAG, 2744 unsigned Depth) const { 2745 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2746 2747 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2748 // The low bits are known zero if the pointer is aligned. 2749 Known.Zero.setLowBits(Log2_32(Align)); 2750 } 2751 } 2752 2753 /// This method can be implemented by targets that want to expose additional 2754 /// information about sign bits to the DAG Combiner. 2755 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2756 const APInt &, 2757 const SelectionDAG &, 2758 unsigned Depth) const { 2759 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2760 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2761 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2762 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2763 "Should use ComputeNumSignBits if you don't know whether Op" 2764 " is a target node!"); 2765 return 1; 2766 } 2767 2768 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2769 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2770 TargetLoweringOpt &TLO, unsigned Depth) const { 2771 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2772 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2773 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2774 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2775 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2776 " is a target node!"); 2777 return false; 2778 } 2779 2780 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2781 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2782 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2783 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2784 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2785 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2786 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2787 "Should use SimplifyDemandedBits if you don't know whether Op" 2788 " is a target node!"); 2789 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2790 return false; 2791 } 2792 2793 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2794 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2795 SelectionDAG &DAG, unsigned Depth) const { 2796 assert( 2797 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2798 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2799 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2800 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2801 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2802 " is a target node!"); 2803 return SDValue(); 2804 } 2805 2806 SDValue 2807 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2808 SDValue N1, MutableArrayRef<int> Mask, 2809 SelectionDAG &DAG) const { 2810 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2811 if (!LegalMask) { 2812 std::swap(N0, N1); 2813 ShuffleVectorSDNode::commuteMask(Mask); 2814 LegalMask = isShuffleMaskLegal(Mask, VT); 2815 } 2816 2817 if (!LegalMask) 2818 return SDValue(); 2819 2820 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2821 } 2822 2823 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2824 return nullptr; 2825 } 2826 2827 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2828 const SelectionDAG &DAG, 2829 bool SNaN, 2830 unsigned Depth) const { 2831 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2832 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2833 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2834 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2835 "Should use isKnownNeverNaN if you don't know whether Op" 2836 " is a target node!"); 2837 return false; 2838 } 2839 2840 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2841 // work with truncating build vectors and vectors with elements of less than 2842 // 8 bits. 2843 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2844 if (!N) 2845 return false; 2846 2847 APInt CVal; 2848 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2849 CVal = CN->getAPIntValue(); 2850 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2851 auto *CN = BV->getConstantSplatNode(); 2852 if (!CN) 2853 return false; 2854 2855 // If this is a truncating build vector, truncate the splat value. 2856 // Otherwise, we may fail to match the expected values below. 2857 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2858 CVal = CN->getAPIntValue(); 2859 if (BVEltWidth < CVal.getBitWidth()) 2860 CVal = CVal.trunc(BVEltWidth); 2861 } else { 2862 return false; 2863 } 2864 2865 switch (getBooleanContents(N->getValueType(0))) { 2866 case UndefinedBooleanContent: 2867 return CVal[0]; 2868 case ZeroOrOneBooleanContent: 2869 return CVal.isOneValue(); 2870 case ZeroOrNegativeOneBooleanContent: 2871 return CVal.isAllOnesValue(); 2872 } 2873 2874 llvm_unreachable("Invalid boolean contents"); 2875 } 2876 2877 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2878 if (!N) 2879 return false; 2880 2881 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2882 if (!CN) { 2883 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2884 if (!BV) 2885 return false; 2886 2887 // Only interested in constant splats, we don't care about undef 2888 // elements in identifying boolean constants and getConstantSplatNode 2889 // returns NULL if all ops are undef; 2890 CN = BV->getConstantSplatNode(); 2891 if (!CN) 2892 return false; 2893 } 2894 2895 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2896 return !CN->getAPIntValue()[0]; 2897 2898 return CN->isNullValue(); 2899 } 2900 2901 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2902 bool SExt) const { 2903 if (VT == MVT::i1) 2904 return N->isOne(); 2905 2906 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2907 switch (Cnt) { 2908 case TargetLowering::ZeroOrOneBooleanContent: 2909 // An extended value of 1 is always true, unless its original type is i1, 2910 // in which case it will be sign extended to -1. 2911 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2912 case TargetLowering::UndefinedBooleanContent: 2913 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2914 return N->isAllOnesValue() && SExt; 2915 } 2916 llvm_unreachable("Unexpected enumeration."); 2917 } 2918 2919 /// This helper function of SimplifySetCC tries to optimize the comparison when 2920 /// either operand of the SetCC node is a bitwise-and instruction. 2921 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2922 ISD::CondCode Cond, const SDLoc &DL, 2923 DAGCombinerInfo &DCI) const { 2924 // Match these patterns in any of their permutations: 2925 // (X & Y) == Y 2926 // (X & Y) != Y 2927 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2928 std::swap(N0, N1); 2929 2930 EVT OpVT = N0.getValueType(); 2931 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2932 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2933 return SDValue(); 2934 2935 SDValue X, Y; 2936 if (N0.getOperand(0) == N1) { 2937 X = N0.getOperand(1); 2938 Y = N0.getOperand(0); 2939 } else if (N0.getOperand(1) == N1) { 2940 X = N0.getOperand(0); 2941 Y = N0.getOperand(1); 2942 } else { 2943 return SDValue(); 2944 } 2945 2946 SelectionDAG &DAG = DCI.DAG; 2947 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2948 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2949 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2950 // Note that where Y is variable and is known to have at most one bit set 2951 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2952 // equivalent when Y == 0. 2953 assert(OpVT.isInteger()); 2954 Cond = ISD::getSetCCInverse(Cond, OpVT); 2955 if (DCI.isBeforeLegalizeOps() || 2956 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2957 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2958 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2959 // If the target supports an 'and-not' or 'and-complement' logic operation, 2960 // try to use that to make a comparison operation more efficient. 2961 // But don't do this transform if the mask is a single bit because there are 2962 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2963 // 'rlwinm' on PPC). 2964 2965 // Bail out if the compare operand that we want to turn into a zero is 2966 // already a zero (otherwise, infinite loop). 2967 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2968 if (YConst && YConst->isNullValue()) 2969 return SDValue(); 2970 2971 // Transform this into: ~X & Y == 0. 2972 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2973 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2974 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2975 } 2976 2977 return SDValue(); 2978 } 2979 2980 /// There are multiple IR patterns that could be checking whether certain 2981 /// truncation of a signed number would be lossy or not. The pattern which is 2982 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2983 /// We are looking for the following pattern: (KeptBits is a constant) 2984 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2985 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2986 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2987 /// We will unfold it into the natural trunc+sext pattern: 2988 /// ((%x << C) a>> C) dstcond %x 2989 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2990 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2991 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2992 const SDLoc &DL) const { 2993 // We must be comparing with a constant. 2994 ConstantSDNode *C1; 2995 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2996 return SDValue(); 2997 2998 // N0 should be: add %x, (1 << (KeptBits-1)) 2999 if (N0->getOpcode() != ISD::ADD) 3000 return SDValue(); 3001 3002 // And we must be 'add'ing a constant. 3003 ConstantSDNode *C01; 3004 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3005 return SDValue(); 3006 3007 SDValue X = N0->getOperand(0); 3008 EVT XVT = X.getValueType(); 3009 3010 // Validate constants ... 3011 3012 APInt I1 = C1->getAPIntValue(); 3013 3014 ISD::CondCode NewCond; 3015 if (Cond == ISD::CondCode::SETULT) { 3016 NewCond = ISD::CondCode::SETEQ; 3017 } else if (Cond == ISD::CondCode::SETULE) { 3018 NewCond = ISD::CondCode::SETEQ; 3019 // But need to 'canonicalize' the constant. 3020 I1 += 1; 3021 } else if (Cond == ISD::CondCode::SETUGT) { 3022 NewCond = ISD::CondCode::SETNE; 3023 // But need to 'canonicalize' the constant. 3024 I1 += 1; 3025 } else if (Cond == ISD::CondCode::SETUGE) { 3026 NewCond = ISD::CondCode::SETNE; 3027 } else 3028 return SDValue(); 3029 3030 APInt I01 = C01->getAPIntValue(); 3031 3032 auto checkConstants = [&I1, &I01]() -> bool { 3033 // Both of them must be power-of-two, and the constant from setcc is bigger. 3034 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3035 }; 3036 3037 if (checkConstants()) { 3038 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3039 } else { 3040 // What if we invert constants? (and the target predicate) 3041 I1.negate(); 3042 I01.negate(); 3043 assert(XVT.isInteger()); 3044 NewCond = getSetCCInverse(NewCond, XVT); 3045 if (!checkConstants()) 3046 return SDValue(); 3047 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3048 } 3049 3050 // They are power-of-two, so which bit is set? 3051 const unsigned KeptBits = I1.logBase2(); 3052 const unsigned KeptBitsMinusOne = I01.logBase2(); 3053 3054 // Magic! 3055 if (KeptBits != (KeptBitsMinusOne + 1)) 3056 return SDValue(); 3057 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3058 3059 // We don't want to do this in every single case. 3060 SelectionDAG &DAG = DCI.DAG; 3061 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3062 XVT, KeptBits)) 3063 return SDValue(); 3064 3065 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3066 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3067 3068 // Unfold into: ((%x << C) a>> C) cond %x 3069 // Where 'cond' will be either 'eq' or 'ne'. 3070 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3071 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3072 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3073 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3074 3075 return T2; 3076 } 3077 3078 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3079 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3080 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3081 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3082 assert(isConstOrConstSplat(N1C) && 3083 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3084 "Should be a comparison with 0."); 3085 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3086 "Valid only for [in]equality comparisons."); 3087 3088 unsigned NewShiftOpcode; 3089 SDValue X, C, Y; 3090 3091 SelectionDAG &DAG = DCI.DAG; 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 3094 // Look for '(C l>>/<< Y)'. 3095 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3096 // The shift should be one-use. 3097 if (!V.hasOneUse()) 3098 return false; 3099 unsigned OldShiftOpcode = V.getOpcode(); 3100 switch (OldShiftOpcode) { 3101 case ISD::SHL: 3102 NewShiftOpcode = ISD::SRL; 3103 break; 3104 case ISD::SRL: 3105 NewShiftOpcode = ISD::SHL; 3106 break; 3107 default: 3108 return false; // must be a logical shift. 3109 } 3110 // We should be shifting a constant. 3111 // FIXME: best to use isConstantOrConstantVector(). 3112 C = V.getOperand(0); 3113 ConstantSDNode *CC = 3114 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3115 if (!CC) 3116 return false; 3117 Y = V.getOperand(1); 3118 3119 ConstantSDNode *XC = 3120 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3121 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3122 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3123 }; 3124 3125 // LHS of comparison should be an one-use 'and'. 3126 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3127 return SDValue(); 3128 3129 X = N0.getOperand(0); 3130 SDValue Mask = N0.getOperand(1); 3131 3132 // 'and' is commutative! 3133 if (!Match(Mask)) { 3134 std::swap(X, Mask); 3135 if (!Match(Mask)) 3136 return SDValue(); 3137 } 3138 3139 EVT VT = X.getValueType(); 3140 3141 // Produce: 3142 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3143 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3144 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3145 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3146 return T2; 3147 } 3148 3149 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3150 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3151 /// handle the commuted versions of these patterns. 3152 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3153 ISD::CondCode Cond, const SDLoc &DL, 3154 DAGCombinerInfo &DCI) const { 3155 unsigned BOpcode = N0.getOpcode(); 3156 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3157 "Unexpected binop"); 3158 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3159 3160 // (X + Y) == X --> Y == 0 3161 // (X - Y) == X --> Y == 0 3162 // (X ^ Y) == X --> Y == 0 3163 SelectionDAG &DAG = DCI.DAG; 3164 EVT OpVT = N0.getValueType(); 3165 SDValue X = N0.getOperand(0); 3166 SDValue Y = N0.getOperand(1); 3167 if (X == N1) 3168 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3169 3170 if (Y != N1) 3171 return SDValue(); 3172 3173 // (X + Y) == Y --> X == 0 3174 // (X ^ Y) == Y --> X == 0 3175 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3176 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3177 3178 // The shift would not be valid if the operands are boolean (i1). 3179 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3180 return SDValue(); 3181 3182 // (X - Y) == Y --> X == Y << 1 3183 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3184 !DCI.isBeforeLegalize()); 3185 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3186 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3187 if (!DCI.isCalledByLegalizer()) 3188 DCI.AddToWorklist(YShl1.getNode()); 3189 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3190 } 3191 3192 /// Try to simplify a setcc built with the specified operands and cc. If it is 3193 /// unable to simplify it, return a null SDValue. 3194 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3195 ISD::CondCode Cond, bool foldBooleans, 3196 DAGCombinerInfo &DCI, 3197 const SDLoc &dl) const { 3198 SelectionDAG &DAG = DCI.DAG; 3199 const DataLayout &Layout = DAG.getDataLayout(); 3200 EVT OpVT = N0.getValueType(); 3201 3202 // Constant fold or commute setcc. 3203 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3204 return Fold; 3205 3206 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3207 // TODO: Handle non-splat vector constants. All undef causes trouble. 3208 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3209 if (isConstOrConstSplat(N0) && 3210 (DCI.isBeforeLegalizeOps() || 3211 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3212 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3213 3214 // If we have a subtract with the same 2 non-constant operands as this setcc 3215 // -- but in reverse order -- then try to commute the operands of this setcc 3216 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3217 // instruction on some targets. 3218 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3219 (DCI.isBeforeLegalizeOps() || 3220 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3221 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3222 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3223 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3224 3225 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3226 const APInt &C1 = N1C->getAPIntValue(); 3227 3228 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3229 // equality comparison, then we're just comparing whether X itself is 3230 // zero. 3231 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3232 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3233 N0.getOperand(1).getOpcode() == ISD::Constant) { 3234 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3235 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3236 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3237 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3238 // (srl (ctlz x), 5) == 0 -> X != 0 3239 // (srl (ctlz x), 5) != 1 -> X != 0 3240 Cond = ISD::SETNE; 3241 } else { 3242 // (srl (ctlz x), 5) != 0 -> X == 0 3243 // (srl (ctlz x), 5) == 1 -> X == 0 3244 Cond = ISD::SETEQ; 3245 } 3246 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3247 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3248 Zero, Cond); 3249 } 3250 } 3251 3252 SDValue CTPOP = N0; 3253 // Look through truncs that don't change the value of a ctpop. 3254 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3255 CTPOP = N0.getOperand(0); 3256 3257 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3258 (N0 == CTPOP || 3259 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3260 EVT CTVT = CTPOP.getValueType(); 3261 SDValue CTOp = CTPOP.getOperand(0); 3262 3263 // (ctpop x) u< 2 -> (x & x-1) == 0 3264 // (ctpop x) u> 1 -> (x & x-1) != 0 3265 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3266 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3267 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3268 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3269 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3270 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3271 } 3272 3273 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3274 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3275 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3276 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3277 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3278 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3279 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3280 assert(CTVT.isInteger()); 3281 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3282 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3283 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3284 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3285 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3286 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3287 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3288 } 3289 } 3290 3291 // (zext x) == C --> x == (trunc C) 3292 // (sext x) == C --> x == (trunc C) 3293 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3294 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3295 unsigned MinBits = N0.getValueSizeInBits(); 3296 SDValue PreExt; 3297 bool Signed = false; 3298 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3299 // ZExt 3300 MinBits = N0->getOperand(0).getValueSizeInBits(); 3301 PreExt = N0->getOperand(0); 3302 } else if (N0->getOpcode() == ISD::AND) { 3303 // DAGCombine turns costly ZExts into ANDs 3304 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3305 if ((C->getAPIntValue()+1).isPowerOf2()) { 3306 MinBits = C->getAPIntValue().countTrailingOnes(); 3307 PreExt = N0->getOperand(0); 3308 } 3309 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3310 // SExt 3311 MinBits = N0->getOperand(0).getValueSizeInBits(); 3312 PreExt = N0->getOperand(0); 3313 Signed = true; 3314 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3315 // ZEXTLOAD / SEXTLOAD 3316 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3317 MinBits = LN0->getMemoryVT().getSizeInBits(); 3318 PreExt = N0; 3319 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3320 Signed = true; 3321 MinBits = LN0->getMemoryVT().getSizeInBits(); 3322 PreExt = N0; 3323 } 3324 } 3325 3326 // Figure out how many bits we need to preserve this constant. 3327 unsigned ReqdBits = Signed ? 3328 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3329 C1.getActiveBits(); 3330 3331 // Make sure we're not losing bits from the constant. 3332 if (MinBits > 0 && 3333 MinBits < C1.getBitWidth() && 3334 MinBits >= ReqdBits) { 3335 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3336 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3337 // Will get folded away. 3338 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3339 if (MinBits == 1 && C1 == 1) 3340 // Invert the condition. 3341 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3342 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3343 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3344 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3345 } 3346 3347 // If truncating the setcc operands is not desirable, we can still 3348 // simplify the expression in some cases: 3349 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3350 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3351 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3352 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3353 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3354 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3355 SDValue TopSetCC = N0->getOperand(0); 3356 unsigned N0Opc = N0->getOpcode(); 3357 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3358 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3359 TopSetCC.getOpcode() == ISD::SETCC && 3360 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3361 (isConstFalseVal(N1C) || 3362 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3363 3364 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3365 (!N1C->isNullValue() && Cond == ISD::SETNE); 3366 3367 if (!Inverse) 3368 return TopSetCC; 3369 3370 ISD::CondCode InvCond = ISD::getSetCCInverse( 3371 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3372 TopSetCC.getOperand(0).getValueType()); 3373 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3374 TopSetCC.getOperand(1), 3375 InvCond); 3376 } 3377 } 3378 } 3379 3380 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3381 // equality or unsigned, and all 1 bits of the const are in the same 3382 // partial word, see if we can shorten the load. 3383 if (DCI.isBeforeLegalize() && 3384 !ISD::isSignedIntSetCC(Cond) && 3385 N0.getOpcode() == ISD::AND && C1 == 0 && 3386 N0.getNode()->hasOneUse() && 3387 isa<LoadSDNode>(N0.getOperand(0)) && 3388 N0.getOperand(0).getNode()->hasOneUse() && 3389 isa<ConstantSDNode>(N0.getOperand(1))) { 3390 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3391 APInt bestMask; 3392 unsigned bestWidth = 0, bestOffset = 0; 3393 if (Lod->isSimple() && Lod->isUnindexed()) { 3394 unsigned origWidth = N0.getValueSizeInBits(); 3395 unsigned maskWidth = origWidth; 3396 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3397 // 8 bits, but have to be careful... 3398 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3399 origWidth = Lod->getMemoryVT().getSizeInBits(); 3400 const APInt &Mask = N0.getConstantOperandAPInt(1); 3401 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3402 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3403 for (unsigned offset=0; offset<origWidth/width; offset++) { 3404 if (Mask.isSubsetOf(newMask)) { 3405 if (Layout.isLittleEndian()) 3406 bestOffset = (uint64_t)offset * (width/8); 3407 else 3408 bestOffset = (origWidth/width - offset - 1) * (width/8); 3409 bestMask = Mask.lshr(offset * (width/8) * 8); 3410 bestWidth = width; 3411 break; 3412 } 3413 newMask <<= width; 3414 } 3415 } 3416 } 3417 if (bestWidth) { 3418 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3419 if (newVT.isRound() && 3420 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3421 SDValue Ptr = Lod->getBasePtr(); 3422 if (bestOffset != 0) 3423 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3424 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3425 SDValue NewLoad = DAG.getLoad( 3426 newVT, dl, Lod->getChain(), Ptr, 3427 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3428 return DAG.getSetCC(dl, VT, 3429 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3430 DAG.getConstant(bestMask.trunc(bestWidth), 3431 dl, newVT)), 3432 DAG.getConstant(0LL, dl, newVT), Cond); 3433 } 3434 } 3435 } 3436 3437 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3438 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3439 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3440 3441 // If the comparison constant has bits in the upper part, the 3442 // zero-extended value could never match. 3443 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3444 C1.getBitWidth() - InSize))) { 3445 switch (Cond) { 3446 case ISD::SETUGT: 3447 case ISD::SETUGE: 3448 case ISD::SETEQ: 3449 return DAG.getConstant(0, dl, VT); 3450 case ISD::SETULT: 3451 case ISD::SETULE: 3452 case ISD::SETNE: 3453 return DAG.getConstant(1, dl, VT); 3454 case ISD::SETGT: 3455 case ISD::SETGE: 3456 // True if the sign bit of C1 is set. 3457 return DAG.getConstant(C1.isNegative(), dl, VT); 3458 case ISD::SETLT: 3459 case ISD::SETLE: 3460 // True if the sign bit of C1 isn't set. 3461 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3462 default: 3463 break; 3464 } 3465 } 3466 3467 // Otherwise, we can perform the comparison with the low bits. 3468 switch (Cond) { 3469 case ISD::SETEQ: 3470 case ISD::SETNE: 3471 case ISD::SETUGT: 3472 case ISD::SETUGE: 3473 case ISD::SETULT: 3474 case ISD::SETULE: { 3475 EVT newVT = N0.getOperand(0).getValueType(); 3476 if (DCI.isBeforeLegalizeOps() || 3477 (isOperationLegal(ISD::SETCC, newVT) && 3478 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3479 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3480 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3481 3482 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3483 NewConst, Cond); 3484 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3485 } 3486 break; 3487 } 3488 default: 3489 break; // todo, be more careful with signed comparisons 3490 } 3491 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3492 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3493 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3494 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3495 EVT ExtDstTy = N0.getValueType(); 3496 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3497 3498 // If the constant doesn't fit into the number of bits for the source of 3499 // the sign extension, it is impossible for both sides to be equal. 3500 if (C1.getMinSignedBits() > ExtSrcTyBits) 3501 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3502 3503 SDValue ZextOp; 3504 EVT Op0Ty = N0.getOperand(0).getValueType(); 3505 if (Op0Ty == ExtSrcTy) { 3506 ZextOp = N0.getOperand(0); 3507 } else { 3508 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3509 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3510 DAG.getConstant(Imm, dl, Op0Ty)); 3511 } 3512 if (!DCI.isCalledByLegalizer()) 3513 DCI.AddToWorklist(ZextOp.getNode()); 3514 // Otherwise, make this a use of a zext. 3515 return DAG.getSetCC(dl, VT, ZextOp, 3516 DAG.getConstant(C1 & APInt::getLowBitsSet( 3517 ExtDstTyBits, 3518 ExtSrcTyBits), 3519 dl, ExtDstTy), 3520 Cond); 3521 } else if ((N1C->isNullValue() || N1C->isOne()) && 3522 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3523 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3524 if (N0.getOpcode() == ISD::SETCC && 3525 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3526 (N0.getValueType() == MVT::i1 || 3527 getBooleanContents(N0.getOperand(0).getValueType()) == 3528 ZeroOrOneBooleanContent)) { 3529 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3530 if (TrueWhenTrue) 3531 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3532 // Invert the condition. 3533 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3534 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3535 if (DCI.isBeforeLegalizeOps() || 3536 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3537 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3538 } 3539 3540 if ((N0.getOpcode() == ISD::XOR || 3541 (N0.getOpcode() == ISD::AND && 3542 N0.getOperand(0).getOpcode() == ISD::XOR && 3543 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3544 isa<ConstantSDNode>(N0.getOperand(1)) && 3545 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3546 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3547 // can only do this if the top bits are known zero. 3548 unsigned BitWidth = N0.getValueSizeInBits(); 3549 if (DAG.MaskedValueIsZero(N0, 3550 APInt::getHighBitsSet(BitWidth, 3551 BitWidth-1))) { 3552 // Okay, get the un-inverted input value. 3553 SDValue Val; 3554 if (N0.getOpcode() == ISD::XOR) { 3555 Val = N0.getOperand(0); 3556 } else { 3557 assert(N0.getOpcode() == ISD::AND && 3558 N0.getOperand(0).getOpcode() == ISD::XOR); 3559 // ((X^1)&1)^1 -> X & 1 3560 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3561 N0.getOperand(0).getOperand(0), 3562 N0.getOperand(1)); 3563 } 3564 3565 return DAG.getSetCC(dl, VT, Val, N1, 3566 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3567 } 3568 } else if (N1C->isOne()) { 3569 SDValue Op0 = N0; 3570 if (Op0.getOpcode() == ISD::TRUNCATE) 3571 Op0 = Op0.getOperand(0); 3572 3573 if ((Op0.getOpcode() == ISD::XOR) && 3574 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3575 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3576 SDValue XorLHS = Op0.getOperand(0); 3577 SDValue XorRHS = Op0.getOperand(1); 3578 // Ensure that the input setccs return an i1 type or 0/1 value. 3579 if (Op0.getValueType() == MVT::i1 || 3580 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3581 ZeroOrOneBooleanContent && 3582 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3583 ZeroOrOneBooleanContent)) { 3584 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3585 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3586 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3587 } 3588 } 3589 if (Op0.getOpcode() == ISD::AND && 3590 isa<ConstantSDNode>(Op0.getOperand(1)) && 3591 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3592 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3593 if (Op0.getValueType().bitsGT(VT)) 3594 Op0 = DAG.getNode(ISD::AND, dl, VT, 3595 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3596 DAG.getConstant(1, dl, VT)); 3597 else if (Op0.getValueType().bitsLT(VT)) 3598 Op0 = DAG.getNode(ISD::AND, dl, VT, 3599 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3600 DAG.getConstant(1, dl, VT)); 3601 3602 return DAG.getSetCC(dl, VT, Op0, 3603 DAG.getConstant(0, dl, Op0.getValueType()), 3604 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3605 } 3606 if (Op0.getOpcode() == ISD::AssertZext && 3607 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3608 return DAG.getSetCC(dl, VT, Op0, 3609 DAG.getConstant(0, dl, Op0.getValueType()), 3610 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3611 } 3612 } 3613 3614 // Given: 3615 // icmp eq/ne (urem %x, %y), 0 3616 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3617 // icmp eq/ne %x, 0 3618 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3619 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3620 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3621 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3622 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3623 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3624 } 3625 3626 if (SDValue V = 3627 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3628 return V; 3629 } 3630 3631 // These simplifications apply to splat vectors as well. 3632 // TODO: Handle more splat vector cases. 3633 if (auto *N1C = isConstOrConstSplat(N1)) { 3634 const APInt &C1 = N1C->getAPIntValue(); 3635 3636 APInt MinVal, MaxVal; 3637 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3638 if (ISD::isSignedIntSetCC(Cond)) { 3639 MinVal = APInt::getSignedMinValue(OperandBitSize); 3640 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3641 } else { 3642 MinVal = APInt::getMinValue(OperandBitSize); 3643 MaxVal = APInt::getMaxValue(OperandBitSize); 3644 } 3645 3646 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3647 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3648 // X >= MIN --> true 3649 if (C1 == MinVal) 3650 return DAG.getBoolConstant(true, dl, VT, OpVT); 3651 3652 if (!VT.isVector()) { // TODO: Support this for vectors. 3653 // X >= C0 --> X > (C0 - 1) 3654 APInt C = C1 - 1; 3655 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3656 if ((DCI.isBeforeLegalizeOps() || 3657 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3658 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3659 isLegalICmpImmediate(C.getSExtValue())))) { 3660 return DAG.getSetCC(dl, VT, N0, 3661 DAG.getConstant(C, dl, N1.getValueType()), 3662 NewCC); 3663 } 3664 } 3665 } 3666 3667 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3668 // X <= MAX --> true 3669 if (C1 == MaxVal) 3670 return DAG.getBoolConstant(true, dl, VT, OpVT); 3671 3672 // X <= C0 --> X < (C0 + 1) 3673 if (!VT.isVector()) { // TODO: Support this for vectors. 3674 APInt C = C1 + 1; 3675 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3676 if ((DCI.isBeforeLegalizeOps() || 3677 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3678 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3679 isLegalICmpImmediate(C.getSExtValue())))) { 3680 return DAG.getSetCC(dl, VT, N0, 3681 DAG.getConstant(C, dl, N1.getValueType()), 3682 NewCC); 3683 } 3684 } 3685 } 3686 3687 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3688 if (C1 == MinVal) 3689 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3690 3691 // TODO: Support this for vectors after legalize ops. 3692 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3693 // Canonicalize setlt X, Max --> setne X, Max 3694 if (C1 == MaxVal) 3695 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3696 3697 // If we have setult X, 1, turn it into seteq X, 0 3698 if (C1 == MinVal+1) 3699 return DAG.getSetCC(dl, VT, N0, 3700 DAG.getConstant(MinVal, dl, N0.getValueType()), 3701 ISD::SETEQ); 3702 } 3703 } 3704 3705 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3706 if (C1 == MaxVal) 3707 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3708 3709 // TODO: Support this for vectors after legalize ops. 3710 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3711 // Canonicalize setgt X, Min --> setne X, Min 3712 if (C1 == MinVal) 3713 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3714 3715 // If we have setugt X, Max-1, turn it into seteq X, Max 3716 if (C1 == MaxVal-1) 3717 return DAG.getSetCC(dl, VT, N0, 3718 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3719 ISD::SETEQ); 3720 } 3721 } 3722 3723 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3724 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3725 if (C1.isNullValue()) 3726 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3727 VT, N0, N1, Cond, DCI, dl)) 3728 return CC; 3729 } 3730 3731 // If we have "setcc X, C0", check to see if we can shrink the immediate 3732 // by changing cc. 3733 // TODO: Support this for vectors after legalize ops. 3734 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3735 // SETUGT X, SINTMAX -> SETLT X, 0 3736 if (Cond == ISD::SETUGT && 3737 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3738 return DAG.getSetCC(dl, VT, N0, 3739 DAG.getConstant(0, dl, N1.getValueType()), 3740 ISD::SETLT); 3741 3742 // SETULT X, SINTMIN -> SETGT X, -1 3743 if (Cond == ISD::SETULT && 3744 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3745 SDValue ConstMinusOne = 3746 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3747 N1.getValueType()); 3748 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3749 } 3750 } 3751 } 3752 3753 // Back to non-vector simplifications. 3754 // TODO: Can we do these for vector splats? 3755 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3757 const APInt &C1 = N1C->getAPIntValue(); 3758 EVT ShValTy = N0.getValueType(); 3759 3760 // Fold bit comparisons when we can. 3761 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3762 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3763 N0.getOpcode() == ISD::AND) { 3764 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3765 EVT ShiftTy = 3766 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3767 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3768 // Perform the xform if the AND RHS is a single bit. 3769 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3770 if (AndRHS->getAPIntValue().isPowerOf2() && 3771 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3772 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3773 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3774 DAG.getConstant(ShCt, dl, ShiftTy))); 3775 } 3776 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3777 // (X & 8) == 8 --> (X & 8) >> 3 3778 // Perform the xform if C1 is a single bit. 3779 unsigned ShCt = C1.logBase2(); 3780 if (C1.isPowerOf2() && 3781 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3782 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3783 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3784 DAG.getConstant(ShCt, dl, ShiftTy))); 3785 } 3786 } 3787 } 3788 } 3789 3790 if (C1.getMinSignedBits() <= 64 && 3791 !isLegalICmpImmediate(C1.getSExtValue())) { 3792 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3793 // (X & -256) == 256 -> (X >> 8) == 1 3794 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3795 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3796 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3797 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3798 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3799 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3800 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3801 SDValue Shift = 3802 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3803 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3804 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3805 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3806 } 3807 } 3808 } 3809 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3810 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3811 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3812 // X < 0x100000000 -> (X >> 32) < 1 3813 // X >= 0x100000000 -> (X >> 32) >= 1 3814 // X <= 0x0ffffffff -> (X >> 32) < 1 3815 // X > 0x0ffffffff -> (X >> 32) >= 1 3816 unsigned ShiftBits; 3817 APInt NewC = C1; 3818 ISD::CondCode NewCond = Cond; 3819 if (AdjOne) { 3820 ShiftBits = C1.countTrailingOnes(); 3821 NewC = NewC + 1; 3822 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3823 } else { 3824 ShiftBits = C1.countTrailingZeros(); 3825 } 3826 NewC.lshrInPlace(ShiftBits); 3827 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3828 isLegalICmpImmediate(NewC.getSExtValue()) && 3829 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3830 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3831 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3832 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3833 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3834 } 3835 } 3836 } 3837 } 3838 3839 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3840 auto *CFP = cast<ConstantFPSDNode>(N1); 3841 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3842 3843 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3844 // constant if knowing that the operand is non-nan is enough. We prefer to 3845 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3846 // materialize 0.0. 3847 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3848 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3849 3850 // setcc (fneg x), C -> setcc swap(pred) x, -C 3851 if (N0.getOpcode() == ISD::FNEG) { 3852 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3853 if (DCI.isBeforeLegalizeOps() || 3854 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3855 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3856 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3857 } 3858 } 3859 3860 // If the condition is not legal, see if we can find an equivalent one 3861 // which is legal. 3862 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3863 // If the comparison was an awkward floating-point == or != and one of 3864 // the comparison operands is infinity or negative infinity, convert the 3865 // condition to a less-awkward <= or >=. 3866 if (CFP->getValueAPF().isInfinity()) { 3867 bool IsNegInf = CFP->getValueAPF().isNegative(); 3868 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3869 switch (Cond) { 3870 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3871 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3872 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3873 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3874 default: break; 3875 } 3876 if (NewCond != ISD::SETCC_INVALID && 3877 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3878 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3879 } 3880 } 3881 } 3882 3883 if (N0 == N1) { 3884 // The sext(setcc()) => setcc() optimization relies on the appropriate 3885 // constant being emitted. 3886 assert(!N0.getValueType().isInteger() && 3887 "Integer types should be handled by FoldSetCC"); 3888 3889 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3890 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3891 if (UOF == 2) // FP operators that are undefined on NaNs. 3892 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3893 if (UOF == unsigned(EqTrue)) 3894 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3895 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3896 // if it is not already. 3897 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3898 if (NewCond != Cond && 3899 (DCI.isBeforeLegalizeOps() || 3900 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3901 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3902 } 3903 3904 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3905 N0.getValueType().isInteger()) { 3906 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3907 N0.getOpcode() == ISD::XOR) { 3908 // Simplify (X+Y) == (X+Z) --> Y == Z 3909 if (N0.getOpcode() == N1.getOpcode()) { 3910 if (N0.getOperand(0) == N1.getOperand(0)) 3911 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3912 if (N0.getOperand(1) == N1.getOperand(1)) 3913 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3914 if (isCommutativeBinOp(N0.getOpcode())) { 3915 // If X op Y == Y op X, try other combinations. 3916 if (N0.getOperand(0) == N1.getOperand(1)) 3917 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3918 Cond); 3919 if (N0.getOperand(1) == N1.getOperand(0)) 3920 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3921 Cond); 3922 } 3923 } 3924 3925 // If RHS is a legal immediate value for a compare instruction, we need 3926 // to be careful about increasing register pressure needlessly. 3927 bool LegalRHSImm = false; 3928 3929 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3930 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3931 // Turn (X+C1) == C2 --> X == C2-C1 3932 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3933 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3934 DAG.getConstant(RHSC->getAPIntValue()- 3935 LHSR->getAPIntValue(), 3936 dl, N0.getValueType()), Cond); 3937 } 3938 3939 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3940 if (N0.getOpcode() == ISD::XOR) 3941 // If we know that all of the inverted bits are zero, don't bother 3942 // performing the inversion. 3943 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3944 return 3945 DAG.getSetCC(dl, VT, N0.getOperand(0), 3946 DAG.getConstant(LHSR->getAPIntValue() ^ 3947 RHSC->getAPIntValue(), 3948 dl, N0.getValueType()), 3949 Cond); 3950 } 3951 3952 // Turn (C1-X) == C2 --> X == C1-C2 3953 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3954 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3955 return 3956 DAG.getSetCC(dl, VT, N0.getOperand(1), 3957 DAG.getConstant(SUBC->getAPIntValue() - 3958 RHSC->getAPIntValue(), 3959 dl, N0.getValueType()), 3960 Cond); 3961 } 3962 } 3963 3964 // Could RHSC fold directly into a compare? 3965 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3966 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3967 } 3968 3969 // (X+Y) == X --> Y == 0 and similar folds. 3970 // Don't do this if X is an immediate that can fold into a cmp 3971 // instruction and X+Y has other uses. It could be an induction variable 3972 // chain, and the transform would increase register pressure. 3973 if (!LegalRHSImm || N0.hasOneUse()) 3974 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3975 return V; 3976 } 3977 3978 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3979 N1.getOpcode() == ISD::XOR) 3980 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3981 return V; 3982 3983 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3984 return V; 3985 } 3986 3987 // Fold remainder of division by a constant. 3988 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3989 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3990 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3991 3992 // When division is cheap or optimizing for minimum size, 3993 // fall through to DIVREM creation by skipping this fold. 3994 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3995 if (N0.getOpcode() == ISD::UREM) { 3996 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3997 return Folded; 3998 } else if (N0.getOpcode() == ISD::SREM) { 3999 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4000 return Folded; 4001 } 4002 } 4003 } 4004 4005 // Fold away ALL boolean setcc's. 4006 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4007 SDValue Temp; 4008 switch (Cond) { 4009 default: llvm_unreachable("Unknown integer setcc!"); 4010 case ISD::SETEQ: // X == Y -> ~(X^Y) 4011 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4012 N0 = DAG.getNOT(dl, Temp, OpVT); 4013 if (!DCI.isCalledByLegalizer()) 4014 DCI.AddToWorklist(Temp.getNode()); 4015 break; 4016 case ISD::SETNE: // X != Y --> (X^Y) 4017 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4018 break; 4019 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4020 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4021 Temp = DAG.getNOT(dl, N0, OpVT); 4022 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4023 if (!DCI.isCalledByLegalizer()) 4024 DCI.AddToWorklist(Temp.getNode()); 4025 break; 4026 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4027 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4028 Temp = DAG.getNOT(dl, N1, OpVT); 4029 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4030 if (!DCI.isCalledByLegalizer()) 4031 DCI.AddToWorklist(Temp.getNode()); 4032 break; 4033 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4034 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4035 Temp = DAG.getNOT(dl, N0, OpVT); 4036 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4037 if (!DCI.isCalledByLegalizer()) 4038 DCI.AddToWorklist(Temp.getNode()); 4039 break; 4040 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4041 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4042 Temp = DAG.getNOT(dl, N1, OpVT); 4043 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4044 break; 4045 } 4046 if (VT.getScalarType() != MVT::i1) { 4047 if (!DCI.isCalledByLegalizer()) 4048 DCI.AddToWorklist(N0.getNode()); 4049 // FIXME: If running after legalize, we probably can't do this. 4050 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4051 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4052 } 4053 return N0; 4054 } 4055 4056 // Could not fold it. 4057 return SDValue(); 4058 } 4059 4060 /// Returns true (and the GlobalValue and the offset) if the node is a 4061 /// GlobalAddress + offset. 4062 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4063 int64_t &Offset) const { 4064 4065 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4066 4067 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4068 GA = GASD->getGlobal(); 4069 Offset += GASD->getOffset(); 4070 return true; 4071 } 4072 4073 if (N->getOpcode() == ISD::ADD) { 4074 SDValue N1 = N->getOperand(0); 4075 SDValue N2 = N->getOperand(1); 4076 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4077 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4078 Offset += V->getSExtValue(); 4079 return true; 4080 } 4081 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4082 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4083 Offset += V->getSExtValue(); 4084 return true; 4085 } 4086 } 4087 } 4088 4089 return false; 4090 } 4091 4092 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4093 DAGCombinerInfo &DCI) const { 4094 // Default implementation: no optimization. 4095 return SDValue(); 4096 } 4097 4098 //===----------------------------------------------------------------------===// 4099 // Inline Assembler Implementation Methods 4100 //===----------------------------------------------------------------------===// 4101 4102 TargetLowering::ConstraintType 4103 TargetLowering::getConstraintType(StringRef Constraint) const { 4104 unsigned S = Constraint.size(); 4105 4106 if (S == 1) { 4107 switch (Constraint[0]) { 4108 default: break; 4109 case 'r': 4110 return C_RegisterClass; 4111 case 'm': // memory 4112 case 'o': // offsetable 4113 case 'V': // not offsetable 4114 return C_Memory; 4115 case 'n': // Simple Integer 4116 case 'E': // Floating Point Constant 4117 case 'F': // Floating Point Constant 4118 return C_Immediate; 4119 case 'i': // Simple Integer or Relocatable Constant 4120 case 's': // Relocatable Constant 4121 case 'p': // Address. 4122 case 'X': // Allow ANY value. 4123 case 'I': // Target registers. 4124 case 'J': 4125 case 'K': 4126 case 'L': 4127 case 'M': 4128 case 'N': 4129 case 'O': 4130 case 'P': 4131 case '<': 4132 case '>': 4133 return C_Other; 4134 } 4135 } 4136 4137 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4138 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4139 return C_Memory; 4140 return C_Register; 4141 } 4142 return C_Unknown; 4143 } 4144 4145 /// Try to replace an X constraint, which matches anything, with another that 4146 /// has more specific requirements based on the type of the corresponding 4147 /// operand. 4148 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4149 if (ConstraintVT.isInteger()) 4150 return "r"; 4151 if (ConstraintVT.isFloatingPoint()) 4152 return "f"; // works for many targets 4153 return nullptr; 4154 } 4155 4156 SDValue TargetLowering::LowerAsmOutputForConstraint( 4157 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4158 SelectionDAG &DAG) const { 4159 return SDValue(); 4160 } 4161 4162 /// Lower the specified operand into the Ops vector. 4163 /// If it is invalid, don't add anything to Ops. 4164 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4165 std::string &Constraint, 4166 std::vector<SDValue> &Ops, 4167 SelectionDAG &DAG) const { 4168 4169 if (Constraint.length() > 1) return; 4170 4171 char ConstraintLetter = Constraint[0]; 4172 switch (ConstraintLetter) { 4173 default: break; 4174 case 'X': // Allows any operand; labels (basic block) use this. 4175 if (Op.getOpcode() == ISD::BasicBlock || 4176 Op.getOpcode() == ISD::TargetBlockAddress) { 4177 Ops.push_back(Op); 4178 return; 4179 } 4180 LLVM_FALLTHROUGH; 4181 case 'i': // Simple Integer or Relocatable Constant 4182 case 'n': // Simple Integer 4183 case 's': { // Relocatable Constant 4184 4185 GlobalAddressSDNode *GA; 4186 ConstantSDNode *C; 4187 BlockAddressSDNode *BA; 4188 uint64_t Offset = 0; 4189 4190 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4191 // etc., since getelementpointer is variadic. We can't use 4192 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4193 // while in this case the GA may be furthest from the root node which is 4194 // likely an ISD::ADD. 4195 while (1) { 4196 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4197 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4198 GA->getValueType(0), 4199 Offset + GA->getOffset())); 4200 return; 4201 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4202 ConstraintLetter != 's') { 4203 // gcc prints these as sign extended. Sign extend value to 64 bits 4204 // now; without this it would get ZExt'd later in 4205 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4206 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4207 BooleanContent BCont = getBooleanContents(MVT::i64); 4208 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4209 : ISD::SIGN_EXTEND; 4210 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4211 : C->getSExtValue(); 4212 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4213 SDLoc(C), MVT::i64)); 4214 return; 4215 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4216 ConstraintLetter != 'n') { 4217 Ops.push_back(DAG.getTargetBlockAddress( 4218 BA->getBlockAddress(), BA->getValueType(0), 4219 Offset + BA->getOffset(), BA->getTargetFlags())); 4220 return; 4221 } else { 4222 const unsigned OpCode = Op.getOpcode(); 4223 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4224 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4225 Op = Op.getOperand(1); 4226 // Subtraction is not commutative. 4227 else if (OpCode == ISD::ADD && 4228 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4229 Op = Op.getOperand(0); 4230 else 4231 return; 4232 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4233 continue; 4234 } 4235 } 4236 return; 4237 } 4238 break; 4239 } 4240 } 4241 } 4242 4243 std::pair<unsigned, const TargetRegisterClass *> 4244 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4245 StringRef Constraint, 4246 MVT VT) const { 4247 if (Constraint.empty() || Constraint[0] != '{') 4248 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4249 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4250 4251 // Remove the braces from around the name. 4252 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4253 4254 std::pair<unsigned, const TargetRegisterClass *> R = 4255 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4256 4257 // Figure out which register class contains this reg. 4258 for (const TargetRegisterClass *RC : RI->regclasses()) { 4259 // If none of the value types for this register class are valid, we 4260 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4261 if (!isLegalRC(*RI, *RC)) 4262 continue; 4263 4264 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4265 I != E; ++I) { 4266 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4267 std::pair<unsigned, const TargetRegisterClass *> S = 4268 std::make_pair(*I, RC); 4269 4270 // If this register class has the requested value type, return it, 4271 // otherwise keep searching and return the first class found 4272 // if no other is found which explicitly has the requested type. 4273 if (RI->isTypeLegalForClass(*RC, VT)) 4274 return S; 4275 if (!R.second) 4276 R = S; 4277 } 4278 } 4279 } 4280 4281 return R; 4282 } 4283 4284 //===----------------------------------------------------------------------===// 4285 // Constraint Selection. 4286 4287 /// Return true of this is an input operand that is a matching constraint like 4288 /// "4". 4289 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4290 assert(!ConstraintCode.empty() && "No known constraint!"); 4291 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4292 } 4293 4294 /// If this is an input matching constraint, this method returns the output 4295 /// operand it matches. 4296 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4297 assert(!ConstraintCode.empty() && "No known constraint!"); 4298 return atoi(ConstraintCode.c_str()); 4299 } 4300 4301 /// Split up the constraint string from the inline assembly value into the 4302 /// specific constraints and their prefixes, and also tie in the associated 4303 /// operand values. 4304 /// If this returns an empty vector, and if the constraint string itself 4305 /// isn't empty, there was an error parsing. 4306 TargetLowering::AsmOperandInfoVector 4307 TargetLowering::ParseConstraints(const DataLayout &DL, 4308 const TargetRegisterInfo *TRI, 4309 ImmutableCallSite CS) const { 4310 /// Information about all of the constraints. 4311 AsmOperandInfoVector ConstraintOperands; 4312 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4313 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4314 4315 // Do a prepass over the constraints, canonicalizing them, and building up the 4316 // ConstraintOperands list. 4317 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4318 unsigned ResNo = 0; // ResNo - The result number of the next output. 4319 4320 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4321 ConstraintOperands.emplace_back(std::move(CI)); 4322 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4323 4324 // Update multiple alternative constraint count. 4325 if (OpInfo.multipleAlternatives.size() > maCount) 4326 maCount = OpInfo.multipleAlternatives.size(); 4327 4328 OpInfo.ConstraintVT = MVT::Other; 4329 4330 // Compute the value type for each operand. 4331 switch (OpInfo.Type) { 4332 case InlineAsm::isOutput: 4333 // Indirect outputs just consume an argument. 4334 if (OpInfo.isIndirect) { 4335 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4336 break; 4337 } 4338 4339 // The return value of the call is this value. As such, there is no 4340 // corresponding argument. 4341 assert(!CS.getType()->isVoidTy() && 4342 "Bad inline asm!"); 4343 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4344 OpInfo.ConstraintVT = 4345 getSimpleValueType(DL, STy->getElementType(ResNo)); 4346 } else { 4347 assert(ResNo == 0 && "Asm only has one result!"); 4348 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4349 } 4350 ++ResNo; 4351 break; 4352 case InlineAsm::isInput: 4353 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4354 break; 4355 case InlineAsm::isClobber: 4356 // Nothing to do. 4357 break; 4358 } 4359 4360 if (OpInfo.CallOperandVal) { 4361 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4362 if (OpInfo.isIndirect) { 4363 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4364 if (!PtrTy) 4365 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4366 OpTy = PtrTy->getElementType(); 4367 } 4368 4369 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4370 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4371 if (STy->getNumElements() == 1) 4372 OpTy = STy->getElementType(0); 4373 4374 // If OpTy is not a single value, it may be a struct/union that we 4375 // can tile with integers. 4376 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4377 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4378 switch (BitSize) { 4379 default: break; 4380 case 1: 4381 case 8: 4382 case 16: 4383 case 32: 4384 case 64: 4385 case 128: 4386 OpInfo.ConstraintVT = 4387 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4388 break; 4389 } 4390 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4391 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4392 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4393 } else { 4394 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4395 } 4396 } 4397 } 4398 4399 // If we have multiple alternative constraints, select the best alternative. 4400 if (!ConstraintOperands.empty()) { 4401 if (maCount) { 4402 unsigned bestMAIndex = 0; 4403 int bestWeight = -1; 4404 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4405 int weight = -1; 4406 unsigned maIndex; 4407 // Compute the sums of the weights for each alternative, keeping track 4408 // of the best (highest weight) one so far. 4409 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4410 int weightSum = 0; 4411 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4412 cIndex != eIndex; ++cIndex) { 4413 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4414 if (OpInfo.Type == InlineAsm::isClobber) 4415 continue; 4416 4417 // If this is an output operand with a matching input operand, 4418 // look up the matching input. If their types mismatch, e.g. one 4419 // is an integer, the other is floating point, or their sizes are 4420 // different, flag it as an maCantMatch. 4421 if (OpInfo.hasMatchingInput()) { 4422 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4423 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4424 if ((OpInfo.ConstraintVT.isInteger() != 4425 Input.ConstraintVT.isInteger()) || 4426 (OpInfo.ConstraintVT.getSizeInBits() != 4427 Input.ConstraintVT.getSizeInBits())) { 4428 weightSum = -1; // Can't match. 4429 break; 4430 } 4431 } 4432 } 4433 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4434 if (weight == -1) { 4435 weightSum = -1; 4436 break; 4437 } 4438 weightSum += weight; 4439 } 4440 // Update best. 4441 if (weightSum > bestWeight) { 4442 bestWeight = weightSum; 4443 bestMAIndex = maIndex; 4444 } 4445 } 4446 4447 // Now select chosen alternative in each constraint. 4448 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4449 cIndex != eIndex; ++cIndex) { 4450 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4451 if (cInfo.Type == InlineAsm::isClobber) 4452 continue; 4453 cInfo.selectAlternative(bestMAIndex); 4454 } 4455 } 4456 } 4457 4458 // Check and hook up tied operands, choose constraint code to use. 4459 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4460 cIndex != eIndex; ++cIndex) { 4461 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4462 4463 // If this is an output operand with a matching input operand, look up the 4464 // matching input. If their types mismatch, e.g. one is an integer, the 4465 // other is floating point, or their sizes are different, flag it as an 4466 // error. 4467 if (OpInfo.hasMatchingInput()) { 4468 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4469 4470 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4471 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4472 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4473 OpInfo.ConstraintVT); 4474 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4475 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4476 Input.ConstraintVT); 4477 if ((OpInfo.ConstraintVT.isInteger() != 4478 Input.ConstraintVT.isInteger()) || 4479 (MatchRC.second != InputRC.second)) { 4480 report_fatal_error("Unsupported asm: input constraint" 4481 " with a matching output constraint of" 4482 " incompatible type!"); 4483 } 4484 } 4485 } 4486 } 4487 4488 return ConstraintOperands; 4489 } 4490 4491 /// Return an integer indicating how general CT is. 4492 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4493 switch (CT) { 4494 case TargetLowering::C_Immediate: 4495 case TargetLowering::C_Other: 4496 case TargetLowering::C_Unknown: 4497 return 0; 4498 case TargetLowering::C_Register: 4499 return 1; 4500 case TargetLowering::C_RegisterClass: 4501 return 2; 4502 case TargetLowering::C_Memory: 4503 return 3; 4504 } 4505 llvm_unreachable("Invalid constraint type"); 4506 } 4507 4508 /// Examine constraint type and operand type and determine a weight value. 4509 /// This object must already have been set up with the operand type 4510 /// and the current alternative constraint selected. 4511 TargetLowering::ConstraintWeight 4512 TargetLowering::getMultipleConstraintMatchWeight( 4513 AsmOperandInfo &info, int maIndex) const { 4514 InlineAsm::ConstraintCodeVector *rCodes; 4515 if (maIndex >= (int)info.multipleAlternatives.size()) 4516 rCodes = &info.Codes; 4517 else 4518 rCodes = &info.multipleAlternatives[maIndex].Codes; 4519 ConstraintWeight BestWeight = CW_Invalid; 4520 4521 // Loop over the options, keeping track of the most general one. 4522 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4523 ConstraintWeight weight = 4524 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4525 if (weight > BestWeight) 4526 BestWeight = weight; 4527 } 4528 4529 return BestWeight; 4530 } 4531 4532 /// Examine constraint type and operand type and determine a weight value. 4533 /// This object must already have been set up with the operand type 4534 /// and the current alternative constraint selected. 4535 TargetLowering::ConstraintWeight 4536 TargetLowering::getSingleConstraintMatchWeight( 4537 AsmOperandInfo &info, const char *constraint) const { 4538 ConstraintWeight weight = CW_Invalid; 4539 Value *CallOperandVal = info.CallOperandVal; 4540 // If we don't have a value, we can't do a match, 4541 // but allow it at the lowest weight. 4542 if (!CallOperandVal) 4543 return CW_Default; 4544 // Look at the constraint type. 4545 switch (*constraint) { 4546 case 'i': // immediate integer. 4547 case 'n': // immediate integer with a known value. 4548 if (isa<ConstantInt>(CallOperandVal)) 4549 weight = CW_Constant; 4550 break; 4551 case 's': // non-explicit intregal immediate. 4552 if (isa<GlobalValue>(CallOperandVal)) 4553 weight = CW_Constant; 4554 break; 4555 case 'E': // immediate float if host format. 4556 case 'F': // immediate float. 4557 if (isa<ConstantFP>(CallOperandVal)) 4558 weight = CW_Constant; 4559 break; 4560 case '<': // memory operand with autodecrement. 4561 case '>': // memory operand with autoincrement. 4562 case 'm': // memory operand. 4563 case 'o': // offsettable memory operand 4564 case 'V': // non-offsettable memory operand 4565 weight = CW_Memory; 4566 break; 4567 case 'r': // general register. 4568 case 'g': // general register, memory operand or immediate integer. 4569 // note: Clang converts "g" to "imr". 4570 if (CallOperandVal->getType()->isIntegerTy()) 4571 weight = CW_Register; 4572 break; 4573 case 'X': // any operand. 4574 default: 4575 weight = CW_Default; 4576 break; 4577 } 4578 return weight; 4579 } 4580 4581 /// If there are multiple different constraints that we could pick for this 4582 /// operand (e.g. "imr") try to pick the 'best' one. 4583 /// This is somewhat tricky: constraints fall into four classes: 4584 /// Other -> immediates and magic values 4585 /// Register -> one specific register 4586 /// RegisterClass -> a group of regs 4587 /// Memory -> memory 4588 /// Ideally, we would pick the most specific constraint possible: if we have 4589 /// something that fits into a register, we would pick it. The problem here 4590 /// is that if we have something that could either be in a register or in 4591 /// memory that use of the register could cause selection of *other* 4592 /// operands to fail: they might only succeed if we pick memory. Because of 4593 /// this the heuristic we use is: 4594 /// 4595 /// 1) If there is an 'other' constraint, and if the operand is valid for 4596 /// that constraint, use it. This makes us take advantage of 'i' 4597 /// constraints when available. 4598 /// 2) Otherwise, pick the most general constraint present. This prefers 4599 /// 'm' over 'r', for example. 4600 /// 4601 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4602 const TargetLowering &TLI, 4603 SDValue Op, SelectionDAG *DAG) { 4604 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4605 unsigned BestIdx = 0; 4606 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4607 int BestGenerality = -1; 4608 4609 // Loop over the options, keeping track of the most general one. 4610 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4611 TargetLowering::ConstraintType CType = 4612 TLI.getConstraintType(OpInfo.Codes[i]); 4613 4614 // Indirect 'other' or 'immediate' constraints are not allowed. 4615 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4616 CType == TargetLowering::C_Register || 4617 CType == TargetLowering::C_RegisterClass)) 4618 continue; 4619 4620 // If this is an 'other' or 'immediate' constraint, see if the operand is 4621 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4622 // the operand is an integer in the range [0..31] we want to use I (saving a 4623 // load of a register), otherwise we must use 'r'. 4624 if ((CType == TargetLowering::C_Other || 4625 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4626 assert(OpInfo.Codes[i].size() == 1 && 4627 "Unhandled multi-letter 'other' constraint"); 4628 std::vector<SDValue> ResultOps; 4629 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4630 ResultOps, *DAG); 4631 if (!ResultOps.empty()) { 4632 BestType = CType; 4633 BestIdx = i; 4634 break; 4635 } 4636 } 4637 4638 // Things with matching constraints can only be registers, per gcc 4639 // documentation. This mainly affects "g" constraints. 4640 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4641 continue; 4642 4643 // This constraint letter is more general than the previous one, use it. 4644 int Generality = getConstraintGenerality(CType); 4645 if (Generality > BestGenerality) { 4646 BestType = CType; 4647 BestIdx = i; 4648 BestGenerality = Generality; 4649 } 4650 } 4651 4652 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4653 OpInfo.ConstraintType = BestType; 4654 } 4655 4656 /// Determines the constraint code and constraint type to use for the specific 4657 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4658 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4659 SDValue Op, 4660 SelectionDAG *DAG) const { 4661 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4662 4663 // Single-letter constraints ('r') are very common. 4664 if (OpInfo.Codes.size() == 1) { 4665 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4666 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4667 } else { 4668 ChooseConstraint(OpInfo, *this, Op, DAG); 4669 } 4670 4671 // 'X' matches anything. 4672 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4673 // Labels and constants are handled elsewhere ('X' is the only thing 4674 // that matches labels). For Functions, the type here is the type of 4675 // the result, which is not what we want to look at; leave them alone. 4676 Value *v = OpInfo.CallOperandVal; 4677 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4678 OpInfo.CallOperandVal = v; 4679 return; 4680 } 4681 4682 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4683 return; 4684 4685 // Otherwise, try to resolve it to something we know about by looking at 4686 // the actual operand type. 4687 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4688 OpInfo.ConstraintCode = Repl; 4689 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4690 } 4691 } 4692 } 4693 4694 /// Given an exact SDIV by a constant, create a multiplication 4695 /// with the multiplicative inverse of the constant. 4696 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4697 const SDLoc &dl, SelectionDAG &DAG, 4698 SmallVectorImpl<SDNode *> &Created) { 4699 SDValue Op0 = N->getOperand(0); 4700 SDValue Op1 = N->getOperand(1); 4701 EVT VT = N->getValueType(0); 4702 EVT SVT = VT.getScalarType(); 4703 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4704 EVT ShSVT = ShVT.getScalarType(); 4705 4706 bool UseSRA = false; 4707 SmallVector<SDValue, 16> Shifts, Factors; 4708 4709 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4710 if (C->isNullValue()) 4711 return false; 4712 APInt Divisor = C->getAPIntValue(); 4713 unsigned Shift = Divisor.countTrailingZeros(); 4714 if (Shift) { 4715 Divisor.ashrInPlace(Shift); 4716 UseSRA = true; 4717 } 4718 // Calculate the multiplicative inverse, using Newton's method. 4719 APInt t; 4720 APInt Factor = Divisor; 4721 while ((t = Divisor * Factor) != 1) 4722 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4723 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4724 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4725 return true; 4726 }; 4727 4728 // Collect all magic values from the build vector. 4729 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4730 return SDValue(); 4731 4732 SDValue Shift, Factor; 4733 if (VT.isVector()) { 4734 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4735 Factor = DAG.getBuildVector(VT, dl, Factors); 4736 } else { 4737 Shift = Shifts[0]; 4738 Factor = Factors[0]; 4739 } 4740 4741 SDValue Res = Op0; 4742 4743 // Shift the value upfront if it is even, so the LSB is one. 4744 if (UseSRA) { 4745 // TODO: For UDIV use SRL instead of SRA. 4746 SDNodeFlags Flags; 4747 Flags.setExact(true); 4748 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4749 Created.push_back(Res.getNode()); 4750 } 4751 4752 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4753 } 4754 4755 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4756 SelectionDAG &DAG, 4757 SmallVectorImpl<SDNode *> &Created) const { 4758 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4760 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4761 return SDValue(N, 0); // Lower SDIV as SDIV 4762 return SDValue(); 4763 } 4764 4765 /// Given an ISD::SDIV node expressing a divide by constant, 4766 /// return a DAG expression to select that will generate the same value by 4767 /// multiplying by a magic number. 4768 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4769 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4770 bool IsAfterLegalization, 4771 SmallVectorImpl<SDNode *> &Created) const { 4772 SDLoc dl(N); 4773 EVT VT = N->getValueType(0); 4774 EVT SVT = VT.getScalarType(); 4775 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4776 EVT ShSVT = ShVT.getScalarType(); 4777 unsigned EltBits = VT.getScalarSizeInBits(); 4778 4779 // Check to see if we can do this. 4780 // FIXME: We should be more aggressive here. 4781 if (!isTypeLegal(VT)) 4782 return SDValue(); 4783 4784 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4785 if (N->getFlags().hasExact()) 4786 return BuildExactSDIV(*this, N, dl, DAG, Created); 4787 4788 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4789 4790 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4791 if (C->isNullValue()) 4792 return false; 4793 4794 const APInt &Divisor = C->getAPIntValue(); 4795 APInt::ms magics = Divisor.magic(); 4796 int NumeratorFactor = 0; 4797 int ShiftMask = -1; 4798 4799 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4800 // If d is +1/-1, we just multiply the numerator by +1/-1. 4801 NumeratorFactor = Divisor.getSExtValue(); 4802 magics.m = 0; 4803 magics.s = 0; 4804 ShiftMask = 0; 4805 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4806 // If d > 0 and m < 0, add the numerator. 4807 NumeratorFactor = 1; 4808 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4809 // If d < 0 and m > 0, subtract the numerator. 4810 NumeratorFactor = -1; 4811 } 4812 4813 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4814 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4815 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4816 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4817 return true; 4818 }; 4819 4820 SDValue N0 = N->getOperand(0); 4821 SDValue N1 = N->getOperand(1); 4822 4823 // Collect the shifts / magic values from each element. 4824 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4825 return SDValue(); 4826 4827 SDValue MagicFactor, Factor, Shift, ShiftMask; 4828 if (VT.isVector()) { 4829 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4830 Factor = DAG.getBuildVector(VT, dl, Factors); 4831 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4832 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4833 } else { 4834 MagicFactor = MagicFactors[0]; 4835 Factor = Factors[0]; 4836 Shift = Shifts[0]; 4837 ShiftMask = ShiftMasks[0]; 4838 } 4839 4840 // Multiply the numerator (operand 0) by the magic value. 4841 // FIXME: We should support doing a MUL in a wider type. 4842 SDValue Q; 4843 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4844 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4845 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4846 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4847 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4848 SDValue LoHi = 4849 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4850 Q = SDValue(LoHi.getNode(), 1); 4851 } else 4852 return SDValue(); // No mulhs or equivalent. 4853 Created.push_back(Q.getNode()); 4854 4855 // (Optionally) Add/subtract the numerator using Factor. 4856 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4857 Created.push_back(Factor.getNode()); 4858 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4859 Created.push_back(Q.getNode()); 4860 4861 // Shift right algebraic by shift value. 4862 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4863 Created.push_back(Q.getNode()); 4864 4865 // Extract the sign bit, mask it and add it to the quotient. 4866 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4867 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4868 Created.push_back(T.getNode()); 4869 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4870 Created.push_back(T.getNode()); 4871 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4872 } 4873 4874 /// Given an ISD::UDIV node expressing a divide by constant, 4875 /// return a DAG expression to select that will generate the same value by 4876 /// multiplying by a magic number. 4877 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4878 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4879 bool IsAfterLegalization, 4880 SmallVectorImpl<SDNode *> &Created) const { 4881 SDLoc dl(N); 4882 EVT VT = N->getValueType(0); 4883 EVT SVT = VT.getScalarType(); 4884 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4885 EVT ShSVT = ShVT.getScalarType(); 4886 unsigned EltBits = VT.getScalarSizeInBits(); 4887 4888 // Check to see if we can do this. 4889 // FIXME: We should be more aggressive here. 4890 if (!isTypeLegal(VT)) 4891 return SDValue(); 4892 4893 bool UseNPQ = false; 4894 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4895 4896 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4897 if (C->isNullValue()) 4898 return false; 4899 // FIXME: We should use a narrower constant when the upper 4900 // bits are known to be zero. 4901 APInt Divisor = C->getAPIntValue(); 4902 APInt::mu magics = Divisor.magicu(); 4903 unsigned PreShift = 0, PostShift = 0; 4904 4905 // If the divisor is even, we can avoid using the expensive fixup by 4906 // shifting the divided value upfront. 4907 if (magics.a != 0 && !Divisor[0]) { 4908 PreShift = Divisor.countTrailingZeros(); 4909 // Get magic number for the shifted divisor. 4910 magics = Divisor.lshr(PreShift).magicu(PreShift); 4911 assert(magics.a == 0 && "Should use cheap fixup now"); 4912 } 4913 4914 APInt Magic = magics.m; 4915 4916 unsigned SelNPQ; 4917 if (magics.a == 0 || Divisor.isOneValue()) { 4918 assert(magics.s < Divisor.getBitWidth() && 4919 "We shouldn't generate an undefined shift!"); 4920 PostShift = magics.s; 4921 SelNPQ = false; 4922 } else { 4923 PostShift = magics.s - 1; 4924 SelNPQ = true; 4925 } 4926 4927 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4928 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4929 NPQFactors.push_back( 4930 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4931 : APInt::getNullValue(EltBits), 4932 dl, SVT)); 4933 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4934 UseNPQ |= SelNPQ; 4935 return true; 4936 }; 4937 4938 SDValue N0 = N->getOperand(0); 4939 SDValue N1 = N->getOperand(1); 4940 4941 // Collect the shifts/magic values from each element. 4942 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4943 return SDValue(); 4944 4945 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4946 if (VT.isVector()) { 4947 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4948 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4949 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4950 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4951 } else { 4952 PreShift = PreShifts[0]; 4953 MagicFactor = MagicFactors[0]; 4954 PostShift = PostShifts[0]; 4955 } 4956 4957 SDValue Q = N0; 4958 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4959 Created.push_back(Q.getNode()); 4960 4961 // FIXME: We should support doing a MUL in a wider type. 4962 auto GetMULHU = [&](SDValue X, SDValue Y) { 4963 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4964 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4965 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4966 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4967 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4968 SDValue LoHi = 4969 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4970 return SDValue(LoHi.getNode(), 1); 4971 } 4972 return SDValue(); // No mulhu or equivalent 4973 }; 4974 4975 // Multiply the numerator (operand 0) by the magic value. 4976 Q = GetMULHU(Q, MagicFactor); 4977 if (!Q) 4978 return SDValue(); 4979 4980 Created.push_back(Q.getNode()); 4981 4982 if (UseNPQ) { 4983 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4984 Created.push_back(NPQ.getNode()); 4985 4986 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4987 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4988 if (VT.isVector()) 4989 NPQ = GetMULHU(NPQ, NPQFactor); 4990 else 4991 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4992 4993 Created.push_back(NPQ.getNode()); 4994 4995 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4996 Created.push_back(Q.getNode()); 4997 } 4998 4999 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5000 Created.push_back(Q.getNode()); 5001 5002 SDValue One = DAG.getConstant(1, dl, VT); 5003 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5004 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5005 } 5006 5007 /// If all values in Values that *don't* match the predicate are same 'splat' 5008 /// value, then replace all values with that splat value. 5009 /// Else, if AlternativeReplacement was provided, then replace all values that 5010 /// do match predicate with AlternativeReplacement value. 5011 static void 5012 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5013 std::function<bool(SDValue)> Predicate, 5014 SDValue AlternativeReplacement = SDValue()) { 5015 SDValue Replacement; 5016 // Is there a value for which the Predicate does *NOT* match? What is it? 5017 auto SplatValue = llvm::find_if_not(Values, Predicate); 5018 if (SplatValue != Values.end()) { 5019 // Does Values consist only of SplatValue's and values matching Predicate? 5020 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5021 return Value == *SplatValue || Predicate(Value); 5022 })) // Then we shall replace values matching predicate with SplatValue. 5023 Replacement = *SplatValue; 5024 } 5025 if (!Replacement) { 5026 // Oops, we did not find the "baseline" splat value. 5027 if (!AlternativeReplacement) 5028 return; // Nothing to do. 5029 // Let's replace with provided value then. 5030 Replacement = AlternativeReplacement; 5031 } 5032 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5033 } 5034 5035 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5036 /// where the divisor is constant and the comparison target is zero, 5037 /// return a DAG expression that will generate the same comparison result 5038 /// using only multiplications, additions and shifts/rotations. 5039 /// Ref: "Hacker's Delight" 10-17. 5040 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5041 SDValue CompTargetNode, 5042 ISD::CondCode Cond, 5043 DAGCombinerInfo &DCI, 5044 const SDLoc &DL) const { 5045 SmallVector<SDNode *, 5> Built; 5046 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5047 DCI, DL, Built)) { 5048 for (SDNode *N : Built) 5049 DCI.AddToWorklist(N); 5050 return Folded; 5051 } 5052 5053 return SDValue(); 5054 } 5055 5056 SDValue 5057 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5058 SDValue CompTargetNode, ISD::CondCode Cond, 5059 DAGCombinerInfo &DCI, const SDLoc &DL, 5060 SmallVectorImpl<SDNode *> &Created) const { 5061 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5062 // - D must be constant, with D = D0 * 2^K where D0 is odd 5063 // - P is the multiplicative inverse of D0 modulo 2^W 5064 // - Q = floor(((2^W) - 1) / D) 5065 // where W is the width of the common type of N and D. 5066 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5067 "Only applicable for (in)equality comparisons."); 5068 5069 SelectionDAG &DAG = DCI.DAG; 5070 5071 EVT VT = REMNode.getValueType(); 5072 EVT SVT = VT.getScalarType(); 5073 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5074 EVT ShSVT = ShVT.getScalarType(); 5075 5076 // If MUL is unavailable, we cannot proceed in any case. 5077 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5078 return SDValue(); 5079 5080 bool ComparingWithAllZeros = true; 5081 bool AllComparisonsWithNonZerosAreTautological = true; 5082 bool HadTautologicalLanes = false; 5083 bool AllLanesAreTautological = true; 5084 bool HadEvenDivisor = false; 5085 bool AllDivisorsArePowerOfTwo = true; 5086 bool HadTautologicalInvertedLanes = false; 5087 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5088 5089 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5090 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5091 if (CDiv->isNullValue()) 5092 return false; 5093 5094 const APInt &D = CDiv->getAPIntValue(); 5095 const APInt &Cmp = CCmp->getAPIntValue(); 5096 5097 ComparingWithAllZeros &= Cmp.isNullValue(); 5098 5099 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5100 // if C2 is not less than C1, the comparison is always false. 5101 // But we will only be able to produce the comparison that will give the 5102 // opposive tautological answer. So this lane would need to be fixed up. 5103 bool TautologicalInvertedLane = D.ule(Cmp); 5104 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5105 5106 // If all lanes are tautological (either all divisors are ones, or divisor 5107 // is not greater than the constant we are comparing with), 5108 // we will prefer to avoid the fold. 5109 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5110 HadTautologicalLanes |= TautologicalLane; 5111 AllLanesAreTautological &= TautologicalLane; 5112 5113 // If we are comparing with non-zero, we need'll need to subtract said 5114 // comparison value from the LHS. But there is no point in doing that if 5115 // every lane where we are comparing with non-zero is tautological.. 5116 if (!Cmp.isNullValue()) 5117 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5118 5119 // Decompose D into D0 * 2^K 5120 unsigned K = D.countTrailingZeros(); 5121 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5122 APInt D0 = D.lshr(K); 5123 5124 // D is even if it has trailing zeros. 5125 HadEvenDivisor |= (K != 0); 5126 // D is a power-of-two if D0 is one. 5127 // If all divisors are power-of-two, we will prefer to avoid the fold. 5128 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5129 5130 // P = inv(D0, 2^W) 5131 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5132 unsigned W = D.getBitWidth(); 5133 APInt P = D0.zext(W + 1) 5134 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5135 .trunc(W); 5136 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5137 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5138 5139 // Q = floor((2^W - 1) u/ D) 5140 // R = ((2^W - 1) u% D) 5141 APInt Q, R; 5142 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5143 5144 // If we are comparing with zero, then that comparison constant is okay, 5145 // else it may need to be one less than that. 5146 if (Cmp.ugt(R)) 5147 Q -= 1; 5148 5149 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5150 "We are expecting that K is always less than all-ones for ShSVT"); 5151 5152 // If the lane is tautological the result can be constant-folded. 5153 if (TautologicalLane) { 5154 // Set P and K amount to a bogus values so we can try to splat them. 5155 P = 0; 5156 K = -1; 5157 // And ensure that comparison constant is tautological, 5158 // it will always compare true/false. 5159 Q = -1; 5160 } 5161 5162 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5163 KAmts.push_back( 5164 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5165 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5166 return true; 5167 }; 5168 5169 SDValue N = REMNode.getOperand(0); 5170 SDValue D = REMNode.getOperand(1); 5171 5172 // Collect the values from each element. 5173 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5174 return SDValue(); 5175 5176 // If all lanes are tautological, the result can be constant-folded. 5177 if (AllLanesAreTautological) 5178 return SDValue(); 5179 5180 // If this is a urem by a powers-of-two, avoid the fold since it can be 5181 // best implemented as a bit test. 5182 if (AllDivisorsArePowerOfTwo) 5183 return SDValue(); 5184 5185 SDValue PVal, KVal, QVal; 5186 if (VT.isVector()) { 5187 if (HadTautologicalLanes) { 5188 // Try to turn PAmts into a splat, since we don't care about the values 5189 // that are currently '0'. If we can't, just keep '0'`s. 5190 turnVectorIntoSplatVector(PAmts, isNullConstant); 5191 // Try to turn KAmts into a splat, since we don't care about the values 5192 // that are currently '-1'. If we can't, change them to '0'`s. 5193 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5194 DAG.getConstant(0, DL, ShSVT)); 5195 } 5196 5197 PVal = DAG.getBuildVector(VT, DL, PAmts); 5198 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5199 QVal = DAG.getBuildVector(VT, DL, QAmts); 5200 } else { 5201 PVal = PAmts[0]; 5202 KVal = KAmts[0]; 5203 QVal = QAmts[0]; 5204 } 5205 5206 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5207 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5208 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5209 assert(CompTargetNode.getValueType() == N.getValueType() && 5210 "Expecting that the types on LHS and RHS of comparisons match."); 5211 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5212 } 5213 5214 // (mul N, P) 5215 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5216 Created.push_back(Op0.getNode()); 5217 5218 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5219 // divisors as a performance improvement, since rotating by 0 is a no-op. 5220 if (HadEvenDivisor) { 5221 // We need ROTR to do this. 5222 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5223 return SDValue(); 5224 SDNodeFlags Flags; 5225 Flags.setExact(true); 5226 // UREM: (rotr (mul N, P), K) 5227 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5228 Created.push_back(Op0.getNode()); 5229 } 5230 5231 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5232 SDValue NewCC = 5233 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5234 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5235 if (!HadTautologicalInvertedLanes) 5236 return NewCC; 5237 5238 // If any lanes previously compared always-false, the NewCC will give 5239 // always-true result for them, so we need to fixup those lanes. 5240 // Or the other way around for inequality predicate. 5241 assert(VT.isVector() && "Can/should only get here for vectors."); 5242 Created.push_back(NewCC.getNode()); 5243 5244 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5245 // if C2 is not less than C1, the comparison is always false. 5246 // But we have produced the comparison that will give the 5247 // opposive tautological answer. So these lanes would need to be fixed up. 5248 SDValue TautologicalInvertedChannels = 5249 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5250 Created.push_back(TautologicalInvertedChannels.getNode()); 5251 5252 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5253 // If we have a vector select, let's replace the comparison results in the 5254 // affected lanes with the correct tautological result. 5255 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5256 DL, SETCCVT, SETCCVT); 5257 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5258 Replacement, NewCC); 5259 } 5260 5261 // Else, we can just invert the comparison result in the appropriate lanes. 5262 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5263 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5264 TautologicalInvertedChannels); 5265 5266 return SDValue(); // Don't know how to lower. 5267 } 5268 5269 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5270 /// where the divisor is constant and the comparison target is zero, 5271 /// return a DAG expression that will generate the same comparison result 5272 /// using only multiplications, additions and shifts/rotations. 5273 /// Ref: "Hacker's Delight" 10-17. 5274 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5275 SDValue CompTargetNode, 5276 ISD::CondCode Cond, 5277 DAGCombinerInfo &DCI, 5278 const SDLoc &DL) const { 5279 SmallVector<SDNode *, 7> Built; 5280 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5281 DCI, DL, Built)) { 5282 assert(Built.size() <= 7 && "Max size prediction failed."); 5283 for (SDNode *N : Built) 5284 DCI.AddToWorklist(N); 5285 return Folded; 5286 } 5287 5288 return SDValue(); 5289 } 5290 5291 SDValue 5292 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5293 SDValue CompTargetNode, ISD::CondCode Cond, 5294 DAGCombinerInfo &DCI, const SDLoc &DL, 5295 SmallVectorImpl<SDNode *> &Created) const { 5296 // Fold: 5297 // (seteq/ne (srem N, D), 0) 5298 // To: 5299 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5300 // 5301 // - D must be constant, with D = D0 * 2^K where D0 is odd 5302 // - P is the multiplicative inverse of D0 modulo 2^W 5303 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5304 // - Q = floor((2 * A) / (2^K)) 5305 // where W is the width of the common type of N and D. 5306 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5307 "Only applicable for (in)equality comparisons."); 5308 5309 SelectionDAG &DAG = DCI.DAG; 5310 5311 EVT VT = REMNode.getValueType(); 5312 EVT SVT = VT.getScalarType(); 5313 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5314 EVT ShSVT = ShVT.getScalarType(); 5315 5316 // If MUL is unavailable, we cannot proceed in any case. 5317 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5318 return SDValue(); 5319 5320 // TODO: Could support comparing with non-zero too. 5321 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5322 if (!CompTarget || !CompTarget->isNullValue()) 5323 return SDValue(); 5324 5325 bool HadIntMinDivisor = false; 5326 bool HadOneDivisor = false; 5327 bool AllDivisorsAreOnes = true; 5328 bool HadEvenDivisor = false; 5329 bool NeedToApplyOffset = false; 5330 bool AllDivisorsArePowerOfTwo = true; 5331 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5332 5333 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5334 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5335 if (C->isNullValue()) 5336 return false; 5337 5338 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5339 5340 // WARNING: this fold is only valid for positive divisors! 5341 APInt D = C->getAPIntValue(); 5342 if (D.isNegative()) 5343 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5344 5345 HadIntMinDivisor |= D.isMinSignedValue(); 5346 5347 // If all divisors are ones, we will prefer to avoid the fold. 5348 HadOneDivisor |= D.isOneValue(); 5349 AllDivisorsAreOnes &= D.isOneValue(); 5350 5351 // Decompose D into D0 * 2^K 5352 unsigned K = D.countTrailingZeros(); 5353 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5354 APInt D0 = D.lshr(K); 5355 5356 if (!D.isMinSignedValue()) { 5357 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5358 // we don't care about this lane in this fold, we'll special-handle it. 5359 HadEvenDivisor |= (K != 0); 5360 } 5361 5362 // D is a power-of-two if D0 is one. This includes INT_MIN. 5363 // If all divisors are power-of-two, we will prefer to avoid the fold. 5364 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5365 5366 // P = inv(D0, 2^W) 5367 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5368 unsigned W = D.getBitWidth(); 5369 APInt P = D0.zext(W + 1) 5370 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5371 .trunc(W); 5372 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5373 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5374 5375 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5376 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5377 A.clearLowBits(K); 5378 5379 if (!D.isMinSignedValue()) { 5380 // If divisor INT_MIN, then we don't care about this lane in this fold, 5381 // we'll special-handle it. 5382 NeedToApplyOffset |= A != 0; 5383 } 5384 5385 // Q = floor((2 * A) / (2^K)) 5386 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5387 5388 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5389 "We are expecting that A is always less than all-ones for SVT"); 5390 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5391 "We are expecting that K is always less than all-ones for ShSVT"); 5392 5393 // If the divisor is 1 the result can be constant-folded. Likewise, we 5394 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5395 if (D.isOneValue()) { 5396 // Set P, A and K to a bogus values so we can try to splat them. 5397 P = 0; 5398 A = -1; 5399 K = -1; 5400 5401 // x ?% 1 == 0 <--> true <--> x u<= -1 5402 Q = -1; 5403 } 5404 5405 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5406 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5407 KAmts.push_back( 5408 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5409 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5410 return true; 5411 }; 5412 5413 SDValue N = REMNode.getOperand(0); 5414 SDValue D = REMNode.getOperand(1); 5415 5416 // Collect the values from each element. 5417 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5418 return SDValue(); 5419 5420 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5421 if (AllDivisorsAreOnes) 5422 return SDValue(); 5423 5424 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5425 // since it can be best implemented as a bit test. 5426 if (AllDivisorsArePowerOfTwo) 5427 return SDValue(); 5428 5429 SDValue PVal, AVal, KVal, QVal; 5430 if (VT.isVector()) { 5431 if (HadOneDivisor) { 5432 // Try to turn PAmts into a splat, since we don't care about the values 5433 // that are currently '0'. If we can't, just keep '0'`s. 5434 turnVectorIntoSplatVector(PAmts, isNullConstant); 5435 // Try to turn AAmts into a splat, since we don't care about the 5436 // values that are currently '-1'. If we can't, change them to '0'`s. 5437 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5438 DAG.getConstant(0, DL, SVT)); 5439 // Try to turn KAmts into a splat, since we don't care about the values 5440 // that are currently '-1'. If we can't, change them to '0'`s. 5441 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5442 DAG.getConstant(0, DL, ShSVT)); 5443 } 5444 5445 PVal = DAG.getBuildVector(VT, DL, PAmts); 5446 AVal = DAG.getBuildVector(VT, DL, AAmts); 5447 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5448 QVal = DAG.getBuildVector(VT, DL, QAmts); 5449 } else { 5450 PVal = PAmts[0]; 5451 AVal = AAmts[0]; 5452 KVal = KAmts[0]; 5453 QVal = QAmts[0]; 5454 } 5455 5456 // (mul N, P) 5457 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5458 Created.push_back(Op0.getNode()); 5459 5460 if (NeedToApplyOffset) { 5461 // We need ADD to do this. 5462 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5463 return SDValue(); 5464 5465 // (add (mul N, P), A) 5466 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5467 Created.push_back(Op0.getNode()); 5468 } 5469 5470 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5471 // divisors as a performance improvement, since rotating by 0 is a no-op. 5472 if (HadEvenDivisor) { 5473 // We need ROTR to do this. 5474 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5475 return SDValue(); 5476 SDNodeFlags Flags; 5477 Flags.setExact(true); 5478 // SREM: (rotr (add (mul N, P), A), K) 5479 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5480 Created.push_back(Op0.getNode()); 5481 } 5482 5483 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5484 SDValue Fold = 5485 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5486 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5487 5488 // If we didn't have lanes with INT_MIN divisor, then we're done. 5489 if (!HadIntMinDivisor) 5490 return Fold; 5491 5492 // That fold is only valid for positive divisors. Which effectively means, 5493 // it is invalid for INT_MIN divisors. So if we have such a lane, 5494 // we must fix-up results for said lanes. 5495 assert(VT.isVector() && "Can/should only get here for vectors."); 5496 5497 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5498 !isOperationLegalOrCustom(ISD::AND, VT) || 5499 !isOperationLegalOrCustom(Cond, VT) || 5500 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5501 return SDValue(); 5502 5503 Created.push_back(Fold.getNode()); 5504 5505 SDValue IntMin = DAG.getConstant( 5506 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5507 SDValue IntMax = DAG.getConstant( 5508 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5509 SDValue Zero = 5510 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5511 5512 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5513 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5514 Created.push_back(DivisorIsIntMin.getNode()); 5515 5516 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5517 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5518 Created.push_back(Masked.getNode()); 5519 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5520 Created.push_back(MaskedIsZero.getNode()); 5521 5522 // To produce final result we need to blend 2 vectors: 'SetCC' and 5523 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5524 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5525 // constant-folded, select can get lowered to a shuffle with constant mask. 5526 SDValue Blended = 5527 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5528 5529 return Blended; 5530 } 5531 5532 bool TargetLowering:: 5533 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5534 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5535 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5536 "be a constant integer"); 5537 return true; 5538 } 5539 5540 return false; 5541 } 5542 5543 TargetLowering::NegatibleCost 5544 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5545 bool LegalOperations, bool ForCodeSize, 5546 unsigned Depth) const { 5547 // fneg is removable even if it has multiple uses. 5548 if (Op.getOpcode() == ISD::FNEG) 5549 return NegatibleCost::Cheaper; 5550 5551 // Don't allow anything with multiple uses unless we know it is free. 5552 EVT VT = Op.getValueType(); 5553 const SDNodeFlags Flags = Op->getFlags(); 5554 const TargetOptions &Options = DAG.getTarget().Options; 5555 if (!Op.hasOneUse()) { 5556 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5557 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5558 5559 // If we already have the use of the negated floating constant, it is free 5560 // to negate it even it has multiple uses. 5561 bool IsFreeConstant = 5562 Op.getOpcode() == ISD::ConstantFP && 5563 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5564 .use_empty(); 5565 5566 if (!IsFreeExtend && !IsFreeConstant) 5567 return NegatibleCost::Expensive; 5568 } 5569 5570 // Don't recurse exponentially. 5571 if (Depth > SelectionDAG::MaxRecursionDepth) 5572 return NegatibleCost::Expensive; 5573 5574 switch (Op.getOpcode()) { 5575 case ISD::ConstantFP: { 5576 if (!LegalOperations) 5577 return NegatibleCost::Neutral; 5578 5579 // Don't invert constant FP values after legalization unless the target says 5580 // the negated constant is legal. 5581 if (isOperationLegal(ISD::ConstantFP, VT) || 5582 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5583 ForCodeSize)) 5584 return NegatibleCost::Neutral; 5585 break; 5586 } 5587 case ISD::BUILD_VECTOR: { 5588 // Only permit BUILD_VECTOR of constants. 5589 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5590 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5591 })) 5592 return NegatibleCost::Expensive; 5593 if (!LegalOperations) 5594 return NegatibleCost::Neutral; 5595 if (isOperationLegal(ISD::ConstantFP, VT) && 5596 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5597 return NegatibleCost::Neutral; 5598 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5599 return N.isUndef() || 5600 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5601 ForCodeSize); 5602 })) 5603 return NegatibleCost::Neutral; 5604 break; 5605 } 5606 case ISD::FADD: { 5607 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5608 return NegatibleCost::Expensive; 5609 5610 // After operation legalization, it might not be legal to create new FSUBs. 5611 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5612 return NegatibleCost::Expensive; 5613 5614 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5615 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5616 ForCodeSize, Depth + 1); 5617 if (V0 != NegatibleCost::Expensive) 5618 return V0; 5619 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5620 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5621 Depth + 1); 5622 } 5623 case ISD::FSUB: 5624 // We can't turn -(A-B) into B-A when we honor signed zeros. 5625 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5626 return NegatibleCost::Expensive; 5627 5628 // fold (fneg (fsub A, B)) -> (fsub B, A) 5629 return NegatibleCost::Neutral; 5630 case ISD::FMUL: 5631 case ISD::FDIV: { 5632 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5633 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5634 ForCodeSize, Depth + 1); 5635 if (V0 != NegatibleCost::Expensive) 5636 return V0; 5637 5638 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5639 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5640 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5641 return NegatibleCost::Expensive; 5642 5643 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5644 Depth + 1); 5645 } 5646 case ISD::FMA: 5647 case ISD::FMAD: { 5648 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5649 return NegatibleCost::Expensive; 5650 5651 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5652 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5653 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5654 ForCodeSize, Depth + 1); 5655 if (NegatibleCost::Expensive == V2) 5656 return NegatibleCost::Expensive; 5657 5658 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5659 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5660 ForCodeSize, Depth + 1); 5661 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5662 ForCodeSize, Depth + 1); 5663 NegatibleCost V01 = std::max(V0, V1); 5664 if (V01 == NegatibleCost::Expensive) 5665 return NegatibleCost::Expensive; 5666 return std::max(V01, V2); 5667 } 5668 5669 case ISD::FP_EXTEND: 5670 case ISD::FP_ROUND: 5671 case ISD::FSIN: 5672 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5673 Depth + 1); 5674 } 5675 5676 return NegatibleCost::Expensive; 5677 } 5678 5679 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5680 bool LegalOperations, 5681 bool ForCodeSize, 5682 unsigned Depth) const { 5683 // fneg is removable even if it has multiple uses. 5684 if (Op.getOpcode() == ISD::FNEG) 5685 return Op.getOperand(0); 5686 5687 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5688 "getNegatedExpression doesn't match getNegatibleCost"); 5689 const SDNodeFlags Flags = Op->getFlags(); 5690 5691 switch (Op.getOpcode()) { 5692 case ISD::ConstantFP: { 5693 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5694 V.changeSign(); 5695 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5696 } 5697 case ISD::BUILD_VECTOR: { 5698 SmallVector<SDValue, 4> Ops; 5699 for (SDValue C : Op->op_values()) { 5700 if (C.isUndef()) { 5701 Ops.push_back(C); 5702 continue; 5703 } 5704 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5705 V.changeSign(); 5706 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5707 } 5708 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5709 } 5710 case ISD::FADD: { 5711 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5712 Flags.hasNoSignedZeros()) && 5713 "Expected NSZ fp-flag"); 5714 5715 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5716 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5717 ForCodeSize, Depth + 1); 5718 if (V0 != NegatibleCost::Expensive) 5719 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5720 getNegatedExpression(Op.getOperand(0), DAG, 5721 LegalOperations, ForCodeSize, 5722 Depth + 1), 5723 Op.getOperand(1), Flags); 5724 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5725 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5726 getNegatedExpression(Op.getOperand(1), DAG, 5727 LegalOperations, ForCodeSize, 5728 Depth + 1), 5729 Op.getOperand(0), Flags); 5730 } 5731 case ISD::FSUB: 5732 // fold (fneg (fsub 0, B)) -> B 5733 if (ConstantFPSDNode *N0CFP = 5734 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5735 if (N0CFP->isZero()) 5736 return Op.getOperand(1); 5737 5738 // fold (fneg (fsub A, B)) -> (fsub B, A) 5739 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5740 Op.getOperand(1), Op.getOperand(0), Flags); 5741 5742 case ISD::FMUL: 5743 case ISD::FDIV: { 5744 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5745 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5746 ForCodeSize, Depth + 1); 5747 if (V0 != NegatibleCost::Expensive) 5748 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5749 getNegatedExpression(Op.getOperand(0), DAG, 5750 LegalOperations, ForCodeSize, 5751 Depth + 1), 5752 Op.getOperand(1), Flags); 5753 5754 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5755 return DAG.getNode( 5756 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5757 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5758 ForCodeSize, Depth + 1), 5759 Flags); 5760 } 5761 case ISD::FMA: 5762 case ISD::FMAD: { 5763 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5764 Flags.hasNoSignedZeros()) && 5765 "Expected NSZ fp-flag"); 5766 5767 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5768 ForCodeSize, Depth + 1); 5769 5770 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5771 ForCodeSize, Depth + 1); 5772 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5773 ForCodeSize, Depth + 1); 5774 if (V0 > V1) { 5775 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5776 SDValue Neg0 = getNegatedExpression( 5777 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5778 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5779 Op.getOperand(1), Neg2, Flags); 5780 } 5781 5782 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5783 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5784 ForCodeSize, Depth + 1); 5785 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5786 Op.getOperand(0), Neg1, Neg2, Flags); 5787 } 5788 5789 case ISD::FP_EXTEND: 5790 case ISD::FSIN: 5791 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5792 getNegatedExpression(Op.getOperand(0), DAG, 5793 LegalOperations, ForCodeSize, 5794 Depth + 1)); 5795 case ISD::FP_ROUND: 5796 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5797 getNegatedExpression(Op.getOperand(0), DAG, 5798 LegalOperations, ForCodeSize, 5799 Depth + 1), 5800 Op.getOperand(1)); 5801 } 5802 5803 llvm_unreachable("Unknown code"); 5804 } 5805 5806 //===----------------------------------------------------------------------===// 5807 // Legalization Utilities 5808 //===----------------------------------------------------------------------===// 5809 5810 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5811 SDValue LHS, SDValue RHS, 5812 SmallVectorImpl<SDValue> &Result, 5813 EVT HiLoVT, SelectionDAG &DAG, 5814 MulExpansionKind Kind, SDValue LL, 5815 SDValue LH, SDValue RL, SDValue RH) const { 5816 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5817 Opcode == ISD::SMUL_LOHI); 5818 5819 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5820 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5821 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5822 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5823 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5824 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5825 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5826 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5827 5828 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5829 return false; 5830 5831 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5832 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5833 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5834 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5835 5836 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5837 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5838 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5839 5840 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5841 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5842 bool Signed) -> bool { 5843 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5844 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5845 Hi = SDValue(Lo.getNode(), 1); 5846 return true; 5847 } 5848 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5849 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5850 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5851 return true; 5852 } 5853 return false; 5854 }; 5855 5856 SDValue Lo, Hi; 5857 5858 if (!LL.getNode() && !RL.getNode() && 5859 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5860 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5861 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5862 } 5863 5864 if (!LL.getNode()) 5865 return false; 5866 5867 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5868 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5869 DAG.MaskedValueIsZero(RHS, HighMask)) { 5870 // The inputs are both zero-extended. 5871 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5872 Result.push_back(Lo); 5873 Result.push_back(Hi); 5874 if (Opcode != ISD::MUL) { 5875 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5876 Result.push_back(Zero); 5877 Result.push_back(Zero); 5878 } 5879 return true; 5880 } 5881 } 5882 5883 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5884 RHSSB > InnerBitSize) { 5885 // The input values are both sign-extended. 5886 // TODO non-MUL case? 5887 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5888 Result.push_back(Lo); 5889 Result.push_back(Hi); 5890 return true; 5891 } 5892 } 5893 5894 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5895 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5896 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5897 // FIXME getShiftAmountTy does not always return a sensible result when VT 5898 // is an illegal type, and so the type may be too small to fit the shift 5899 // amount. Override it with i32. The shift will have to be legalized. 5900 ShiftAmountTy = MVT::i32; 5901 } 5902 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5903 5904 if (!LH.getNode() && !RH.getNode() && 5905 isOperationLegalOrCustom(ISD::SRL, VT) && 5906 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5907 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5908 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5909 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5910 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5911 } 5912 5913 if (!LH.getNode()) 5914 return false; 5915 5916 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5917 return false; 5918 5919 Result.push_back(Lo); 5920 5921 if (Opcode == ISD::MUL) { 5922 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5923 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5924 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5925 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5926 Result.push_back(Hi); 5927 return true; 5928 } 5929 5930 // Compute the full width result. 5931 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5932 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5933 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5934 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5935 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5936 }; 5937 5938 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5939 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5940 return false; 5941 5942 // This is effectively the add part of a multiply-add of half-sized operands, 5943 // so it cannot overflow. 5944 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5945 5946 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5947 return false; 5948 5949 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5950 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5951 5952 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5953 isOperationLegalOrCustom(ISD::ADDE, VT)); 5954 if (UseGlue) 5955 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5956 Merge(Lo, Hi)); 5957 else 5958 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5959 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5960 5961 SDValue Carry = Next.getValue(1); 5962 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5963 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5964 5965 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5966 return false; 5967 5968 if (UseGlue) 5969 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5970 Carry); 5971 else 5972 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5973 Zero, Carry); 5974 5975 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5976 5977 if (Opcode == ISD::SMUL_LOHI) { 5978 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5979 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5980 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5981 5982 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5983 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5984 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5985 } 5986 5987 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5988 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5989 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5990 return true; 5991 } 5992 5993 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5994 SelectionDAG &DAG, MulExpansionKind Kind, 5995 SDValue LL, SDValue LH, SDValue RL, 5996 SDValue RH) const { 5997 SmallVector<SDValue, 2> Result; 5998 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5999 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6000 DAG, Kind, LL, LH, RL, RH); 6001 if (Ok) { 6002 assert(Result.size() == 2); 6003 Lo = Result[0]; 6004 Hi = Result[1]; 6005 } 6006 return Ok; 6007 } 6008 6009 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6010 SelectionDAG &DAG) const { 6011 EVT VT = Node->getValueType(0); 6012 6013 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6014 !isOperationLegalOrCustom(ISD::SRL, VT) || 6015 !isOperationLegalOrCustom(ISD::SUB, VT) || 6016 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6017 return false; 6018 6019 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6020 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6021 SDValue X = Node->getOperand(0); 6022 SDValue Y = Node->getOperand(1); 6023 SDValue Z = Node->getOperand(2); 6024 6025 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6026 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6027 SDLoc DL(SDValue(Node, 0)); 6028 6029 EVT ShVT = Z.getValueType(); 6030 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6031 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6032 6033 SDValue ShAmt; 6034 if (isPowerOf2_32(EltSizeInBits)) { 6035 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6036 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6037 } else { 6038 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6039 } 6040 6041 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6042 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6043 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6044 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6045 6046 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6047 // and that is undefined. We must compare and select to avoid UB. 6048 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6049 6050 // For fshl, 0-shift returns the 1st arg (X). 6051 // For fshr, 0-shift returns the 2nd arg (Y). 6052 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6053 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6054 return true; 6055 } 6056 6057 // TODO: Merge with expandFunnelShift. 6058 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6059 SelectionDAG &DAG) const { 6060 EVT VT = Node->getValueType(0); 6061 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6062 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6063 SDValue Op0 = Node->getOperand(0); 6064 SDValue Op1 = Node->getOperand(1); 6065 SDLoc DL(SDValue(Node, 0)); 6066 6067 EVT ShVT = Op1.getValueType(); 6068 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6069 6070 // If a rotate in the other direction is legal, use it. 6071 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6072 if (isOperationLegal(RevRot, VT)) { 6073 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6074 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6075 return true; 6076 } 6077 6078 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6079 !isOperationLegalOrCustom(ISD::SRL, VT) || 6080 !isOperationLegalOrCustom(ISD::SUB, VT) || 6081 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6082 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6083 return false; 6084 6085 // Otherwise, 6086 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6087 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6088 // 6089 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6090 "Expecting the type bitwidth to be a power of 2"); 6091 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6092 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6093 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6094 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6095 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6096 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6097 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6098 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6099 return true; 6100 } 6101 6102 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6103 SelectionDAG &DAG) const { 6104 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6105 SDValue Src = Node->getOperand(OpNo); 6106 EVT SrcVT = Src.getValueType(); 6107 EVT DstVT = Node->getValueType(0); 6108 SDLoc dl(SDValue(Node, 0)); 6109 6110 // FIXME: Only f32 to i64 conversions are supported. 6111 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6112 return false; 6113 6114 if (Node->isStrictFPOpcode()) 6115 // When a NaN is converted to an integer a trap is allowed. We can't 6116 // use this expansion here because it would eliminate that trap. Other 6117 // traps are also allowed and cannot be eliminated. See 6118 // IEEE 754-2008 sec 5.8. 6119 return false; 6120 6121 // Expand f32 -> i64 conversion 6122 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6123 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6124 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6125 EVT IntVT = SrcVT.changeTypeToInteger(); 6126 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6127 6128 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6129 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6130 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6131 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6132 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6133 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6134 6135 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6136 6137 SDValue ExponentBits = DAG.getNode( 6138 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6139 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6140 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6141 6142 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6143 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6144 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6145 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6146 6147 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6148 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6149 DAG.getConstant(0x00800000, dl, IntVT)); 6150 6151 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6152 6153 R = DAG.getSelectCC( 6154 dl, Exponent, ExponentLoBit, 6155 DAG.getNode(ISD::SHL, dl, DstVT, R, 6156 DAG.getZExtOrTrunc( 6157 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6158 dl, IntShVT)), 6159 DAG.getNode(ISD::SRL, dl, DstVT, R, 6160 DAG.getZExtOrTrunc( 6161 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6162 dl, IntShVT)), 6163 ISD::SETGT); 6164 6165 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6166 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6167 6168 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6169 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6170 return true; 6171 } 6172 6173 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6174 SDValue &Chain, 6175 SelectionDAG &DAG) const { 6176 SDLoc dl(SDValue(Node, 0)); 6177 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6178 SDValue Src = Node->getOperand(OpNo); 6179 6180 EVT SrcVT = Src.getValueType(); 6181 EVT DstVT = Node->getValueType(0); 6182 EVT SetCCVT = 6183 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6184 EVT DstSetCCVT = 6185 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6186 6187 // Only expand vector types if we have the appropriate vector bit operations. 6188 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6189 ISD::FP_TO_SINT; 6190 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6191 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6192 return false; 6193 6194 // If the maximum float value is smaller then the signed integer range, 6195 // the destination signmask can't be represented by the float, so we can 6196 // just use FP_TO_SINT directly. 6197 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6198 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6199 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6200 if (APFloat::opOverflow & 6201 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6202 if (Node->isStrictFPOpcode()) { 6203 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6204 { Node->getOperand(0), Src }); 6205 Chain = Result.getValue(1); 6206 } else 6207 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6208 return true; 6209 } 6210 6211 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6212 SDValue Sel; 6213 6214 if (Node->isStrictFPOpcode()) { 6215 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6216 Node->getOperand(0), /*IsSignaling*/ true); 6217 Chain = Sel.getValue(1); 6218 } else { 6219 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6220 } 6221 6222 bool Strict = Node->isStrictFPOpcode() || 6223 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6224 6225 if (Strict) { 6226 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6227 // signmask then offset (the result of which should be fully representable). 6228 // Sel = Src < 0x8000000000000000 6229 // FltOfs = select Sel, 0, 0x8000000000000000 6230 // IntOfs = select Sel, 0, 0x8000000000000000 6231 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6232 6233 // TODO: Should any fast-math-flags be set for the FSUB? 6234 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6235 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6236 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6237 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6238 DAG.getConstant(0, dl, DstVT), 6239 DAG.getConstant(SignMask, dl, DstVT)); 6240 SDValue SInt; 6241 if (Node->isStrictFPOpcode()) { 6242 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6243 { Chain, Src, FltOfs }); 6244 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6245 { Val.getValue(1), Val }); 6246 Chain = SInt.getValue(1); 6247 } else { 6248 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6249 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6250 } 6251 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6252 } else { 6253 // Expand based on maximum range of FP_TO_SINT: 6254 // True = fp_to_sint(Src) 6255 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6256 // Result = select (Src < 0x8000000000000000), True, False 6257 6258 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6259 // TODO: Should any fast-math-flags be set for the FSUB? 6260 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6261 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6262 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6263 DAG.getConstant(SignMask, dl, DstVT)); 6264 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6265 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6266 } 6267 return true; 6268 } 6269 6270 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6271 SDValue &Chain, 6272 SelectionDAG &DAG) const { 6273 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6274 SDValue Src = Node->getOperand(OpNo); 6275 EVT SrcVT = Src.getValueType(); 6276 EVT DstVT = Node->getValueType(0); 6277 6278 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6279 return false; 6280 6281 // Only expand vector types if we have the appropriate vector bit operations. 6282 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6283 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6284 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6285 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6286 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6287 return false; 6288 6289 SDLoc dl(SDValue(Node, 0)); 6290 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6291 6292 // Implementation of unsigned i64 to f64 following the algorithm in 6293 // __floatundidf in compiler_rt. This implementation has the advantage 6294 // of performing rounding correctly, both in the default rounding mode 6295 // and in all alternate rounding modes. 6296 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6297 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6298 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6299 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6300 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6301 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6302 6303 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6304 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6305 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6306 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6307 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6308 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6309 if (Node->isStrictFPOpcode()) { 6310 SDValue HiSub = 6311 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6312 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6313 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6314 {HiSub.getValue(1), LoFlt, HiSub}); 6315 Chain = Result.getValue(1); 6316 } else { 6317 SDValue HiSub = 6318 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6319 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6320 } 6321 return true; 6322 } 6323 6324 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6325 SelectionDAG &DAG) const { 6326 SDLoc dl(Node); 6327 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6328 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6329 EVT VT = Node->getValueType(0); 6330 if (isOperationLegalOrCustom(NewOp, VT)) { 6331 SDValue Quiet0 = Node->getOperand(0); 6332 SDValue Quiet1 = Node->getOperand(1); 6333 6334 if (!Node->getFlags().hasNoNaNs()) { 6335 // Insert canonicalizes if it's possible we need to quiet to get correct 6336 // sNaN behavior. 6337 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6338 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6339 Node->getFlags()); 6340 } 6341 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6342 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6343 Node->getFlags()); 6344 } 6345 } 6346 6347 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6348 } 6349 6350 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6351 // instead if there are no NaNs. 6352 if (Node->getFlags().hasNoNaNs()) { 6353 unsigned IEEE2018Op = 6354 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6355 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6356 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6357 Node->getOperand(1), Node->getFlags()); 6358 } 6359 } 6360 6361 // If none of the above worked, but there are no NaNs, then expand to 6362 // a compare/select sequence. This is required for correctness since 6363 // InstCombine might have canonicalized a fcmp+select sequence to a 6364 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6365 // expansion to libcall, we might introduce a link-time dependency 6366 // on libm into a file that originally did not have one. 6367 if (Node->getFlags().hasNoNaNs()) { 6368 ISD::CondCode Pred = 6369 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6370 SDValue Op1 = Node->getOperand(0); 6371 SDValue Op2 = Node->getOperand(1); 6372 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6373 // Copy FMF flags, but always set the no-signed-zeros flag 6374 // as this is implied by the FMINNUM/FMAXNUM semantics. 6375 SDNodeFlags Flags = Node->getFlags(); 6376 Flags.setNoSignedZeros(true); 6377 SelCC->setFlags(Flags); 6378 return SelCC; 6379 } 6380 6381 return SDValue(); 6382 } 6383 6384 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6385 SelectionDAG &DAG) const { 6386 SDLoc dl(Node); 6387 EVT VT = Node->getValueType(0); 6388 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6389 SDValue Op = Node->getOperand(0); 6390 unsigned Len = VT.getScalarSizeInBits(); 6391 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6392 6393 // TODO: Add support for irregular type lengths. 6394 if (!(Len <= 128 && Len % 8 == 0)) 6395 return false; 6396 6397 // Only expand vector types if we have the appropriate vector bit operations. 6398 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6399 !isOperationLegalOrCustom(ISD::SUB, VT) || 6400 !isOperationLegalOrCustom(ISD::SRL, VT) || 6401 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6402 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6403 return false; 6404 6405 // This is the "best" algorithm from 6406 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6407 SDValue Mask55 = 6408 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6409 SDValue Mask33 = 6410 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6411 SDValue Mask0F = 6412 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6413 SDValue Mask01 = 6414 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6415 6416 // v = v - ((v >> 1) & 0x55555555...) 6417 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6418 DAG.getNode(ISD::AND, dl, VT, 6419 DAG.getNode(ISD::SRL, dl, VT, Op, 6420 DAG.getConstant(1, dl, ShVT)), 6421 Mask55)); 6422 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6423 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6424 DAG.getNode(ISD::AND, dl, VT, 6425 DAG.getNode(ISD::SRL, dl, VT, Op, 6426 DAG.getConstant(2, dl, ShVT)), 6427 Mask33)); 6428 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6429 Op = DAG.getNode(ISD::AND, dl, VT, 6430 DAG.getNode(ISD::ADD, dl, VT, Op, 6431 DAG.getNode(ISD::SRL, dl, VT, Op, 6432 DAG.getConstant(4, dl, ShVT))), 6433 Mask0F); 6434 // v = (v * 0x01010101...) >> (Len - 8) 6435 if (Len > 8) 6436 Op = 6437 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6438 DAG.getConstant(Len - 8, dl, ShVT)); 6439 6440 Result = Op; 6441 return true; 6442 } 6443 6444 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6445 SelectionDAG &DAG) const { 6446 SDLoc dl(Node); 6447 EVT VT = Node->getValueType(0); 6448 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6449 SDValue Op = Node->getOperand(0); 6450 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6451 6452 // If the non-ZERO_UNDEF version is supported we can use that instead. 6453 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6454 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6455 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6456 return true; 6457 } 6458 6459 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6460 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6461 EVT SetCCVT = 6462 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6463 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6464 SDValue Zero = DAG.getConstant(0, dl, VT); 6465 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6466 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6467 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6468 return true; 6469 } 6470 6471 // Only expand vector types if we have the appropriate vector bit operations. 6472 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6473 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6474 !isOperationLegalOrCustom(ISD::SRL, VT) || 6475 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6476 return false; 6477 6478 // for now, we do this: 6479 // x = x | (x >> 1); 6480 // x = x | (x >> 2); 6481 // ... 6482 // x = x | (x >>16); 6483 // x = x | (x >>32); // for 64-bit input 6484 // return popcount(~x); 6485 // 6486 // Ref: "Hacker's Delight" by Henry Warren 6487 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6488 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6489 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6490 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6491 } 6492 Op = DAG.getNOT(dl, Op, VT); 6493 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6494 return true; 6495 } 6496 6497 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6498 SelectionDAG &DAG) const { 6499 SDLoc dl(Node); 6500 EVT VT = Node->getValueType(0); 6501 SDValue Op = Node->getOperand(0); 6502 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6503 6504 // If the non-ZERO_UNDEF version is supported we can use that instead. 6505 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6506 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6507 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6508 return true; 6509 } 6510 6511 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6512 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6513 EVT SetCCVT = 6514 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6515 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6516 SDValue Zero = DAG.getConstant(0, dl, VT); 6517 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6518 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6519 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6520 return true; 6521 } 6522 6523 // Only expand vector types if we have the appropriate vector bit operations. 6524 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6525 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6526 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6527 !isOperationLegalOrCustom(ISD::SUB, VT) || 6528 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6529 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6530 return false; 6531 6532 // for now, we use: { return popcount(~x & (x - 1)); } 6533 // unless the target has ctlz but not ctpop, in which case we use: 6534 // { return 32 - nlz(~x & (x-1)); } 6535 // Ref: "Hacker's Delight" by Henry Warren 6536 SDValue Tmp = DAG.getNode( 6537 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6538 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6539 6540 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6541 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6542 Result = 6543 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6544 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6545 return true; 6546 } 6547 6548 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6549 return true; 6550 } 6551 6552 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6553 SelectionDAG &DAG) const { 6554 SDLoc dl(N); 6555 EVT VT = N->getValueType(0); 6556 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6557 SDValue Op = N->getOperand(0); 6558 6559 // Only expand vector types if we have the appropriate vector operations. 6560 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6561 !isOperationLegalOrCustom(ISD::ADD, VT) || 6562 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6563 return false; 6564 6565 SDValue Shift = 6566 DAG.getNode(ISD::SRA, dl, VT, Op, 6567 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6568 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6569 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6570 return true; 6571 } 6572 6573 std::pair<SDValue, SDValue> 6574 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6575 SelectionDAG &DAG) const { 6576 SDLoc SL(LD); 6577 SDValue Chain = LD->getChain(); 6578 SDValue BasePTR = LD->getBasePtr(); 6579 EVT SrcVT = LD->getMemoryVT(); 6580 EVT DstVT = LD->getValueType(0); 6581 ISD::LoadExtType ExtType = LD->getExtensionType(); 6582 6583 unsigned NumElem = SrcVT.getVectorNumElements(); 6584 6585 EVT SrcEltVT = SrcVT.getScalarType(); 6586 EVT DstEltVT = DstVT.getScalarType(); 6587 6588 // A vector must always be stored in memory as-is, i.e. without any padding 6589 // between the elements, since various code depend on it, e.g. in the 6590 // handling of a bitcast of a vector type to int, which may be done with a 6591 // vector store followed by an integer load. A vector that does not have 6592 // elements that are byte-sized must therefore be stored as an integer 6593 // built out of the extracted vector elements. 6594 if (!SrcEltVT.isByteSized()) { 6595 unsigned NumBits = SrcVT.getSizeInBits(); 6596 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6597 6598 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6599 LD->getAlignment(), 6600 LD->getMemOperand()->getFlags(), 6601 LD->getAAInfo()); 6602 6603 SmallVector<SDValue, 8> Vals; 6604 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6605 unsigned ShiftIntoIdx = 6606 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6607 SDValue ShiftAmount = 6608 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6609 SDValue ShiftedElt = 6610 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6611 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6612 if (ExtType != ISD::NON_EXTLOAD) { 6613 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6614 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6615 } 6616 Vals.push_back(Scalar); 6617 } 6618 6619 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6620 return std::make_pair(Value, Load.getValue(1)); 6621 } 6622 6623 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6624 assert(SrcEltVT.isByteSized()); 6625 6626 SmallVector<SDValue, 8> Vals; 6627 SmallVector<SDValue, 8> LoadChains; 6628 6629 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6630 SDValue ScalarLoad = 6631 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6632 LD->getPointerInfo().getWithOffset(Idx * Stride), 6633 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6634 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6635 6636 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6637 6638 Vals.push_back(ScalarLoad.getValue(0)); 6639 LoadChains.push_back(ScalarLoad.getValue(1)); 6640 } 6641 6642 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6643 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6644 6645 return std::make_pair(Value, NewChain); 6646 } 6647 6648 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6649 SelectionDAG &DAG) const { 6650 SDLoc SL(ST); 6651 6652 SDValue Chain = ST->getChain(); 6653 SDValue BasePtr = ST->getBasePtr(); 6654 SDValue Value = ST->getValue(); 6655 EVT StVT = ST->getMemoryVT(); 6656 6657 // The type of the data we want to save 6658 EVT RegVT = Value.getValueType(); 6659 EVT RegSclVT = RegVT.getScalarType(); 6660 6661 // The type of data as saved in memory. 6662 EVT MemSclVT = StVT.getScalarType(); 6663 6664 unsigned NumElem = StVT.getVectorNumElements(); 6665 6666 // A vector must always be stored in memory as-is, i.e. without any padding 6667 // between the elements, since various code depend on it, e.g. in the 6668 // handling of a bitcast of a vector type to int, which may be done with a 6669 // vector store followed by an integer load. A vector that does not have 6670 // elements that are byte-sized must therefore be stored as an integer 6671 // built out of the extracted vector elements. 6672 if (!MemSclVT.isByteSized()) { 6673 unsigned NumBits = StVT.getSizeInBits(); 6674 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6675 6676 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6677 6678 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6679 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6680 DAG.getVectorIdxConstant(Idx, SL)); 6681 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6682 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6683 unsigned ShiftIntoIdx = 6684 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6685 SDValue ShiftAmount = 6686 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6687 SDValue ShiftedElt = 6688 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6689 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6690 } 6691 6692 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6693 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6694 ST->getAAInfo()); 6695 } 6696 6697 // Store Stride in bytes 6698 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6699 assert(Stride && "Zero stride!"); 6700 // Extract each of the elements from the original vector and save them into 6701 // memory individually. 6702 SmallVector<SDValue, 8> Stores; 6703 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6704 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6705 DAG.getVectorIdxConstant(Idx, SL)); 6706 6707 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6708 6709 // This scalar TruncStore may be illegal, but we legalize it later. 6710 SDValue Store = DAG.getTruncStore( 6711 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6712 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6713 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6714 6715 Stores.push_back(Store); 6716 } 6717 6718 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6719 } 6720 6721 std::pair<SDValue, SDValue> 6722 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6723 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6724 "unaligned indexed loads not implemented!"); 6725 SDValue Chain = LD->getChain(); 6726 SDValue Ptr = LD->getBasePtr(); 6727 EVT VT = LD->getValueType(0); 6728 EVT LoadedVT = LD->getMemoryVT(); 6729 SDLoc dl(LD); 6730 auto &MF = DAG.getMachineFunction(); 6731 6732 if (VT.isFloatingPoint() || VT.isVector()) { 6733 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6734 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6735 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6736 LoadedVT.isVector()) { 6737 // Scalarize the load and let the individual components be handled. 6738 return scalarizeVectorLoad(LD, DAG); 6739 } 6740 6741 // Expand to a (misaligned) integer load of the same size, 6742 // then bitconvert to floating point or vector. 6743 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6744 LD->getMemOperand()); 6745 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6746 if (LoadedVT != VT) 6747 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6748 ISD::ANY_EXTEND, dl, VT, Result); 6749 6750 return std::make_pair(Result, newLoad.getValue(1)); 6751 } 6752 6753 // Copy the value to a (aligned) stack slot using (unaligned) integer 6754 // loads and stores, then do a (aligned) load from the stack slot. 6755 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6756 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6757 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6758 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6759 6760 // Make sure the stack slot is also aligned for the register type. 6761 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6762 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6763 SmallVector<SDValue, 8> Stores; 6764 SDValue StackPtr = StackBase; 6765 unsigned Offset = 0; 6766 6767 EVT PtrVT = Ptr.getValueType(); 6768 EVT StackPtrVT = StackPtr.getValueType(); 6769 6770 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6771 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6772 6773 // Do all but one copies using the full register width. 6774 for (unsigned i = 1; i < NumRegs; i++) { 6775 // Load one integer register's worth from the original location. 6776 SDValue Load = DAG.getLoad( 6777 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6778 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6779 LD->getAAInfo()); 6780 // Follow the load with a store to the stack slot. Remember the store. 6781 Stores.push_back(DAG.getStore( 6782 Load.getValue(1), dl, Load, StackPtr, 6783 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6784 // Increment the pointers. 6785 Offset += RegBytes; 6786 6787 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6788 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6789 } 6790 6791 // The last copy may be partial. Do an extending load. 6792 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6793 8 * (LoadedBytes - Offset)); 6794 SDValue Load = 6795 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6796 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6797 MinAlign(LD->getAlignment(), Offset), 6798 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6799 // Follow the load with a store to the stack slot. Remember the store. 6800 // On big-endian machines this requires a truncating store to ensure 6801 // that the bits end up in the right place. 6802 Stores.push_back(DAG.getTruncStore( 6803 Load.getValue(1), dl, Load, StackPtr, 6804 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6805 6806 // The order of the stores doesn't matter - say it with a TokenFactor. 6807 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6808 6809 // Finally, perform the original load only redirected to the stack slot. 6810 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6811 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6812 LoadedVT); 6813 6814 // Callers expect a MERGE_VALUES node. 6815 return std::make_pair(Load, TF); 6816 } 6817 6818 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6819 "Unaligned load of unsupported type."); 6820 6821 // Compute the new VT that is half the size of the old one. This is an 6822 // integer MVT. 6823 unsigned NumBits = LoadedVT.getSizeInBits(); 6824 EVT NewLoadedVT; 6825 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6826 NumBits >>= 1; 6827 6828 unsigned Alignment = LD->getAlignment(); 6829 unsigned IncrementSize = NumBits / 8; 6830 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6831 6832 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6833 if (HiExtType == ISD::NON_EXTLOAD) 6834 HiExtType = ISD::ZEXTLOAD; 6835 6836 // Load the value in two parts 6837 SDValue Lo, Hi; 6838 if (DAG.getDataLayout().isLittleEndian()) { 6839 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6840 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6841 LD->getAAInfo()); 6842 6843 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6844 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6845 LD->getPointerInfo().getWithOffset(IncrementSize), 6846 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6847 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6848 } else { 6849 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6850 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6851 LD->getAAInfo()); 6852 6853 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6854 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6855 LD->getPointerInfo().getWithOffset(IncrementSize), 6856 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6857 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6858 } 6859 6860 // aggregate the two parts 6861 SDValue ShiftAmount = 6862 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6863 DAG.getDataLayout())); 6864 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6865 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6866 6867 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6868 Hi.getValue(1)); 6869 6870 return std::make_pair(Result, TF); 6871 } 6872 6873 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6874 SelectionDAG &DAG) const { 6875 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6876 "unaligned indexed stores not implemented!"); 6877 SDValue Chain = ST->getChain(); 6878 SDValue Ptr = ST->getBasePtr(); 6879 SDValue Val = ST->getValue(); 6880 EVT VT = Val.getValueType(); 6881 int Alignment = ST->getAlignment(); 6882 auto &MF = DAG.getMachineFunction(); 6883 EVT StoreMemVT = ST->getMemoryVT(); 6884 6885 SDLoc dl(ST); 6886 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6887 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6888 if (isTypeLegal(intVT)) { 6889 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6890 StoreMemVT.isVector()) { 6891 // Scalarize the store and let the individual components be handled. 6892 SDValue Result = scalarizeVectorStore(ST, DAG); 6893 return Result; 6894 } 6895 // Expand to a bitconvert of the value to the integer type of the 6896 // same size, then a (misaligned) int store. 6897 // FIXME: Does not handle truncating floating point stores! 6898 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6899 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6900 Alignment, ST->getMemOperand()->getFlags()); 6901 return Result; 6902 } 6903 // Do a (aligned) store to a stack slot, then copy from the stack slot 6904 // to the final destination using (unaligned) integer loads and stores. 6905 MVT RegVT = getRegisterType( 6906 *DAG.getContext(), 6907 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6908 EVT PtrVT = Ptr.getValueType(); 6909 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6910 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6911 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6912 6913 // Make sure the stack slot is also aligned for the register type. 6914 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6915 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6916 6917 // Perform the original store, only redirected to the stack slot. 6918 SDValue Store = DAG.getTruncStore( 6919 Chain, dl, Val, StackPtr, 6920 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6921 6922 EVT StackPtrVT = StackPtr.getValueType(); 6923 6924 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6925 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6926 SmallVector<SDValue, 8> Stores; 6927 unsigned Offset = 0; 6928 6929 // Do all but one copies using the full register width. 6930 for (unsigned i = 1; i < NumRegs; i++) { 6931 // Load one integer register's worth from the stack slot. 6932 SDValue Load = DAG.getLoad( 6933 RegVT, dl, Store, StackPtr, 6934 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6935 // Store it to the final location. Remember the store. 6936 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6937 ST->getPointerInfo().getWithOffset(Offset), 6938 MinAlign(ST->getAlignment(), Offset), 6939 ST->getMemOperand()->getFlags())); 6940 // Increment the pointers. 6941 Offset += RegBytes; 6942 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6943 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6944 } 6945 6946 // The last store may be partial. Do a truncating store. On big-endian 6947 // machines this requires an extending load from the stack slot to ensure 6948 // that the bits are in the right place. 6949 EVT LoadMemVT = 6950 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6951 6952 // Load from the stack slot. 6953 SDValue Load = DAG.getExtLoad( 6954 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6955 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6956 6957 Stores.push_back( 6958 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6959 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6960 MinAlign(ST->getAlignment(), Offset), 6961 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6962 // The order of the stores doesn't matter - say it with a TokenFactor. 6963 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6964 return Result; 6965 } 6966 6967 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6968 "Unaligned store of unknown type."); 6969 // Get the half-size VT 6970 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6971 int NumBits = NewStoredVT.getSizeInBits(); 6972 int IncrementSize = NumBits / 8; 6973 6974 // Divide the stored value in two parts. 6975 SDValue ShiftAmount = DAG.getConstant( 6976 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6977 SDValue Lo = Val; 6978 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6979 6980 // Store the two parts 6981 SDValue Store1, Store2; 6982 Store1 = DAG.getTruncStore(Chain, dl, 6983 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6984 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6985 ST->getMemOperand()->getFlags()); 6986 6987 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6988 Alignment = MinAlign(Alignment, IncrementSize); 6989 Store2 = DAG.getTruncStore( 6990 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6991 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6992 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6993 6994 SDValue Result = 6995 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6996 return Result; 6997 } 6998 6999 SDValue 7000 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7001 const SDLoc &DL, EVT DataVT, 7002 SelectionDAG &DAG, 7003 bool IsCompressedMemory) const { 7004 SDValue Increment; 7005 EVT AddrVT = Addr.getValueType(); 7006 EVT MaskVT = Mask.getValueType(); 7007 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7008 "Incompatible types of Data and Mask"); 7009 if (IsCompressedMemory) { 7010 // Incrementing the pointer according to number of '1's in the mask. 7011 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7012 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7013 if (MaskIntVT.getSizeInBits() < 32) { 7014 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7015 MaskIntVT = MVT::i32; 7016 } 7017 7018 // Count '1's with POPCNT. 7019 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7020 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7021 // Scale is an element size in bytes. 7022 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7023 AddrVT); 7024 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7025 } else 7026 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7027 7028 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7029 } 7030 7031 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7032 SDValue Idx, 7033 EVT VecVT, 7034 const SDLoc &dl) { 7035 if (isa<ConstantSDNode>(Idx)) 7036 return Idx; 7037 7038 EVT IdxVT = Idx.getValueType(); 7039 unsigned NElts = VecVT.getVectorNumElements(); 7040 if (isPowerOf2_32(NElts)) { 7041 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7042 Log2_32(NElts)); 7043 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7044 DAG.getConstant(Imm, dl, IdxVT)); 7045 } 7046 7047 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7048 DAG.getConstant(NElts - 1, dl, IdxVT)); 7049 } 7050 7051 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7052 SDValue VecPtr, EVT VecVT, 7053 SDValue Index) const { 7054 SDLoc dl(Index); 7055 // Make sure the index type is big enough to compute in. 7056 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7057 7058 EVT EltVT = VecVT.getVectorElementType(); 7059 7060 // Calculate the element offset and add it to the pointer. 7061 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7062 assert(EltSize * 8 == EltVT.getSizeInBits() && 7063 "Converting bits to bytes lost precision"); 7064 7065 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7066 7067 EVT IdxVT = Index.getValueType(); 7068 7069 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7070 DAG.getConstant(EltSize, dl, IdxVT)); 7071 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7072 } 7073 7074 //===----------------------------------------------------------------------===// 7075 // Implementation of Emulated TLS Model 7076 //===----------------------------------------------------------------------===// 7077 7078 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7079 SelectionDAG &DAG) const { 7080 // Access to address of TLS varialbe xyz is lowered to a function call: 7081 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7082 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7083 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7084 SDLoc dl(GA); 7085 7086 ArgListTy Args; 7087 ArgListEntry Entry; 7088 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7089 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7090 StringRef EmuTlsVarName(NameString); 7091 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7092 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7093 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7094 Entry.Ty = VoidPtrType; 7095 Args.push_back(Entry); 7096 7097 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7098 7099 TargetLowering::CallLoweringInfo CLI(DAG); 7100 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7101 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7102 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7103 7104 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7105 // At last for X86 targets, maybe good for other targets too? 7106 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7107 MFI.setAdjustsStack(true); // Is this only for X86 target? 7108 MFI.setHasCalls(true); 7109 7110 assert((GA->getOffset() == 0) && 7111 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7112 return CallResult.first; 7113 } 7114 7115 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7116 SelectionDAG &DAG) const { 7117 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7118 if (!isCtlzFast()) 7119 return SDValue(); 7120 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7121 SDLoc dl(Op); 7122 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7123 if (C->isNullValue() && CC == ISD::SETEQ) { 7124 EVT VT = Op.getOperand(0).getValueType(); 7125 SDValue Zext = Op.getOperand(0); 7126 if (VT.bitsLT(MVT::i32)) { 7127 VT = MVT::i32; 7128 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7129 } 7130 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7131 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7132 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7133 DAG.getConstant(Log2b, dl, MVT::i32)); 7134 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7135 } 7136 } 7137 return SDValue(); 7138 } 7139 7140 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7141 unsigned Opcode = Node->getOpcode(); 7142 SDValue LHS = Node->getOperand(0); 7143 SDValue RHS = Node->getOperand(1); 7144 EVT VT = LHS.getValueType(); 7145 SDLoc dl(Node); 7146 7147 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7148 assert(VT.isInteger() && "Expected operands to be integers"); 7149 7150 // usub.sat(a, b) -> umax(a, b) - b 7151 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7152 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7153 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7154 } 7155 7156 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7157 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7158 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7159 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7160 } 7161 7162 unsigned OverflowOp; 7163 switch (Opcode) { 7164 case ISD::SADDSAT: 7165 OverflowOp = ISD::SADDO; 7166 break; 7167 case ISD::UADDSAT: 7168 OverflowOp = ISD::UADDO; 7169 break; 7170 case ISD::SSUBSAT: 7171 OverflowOp = ISD::SSUBO; 7172 break; 7173 case ISD::USUBSAT: 7174 OverflowOp = ISD::USUBO; 7175 break; 7176 default: 7177 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7178 "addition or subtraction node."); 7179 } 7180 7181 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7182 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7183 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7184 LHS, RHS); 7185 SDValue SumDiff = Result.getValue(0); 7186 SDValue Overflow = Result.getValue(1); 7187 SDValue Zero = DAG.getConstant(0, dl, VT); 7188 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7189 7190 if (Opcode == ISD::UADDSAT) { 7191 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7192 // (LHS + RHS) | OverflowMask 7193 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7194 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7195 } 7196 // Overflow ? 0xffff.... : (LHS + RHS) 7197 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7198 } else if (Opcode == ISD::USUBSAT) { 7199 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7200 // (LHS - RHS) & ~OverflowMask 7201 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7202 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7203 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7204 } 7205 // Overflow ? 0 : (LHS - RHS) 7206 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7207 } else { 7208 // SatMax -> Overflow && SumDiff < 0 7209 // SatMin -> Overflow && SumDiff >= 0 7210 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7211 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7212 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7213 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7214 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7215 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7216 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7217 } 7218 } 7219 7220 SDValue 7221 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7222 assert((Node->getOpcode() == ISD::SMULFIX || 7223 Node->getOpcode() == ISD::UMULFIX || 7224 Node->getOpcode() == ISD::SMULFIXSAT || 7225 Node->getOpcode() == ISD::UMULFIXSAT) && 7226 "Expected a fixed point multiplication opcode"); 7227 7228 SDLoc dl(Node); 7229 SDValue LHS = Node->getOperand(0); 7230 SDValue RHS = Node->getOperand(1); 7231 EVT VT = LHS.getValueType(); 7232 unsigned Scale = Node->getConstantOperandVal(2); 7233 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7234 Node->getOpcode() == ISD::UMULFIXSAT); 7235 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7236 Node->getOpcode() == ISD::SMULFIXSAT); 7237 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7238 unsigned VTSize = VT.getScalarSizeInBits(); 7239 7240 if (!Scale) { 7241 // [us]mul.fix(a, b, 0) -> mul(a, b) 7242 if (!Saturating) { 7243 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7244 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7245 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7246 SDValue Result = 7247 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7248 SDValue Product = Result.getValue(0); 7249 SDValue Overflow = Result.getValue(1); 7250 SDValue Zero = DAG.getConstant(0, dl, VT); 7251 7252 APInt MinVal = APInt::getSignedMinValue(VTSize); 7253 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7254 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7255 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7256 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7257 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7258 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7259 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7260 SDValue Result = 7261 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7262 SDValue Product = Result.getValue(0); 7263 SDValue Overflow = Result.getValue(1); 7264 7265 APInt MaxVal = APInt::getMaxValue(VTSize); 7266 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7267 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7268 } 7269 } 7270 7271 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7272 "Expected scale to be less than the number of bits if signed or at " 7273 "most the number of bits if unsigned."); 7274 assert(LHS.getValueType() == RHS.getValueType() && 7275 "Expected both operands to be the same type"); 7276 7277 // Get the upper and lower bits of the result. 7278 SDValue Lo, Hi; 7279 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7280 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7281 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7282 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7283 Lo = Result.getValue(0); 7284 Hi = Result.getValue(1); 7285 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7286 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7287 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7288 } else if (VT.isVector()) { 7289 return SDValue(); 7290 } else { 7291 report_fatal_error("Unable to expand fixed point multiplication."); 7292 } 7293 7294 if (Scale == VTSize) 7295 // Result is just the top half since we'd be shifting by the width of the 7296 // operand. Overflow impossible so this works for both UMULFIX and 7297 // UMULFIXSAT. 7298 return Hi; 7299 7300 // The result will need to be shifted right by the scale since both operands 7301 // are scaled. The result is given to us in 2 halves, so we only want part of 7302 // both in the result. 7303 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7304 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7305 DAG.getConstant(Scale, dl, ShiftTy)); 7306 if (!Saturating) 7307 return Result; 7308 7309 if (!Signed) { 7310 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7311 // widened multiplication) aren't all zeroes. 7312 7313 // Saturate to max if ((Hi >> Scale) != 0), 7314 // which is the same as if (Hi > ((1 << Scale) - 1)) 7315 APInt MaxVal = APInt::getMaxValue(VTSize); 7316 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7317 dl, VT); 7318 Result = DAG.getSelectCC(dl, Hi, LowMask, 7319 DAG.getConstant(MaxVal, dl, VT), Result, 7320 ISD::SETUGT); 7321 7322 return Result; 7323 } 7324 7325 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7326 // widened multiplication) aren't all ones or all zeroes. 7327 7328 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7329 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7330 7331 if (Scale == 0) { 7332 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7333 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7334 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7335 // Saturated to SatMin if wide product is negative, and SatMax if wide 7336 // product is positive ... 7337 SDValue Zero = DAG.getConstant(0, dl, VT); 7338 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7339 ISD::SETLT); 7340 // ... but only if we overflowed. 7341 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7342 } 7343 7344 // We handled Scale==0 above so all the bits to examine is in Hi. 7345 7346 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7347 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7348 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7349 dl, VT); 7350 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7351 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7352 // which is the same as if (HI < (-1 << (Scale - 1)) 7353 SDValue HighMask = 7354 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7355 dl, VT); 7356 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7357 return Result; 7358 } 7359 7360 SDValue 7361 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7362 SDValue LHS, SDValue RHS, 7363 unsigned Scale, SelectionDAG &DAG) const { 7364 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7365 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7366 "Expected a fixed point division opcode"); 7367 7368 EVT VT = LHS.getValueType(); 7369 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7370 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7371 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7372 7373 // If there is enough room in the type to upscale the LHS or downscale the 7374 // RHS before the division, we can perform it in this type without having to 7375 // resize. For signed operations, the LHS headroom is the number of 7376 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7377 // The headroom for the RHS is the number of trailing zeroes. 7378 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7379 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7380 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7381 7382 // For signed saturating operations, we need to be able to detect true integer 7383 // division overflow; that is, when you have MIN / -EPS. However, this 7384 // is undefined behavior and if we emit divisions that could take such 7385 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7386 // example). 7387 // Avoid this by requiring an extra bit so that we never get this case. 7388 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7389 // signed saturating division, we need to emit a whopping 32-bit division. 7390 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7391 return SDValue(); 7392 7393 unsigned LHSShift = std::min(LHSLead, Scale); 7394 unsigned RHSShift = Scale - LHSShift; 7395 7396 // At this point, we know that if we shift the LHS up by LHSShift and the 7397 // RHS down by RHSShift, we can emit a regular division with a final scaling 7398 // factor of Scale. 7399 7400 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7401 if (LHSShift) 7402 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7403 DAG.getConstant(LHSShift, dl, ShiftTy)); 7404 if (RHSShift) 7405 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7406 DAG.getConstant(RHSShift, dl, ShiftTy)); 7407 7408 SDValue Quot; 7409 if (Signed) { 7410 // For signed operations, if the resulting quotient is negative and the 7411 // remainder is nonzero, subtract 1 from the quotient to round towards 7412 // negative infinity. 7413 SDValue Rem; 7414 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7415 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7416 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7417 if (isTypeLegal(VT) && 7418 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7419 Quot = DAG.getNode(ISD::SDIVREM, dl, 7420 DAG.getVTList(VT, VT), 7421 LHS, RHS); 7422 Rem = Quot.getValue(1); 7423 Quot = Quot.getValue(0); 7424 } else { 7425 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7426 LHS, RHS); 7427 Rem = DAG.getNode(ISD::SREM, dl, VT, 7428 LHS, RHS); 7429 } 7430 SDValue Zero = DAG.getConstant(0, dl, VT); 7431 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7432 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7433 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7434 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7435 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7436 DAG.getConstant(1, dl, VT)); 7437 Quot = DAG.getSelect(dl, VT, 7438 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7439 Sub1, Quot); 7440 } else 7441 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7442 LHS, RHS); 7443 7444 return Quot; 7445 } 7446 7447 void TargetLowering::expandUADDSUBO( 7448 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7449 SDLoc dl(Node); 7450 SDValue LHS = Node->getOperand(0); 7451 SDValue RHS = Node->getOperand(1); 7452 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7453 7454 // If ADD/SUBCARRY is legal, use that instead. 7455 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7456 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7457 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7458 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7459 { LHS, RHS, CarryIn }); 7460 Result = SDValue(NodeCarry.getNode(), 0); 7461 Overflow = SDValue(NodeCarry.getNode(), 1); 7462 return; 7463 } 7464 7465 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7466 LHS.getValueType(), LHS, RHS); 7467 7468 EVT ResultType = Node->getValueType(1); 7469 EVT SetCCType = getSetCCResultType( 7470 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7471 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7472 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7473 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7474 } 7475 7476 void TargetLowering::expandSADDSUBO( 7477 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7478 SDLoc dl(Node); 7479 SDValue LHS = Node->getOperand(0); 7480 SDValue RHS = Node->getOperand(1); 7481 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7482 7483 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7484 LHS.getValueType(), LHS, RHS); 7485 7486 EVT ResultType = Node->getValueType(1); 7487 EVT OType = getSetCCResultType( 7488 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7489 7490 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7491 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7492 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7493 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7494 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7495 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7496 return; 7497 } 7498 7499 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7500 7501 // For an addition, the result should be less than one of the operands (LHS) 7502 // if and only if the other operand (RHS) is negative, otherwise there will 7503 // be overflow. 7504 // For a subtraction, the result should be less than one of the operands 7505 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7506 // otherwise there will be overflow. 7507 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7508 SDValue ConditionRHS = 7509 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7510 7511 Overflow = DAG.getBoolExtOrTrunc( 7512 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7513 ResultType, ResultType); 7514 } 7515 7516 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7517 SDValue &Overflow, SelectionDAG &DAG) const { 7518 SDLoc dl(Node); 7519 EVT VT = Node->getValueType(0); 7520 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7521 SDValue LHS = Node->getOperand(0); 7522 SDValue RHS = Node->getOperand(1); 7523 bool isSigned = Node->getOpcode() == ISD::SMULO; 7524 7525 // For power-of-two multiplications we can use a simpler shift expansion. 7526 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7527 const APInt &C = RHSC->getAPIntValue(); 7528 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7529 if (C.isPowerOf2()) { 7530 // smulo(x, signed_min) is same as umulo(x, signed_min). 7531 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7532 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7533 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7534 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7535 Overflow = DAG.getSetCC(dl, SetCCVT, 7536 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7537 dl, VT, Result, ShiftAmt), 7538 LHS, ISD::SETNE); 7539 return true; 7540 } 7541 } 7542 7543 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7544 if (VT.isVector()) 7545 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7546 VT.getVectorNumElements()); 7547 7548 SDValue BottomHalf; 7549 SDValue TopHalf; 7550 static const unsigned Ops[2][3] = 7551 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7552 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7553 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7554 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7555 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7556 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7557 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7558 RHS); 7559 TopHalf = BottomHalf.getValue(1); 7560 } else if (isTypeLegal(WideVT)) { 7561 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7562 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7563 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7564 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7565 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7566 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7567 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7568 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7569 } else { 7570 if (VT.isVector()) 7571 return false; 7572 7573 // We can fall back to a libcall with an illegal type for the MUL if we 7574 // have a libcall big enough. 7575 // Also, we can fall back to a division in some cases, but that's a big 7576 // performance hit in the general case. 7577 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7578 if (WideVT == MVT::i16) 7579 LC = RTLIB::MUL_I16; 7580 else if (WideVT == MVT::i32) 7581 LC = RTLIB::MUL_I32; 7582 else if (WideVT == MVT::i64) 7583 LC = RTLIB::MUL_I64; 7584 else if (WideVT == MVT::i128) 7585 LC = RTLIB::MUL_I128; 7586 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7587 7588 SDValue HiLHS; 7589 SDValue HiRHS; 7590 if (isSigned) { 7591 // The high part is obtained by SRA'ing all but one of the bits of low 7592 // part. 7593 unsigned LoSize = VT.getSizeInBits(); 7594 HiLHS = 7595 DAG.getNode(ISD::SRA, dl, VT, LHS, 7596 DAG.getConstant(LoSize - 1, dl, 7597 getPointerTy(DAG.getDataLayout()))); 7598 HiRHS = 7599 DAG.getNode(ISD::SRA, dl, VT, RHS, 7600 DAG.getConstant(LoSize - 1, dl, 7601 getPointerTy(DAG.getDataLayout()))); 7602 } else { 7603 HiLHS = DAG.getConstant(0, dl, VT); 7604 HiRHS = DAG.getConstant(0, dl, VT); 7605 } 7606 7607 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7608 // pre-lowered to the correct types. This all depends upon WideVT not 7609 // being a legal type for the architecture and thus has to be split to 7610 // two arguments. 7611 SDValue Ret; 7612 TargetLowering::MakeLibCallOptions CallOptions; 7613 CallOptions.setSExt(isSigned); 7614 CallOptions.setIsPostTypeLegalization(true); 7615 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7616 // Halves of WideVT are packed into registers in different order 7617 // depending on platform endianness. This is usually handled by 7618 // the C calling convention, but we can't defer to it in 7619 // the legalizer. 7620 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7621 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7622 } else { 7623 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7624 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7625 } 7626 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7627 "Ret value is a collection of constituent nodes holding result."); 7628 if (DAG.getDataLayout().isLittleEndian()) { 7629 // Same as above. 7630 BottomHalf = Ret.getOperand(0); 7631 TopHalf = Ret.getOperand(1); 7632 } else { 7633 BottomHalf = Ret.getOperand(1); 7634 TopHalf = Ret.getOperand(0); 7635 } 7636 } 7637 7638 Result = BottomHalf; 7639 if (isSigned) { 7640 SDValue ShiftAmt = DAG.getConstant( 7641 VT.getScalarSizeInBits() - 1, dl, 7642 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7643 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7644 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7645 } else { 7646 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7647 DAG.getConstant(0, dl, VT), ISD::SETNE); 7648 } 7649 7650 // Truncate the result if SetCC returns a larger type than needed. 7651 EVT RType = Node->getValueType(1); 7652 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7653 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7654 7655 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7656 "Unexpected result type for S/UMULO legalization"); 7657 return true; 7658 } 7659 7660 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7661 SDLoc dl(Node); 7662 bool NoNaN = Node->getFlags().hasNoNaNs(); 7663 unsigned BaseOpcode = 0; 7664 switch (Node->getOpcode()) { 7665 default: llvm_unreachable("Expected VECREDUCE opcode"); 7666 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7667 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7668 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7669 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7670 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7671 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7672 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7673 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7674 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7675 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7676 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7677 case ISD::VECREDUCE_FMAX: 7678 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7679 break; 7680 case ISD::VECREDUCE_FMIN: 7681 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7682 break; 7683 } 7684 7685 SDValue Op = Node->getOperand(0); 7686 EVT VT = Op.getValueType(); 7687 7688 // Try to use a shuffle reduction for power of two vectors. 7689 if (VT.isPow2VectorType()) { 7690 while (VT.getVectorNumElements() > 1) { 7691 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7692 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7693 break; 7694 7695 SDValue Lo, Hi; 7696 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7697 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7698 VT = HalfVT; 7699 } 7700 } 7701 7702 EVT EltVT = VT.getVectorElementType(); 7703 unsigned NumElts = VT.getVectorNumElements(); 7704 7705 SmallVector<SDValue, 8> Ops; 7706 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7707 7708 SDValue Res = Ops[0]; 7709 for (unsigned i = 1; i < NumElts; i++) 7710 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7711 7712 // Result type may be wider than element type. 7713 if (EltVT != Node->getValueType(0)) 7714 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7715 return Res; 7716 } 7717