1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 EVT VT = Op.getValueType(); 1060 if (VT.isScalableVector()) 1061 return false; 1062 1063 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1064 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1065 assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1092 if (Depth != 0) { 1093 // If not at the root, Just compute the Known bits to 1094 // simplify things downstream. 1095 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1096 return false; 1097 } 1098 // If this is the root being simplified, allow it to have multiple uses, 1099 // just set the DemandedBits/Elts to all bits. 1100 DemandedBits = APInt::getAllOnes(BitWidth); 1101 DemandedElts = APInt::getAllOnes(NumElts); 1102 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1103 // Not demanding any bits/elts from Op. 1104 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1105 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1106 // Limit search depth. 1107 return false; 1108 } 1109 1110 KnownBits Known2; 1111 switch (Op.getOpcode()) { 1112 case ISD::TargetConstant: 1113 llvm_unreachable("Can't simplify this node"); 1114 case ISD::SCALAR_TO_VECTOR: { 1115 if (!DemandedElts[0]) 1116 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1117 1118 KnownBits SrcKnown; 1119 SDValue Src = Op.getOperand(0); 1120 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1121 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1122 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1123 return true; 1124 1125 // Upper elements are undef, so only get the knownbits if we just demand 1126 // the bottom element. 1127 if (DemandedElts == 1) 1128 Known = SrcKnown.anyextOrTrunc(BitWidth); 1129 break; 1130 } 1131 case ISD::BUILD_VECTOR: 1132 // Collect the known bits that are shared by every demanded element. 1133 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1134 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1135 return false; // Don't fall through, will infinitely loop. 1136 case ISD::LOAD: { 1137 auto *LD = cast<LoadSDNode>(Op); 1138 if (getTargetConstantFromLoad(LD)) { 1139 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1140 return false; // Don't fall through, will infinitely loop. 1141 } 1142 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1143 // If this is a ZEXTLoad and we are looking at the loaded value. 1144 EVT MemVT = LD->getMemoryVT(); 1145 unsigned MemBits = MemVT.getScalarSizeInBits(); 1146 Known.Zero.setBitsFrom(MemBits); 1147 return false; // Don't fall through, will infinitely loop. 1148 } 1149 break; 1150 } 1151 case ISD::INSERT_VECTOR_ELT: { 1152 SDValue Vec = Op.getOperand(0); 1153 SDValue Scl = Op.getOperand(1); 1154 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1155 EVT VecVT = Vec.getValueType(); 1156 1157 // If index isn't constant, assume we need all vector elements AND the 1158 // inserted element. 1159 APInt DemandedVecElts(DemandedElts); 1160 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1161 unsigned Idx = CIdx->getZExtValue(); 1162 DemandedVecElts.clearBit(Idx); 1163 1164 // Inserted element is not required. 1165 if (!DemandedElts[Idx]) 1166 return TLO.CombineTo(Op, Vec); 1167 } 1168 1169 KnownBits KnownScl; 1170 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1171 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1172 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1173 return true; 1174 1175 Known = KnownScl.anyextOrTrunc(BitWidth); 1176 1177 KnownBits KnownVec; 1178 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1179 Depth + 1)) 1180 return true; 1181 1182 if (!!DemandedVecElts) 1183 Known = KnownBits::commonBits(Known, KnownVec); 1184 1185 return false; 1186 } 1187 case ISD::INSERT_SUBVECTOR: { 1188 // Demand any elements from the subvector and the remainder from the src its 1189 // inserted into. 1190 SDValue Src = Op.getOperand(0); 1191 SDValue Sub = Op.getOperand(1); 1192 uint64_t Idx = Op.getConstantOperandVal(2); 1193 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1194 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1195 APInt DemandedSrcElts = DemandedElts; 1196 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1197 1198 KnownBits KnownSub, KnownSrc; 1199 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1200 Depth + 1)) 1201 return true; 1202 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1203 Depth + 1)) 1204 return true; 1205 1206 Known.Zero.setAllBits(); 1207 Known.One.setAllBits(); 1208 if (!!DemandedSubElts) 1209 Known = KnownBits::commonBits(Known, KnownSub); 1210 if (!!DemandedSrcElts) 1211 Known = KnownBits::commonBits(Known, KnownSrc); 1212 1213 // Attempt to avoid multi-use src if we don't need anything from it. 1214 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1215 !DemandedSrcElts.isAllOnes()) { 1216 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1217 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1218 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1219 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1220 if (NewSub || NewSrc) { 1221 NewSub = NewSub ? NewSub : Sub; 1222 NewSrc = NewSrc ? NewSrc : Src; 1223 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1224 Op.getOperand(2)); 1225 return TLO.CombineTo(Op, NewOp); 1226 } 1227 } 1228 break; 1229 } 1230 case ISD::EXTRACT_SUBVECTOR: { 1231 // Offset the demanded elts by the subvector index. 1232 SDValue Src = Op.getOperand(0); 1233 if (Src.getValueType().isScalableVector()) 1234 break; 1235 uint64_t Idx = Op.getConstantOperandVal(1); 1236 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1237 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1238 1239 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1240 Depth + 1)) 1241 return true; 1242 1243 // Attempt to avoid multi-use src if we don't need anything from it. 1244 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1245 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1246 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1247 if (DemandedSrc) { 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1249 Op.getOperand(1)); 1250 return TLO.CombineTo(Op, NewOp); 1251 } 1252 } 1253 break; 1254 } 1255 case ISD::CONCAT_VECTORS: { 1256 Known.Zero.setAllBits(); 1257 Known.One.setAllBits(); 1258 EVT SubVT = Op.getOperand(0).getValueType(); 1259 unsigned NumSubVecs = Op.getNumOperands(); 1260 unsigned NumSubElts = SubVT.getVectorNumElements(); 1261 for (unsigned i = 0; i != NumSubVecs; ++i) { 1262 APInt DemandedSubElts = 1263 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1264 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1265 Known2, TLO, Depth + 1)) 1266 return true; 1267 // Known bits are shared by every demanded subvector element. 1268 if (!!DemandedSubElts) 1269 Known = KnownBits::commonBits(Known, Known2); 1270 } 1271 break; 1272 } 1273 case ISD::VECTOR_SHUFFLE: { 1274 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1275 1276 // Collect demanded elements from shuffle operands.. 1277 APInt DemandedLHS(NumElts, 0); 1278 APInt DemandedRHS(NumElts, 0); 1279 for (unsigned i = 0; i != NumElts; ++i) { 1280 if (!DemandedElts[i]) 1281 continue; 1282 int M = ShuffleMask[i]; 1283 if (M < 0) { 1284 // For UNDEF elements, we don't know anything about the common state of 1285 // the shuffle result. 1286 DemandedLHS.clearAllBits(); 1287 DemandedRHS.clearAllBits(); 1288 break; 1289 } 1290 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1291 if (M < (int)NumElts) 1292 DemandedLHS.setBit(M); 1293 else 1294 DemandedRHS.setBit(M - NumElts); 1295 } 1296 1297 if (!!DemandedLHS || !!DemandedRHS) { 1298 SDValue Op0 = Op.getOperand(0); 1299 SDValue Op1 = Op.getOperand(1); 1300 1301 Known.Zero.setAllBits(); 1302 Known.One.setAllBits(); 1303 if (!!DemandedLHS) { 1304 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1305 Depth + 1)) 1306 return true; 1307 Known = KnownBits::commonBits(Known, Known2); 1308 } 1309 if (!!DemandedRHS) { 1310 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1311 Depth + 1)) 1312 return true; 1313 Known = KnownBits::commonBits(Known, Known2); 1314 } 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1318 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1319 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1320 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1321 if (DemandedOp0 || DemandedOp1) { 1322 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1323 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1324 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1325 return TLO.CombineTo(Op, NewOp); 1326 } 1327 } 1328 break; 1329 } 1330 case ISD::AND: { 1331 SDValue Op0 = Op.getOperand(0); 1332 SDValue Op1 = Op.getOperand(1); 1333 1334 // If the RHS is a constant, check to see if the LHS would be zero without 1335 // using the bits from the RHS. Below, we use knowledge about the RHS to 1336 // simplify the LHS, here we're using information from the LHS to simplify 1337 // the RHS. 1338 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1339 // Do not increment Depth here; that can cause an infinite loop. 1340 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1341 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1342 if ((LHSKnown.Zero & DemandedBits) == 1343 (~RHSC->getAPIntValue() & DemandedBits)) 1344 return TLO.CombineTo(Op, Op0); 1345 1346 // If any of the set bits in the RHS are known zero on the LHS, shrink 1347 // the constant. 1348 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1349 DemandedElts, TLO)) 1350 return true; 1351 1352 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1353 // constant, but if this 'and' is only clearing bits that were just set by 1354 // the xor, then this 'and' can be eliminated by shrinking the mask of 1355 // the xor. For example, for a 32-bit X: 1356 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1357 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1358 LHSKnown.One == ~RHSC->getAPIntValue()) { 1359 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1360 return TLO.CombineTo(Op, Xor); 1361 } 1362 } 1363 1364 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1365 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1366 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && 1367 (Op0.getOperand(0).isUndef() || 1368 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1369 Op0->hasOneUse()) { 1370 unsigned NumSubElts = 1371 Op0.getOperand(1).getValueType().getVectorNumElements(); 1372 unsigned SubIdx = Op0.getConstantOperandVal(2); 1373 APInt DemandedSub = 1374 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1375 KnownBits KnownSubMask = 1376 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1377 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1378 SDValue NewAnd = 1379 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1380 SDValue NewInsert = 1381 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1382 Op0.getOperand(1), Op0.getOperand(2)); 1383 return TLO.CombineTo(Op, NewInsert); 1384 } 1385 } 1386 1387 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1392 Known2, TLO, Depth + 1)) 1393 return true; 1394 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1395 1396 // If all of the demanded bits are known one on one side, return the other. 1397 // These bits cannot contribute to the result of the 'and'. 1398 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1399 return TLO.CombineTo(Op, Op0); 1400 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1401 return TLO.CombineTo(Op, Op1); 1402 // If all of the demanded bits in the inputs are known zeros, return zero. 1403 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1404 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1405 // If the RHS is a constant, see if we can simplify it. 1406 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1407 TLO)) 1408 return true; 1409 // If the operation can be done in a smaller type, do so. 1410 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1411 return true; 1412 1413 // Attempt to avoid multi-use ops if we don't need anything from them. 1414 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1415 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1416 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1417 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1418 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1419 if (DemandedOp0 || DemandedOp1) { 1420 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1421 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1422 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1423 return TLO.CombineTo(Op, NewOp); 1424 } 1425 } 1426 1427 Known &= Known2; 1428 break; 1429 } 1430 case ISD::OR: { 1431 SDValue Op0 = Op.getOperand(0); 1432 SDValue Op1 = Op.getOperand(1); 1433 1434 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1435 Depth + 1)) 1436 return true; 1437 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1438 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1439 Known2, TLO, Depth + 1)) 1440 return true; 1441 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1442 1443 // If all of the demanded bits are known zero on one side, return the other. 1444 // These bits cannot contribute to the result of the 'or'. 1445 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1446 return TLO.CombineTo(Op, Op0); 1447 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1448 return TLO.CombineTo(Op, Op1); 1449 // If the RHS is a constant, see if we can simplify it. 1450 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1451 return true; 1452 // If the operation can be done in a smaller type, do so. 1453 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1454 return true; 1455 1456 // Attempt to avoid multi-use ops if we don't need anything from them. 1457 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1458 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1459 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1460 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1461 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1462 if (DemandedOp0 || DemandedOp1) { 1463 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1464 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1465 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1466 return TLO.CombineTo(Op, NewOp); 1467 } 1468 } 1469 1470 Known |= Known2; 1471 break; 1472 } 1473 case ISD::XOR: { 1474 SDValue Op0 = Op.getOperand(0); 1475 SDValue Op1 = Op.getOperand(1); 1476 1477 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1478 Depth + 1)) 1479 return true; 1480 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1481 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1482 Depth + 1)) 1483 return true; 1484 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1485 1486 // If all of the demanded bits are known zero on one side, return the other. 1487 // These bits cannot contribute to the result of the 'xor'. 1488 if (DemandedBits.isSubsetOf(Known.Zero)) 1489 return TLO.CombineTo(Op, Op0); 1490 if (DemandedBits.isSubsetOf(Known2.Zero)) 1491 return TLO.CombineTo(Op, Op1); 1492 // If the operation can be done in a smaller type, do so. 1493 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1494 return true; 1495 1496 // If all of the unknown bits are known to be zero on one side or the other 1497 // turn this into an *inclusive* or. 1498 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1499 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1500 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1501 1502 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1503 if (C) { 1504 // If one side is a constant, and all of the set bits in the constant are 1505 // also known set on the other side, turn this into an AND, as we know 1506 // the bits will be cleared. 1507 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1508 // NB: it is okay if more bits are known than are requested 1509 if (C->getAPIntValue() == Known2.One) { 1510 SDValue ANDC = 1511 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1512 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1513 } 1514 1515 // If the RHS is a constant, see if we can change it. Don't alter a -1 1516 // constant because that's a 'not' op, and that is better for combining 1517 // and codegen. 1518 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1519 // We're flipping all demanded bits. Flip the undemanded bits too. 1520 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1521 return TLO.CombineTo(Op, New); 1522 } 1523 1524 unsigned Op0Opcode = Op0.getOpcode(); 1525 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1526 if (ConstantSDNode *ShiftC = 1527 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1528 // Don't crash on an oversized shift. We can not guarantee that a 1529 // bogus shift has been simplified to undef. 1530 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1531 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1532 APInt Ones = APInt::getAllOnes(BitWidth); 1533 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1534 : Ones.lshr(ShiftAmt); 1535 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1536 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1537 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1538 // If the xor constant is a demanded mask, do a 'not' before the 1539 // shift: 1540 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1541 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1542 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1543 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1544 Op0.getOperand(1))); 1545 } 1546 } 1547 } 1548 } 1549 } 1550 1551 // If we can't turn this into a 'not', try to shrink the constant. 1552 if (!C || !C->isAllOnes()) 1553 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1554 return true; 1555 1556 // Attempt to avoid multi-use ops if we don't need anything from them. 1557 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1558 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1559 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1560 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1561 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1562 if (DemandedOp0 || DemandedOp1) { 1563 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1564 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1565 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1566 return TLO.CombineTo(Op, NewOp); 1567 } 1568 } 1569 1570 Known ^= Known2; 1571 break; 1572 } 1573 case ISD::SELECT: 1574 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1575 Depth + 1)) 1576 return true; 1577 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1578 Depth + 1)) 1579 return true; 1580 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1581 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1582 1583 // If the operands are constants, see if we can simplify them. 1584 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1585 return true; 1586 1587 // Only known if known in both the LHS and RHS. 1588 Known = KnownBits::commonBits(Known, Known2); 1589 break; 1590 case ISD::VSELECT: 1591 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1592 Known, TLO, Depth + 1)) 1593 return true; 1594 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1595 Known2, TLO, Depth + 1)) 1596 return true; 1597 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1598 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1599 1600 // Only known if known in both the LHS and RHS. 1601 Known = KnownBits::commonBits(Known, Known2); 1602 break; 1603 case ISD::SELECT_CC: 1604 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1605 Depth + 1)) 1606 return true; 1607 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1608 Depth + 1)) 1609 return true; 1610 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1611 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1612 1613 // If the operands are constants, see if we can simplify them. 1614 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1615 return true; 1616 1617 // Only known if known in both the LHS and RHS. 1618 Known = KnownBits::commonBits(Known, Known2); 1619 break; 1620 case ISD::SETCC: { 1621 SDValue Op0 = Op.getOperand(0); 1622 SDValue Op1 = Op.getOperand(1); 1623 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1624 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1625 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1626 // -1, we may be able to bypass the setcc. 1627 if (DemandedBits.isSignMask() && 1628 Op0.getScalarValueSizeInBits() == BitWidth && 1629 getBooleanContents(Op0.getValueType()) == 1630 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1631 // If we're testing X < 0, then this compare isn't needed - just use X! 1632 // FIXME: We're limiting to integer types here, but this should also work 1633 // if we don't care about FP signed-zero. The use of SETLT with FP means 1634 // that we don't care about NaNs. 1635 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1636 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1637 return TLO.CombineTo(Op, Op0); 1638 1639 // TODO: Should we check for other forms of sign-bit comparisons? 1640 // Examples: X <= -1, X >= 0 1641 } 1642 if (getBooleanContents(Op0.getValueType()) == 1643 TargetLowering::ZeroOrOneBooleanContent && 1644 BitWidth > 1) 1645 Known.Zero.setBitsFrom(1); 1646 break; 1647 } 1648 case ISD::SHL: { 1649 SDValue Op0 = Op.getOperand(0); 1650 SDValue Op1 = Op.getOperand(1); 1651 EVT ShiftVT = Op1.getValueType(); 1652 1653 if (const APInt *SA = 1654 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1655 unsigned ShAmt = SA->getZExtValue(); 1656 if (ShAmt == 0) 1657 return TLO.CombineTo(Op, Op0); 1658 1659 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1660 // single shift. We can do this if the bottom bits (which are shifted 1661 // out) are never demanded. 1662 // TODO - support non-uniform vector amounts. 1663 if (Op0.getOpcode() == ISD::SRL) { 1664 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1665 if (const APInt *SA2 = 1666 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1667 unsigned C1 = SA2->getZExtValue(); 1668 unsigned Opc = ISD::SHL; 1669 int Diff = ShAmt - C1; 1670 if (Diff < 0) { 1671 Diff = -Diff; 1672 Opc = ISD::SRL; 1673 } 1674 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1675 return TLO.CombineTo( 1676 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1677 } 1678 } 1679 } 1680 1681 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1682 // are not demanded. This will likely allow the anyext to be folded away. 1683 // TODO - support non-uniform vector amounts. 1684 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1685 SDValue InnerOp = Op0.getOperand(0); 1686 EVT InnerVT = InnerOp.getValueType(); 1687 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1688 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1689 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1690 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1691 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1692 ShTy = InnerVT; 1693 SDValue NarrowShl = 1694 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1695 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1696 return TLO.CombineTo( 1697 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1698 } 1699 1700 // Repeat the SHL optimization above in cases where an extension 1701 // intervenes: (shl (anyext (shr x, c1)), c2) to 1702 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1703 // aren't demanded (as above) and that the shifted upper c1 bits of 1704 // x aren't demanded. 1705 // TODO - support non-uniform vector amounts. 1706 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1707 InnerOp.hasOneUse()) { 1708 if (const APInt *SA2 = 1709 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1710 unsigned InnerShAmt = SA2->getZExtValue(); 1711 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1712 DemandedBits.getActiveBits() <= 1713 (InnerBits - InnerShAmt + ShAmt) && 1714 DemandedBits.countTrailingZeros() >= ShAmt) { 1715 SDValue NewSA = 1716 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1717 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1718 InnerOp.getOperand(0)); 1719 return TLO.CombineTo( 1720 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1721 } 1722 } 1723 } 1724 } 1725 1726 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1727 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1728 Depth + 1)) 1729 return true; 1730 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1731 Known.Zero <<= ShAmt; 1732 Known.One <<= ShAmt; 1733 // low bits known zero. 1734 Known.Zero.setLowBits(ShAmt); 1735 1736 // Attempt to avoid multi-use ops if we don't need anything from them. 1737 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1738 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1739 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1740 if (DemandedOp0) { 1741 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1742 return TLO.CombineTo(Op, NewOp); 1743 } 1744 } 1745 1746 // Try shrinking the operation as long as the shift amount will still be 1747 // in range. 1748 if ((ShAmt < DemandedBits.getActiveBits()) && 1749 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1750 return true; 1751 } else { 1752 // This is a variable shift, so we can't shift the demand mask by a known 1753 // amount. But if we are not demanding high bits, then we are not 1754 // demanding those bits from the pre-shifted operand either. 1755 if (unsigned CTLZ = DemandedBits.countLeadingZeros()) { 1756 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1757 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1758 Depth + 1)) { 1759 SDNodeFlags Flags = Op.getNode()->getFlags(); 1760 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1761 // Disable the nsw and nuw flags. We can no longer guarantee that we 1762 // won't wrap after simplification. 1763 Flags.setNoSignedWrap(false); 1764 Flags.setNoUnsignedWrap(false); 1765 Op->setFlags(Flags); 1766 } 1767 return true; 1768 } 1769 Known.resetAll(); 1770 } 1771 } 1772 1773 // If we are only demanding sign bits then we can use the shift source 1774 // directly. 1775 if (const APInt *MaxSA = 1776 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1777 unsigned ShAmt = MaxSA->getZExtValue(); 1778 unsigned NumSignBits = 1779 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1780 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1781 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1782 return TLO.CombineTo(Op, Op0); 1783 } 1784 break; 1785 } 1786 case ISD::SRL: { 1787 SDValue Op0 = Op.getOperand(0); 1788 SDValue Op1 = Op.getOperand(1); 1789 EVT ShiftVT = Op1.getValueType(); 1790 1791 // Try to match AVG patterns. 1792 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1793 DemandedElts, Depth + 1)) 1794 return TLO.CombineTo(Op, AVG); 1795 1796 if (const APInt *SA = 1797 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1798 unsigned ShAmt = SA->getZExtValue(); 1799 if (ShAmt == 0) 1800 return TLO.CombineTo(Op, Op0); 1801 1802 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1803 // single shift. We can do this if the top bits (which are shifted out) 1804 // are never demanded. 1805 // TODO - support non-uniform vector amounts. 1806 if (Op0.getOpcode() == ISD::SHL) { 1807 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1808 if (const APInt *SA2 = 1809 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1810 unsigned C1 = SA2->getZExtValue(); 1811 unsigned Opc = ISD::SRL; 1812 int Diff = ShAmt - C1; 1813 if (Diff < 0) { 1814 Diff = -Diff; 1815 Opc = ISD::SHL; 1816 } 1817 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1818 return TLO.CombineTo( 1819 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1820 } 1821 } 1822 } 1823 1824 APInt InDemandedMask = (DemandedBits << ShAmt); 1825 1826 // If the shift is exact, then it does demand the low bits (and knows that 1827 // they are zero). 1828 if (Op->getFlags().hasExact()) 1829 InDemandedMask.setLowBits(ShAmt); 1830 1831 // Compute the new bits that are at the top now. 1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1833 Depth + 1)) 1834 return true; 1835 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1836 Known.Zero.lshrInPlace(ShAmt); 1837 Known.One.lshrInPlace(ShAmt); 1838 // High bits known zero. 1839 Known.Zero.setHighBits(ShAmt); 1840 } 1841 break; 1842 } 1843 case ISD::SRA: { 1844 SDValue Op0 = Op.getOperand(0); 1845 SDValue Op1 = Op.getOperand(1); 1846 EVT ShiftVT = Op1.getValueType(); 1847 1848 // If we only want bits that already match the signbit then we don't need 1849 // to shift. 1850 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1851 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1852 NumHiDemandedBits) 1853 return TLO.CombineTo(Op, Op0); 1854 1855 // If this is an arithmetic shift right and only the low-bit is set, we can 1856 // always convert this into a logical shr, even if the shift amount is 1857 // variable. The low bit of the shift cannot be an input sign bit unless 1858 // the shift amount is >= the size of the datatype, which is undefined. 1859 if (DemandedBits.isOne()) 1860 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1861 1862 // Try to match AVG patterns. 1863 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1864 DemandedElts, Depth + 1)) 1865 return TLO.CombineTo(Op, AVG); 1866 1867 if (const APInt *SA = 1868 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1869 unsigned ShAmt = SA->getZExtValue(); 1870 if (ShAmt == 0) 1871 return TLO.CombineTo(Op, Op0); 1872 1873 APInt InDemandedMask = (DemandedBits << ShAmt); 1874 1875 // If the shift is exact, then it does demand the low bits (and knows that 1876 // they are zero). 1877 if (Op->getFlags().hasExact()) 1878 InDemandedMask.setLowBits(ShAmt); 1879 1880 // If any of the demanded bits are produced by the sign extension, we also 1881 // demand the input sign bit. 1882 if (DemandedBits.countLeadingZeros() < ShAmt) 1883 InDemandedMask.setSignBit(); 1884 1885 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1886 Depth + 1)) 1887 return true; 1888 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1889 Known.Zero.lshrInPlace(ShAmt); 1890 Known.One.lshrInPlace(ShAmt); 1891 1892 // If the input sign bit is known to be zero, or if none of the top bits 1893 // are demanded, turn this into an unsigned shift right. 1894 if (Known.Zero[BitWidth - ShAmt - 1] || 1895 DemandedBits.countLeadingZeros() >= ShAmt) { 1896 SDNodeFlags Flags; 1897 Flags.setExact(Op->getFlags().hasExact()); 1898 return TLO.CombineTo( 1899 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1900 } 1901 1902 int Log2 = DemandedBits.exactLogBase2(); 1903 if (Log2 >= 0) { 1904 // The bit must come from the sign. 1905 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1907 } 1908 1909 if (Known.One[BitWidth - ShAmt - 1]) 1910 // New bits are known one. 1911 Known.One.setHighBits(ShAmt); 1912 1913 // Attempt to avoid multi-use ops if we don't need anything from them. 1914 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1915 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1916 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1917 if (DemandedOp0) { 1918 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1919 return TLO.CombineTo(Op, NewOp); 1920 } 1921 } 1922 } 1923 break; 1924 } 1925 case ISD::FSHL: 1926 case ISD::FSHR: { 1927 SDValue Op0 = Op.getOperand(0); 1928 SDValue Op1 = Op.getOperand(1); 1929 SDValue Op2 = Op.getOperand(2); 1930 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1931 1932 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1933 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1934 1935 // For fshl, 0-shift returns the 1st arg. 1936 // For fshr, 0-shift returns the 2nd arg. 1937 if (Amt == 0) { 1938 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1939 Known, TLO, Depth + 1)) 1940 return true; 1941 break; 1942 } 1943 1944 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1945 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1946 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1947 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1948 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1949 Depth + 1)) 1950 return true; 1951 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1952 Depth + 1)) 1953 return true; 1954 1955 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1956 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1957 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1958 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1959 Known.One |= Known2.One; 1960 Known.Zero |= Known2.Zero; 1961 1962 // Attempt to avoid multi-use ops if we don't need anything from them. 1963 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1964 !DemandedElts.isAllOnes()) { 1965 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1966 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1967 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1968 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1969 if (DemandedOp0 || DemandedOp1) { 1970 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1971 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1972 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1973 DemandedOp1, Op2); 1974 return TLO.CombineTo(Op, NewOp); 1975 } 1976 } 1977 } 1978 1979 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1980 if (isPowerOf2_32(BitWidth)) { 1981 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1982 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1983 Known2, TLO, Depth + 1)) 1984 return true; 1985 } 1986 break; 1987 } 1988 case ISD::ROTL: 1989 case ISD::ROTR: { 1990 SDValue Op0 = Op.getOperand(0); 1991 SDValue Op1 = Op.getOperand(1); 1992 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1993 1994 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1995 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1996 return TLO.CombineTo(Op, Op0); 1997 1998 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1999 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2000 unsigned RevAmt = BitWidth - Amt; 2001 2002 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2003 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2004 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2005 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2006 Depth + 1)) 2007 return true; 2008 2009 // rot*(x, 0) --> x 2010 if (Amt == 0) 2011 return TLO.CombineTo(Op, Op0); 2012 2013 // See if we don't demand either half of the rotated bits. 2014 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2015 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 2016 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2017 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2018 } 2019 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2020 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 2021 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2022 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2023 } 2024 } 2025 2026 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2027 if (isPowerOf2_32(BitWidth)) { 2028 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2029 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2030 Depth + 1)) 2031 return true; 2032 } 2033 break; 2034 } 2035 case ISD::UMIN: { 2036 // Check if one arg is always less than (or equal) to the other arg. 2037 SDValue Op0 = Op.getOperand(0); 2038 SDValue Op1 = Op.getOperand(1); 2039 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2040 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2041 Known = KnownBits::umin(Known0, Known1); 2042 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2043 return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1); 2044 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2045 return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1); 2046 break; 2047 } 2048 case ISD::UMAX: { 2049 // Check if one arg is always greater than (or equal) to the other arg. 2050 SDValue Op0 = Op.getOperand(0); 2051 SDValue Op1 = Op.getOperand(1); 2052 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2053 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2054 Known = KnownBits::umax(Known0, Known1); 2055 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2056 return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1); 2057 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2058 return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1); 2059 break; 2060 } 2061 case ISD::BITREVERSE: { 2062 SDValue Src = Op.getOperand(0); 2063 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2064 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2065 Depth + 1)) 2066 return true; 2067 Known.One = Known2.One.reverseBits(); 2068 Known.Zero = Known2.Zero.reverseBits(); 2069 break; 2070 } 2071 case ISD::BSWAP: { 2072 SDValue Src = Op.getOperand(0); 2073 2074 // If the only bits demanded come from one byte of the bswap result, 2075 // just shift the input byte into position to eliminate the bswap. 2076 unsigned NLZ = DemandedBits.countLeadingZeros(); 2077 unsigned NTZ = DemandedBits.countTrailingZeros(); 2078 2079 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2080 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2081 // have 14 leading zeros, round to 8. 2082 NLZ = alignDown(NLZ, 8); 2083 NTZ = alignDown(NTZ, 8); 2084 // If we need exactly one byte, we can do this transformation. 2085 if (BitWidth - NLZ - NTZ == 8) { 2086 // Replace this with either a left or right shift to get the byte into 2087 // the right place. 2088 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2089 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2090 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2091 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2092 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2093 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2094 return TLO.CombineTo(Op, NewOp); 2095 } 2096 } 2097 2098 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2099 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2100 Depth + 1)) 2101 return true; 2102 Known.One = Known2.One.byteSwap(); 2103 Known.Zero = Known2.Zero.byteSwap(); 2104 break; 2105 } 2106 case ISD::CTPOP: { 2107 // If only 1 bit is demanded, replace with PARITY as long as we're before 2108 // op legalization. 2109 // FIXME: Limit to scalars for now. 2110 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2111 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2112 Op.getOperand(0))); 2113 2114 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2115 break; 2116 } 2117 case ISD::SIGN_EXTEND_INREG: { 2118 SDValue Op0 = Op.getOperand(0); 2119 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2120 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2121 2122 // If we only care about the highest bit, don't bother shifting right. 2123 if (DemandedBits.isSignMask()) { 2124 unsigned MinSignedBits = 2125 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2126 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2127 // However if the input is already sign extended we expect the sign 2128 // extension to be dropped altogether later and do not simplify. 2129 if (!AlreadySignExtended) { 2130 // Compute the correct shift amount type, which must be getShiftAmountTy 2131 // for scalar types after legalization. 2132 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2133 getShiftAmountTy(VT, DL)); 2134 return TLO.CombineTo(Op, 2135 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2136 } 2137 } 2138 2139 // If none of the extended bits are demanded, eliminate the sextinreg. 2140 if (DemandedBits.getActiveBits() <= ExVTBits) 2141 return TLO.CombineTo(Op, Op0); 2142 2143 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2144 2145 // Since the sign extended bits are demanded, we know that the sign 2146 // bit is demanded. 2147 InputDemandedBits.setBit(ExVTBits - 1); 2148 2149 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 2154 // If the sign bit of the input is known set or clear, then we know the 2155 // top bits of the result. 2156 2157 // If the input sign bit is known zero, convert this into a zero extension. 2158 if (Known.Zero[ExVTBits - 1]) 2159 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2160 2161 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2162 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2163 Known.One.setBitsFrom(ExVTBits); 2164 Known.Zero &= Mask; 2165 } else { // Input sign bit unknown 2166 Known.Zero &= Mask; 2167 Known.One &= Mask; 2168 } 2169 break; 2170 } 2171 case ISD::BUILD_PAIR: { 2172 EVT HalfVT = Op.getOperand(0).getValueType(); 2173 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2174 2175 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2176 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2177 2178 KnownBits KnownLo, KnownHi; 2179 2180 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2181 return true; 2182 2183 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2184 return true; 2185 2186 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2187 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2188 2189 Known.One = KnownLo.One.zext(BitWidth) | 2190 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2191 break; 2192 } 2193 case ISD::ZERO_EXTEND: 2194 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2195 SDValue Src = Op.getOperand(0); 2196 EVT SrcVT = Src.getValueType(); 2197 unsigned InBits = SrcVT.getScalarSizeInBits(); 2198 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2199 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2200 2201 // If none of the top bits are demanded, convert this into an any_extend. 2202 if (DemandedBits.getActiveBits() <= InBits) { 2203 // If we only need the non-extended bits of the bottom element 2204 // then we can just bitcast to the result. 2205 if (IsLE && IsVecInReg && DemandedElts == 1 && 2206 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2207 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2208 2209 unsigned Opc = 2210 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2211 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2212 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2213 } 2214 2215 APInt InDemandedBits = DemandedBits.trunc(InBits); 2216 APInt InDemandedElts = DemandedElts.zext(InElts); 2217 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2218 Depth + 1)) 2219 return true; 2220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2221 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2222 Known = Known.zext(BitWidth); 2223 2224 // Attempt to avoid multi-use ops if we don't need anything from them. 2225 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2226 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2227 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2228 break; 2229 } 2230 case ISD::SIGN_EXTEND: 2231 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2232 SDValue Src = Op.getOperand(0); 2233 EVT SrcVT = Src.getValueType(); 2234 unsigned InBits = SrcVT.getScalarSizeInBits(); 2235 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2236 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2237 2238 // If none of the top bits are demanded, convert this into an any_extend. 2239 if (DemandedBits.getActiveBits() <= InBits) { 2240 // If we only need the non-extended bits of the bottom element 2241 // then we can just bitcast to the result. 2242 if (IsLE && IsVecInReg && DemandedElts == 1 && 2243 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2244 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2245 2246 unsigned Opc = 2247 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2248 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2249 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2250 } 2251 2252 APInt InDemandedBits = DemandedBits.trunc(InBits); 2253 APInt InDemandedElts = DemandedElts.zext(InElts); 2254 2255 // Since some of the sign extended bits are demanded, we know that the sign 2256 // bit is demanded. 2257 InDemandedBits.setBit(InBits - 1); 2258 2259 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2260 Depth + 1)) 2261 return true; 2262 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2263 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2264 2265 // If the sign bit is known one, the top bits match. 2266 Known = Known.sext(BitWidth); 2267 2268 // If the sign bit is known zero, convert this to a zero extend. 2269 if (Known.isNonNegative()) { 2270 unsigned Opc = 2271 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2272 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2273 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2274 } 2275 2276 // Attempt to avoid multi-use ops if we don't need anything from them. 2277 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2278 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2279 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2280 break; 2281 } 2282 case ISD::ANY_EXTEND: 2283 case ISD::ANY_EXTEND_VECTOR_INREG: { 2284 SDValue Src = Op.getOperand(0); 2285 EVT SrcVT = Src.getValueType(); 2286 unsigned InBits = SrcVT.getScalarSizeInBits(); 2287 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2288 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2289 2290 // If we only need the bottom element then we can just bitcast. 2291 // TODO: Handle ANY_EXTEND? 2292 if (IsLE && IsVecInReg && DemandedElts == 1 && 2293 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2294 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2295 2296 APInt InDemandedBits = DemandedBits.trunc(InBits); 2297 APInt InDemandedElts = DemandedElts.zext(InElts); 2298 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2299 Depth + 1)) 2300 return true; 2301 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2302 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2303 Known = Known.anyext(BitWidth); 2304 2305 // Attempt to avoid multi-use ops if we don't need anything from them. 2306 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2307 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2308 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2309 break; 2310 } 2311 case ISD::TRUNCATE: { 2312 SDValue Src = Op.getOperand(0); 2313 2314 // Simplify the input, using demanded bit information, and compute the known 2315 // zero/one bits live out. 2316 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2317 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2318 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2319 Depth + 1)) 2320 return true; 2321 Known = Known.trunc(BitWidth); 2322 2323 // Attempt to avoid multi-use ops if we don't need anything from them. 2324 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2325 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2326 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2327 2328 // If the input is only used by this truncate, see if we can shrink it based 2329 // on the known demanded bits. 2330 if (Src.getNode()->hasOneUse()) { 2331 switch (Src.getOpcode()) { 2332 default: 2333 break; 2334 case ISD::SRL: 2335 // Shrink SRL by a constant if none of the high bits shifted in are 2336 // demanded. 2337 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2338 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2339 // undesirable. 2340 break; 2341 2342 const APInt *ShAmtC = 2343 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2344 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2345 break; 2346 uint64_t ShVal = ShAmtC->getZExtValue(); 2347 2348 APInt HighBits = 2349 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2350 HighBits.lshrInPlace(ShVal); 2351 HighBits = HighBits.trunc(BitWidth); 2352 2353 if (!(HighBits & DemandedBits)) { 2354 // None of the shifted in bits are needed. Add a truncate of the 2355 // shift input, then shift it. 2356 SDValue NewShAmt = TLO.DAG.getConstant( 2357 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2358 SDValue NewTrunc = 2359 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2360 return TLO.CombineTo( 2361 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2362 } 2363 break; 2364 } 2365 } 2366 2367 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2368 break; 2369 } 2370 case ISD::AssertZext: { 2371 // AssertZext demands all of the high bits, plus any of the low bits 2372 // demanded by its users. 2373 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2374 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2375 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2376 TLO, Depth + 1)) 2377 return true; 2378 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2379 2380 Known.Zero |= ~InMask; 2381 break; 2382 } 2383 case ISD::EXTRACT_VECTOR_ELT: { 2384 SDValue Src = Op.getOperand(0); 2385 SDValue Idx = Op.getOperand(1); 2386 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2387 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2388 2389 if (SrcEltCnt.isScalable()) 2390 return false; 2391 2392 // Demand the bits from every vector element without a constant index. 2393 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2394 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2395 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2396 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2397 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2398 2399 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2400 // anything about the extended bits. 2401 APInt DemandedSrcBits = DemandedBits; 2402 if (BitWidth > EltBitWidth) 2403 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2404 2405 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2406 Depth + 1)) 2407 return true; 2408 2409 // Attempt to avoid multi-use ops if we don't need anything from them. 2410 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2411 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2412 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2413 SDValue NewOp = 2414 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2415 return TLO.CombineTo(Op, NewOp); 2416 } 2417 } 2418 2419 Known = Known2; 2420 if (BitWidth > EltBitWidth) 2421 Known = Known.anyext(BitWidth); 2422 break; 2423 } 2424 case ISD::BITCAST: { 2425 SDValue Src = Op.getOperand(0); 2426 EVT SrcVT = Src.getValueType(); 2427 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2428 2429 // If this is an FP->Int bitcast and if the sign bit is the only 2430 // thing demanded, turn this into a FGETSIGN. 2431 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2432 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2433 SrcVT.isFloatingPoint()) { 2434 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2435 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2436 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2437 SrcVT != MVT::f128) { 2438 // Cannot eliminate/lower SHL for f128 yet. 2439 EVT Ty = OpVTLegal ? VT : MVT::i32; 2440 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2441 // place. We expect the SHL to be eliminated by other optimizations. 2442 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2443 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2444 if (!OpVTLegal && OpVTSizeInBits > 32) 2445 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2446 unsigned ShVal = Op.getValueSizeInBits() - 1; 2447 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2448 return TLO.CombineTo(Op, 2449 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2450 } 2451 } 2452 2453 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2454 // Demand the elt/bit if any of the original elts/bits are demanded. 2455 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2456 unsigned Scale = BitWidth / NumSrcEltBits; 2457 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2458 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2459 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2460 for (unsigned i = 0; i != Scale; ++i) { 2461 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2462 unsigned BitOffset = EltOffset * NumSrcEltBits; 2463 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2464 if (!Sub.isZero()) { 2465 DemandedSrcBits |= Sub; 2466 for (unsigned j = 0; j != NumElts; ++j) 2467 if (DemandedElts[j]) 2468 DemandedSrcElts.setBit((j * Scale) + i); 2469 } 2470 } 2471 2472 APInt KnownSrcUndef, KnownSrcZero; 2473 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2474 KnownSrcZero, TLO, Depth + 1)) 2475 return true; 2476 2477 KnownBits KnownSrcBits; 2478 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2479 KnownSrcBits, TLO, Depth + 1)) 2480 return true; 2481 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2482 // TODO - bigendian once we have test coverage. 2483 unsigned Scale = NumSrcEltBits / BitWidth; 2484 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2485 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2486 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2487 for (unsigned i = 0; i != NumElts; ++i) 2488 if (DemandedElts[i]) { 2489 unsigned Offset = (i % Scale) * BitWidth; 2490 DemandedSrcBits.insertBits(DemandedBits, Offset); 2491 DemandedSrcElts.setBit(i / Scale); 2492 } 2493 2494 if (SrcVT.isVector()) { 2495 APInt KnownSrcUndef, KnownSrcZero; 2496 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2497 KnownSrcZero, TLO, Depth + 1)) 2498 return true; 2499 } 2500 2501 KnownBits KnownSrcBits; 2502 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2503 KnownSrcBits, TLO, Depth + 1)) 2504 return true; 2505 } 2506 2507 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2508 // recursive call where Known may be useful to the caller. 2509 if (Depth > 0) { 2510 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2511 return false; 2512 } 2513 break; 2514 } 2515 case ISD::MUL: 2516 if (DemandedBits.isPowerOf2()) { 2517 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2518 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2519 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2520 unsigned CTZ = DemandedBits.countTrailingZeros(); 2521 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2522 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2523 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2524 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2525 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2526 return TLO.CombineTo(Op, Shl); 2527 } 2528 } 2529 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2530 // X * X is odd iff X is odd. 2531 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2532 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2533 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2534 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2535 return TLO.CombineTo(Op, And1); 2536 } 2537 LLVM_FALLTHROUGH; 2538 case ISD::ADD: 2539 case ISD::SUB: { 2540 // Add, Sub, and Mul don't demand any bits in positions beyond that 2541 // of the highest bit demanded of them. 2542 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2543 SDNodeFlags Flags = Op.getNode()->getFlags(); 2544 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2545 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2546 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2547 Depth + 1) || 2548 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2549 Depth + 1) || 2550 // See if the operation should be performed at a smaller bit width. 2551 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2552 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2553 // Disable the nsw and nuw flags. We can no longer guarantee that we 2554 // won't wrap after simplification. 2555 Flags.setNoSignedWrap(false); 2556 Flags.setNoUnsignedWrap(false); 2557 Op->setFlags(Flags); 2558 } 2559 return true; 2560 } 2561 2562 // Attempt to avoid multi-use ops if we don't need anything from them. 2563 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2564 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2565 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2566 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2567 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2568 if (DemandedOp0 || DemandedOp1) { 2569 Flags.setNoSignedWrap(false); 2570 Flags.setNoUnsignedWrap(false); 2571 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2572 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2573 SDValue NewOp = 2574 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2575 return TLO.CombineTo(Op, NewOp); 2576 } 2577 } 2578 2579 // If we have a constant operand, we may be able to turn it into -1 if we 2580 // do not demand the high bits. This can make the constant smaller to 2581 // encode, allow more general folding, or match specialized instruction 2582 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2583 // is probably not useful (and could be detrimental). 2584 ConstantSDNode *C = isConstOrConstSplat(Op1); 2585 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2586 if (C && !C->isAllOnes() && !C->isOne() && 2587 (C->getAPIntValue() | HighMask).isAllOnes()) { 2588 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2589 // Disable the nsw and nuw flags. We can no longer guarantee that we 2590 // won't wrap after simplification. 2591 Flags.setNoSignedWrap(false); 2592 Flags.setNoUnsignedWrap(false); 2593 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2594 return TLO.CombineTo(Op, NewOp); 2595 } 2596 2597 // Match a multiply with a disguised negated-power-of-2 and convert to a 2598 // an equivalent shift-left amount. 2599 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2600 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2601 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2602 return 0; 2603 2604 // Don't touch opaque constants. Also, ignore zero and power-of-2 2605 // multiplies. Those will get folded later. 2606 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2607 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2608 !MulC->getAPIntValue().isPowerOf2()) { 2609 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2610 if (UnmaskedC.isNegatedPowerOf2()) 2611 return (-UnmaskedC).logBase2(); 2612 } 2613 return 0; 2614 }; 2615 2616 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2617 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2618 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2619 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2620 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2621 return TLO.CombineTo(Op, Res); 2622 }; 2623 2624 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2625 if (Op.getOpcode() == ISD::ADD) { 2626 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2627 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2628 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2629 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2630 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2631 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2632 } 2633 if (Op.getOpcode() == ISD::SUB) { 2634 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2635 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2636 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2637 } 2638 } 2639 2640 LLVM_FALLTHROUGH; 2641 } 2642 default: 2643 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2644 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2645 Known, TLO, Depth)) 2646 return true; 2647 break; 2648 } 2649 2650 // Just use computeKnownBits to compute output bits. 2651 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2652 break; 2653 } 2654 2655 // If we know the value of all of the demanded bits, return this as a 2656 // constant. 2657 if (!isTargetCanonicalConstantNode(Op) && 2658 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2659 // Avoid folding to a constant if any OpaqueConstant is involved. 2660 const SDNode *N = Op.getNode(); 2661 for (SDNode *Op : 2662 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2663 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2664 if (C->isOpaque()) 2665 return false; 2666 } 2667 if (VT.isInteger()) 2668 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2669 if (VT.isFloatingPoint()) 2670 return TLO.CombineTo( 2671 Op, 2672 TLO.DAG.getConstantFP( 2673 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2674 } 2675 2676 return false; 2677 } 2678 2679 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2680 const APInt &DemandedElts, 2681 DAGCombinerInfo &DCI) const { 2682 SelectionDAG &DAG = DCI.DAG; 2683 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2684 !DCI.isBeforeLegalizeOps()); 2685 2686 APInt KnownUndef, KnownZero; 2687 bool Simplified = 2688 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2689 if (Simplified) { 2690 DCI.AddToWorklist(Op.getNode()); 2691 DCI.CommitTargetLoweringOpt(TLO); 2692 } 2693 2694 return Simplified; 2695 } 2696 2697 /// Given a vector binary operation and known undefined elements for each input 2698 /// operand, compute whether each element of the output is undefined. 2699 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2700 const APInt &UndefOp0, 2701 const APInt &UndefOp1) { 2702 EVT VT = BO.getValueType(); 2703 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2704 "Vector binop only"); 2705 2706 EVT EltVT = VT.getVectorElementType(); 2707 unsigned NumElts = VT.getVectorNumElements(); 2708 assert(UndefOp0.getBitWidth() == NumElts && 2709 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2710 2711 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2712 const APInt &UndefVals) { 2713 if (UndefVals[Index]) 2714 return DAG.getUNDEF(EltVT); 2715 2716 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2717 // Try hard to make sure that the getNode() call is not creating temporary 2718 // nodes. Ignore opaque integers because they do not constant fold. 2719 SDValue Elt = BV->getOperand(Index); 2720 auto *C = dyn_cast<ConstantSDNode>(Elt); 2721 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2722 return Elt; 2723 } 2724 2725 return SDValue(); 2726 }; 2727 2728 APInt KnownUndef = APInt::getZero(NumElts); 2729 for (unsigned i = 0; i != NumElts; ++i) { 2730 // If both inputs for this element are either constant or undef and match 2731 // the element type, compute the constant/undef result for this element of 2732 // the vector. 2733 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2734 // not handle FP constants. The code within getNode() should be refactored 2735 // to avoid the danger of creating a bogus temporary node here. 2736 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2737 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2738 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2739 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2740 KnownUndef.setBit(i); 2741 } 2742 return KnownUndef; 2743 } 2744 2745 bool TargetLowering::SimplifyDemandedVectorElts( 2746 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2747 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2748 bool AssumeSingleUse) const { 2749 EVT VT = Op.getValueType(); 2750 unsigned Opcode = Op.getOpcode(); 2751 APInt DemandedElts = OriginalDemandedElts; 2752 unsigned NumElts = DemandedElts.getBitWidth(); 2753 assert(VT.isVector() && "Expected vector op"); 2754 2755 KnownUndef = KnownZero = APInt::getZero(NumElts); 2756 2757 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2758 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2759 return false; 2760 2761 // TODO: For now we assume we know nothing about scalable vectors. 2762 if (VT.isScalableVector()) 2763 return false; 2764 2765 assert(VT.getVectorNumElements() == NumElts && 2766 "Mask size mismatches value type element count!"); 2767 2768 // Undef operand. 2769 if (Op.isUndef()) { 2770 KnownUndef.setAllBits(); 2771 return false; 2772 } 2773 2774 // If Op has other users, assume that all elements are needed. 2775 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2776 DemandedElts.setAllBits(); 2777 2778 // Not demanding any elements from Op. 2779 if (DemandedElts == 0) { 2780 KnownUndef.setAllBits(); 2781 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2782 } 2783 2784 // Limit search depth. 2785 if (Depth >= SelectionDAG::MaxRecursionDepth) 2786 return false; 2787 2788 SDLoc DL(Op); 2789 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2790 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2791 2792 // Helper for demanding the specified elements and all the bits of both binary 2793 // operands. 2794 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2795 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2796 TLO.DAG, Depth + 1); 2797 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2798 TLO.DAG, Depth + 1); 2799 if (NewOp0 || NewOp1) { 2800 SDValue NewOp = TLO.DAG.getNode( 2801 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2802 return TLO.CombineTo(Op, NewOp); 2803 } 2804 return false; 2805 }; 2806 2807 switch (Opcode) { 2808 case ISD::SCALAR_TO_VECTOR: { 2809 if (!DemandedElts[0]) { 2810 KnownUndef.setAllBits(); 2811 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2812 } 2813 SDValue ScalarSrc = Op.getOperand(0); 2814 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2815 SDValue Src = ScalarSrc.getOperand(0); 2816 SDValue Idx = ScalarSrc.getOperand(1); 2817 EVT SrcVT = Src.getValueType(); 2818 2819 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2820 2821 if (SrcEltCnt.isScalable()) 2822 return false; 2823 2824 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2825 if (isNullConstant(Idx)) { 2826 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2827 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2828 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2829 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2830 TLO, Depth + 1)) 2831 return true; 2832 } 2833 } 2834 KnownUndef.setHighBits(NumElts - 1); 2835 break; 2836 } 2837 case ISD::BITCAST: { 2838 SDValue Src = Op.getOperand(0); 2839 EVT SrcVT = Src.getValueType(); 2840 2841 // We only handle vectors here. 2842 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2843 if (!SrcVT.isVector()) 2844 break; 2845 2846 // Fast handling of 'identity' bitcasts. 2847 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2848 if (NumSrcElts == NumElts) 2849 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2850 KnownZero, TLO, Depth + 1); 2851 2852 APInt SrcDemandedElts, SrcZero, SrcUndef; 2853 2854 // Bitcast from 'large element' src vector to 'small element' vector, we 2855 // must demand a source element if any DemandedElt maps to it. 2856 if ((NumElts % NumSrcElts) == 0) { 2857 unsigned Scale = NumElts / NumSrcElts; 2858 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2859 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2860 TLO, Depth + 1)) 2861 return true; 2862 2863 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2864 // of the large element. 2865 // TODO - bigendian once we have test coverage. 2866 if (IsLE) { 2867 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2868 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2869 for (unsigned i = 0; i != NumElts; ++i) 2870 if (DemandedElts[i]) { 2871 unsigned Ofs = (i % Scale) * EltSizeInBits; 2872 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2873 } 2874 2875 KnownBits Known; 2876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2877 TLO, Depth + 1)) 2878 return true; 2879 2880 // The bitcast has split each wide element into a number of 2881 // narrow subelements. We have just computed the Known bits 2882 // for wide elements. See if element splitting results in 2883 // some subelements being zero. Only for demanded elements! 2884 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2885 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2886 .isAllOnes()) 2887 continue; 2888 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2889 unsigned Elt = Scale * SrcElt + SubElt; 2890 if (DemandedElts[Elt]) 2891 KnownZero.setBit(Elt); 2892 } 2893 } 2894 } 2895 2896 // If the src element is zero/undef then all the output elements will be - 2897 // only demanded elements are guaranteed to be correct. 2898 for (unsigned i = 0; i != NumSrcElts; ++i) { 2899 if (SrcDemandedElts[i]) { 2900 if (SrcZero[i]) 2901 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2902 if (SrcUndef[i]) 2903 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2904 } 2905 } 2906 } 2907 2908 // Bitcast from 'small element' src vector to 'large element' vector, we 2909 // demand all smaller source elements covered by the larger demanded element 2910 // of this vector. 2911 if ((NumSrcElts % NumElts) == 0) { 2912 unsigned Scale = NumSrcElts / NumElts; 2913 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2914 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2915 TLO, Depth + 1)) 2916 return true; 2917 2918 // If all the src elements covering an output element are zero/undef, then 2919 // the output element will be as well, assuming it was demanded. 2920 for (unsigned i = 0; i != NumElts; ++i) { 2921 if (DemandedElts[i]) { 2922 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2923 KnownZero.setBit(i); 2924 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2925 KnownUndef.setBit(i); 2926 } 2927 } 2928 } 2929 break; 2930 } 2931 case ISD::BUILD_VECTOR: { 2932 // Check all elements and simplify any unused elements with UNDEF. 2933 if (!DemandedElts.isAllOnes()) { 2934 // Don't simplify BROADCASTS. 2935 if (llvm::any_of(Op->op_values(), 2936 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2937 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2938 bool Updated = false; 2939 for (unsigned i = 0; i != NumElts; ++i) { 2940 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2941 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2942 KnownUndef.setBit(i); 2943 Updated = true; 2944 } 2945 } 2946 if (Updated) 2947 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2948 } 2949 } 2950 for (unsigned i = 0; i != NumElts; ++i) { 2951 SDValue SrcOp = Op.getOperand(i); 2952 if (SrcOp.isUndef()) { 2953 KnownUndef.setBit(i); 2954 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2955 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2956 KnownZero.setBit(i); 2957 } 2958 } 2959 break; 2960 } 2961 case ISD::CONCAT_VECTORS: { 2962 EVT SubVT = Op.getOperand(0).getValueType(); 2963 unsigned NumSubVecs = Op.getNumOperands(); 2964 unsigned NumSubElts = SubVT.getVectorNumElements(); 2965 for (unsigned i = 0; i != NumSubVecs; ++i) { 2966 SDValue SubOp = Op.getOperand(i); 2967 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2968 APInt SubUndef, SubZero; 2969 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2970 Depth + 1)) 2971 return true; 2972 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2973 KnownZero.insertBits(SubZero, i * NumSubElts); 2974 } 2975 2976 // Attempt to avoid multi-use ops if we don't need anything from them. 2977 if (!DemandedElts.isAllOnes()) { 2978 bool FoundNewSub = false; 2979 SmallVector<SDValue, 2> DemandedSubOps; 2980 for (unsigned i = 0; i != NumSubVecs; ++i) { 2981 SDValue SubOp = Op.getOperand(i); 2982 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2983 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2984 SubOp, SubElts, TLO.DAG, Depth + 1); 2985 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2986 FoundNewSub = NewSubOp ? true : FoundNewSub; 2987 } 2988 if (FoundNewSub) { 2989 SDValue NewOp = 2990 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2991 return TLO.CombineTo(Op, NewOp); 2992 } 2993 } 2994 break; 2995 } 2996 case ISD::INSERT_SUBVECTOR: { 2997 // Demand any elements from the subvector and the remainder from the src its 2998 // inserted into. 2999 SDValue Src = Op.getOperand(0); 3000 SDValue Sub = Op.getOperand(1); 3001 uint64_t Idx = Op.getConstantOperandVal(2); 3002 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3003 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3004 APInt DemandedSrcElts = DemandedElts; 3005 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3006 3007 APInt SubUndef, SubZero; 3008 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3009 Depth + 1)) 3010 return true; 3011 3012 // If none of the src operand elements are demanded, replace it with undef. 3013 if (!DemandedSrcElts && !Src.isUndef()) 3014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3015 TLO.DAG.getUNDEF(VT), Sub, 3016 Op.getOperand(2))); 3017 3018 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3019 TLO, Depth + 1)) 3020 return true; 3021 KnownUndef.insertBits(SubUndef, Idx); 3022 KnownZero.insertBits(SubZero, Idx); 3023 3024 // Attempt to avoid multi-use ops if we don't need anything from them. 3025 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3026 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3027 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3028 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3029 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3030 if (NewSrc || NewSub) { 3031 NewSrc = NewSrc ? NewSrc : Src; 3032 NewSub = NewSub ? NewSub : Sub; 3033 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3034 NewSub, Op.getOperand(2)); 3035 return TLO.CombineTo(Op, NewOp); 3036 } 3037 } 3038 break; 3039 } 3040 case ISD::EXTRACT_SUBVECTOR: { 3041 // Offset the demanded elts by the subvector index. 3042 SDValue Src = Op.getOperand(0); 3043 if (Src.getValueType().isScalableVector()) 3044 break; 3045 uint64_t Idx = Op.getConstantOperandVal(1); 3046 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3047 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3048 3049 APInt SrcUndef, SrcZero; 3050 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3051 Depth + 1)) 3052 return true; 3053 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3054 KnownZero = SrcZero.extractBits(NumElts, Idx); 3055 3056 // Attempt to avoid multi-use ops if we don't need anything from them. 3057 if (!DemandedElts.isAllOnes()) { 3058 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3059 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3060 if (NewSrc) { 3061 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3062 Op.getOperand(1)); 3063 return TLO.CombineTo(Op, NewOp); 3064 } 3065 } 3066 break; 3067 } 3068 case ISD::INSERT_VECTOR_ELT: { 3069 SDValue Vec = Op.getOperand(0); 3070 SDValue Scl = Op.getOperand(1); 3071 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3072 3073 // For a legal, constant insertion index, if we don't need this insertion 3074 // then strip it, else remove it from the demanded elts. 3075 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3076 unsigned Idx = CIdx->getZExtValue(); 3077 if (!DemandedElts[Idx]) 3078 return TLO.CombineTo(Op, Vec); 3079 3080 APInt DemandedVecElts(DemandedElts); 3081 DemandedVecElts.clearBit(Idx); 3082 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3083 KnownZero, TLO, Depth + 1)) 3084 return true; 3085 3086 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3087 3088 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3089 break; 3090 } 3091 3092 APInt VecUndef, VecZero; 3093 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3094 Depth + 1)) 3095 return true; 3096 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3097 break; 3098 } 3099 case ISD::VSELECT: { 3100 SDValue Sel = Op.getOperand(0); 3101 SDValue LHS = Op.getOperand(1); 3102 SDValue RHS = Op.getOperand(2); 3103 3104 // Try to transform the select condition based on the current demanded 3105 // elements. 3106 APInt UndefSel, UndefZero; 3107 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3108 Depth + 1)) 3109 return true; 3110 3111 // See if we can simplify either vselect operand. 3112 APInt DemandedLHS(DemandedElts); 3113 APInt DemandedRHS(DemandedElts); 3114 APInt UndefLHS, ZeroLHS; 3115 APInt UndefRHS, ZeroRHS; 3116 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3117 Depth + 1)) 3118 return true; 3119 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3120 Depth + 1)) 3121 return true; 3122 3123 KnownUndef = UndefLHS & UndefRHS; 3124 KnownZero = ZeroLHS & ZeroRHS; 3125 3126 // If we know that the selected element is always zero, we don't need the 3127 // select value element. 3128 APInt DemandedSel = DemandedElts & ~KnownZero; 3129 if (DemandedSel != DemandedElts) 3130 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3131 Depth + 1)) 3132 return true; 3133 3134 break; 3135 } 3136 case ISD::VECTOR_SHUFFLE: { 3137 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3138 3139 // Collect demanded elements from shuffle operands.. 3140 APInt DemandedLHS(NumElts, 0); 3141 APInt DemandedRHS(NumElts, 0); 3142 for (unsigned i = 0; i != NumElts; ++i) { 3143 int M = ShuffleMask[i]; 3144 if (M < 0 || !DemandedElts[i]) 3145 continue; 3146 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3147 if (M < (int)NumElts) 3148 DemandedLHS.setBit(M); 3149 else 3150 DemandedRHS.setBit(M - NumElts); 3151 } 3152 3153 // See if we can simplify either shuffle operand. 3154 APInt UndefLHS, ZeroLHS; 3155 APInt UndefRHS, ZeroRHS; 3156 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3157 ZeroLHS, TLO, Depth + 1)) 3158 return true; 3159 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3160 ZeroRHS, TLO, Depth + 1)) 3161 return true; 3162 3163 // Simplify mask using undef elements from LHS/RHS. 3164 bool Updated = false; 3165 bool IdentityLHS = true, IdentityRHS = true; 3166 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3167 for (unsigned i = 0; i != NumElts; ++i) { 3168 int &M = NewMask[i]; 3169 if (M < 0) 3170 continue; 3171 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3172 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3173 Updated = true; 3174 M = -1; 3175 } 3176 IdentityLHS &= (M < 0) || (M == (int)i); 3177 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3178 } 3179 3180 // Update legal shuffle masks based on demanded elements if it won't reduce 3181 // to Identity which can cause premature removal of the shuffle mask. 3182 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3183 SDValue LegalShuffle = 3184 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3185 NewMask, TLO.DAG); 3186 if (LegalShuffle) 3187 return TLO.CombineTo(Op, LegalShuffle); 3188 } 3189 3190 // Propagate undef/zero elements from LHS/RHS. 3191 for (unsigned i = 0; i != NumElts; ++i) { 3192 int M = ShuffleMask[i]; 3193 if (M < 0) { 3194 KnownUndef.setBit(i); 3195 } else if (M < (int)NumElts) { 3196 if (UndefLHS[M]) 3197 KnownUndef.setBit(i); 3198 if (ZeroLHS[M]) 3199 KnownZero.setBit(i); 3200 } else { 3201 if (UndefRHS[M - NumElts]) 3202 KnownUndef.setBit(i); 3203 if (ZeroRHS[M - NumElts]) 3204 KnownZero.setBit(i); 3205 } 3206 } 3207 break; 3208 } 3209 case ISD::ANY_EXTEND_VECTOR_INREG: 3210 case ISD::SIGN_EXTEND_VECTOR_INREG: 3211 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3212 APInt SrcUndef, SrcZero; 3213 SDValue Src = Op.getOperand(0); 3214 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3215 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3216 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3217 Depth + 1)) 3218 return true; 3219 KnownZero = SrcZero.zextOrTrunc(NumElts); 3220 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3221 3222 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3223 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3224 DemandedSrcElts == 1) { 3225 // aext - if we just need the bottom element then we can bitcast. 3226 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3227 } 3228 3229 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3230 // zext(undef) upper bits are guaranteed to be zero. 3231 if (DemandedElts.isSubsetOf(KnownUndef)) 3232 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3233 KnownUndef.clearAllBits(); 3234 3235 // zext - if we just need the bottom element then we can mask: 3236 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3237 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3238 Op->isOnlyUserOf(Src.getNode()) && 3239 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3240 SDLoc DL(Op); 3241 EVT SrcVT = Src.getValueType(); 3242 EVT SrcSVT = SrcVT.getScalarType(); 3243 SmallVector<SDValue> MaskElts; 3244 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3245 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3246 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3247 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3248 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3249 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3250 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3251 } 3252 } 3253 } 3254 break; 3255 } 3256 3257 // TODO: There are more binop opcodes that could be handled here - MIN, 3258 // MAX, saturated math, etc. 3259 case ISD::ADD: { 3260 SDValue Op0 = Op.getOperand(0); 3261 SDValue Op1 = Op.getOperand(1); 3262 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3263 APInt UndefLHS, ZeroLHS; 3264 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3265 Depth + 1, /*AssumeSingleUse*/ true)) 3266 return true; 3267 } 3268 LLVM_FALLTHROUGH; 3269 } 3270 case ISD::OR: 3271 case ISD::XOR: 3272 case ISD::SUB: 3273 case ISD::FADD: 3274 case ISD::FSUB: 3275 case ISD::FMUL: 3276 case ISD::FDIV: 3277 case ISD::FREM: { 3278 SDValue Op0 = Op.getOperand(0); 3279 SDValue Op1 = Op.getOperand(1); 3280 3281 APInt UndefRHS, ZeroRHS; 3282 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3283 Depth + 1)) 3284 return true; 3285 APInt UndefLHS, ZeroLHS; 3286 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3287 Depth + 1)) 3288 return true; 3289 3290 KnownZero = ZeroLHS & ZeroRHS; 3291 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3292 3293 // Attempt to avoid multi-use ops if we don't need anything from them. 3294 // TODO - use KnownUndef to relax the demandedelts? 3295 if (!DemandedElts.isAllOnes()) 3296 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3297 return true; 3298 break; 3299 } 3300 case ISD::SHL: 3301 case ISD::SRL: 3302 case ISD::SRA: 3303 case ISD::ROTL: 3304 case ISD::ROTR: { 3305 SDValue Op0 = Op.getOperand(0); 3306 SDValue Op1 = Op.getOperand(1); 3307 3308 APInt UndefRHS, ZeroRHS; 3309 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3310 Depth + 1)) 3311 return true; 3312 APInt UndefLHS, ZeroLHS; 3313 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3314 Depth + 1)) 3315 return true; 3316 3317 KnownZero = ZeroLHS; 3318 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3319 3320 // Attempt to avoid multi-use ops if we don't need anything from them. 3321 // TODO - use KnownUndef to relax the demandedelts? 3322 if (!DemandedElts.isAllOnes()) 3323 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3324 return true; 3325 break; 3326 } 3327 case ISD::MUL: 3328 case ISD::AND: { 3329 SDValue Op0 = Op.getOperand(0); 3330 SDValue Op1 = Op.getOperand(1); 3331 3332 APInt SrcUndef, SrcZero; 3333 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3334 Depth + 1)) 3335 return true; 3336 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3337 TLO, Depth + 1)) 3338 return true; 3339 3340 // If either side has a zero element, then the result element is zero, even 3341 // if the other is an UNDEF. 3342 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3343 // and then handle 'and' nodes with the rest of the binop opcodes. 3344 KnownZero |= SrcZero; 3345 KnownUndef &= SrcUndef; 3346 KnownUndef &= ~KnownZero; 3347 3348 // Attempt to avoid multi-use ops if we don't need anything from them. 3349 // TODO - use KnownUndef to relax the demandedelts? 3350 if (!DemandedElts.isAllOnes()) 3351 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3352 return true; 3353 break; 3354 } 3355 case ISD::TRUNCATE: 3356 case ISD::SIGN_EXTEND: 3357 case ISD::ZERO_EXTEND: 3358 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3359 KnownZero, TLO, Depth + 1)) 3360 return true; 3361 3362 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3363 // zext(undef) upper bits are guaranteed to be zero. 3364 if (DemandedElts.isSubsetOf(KnownUndef)) 3365 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3366 KnownUndef.clearAllBits(); 3367 } 3368 break; 3369 default: { 3370 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3371 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3372 KnownZero, TLO, Depth)) 3373 return true; 3374 } else { 3375 KnownBits Known; 3376 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3377 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3378 TLO, Depth, AssumeSingleUse)) 3379 return true; 3380 } 3381 break; 3382 } 3383 } 3384 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3385 3386 // Constant fold all undef cases. 3387 // TODO: Handle zero cases as well. 3388 if (DemandedElts.isSubsetOf(KnownUndef)) 3389 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3390 3391 return false; 3392 } 3393 3394 /// Determine which of the bits specified in Mask are known to be either zero or 3395 /// one and return them in the Known. 3396 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3397 KnownBits &Known, 3398 const APInt &DemandedElts, 3399 const SelectionDAG &DAG, 3400 unsigned Depth) const { 3401 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3402 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3403 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3404 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3405 "Should use MaskedValueIsZero if you don't know whether Op" 3406 " is a target node!"); 3407 Known.resetAll(); 3408 } 3409 3410 void TargetLowering::computeKnownBitsForTargetInstr( 3411 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3412 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3413 unsigned Depth) const { 3414 Known.resetAll(); 3415 } 3416 3417 void TargetLowering::computeKnownBitsForFrameIndex( 3418 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3419 // The low bits are known zero if the pointer is aligned. 3420 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3421 } 3422 3423 Align TargetLowering::computeKnownAlignForTargetInstr( 3424 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3425 unsigned Depth) const { 3426 return Align(1); 3427 } 3428 3429 /// This method can be implemented by targets that want to expose additional 3430 /// information about sign bits to the DAG Combiner. 3431 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3432 const APInt &, 3433 const SelectionDAG &, 3434 unsigned Depth) const { 3435 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3436 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3437 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3438 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3439 "Should use ComputeNumSignBits if you don't know whether Op" 3440 " is a target node!"); 3441 return 1; 3442 } 3443 3444 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3445 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3446 const MachineRegisterInfo &MRI, unsigned Depth) const { 3447 return 1; 3448 } 3449 3450 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3451 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3452 TargetLoweringOpt &TLO, unsigned Depth) const { 3453 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3454 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3455 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3456 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3457 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3458 " is a target node!"); 3459 return false; 3460 } 3461 3462 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3463 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3464 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3465 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3466 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3467 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3468 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3469 "Should use SimplifyDemandedBits if you don't know whether Op" 3470 " is a target node!"); 3471 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3472 return false; 3473 } 3474 3475 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3476 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3477 SelectionDAG &DAG, unsigned Depth) const { 3478 assert( 3479 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3480 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3481 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3482 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3483 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3484 " is a target node!"); 3485 return SDValue(); 3486 } 3487 3488 SDValue 3489 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3490 SDValue N1, MutableArrayRef<int> Mask, 3491 SelectionDAG &DAG) const { 3492 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3493 if (!LegalMask) { 3494 std::swap(N0, N1); 3495 ShuffleVectorSDNode::commuteMask(Mask); 3496 LegalMask = isShuffleMaskLegal(Mask, VT); 3497 } 3498 3499 if (!LegalMask) 3500 return SDValue(); 3501 3502 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3503 } 3504 3505 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3506 return nullptr; 3507 } 3508 3509 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3510 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3511 bool PoisonOnly, unsigned Depth) const { 3512 assert( 3513 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3514 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3515 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3516 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3517 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3518 " is a target node!"); 3519 return false; 3520 } 3521 3522 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3523 const SelectionDAG &DAG, 3524 bool SNaN, 3525 unsigned Depth) const { 3526 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3527 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3528 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3529 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3530 "Should use isKnownNeverNaN if you don't know whether Op" 3531 " is a target node!"); 3532 return false; 3533 } 3534 3535 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3536 const APInt &DemandedElts, 3537 APInt &UndefElts, 3538 unsigned Depth) const { 3539 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3540 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3541 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3542 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3543 "Should use isSplatValue if you don't know whether Op" 3544 " is a target node!"); 3545 return false; 3546 } 3547 3548 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3549 // work with truncating build vectors and vectors with elements of less than 3550 // 8 bits. 3551 bool TargetLowering::isConstTrueVal(SDValue N) const { 3552 if (!N) 3553 return false; 3554 3555 unsigned EltWidth; 3556 APInt CVal; 3557 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3558 /*AllowTruncation=*/true)) { 3559 CVal = CN->getAPIntValue(); 3560 EltWidth = N.getValueType().getScalarSizeInBits(); 3561 } else 3562 return false; 3563 3564 // If this is a truncating splat, truncate the splat value. 3565 // Otherwise, we may fail to match the expected values below. 3566 if (EltWidth < CVal.getBitWidth()) 3567 CVal = CVal.trunc(EltWidth); 3568 3569 switch (getBooleanContents(N.getValueType())) { 3570 case UndefinedBooleanContent: 3571 return CVal[0]; 3572 case ZeroOrOneBooleanContent: 3573 return CVal.isOne(); 3574 case ZeroOrNegativeOneBooleanContent: 3575 return CVal.isAllOnes(); 3576 } 3577 3578 llvm_unreachable("Invalid boolean contents"); 3579 } 3580 3581 bool TargetLowering::isConstFalseVal(SDValue N) const { 3582 if (!N) 3583 return false; 3584 3585 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3586 if (!CN) { 3587 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3588 if (!BV) 3589 return false; 3590 3591 // Only interested in constant splats, we don't care about undef 3592 // elements in identifying boolean constants and getConstantSplatNode 3593 // returns NULL if all ops are undef; 3594 CN = BV->getConstantSplatNode(); 3595 if (!CN) 3596 return false; 3597 } 3598 3599 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3600 return !CN->getAPIntValue()[0]; 3601 3602 return CN->isZero(); 3603 } 3604 3605 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3606 bool SExt) const { 3607 if (VT == MVT::i1) 3608 return N->isOne(); 3609 3610 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3611 switch (Cnt) { 3612 case TargetLowering::ZeroOrOneBooleanContent: 3613 // An extended value of 1 is always true, unless its original type is i1, 3614 // in which case it will be sign extended to -1. 3615 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3616 case TargetLowering::UndefinedBooleanContent: 3617 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3618 return N->isAllOnes() && SExt; 3619 } 3620 llvm_unreachable("Unexpected enumeration."); 3621 } 3622 3623 /// This helper function of SimplifySetCC tries to optimize the comparison when 3624 /// either operand of the SetCC node is a bitwise-and instruction. 3625 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3626 ISD::CondCode Cond, const SDLoc &DL, 3627 DAGCombinerInfo &DCI) const { 3628 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3629 std::swap(N0, N1); 3630 3631 SelectionDAG &DAG = DCI.DAG; 3632 EVT OpVT = N0.getValueType(); 3633 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3634 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3635 return SDValue(); 3636 3637 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3638 // iff everything but LSB is known zero: 3639 if (Cond == ISD::SETNE && isNullConstant(N1) && 3640 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3641 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3642 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3643 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3644 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3645 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3646 } 3647 3648 // Match these patterns in any of their permutations: 3649 // (X & Y) == Y 3650 // (X & Y) != Y 3651 SDValue X, Y; 3652 if (N0.getOperand(0) == N1) { 3653 X = N0.getOperand(1); 3654 Y = N0.getOperand(0); 3655 } else if (N0.getOperand(1) == N1) { 3656 X = N0.getOperand(0); 3657 Y = N0.getOperand(1); 3658 } else { 3659 return SDValue(); 3660 } 3661 3662 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3663 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3664 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3665 // Note that where Y is variable and is known to have at most one bit set 3666 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3667 // equivalent when Y == 0. 3668 assert(OpVT.isInteger()); 3669 Cond = ISD::getSetCCInverse(Cond, OpVT); 3670 if (DCI.isBeforeLegalizeOps() || 3671 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3672 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3673 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3674 // If the target supports an 'and-not' or 'and-complement' logic operation, 3675 // try to use that to make a comparison operation more efficient. 3676 // But don't do this transform if the mask is a single bit because there are 3677 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3678 // 'rlwinm' on PPC). 3679 3680 // Bail out if the compare operand that we want to turn into a zero is 3681 // already a zero (otherwise, infinite loop). 3682 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3683 if (YConst && YConst->isZero()) 3684 return SDValue(); 3685 3686 // Transform this into: ~X & Y == 0. 3687 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3688 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3689 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3690 } 3691 3692 return SDValue(); 3693 } 3694 3695 /// There are multiple IR patterns that could be checking whether certain 3696 /// truncation of a signed number would be lossy or not. The pattern which is 3697 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3698 /// We are looking for the following pattern: (KeptBits is a constant) 3699 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3700 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3701 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3702 /// We will unfold it into the natural trunc+sext pattern: 3703 /// ((%x << C) a>> C) dstcond %x 3704 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3705 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3706 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3707 const SDLoc &DL) const { 3708 // We must be comparing with a constant. 3709 ConstantSDNode *C1; 3710 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3711 return SDValue(); 3712 3713 // N0 should be: add %x, (1 << (KeptBits-1)) 3714 if (N0->getOpcode() != ISD::ADD) 3715 return SDValue(); 3716 3717 // And we must be 'add'ing a constant. 3718 ConstantSDNode *C01; 3719 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3720 return SDValue(); 3721 3722 SDValue X = N0->getOperand(0); 3723 EVT XVT = X.getValueType(); 3724 3725 // Validate constants ... 3726 3727 APInt I1 = C1->getAPIntValue(); 3728 3729 ISD::CondCode NewCond; 3730 if (Cond == ISD::CondCode::SETULT) { 3731 NewCond = ISD::CondCode::SETEQ; 3732 } else if (Cond == ISD::CondCode::SETULE) { 3733 NewCond = ISD::CondCode::SETEQ; 3734 // But need to 'canonicalize' the constant. 3735 I1 += 1; 3736 } else if (Cond == ISD::CondCode::SETUGT) { 3737 NewCond = ISD::CondCode::SETNE; 3738 // But need to 'canonicalize' the constant. 3739 I1 += 1; 3740 } else if (Cond == ISD::CondCode::SETUGE) { 3741 NewCond = ISD::CondCode::SETNE; 3742 } else 3743 return SDValue(); 3744 3745 APInt I01 = C01->getAPIntValue(); 3746 3747 auto checkConstants = [&I1, &I01]() -> bool { 3748 // Both of them must be power-of-two, and the constant from setcc is bigger. 3749 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3750 }; 3751 3752 if (checkConstants()) { 3753 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3754 } else { 3755 // What if we invert constants? (and the target predicate) 3756 I1.negate(); 3757 I01.negate(); 3758 assert(XVT.isInteger()); 3759 NewCond = getSetCCInverse(NewCond, XVT); 3760 if (!checkConstants()) 3761 return SDValue(); 3762 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3763 } 3764 3765 // They are power-of-two, so which bit is set? 3766 const unsigned KeptBits = I1.logBase2(); 3767 const unsigned KeptBitsMinusOne = I01.logBase2(); 3768 3769 // Magic! 3770 if (KeptBits != (KeptBitsMinusOne + 1)) 3771 return SDValue(); 3772 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3773 3774 // We don't want to do this in every single case. 3775 SelectionDAG &DAG = DCI.DAG; 3776 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3777 XVT, KeptBits)) 3778 return SDValue(); 3779 3780 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3781 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3782 3783 // Unfold into: ((%x << C) a>> C) cond %x 3784 // Where 'cond' will be either 'eq' or 'ne'. 3785 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3786 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3787 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3788 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3789 3790 return T2; 3791 } 3792 3793 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3794 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3795 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3796 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3797 assert(isConstOrConstSplat(N1C) && 3798 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3799 "Should be a comparison with 0."); 3800 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3801 "Valid only for [in]equality comparisons."); 3802 3803 unsigned NewShiftOpcode; 3804 SDValue X, C, Y; 3805 3806 SelectionDAG &DAG = DCI.DAG; 3807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3808 3809 // Look for '(C l>>/<< Y)'. 3810 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3811 // The shift should be one-use. 3812 if (!V.hasOneUse()) 3813 return false; 3814 unsigned OldShiftOpcode = V.getOpcode(); 3815 switch (OldShiftOpcode) { 3816 case ISD::SHL: 3817 NewShiftOpcode = ISD::SRL; 3818 break; 3819 case ISD::SRL: 3820 NewShiftOpcode = ISD::SHL; 3821 break; 3822 default: 3823 return false; // must be a logical shift. 3824 } 3825 // We should be shifting a constant. 3826 // FIXME: best to use isConstantOrConstantVector(). 3827 C = V.getOperand(0); 3828 ConstantSDNode *CC = 3829 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3830 if (!CC) 3831 return false; 3832 Y = V.getOperand(1); 3833 3834 ConstantSDNode *XC = 3835 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3836 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3837 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3838 }; 3839 3840 // LHS of comparison should be an one-use 'and'. 3841 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3842 return SDValue(); 3843 3844 X = N0.getOperand(0); 3845 SDValue Mask = N0.getOperand(1); 3846 3847 // 'and' is commutative! 3848 if (!Match(Mask)) { 3849 std::swap(X, Mask); 3850 if (!Match(Mask)) 3851 return SDValue(); 3852 } 3853 3854 EVT VT = X.getValueType(); 3855 3856 // Produce: 3857 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3858 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3859 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3860 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3861 return T2; 3862 } 3863 3864 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3865 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3866 /// handle the commuted versions of these patterns. 3867 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3868 ISD::CondCode Cond, const SDLoc &DL, 3869 DAGCombinerInfo &DCI) const { 3870 unsigned BOpcode = N0.getOpcode(); 3871 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3872 "Unexpected binop"); 3873 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3874 3875 // (X + Y) == X --> Y == 0 3876 // (X - Y) == X --> Y == 0 3877 // (X ^ Y) == X --> Y == 0 3878 SelectionDAG &DAG = DCI.DAG; 3879 EVT OpVT = N0.getValueType(); 3880 SDValue X = N0.getOperand(0); 3881 SDValue Y = N0.getOperand(1); 3882 if (X == N1) 3883 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3884 3885 if (Y != N1) 3886 return SDValue(); 3887 3888 // (X + Y) == Y --> X == 0 3889 // (X ^ Y) == Y --> X == 0 3890 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3891 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3892 3893 // The shift would not be valid if the operands are boolean (i1). 3894 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3895 return SDValue(); 3896 3897 // (X - Y) == Y --> X == Y << 1 3898 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3899 !DCI.isBeforeLegalize()); 3900 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3901 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3902 if (!DCI.isCalledByLegalizer()) 3903 DCI.AddToWorklist(YShl1.getNode()); 3904 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3905 } 3906 3907 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3908 SDValue N0, const APInt &C1, 3909 ISD::CondCode Cond, const SDLoc &dl, 3910 SelectionDAG &DAG) { 3911 // Look through truncs that don't change the value of a ctpop. 3912 // FIXME: Add vector support? Need to be careful with setcc result type below. 3913 SDValue CTPOP = N0; 3914 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3915 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3916 CTPOP = N0.getOperand(0); 3917 3918 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3919 return SDValue(); 3920 3921 EVT CTVT = CTPOP.getValueType(); 3922 SDValue CTOp = CTPOP.getOperand(0); 3923 3924 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3925 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3926 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3927 return SDValue(); 3928 3929 // (ctpop x) u< 2 -> (x & x-1) == 0 3930 // (ctpop x) u> 1 -> (x & x-1) != 0 3931 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3932 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3933 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3934 return SDValue(); 3935 if (C1 == 0 && (Cond == ISD::SETULT)) 3936 return SDValue(); // This is handled elsewhere. 3937 3938 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3939 3940 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3941 SDValue Result = CTOp; 3942 for (unsigned i = 0; i < Passes; i++) { 3943 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3944 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3945 } 3946 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3947 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3948 } 3949 3950 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3951 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3952 // For scalars, keep CTPOP if it is legal or custom. 3953 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3954 return SDValue(); 3955 // This is based on X86's custom lowering for CTPOP which produces more 3956 // instructions than the expansion here. 3957 3958 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3959 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3960 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3961 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3962 assert(CTVT.isInteger()); 3963 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3964 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3965 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3966 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3967 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3968 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3969 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3970 } 3971 3972 return SDValue(); 3973 } 3974 3975 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3976 ISD::CondCode Cond, const SDLoc &dl, 3977 SelectionDAG &DAG) { 3978 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3979 return SDValue(); 3980 3981 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3982 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3983 return SDValue(); 3984 3985 auto getRotateSource = [](SDValue X) { 3986 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3987 return X.getOperand(0); 3988 return SDValue(); 3989 }; 3990 3991 // Peek through a rotated value compared against 0 or -1: 3992 // (rot X, Y) == 0/-1 --> X == 0/-1 3993 // (rot X, Y) != 0/-1 --> X != 0/-1 3994 if (SDValue R = getRotateSource(N0)) 3995 return DAG.getSetCC(dl, VT, R, N1, Cond); 3996 3997 // Peek through an 'or' of a rotated value compared against 0: 3998 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3999 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4000 // 4001 // TODO: Add the 'and' with -1 sibling. 4002 // TODO: Recurse through a series of 'or' ops to find the rotate. 4003 EVT OpVT = N0.getValueType(); 4004 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4005 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4006 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4007 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4008 } 4009 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4010 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4011 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4012 } 4013 } 4014 4015 return SDValue(); 4016 } 4017 4018 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4019 ISD::CondCode Cond, const SDLoc &dl, 4020 SelectionDAG &DAG) { 4021 // If we are testing for all-bits-clear, we might be able to do that with 4022 // less shifting since bit-order does not matter. 4023 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4024 return SDValue(); 4025 4026 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4027 if (!C1 || !C1->isZero()) 4028 return SDValue(); 4029 4030 if (!N0.hasOneUse() || 4031 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4032 return SDValue(); 4033 4034 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4035 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4036 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4037 return SDValue(); 4038 4039 // Canonicalize fshr as fshl to reduce pattern-matching. 4040 unsigned ShAmt = ShAmtC->getZExtValue(); 4041 if (N0.getOpcode() == ISD::FSHR) 4042 ShAmt = BitWidth - ShAmt; 4043 4044 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4045 SDValue X, Y; 4046 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4047 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4048 return false; 4049 if (Or.getOperand(0) == Other) { 4050 X = Or.getOperand(0); 4051 Y = Or.getOperand(1); 4052 return true; 4053 } 4054 if (Or.getOperand(1) == Other) { 4055 X = Or.getOperand(1); 4056 Y = Or.getOperand(0); 4057 return true; 4058 } 4059 return false; 4060 }; 4061 4062 EVT OpVT = N0.getValueType(); 4063 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4064 SDValue F0 = N0.getOperand(0); 4065 SDValue F1 = N0.getOperand(1); 4066 if (matchOr(F0, F1)) { 4067 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4068 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4069 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4070 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4071 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4072 } 4073 if (matchOr(F1, F0)) { 4074 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4075 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4076 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4077 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4078 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4079 } 4080 4081 return SDValue(); 4082 } 4083 4084 /// Try to simplify a setcc built with the specified operands and cc. If it is 4085 /// unable to simplify it, return a null SDValue. 4086 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4087 ISD::CondCode Cond, bool foldBooleans, 4088 DAGCombinerInfo &DCI, 4089 const SDLoc &dl) const { 4090 SelectionDAG &DAG = DCI.DAG; 4091 const DataLayout &Layout = DAG.getDataLayout(); 4092 EVT OpVT = N0.getValueType(); 4093 4094 // Constant fold or commute setcc. 4095 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4096 return Fold; 4097 4098 bool N0ConstOrSplat = 4099 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4100 bool N1ConstOrSplat = 4101 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4102 4103 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4104 // TODO: Handle non-splat vector constants. All undef causes trouble. 4105 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4106 // infinite loop here when we encounter one. 4107 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4108 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4109 (DCI.isBeforeLegalizeOps() || 4110 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4111 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4112 4113 // If we have a subtract with the same 2 non-constant operands as this setcc 4114 // -- but in reverse order -- then try to commute the operands of this setcc 4115 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4116 // instruction on some targets. 4117 if (!N0ConstOrSplat && !N1ConstOrSplat && 4118 (DCI.isBeforeLegalizeOps() || 4119 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4120 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4121 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4122 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4123 4124 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4125 return V; 4126 4127 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4128 return V; 4129 4130 if (auto *N1C = isConstOrConstSplat(N1)) { 4131 const APInt &C1 = N1C->getAPIntValue(); 4132 4133 // Optimize some CTPOP cases. 4134 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4135 return V; 4136 4137 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4138 // equality comparison, then we're just comparing whether X itself is 4139 // zero. 4140 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4141 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4142 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4143 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4144 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4145 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4146 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4147 // (srl (ctlz x), 5) == 0 -> X != 0 4148 // (srl (ctlz x), 5) != 1 -> X != 0 4149 Cond = ISD::SETNE; 4150 } else { 4151 // (srl (ctlz x), 5) != 0 -> X == 0 4152 // (srl (ctlz x), 5) == 1 -> X == 0 4153 Cond = ISD::SETEQ; 4154 } 4155 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4156 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4157 Cond); 4158 } 4159 } 4160 } 4161 } 4162 4163 // FIXME: Support vectors. 4164 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4165 const APInt &C1 = N1C->getAPIntValue(); 4166 4167 // (zext x) == C --> x == (trunc C) 4168 // (sext x) == C --> x == (trunc C) 4169 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4170 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4171 unsigned MinBits = N0.getValueSizeInBits(); 4172 SDValue PreExt; 4173 bool Signed = false; 4174 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4175 // ZExt 4176 MinBits = N0->getOperand(0).getValueSizeInBits(); 4177 PreExt = N0->getOperand(0); 4178 } else if (N0->getOpcode() == ISD::AND) { 4179 // DAGCombine turns costly ZExts into ANDs 4180 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4181 if ((C->getAPIntValue()+1).isPowerOf2()) { 4182 MinBits = C->getAPIntValue().countTrailingOnes(); 4183 PreExt = N0->getOperand(0); 4184 } 4185 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4186 // SExt 4187 MinBits = N0->getOperand(0).getValueSizeInBits(); 4188 PreExt = N0->getOperand(0); 4189 Signed = true; 4190 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4191 // ZEXTLOAD / SEXTLOAD 4192 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4193 MinBits = LN0->getMemoryVT().getSizeInBits(); 4194 PreExt = N0; 4195 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4196 Signed = true; 4197 MinBits = LN0->getMemoryVT().getSizeInBits(); 4198 PreExt = N0; 4199 } 4200 } 4201 4202 // Figure out how many bits we need to preserve this constant. 4203 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4204 4205 // Make sure we're not losing bits from the constant. 4206 if (MinBits > 0 && 4207 MinBits < C1.getBitWidth() && 4208 MinBits >= ReqdBits) { 4209 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4210 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4211 // Will get folded away. 4212 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4213 if (MinBits == 1 && C1 == 1) 4214 // Invert the condition. 4215 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4216 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4217 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4218 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4219 } 4220 4221 // If truncating the setcc operands is not desirable, we can still 4222 // simplify the expression in some cases: 4223 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4224 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4225 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4226 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4227 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4228 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4229 SDValue TopSetCC = N0->getOperand(0); 4230 unsigned N0Opc = N0->getOpcode(); 4231 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4232 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4233 TopSetCC.getOpcode() == ISD::SETCC && 4234 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4235 (isConstFalseVal(N1) || 4236 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4237 4238 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4239 (!N1C->isZero() && Cond == ISD::SETNE); 4240 4241 if (!Inverse) 4242 return TopSetCC; 4243 4244 ISD::CondCode InvCond = ISD::getSetCCInverse( 4245 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4246 TopSetCC.getOperand(0).getValueType()); 4247 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4248 TopSetCC.getOperand(1), 4249 InvCond); 4250 } 4251 } 4252 } 4253 4254 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4255 // equality or unsigned, and all 1 bits of the const are in the same 4256 // partial word, see if we can shorten the load. 4257 if (DCI.isBeforeLegalize() && 4258 !ISD::isSignedIntSetCC(Cond) && 4259 N0.getOpcode() == ISD::AND && C1 == 0 && 4260 N0.getNode()->hasOneUse() && 4261 isa<LoadSDNode>(N0.getOperand(0)) && 4262 N0.getOperand(0).getNode()->hasOneUse() && 4263 isa<ConstantSDNode>(N0.getOperand(1))) { 4264 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4265 APInt bestMask; 4266 unsigned bestWidth = 0, bestOffset = 0; 4267 if (Lod->isSimple() && Lod->isUnindexed()) { 4268 unsigned origWidth = N0.getValueSizeInBits(); 4269 unsigned maskWidth = origWidth; 4270 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4271 // 8 bits, but have to be careful... 4272 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4273 origWidth = Lod->getMemoryVT().getSizeInBits(); 4274 const APInt &Mask = N0.getConstantOperandAPInt(1); 4275 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4276 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4277 for (unsigned offset=0; offset<origWidth/width; offset++) { 4278 if (Mask.isSubsetOf(newMask)) { 4279 if (Layout.isLittleEndian()) 4280 bestOffset = (uint64_t)offset * (width/8); 4281 else 4282 bestOffset = (origWidth/width - offset - 1) * (width/8); 4283 bestMask = Mask.lshr(offset * (width/8) * 8); 4284 bestWidth = width; 4285 break; 4286 } 4287 newMask <<= width; 4288 } 4289 } 4290 } 4291 if (bestWidth) { 4292 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4293 if (newVT.isRound() && 4294 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4295 SDValue Ptr = Lod->getBasePtr(); 4296 if (bestOffset != 0) 4297 Ptr = 4298 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4299 SDValue NewLoad = 4300 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4301 Lod->getPointerInfo().getWithOffset(bestOffset), 4302 Lod->getOriginalAlign()); 4303 return DAG.getSetCC(dl, VT, 4304 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4305 DAG.getConstant(bestMask.trunc(bestWidth), 4306 dl, newVT)), 4307 DAG.getConstant(0LL, dl, newVT), Cond); 4308 } 4309 } 4310 } 4311 4312 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4313 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4314 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4315 4316 // If the comparison constant has bits in the upper part, the 4317 // zero-extended value could never match. 4318 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4319 C1.getBitWidth() - InSize))) { 4320 switch (Cond) { 4321 case ISD::SETUGT: 4322 case ISD::SETUGE: 4323 case ISD::SETEQ: 4324 return DAG.getConstant(0, dl, VT); 4325 case ISD::SETULT: 4326 case ISD::SETULE: 4327 case ISD::SETNE: 4328 return DAG.getConstant(1, dl, VT); 4329 case ISD::SETGT: 4330 case ISD::SETGE: 4331 // True if the sign bit of C1 is set. 4332 return DAG.getConstant(C1.isNegative(), dl, VT); 4333 case ISD::SETLT: 4334 case ISD::SETLE: 4335 // True if the sign bit of C1 isn't set. 4336 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4337 default: 4338 break; 4339 } 4340 } 4341 4342 // Otherwise, we can perform the comparison with the low bits. 4343 switch (Cond) { 4344 case ISD::SETEQ: 4345 case ISD::SETNE: 4346 case ISD::SETUGT: 4347 case ISD::SETUGE: 4348 case ISD::SETULT: 4349 case ISD::SETULE: { 4350 EVT newVT = N0.getOperand(0).getValueType(); 4351 if (DCI.isBeforeLegalizeOps() || 4352 (isOperationLegal(ISD::SETCC, newVT) && 4353 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4354 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4355 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4356 4357 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4358 NewConst, Cond); 4359 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4360 } 4361 break; 4362 } 4363 default: 4364 break; // todo, be more careful with signed comparisons 4365 } 4366 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4367 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4368 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4369 OpVT)) { 4370 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4371 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4372 EVT ExtDstTy = N0.getValueType(); 4373 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4374 4375 // If the constant doesn't fit into the number of bits for the source of 4376 // the sign extension, it is impossible for both sides to be equal. 4377 if (C1.getMinSignedBits() > ExtSrcTyBits) 4378 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4379 4380 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4381 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4382 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4383 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4384 DAG.getConstant(Imm, dl, ExtDstTy)); 4385 if (!DCI.isCalledByLegalizer()) 4386 DCI.AddToWorklist(ZextOp.getNode()); 4387 // Otherwise, make this a use of a zext. 4388 return DAG.getSetCC(dl, VT, ZextOp, 4389 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4390 } else if ((N1C->isZero() || N1C->isOne()) && 4391 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4392 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4393 if (N0.getOpcode() == ISD::SETCC && 4394 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4395 (N0.getValueType() == MVT::i1 || 4396 getBooleanContents(N0.getOperand(0).getValueType()) == 4397 ZeroOrOneBooleanContent)) { 4398 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4399 if (TrueWhenTrue) 4400 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4401 // Invert the condition. 4402 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4403 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4404 if (DCI.isBeforeLegalizeOps() || 4405 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4406 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4407 } 4408 4409 if ((N0.getOpcode() == ISD::XOR || 4410 (N0.getOpcode() == ISD::AND && 4411 N0.getOperand(0).getOpcode() == ISD::XOR && 4412 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4413 isOneConstant(N0.getOperand(1))) { 4414 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4415 // can only do this if the top bits are known zero. 4416 unsigned BitWidth = N0.getValueSizeInBits(); 4417 if (DAG.MaskedValueIsZero(N0, 4418 APInt::getHighBitsSet(BitWidth, 4419 BitWidth-1))) { 4420 // Okay, get the un-inverted input value. 4421 SDValue Val; 4422 if (N0.getOpcode() == ISD::XOR) { 4423 Val = N0.getOperand(0); 4424 } else { 4425 assert(N0.getOpcode() == ISD::AND && 4426 N0.getOperand(0).getOpcode() == ISD::XOR); 4427 // ((X^1)&1)^1 -> X & 1 4428 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4429 N0.getOperand(0).getOperand(0), 4430 N0.getOperand(1)); 4431 } 4432 4433 return DAG.getSetCC(dl, VT, Val, N1, 4434 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4435 } 4436 } else if (N1C->isOne()) { 4437 SDValue Op0 = N0; 4438 if (Op0.getOpcode() == ISD::TRUNCATE) 4439 Op0 = Op0.getOperand(0); 4440 4441 if ((Op0.getOpcode() == ISD::XOR) && 4442 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4443 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4444 SDValue XorLHS = Op0.getOperand(0); 4445 SDValue XorRHS = Op0.getOperand(1); 4446 // Ensure that the input setccs return an i1 type or 0/1 value. 4447 if (Op0.getValueType() == MVT::i1 || 4448 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4449 ZeroOrOneBooleanContent && 4450 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4451 ZeroOrOneBooleanContent)) { 4452 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4453 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4454 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4455 } 4456 } 4457 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4458 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4459 if (Op0.getValueType().bitsGT(VT)) 4460 Op0 = DAG.getNode(ISD::AND, dl, VT, 4461 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4462 DAG.getConstant(1, dl, VT)); 4463 else if (Op0.getValueType().bitsLT(VT)) 4464 Op0 = DAG.getNode(ISD::AND, dl, VT, 4465 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4466 DAG.getConstant(1, dl, VT)); 4467 4468 return DAG.getSetCC(dl, VT, Op0, 4469 DAG.getConstant(0, dl, Op0.getValueType()), 4470 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4471 } 4472 if (Op0.getOpcode() == ISD::AssertZext && 4473 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4474 return DAG.getSetCC(dl, VT, Op0, 4475 DAG.getConstant(0, dl, Op0.getValueType()), 4476 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4477 } 4478 } 4479 4480 // Given: 4481 // icmp eq/ne (urem %x, %y), 0 4482 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4483 // icmp eq/ne %x, 0 4484 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4485 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4486 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4487 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4488 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4489 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4490 } 4491 4492 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4493 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4494 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4495 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4496 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4497 N1C && N1C->isAllOnes()) { 4498 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4499 DAG.getConstant(0, dl, OpVT), 4500 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4501 } 4502 4503 if (SDValue V = 4504 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4505 return V; 4506 } 4507 4508 // These simplifications apply to splat vectors as well. 4509 // TODO: Handle more splat vector cases. 4510 if (auto *N1C = isConstOrConstSplat(N1)) { 4511 const APInt &C1 = N1C->getAPIntValue(); 4512 4513 APInt MinVal, MaxVal; 4514 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4515 if (ISD::isSignedIntSetCC(Cond)) { 4516 MinVal = APInt::getSignedMinValue(OperandBitSize); 4517 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4518 } else { 4519 MinVal = APInt::getMinValue(OperandBitSize); 4520 MaxVal = APInt::getMaxValue(OperandBitSize); 4521 } 4522 4523 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4524 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4525 // X >= MIN --> true 4526 if (C1 == MinVal) 4527 return DAG.getBoolConstant(true, dl, VT, OpVT); 4528 4529 if (!VT.isVector()) { // TODO: Support this for vectors. 4530 // X >= C0 --> X > (C0 - 1) 4531 APInt C = C1 - 1; 4532 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4533 if ((DCI.isBeforeLegalizeOps() || 4534 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4535 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4536 isLegalICmpImmediate(C.getSExtValue())))) { 4537 return DAG.getSetCC(dl, VT, N0, 4538 DAG.getConstant(C, dl, N1.getValueType()), 4539 NewCC); 4540 } 4541 } 4542 } 4543 4544 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4545 // X <= MAX --> true 4546 if (C1 == MaxVal) 4547 return DAG.getBoolConstant(true, dl, VT, OpVT); 4548 4549 // X <= C0 --> X < (C0 + 1) 4550 if (!VT.isVector()) { // TODO: Support this for vectors. 4551 APInt C = C1 + 1; 4552 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4553 if ((DCI.isBeforeLegalizeOps() || 4554 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4555 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4556 isLegalICmpImmediate(C.getSExtValue())))) { 4557 return DAG.getSetCC(dl, VT, N0, 4558 DAG.getConstant(C, dl, N1.getValueType()), 4559 NewCC); 4560 } 4561 } 4562 } 4563 4564 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4565 if (C1 == MinVal) 4566 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4567 4568 // TODO: Support this for vectors after legalize ops. 4569 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4570 // Canonicalize setlt X, Max --> setne X, Max 4571 if (C1 == MaxVal) 4572 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4573 4574 // If we have setult X, 1, turn it into seteq X, 0 4575 if (C1 == MinVal+1) 4576 return DAG.getSetCC(dl, VT, N0, 4577 DAG.getConstant(MinVal, dl, N0.getValueType()), 4578 ISD::SETEQ); 4579 } 4580 } 4581 4582 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4583 if (C1 == MaxVal) 4584 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4585 4586 // TODO: Support this for vectors after legalize ops. 4587 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4588 // Canonicalize setgt X, Min --> setne X, Min 4589 if (C1 == MinVal) 4590 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4591 4592 // If we have setugt X, Max-1, turn it into seteq X, Max 4593 if (C1 == MaxVal-1) 4594 return DAG.getSetCC(dl, VT, N0, 4595 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4596 ISD::SETEQ); 4597 } 4598 } 4599 4600 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4601 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4602 if (C1.isZero()) 4603 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4604 VT, N0, N1, Cond, DCI, dl)) 4605 return CC; 4606 4607 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4608 // For example, when high 32-bits of i64 X are known clear: 4609 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4610 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4611 bool CmpZero = N1C->getAPIntValue().isZero(); 4612 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4613 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4614 // Match or(lo,shl(hi,bw/2)) pattern. 4615 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4616 unsigned EltBits = V.getScalarValueSizeInBits(); 4617 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4618 return false; 4619 SDValue LHS = V.getOperand(0); 4620 SDValue RHS = V.getOperand(1); 4621 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4622 // Unshifted element must have zero upperbits. 4623 if (RHS.getOpcode() == ISD::SHL && 4624 isa<ConstantSDNode>(RHS.getOperand(1)) && 4625 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4626 DAG.MaskedValueIsZero(LHS, HiBits)) { 4627 Lo = LHS; 4628 Hi = RHS.getOperand(0); 4629 return true; 4630 } 4631 if (LHS.getOpcode() == ISD::SHL && 4632 isa<ConstantSDNode>(LHS.getOperand(1)) && 4633 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4634 DAG.MaskedValueIsZero(RHS, HiBits)) { 4635 Lo = RHS; 4636 Hi = LHS.getOperand(0); 4637 return true; 4638 } 4639 return false; 4640 }; 4641 4642 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4643 unsigned EltBits = N0.getScalarValueSizeInBits(); 4644 unsigned HalfBits = EltBits / 2; 4645 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4646 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4647 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4648 SDValue NewN0 = 4649 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4650 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4651 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4652 }; 4653 4654 SDValue Lo, Hi; 4655 if (IsConcat(N0, Lo, Hi)) 4656 return MergeConcat(Lo, Hi); 4657 4658 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4659 SDValue Lo0, Lo1, Hi0, Hi1; 4660 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4661 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4662 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4663 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4664 } 4665 } 4666 } 4667 } 4668 4669 // If we have "setcc X, C0", check to see if we can shrink the immediate 4670 // by changing cc. 4671 // TODO: Support this for vectors after legalize ops. 4672 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4673 // SETUGT X, SINTMAX -> SETLT X, 0 4674 // SETUGE X, SINTMIN -> SETLT X, 0 4675 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4676 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4677 return DAG.getSetCC(dl, VT, N0, 4678 DAG.getConstant(0, dl, N1.getValueType()), 4679 ISD::SETLT); 4680 4681 // SETULT X, SINTMIN -> SETGT X, -1 4682 // SETULE X, SINTMAX -> SETGT X, -1 4683 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4684 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4685 return DAG.getSetCC(dl, VT, N0, 4686 DAG.getAllOnesConstant(dl, N1.getValueType()), 4687 ISD::SETGT); 4688 } 4689 } 4690 4691 // Back to non-vector simplifications. 4692 // TODO: Can we do these for vector splats? 4693 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 const APInt &C1 = N1C->getAPIntValue(); 4696 EVT ShValTy = N0.getValueType(); 4697 4698 // Fold bit comparisons when we can. This will result in an 4699 // incorrect value when boolean false is negative one, unless 4700 // the bitsize is 1 in which case the false value is the same 4701 // in practice regardless of the representation. 4702 if ((VT.getSizeInBits() == 1 || 4703 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4704 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4705 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4706 N0.getOpcode() == ISD::AND) { 4707 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4708 EVT ShiftTy = 4709 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4710 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4711 // Perform the xform if the AND RHS is a single bit. 4712 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4713 if (AndRHS->getAPIntValue().isPowerOf2() && 4714 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4715 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4716 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4717 DAG.getConstant(ShCt, dl, ShiftTy))); 4718 } 4719 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4720 // (X & 8) == 8 --> (X & 8) >> 3 4721 // Perform the xform if C1 is a single bit. 4722 unsigned ShCt = C1.logBase2(); 4723 if (C1.isPowerOf2() && 4724 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4725 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4726 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4727 DAG.getConstant(ShCt, dl, ShiftTy))); 4728 } 4729 } 4730 } 4731 } 4732 4733 if (C1.getMinSignedBits() <= 64 && 4734 !isLegalICmpImmediate(C1.getSExtValue())) { 4735 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4736 // (X & -256) == 256 -> (X >> 8) == 1 4737 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4738 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4739 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4740 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4741 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4742 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4743 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4744 SDValue Shift = 4745 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4746 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4747 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4748 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4749 } 4750 } 4751 } 4752 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4753 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4754 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4755 // X < 0x100000000 -> (X >> 32) < 1 4756 // X >= 0x100000000 -> (X >> 32) >= 1 4757 // X <= 0x0ffffffff -> (X >> 32) < 1 4758 // X > 0x0ffffffff -> (X >> 32) >= 1 4759 unsigned ShiftBits; 4760 APInt NewC = C1; 4761 ISD::CondCode NewCond = Cond; 4762 if (AdjOne) { 4763 ShiftBits = C1.countTrailingOnes(); 4764 NewC = NewC + 1; 4765 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4766 } else { 4767 ShiftBits = C1.countTrailingZeros(); 4768 } 4769 NewC.lshrInPlace(ShiftBits); 4770 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4771 isLegalICmpImmediate(NewC.getSExtValue()) && 4772 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4773 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4774 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4775 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4776 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4777 } 4778 } 4779 } 4780 } 4781 4782 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4783 auto *CFP = cast<ConstantFPSDNode>(N1); 4784 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4785 4786 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4787 // constant if knowing that the operand is non-nan is enough. We prefer to 4788 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4789 // materialize 0.0. 4790 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4791 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4792 4793 // setcc (fneg x), C -> setcc swap(pred) x, -C 4794 if (N0.getOpcode() == ISD::FNEG) { 4795 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4796 if (DCI.isBeforeLegalizeOps() || 4797 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4798 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4799 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4800 } 4801 } 4802 4803 // If the condition is not legal, see if we can find an equivalent one 4804 // which is legal. 4805 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4806 // If the comparison was an awkward floating-point == or != and one of 4807 // the comparison operands is infinity or negative infinity, convert the 4808 // condition to a less-awkward <= or >=. 4809 if (CFP->getValueAPF().isInfinity()) { 4810 bool IsNegInf = CFP->getValueAPF().isNegative(); 4811 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4812 switch (Cond) { 4813 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4814 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4815 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4816 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4817 default: break; 4818 } 4819 if (NewCond != ISD::SETCC_INVALID && 4820 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4821 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4822 } 4823 } 4824 } 4825 4826 if (N0 == N1) { 4827 // The sext(setcc()) => setcc() optimization relies on the appropriate 4828 // constant being emitted. 4829 assert(!N0.getValueType().isInteger() && 4830 "Integer types should be handled by FoldSetCC"); 4831 4832 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4833 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4834 if (UOF == 2) // FP operators that are undefined on NaNs. 4835 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4836 if (UOF == unsigned(EqTrue)) 4837 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4838 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4839 // if it is not already. 4840 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4841 if (NewCond != Cond && 4842 (DCI.isBeforeLegalizeOps() || 4843 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4844 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4845 } 4846 4847 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4848 N0.getValueType().isInteger()) { 4849 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4850 N0.getOpcode() == ISD::XOR) { 4851 // Simplify (X+Y) == (X+Z) --> Y == Z 4852 if (N0.getOpcode() == N1.getOpcode()) { 4853 if (N0.getOperand(0) == N1.getOperand(0)) 4854 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4855 if (N0.getOperand(1) == N1.getOperand(1)) 4856 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4857 if (isCommutativeBinOp(N0.getOpcode())) { 4858 // If X op Y == Y op X, try other combinations. 4859 if (N0.getOperand(0) == N1.getOperand(1)) 4860 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4861 Cond); 4862 if (N0.getOperand(1) == N1.getOperand(0)) 4863 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4864 Cond); 4865 } 4866 } 4867 4868 // If RHS is a legal immediate value for a compare instruction, we need 4869 // to be careful about increasing register pressure needlessly. 4870 bool LegalRHSImm = false; 4871 4872 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4873 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4874 // Turn (X+C1) == C2 --> X == C2-C1 4875 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4876 return DAG.getSetCC( 4877 dl, VT, N0.getOperand(0), 4878 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4879 dl, N0.getValueType()), 4880 Cond); 4881 4882 // Turn (X^C1) == C2 --> X == C1^C2 4883 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4884 return DAG.getSetCC( 4885 dl, VT, N0.getOperand(0), 4886 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4887 dl, N0.getValueType()), 4888 Cond); 4889 } 4890 4891 // Turn (C1-X) == C2 --> X == C1-C2 4892 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4893 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4894 return DAG.getSetCC( 4895 dl, VT, N0.getOperand(1), 4896 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4897 dl, N0.getValueType()), 4898 Cond); 4899 4900 // Could RHSC fold directly into a compare? 4901 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4902 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4903 } 4904 4905 // (X+Y) == X --> Y == 0 and similar folds. 4906 // Don't do this if X is an immediate that can fold into a cmp 4907 // instruction and X+Y has other uses. It could be an induction variable 4908 // chain, and the transform would increase register pressure. 4909 if (!LegalRHSImm || N0.hasOneUse()) 4910 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4911 return V; 4912 } 4913 4914 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4915 N1.getOpcode() == ISD::XOR) 4916 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4917 return V; 4918 4919 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4920 return V; 4921 } 4922 4923 // Fold remainder of division by a constant. 4924 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4925 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4926 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4927 4928 // When division is cheap or optimizing for minimum size, 4929 // fall through to DIVREM creation by skipping this fold. 4930 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4931 if (N0.getOpcode() == ISD::UREM) { 4932 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4933 return Folded; 4934 } else if (N0.getOpcode() == ISD::SREM) { 4935 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4936 return Folded; 4937 } 4938 } 4939 } 4940 4941 // Fold away ALL boolean setcc's. 4942 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4943 SDValue Temp; 4944 switch (Cond) { 4945 default: llvm_unreachable("Unknown integer setcc!"); 4946 case ISD::SETEQ: // X == Y -> ~(X^Y) 4947 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4948 N0 = DAG.getNOT(dl, Temp, OpVT); 4949 if (!DCI.isCalledByLegalizer()) 4950 DCI.AddToWorklist(Temp.getNode()); 4951 break; 4952 case ISD::SETNE: // X != Y --> (X^Y) 4953 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4954 break; 4955 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4956 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4957 Temp = DAG.getNOT(dl, N0, OpVT); 4958 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4959 if (!DCI.isCalledByLegalizer()) 4960 DCI.AddToWorklist(Temp.getNode()); 4961 break; 4962 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4963 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4964 Temp = DAG.getNOT(dl, N1, OpVT); 4965 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4966 if (!DCI.isCalledByLegalizer()) 4967 DCI.AddToWorklist(Temp.getNode()); 4968 break; 4969 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4970 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4971 Temp = DAG.getNOT(dl, N0, OpVT); 4972 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4973 if (!DCI.isCalledByLegalizer()) 4974 DCI.AddToWorklist(Temp.getNode()); 4975 break; 4976 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4977 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4978 Temp = DAG.getNOT(dl, N1, OpVT); 4979 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4980 break; 4981 } 4982 if (VT.getScalarType() != MVT::i1) { 4983 if (!DCI.isCalledByLegalizer()) 4984 DCI.AddToWorklist(N0.getNode()); 4985 // FIXME: If running after legalize, we probably can't do this. 4986 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4987 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4988 } 4989 return N0; 4990 } 4991 4992 // Could not fold it. 4993 return SDValue(); 4994 } 4995 4996 /// Returns true (and the GlobalValue and the offset) if the node is a 4997 /// GlobalAddress + offset. 4998 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4999 int64_t &Offset) const { 5000 5001 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5002 5003 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5004 GA = GASD->getGlobal(); 5005 Offset += GASD->getOffset(); 5006 return true; 5007 } 5008 5009 if (N->getOpcode() == ISD::ADD) { 5010 SDValue N1 = N->getOperand(0); 5011 SDValue N2 = N->getOperand(1); 5012 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5013 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5014 Offset += V->getSExtValue(); 5015 return true; 5016 } 5017 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5018 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5019 Offset += V->getSExtValue(); 5020 return true; 5021 } 5022 } 5023 } 5024 5025 return false; 5026 } 5027 5028 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5029 DAGCombinerInfo &DCI) const { 5030 // Default implementation: no optimization. 5031 return SDValue(); 5032 } 5033 5034 //===----------------------------------------------------------------------===// 5035 // Inline Assembler Implementation Methods 5036 //===----------------------------------------------------------------------===// 5037 5038 TargetLowering::ConstraintType 5039 TargetLowering::getConstraintType(StringRef Constraint) const { 5040 unsigned S = Constraint.size(); 5041 5042 if (S == 1) { 5043 switch (Constraint[0]) { 5044 default: break; 5045 case 'r': 5046 return C_RegisterClass; 5047 case 'm': // memory 5048 case 'o': // offsetable 5049 case 'V': // not offsetable 5050 return C_Memory; 5051 case 'p': // Address. 5052 return C_Address; 5053 case 'n': // Simple Integer 5054 case 'E': // Floating Point Constant 5055 case 'F': // Floating Point Constant 5056 return C_Immediate; 5057 case 'i': // Simple Integer or Relocatable Constant 5058 case 's': // Relocatable Constant 5059 case 'X': // Allow ANY value. 5060 case 'I': // Target registers. 5061 case 'J': 5062 case 'K': 5063 case 'L': 5064 case 'M': 5065 case 'N': 5066 case 'O': 5067 case 'P': 5068 case '<': 5069 case '>': 5070 return C_Other; 5071 } 5072 } 5073 5074 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5075 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5076 return C_Memory; 5077 return C_Register; 5078 } 5079 return C_Unknown; 5080 } 5081 5082 /// Try to replace an X constraint, which matches anything, with another that 5083 /// has more specific requirements based on the type of the corresponding 5084 /// operand. 5085 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5086 if (ConstraintVT.isInteger()) 5087 return "r"; 5088 if (ConstraintVT.isFloatingPoint()) 5089 return "f"; // works for many targets 5090 return nullptr; 5091 } 5092 5093 SDValue TargetLowering::LowerAsmOutputForConstraint( 5094 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5095 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5096 return SDValue(); 5097 } 5098 5099 /// Lower the specified operand into the Ops vector. 5100 /// If it is invalid, don't add anything to Ops. 5101 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5102 std::string &Constraint, 5103 std::vector<SDValue> &Ops, 5104 SelectionDAG &DAG) const { 5105 5106 if (Constraint.length() > 1) return; 5107 5108 char ConstraintLetter = Constraint[0]; 5109 switch (ConstraintLetter) { 5110 default: break; 5111 case 'X': // Allows any operand 5112 case 'i': // Simple Integer or Relocatable Constant 5113 case 'n': // Simple Integer 5114 case 's': { // Relocatable Constant 5115 5116 ConstantSDNode *C; 5117 uint64_t Offset = 0; 5118 5119 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5120 // etc., since getelementpointer is variadic. We can't use 5121 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5122 // while in this case the GA may be furthest from the root node which is 5123 // likely an ISD::ADD. 5124 while (true) { 5125 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5126 // gcc prints these as sign extended. Sign extend value to 64 bits 5127 // now; without this it would get ZExt'd later in 5128 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5129 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5130 BooleanContent BCont = getBooleanContents(MVT::i64); 5131 ISD::NodeType ExtOpc = 5132 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5133 int64_t ExtVal = 5134 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5135 Ops.push_back( 5136 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5137 return; 5138 } 5139 if (ConstraintLetter != 'n') { 5140 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5141 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5142 GA->getValueType(0), 5143 Offset + GA->getOffset())); 5144 return; 5145 } 5146 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5147 Ops.push_back(DAG.getTargetBlockAddress( 5148 BA->getBlockAddress(), BA->getValueType(0), 5149 Offset + BA->getOffset(), BA->getTargetFlags())); 5150 return; 5151 } 5152 if (isa<BasicBlockSDNode>(Op)) { 5153 Ops.push_back(Op); 5154 return; 5155 } 5156 } 5157 const unsigned OpCode = Op.getOpcode(); 5158 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5159 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5160 Op = Op.getOperand(1); 5161 // Subtraction is not commutative. 5162 else if (OpCode == ISD::ADD && 5163 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5164 Op = Op.getOperand(0); 5165 else 5166 return; 5167 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5168 continue; 5169 } 5170 return; 5171 } 5172 break; 5173 } 5174 } 5175 } 5176 5177 std::pair<unsigned, const TargetRegisterClass *> 5178 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5179 StringRef Constraint, 5180 MVT VT) const { 5181 if (Constraint.empty() || Constraint[0] != '{') 5182 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5183 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5184 5185 // Remove the braces from around the name. 5186 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5187 5188 std::pair<unsigned, const TargetRegisterClass *> R = 5189 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5190 5191 // Figure out which register class contains this reg. 5192 for (const TargetRegisterClass *RC : RI->regclasses()) { 5193 // If none of the value types for this register class are valid, we 5194 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5195 if (!isLegalRC(*RI, *RC)) 5196 continue; 5197 5198 for (const MCPhysReg &PR : *RC) { 5199 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5200 std::pair<unsigned, const TargetRegisterClass *> S = 5201 std::make_pair(PR, RC); 5202 5203 // If this register class has the requested value type, return it, 5204 // otherwise keep searching and return the first class found 5205 // if no other is found which explicitly has the requested type. 5206 if (RI->isTypeLegalForClass(*RC, VT)) 5207 return S; 5208 if (!R.second) 5209 R = S; 5210 } 5211 } 5212 } 5213 5214 return R; 5215 } 5216 5217 //===----------------------------------------------------------------------===// 5218 // Constraint Selection. 5219 5220 /// Return true of this is an input operand that is a matching constraint like 5221 /// "4". 5222 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5223 assert(!ConstraintCode.empty() && "No known constraint!"); 5224 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5225 } 5226 5227 /// If this is an input matching constraint, this method returns the output 5228 /// operand it matches. 5229 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5230 assert(!ConstraintCode.empty() && "No known constraint!"); 5231 return atoi(ConstraintCode.c_str()); 5232 } 5233 5234 /// Split up the constraint string from the inline assembly value into the 5235 /// specific constraints and their prefixes, and also tie in the associated 5236 /// operand values. 5237 /// If this returns an empty vector, and if the constraint string itself 5238 /// isn't empty, there was an error parsing. 5239 TargetLowering::AsmOperandInfoVector 5240 TargetLowering::ParseConstraints(const DataLayout &DL, 5241 const TargetRegisterInfo *TRI, 5242 const CallBase &Call) const { 5243 /// Information about all of the constraints. 5244 AsmOperandInfoVector ConstraintOperands; 5245 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5246 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5247 5248 // Do a prepass over the constraints, canonicalizing them, and building up the 5249 // ConstraintOperands list. 5250 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5251 unsigned ResNo = 0; // ResNo - The result number of the next output. 5252 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5253 5254 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5255 ConstraintOperands.emplace_back(std::move(CI)); 5256 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5257 5258 // Update multiple alternative constraint count. 5259 if (OpInfo.multipleAlternatives.size() > maCount) 5260 maCount = OpInfo.multipleAlternatives.size(); 5261 5262 OpInfo.ConstraintVT = MVT::Other; 5263 5264 // Compute the value type for each operand. 5265 switch (OpInfo.Type) { 5266 case InlineAsm::isOutput: 5267 // Indirect outputs just consume an argument. 5268 if (OpInfo.isIndirect) { 5269 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5270 break; 5271 } 5272 5273 // The return value of the call is this value. As such, there is no 5274 // corresponding argument. 5275 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5276 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5277 OpInfo.ConstraintVT = 5278 getSimpleValueType(DL, STy->getElementType(ResNo)); 5279 } else { 5280 assert(ResNo == 0 && "Asm only has one result!"); 5281 OpInfo.ConstraintVT = 5282 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5283 } 5284 ++ResNo; 5285 break; 5286 case InlineAsm::isInput: 5287 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5288 break; 5289 case InlineAsm::isLabel: 5290 OpInfo.CallOperandVal = 5291 cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo); 5292 OpInfo.ConstraintVT = 5293 getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType()) 5294 .getSimpleVT(); 5295 ++LabelNo; 5296 continue; 5297 case InlineAsm::isClobber: 5298 // Nothing to do. 5299 break; 5300 } 5301 5302 if (OpInfo.CallOperandVal) { 5303 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5304 if (OpInfo.isIndirect) { 5305 OpTy = Call.getParamElementType(ArgNo); 5306 assert(OpTy && "Indirect operand must have elementtype attribute"); 5307 } 5308 5309 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5310 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5311 if (STy->getNumElements() == 1) 5312 OpTy = STy->getElementType(0); 5313 5314 // If OpTy is not a single value, it may be a struct/union that we 5315 // can tile with integers. 5316 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5317 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5318 switch (BitSize) { 5319 default: break; 5320 case 1: 5321 case 8: 5322 case 16: 5323 case 32: 5324 case 64: 5325 case 128: 5326 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5327 break; 5328 } 5329 } 5330 5331 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5332 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5333 ArgNo++; 5334 } 5335 } 5336 5337 // If we have multiple alternative constraints, select the best alternative. 5338 if (!ConstraintOperands.empty()) { 5339 if (maCount) { 5340 unsigned bestMAIndex = 0; 5341 int bestWeight = -1; 5342 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5343 int weight = -1; 5344 unsigned maIndex; 5345 // Compute the sums of the weights for each alternative, keeping track 5346 // of the best (highest weight) one so far. 5347 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5348 int weightSum = 0; 5349 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5350 cIndex != eIndex; ++cIndex) { 5351 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5352 if (OpInfo.Type == InlineAsm::isClobber) 5353 continue; 5354 5355 // If this is an output operand with a matching input operand, 5356 // look up the matching input. If their types mismatch, e.g. one 5357 // is an integer, the other is floating point, or their sizes are 5358 // different, flag it as an maCantMatch. 5359 if (OpInfo.hasMatchingInput()) { 5360 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5361 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5362 if ((OpInfo.ConstraintVT.isInteger() != 5363 Input.ConstraintVT.isInteger()) || 5364 (OpInfo.ConstraintVT.getSizeInBits() != 5365 Input.ConstraintVT.getSizeInBits())) { 5366 weightSum = -1; // Can't match. 5367 break; 5368 } 5369 } 5370 } 5371 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5372 if (weight == -1) { 5373 weightSum = -1; 5374 break; 5375 } 5376 weightSum += weight; 5377 } 5378 // Update best. 5379 if (weightSum > bestWeight) { 5380 bestWeight = weightSum; 5381 bestMAIndex = maIndex; 5382 } 5383 } 5384 5385 // Now select chosen alternative in each constraint. 5386 for (AsmOperandInfo &cInfo : ConstraintOperands) 5387 if (cInfo.Type != InlineAsm::isClobber) 5388 cInfo.selectAlternative(bestMAIndex); 5389 } 5390 } 5391 5392 // Check and hook up tied operands, choose constraint code to use. 5393 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5394 cIndex != eIndex; ++cIndex) { 5395 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5396 5397 // If this is an output operand with a matching input operand, look up the 5398 // matching input. If their types mismatch, e.g. one is an integer, the 5399 // other is floating point, or their sizes are different, flag it as an 5400 // error. 5401 if (OpInfo.hasMatchingInput()) { 5402 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5403 5404 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5405 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5406 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5407 OpInfo.ConstraintVT); 5408 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5409 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5410 Input.ConstraintVT); 5411 if ((OpInfo.ConstraintVT.isInteger() != 5412 Input.ConstraintVT.isInteger()) || 5413 (MatchRC.second != InputRC.second)) { 5414 report_fatal_error("Unsupported asm: input constraint" 5415 " with a matching output constraint of" 5416 " incompatible type!"); 5417 } 5418 } 5419 } 5420 } 5421 5422 return ConstraintOperands; 5423 } 5424 5425 /// Return an integer indicating how general CT is. 5426 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5427 switch (CT) { 5428 case TargetLowering::C_Immediate: 5429 case TargetLowering::C_Other: 5430 case TargetLowering::C_Unknown: 5431 return 0; 5432 case TargetLowering::C_Register: 5433 return 1; 5434 case TargetLowering::C_RegisterClass: 5435 return 2; 5436 case TargetLowering::C_Memory: 5437 case TargetLowering::C_Address: 5438 return 3; 5439 } 5440 llvm_unreachable("Invalid constraint type"); 5441 } 5442 5443 /// Examine constraint type and operand type and determine a weight value. 5444 /// This object must already have been set up with the operand type 5445 /// and the current alternative constraint selected. 5446 TargetLowering::ConstraintWeight 5447 TargetLowering::getMultipleConstraintMatchWeight( 5448 AsmOperandInfo &info, int maIndex) const { 5449 InlineAsm::ConstraintCodeVector *rCodes; 5450 if (maIndex >= (int)info.multipleAlternatives.size()) 5451 rCodes = &info.Codes; 5452 else 5453 rCodes = &info.multipleAlternatives[maIndex].Codes; 5454 ConstraintWeight BestWeight = CW_Invalid; 5455 5456 // Loop over the options, keeping track of the most general one. 5457 for (const std::string &rCode : *rCodes) { 5458 ConstraintWeight weight = 5459 getSingleConstraintMatchWeight(info, rCode.c_str()); 5460 if (weight > BestWeight) 5461 BestWeight = weight; 5462 } 5463 5464 return BestWeight; 5465 } 5466 5467 /// Examine constraint type and operand type and determine a weight value. 5468 /// This object must already have been set up with the operand type 5469 /// and the current alternative constraint selected. 5470 TargetLowering::ConstraintWeight 5471 TargetLowering::getSingleConstraintMatchWeight( 5472 AsmOperandInfo &info, const char *constraint) const { 5473 ConstraintWeight weight = CW_Invalid; 5474 Value *CallOperandVal = info.CallOperandVal; 5475 // If we don't have a value, we can't do a match, 5476 // but allow it at the lowest weight. 5477 if (!CallOperandVal) 5478 return CW_Default; 5479 // Look at the constraint type. 5480 switch (*constraint) { 5481 case 'i': // immediate integer. 5482 case 'n': // immediate integer with a known value. 5483 if (isa<ConstantInt>(CallOperandVal)) 5484 weight = CW_Constant; 5485 break; 5486 case 's': // non-explicit intregal immediate. 5487 if (isa<GlobalValue>(CallOperandVal)) 5488 weight = CW_Constant; 5489 break; 5490 case 'E': // immediate float if host format. 5491 case 'F': // immediate float. 5492 if (isa<ConstantFP>(CallOperandVal)) 5493 weight = CW_Constant; 5494 break; 5495 case '<': // memory operand with autodecrement. 5496 case '>': // memory operand with autoincrement. 5497 case 'm': // memory operand. 5498 case 'o': // offsettable memory operand 5499 case 'V': // non-offsettable memory operand 5500 weight = CW_Memory; 5501 break; 5502 case 'r': // general register. 5503 case 'g': // general register, memory operand or immediate integer. 5504 // note: Clang converts "g" to "imr". 5505 if (CallOperandVal->getType()->isIntegerTy()) 5506 weight = CW_Register; 5507 break; 5508 case 'X': // any operand. 5509 default: 5510 weight = CW_Default; 5511 break; 5512 } 5513 return weight; 5514 } 5515 5516 /// If there are multiple different constraints that we could pick for this 5517 /// operand (e.g. "imr") try to pick the 'best' one. 5518 /// This is somewhat tricky: constraints fall into four classes: 5519 /// Other -> immediates and magic values 5520 /// Register -> one specific register 5521 /// RegisterClass -> a group of regs 5522 /// Memory -> memory 5523 /// Ideally, we would pick the most specific constraint possible: if we have 5524 /// something that fits into a register, we would pick it. The problem here 5525 /// is that if we have something that could either be in a register or in 5526 /// memory that use of the register could cause selection of *other* 5527 /// operands to fail: they might only succeed if we pick memory. Because of 5528 /// this the heuristic we use is: 5529 /// 5530 /// 1) If there is an 'other' constraint, and if the operand is valid for 5531 /// that constraint, use it. This makes us take advantage of 'i' 5532 /// constraints when available. 5533 /// 2) Otherwise, pick the most general constraint present. This prefers 5534 /// 'm' over 'r', for example. 5535 /// 5536 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5537 const TargetLowering &TLI, 5538 SDValue Op, SelectionDAG *DAG) { 5539 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5540 unsigned BestIdx = 0; 5541 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5542 int BestGenerality = -1; 5543 5544 // Loop over the options, keeping track of the most general one. 5545 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5546 TargetLowering::ConstraintType CType = 5547 TLI.getConstraintType(OpInfo.Codes[i]); 5548 5549 // Indirect 'other' or 'immediate' constraints are not allowed. 5550 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5551 CType == TargetLowering::C_Register || 5552 CType == TargetLowering::C_RegisterClass)) 5553 continue; 5554 5555 // If this is an 'other' or 'immediate' constraint, see if the operand is 5556 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5557 // the operand is an integer in the range [0..31] we want to use I (saving a 5558 // load of a register), otherwise we must use 'r'. 5559 if ((CType == TargetLowering::C_Other || 5560 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5561 assert(OpInfo.Codes[i].size() == 1 && 5562 "Unhandled multi-letter 'other' constraint"); 5563 std::vector<SDValue> ResultOps; 5564 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5565 ResultOps, *DAG); 5566 if (!ResultOps.empty()) { 5567 BestType = CType; 5568 BestIdx = i; 5569 break; 5570 } 5571 } 5572 5573 // Things with matching constraints can only be registers, per gcc 5574 // documentation. This mainly affects "g" constraints. 5575 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5576 continue; 5577 5578 // This constraint letter is more general than the previous one, use it. 5579 int Generality = getConstraintGenerality(CType); 5580 if (Generality > BestGenerality) { 5581 BestType = CType; 5582 BestIdx = i; 5583 BestGenerality = Generality; 5584 } 5585 } 5586 5587 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5588 OpInfo.ConstraintType = BestType; 5589 } 5590 5591 /// Determines the constraint code and constraint type to use for the specific 5592 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5593 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5594 SDValue Op, 5595 SelectionDAG *DAG) const { 5596 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5597 5598 // Single-letter constraints ('r') are very common. 5599 if (OpInfo.Codes.size() == 1) { 5600 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5601 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5602 } else { 5603 ChooseConstraint(OpInfo, *this, Op, DAG); 5604 } 5605 5606 // 'X' matches anything. 5607 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5608 // Constants are handled elsewhere. For Functions, the type here is the 5609 // type of the result, which is not what we want to look at; leave them 5610 // alone. 5611 Value *v = OpInfo.CallOperandVal; 5612 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5613 return; 5614 } 5615 5616 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5617 OpInfo.ConstraintCode = "i"; 5618 return; 5619 } 5620 5621 // Otherwise, try to resolve it to something we know about by looking at 5622 // the actual operand type. 5623 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5624 OpInfo.ConstraintCode = Repl; 5625 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5626 } 5627 } 5628 } 5629 5630 /// Given an exact SDIV by a constant, create a multiplication 5631 /// with the multiplicative inverse of the constant. 5632 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5633 const SDLoc &dl, SelectionDAG &DAG, 5634 SmallVectorImpl<SDNode *> &Created) { 5635 SDValue Op0 = N->getOperand(0); 5636 SDValue Op1 = N->getOperand(1); 5637 EVT VT = N->getValueType(0); 5638 EVT SVT = VT.getScalarType(); 5639 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5640 EVT ShSVT = ShVT.getScalarType(); 5641 5642 bool UseSRA = false; 5643 SmallVector<SDValue, 16> Shifts, Factors; 5644 5645 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5646 if (C->isZero()) 5647 return false; 5648 APInt Divisor = C->getAPIntValue(); 5649 unsigned Shift = Divisor.countTrailingZeros(); 5650 if (Shift) { 5651 Divisor.ashrInPlace(Shift); 5652 UseSRA = true; 5653 } 5654 // Calculate the multiplicative inverse, using Newton's method. 5655 APInt t; 5656 APInt Factor = Divisor; 5657 while ((t = Divisor * Factor) != 1) 5658 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5659 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5660 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5661 return true; 5662 }; 5663 5664 // Collect all magic values from the build vector. 5665 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5666 return SDValue(); 5667 5668 SDValue Shift, Factor; 5669 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5670 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5671 Factor = DAG.getBuildVector(VT, dl, Factors); 5672 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5673 assert(Shifts.size() == 1 && Factors.size() == 1 && 5674 "Expected matchUnaryPredicate to return one element for scalable " 5675 "vectors"); 5676 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5677 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5678 } else { 5679 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5680 Shift = Shifts[0]; 5681 Factor = Factors[0]; 5682 } 5683 5684 SDValue Res = Op0; 5685 5686 // Shift the value upfront if it is even, so the LSB is one. 5687 if (UseSRA) { 5688 // TODO: For UDIV use SRL instead of SRA. 5689 SDNodeFlags Flags; 5690 Flags.setExact(true); 5691 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5692 Created.push_back(Res.getNode()); 5693 } 5694 5695 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5696 } 5697 5698 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5699 SelectionDAG &DAG, 5700 SmallVectorImpl<SDNode *> &Created) const { 5701 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5703 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5704 return SDValue(N, 0); // Lower SDIV as SDIV 5705 return SDValue(); 5706 } 5707 5708 SDValue 5709 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5710 SelectionDAG &DAG, 5711 SmallVectorImpl<SDNode *> &Created) const { 5712 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5714 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5715 return SDValue(N, 0); // Lower SREM as SREM 5716 return SDValue(); 5717 } 5718 5719 /// Given an ISD::SDIV node expressing a divide by constant, 5720 /// return a DAG expression to select that will generate the same value by 5721 /// multiplying by a magic number. 5722 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5723 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5724 bool IsAfterLegalization, 5725 SmallVectorImpl<SDNode *> &Created) const { 5726 SDLoc dl(N); 5727 EVT VT = N->getValueType(0); 5728 EVT SVT = VT.getScalarType(); 5729 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5730 EVT ShSVT = ShVT.getScalarType(); 5731 unsigned EltBits = VT.getScalarSizeInBits(); 5732 EVT MulVT; 5733 5734 // Check to see if we can do this. 5735 // FIXME: We should be more aggressive here. 5736 if (!isTypeLegal(VT)) { 5737 // Limit this to simple scalars for now. 5738 if (VT.isVector() || !VT.isSimple()) 5739 return SDValue(); 5740 5741 // If this type will be promoted to a large enough type with a legal 5742 // multiply operation, we can go ahead and do this transform. 5743 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5744 return SDValue(); 5745 5746 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5747 if (MulVT.getSizeInBits() < (2 * EltBits) || 5748 !isOperationLegal(ISD::MUL, MulVT)) 5749 return SDValue(); 5750 } 5751 5752 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5753 if (N->getFlags().hasExact()) 5754 return BuildExactSDIV(*this, N, dl, DAG, Created); 5755 5756 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5757 5758 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5759 if (C->isZero()) 5760 return false; 5761 5762 const APInt &Divisor = C->getAPIntValue(); 5763 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5764 int NumeratorFactor = 0; 5765 int ShiftMask = -1; 5766 5767 if (Divisor.isOne() || Divisor.isAllOnes()) { 5768 // If d is +1/-1, we just multiply the numerator by +1/-1. 5769 NumeratorFactor = Divisor.getSExtValue(); 5770 magics.Magic = 0; 5771 magics.ShiftAmount = 0; 5772 ShiftMask = 0; 5773 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5774 // If d > 0 and m < 0, add the numerator. 5775 NumeratorFactor = 1; 5776 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5777 // If d < 0 and m > 0, subtract the numerator. 5778 NumeratorFactor = -1; 5779 } 5780 5781 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5782 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5783 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5784 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5785 return true; 5786 }; 5787 5788 SDValue N0 = N->getOperand(0); 5789 SDValue N1 = N->getOperand(1); 5790 5791 // Collect the shifts / magic values from each element. 5792 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5793 return SDValue(); 5794 5795 SDValue MagicFactor, Factor, Shift, ShiftMask; 5796 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5797 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5798 Factor = DAG.getBuildVector(VT, dl, Factors); 5799 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5800 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5801 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5802 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5803 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5804 "Expected matchUnaryPredicate to return one element for scalable " 5805 "vectors"); 5806 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5807 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5808 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5809 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5810 } else { 5811 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5812 MagicFactor = MagicFactors[0]; 5813 Factor = Factors[0]; 5814 Shift = Shifts[0]; 5815 ShiftMask = ShiftMasks[0]; 5816 } 5817 5818 // Multiply the numerator (operand 0) by the magic value. 5819 // FIXME: We should support doing a MUL in a wider type. 5820 auto GetMULHS = [&](SDValue X, SDValue Y) { 5821 // If the type isn't legal, use a wider mul of the the type calculated 5822 // earlier. 5823 if (!isTypeLegal(VT)) { 5824 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5825 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5826 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5827 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5828 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5829 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5830 } 5831 5832 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5833 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5834 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5835 SDValue LoHi = 5836 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5837 return SDValue(LoHi.getNode(), 1); 5838 } 5839 return SDValue(); 5840 }; 5841 5842 SDValue Q = GetMULHS(N0, MagicFactor); 5843 if (!Q) 5844 return SDValue(); 5845 5846 Created.push_back(Q.getNode()); 5847 5848 // (Optionally) Add/subtract the numerator using Factor. 5849 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5850 Created.push_back(Factor.getNode()); 5851 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5852 Created.push_back(Q.getNode()); 5853 5854 // Shift right algebraic by shift value. 5855 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5856 Created.push_back(Q.getNode()); 5857 5858 // Extract the sign bit, mask it and add it to the quotient. 5859 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5860 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5861 Created.push_back(T.getNode()); 5862 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5863 Created.push_back(T.getNode()); 5864 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5865 } 5866 5867 /// Given an ISD::UDIV node expressing a divide by constant, 5868 /// return a DAG expression to select that will generate the same value by 5869 /// multiplying by a magic number. 5870 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5871 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5872 bool IsAfterLegalization, 5873 SmallVectorImpl<SDNode *> &Created) const { 5874 SDLoc dl(N); 5875 EVT VT = N->getValueType(0); 5876 EVT SVT = VT.getScalarType(); 5877 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5878 EVT ShSVT = ShVT.getScalarType(); 5879 unsigned EltBits = VT.getScalarSizeInBits(); 5880 EVT MulVT; 5881 5882 // Check to see if we can do this. 5883 // FIXME: We should be more aggressive here. 5884 if (!isTypeLegal(VT)) { 5885 // Limit this to simple scalars for now. 5886 if (VT.isVector() || !VT.isSimple()) 5887 return SDValue(); 5888 5889 // If this type will be promoted to a large enough type with a legal 5890 // multiply operation, we can go ahead and do this transform. 5891 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5892 return SDValue(); 5893 5894 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5895 if (MulVT.getSizeInBits() < (2 * EltBits) || 5896 !isOperationLegal(ISD::MUL, MulVT)) 5897 return SDValue(); 5898 } 5899 5900 bool UseNPQ = false; 5901 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5902 5903 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5904 if (C->isZero()) 5905 return false; 5906 // FIXME: We should use a narrower constant when the upper 5907 // bits are known to be zero. 5908 const APInt& Divisor = C->getAPIntValue(); 5909 UnsignedDivisionByConstantInfo magics = 5910 UnsignedDivisionByConstantInfo::get(Divisor); 5911 unsigned PreShift = 0, PostShift = 0; 5912 5913 // If the divisor is even, we can avoid using the expensive fixup by 5914 // shifting the divided value upfront. 5915 if (magics.IsAdd && !Divisor[0]) { 5916 PreShift = Divisor.countTrailingZeros(); 5917 // Get magic number for the shifted divisor. 5918 magics = 5919 UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5920 assert(!magics.IsAdd && "Should use cheap fixup now"); 5921 } 5922 5923 unsigned SelNPQ; 5924 if (!magics.IsAdd || Divisor.isOne()) { 5925 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5926 "We shouldn't generate an undefined shift!"); 5927 PostShift = magics.ShiftAmount; 5928 SelNPQ = false; 5929 } else { 5930 PostShift = magics.ShiftAmount - 1; 5931 SelNPQ = true; 5932 } 5933 5934 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5935 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5936 NPQFactors.push_back( 5937 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5938 : APInt::getZero(EltBits), 5939 dl, SVT)); 5940 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5941 UseNPQ |= SelNPQ; 5942 return true; 5943 }; 5944 5945 SDValue N0 = N->getOperand(0); 5946 SDValue N1 = N->getOperand(1); 5947 5948 // Collect the shifts/magic values from each element. 5949 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5950 return SDValue(); 5951 5952 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5953 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5954 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5955 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5956 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5957 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5958 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5959 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5960 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5961 "Expected matchUnaryPredicate to return one for scalable vectors"); 5962 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5963 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5964 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5965 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5966 } else { 5967 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5968 PreShift = PreShifts[0]; 5969 MagicFactor = MagicFactors[0]; 5970 PostShift = PostShifts[0]; 5971 } 5972 5973 SDValue Q = N0; 5974 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5975 Created.push_back(Q.getNode()); 5976 5977 // FIXME: We should support doing a MUL in a wider type. 5978 auto GetMULHU = [&](SDValue X, SDValue Y) { 5979 // If the type isn't legal, use a wider mul of the the type calculated 5980 // earlier. 5981 if (!isTypeLegal(VT)) { 5982 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5983 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5984 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5985 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5986 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5987 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5988 } 5989 5990 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5991 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5992 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5993 SDValue LoHi = 5994 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5995 return SDValue(LoHi.getNode(), 1); 5996 } 5997 return SDValue(); // No mulhu or equivalent 5998 }; 5999 6000 // Multiply the numerator (operand 0) by the magic value. 6001 Q = GetMULHU(Q, MagicFactor); 6002 if (!Q) 6003 return SDValue(); 6004 6005 Created.push_back(Q.getNode()); 6006 6007 if (UseNPQ) { 6008 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6009 Created.push_back(NPQ.getNode()); 6010 6011 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6012 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6013 if (VT.isVector()) 6014 NPQ = GetMULHU(NPQ, NPQFactor); 6015 else 6016 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6017 6018 Created.push_back(NPQ.getNode()); 6019 6020 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6021 Created.push_back(Q.getNode()); 6022 } 6023 6024 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6025 Created.push_back(Q.getNode()); 6026 6027 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6028 6029 SDValue One = DAG.getConstant(1, dl, VT); 6030 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6031 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6032 } 6033 6034 /// If all values in Values that *don't* match the predicate are same 'splat' 6035 /// value, then replace all values with that splat value. 6036 /// Else, if AlternativeReplacement was provided, then replace all values that 6037 /// do match predicate with AlternativeReplacement value. 6038 static void 6039 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6040 std::function<bool(SDValue)> Predicate, 6041 SDValue AlternativeReplacement = SDValue()) { 6042 SDValue Replacement; 6043 // Is there a value for which the Predicate does *NOT* match? What is it? 6044 auto SplatValue = llvm::find_if_not(Values, Predicate); 6045 if (SplatValue != Values.end()) { 6046 // Does Values consist only of SplatValue's and values matching Predicate? 6047 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6048 return Value == *SplatValue || Predicate(Value); 6049 })) // Then we shall replace values matching predicate with SplatValue. 6050 Replacement = *SplatValue; 6051 } 6052 if (!Replacement) { 6053 // Oops, we did not find the "baseline" splat value. 6054 if (!AlternativeReplacement) 6055 return; // Nothing to do. 6056 // Let's replace with provided value then. 6057 Replacement = AlternativeReplacement; 6058 } 6059 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6060 } 6061 6062 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6063 /// where the divisor is constant and the comparison target is zero, 6064 /// return a DAG expression that will generate the same comparison result 6065 /// using only multiplications, additions and shifts/rotations. 6066 /// Ref: "Hacker's Delight" 10-17. 6067 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6068 SDValue CompTargetNode, 6069 ISD::CondCode Cond, 6070 DAGCombinerInfo &DCI, 6071 const SDLoc &DL) const { 6072 SmallVector<SDNode *, 5> Built; 6073 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6074 DCI, DL, Built)) { 6075 for (SDNode *N : Built) 6076 DCI.AddToWorklist(N); 6077 return Folded; 6078 } 6079 6080 return SDValue(); 6081 } 6082 6083 SDValue 6084 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6085 SDValue CompTargetNode, ISD::CondCode Cond, 6086 DAGCombinerInfo &DCI, const SDLoc &DL, 6087 SmallVectorImpl<SDNode *> &Created) const { 6088 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6089 // - D must be constant, with D = D0 * 2^K where D0 is odd 6090 // - P is the multiplicative inverse of D0 modulo 2^W 6091 // - Q = floor(((2^W) - 1) / D) 6092 // where W is the width of the common type of N and D. 6093 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6094 "Only applicable for (in)equality comparisons."); 6095 6096 SelectionDAG &DAG = DCI.DAG; 6097 6098 EVT VT = REMNode.getValueType(); 6099 EVT SVT = VT.getScalarType(); 6100 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6101 EVT ShSVT = ShVT.getScalarType(); 6102 6103 // If MUL is unavailable, we cannot proceed in any case. 6104 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6105 return SDValue(); 6106 6107 bool ComparingWithAllZeros = true; 6108 bool AllComparisonsWithNonZerosAreTautological = true; 6109 bool HadTautologicalLanes = false; 6110 bool AllLanesAreTautological = true; 6111 bool HadEvenDivisor = false; 6112 bool AllDivisorsArePowerOfTwo = true; 6113 bool HadTautologicalInvertedLanes = false; 6114 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6115 6116 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6117 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6118 if (CDiv->isZero()) 6119 return false; 6120 6121 const APInt &D = CDiv->getAPIntValue(); 6122 const APInt &Cmp = CCmp->getAPIntValue(); 6123 6124 ComparingWithAllZeros &= Cmp.isZero(); 6125 6126 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6127 // if C2 is not less than C1, the comparison is always false. 6128 // But we will only be able to produce the comparison that will give the 6129 // opposive tautological answer. So this lane would need to be fixed up. 6130 bool TautologicalInvertedLane = D.ule(Cmp); 6131 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6132 6133 // If all lanes are tautological (either all divisors are ones, or divisor 6134 // is not greater than the constant we are comparing with), 6135 // we will prefer to avoid the fold. 6136 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6137 HadTautologicalLanes |= TautologicalLane; 6138 AllLanesAreTautological &= TautologicalLane; 6139 6140 // If we are comparing with non-zero, we need'll need to subtract said 6141 // comparison value from the LHS. But there is no point in doing that if 6142 // every lane where we are comparing with non-zero is tautological.. 6143 if (!Cmp.isZero()) 6144 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6145 6146 // Decompose D into D0 * 2^K 6147 unsigned K = D.countTrailingZeros(); 6148 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6149 APInt D0 = D.lshr(K); 6150 6151 // D is even if it has trailing zeros. 6152 HadEvenDivisor |= (K != 0); 6153 // D is a power-of-two if D0 is one. 6154 // If all divisors are power-of-two, we will prefer to avoid the fold. 6155 AllDivisorsArePowerOfTwo &= D0.isOne(); 6156 6157 // P = inv(D0, 2^W) 6158 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6159 unsigned W = D.getBitWidth(); 6160 APInt P = D0.zext(W + 1) 6161 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6162 .trunc(W); 6163 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6164 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6165 6166 // Q = floor((2^W - 1) u/ D) 6167 // R = ((2^W - 1) u% D) 6168 APInt Q, R; 6169 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6170 6171 // If we are comparing with zero, then that comparison constant is okay, 6172 // else it may need to be one less than that. 6173 if (Cmp.ugt(R)) 6174 Q -= 1; 6175 6176 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6177 "We are expecting that K is always less than all-ones for ShSVT"); 6178 6179 // If the lane is tautological the result can be constant-folded. 6180 if (TautologicalLane) { 6181 // Set P and K amount to a bogus values so we can try to splat them. 6182 P = 0; 6183 K = -1; 6184 // And ensure that comparison constant is tautological, 6185 // it will always compare true/false. 6186 Q = -1; 6187 } 6188 6189 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6190 KAmts.push_back( 6191 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6192 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6193 return true; 6194 }; 6195 6196 SDValue N = REMNode.getOperand(0); 6197 SDValue D = REMNode.getOperand(1); 6198 6199 // Collect the values from each element. 6200 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6201 return SDValue(); 6202 6203 // If all lanes are tautological, the result can be constant-folded. 6204 if (AllLanesAreTautological) 6205 return SDValue(); 6206 6207 // If this is a urem by a powers-of-two, avoid the fold since it can be 6208 // best implemented as a bit test. 6209 if (AllDivisorsArePowerOfTwo) 6210 return SDValue(); 6211 6212 SDValue PVal, KVal, QVal; 6213 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6214 if (HadTautologicalLanes) { 6215 // Try to turn PAmts into a splat, since we don't care about the values 6216 // that are currently '0'. If we can't, just keep '0'`s. 6217 turnVectorIntoSplatVector(PAmts, isNullConstant); 6218 // Try to turn KAmts into a splat, since we don't care about the values 6219 // that are currently '-1'. If we can't, change them to '0'`s. 6220 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6221 DAG.getConstant(0, DL, ShSVT)); 6222 } 6223 6224 PVal = DAG.getBuildVector(VT, DL, PAmts); 6225 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6226 QVal = DAG.getBuildVector(VT, DL, QAmts); 6227 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6228 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6229 "Expected matchBinaryPredicate to return one element for " 6230 "SPLAT_VECTORs"); 6231 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6232 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6233 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6234 } else { 6235 PVal = PAmts[0]; 6236 KVal = KAmts[0]; 6237 QVal = QAmts[0]; 6238 } 6239 6240 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6241 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6242 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6243 assert(CompTargetNode.getValueType() == N.getValueType() && 6244 "Expecting that the types on LHS and RHS of comparisons match."); 6245 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6246 } 6247 6248 // (mul N, P) 6249 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6250 Created.push_back(Op0.getNode()); 6251 6252 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6253 // divisors as a performance improvement, since rotating by 0 is a no-op. 6254 if (HadEvenDivisor) { 6255 // We need ROTR to do this. 6256 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6257 return SDValue(); 6258 // UREM: (rotr (mul N, P), K) 6259 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6260 Created.push_back(Op0.getNode()); 6261 } 6262 6263 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6264 SDValue NewCC = 6265 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6266 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6267 if (!HadTautologicalInvertedLanes) 6268 return NewCC; 6269 6270 // If any lanes previously compared always-false, the NewCC will give 6271 // always-true result for them, so we need to fixup those lanes. 6272 // Or the other way around for inequality predicate. 6273 assert(VT.isVector() && "Can/should only get here for vectors."); 6274 Created.push_back(NewCC.getNode()); 6275 6276 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6277 // if C2 is not less than C1, the comparison is always false. 6278 // But we have produced the comparison that will give the 6279 // opposive tautological answer. So these lanes would need to be fixed up. 6280 SDValue TautologicalInvertedChannels = 6281 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6282 Created.push_back(TautologicalInvertedChannels.getNode()); 6283 6284 // NOTE: we avoid letting illegal types through even if we're before legalize 6285 // ops – legalization has a hard time producing good code for this. 6286 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6287 // If we have a vector select, let's replace the comparison results in the 6288 // affected lanes with the correct tautological result. 6289 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6290 DL, SETCCVT, SETCCVT); 6291 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6292 Replacement, NewCC); 6293 } 6294 6295 // Else, we can just invert the comparison result in the appropriate lanes. 6296 // 6297 // NOTE: see the note above VSELECT above. 6298 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6299 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6300 TautologicalInvertedChannels); 6301 6302 return SDValue(); // Don't know how to lower. 6303 } 6304 6305 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6306 /// where the divisor is constant and the comparison target is zero, 6307 /// return a DAG expression that will generate the same comparison result 6308 /// using only multiplications, additions and shifts/rotations. 6309 /// Ref: "Hacker's Delight" 10-17. 6310 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6311 SDValue CompTargetNode, 6312 ISD::CondCode Cond, 6313 DAGCombinerInfo &DCI, 6314 const SDLoc &DL) const { 6315 SmallVector<SDNode *, 7> Built; 6316 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6317 DCI, DL, Built)) { 6318 assert(Built.size() <= 7 && "Max size prediction failed."); 6319 for (SDNode *N : Built) 6320 DCI.AddToWorklist(N); 6321 return Folded; 6322 } 6323 6324 return SDValue(); 6325 } 6326 6327 SDValue 6328 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6329 SDValue CompTargetNode, ISD::CondCode Cond, 6330 DAGCombinerInfo &DCI, const SDLoc &DL, 6331 SmallVectorImpl<SDNode *> &Created) const { 6332 // Fold: 6333 // (seteq/ne (srem N, D), 0) 6334 // To: 6335 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6336 // 6337 // - D must be constant, with D = D0 * 2^K where D0 is odd 6338 // - P is the multiplicative inverse of D0 modulo 2^W 6339 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6340 // - Q = floor((2 * A) / (2^K)) 6341 // where W is the width of the common type of N and D. 6342 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6343 "Only applicable for (in)equality comparisons."); 6344 6345 SelectionDAG &DAG = DCI.DAG; 6346 6347 EVT VT = REMNode.getValueType(); 6348 EVT SVT = VT.getScalarType(); 6349 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6350 EVT ShSVT = ShVT.getScalarType(); 6351 6352 // If we are after ops legalization, and MUL is unavailable, we can not 6353 // proceed. 6354 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6355 return SDValue(); 6356 6357 // TODO: Could support comparing with non-zero too. 6358 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6359 if (!CompTarget || !CompTarget->isZero()) 6360 return SDValue(); 6361 6362 bool HadIntMinDivisor = false; 6363 bool HadOneDivisor = false; 6364 bool AllDivisorsAreOnes = true; 6365 bool HadEvenDivisor = false; 6366 bool NeedToApplyOffset = false; 6367 bool AllDivisorsArePowerOfTwo = true; 6368 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6369 6370 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6371 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6372 if (C->isZero()) 6373 return false; 6374 6375 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6376 6377 // WARNING: this fold is only valid for positive divisors! 6378 APInt D = C->getAPIntValue(); 6379 if (D.isNegative()) 6380 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6381 6382 HadIntMinDivisor |= D.isMinSignedValue(); 6383 6384 // If all divisors are ones, we will prefer to avoid the fold. 6385 HadOneDivisor |= D.isOne(); 6386 AllDivisorsAreOnes &= D.isOne(); 6387 6388 // Decompose D into D0 * 2^K 6389 unsigned K = D.countTrailingZeros(); 6390 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6391 APInt D0 = D.lshr(K); 6392 6393 if (!D.isMinSignedValue()) { 6394 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6395 // we don't care about this lane in this fold, we'll special-handle it. 6396 HadEvenDivisor |= (K != 0); 6397 } 6398 6399 // D is a power-of-two if D0 is one. This includes INT_MIN. 6400 // If all divisors are power-of-two, we will prefer to avoid the fold. 6401 AllDivisorsArePowerOfTwo &= D0.isOne(); 6402 6403 // P = inv(D0, 2^W) 6404 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6405 unsigned W = D.getBitWidth(); 6406 APInt P = D0.zext(W + 1) 6407 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6408 .trunc(W); 6409 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6410 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6411 6412 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6413 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6414 A.clearLowBits(K); 6415 6416 if (!D.isMinSignedValue()) { 6417 // If divisor INT_MIN, then we don't care about this lane in this fold, 6418 // we'll special-handle it. 6419 NeedToApplyOffset |= A != 0; 6420 } 6421 6422 // Q = floor((2 * A) / (2^K)) 6423 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6424 6425 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6426 "We are expecting that A is always less than all-ones for SVT"); 6427 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6428 "We are expecting that K is always less than all-ones for ShSVT"); 6429 6430 // If the divisor is 1 the result can be constant-folded. Likewise, we 6431 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6432 if (D.isOne()) { 6433 // Set P, A and K to a bogus values so we can try to splat them. 6434 P = 0; 6435 A = -1; 6436 K = -1; 6437 6438 // x ?% 1 == 0 <--> true <--> x u<= -1 6439 Q = -1; 6440 } 6441 6442 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6443 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6444 KAmts.push_back( 6445 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6446 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6447 return true; 6448 }; 6449 6450 SDValue N = REMNode.getOperand(0); 6451 SDValue D = REMNode.getOperand(1); 6452 6453 // Collect the values from each element. 6454 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6455 return SDValue(); 6456 6457 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6458 if (AllDivisorsAreOnes) 6459 return SDValue(); 6460 6461 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6462 // since it can be best implemented as a bit test. 6463 if (AllDivisorsArePowerOfTwo) 6464 return SDValue(); 6465 6466 SDValue PVal, AVal, KVal, QVal; 6467 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6468 if (HadOneDivisor) { 6469 // Try to turn PAmts into a splat, since we don't care about the values 6470 // that are currently '0'. If we can't, just keep '0'`s. 6471 turnVectorIntoSplatVector(PAmts, isNullConstant); 6472 // Try to turn AAmts into a splat, since we don't care about the 6473 // values that are currently '-1'. If we can't, change them to '0'`s. 6474 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6475 DAG.getConstant(0, DL, SVT)); 6476 // Try to turn KAmts into a splat, since we don't care about the values 6477 // that are currently '-1'. If we can't, change them to '0'`s. 6478 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6479 DAG.getConstant(0, DL, ShSVT)); 6480 } 6481 6482 PVal = DAG.getBuildVector(VT, DL, PAmts); 6483 AVal = DAG.getBuildVector(VT, DL, AAmts); 6484 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6485 QVal = DAG.getBuildVector(VT, DL, QAmts); 6486 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6487 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6488 QAmts.size() == 1 && 6489 "Expected matchUnaryPredicate to return one element for scalable " 6490 "vectors"); 6491 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6492 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6493 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6494 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6495 } else { 6496 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6497 PVal = PAmts[0]; 6498 AVal = AAmts[0]; 6499 KVal = KAmts[0]; 6500 QVal = QAmts[0]; 6501 } 6502 6503 // (mul N, P) 6504 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6505 Created.push_back(Op0.getNode()); 6506 6507 if (NeedToApplyOffset) { 6508 // We need ADD to do this. 6509 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6510 return SDValue(); 6511 6512 // (add (mul N, P), A) 6513 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6514 Created.push_back(Op0.getNode()); 6515 } 6516 6517 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6518 // divisors as a performance improvement, since rotating by 0 is a no-op. 6519 if (HadEvenDivisor) { 6520 // We need ROTR to do this. 6521 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6522 return SDValue(); 6523 // SREM: (rotr (add (mul N, P), A), K) 6524 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6525 Created.push_back(Op0.getNode()); 6526 } 6527 6528 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6529 SDValue Fold = 6530 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6531 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6532 6533 // If we didn't have lanes with INT_MIN divisor, then we're done. 6534 if (!HadIntMinDivisor) 6535 return Fold; 6536 6537 // That fold is only valid for positive divisors. Which effectively means, 6538 // it is invalid for INT_MIN divisors. So if we have such a lane, 6539 // we must fix-up results for said lanes. 6540 assert(VT.isVector() && "Can/should only get here for vectors."); 6541 6542 // NOTE: we avoid letting illegal types through even if we're before legalize 6543 // ops – legalization has a hard time producing good code for the code that 6544 // follows. 6545 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6546 !isOperationLegalOrCustom(ISD::AND, VT) || 6547 !isOperationLegalOrCustom(Cond, VT) || 6548 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6549 return SDValue(); 6550 6551 Created.push_back(Fold.getNode()); 6552 6553 SDValue IntMin = DAG.getConstant( 6554 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6555 SDValue IntMax = DAG.getConstant( 6556 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6557 SDValue Zero = 6558 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6559 6560 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6561 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6562 Created.push_back(DivisorIsIntMin.getNode()); 6563 6564 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6565 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6566 Created.push_back(Masked.getNode()); 6567 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6568 Created.push_back(MaskedIsZero.getNode()); 6569 6570 // To produce final result we need to blend 2 vectors: 'SetCC' and 6571 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6572 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6573 // constant-folded, select can get lowered to a shuffle with constant mask. 6574 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6575 MaskedIsZero, Fold); 6576 6577 return Blended; 6578 } 6579 6580 bool TargetLowering:: 6581 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6582 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6583 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6584 "be a constant integer"); 6585 return true; 6586 } 6587 6588 return false; 6589 } 6590 6591 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6592 const DenormalMode &Mode) const { 6593 SDLoc DL(Op); 6594 EVT VT = Op.getValueType(); 6595 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6596 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6597 // Testing it with denormal inputs to avoid wrong estimate. 6598 if (Mode.Input == DenormalMode::IEEE) { 6599 // This is specifically a check for the handling of denormal inputs, 6600 // not the result. 6601 6602 // Test = fabs(X) < SmallestNormal 6603 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6604 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6605 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6606 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6607 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6608 } 6609 // Test = X == 0.0 6610 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6611 } 6612 6613 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6614 bool LegalOps, bool OptForSize, 6615 NegatibleCost &Cost, 6616 unsigned Depth) const { 6617 // fneg is removable even if it has multiple uses. 6618 if (Op.getOpcode() == ISD::FNEG) { 6619 Cost = NegatibleCost::Cheaper; 6620 return Op.getOperand(0); 6621 } 6622 6623 // Don't recurse exponentially. 6624 if (Depth > SelectionDAG::MaxRecursionDepth) 6625 return SDValue(); 6626 6627 // Pre-increment recursion depth for use in recursive calls. 6628 ++Depth; 6629 const SDNodeFlags Flags = Op->getFlags(); 6630 const TargetOptions &Options = DAG.getTarget().Options; 6631 EVT VT = Op.getValueType(); 6632 unsigned Opcode = Op.getOpcode(); 6633 6634 // Don't allow anything with multiple uses unless we know it is free. 6635 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6636 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6637 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6638 if (!IsFreeExtend) 6639 return SDValue(); 6640 } 6641 6642 auto RemoveDeadNode = [&](SDValue N) { 6643 if (N && N.getNode()->use_empty()) 6644 DAG.RemoveDeadNode(N.getNode()); 6645 }; 6646 6647 SDLoc DL(Op); 6648 6649 // Because getNegatedExpression can delete nodes we need a handle to keep 6650 // temporary nodes alive in case the recursion manages to create an identical 6651 // node. 6652 std::list<HandleSDNode> Handles; 6653 6654 switch (Opcode) { 6655 case ISD::ConstantFP: { 6656 // Don't invert constant FP values after legalization unless the target says 6657 // the negated constant is legal. 6658 bool IsOpLegal = 6659 isOperationLegal(ISD::ConstantFP, VT) || 6660 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6661 OptForSize); 6662 6663 if (LegalOps && !IsOpLegal) 6664 break; 6665 6666 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6667 V.changeSign(); 6668 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6669 6670 // If we already have the use of the negated floating constant, it is free 6671 // to negate it even it has multiple uses. 6672 if (!Op.hasOneUse() && CFP.use_empty()) 6673 break; 6674 Cost = NegatibleCost::Neutral; 6675 return CFP; 6676 } 6677 case ISD::BUILD_VECTOR: { 6678 // Only permit BUILD_VECTOR of constants. 6679 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6680 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6681 })) 6682 break; 6683 6684 bool IsOpLegal = 6685 (isOperationLegal(ISD::ConstantFP, VT) && 6686 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6687 llvm::all_of(Op->op_values(), [&](SDValue N) { 6688 return N.isUndef() || 6689 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6690 OptForSize); 6691 }); 6692 6693 if (LegalOps && !IsOpLegal) 6694 break; 6695 6696 SmallVector<SDValue, 4> Ops; 6697 for (SDValue C : Op->op_values()) { 6698 if (C.isUndef()) { 6699 Ops.push_back(C); 6700 continue; 6701 } 6702 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6703 V.changeSign(); 6704 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6705 } 6706 Cost = NegatibleCost::Neutral; 6707 return DAG.getBuildVector(VT, DL, Ops); 6708 } 6709 case ISD::FADD: { 6710 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6711 break; 6712 6713 // After operation legalization, it might not be legal to create new FSUBs. 6714 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6715 break; 6716 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6717 6718 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6719 NegatibleCost CostX = NegatibleCost::Expensive; 6720 SDValue NegX = 6721 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6722 // Prevent this node from being deleted by the next call. 6723 if (NegX) 6724 Handles.emplace_back(NegX); 6725 6726 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6727 NegatibleCost CostY = NegatibleCost::Expensive; 6728 SDValue NegY = 6729 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6730 6731 // We're done with the handles. 6732 Handles.clear(); 6733 6734 // Negate the X if its cost is less or equal than Y. 6735 if (NegX && (CostX <= CostY)) { 6736 Cost = CostX; 6737 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6738 if (NegY != N) 6739 RemoveDeadNode(NegY); 6740 return N; 6741 } 6742 6743 // Negate the Y if it is not expensive. 6744 if (NegY) { 6745 Cost = CostY; 6746 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6747 if (NegX != N) 6748 RemoveDeadNode(NegX); 6749 return N; 6750 } 6751 break; 6752 } 6753 case ISD::FSUB: { 6754 // We can't turn -(A-B) into B-A when we honor signed zeros. 6755 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6756 break; 6757 6758 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6759 // fold (fneg (fsub 0, Y)) -> Y 6760 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6761 if (C->isZero()) { 6762 Cost = NegatibleCost::Cheaper; 6763 return Y; 6764 } 6765 6766 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6767 Cost = NegatibleCost::Neutral; 6768 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6769 } 6770 case ISD::FMUL: 6771 case ISD::FDIV: { 6772 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6773 6774 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6775 NegatibleCost CostX = NegatibleCost::Expensive; 6776 SDValue NegX = 6777 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6778 // Prevent this node from being deleted by the next call. 6779 if (NegX) 6780 Handles.emplace_back(NegX); 6781 6782 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6783 NegatibleCost CostY = NegatibleCost::Expensive; 6784 SDValue NegY = 6785 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6786 6787 // We're done with the handles. 6788 Handles.clear(); 6789 6790 // Negate the X if its cost is less or equal than Y. 6791 if (NegX && (CostX <= CostY)) { 6792 Cost = CostX; 6793 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6794 if (NegY != N) 6795 RemoveDeadNode(NegY); 6796 return N; 6797 } 6798 6799 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6800 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6801 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6802 break; 6803 6804 // Negate the Y if it is not expensive. 6805 if (NegY) { 6806 Cost = CostY; 6807 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6808 if (NegX != N) 6809 RemoveDeadNode(NegX); 6810 return N; 6811 } 6812 break; 6813 } 6814 case ISD::FMA: 6815 case ISD::FMAD: { 6816 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6817 break; 6818 6819 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6820 NegatibleCost CostZ = NegatibleCost::Expensive; 6821 SDValue NegZ = 6822 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6823 // Give up if fail to negate the Z. 6824 if (!NegZ) 6825 break; 6826 6827 // Prevent this node from being deleted by the next two calls. 6828 Handles.emplace_back(NegZ); 6829 6830 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6831 NegatibleCost CostX = NegatibleCost::Expensive; 6832 SDValue NegX = 6833 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6834 // Prevent this node from being deleted by the next call. 6835 if (NegX) 6836 Handles.emplace_back(NegX); 6837 6838 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6839 NegatibleCost CostY = NegatibleCost::Expensive; 6840 SDValue NegY = 6841 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6842 6843 // We're done with the handles. 6844 Handles.clear(); 6845 6846 // Negate the X if its cost is less or equal than Y. 6847 if (NegX && (CostX <= CostY)) { 6848 Cost = std::min(CostX, CostZ); 6849 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6850 if (NegY != N) 6851 RemoveDeadNode(NegY); 6852 return N; 6853 } 6854 6855 // Negate the Y if it is not expensive. 6856 if (NegY) { 6857 Cost = std::min(CostY, CostZ); 6858 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6859 if (NegX != N) 6860 RemoveDeadNode(NegX); 6861 return N; 6862 } 6863 break; 6864 } 6865 6866 case ISD::FP_EXTEND: 6867 case ISD::FSIN: 6868 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6869 OptForSize, Cost, Depth)) 6870 return DAG.getNode(Opcode, DL, VT, NegV); 6871 break; 6872 case ISD::FP_ROUND: 6873 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6874 OptForSize, Cost, Depth)) 6875 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6876 break; 6877 } 6878 6879 return SDValue(); 6880 } 6881 6882 //===----------------------------------------------------------------------===// 6883 // Legalization Utilities 6884 //===----------------------------------------------------------------------===// 6885 6886 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6887 SDValue LHS, SDValue RHS, 6888 SmallVectorImpl<SDValue> &Result, 6889 EVT HiLoVT, SelectionDAG &DAG, 6890 MulExpansionKind Kind, SDValue LL, 6891 SDValue LH, SDValue RL, SDValue RH) const { 6892 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6893 Opcode == ISD::SMUL_LOHI); 6894 6895 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6896 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6897 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6898 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6899 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6900 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6901 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6902 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6903 6904 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6905 return false; 6906 6907 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6908 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6909 6910 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6911 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6912 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6913 6914 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6915 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6916 bool Signed) -> bool { 6917 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6918 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6919 Hi = SDValue(Lo.getNode(), 1); 6920 return true; 6921 } 6922 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6923 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6924 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6925 return true; 6926 } 6927 return false; 6928 }; 6929 6930 SDValue Lo, Hi; 6931 6932 if (!LL.getNode() && !RL.getNode() && 6933 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6934 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6935 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6936 } 6937 6938 if (!LL.getNode()) 6939 return false; 6940 6941 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6942 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6943 DAG.MaskedValueIsZero(RHS, HighMask)) { 6944 // The inputs are both zero-extended. 6945 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6946 Result.push_back(Lo); 6947 Result.push_back(Hi); 6948 if (Opcode != ISD::MUL) { 6949 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6950 Result.push_back(Zero); 6951 Result.push_back(Zero); 6952 } 6953 return true; 6954 } 6955 } 6956 6957 if (!VT.isVector() && Opcode == ISD::MUL && 6958 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6959 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6960 // The input values are both sign-extended. 6961 // TODO non-MUL case? 6962 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6963 Result.push_back(Lo); 6964 Result.push_back(Hi); 6965 return true; 6966 } 6967 } 6968 6969 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6970 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6971 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6972 6973 if (!LH.getNode() && !RH.getNode() && 6974 isOperationLegalOrCustom(ISD::SRL, VT) && 6975 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6976 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6977 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6978 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6979 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6980 } 6981 6982 if (!LH.getNode()) 6983 return false; 6984 6985 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6986 return false; 6987 6988 Result.push_back(Lo); 6989 6990 if (Opcode == ISD::MUL) { 6991 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6992 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6993 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6994 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6995 Result.push_back(Hi); 6996 return true; 6997 } 6998 6999 // Compute the full width result. 7000 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7001 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7002 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7003 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7004 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7005 }; 7006 7007 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7008 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7009 return false; 7010 7011 // This is effectively the add part of a multiply-add of half-sized operands, 7012 // so it cannot overflow. 7013 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7014 7015 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7016 return false; 7017 7018 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7019 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7020 7021 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7022 isOperationLegalOrCustom(ISD::ADDE, VT)); 7023 if (UseGlue) 7024 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7025 Merge(Lo, Hi)); 7026 else 7027 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 7028 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7029 7030 SDValue Carry = Next.getValue(1); 7031 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7032 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7033 7034 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7035 return false; 7036 7037 if (UseGlue) 7038 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7039 Carry); 7040 else 7041 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7042 Zero, Carry); 7043 7044 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7045 7046 if (Opcode == ISD::SMUL_LOHI) { 7047 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7048 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7049 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7050 7051 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7052 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7053 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7054 } 7055 7056 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7057 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7058 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7059 return true; 7060 } 7061 7062 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7063 SelectionDAG &DAG, MulExpansionKind Kind, 7064 SDValue LL, SDValue LH, SDValue RL, 7065 SDValue RH) const { 7066 SmallVector<SDValue, 2> Result; 7067 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7068 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7069 DAG, Kind, LL, LH, RL, RH); 7070 if (Ok) { 7071 assert(Result.size() == 2); 7072 Lo = Result[0]; 7073 Hi = Result[1]; 7074 } 7075 return Ok; 7076 } 7077 7078 // Check that (every element of) Z is undef or not an exact multiple of BW. 7079 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7080 return ISD::matchUnaryPredicate( 7081 Z, 7082 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7083 true); 7084 } 7085 7086 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7087 SelectionDAG &DAG) const { 7088 EVT VT = Node->getValueType(0); 7089 7090 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7091 !isOperationLegalOrCustom(ISD::SRL, VT) || 7092 !isOperationLegalOrCustom(ISD::SUB, VT) || 7093 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7094 return SDValue(); 7095 7096 SDValue X = Node->getOperand(0); 7097 SDValue Y = Node->getOperand(1); 7098 SDValue Z = Node->getOperand(2); 7099 7100 unsigned BW = VT.getScalarSizeInBits(); 7101 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7102 SDLoc DL(SDValue(Node, 0)); 7103 7104 EVT ShVT = Z.getValueType(); 7105 7106 // If a funnel shift in the other direction is more supported, use it. 7107 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7108 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7109 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7110 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7111 // fshl X, Y, Z -> fshr X, Y, -Z 7112 // fshr X, Y, Z -> fshl X, Y, -Z 7113 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7114 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7115 } else { 7116 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7117 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7118 SDValue One = DAG.getConstant(1, DL, ShVT); 7119 if (IsFSHL) { 7120 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7121 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7122 } else { 7123 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7124 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7125 } 7126 Z = DAG.getNOT(DL, Z, ShVT); 7127 } 7128 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7129 } 7130 7131 SDValue ShX, ShY; 7132 SDValue ShAmt, InvShAmt; 7133 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7134 // fshl: X << C | Y >> (BW - C) 7135 // fshr: X << (BW - C) | Y >> C 7136 // where C = Z % BW is not zero 7137 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7138 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7139 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7140 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7141 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7142 } else { 7143 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7144 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7145 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7146 if (isPowerOf2_32(BW)) { 7147 // Z % BW -> Z & (BW - 1) 7148 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7149 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7150 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7151 } else { 7152 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7153 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7154 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7155 } 7156 7157 SDValue One = DAG.getConstant(1, DL, ShVT); 7158 if (IsFSHL) { 7159 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7160 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7161 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7162 } else { 7163 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7164 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7165 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7166 } 7167 } 7168 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7169 } 7170 7171 // TODO: Merge with expandFunnelShift. 7172 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7173 SelectionDAG &DAG) const { 7174 EVT VT = Node->getValueType(0); 7175 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7176 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7177 SDValue Op0 = Node->getOperand(0); 7178 SDValue Op1 = Node->getOperand(1); 7179 SDLoc DL(SDValue(Node, 0)); 7180 7181 EVT ShVT = Op1.getValueType(); 7182 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7183 7184 // If a rotate in the other direction is more supported, use it. 7185 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7186 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7187 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7188 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7189 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7190 } 7191 7192 if (!AllowVectorOps && VT.isVector() && 7193 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7194 !isOperationLegalOrCustom(ISD::SRL, VT) || 7195 !isOperationLegalOrCustom(ISD::SUB, VT) || 7196 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7197 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7198 return SDValue(); 7199 7200 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7201 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7202 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7203 SDValue ShVal; 7204 SDValue HsVal; 7205 if (isPowerOf2_32(EltSizeInBits)) { 7206 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7207 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7208 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7209 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7210 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7211 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7212 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7213 } else { 7214 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7215 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7216 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7217 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7218 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7219 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7220 SDValue One = DAG.getConstant(1, DL, ShVT); 7221 HsVal = 7222 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7223 } 7224 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7225 } 7226 7227 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7228 SelectionDAG &DAG) const { 7229 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7230 EVT VT = Node->getValueType(0); 7231 unsigned VTBits = VT.getScalarSizeInBits(); 7232 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7233 7234 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7235 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7236 SDValue ShOpLo = Node->getOperand(0); 7237 SDValue ShOpHi = Node->getOperand(1); 7238 SDValue ShAmt = Node->getOperand(2); 7239 EVT ShAmtVT = ShAmt.getValueType(); 7240 EVT ShAmtCCVT = 7241 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7242 SDLoc dl(Node); 7243 7244 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7245 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7246 // away during isel. 7247 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7248 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7249 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7250 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7251 : DAG.getConstant(0, dl, VT); 7252 7253 SDValue Tmp2, Tmp3; 7254 if (IsSHL) { 7255 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7256 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7257 } else { 7258 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7259 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7260 } 7261 7262 // If the shift amount is larger or equal than the width of a part we don't 7263 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7264 // values for large shift amounts. 7265 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7266 DAG.getConstant(VTBits, dl, ShAmtVT)); 7267 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7268 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7269 7270 if (IsSHL) { 7271 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7272 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7273 } else { 7274 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7275 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7276 } 7277 } 7278 7279 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7280 SelectionDAG &DAG) const { 7281 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7282 SDValue Src = Node->getOperand(OpNo); 7283 EVT SrcVT = Src.getValueType(); 7284 EVT DstVT = Node->getValueType(0); 7285 SDLoc dl(SDValue(Node, 0)); 7286 7287 // FIXME: Only f32 to i64 conversions are supported. 7288 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7289 return false; 7290 7291 if (Node->isStrictFPOpcode()) 7292 // When a NaN is converted to an integer a trap is allowed. We can't 7293 // use this expansion here because it would eliminate that trap. Other 7294 // traps are also allowed and cannot be eliminated. See 7295 // IEEE 754-2008 sec 5.8. 7296 return false; 7297 7298 // Expand f32 -> i64 conversion 7299 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7300 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7301 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7302 EVT IntVT = SrcVT.changeTypeToInteger(); 7303 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7304 7305 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7306 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7307 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7308 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7309 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7310 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7311 7312 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7313 7314 SDValue ExponentBits = DAG.getNode( 7315 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7316 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7317 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7318 7319 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7320 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7321 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7322 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7323 7324 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7325 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7326 DAG.getConstant(0x00800000, dl, IntVT)); 7327 7328 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7329 7330 R = DAG.getSelectCC( 7331 dl, Exponent, ExponentLoBit, 7332 DAG.getNode(ISD::SHL, dl, DstVT, R, 7333 DAG.getZExtOrTrunc( 7334 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7335 dl, IntShVT)), 7336 DAG.getNode(ISD::SRL, dl, DstVT, R, 7337 DAG.getZExtOrTrunc( 7338 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7339 dl, IntShVT)), 7340 ISD::SETGT); 7341 7342 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7343 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7344 7345 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7346 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7347 return true; 7348 } 7349 7350 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7351 SDValue &Chain, 7352 SelectionDAG &DAG) const { 7353 SDLoc dl(SDValue(Node, 0)); 7354 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7355 SDValue Src = Node->getOperand(OpNo); 7356 7357 EVT SrcVT = Src.getValueType(); 7358 EVT DstVT = Node->getValueType(0); 7359 EVT SetCCVT = 7360 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7361 EVT DstSetCCVT = 7362 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7363 7364 // Only expand vector types if we have the appropriate vector bit operations. 7365 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7366 ISD::FP_TO_SINT; 7367 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7368 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7369 return false; 7370 7371 // If the maximum float value is smaller then the signed integer range, 7372 // the destination signmask can't be represented by the float, so we can 7373 // just use FP_TO_SINT directly. 7374 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7375 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7376 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7377 if (APFloat::opOverflow & 7378 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7379 if (Node->isStrictFPOpcode()) { 7380 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7381 { Node->getOperand(0), Src }); 7382 Chain = Result.getValue(1); 7383 } else 7384 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7385 return true; 7386 } 7387 7388 // Don't expand it if there isn't cheap fsub instruction. 7389 if (!isOperationLegalOrCustom( 7390 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7391 return false; 7392 7393 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7394 SDValue Sel; 7395 7396 if (Node->isStrictFPOpcode()) { 7397 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7398 Node->getOperand(0), /*IsSignaling*/ true); 7399 Chain = Sel.getValue(1); 7400 } else { 7401 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7402 } 7403 7404 bool Strict = Node->isStrictFPOpcode() || 7405 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7406 7407 if (Strict) { 7408 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7409 // signmask then offset (the result of which should be fully representable). 7410 // Sel = Src < 0x8000000000000000 7411 // FltOfs = select Sel, 0, 0x8000000000000000 7412 // IntOfs = select Sel, 0, 0x8000000000000000 7413 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7414 7415 // TODO: Should any fast-math-flags be set for the FSUB? 7416 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7417 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7418 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7419 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7420 DAG.getConstant(0, dl, DstVT), 7421 DAG.getConstant(SignMask, dl, DstVT)); 7422 SDValue SInt; 7423 if (Node->isStrictFPOpcode()) { 7424 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7425 { Chain, Src, FltOfs }); 7426 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7427 { Val.getValue(1), Val }); 7428 Chain = SInt.getValue(1); 7429 } else { 7430 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7431 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7432 } 7433 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7434 } else { 7435 // Expand based on maximum range of FP_TO_SINT: 7436 // True = fp_to_sint(Src) 7437 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7438 // Result = select (Src < 0x8000000000000000), True, False 7439 7440 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7441 // TODO: Should any fast-math-flags be set for the FSUB? 7442 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7443 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7444 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7445 DAG.getConstant(SignMask, dl, DstVT)); 7446 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7447 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7448 } 7449 return true; 7450 } 7451 7452 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7453 SDValue &Chain, 7454 SelectionDAG &DAG) const { 7455 // This transform is not correct for converting 0 when rounding mode is set 7456 // to round toward negative infinity which will produce -0.0. So disable under 7457 // strictfp. 7458 if (Node->isStrictFPOpcode()) 7459 return false; 7460 7461 SDValue Src = Node->getOperand(0); 7462 EVT SrcVT = Src.getValueType(); 7463 EVT DstVT = Node->getValueType(0); 7464 7465 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7466 return false; 7467 7468 // Only expand vector types if we have the appropriate vector bit operations. 7469 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7470 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7471 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7472 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7473 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7474 return false; 7475 7476 SDLoc dl(SDValue(Node, 0)); 7477 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7478 7479 // Implementation of unsigned i64 to f64 following the algorithm in 7480 // __floatundidf in compiler_rt. This implementation performs rounding 7481 // correctly in all rounding modes with the exception of converting 0 7482 // when rounding toward negative infinity. In that case the fsub will produce 7483 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7484 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7485 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7486 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7487 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7488 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7489 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7490 7491 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7492 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7493 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7494 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7495 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7496 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7497 SDValue HiSub = 7498 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7499 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7500 return true; 7501 } 7502 7503 SDValue 7504 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7505 SelectionDAG &DAG) const { 7506 unsigned Opcode = Node->getOpcode(); 7507 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7508 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7509 "Wrong opcode"); 7510 7511 if (Node->getFlags().hasNoNaNs()) { 7512 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7513 SDValue Op1 = Node->getOperand(0); 7514 SDValue Op2 = Node->getOperand(1); 7515 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7516 // Copy FMF flags, but always set the no-signed-zeros flag 7517 // as this is implied by the FMINNUM/FMAXNUM semantics. 7518 SDNodeFlags Flags = Node->getFlags(); 7519 Flags.setNoSignedZeros(true); 7520 SelCC->setFlags(Flags); 7521 return SelCC; 7522 } 7523 7524 return SDValue(); 7525 } 7526 7527 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7528 SelectionDAG &DAG) const { 7529 SDLoc dl(Node); 7530 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7531 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7532 EVT VT = Node->getValueType(0); 7533 7534 if (VT.isScalableVector()) 7535 report_fatal_error( 7536 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7537 7538 if (isOperationLegalOrCustom(NewOp, VT)) { 7539 SDValue Quiet0 = Node->getOperand(0); 7540 SDValue Quiet1 = Node->getOperand(1); 7541 7542 if (!Node->getFlags().hasNoNaNs()) { 7543 // Insert canonicalizes if it's possible we need to quiet to get correct 7544 // sNaN behavior. 7545 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7546 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7547 Node->getFlags()); 7548 } 7549 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7550 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7551 Node->getFlags()); 7552 } 7553 } 7554 7555 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7556 } 7557 7558 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7559 // instead if there are no NaNs. 7560 if (Node->getFlags().hasNoNaNs()) { 7561 unsigned IEEE2018Op = 7562 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7563 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7564 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7565 Node->getOperand(1), Node->getFlags()); 7566 } 7567 } 7568 7569 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7570 return SelCC; 7571 7572 return SDValue(); 7573 } 7574 7575 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7576 unsigned Test, SDNodeFlags Flags, 7577 const SDLoc &DL, 7578 SelectionDAG &DAG) const { 7579 EVT OperandVT = Op.getValueType(); 7580 assert(OperandVT.isFloatingPoint()); 7581 7582 // Degenerated cases. 7583 if (Test == 0) 7584 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7585 if ((Test & fcAllFlags) == fcAllFlags) 7586 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7587 7588 // PPC double double is a pair of doubles, of which the higher part determines 7589 // the value class. 7590 if (OperandVT == MVT::ppcf128) { 7591 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7592 DAG.getConstant(1, DL, MVT::i32)); 7593 OperandVT = MVT::f64; 7594 } 7595 7596 // Some checks may be represented as inversion of simpler check, for example 7597 // "inf|normal|subnormal|zero" => !"nan". 7598 bool IsInverted = false; 7599 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7600 IsInverted = true; 7601 Test = InvertedCheck; 7602 } 7603 7604 // Floating-point type properties. 7605 EVT ScalarFloatVT = OperandVT.getScalarType(); 7606 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7607 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7608 bool IsF80 = (ScalarFloatVT == MVT::f80); 7609 7610 // Some checks can be implemented using float comparisons, if floating point 7611 // exceptions are ignored. 7612 if (Flags.hasNoFPExcept() && 7613 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7614 if (Test == fcZero) 7615 return DAG.getSetCC(DL, ResultVT, Op, 7616 DAG.getConstantFP(0.0, DL, OperandVT), 7617 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7618 if (Test == fcNan) 7619 return DAG.getSetCC(DL, ResultVT, Op, Op, 7620 IsInverted ? ISD::SETO : ISD::SETUO); 7621 } 7622 7623 // In the general case use integer operations. 7624 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7625 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7626 if (OperandVT.isVector()) 7627 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7628 OperandVT.getVectorElementCount()); 7629 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7630 7631 // Various masks. 7632 APInt SignBit = APInt::getSignMask(BitSize); 7633 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7634 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7635 const unsigned ExplicitIntBitInF80 = 63; 7636 APInt ExpMask = Inf; 7637 if (IsF80) 7638 ExpMask.clearBit(ExplicitIntBitInF80); 7639 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7640 APInt QNaNBitMask = 7641 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7642 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7643 7644 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7645 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7646 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7647 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7648 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7649 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7650 7651 SDValue Res; 7652 const auto appendResult = [&](SDValue PartialRes) { 7653 if (PartialRes) { 7654 if (Res) 7655 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7656 else 7657 Res = PartialRes; 7658 } 7659 }; 7660 7661 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7662 const auto getIntBitIsSet = [&]() -> SDValue { 7663 if (!IntBitIsSetV) { 7664 APInt IntBitMask(BitSize, 0); 7665 IntBitMask.setBit(ExplicitIntBitInF80); 7666 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7667 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7668 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7669 } 7670 return IntBitIsSetV; 7671 }; 7672 7673 // Split the value into sign bit and absolute value. 7674 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7675 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7676 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7677 7678 // Tests that involve more than one class should be processed first. 7679 SDValue PartialRes; 7680 7681 if (IsF80) 7682 ; // Detect finite numbers of f80 by checking individual classes because 7683 // they have different settings of the explicit integer bit. 7684 else if ((Test & fcFinite) == fcFinite) { 7685 // finite(V) ==> abs(V) < exp_mask 7686 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7687 Test &= ~fcFinite; 7688 } else if ((Test & fcFinite) == fcPosFinite) { 7689 // finite(V) && V > 0 ==> V < exp_mask 7690 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7691 Test &= ~fcPosFinite; 7692 } else if ((Test & fcFinite) == fcNegFinite) { 7693 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7694 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7695 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7696 Test &= ~fcNegFinite; 7697 } 7698 appendResult(PartialRes); 7699 7700 // Check for individual classes. 7701 7702 if (unsigned PartialCheck = Test & fcZero) { 7703 if (PartialCheck == fcPosZero) 7704 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7705 else if (PartialCheck == fcZero) 7706 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7707 else // ISD::fcNegZero 7708 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7709 appendResult(PartialRes); 7710 } 7711 7712 if (unsigned PartialCheck = Test & fcInf) { 7713 if (PartialCheck == fcPosInf) 7714 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7715 else if (PartialCheck == fcInf) 7716 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7717 else { // ISD::fcNegInf 7718 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7719 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7720 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7721 } 7722 appendResult(PartialRes); 7723 } 7724 7725 if (unsigned PartialCheck = Test & fcNan) { 7726 APInt InfWithQnanBit = Inf | QNaNBitMask; 7727 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7728 if (PartialCheck == fcNan) { 7729 // isnan(V) ==> abs(V) > int(inf) 7730 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7731 if (IsF80) { 7732 // Recognize unsupported values as NaNs for compatibility with glibc. 7733 // In them (exp(V)==0) == int_bit. 7734 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7735 SDValue ExpIsZero = 7736 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7737 SDValue IsPseudo = 7738 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7739 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7740 } 7741 } else if (PartialCheck == fcQNan) { 7742 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7743 PartialRes = 7744 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7745 } else { // ISD::fcSNan 7746 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7747 // abs(V) < (unsigned(Inf) | quiet_bit) 7748 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7749 SDValue IsNotQnan = 7750 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7751 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7752 } 7753 appendResult(PartialRes); 7754 } 7755 7756 if (unsigned PartialCheck = Test & fcSubnormal) { 7757 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7758 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7759 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7760 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7761 SDValue VMinusOneV = 7762 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7763 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7764 if (PartialCheck == fcNegSubnormal) 7765 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7766 appendResult(PartialRes); 7767 } 7768 7769 if (unsigned PartialCheck = Test & fcNormal) { 7770 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7771 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7772 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7773 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7774 APInt ExpLimit = ExpMask - ExpLSB; 7775 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7776 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7777 if (PartialCheck == fcNegNormal) 7778 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7779 else if (PartialCheck == fcPosNormal) { 7780 SDValue PosSignV = 7781 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7782 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7783 } 7784 if (IsF80) 7785 PartialRes = 7786 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7787 appendResult(PartialRes); 7788 } 7789 7790 if (!Res) 7791 return DAG.getConstant(IsInverted, DL, ResultVT); 7792 if (IsInverted) 7793 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7794 return Res; 7795 } 7796 7797 // Only expand vector types if we have the appropriate vector bit operations. 7798 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7799 assert(VT.isVector() && "Expected vector type"); 7800 unsigned Len = VT.getScalarSizeInBits(); 7801 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7802 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7803 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7804 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7805 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7806 } 7807 7808 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7809 SDLoc dl(Node); 7810 EVT VT = Node->getValueType(0); 7811 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7812 SDValue Op = Node->getOperand(0); 7813 unsigned Len = VT.getScalarSizeInBits(); 7814 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7815 7816 // TODO: Add support for irregular type lengths. 7817 if (!(Len <= 128 && Len % 8 == 0)) 7818 return SDValue(); 7819 7820 // Only expand vector types if we have the appropriate vector bit operations. 7821 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7822 return SDValue(); 7823 7824 // This is the "best" algorithm from 7825 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7826 SDValue Mask55 = 7827 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7828 SDValue Mask33 = 7829 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7830 SDValue Mask0F = 7831 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7832 7833 // v = v - ((v >> 1) & 0x55555555...) 7834 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7835 DAG.getNode(ISD::AND, dl, VT, 7836 DAG.getNode(ISD::SRL, dl, VT, Op, 7837 DAG.getConstant(1, dl, ShVT)), 7838 Mask55)); 7839 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7840 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7841 DAG.getNode(ISD::AND, dl, VT, 7842 DAG.getNode(ISD::SRL, dl, VT, Op, 7843 DAG.getConstant(2, dl, ShVT)), 7844 Mask33)); 7845 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7846 Op = DAG.getNode(ISD::AND, dl, VT, 7847 DAG.getNode(ISD::ADD, dl, VT, Op, 7848 DAG.getNode(ISD::SRL, dl, VT, Op, 7849 DAG.getConstant(4, dl, ShVT))), 7850 Mask0F); 7851 7852 if (Len <= 8) 7853 return Op; 7854 7855 // Avoid the multiply if we only have 2 bytes to add. 7856 // TODO: Only doing this for scalars because vectors weren't as obviously 7857 // improved. 7858 if (Len == 16 && !VT.isVector()) { 7859 // v = (v + (v >> 8)) & 0x00FF; 7860 return DAG.getNode(ISD::AND, dl, VT, 7861 DAG.getNode(ISD::ADD, dl, VT, Op, 7862 DAG.getNode(ISD::SRL, dl, VT, Op, 7863 DAG.getConstant(8, dl, ShVT))), 7864 DAG.getConstant(0xFF, dl, VT)); 7865 } 7866 7867 // v = (v * 0x01010101...) >> (Len - 8) 7868 SDValue Mask01 = 7869 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7870 return DAG.getNode(ISD::SRL, dl, VT, 7871 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7872 DAG.getConstant(Len - 8, dl, ShVT)); 7873 } 7874 7875 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7876 SDLoc dl(Node); 7877 EVT VT = Node->getValueType(0); 7878 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7879 SDValue Op = Node->getOperand(0); 7880 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7881 7882 // If the non-ZERO_UNDEF version is supported we can use that instead. 7883 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7884 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7885 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7886 7887 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7888 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7889 EVT SetCCVT = 7890 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7891 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7892 SDValue Zero = DAG.getConstant(0, dl, VT); 7893 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7894 return DAG.getSelect(dl, VT, SrcIsZero, 7895 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7896 } 7897 7898 // Only expand vector types if we have the appropriate vector bit operations. 7899 // This includes the operations needed to expand CTPOP if it isn't supported. 7900 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7901 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7902 !canExpandVectorCTPOP(*this, VT)) || 7903 !isOperationLegalOrCustom(ISD::SRL, VT) || 7904 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7905 return SDValue(); 7906 7907 // for now, we do this: 7908 // x = x | (x >> 1); 7909 // x = x | (x >> 2); 7910 // ... 7911 // x = x | (x >>16); 7912 // x = x | (x >>32); // for 64-bit input 7913 // return popcount(~x); 7914 // 7915 // Ref: "Hacker's Delight" by Henry Warren 7916 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 7917 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7918 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7919 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7920 } 7921 Op = DAG.getNOT(dl, Op, VT); 7922 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7923 } 7924 7925 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7926 SDLoc dl(Node); 7927 EVT VT = Node->getValueType(0); 7928 SDValue Op = Node->getOperand(0); 7929 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7930 7931 // If the non-ZERO_UNDEF version is supported we can use that instead. 7932 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7933 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7934 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7935 7936 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7937 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7938 EVT SetCCVT = 7939 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7940 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7941 SDValue Zero = DAG.getConstant(0, dl, VT); 7942 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7943 return DAG.getSelect(dl, VT, SrcIsZero, 7944 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7945 } 7946 7947 // Only expand vector types if we have the appropriate vector bit operations. 7948 // This includes the operations needed to expand CTPOP if it isn't supported. 7949 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7950 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7951 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7952 !canExpandVectorCTPOP(*this, VT)) || 7953 !isOperationLegalOrCustom(ISD::SUB, VT) || 7954 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7955 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7956 return SDValue(); 7957 7958 // for now, we use: { return popcount(~x & (x - 1)); } 7959 // unless the target has ctlz but not ctpop, in which case we use: 7960 // { return 32 - nlz(~x & (x-1)); } 7961 // Ref: "Hacker's Delight" by Henry Warren 7962 SDValue Tmp = DAG.getNode( 7963 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7964 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7965 7966 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7967 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7968 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7969 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7970 } 7971 7972 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7973 } 7974 7975 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7976 bool IsNegative) const { 7977 SDLoc dl(N); 7978 EVT VT = N->getValueType(0); 7979 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7980 SDValue Op = N->getOperand(0); 7981 7982 // abs(x) -> smax(x,sub(0,x)) 7983 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7984 isOperationLegal(ISD::SMAX, VT)) { 7985 SDValue Zero = DAG.getConstant(0, dl, VT); 7986 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7987 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7988 } 7989 7990 // abs(x) -> umin(x,sub(0,x)) 7991 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7992 isOperationLegal(ISD::UMIN, VT)) { 7993 SDValue Zero = DAG.getConstant(0, dl, VT); 7994 Op = DAG.getFreeze(Op); 7995 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7996 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7997 } 7998 7999 // 0 - abs(x) -> smin(x, sub(0,x)) 8000 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8001 isOperationLegal(ISD::SMIN, VT)) { 8002 Op = DAG.getFreeze(Op); 8003 SDValue Zero = DAG.getConstant(0, dl, VT); 8004 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8005 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8006 } 8007 8008 // Only expand vector types if we have the appropriate vector operations. 8009 if (VT.isVector() && 8010 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8011 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8012 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8013 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8014 return SDValue(); 8015 8016 Op = DAG.getFreeze(Op); 8017 SDValue Shift = 8018 DAG.getNode(ISD::SRA, dl, VT, Op, 8019 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8020 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8021 8022 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8023 if (!IsNegative) 8024 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8025 8026 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8027 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8028 } 8029 8030 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 8031 SDLoc dl(N); 8032 EVT VT = N->getValueType(0); 8033 SDValue Op = N->getOperand(0); 8034 8035 if (!VT.isSimple()) 8036 return SDValue(); 8037 8038 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8039 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8040 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8041 default: 8042 return SDValue(); 8043 case MVT::i16: 8044 // Use a rotate by 8. This can be further expanded if necessary. 8045 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8046 case MVT::i32: 8047 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8048 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8049 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8050 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8051 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8052 DAG.getConstant(0xFF0000, dl, VT)); 8053 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 8054 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8055 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8056 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8057 case MVT::i64: 8058 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8059 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8060 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8061 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8062 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8063 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8064 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8065 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8066 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 8067 DAG.getConstant(255ULL<<48, dl, VT)); 8068 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 8069 DAG.getConstant(255ULL<<40, dl, VT)); 8070 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 8071 DAG.getConstant(255ULL<<32, dl, VT)); 8072 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8073 DAG.getConstant(255ULL<<24, dl, VT)); 8074 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8075 DAG.getConstant(255ULL<<16, dl, VT)); 8076 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8077 DAG.getConstant(255ULL<<8 , dl, VT)); 8078 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8079 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8080 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8081 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8082 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8083 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8084 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8085 } 8086 } 8087 8088 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8089 SDLoc dl(N); 8090 EVT VT = N->getValueType(0); 8091 SDValue Op = N->getOperand(0); 8092 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8093 unsigned Sz = VT.getScalarSizeInBits(); 8094 8095 SDValue Tmp, Tmp2, Tmp3; 8096 8097 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8098 // and finally the i1 pairs. 8099 // TODO: We can easily support i4/i2 legal types if any target ever does. 8100 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8101 // Create the masks - repeating the pattern every byte. 8102 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8103 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8104 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8105 8106 // BSWAP if the type is wider than a single byte. 8107 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8108 8109 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8110 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8111 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8112 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8113 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8114 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8115 8116 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8117 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8118 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8119 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8120 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8121 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8122 8123 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8124 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8125 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8126 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8127 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8128 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8129 return Tmp; 8130 } 8131 8132 Tmp = DAG.getConstant(0, dl, VT); 8133 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8134 if (I < J) 8135 Tmp2 = 8136 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8137 else 8138 Tmp2 = 8139 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8140 8141 APInt Shift(Sz, 1); 8142 Shift <<= J; 8143 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8144 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8145 } 8146 8147 return Tmp; 8148 } 8149 8150 std::pair<SDValue, SDValue> 8151 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8152 SelectionDAG &DAG) const { 8153 SDLoc SL(LD); 8154 SDValue Chain = LD->getChain(); 8155 SDValue BasePTR = LD->getBasePtr(); 8156 EVT SrcVT = LD->getMemoryVT(); 8157 EVT DstVT = LD->getValueType(0); 8158 ISD::LoadExtType ExtType = LD->getExtensionType(); 8159 8160 if (SrcVT.isScalableVector()) 8161 report_fatal_error("Cannot scalarize scalable vector loads"); 8162 8163 unsigned NumElem = SrcVT.getVectorNumElements(); 8164 8165 EVT SrcEltVT = SrcVT.getScalarType(); 8166 EVT DstEltVT = DstVT.getScalarType(); 8167 8168 // A vector must always be stored in memory as-is, i.e. without any padding 8169 // between the elements, since various code depend on it, e.g. in the 8170 // handling of a bitcast of a vector type to int, which may be done with a 8171 // vector store followed by an integer load. A vector that does not have 8172 // elements that are byte-sized must therefore be stored as an integer 8173 // built out of the extracted vector elements. 8174 if (!SrcEltVT.isByteSized()) { 8175 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8176 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8177 8178 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8179 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8180 8181 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8182 SDValue SrcEltBitMask = DAG.getConstant( 8183 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8184 8185 // Load the whole vector and avoid masking off the top bits as it makes 8186 // the codegen worse. 8187 SDValue Load = 8188 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8189 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8190 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8191 8192 SmallVector<SDValue, 8> Vals; 8193 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8194 unsigned ShiftIntoIdx = 8195 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8196 SDValue ShiftAmount = 8197 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8198 LoadVT, SL, /*LegalTypes=*/false); 8199 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8200 SDValue Elt = 8201 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8202 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8203 8204 if (ExtType != ISD::NON_EXTLOAD) { 8205 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8206 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8207 } 8208 8209 Vals.push_back(Scalar); 8210 } 8211 8212 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8213 return std::make_pair(Value, Load.getValue(1)); 8214 } 8215 8216 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8217 assert(SrcEltVT.isByteSized()); 8218 8219 SmallVector<SDValue, 8> Vals; 8220 SmallVector<SDValue, 8> LoadChains; 8221 8222 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8223 SDValue ScalarLoad = 8224 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8225 LD->getPointerInfo().getWithOffset(Idx * Stride), 8226 SrcEltVT, LD->getOriginalAlign(), 8227 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8228 8229 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8230 8231 Vals.push_back(ScalarLoad.getValue(0)); 8232 LoadChains.push_back(ScalarLoad.getValue(1)); 8233 } 8234 8235 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8236 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8237 8238 return std::make_pair(Value, NewChain); 8239 } 8240 8241 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8242 SelectionDAG &DAG) const { 8243 SDLoc SL(ST); 8244 8245 SDValue Chain = ST->getChain(); 8246 SDValue BasePtr = ST->getBasePtr(); 8247 SDValue Value = ST->getValue(); 8248 EVT StVT = ST->getMemoryVT(); 8249 8250 if (StVT.isScalableVector()) 8251 report_fatal_error("Cannot scalarize scalable vector stores"); 8252 8253 // The type of the data we want to save 8254 EVT RegVT = Value.getValueType(); 8255 EVT RegSclVT = RegVT.getScalarType(); 8256 8257 // The type of data as saved in memory. 8258 EVT MemSclVT = StVT.getScalarType(); 8259 8260 unsigned NumElem = StVT.getVectorNumElements(); 8261 8262 // A vector must always be stored in memory as-is, i.e. without any padding 8263 // between the elements, since various code depend on it, e.g. in the 8264 // handling of a bitcast of a vector type to int, which may be done with a 8265 // vector store followed by an integer load. A vector that does not have 8266 // elements that are byte-sized must therefore be stored as an integer 8267 // built out of the extracted vector elements. 8268 if (!MemSclVT.isByteSized()) { 8269 unsigned NumBits = StVT.getSizeInBits(); 8270 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8271 8272 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8273 8274 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8275 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8276 DAG.getVectorIdxConstant(Idx, SL)); 8277 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8278 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8279 unsigned ShiftIntoIdx = 8280 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8281 SDValue ShiftAmount = 8282 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8283 SDValue ShiftedElt = 8284 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8285 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8286 } 8287 8288 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8289 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8290 ST->getAAInfo()); 8291 } 8292 8293 // Store Stride in bytes 8294 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8295 assert(Stride && "Zero stride!"); 8296 // Extract each of the elements from the original vector and save them into 8297 // memory individually. 8298 SmallVector<SDValue, 8> Stores; 8299 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8300 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8301 DAG.getVectorIdxConstant(Idx, SL)); 8302 8303 SDValue Ptr = 8304 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8305 8306 // This scalar TruncStore may be illegal, but we legalize it later. 8307 SDValue Store = DAG.getTruncStore( 8308 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8309 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8310 ST->getAAInfo()); 8311 8312 Stores.push_back(Store); 8313 } 8314 8315 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8316 } 8317 8318 std::pair<SDValue, SDValue> 8319 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8320 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8321 "unaligned indexed loads not implemented!"); 8322 SDValue Chain = LD->getChain(); 8323 SDValue Ptr = LD->getBasePtr(); 8324 EVT VT = LD->getValueType(0); 8325 EVT LoadedVT = LD->getMemoryVT(); 8326 SDLoc dl(LD); 8327 auto &MF = DAG.getMachineFunction(); 8328 8329 if (VT.isFloatingPoint() || VT.isVector()) { 8330 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8331 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8332 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8333 LoadedVT.isVector()) { 8334 // Scalarize the load and let the individual components be handled. 8335 return scalarizeVectorLoad(LD, DAG); 8336 } 8337 8338 // Expand to a (misaligned) integer load of the same size, 8339 // then bitconvert to floating point or vector. 8340 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8341 LD->getMemOperand()); 8342 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8343 if (LoadedVT != VT) 8344 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8345 ISD::ANY_EXTEND, dl, VT, Result); 8346 8347 return std::make_pair(Result, newLoad.getValue(1)); 8348 } 8349 8350 // Copy the value to a (aligned) stack slot using (unaligned) integer 8351 // loads and stores, then do a (aligned) load from the stack slot. 8352 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8353 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8354 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8355 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8356 8357 // Make sure the stack slot is also aligned for the register type. 8358 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8359 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8360 SmallVector<SDValue, 8> Stores; 8361 SDValue StackPtr = StackBase; 8362 unsigned Offset = 0; 8363 8364 EVT PtrVT = Ptr.getValueType(); 8365 EVT StackPtrVT = StackPtr.getValueType(); 8366 8367 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8368 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8369 8370 // Do all but one copies using the full register width. 8371 for (unsigned i = 1; i < NumRegs; i++) { 8372 // Load one integer register's worth from the original location. 8373 SDValue Load = DAG.getLoad( 8374 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8375 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8376 LD->getAAInfo()); 8377 // Follow the load with a store to the stack slot. Remember the store. 8378 Stores.push_back(DAG.getStore( 8379 Load.getValue(1), dl, Load, StackPtr, 8380 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8381 // Increment the pointers. 8382 Offset += RegBytes; 8383 8384 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8385 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8386 } 8387 8388 // The last copy may be partial. Do an extending load. 8389 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8390 8 * (LoadedBytes - Offset)); 8391 SDValue Load = 8392 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8393 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8394 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8395 LD->getAAInfo()); 8396 // Follow the load with a store to the stack slot. Remember the store. 8397 // On big-endian machines this requires a truncating store to ensure 8398 // that the bits end up in the right place. 8399 Stores.push_back(DAG.getTruncStore( 8400 Load.getValue(1), dl, Load, StackPtr, 8401 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8402 8403 // The order of the stores doesn't matter - say it with a TokenFactor. 8404 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8405 8406 // Finally, perform the original load only redirected to the stack slot. 8407 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8408 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8409 LoadedVT); 8410 8411 // Callers expect a MERGE_VALUES node. 8412 return std::make_pair(Load, TF); 8413 } 8414 8415 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8416 "Unaligned load of unsupported type."); 8417 8418 // Compute the new VT that is half the size of the old one. This is an 8419 // integer MVT. 8420 unsigned NumBits = LoadedVT.getSizeInBits(); 8421 EVT NewLoadedVT; 8422 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8423 NumBits >>= 1; 8424 8425 Align Alignment = LD->getOriginalAlign(); 8426 unsigned IncrementSize = NumBits / 8; 8427 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8428 8429 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8430 if (HiExtType == ISD::NON_EXTLOAD) 8431 HiExtType = ISD::ZEXTLOAD; 8432 8433 // Load the value in two parts 8434 SDValue Lo, Hi; 8435 if (DAG.getDataLayout().isLittleEndian()) { 8436 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8437 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8438 LD->getAAInfo()); 8439 8440 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8441 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8442 LD->getPointerInfo().getWithOffset(IncrementSize), 8443 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8444 LD->getAAInfo()); 8445 } else { 8446 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8447 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8448 LD->getAAInfo()); 8449 8450 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8451 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8452 LD->getPointerInfo().getWithOffset(IncrementSize), 8453 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8454 LD->getAAInfo()); 8455 } 8456 8457 // aggregate the two parts 8458 SDValue ShiftAmount = 8459 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8460 DAG.getDataLayout())); 8461 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8462 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8463 8464 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8465 Hi.getValue(1)); 8466 8467 return std::make_pair(Result, TF); 8468 } 8469 8470 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8471 SelectionDAG &DAG) const { 8472 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8473 "unaligned indexed stores not implemented!"); 8474 SDValue Chain = ST->getChain(); 8475 SDValue Ptr = ST->getBasePtr(); 8476 SDValue Val = ST->getValue(); 8477 EVT VT = Val.getValueType(); 8478 Align Alignment = ST->getOriginalAlign(); 8479 auto &MF = DAG.getMachineFunction(); 8480 EVT StoreMemVT = ST->getMemoryVT(); 8481 8482 SDLoc dl(ST); 8483 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8484 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8485 if (isTypeLegal(intVT)) { 8486 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8487 StoreMemVT.isVector()) { 8488 // Scalarize the store and let the individual components be handled. 8489 SDValue Result = scalarizeVectorStore(ST, DAG); 8490 return Result; 8491 } 8492 // Expand to a bitconvert of the value to the integer type of the 8493 // same size, then a (misaligned) int store. 8494 // FIXME: Does not handle truncating floating point stores! 8495 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8496 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8497 Alignment, ST->getMemOperand()->getFlags()); 8498 return Result; 8499 } 8500 // Do a (aligned) store to a stack slot, then copy from the stack slot 8501 // to the final destination using (unaligned) integer loads and stores. 8502 MVT RegVT = getRegisterType( 8503 *DAG.getContext(), 8504 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8505 EVT PtrVT = Ptr.getValueType(); 8506 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8507 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8508 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8509 8510 // Make sure the stack slot is also aligned for the register type. 8511 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8512 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8513 8514 // Perform the original store, only redirected to the stack slot. 8515 SDValue Store = DAG.getTruncStore( 8516 Chain, dl, Val, StackPtr, 8517 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8518 8519 EVT StackPtrVT = StackPtr.getValueType(); 8520 8521 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8522 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8523 SmallVector<SDValue, 8> Stores; 8524 unsigned Offset = 0; 8525 8526 // Do all but one copies using the full register width. 8527 for (unsigned i = 1; i < NumRegs; i++) { 8528 // Load one integer register's worth from the stack slot. 8529 SDValue Load = DAG.getLoad( 8530 RegVT, dl, Store, StackPtr, 8531 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8532 // Store it to the final location. Remember the store. 8533 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8534 ST->getPointerInfo().getWithOffset(Offset), 8535 ST->getOriginalAlign(), 8536 ST->getMemOperand()->getFlags())); 8537 // Increment the pointers. 8538 Offset += RegBytes; 8539 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8540 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8541 } 8542 8543 // The last store may be partial. Do a truncating store. On big-endian 8544 // machines this requires an extending load from the stack slot to ensure 8545 // that the bits are in the right place. 8546 EVT LoadMemVT = 8547 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8548 8549 // Load from the stack slot. 8550 SDValue Load = DAG.getExtLoad( 8551 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8552 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8553 8554 Stores.push_back( 8555 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8556 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8557 ST->getOriginalAlign(), 8558 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8559 // The order of the stores doesn't matter - say it with a TokenFactor. 8560 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8561 return Result; 8562 } 8563 8564 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8565 "Unaligned store of unknown type."); 8566 // Get the half-size VT 8567 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8568 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8569 unsigned IncrementSize = NumBits / 8; 8570 8571 // Divide the stored value in two parts. 8572 SDValue ShiftAmount = DAG.getConstant( 8573 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8574 SDValue Lo = Val; 8575 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8576 8577 // Store the two parts 8578 SDValue Store1, Store2; 8579 Store1 = DAG.getTruncStore(Chain, dl, 8580 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8581 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8582 ST->getMemOperand()->getFlags()); 8583 8584 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8585 Store2 = DAG.getTruncStore( 8586 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8587 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8588 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8589 8590 SDValue Result = 8591 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8592 return Result; 8593 } 8594 8595 SDValue 8596 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8597 const SDLoc &DL, EVT DataVT, 8598 SelectionDAG &DAG, 8599 bool IsCompressedMemory) const { 8600 SDValue Increment; 8601 EVT AddrVT = Addr.getValueType(); 8602 EVT MaskVT = Mask.getValueType(); 8603 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8604 "Incompatible types of Data and Mask"); 8605 if (IsCompressedMemory) { 8606 if (DataVT.isScalableVector()) 8607 report_fatal_error( 8608 "Cannot currently handle compressed memory with scalable vectors"); 8609 // Incrementing the pointer according to number of '1's in the mask. 8610 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8611 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8612 if (MaskIntVT.getSizeInBits() < 32) { 8613 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8614 MaskIntVT = MVT::i32; 8615 } 8616 8617 // Count '1's with POPCNT. 8618 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8619 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8620 // Scale is an element size in bytes. 8621 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8622 AddrVT); 8623 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8624 } else if (DataVT.isScalableVector()) { 8625 Increment = DAG.getVScale(DL, AddrVT, 8626 APInt(AddrVT.getFixedSizeInBits(), 8627 DataVT.getStoreSize().getKnownMinSize())); 8628 } else 8629 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8630 8631 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8632 } 8633 8634 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8635 EVT VecVT, const SDLoc &dl, 8636 ElementCount SubEC) { 8637 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8638 "Cannot index a scalable vector within a fixed-width vector"); 8639 8640 unsigned NElts = VecVT.getVectorMinNumElements(); 8641 unsigned NumSubElts = SubEC.getKnownMinValue(); 8642 EVT IdxVT = Idx.getValueType(); 8643 8644 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8645 // If this is a constant index and we know the value plus the number of the 8646 // elements in the subvector minus one is less than the minimum number of 8647 // elements then it's safe to return Idx. 8648 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8649 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8650 return Idx; 8651 SDValue VS = 8652 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8653 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8654 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8655 DAG.getConstant(NumSubElts, dl, IdxVT)); 8656 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8657 } 8658 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8659 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8660 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8661 DAG.getConstant(Imm, dl, IdxVT)); 8662 } 8663 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8664 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8665 DAG.getConstant(MaxIndex, dl, IdxVT)); 8666 } 8667 8668 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8669 SDValue VecPtr, EVT VecVT, 8670 SDValue Index) const { 8671 return getVectorSubVecPointer( 8672 DAG, VecPtr, VecVT, 8673 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8674 Index); 8675 } 8676 8677 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8678 SDValue VecPtr, EVT VecVT, 8679 EVT SubVecVT, 8680 SDValue Index) const { 8681 SDLoc dl(Index); 8682 // Make sure the index type is big enough to compute in. 8683 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8684 8685 EVT EltVT = VecVT.getVectorElementType(); 8686 8687 // Calculate the element offset and add it to the pointer. 8688 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8689 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8690 "Converting bits to bytes lost precision"); 8691 assert(SubVecVT.getVectorElementType() == EltVT && 8692 "Sub-vector must be a vector with matching element type"); 8693 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8694 SubVecVT.getVectorElementCount()); 8695 8696 EVT IdxVT = Index.getValueType(); 8697 if (SubVecVT.isScalableVector()) 8698 Index = 8699 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8700 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8701 8702 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8703 DAG.getConstant(EltSize, dl, IdxVT)); 8704 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8705 } 8706 8707 //===----------------------------------------------------------------------===// 8708 // Implementation of Emulated TLS Model 8709 //===----------------------------------------------------------------------===// 8710 8711 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8712 SelectionDAG &DAG) const { 8713 // Access to address of TLS varialbe xyz is lowered to a function call: 8714 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8715 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8716 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8717 SDLoc dl(GA); 8718 8719 ArgListTy Args; 8720 ArgListEntry Entry; 8721 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8722 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8723 StringRef EmuTlsVarName(NameString); 8724 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8725 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8726 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8727 Entry.Ty = VoidPtrType; 8728 Args.push_back(Entry); 8729 8730 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8731 8732 TargetLowering::CallLoweringInfo CLI(DAG); 8733 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8734 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8735 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8736 8737 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8738 // At last for X86 targets, maybe good for other targets too? 8739 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8740 MFI.setAdjustsStack(true); // Is this only for X86 target? 8741 MFI.setHasCalls(true); 8742 8743 assert((GA->getOffset() == 0) && 8744 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8745 return CallResult.first; 8746 } 8747 8748 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8749 SelectionDAG &DAG) const { 8750 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8751 if (!isCtlzFast()) 8752 return SDValue(); 8753 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8754 SDLoc dl(Op); 8755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8756 if (C->isZero() && CC == ISD::SETEQ) { 8757 EVT VT = Op.getOperand(0).getValueType(); 8758 SDValue Zext = Op.getOperand(0); 8759 if (VT.bitsLT(MVT::i32)) { 8760 VT = MVT::i32; 8761 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8762 } 8763 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8764 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8765 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8766 DAG.getConstant(Log2b, dl, MVT::i32)); 8767 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8768 } 8769 } 8770 return SDValue(); 8771 } 8772 8773 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8774 SDValue Op0 = Node->getOperand(0); 8775 SDValue Op1 = Node->getOperand(1); 8776 EVT VT = Op0.getValueType(); 8777 unsigned Opcode = Node->getOpcode(); 8778 SDLoc DL(Node); 8779 8780 // umin(x,y) -> sub(x,usubsat(x,y)) 8781 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8782 isOperationLegal(ISD::USUBSAT, VT)) { 8783 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8784 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8785 } 8786 8787 // umax(x,y) -> add(x,usubsat(y,x)) 8788 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8789 isOperationLegal(ISD::USUBSAT, VT)) { 8790 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8791 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8792 } 8793 8794 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8795 ISD::CondCode CC; 8796 switch (Opcode) { 8797 default: llvm_unreachable("How did we get here?"); 8798 case ISD::SMAX: CC = ISD::SETGT; break; 8799 case ISD::SMIN: CC = ISD::SETLT; break; 8800 case ISD::UMAX: CC = ISD::SETUGT; break; 8801 case ISD::UMIN: CC = ISD::SETULT; break; 8802 } 8803 8804 // FIXME: Should really try to split the vector in case it's legal on a 8805 // subvector. 8806 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8807 return DAG.UnrollVectorOp(Node); 8808 8809 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8810 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8811 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8812 } 8813 8814 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8815 unsigned Opcode = Node->getOpcode(); 8816 SDValue LHS = Node->getOperand(0); 8817 SDValue RHS = Node->getOperand(1); 8818 EVT VT = LHS.getValueType(); 8819 SDLoc dl(Node); 8820 8821 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8822 assert(VT.isInteger() && "Expected operands to be integers"); 8823 8824 // usub.sat(a, b) -> umax(a, b) - b 8825 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8826 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8827 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8828 } 8829 8830 // uadd.sat(a, b) -> umin(a, ~b) + b 8831 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8832 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8833 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8834 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8835 } 8836 8837 unsigned OverflowOp; 8838 switch (Opcode) { 8839 case ISD::SADDSAT: 8840 OverflowOp = ISD::SADDO; 8841 break; 8842 case ISD::UADDSAT: 8843 OverflowOp = ISD::UADDO; 8844 break; 8845 case ISD::SSUBSAT: 8846 OverflowOp = ISD::SSUBO; 8847 break; 8848 case ISD::USUBSAT: 8849 OverflowOp = ISD::USUBO; 8850 break; 8851 default: 8852 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8853 "addition or subtraction node."); 8854 } 8855 8856 // FIXME: Should really try to split the vector in case it's legal on a 8857 // subvector. 8858 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8859 return DAG.UnrollVectorOp(Node); 8860 8861 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8862 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8863 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8864 SDValue SumDiff = Result.getValue(0); 8865 SDValue Overflow = Result.getValue(1); 8866 SDValue Zero = DAG.getConstant(0, dl, VT); 8867 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8868 8869 if (Opcode == ISD::UADDSAT) { 8870 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8871 // (LHS + RHS) | OverflowMask 8872 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8873 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8874 } 8875 // Overflow ? 0xffff.... : (LHS + RHS) 8876 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8877 } 8878 8879 if (Opcode == ISD::USUBSAT) { 8880 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8881 // (LHS - RHS) & ~OverflowMask 8882 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8883 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8884 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8885 } 8886 // Overflow ? 0 : (LHS - RHS) 8887 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8888 } 8889 8890 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8891 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8892 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8893 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8894 DAG.getConstant(BitWidth - 1, dl, VT)); 8895 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8896 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8897 } 8898 8899 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8900 unsigned Opcode = Node->getOpcode(); 8901 bool IsSigned = Opcode == ISD::SSHLSAT; 8902 SDValue LHS = Node->getOperand(0); 8903 SDValue RHS = Node->getOperand(1); 8904 EVT VT = LHS.getValueType(); 8905 SDLoc dl(Node); 8906 8907 assert((Node->getOpcode() == ISD::SSHLSAT || 8908 Node->getOpcode() == ISD::USHLSAT) && 8909 "Expected a SHLSAT opcode"); 8910 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8911 assert(VT.isInteger() && "Expected operands to be integers"); 8912 8913 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8914 8915 unsigned BW = VT.getScalarSizeInBits(); 8916 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8917 SDValue Orig = 8918 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8919 8920 SDValue SatVal; 8921 if (IsSigned) { 8922 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8923 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8924 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8925 SatMin, SatMax, ISD::SETLT); 8926 } else { 8927 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8928 } 8929 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8930 8931 return Result; 8932 } 8933 8934 SDValue 8935 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8936 assert((Node->getOpcode() == ISD::SMULFIX || 8937 Node->getOpcode() == ISD::UMULFIX || 8938 Node->getOpcode() == ISD::SMULFIXSAT || 8939 Node->getOpcode() == ISD::UMULFIXSAT) && 8940 "Expected a fixed point multiplication opcode"); 8941 8942 SDLoc dl(Node); 8943 SDValue LHS = Node->getOperand(0); 8944 SDValue RHS = Node->getOperand(1); 8945 EVT VT = LHS.getValueType(); 8946 unsigned Scale = Node->getConstantOperandVal(2); 8947 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8948 Node->getOpcode() == ISD::UMULFIXSAT); 8949 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8950 Node->getOpcode() == ISD::SMULFIXSAT); 8951 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8952 unsigned VTSize = VT.getScalarSizeInBits(); 8953 8954 if (!Scale) { 8955 // [us]mul.fix(a, b, 0) -> mul(a, b) 8956 if (!Saturating) { 8957 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8958 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8959 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8960 SDValue Result = 8961 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8962 SDValue Product = Result.getValue(0); 8963 SDValue Overflow = Result.getValue(1); 8964 SDValue Zero = DAG.getConstant(0, dl, VT); 8965 8966 APInt MinVal = APInt::getSignedMinValue(VTSize); 8967 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8968 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8969 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8970 // Xor the inputs, if resulting sign bit is 0 the product will be 8971 // positive, else negative. 8972 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8973 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8974 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8975 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8976 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8977 SDValue Result = 8978 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8979 SDValue Product = Result.getValue(0); 8980 SDValue Overflow = Result.getValue(1); 8981 8982 APInt MaxVal = APInt::getMaxValue(VTSize); 8983 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8984 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8985 } 8986 } 8987 8988 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8989 "Expected scale to be less than the number of bits if signed or at " 8990 "most the number of bits if unsigned."); 8991 assert(LHS.getValueType() == RHS.getValueType() && 8992 "Expected both operands to be the same type"); 8993 8994 // Get the upper and lower bits of the result. 8995 SDValue Lo, Hi; 8996 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8997 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8998 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8999 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 9000 Lo = Result.getValue(0); 9001 Hi = Result.getValue(1); 9002 } else if (isOperationLegalOrCustom(HiOp, VT)) { 9003 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9004 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 9005 } else if (VT.isVector()) { 9006 return SDValue(); 9007 } else { 9008 report_fatal_error("Unable to expand fixed point multiplication."); 9009 } 9010 9011 if (Scale == VTSize) 9012 // Result is just the top half since we'd be shifting by the width of the 9013 // operand. Overflow impossible so this works for both UMULFIX and 9014 // UMULFIXSAT. 9015 return Hi; 9016 9017 // The result will need to be shifted right by the scale since both operands 9018 // are scaled. The result is given to us in 2 halves, so we only want part of 9019 // both in the result. 9020 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9021 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 9022 DAG.getConstant(Scale, dl, ShiftTy)); 9023 if (!Saturating) 9024 return Result; 9025 9026 if (!Signed) { 9027 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 9028 // widened multiplication) aren't all zeroes. 9029 9030 // Saturate to max if ((Hi >> Scale) != 0), 9031 // which is the same as if (Hi > ((1 << Scale) - 1)) 9032 APInt MaxVal = APInt::getMaxValue(VTSize); 9033 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 9034 dl, VT); 9035 Result = DAG.getSelectCC(dl, Hi, LowMask, 9036 DAG.getConstant(MaxVal, dl, VT), Result, 9037 ISD::SETUGT); 9038 9039 return Result; 9040 } 9041 9042 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 9043 // widened multiplication) aren't all ones or all zeroes. 9044 9045 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 9046 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 9047 9048 if (Scale == 0) { 9049 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 9050 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 9051 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 9052 // Saturated to SatMin if wide product is negative, and SatMax if wide 9053 // product is positive ... 9054 SDValue Zero = DAG.getConstant(0, dl, VT); 9055 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 9056 ISD::SETLT); 9057 // ... but only if we overflowed. 9058 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9059 } 9060 9061 // We handled Scale==0 above so all the bits to examine is in Hi. 9062 9063 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9064 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9065 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9066 dl, VT); 9067 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9068 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9069 // which is the same as if (HI < (-1 << (Scale - 1)) 9070 SDValue HighMask = 9071 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9072 dl, VT); 9073 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9074 return Result; 9075 } 9076 9077 SDValue 9078 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9079 SDValue LHS, SDValue RHS, 9080 unsigned Scale, SelectionDAG &DAG) const { 9081 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9082 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9083 "Expected a fixed point division opcode"); 9084 9085 EVT VT = LHS.getValueType(); 9086 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9087 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9088 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9089 9090 // If there is enough room in the type to upscale the LHS or downscale the 9091 // RHS before the division, we can perform it in this type without having to 9092 // resize. For signed operations, the LHS headroom is the number of 9093 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9094 // The headroom for the RHS is the number of trailing zeroes. 9095 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9096 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9097 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9098 9099 // For signed saturating operations, we need to be able to detect true integer 9100 // division overflow; that is, when you have MIN / -EPS. However, this 9101 // is undefined behavior and if we emit divisions that could take such 9102 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9103 // example). 9104 // Avoid this by requiring an extra bit so that we never get this case. 9105 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9106 // signed saturating division, we need to emit a whopping 32-bit division. 9107 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9108 return SDValue(); 9109 9110 unsigned LHSShift = std::min(LHSLead, Scale); 9111 unsigned RHSShift = Scale - LHSShift; 9112 9113 // At this point, we know that if we shift the LHS up by LHSShift and the 9114 // RHS down by RHSShift, we can emit a regular division with a final scaling 9115 // factor of Scale. 9116 9117 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9118 if (LHSShift) 9119 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9120 DAG.getConstant(LHSShift, dl, ShiftTy)); 9121 if (RHSShift) 9122 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9123 DAG.getConstant(RHSShift, dl, ShiftTy)); 9124 9125 SDValue Quot; 9126 if (Signed) { 9127 // For signed operations, if the resulting quotient is negative and the 9128 // remainder is nonzero, subtract 1 from the quotient to round towards 9129 // negative infinity. 9130 SDValue Rem; 9131 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9132 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9133 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9134 if (isTypeLegal(VT) && 9135 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9136 Quot = DAG.getNode(ISD::SDIVREM, dl, 9137 DAG.getVTList(VT, VT), 9138 LHS, RHS); 9139 Rem = Quot.getValue(1); 9140 Quot = Quot.getValue(0); 9141 } else { 9142 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9143 LHS, RHS); 9144 Rem = DAG.getNode(ISD::SREM, dl, VT, 9145 LHS, RHS); 9146 } 9147 SDValue Zero = DAG.getConstant(0, dl, VT); 9148 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9149 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9150 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9151 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9152 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9153 DAG.getConstant(1, dl, VT)); 9154 Quot = DAG.getSelect(dl, VT, 9155 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9156 Sub1, Quot); 9157 } else 9158 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9159 LHS, RHS); 9160 9161 return Quot; 9162 } 9163 9164 void TargetLowering::expandUADDSUBO( 9165 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9166 SDLoc dl(Node); 9167 SDValue LHS = Node->getOperand(0); 9168 SDValue RHS = Node->getOperand(1); 9169 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9170 9171 // If ADD/SUBCARRY is legal, use that instead. 9172 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9173 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9174 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9175 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9176 { LHS, RHS, CarryIn }); 9177 Result = SDValue(NodeCarry.getNode(), 0); 9178 Overflow = SDValue(NodeCarry.getNode(), 1); 9179 return; 9180 } 9181 9182 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9183 LHS.getValueType(), LHS, RHS); 9184 9185 EVT ResultType = Node->getValueType(1); 9186 EVT SetCCType = getSetCCResultType( 9187 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9188 SDValue SetCC; 9189 if (IsAdd && isOneConstant(RHS)) { 9190 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9191 // the live range of X. We assume comparing with 0 is cheap. 9192 // The general case (X + C) < C is not necessarily beneficial. Although we 9193 // reduce the live range of X, we may introduce the materialization of 9194 // constant C. 9195 SetCC = 9196 DAG.getSetCC(dl, SetCCType, Result, 9197 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9198 } else { 9199 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9200 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9201 } 9202 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9203 } 9204 9205 void TargetLowering::expandSADDSUBO( 9206 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9207 SDLoc dl(Node); 9208 SDValue LHS = Node->getOperand(0); 9209 SDValue RHS = Node->getOperand(1); 9210 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9211 9212 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9213 LHS.getValueType(), LHS, RHS); 9214 9215 EVT ResultType = Node->getValueType(1); 9216 EVT OType = getSetCCResultType( 9217 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9218 9219 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9220 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9221 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9222 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9223 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9224 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9225 return; 9226 } 9227 9228 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9229 9230 // For an addition, the result should be less than one of the operands (LHS) 9231 // if and only if the other operand (RHS) is negative, otherwise there will 9232 // be overflow. 9233 // For a subtraction, the result should be less than one of the operands 9234 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9235 // otherwise there will be overflow. 9236 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9237 SDValue ConditionRHS = 9238 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9239 9240 Overflow = DAG.getBoolExtOrTrunc( 9241 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9242 ResultType, ResultType); 9243 } 9244 9245 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9246 SDValue &Overflow, SelectionDAG &DAG) const { 9247 SDLoc dl(Node); 9248 EVT VT = Node->getValueType(0); 9249 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9250 SDValue LHS = Node->getOperand(0); 9251 SDValue RHS = Node->getOperand(1); 9252 bool isSigned = Node->getOpcode() == ISD::SMULO; 9253 9254 // For power-of-two multiplications we can use a simpler shift expansion. 9255 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9256 const APInt &C = RHSC->getAPIntValue(); 9257 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9258 if (C.isPowerOf2()) { 9259 // smulo(x, signed_min) is same as umulo(x, signed_min). 9260 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9261 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9262 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9263 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9264 Overflow = DAG.getSetCC(dl, SetCCVT, 9265 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9266 dl, VT, Result, ShiftAmt), 9267 LHS, ISD::SETNE); 9268 return true; 9269 } 9270 } 9271 9272 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9273 if (VT.isVector()) 9274 WideVT = 9275 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9276 9277 SDValue BottomHalf; 9278 SDValue TopHalf; 9279 static const unsigned Ops[2][3] = 9280 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9281 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9282 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9283 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9284 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9285 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9286 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9287 RHS); 9288 TopHalf = BottomHalf.getValue(1); 9289 } else if (isTypeLegal(WideVT)) { 9290 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9291 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9292 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9293 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9294 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9295 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9296 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9297 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9298 } else { 9299 if (VT.isVector()) 9300 return false; 9301 9302 // We can fall back to a libcall with an illegal type for the MUL if we 9303 // have a libcall big enough. 9304 // Also, we can fall back to a division in some cases, but that's a big 9305 // performance hit in the general case. 9306 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9307 if (WideVT == MVT::i16) 9308 LC = RTLIB::MUL_I16; 9309 else if (WideVT == MVT::i32) 9310 LC = RTLIB::MUL_I32; 9311 else if (WideVT == MVT::i64) 9312 LC = RTLIB::MUL_I64; 9313 else if (WideVT == MVT::i128) 9314 LC = RTLIB::MUL_I128; 9315 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9316 9317 SDValue HiLHS; 9318 SDValue HiRHS; 9319 if (isSigned) { 9320 // The high part is obtained by SRA'ing all but one of the bits of low 9321 // part. 9322 unsigned LoSize = VT.getFixedSizeInBits(); 9323 HiLHS = 9324 DAG.getNode(ISD::SRA, dl, VT, LHS, 9325 DAG.getConstant(LoSize - 1, dl, 9326 getPointerTy(DAG.getDataLayout()))); 9327 HiRHS = 9328 DAG.getNode(ISD::SRA, dl, VT, RHS, 9329 DAG.getConstant(LoSize - 1, dl, 9330 getPointerTy(DAG.getDataLayout()))); 9331 } else { 9332 HiLHS = DAG.getConstant(0, dl, VT); 9333 HiRHS = DAG.getConstant(0, dl, VT); 9334 } 9335 9336 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9337 // pre-lowered to the correct types. This all depends upon WideVT not 9338 // being a legal type for the architecture and thus has to be split to 9339 // two arguments. 9340 SDValue Ret; 9341 TargetLowering::MakeLibCallOptions CallOptions; 9342 CallOptions.setSExt(isSigned); 9343 CallOptions.setIsPostTypeLegalization(true); 9344 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9345 // Halves of WideVT are packed into registers in different order 9346 // depending on platform endianness. This is usually handled by 9347 // the C calling convention, but we can't defer to it in 9348 // the legalizer. 9349 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9350 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9351 } else { 9352 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9353 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9354 } 9355 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9356 "Ret value is a collection of constituent nodes holding result."); 9357 if (DAG.getDataLayout().isLittleEndian()) { 9358 // Same as above. 9359 BottomHalf = Ret.getOperand(0); 9360 TopHalf = Ret.getOperand(1); 9361 } else { 9362 BottomHalf = Ret.getOperand(1); 9363 TopHalf = Ret.getOperand(0); 9364 } 9365 } 9366 9367 Result = BottomHalf; 9368 if (isSigned) { 9369 SDValue ShiftAmt = DAG.getConstant( 9370 VT.getScalarSizeInBits() - 1, dl, 9371 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9372 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9373 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9374 } else { 9375 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9376 DAG.getConstant(0, dl, VT), ISD::SETNE); 9377 } 9378 9379 // Truncate the result if SetCC returns a larger type than needed. 9380 EVT RType = Node->getValueType(1); 9381 if (RType.bitsLT(Overflow.getValueType())) 9382 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9383 9384 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9385 "Unexpected result type for S/UMULO legalization"); 9386 return true; 9387 } 9388 9389 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9390 SDLoc dl(Node); 9391 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9392 SDValue Op = Node->getOperand(0); 9393 EVT VT = Op.getValueType(); 9394 9395 if (VT.isScalableVector()) 9396 report_fatal_error( 9397 "Expanding reductions for scalable vectors is undefined."); 9398 9399 // Try to use a shuffle reduction for power of two vectors. 9400 if (VT.isPow2VectorType()) { 9401 while (VT.getVectorNumElements() > 1) { 9402 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9403 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9404 break; 9405 9406 SDValue Lo, Hi; 9407 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9408 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9409 VT = HalfVT; 9410 } 9411 } 9412 9413 EVT EltVT = VT.getVectorElementType(); 9414 unsigned NumElts = VT.getVectorNumElements(); 9415 9416 SmallVector<SDValue, 8> Ops; 9417 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9418 9419 SDValue Res = Ops[0]; 9420 for (unsigned i = 1; i < NumElts; i++) 9421 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9422 9423 // Result type may be wider than element type. 9424 if (EltVT != Node->getValueType(0)) 9425 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9426 return Res; 9427 } 9428 9429 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9430 SDLoc dl(Node); 9431 SDValue AccOp = Node->getOperand(0); 9432 SDValue VecOp = Node->getOperand(1); 9433 SDNodeFlags Flags = Node->getFlags(); 9434 9435 EVT VT = VecOp.getValueType(); 9436 EVT EltVT = VT.getVectorElementType(); 9437 9438 if (VT.isScalableVector()) 9439 report_fatal_error( 9440 "Expanding reductions for scalable vectors is undefined."); 9441 9442 unsigned NumElts = VT.getVectorNumElements(); 9443 9444 SmallVector<SDValue, 8> Ops; 9445 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9446 9447 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9448 9449 SDValue Res = AccOp; 9450 for (unsigned i = 0; i < NumElts; i++) 9451 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9452 9453 return Res; 9454 } 9455 9456 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9457 SelectionDAG &DAG) const { 9458 EVT VT = Node->getValueType(0); 9459 SDLoc dl(Node); 9460 bool isSigned = Node->getOpcode() == ISD::SREM; 9461 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9462 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9463 SDValue Dividend = Node->getOperand(0); 9464 SDValue Divisor = Node->getOperand(1); 9465 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9466 SDVTList VTs = DAG.getVTList(VT, VT); 9467 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9468 return true; 9469 } 9470 if (isOperationLegalOrCustom(DivOpc, VT)) { 9471 // X % Y -> X-X/Y*Y 9472 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9473 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9474 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9475 return true; 9476 } 9477 return false; 9478 } 9479 9480 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9481 SelectionDAG &DAG) const { 9482 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9483 SDLoc dl(SDValue(Node, 0)); 9484 SDValue Src = Node->getOperand(0); 9485 9486 // DstVT is the result type, while SatVT is the size to which we saturate 9487 EVT SrcVT = Src.getValueType(); 9488 EVT DstVT = Node->getValueType(0); 9489 9490 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9491 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9492 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9493 assert(SatWidth <= DstWidth && 9494 "Expected saturation width smaller than result width"); 9495 9496 // Determine minimum and maximum integer values and their corresponding 9497 // floating-point values. 9498 APInt MinInt, MaxInt; 9499 if (IsSigned) { 9500 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9501 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9502 } else { 9503 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9504 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9505 } 9506 9507 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9508 // libcall emission cannot handle this. Large result types will fail. 9509 if (SrcVT == MVT::f16) { 9510 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9511 SrcVT = Src.getValueType(); 9512 } 9513 9514 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9515 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9516 9517 APFloat::opStatus MinStatus = 9518 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9519 APFloat::opStatus MaxStatus = 9520 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9521 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9522 !(MaxStatus & APFloat::opStatus::opInexact); 9523 9524 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9525 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9526 9527 // If the integer bounds are exactly representable as floats and min/max are 9528 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9529 // of comparisons and selects. 9530 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9531 isOperationLegal(ISD::FMAXNUM, SrcVT); 9532 if (AreExactFloatBounds && MinMaxLegal) { 9533 SDValue Clamped = Src; 9534 9535 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9536 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9537 // Clamp by MaxFloat from above. NaN cannot occur. 9538 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9539 // Convert clamped value to integer. 9540 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9541 dl, DstVT, Clamped); 9542 9543 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9544 // which will cast to zero. 9545 if (!IsSigned) 9546 return FpToInt; 9547 9548 // Otherwise, select 0 if Src is NaN. 9549 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9550 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9551 ISD::CondCode::SETUO); 9552 } 9553 9554 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9555 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9556 9557 // Result of direct conversion. The assumption here is that the operation is 9558 // non-trapping and it's fine to apply it to an out-of-range value if we 9559 // select it away later. 9560 SDValue FpToInt = 9561 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9562 9563 SDValue Select = FpToInt; 9564 9565 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9566 // MinInt if Src is NaN. 9567 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9568 ISD::CondCode::SETULT); 9569 // If Src OGT MaxFloat, select MaxInt. 9570 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9571 ISD::CondCode::SETOGT); 9572 9573 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9574 // is already zero. 9575 if (!IsSigned) 9576 return Select; 9577 9578 // Otherwise, select 0 if Src is NaN. 9579 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9580 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9581 } 9582 9583 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9584 SelectionDAG &DAG) const { 9585 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9586 assert(Node->getValueType(0).isScalableVector() && 9587 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9588 9589 EVT VT = Node->getValueType(0); 9590 SDValue V1 = Node->getOperand(0); 9591 SDValue V2 = Node->getOperand(1); 9592 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9593 SDLoc DL(Node); 9594 9595 // Expand through memory thusly: 9596 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9597 // Store V1, Ptr 9598 // Store V2, Ptr + sizeof(V1) 9599 // If (Imm < 0) 9600 // TrailingElts = -Imm 9601 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9602 // else 9603 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9604 // Res = Load Ptr 9605 9606 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9607 9608 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9609 VT.getVectorElementCount() * 2); 9610 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9611 EVT PtrVT = StackPtr.getValueType(); 9612 auto &MF = DAG.getMachineFunction(); 9613 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9614 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9615 9616 // Store the lo part of CONCAT_VECTORS(V1, V2) 9617 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9618 // Store the hi part of CONCAT_VECTORS(V1, V2) 9619 SDValue OffsetToV2 = DAG.getVScale( 9620 DL, PtrVT, 9621 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9622 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9623 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9624 9625 if (Imm >= 0) { 9626 // Load back the required element. getVectorElementPointer takes care of 9627 // clamping the index if it's out-of-bounds. 9628 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9629 // Load the spliced result 9630 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9631 MachinePointerInfo::getUnknownStack(MF)); 9632 } 9633 9634 uint64_t TrailingElts = -Imm; 9635 9636 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9637 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9638 SDValue TrailingBytes = 9639 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9640 9641 if (TrailingElts > VT.getVectorMinNumElements()) { 9642 SDValue VLBytes = DAG.getVScale( 9643 DL, PtrVT, 9644 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9645 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9646 } 9647 9648 // Calculate the start address of the spliced result. 9649 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9650 9651 // Load the spliced result 9652 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9653 MachinePointerInfo::getUnknownStack(MF)); 9654 } 9655 9656 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9657 SDValue &LHS, SDValue &RHS, 9658 SDValue &CC, SDValue Mask, 9659 SDValue EVL, bool &NeedInvert, 9660 const SDLoc &dl, SDValue &Chain, 9661 bool IsSignaling) const { 9662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9663 MVT OpVT = LHS.getSimpleValueType(); 9664 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9665 NeedInvert = false; 9666 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9667 bool IsNonVP = !EVL; 9668 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9669 default: 9670 llvm_unreachable("Unknown condition code action!"); 9671 case TargetLowering::Legal: 9672 // Nothing to do. 9673 break; 9674 case TargetLowering::Expand: { 9675 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9676 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9677 std::swap(LHS, RHS); 9678 CC = DAG.getCondCode(InvCC); 9679 return true; 9680 } 9681 // Swapping operands didn't work. Try inverting the condition. 9682 bool NeedSwap = false; 9683 InvCC = getSetCCInverse(CCCode, OpVT); 9684 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9685 // If inverting the condition is not enough, try swapping operands 9686 // on top of it. 9687 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9688 NeedSwap = true; 9689 } 9690 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9691 CC = DAG.getCondCode(InvCC); 9692 NeedInvert = true; 9693 if (NeedSwap) 9694 std::swap(LHS, RHS); 9695 return true; 9696 } 9697 9698 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9699 unsigned Opc = 0; 9700 switch (CCCode) { 9701 default: 9702 llvm_unreachable("Don't know how to expand this condition!"); 9703 case ISD::SETUO: 9704 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9705 CC1 = ISD::SETUNE; 9706 CC2 = ISD::SETUNE; 9707 Opc = ISD::OR; 9708 break; 9709 } 9710 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9711 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9712 NeedInvert = true; 9713 LLVM_FALLTHROUGH; 9714 case ISD::SETO: 9715 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9716 "If SETO is expanded, SETOEQ must be legal!"); 9717 CC1 = ISD::SETOEQ; 9718 CC2 = ISD::SETOEQ; 9719 Opc = ISD::AND; 9720 break; 9721 case ISD::SETONE: 9722 case ISD::SETUEQ: 9723 // If the SETUO or SETO CC isn't legal, we might be able to use 9724 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9725 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9726 // the operands. 9727 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9728 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9729 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9730 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9731 CC1 = ISD::SETOGT; 9732 CC2 = ISD::SETOLT; 9733 Opc = ISD::OR; 9734 NeedInvert = ((unsigned)CCCode & 0x8U); 9735 break; 9736 } 9737 LLVM_FALLTHROUGH; 9738 case ISD::SETOEQ: 9739 case ISD::SETOGT: 9740 case ISD::SETOGE: 9741 case ISD::SETOLT: 9742 case ISD::SETOLE: 9743 case ISD::SETUNE: 9744 case ISD::SETUGT: 9745 case ISD::SETUGE: 9746 case ISD::SETULT: 9747 case ISD::SETULE: 9748 // If we are floating point, assign and break, otherwise fall through. 9749 if (!OpVT.isInteger()) { 9750 // We can use the 4th bit to tell if we are the unordered 9751 // or ordered version of the opcode. 9752 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9753 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9754 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9755 break; 9756 } 9757 // Fallthrough if we are unsigned integer. 9758 LLVM_FALLTHROUGH; 9759 case ISD::SETLE: 9760 case ISD::SETGT: 9761 case ISD::SETGE: 9762 case ISD::SETLT: 9763 case ISD::SETNE: 9764 case ISD::SETEQ: 9765 // If all combinations of inverting the condition and swapping operands 9766 // didn't work then we have no means to expand the condition. 9767 llvm_unreachable("Don't know how to expand this condition!"); 9768 } 9769 9770 SDValue SetCC1, SetCC2; 9771 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9772 // If we aren't the ordered or unorder operation, 9773 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9774 if (IsNonVP) { 9775 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9776 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9777 } else { 9778 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9779 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9780 } 9781 } else { 9782 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9783 if (IsNonVP) { 9784 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9785 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9786 } else { 9787 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9788 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9789 } 9790 } 9791 if (Chain) 9792 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9793 SetCC2.getValue(1)); 9794 if (IsNonVP) 9795 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9796 else { 9797 // Transform the binary opcode to the VP equivalent. 9798 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9799 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9800 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9801 } 9802 RHS = SDValue(); 9803 CC = SDValue(); 9804 return true; 9805 } 9806 } 9807 return false; 9808 } 9809