1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlign(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-1 bits are only known if set in both the LHS & RHS.
1175     Known.One &= Known2.One;
1176     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1177     Known.Zero |= Known2.Zero;
1178     break;
1179   }
1180   case ISD::OR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1189                              Known2, TLO, Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'or'.
1209     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the RHS is a constant, see if we can simplify it.
1214     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1215       return true;
1216     // If the operation can be done in a smaller type, do so.
1217     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1218       return true;
1219 
1220     // Output known-0 bits are only known if clear in both the LHS & RHS.
1221     Known.Zero &= Known2.Zero;
1222     // Output known-1 are known to be set if set in either the LHS | RHS.
1223     Known.One |= Known2.One;
1224     break;
1225   }
1226   case ISD::XOR: {
1227     SDValue Op0 = Op.getOperand(0);
1228     SDValue Op1 = Op.getOperand(1);
1229 
1230     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1234     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1235                              Depth + 1))
1236       return true;
1237     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1238 
1239     // Attempt to avoid multi-use ops if we don't need anything from them.
1240     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1241       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1242           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1243       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1244           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1245       if (DemandedOp0 || DemandedOp1) {
1246         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1247         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252 
1253     // If all of the demanded bits are known zero on one side, return the other.
1254     // These bits cannot contribute to the result of the 'xor'.
1255     if (DemandedBits.isSubsetOf(Known.Zero))
1256       return TLO.CombineTo(Op, Op0);
1257     if (DemandedBits.isSubsetOf(Known2.Zero))
1258       return TLO.CombineTo(Op, Op1);
1259     // If the operation can be done in a smaller type, do so.
1260     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1261       return true;
1262 
1263     // If all of the unknown bits are known to be zero on one side or the other
1264     // (but not both) turn this into an *inclusive* or.
1265     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1266     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1267       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1268 
1269     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1270     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1271     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1272     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1273 
1274     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1275       // If one side is a constant, and all of the known set bits on the other
1276       // side are also set in the constant, turn this into an AND, as we know
1277       // the bits will be cleared.
1278       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1279       // NB: it is okay if more bits are known than are requested
1280       if (C->getAPIntValue() == Known2.One) {
1281         SDValue ANDC =
1282             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1283         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1284       }
1285 
1286       // If the RHS is a constant, see if we can change it. Don't alter a -1
1287       // constant because that's a 'not' op, and that is better for combining
1288       // and codegen.
1289       if (!C->isAllOnesValue()) {
1290         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1291           // We're flipping all demanded bits. Flip the undemanded bits too.
1292           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1293           return TLO.CombineTo(Op, New);
1294         }
1295         // If we can't turn this into a 'not', try to shrink the constant.
1296         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297           return true;
1298       }
1299     }
1300 
1301     Known = std::move(KnownOut);
1302     break;
1303   }
1304   case ISD::SELECT:
1305     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SELECT_CC:
1323     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1324                              Depth + 1))
1325       return true;
1326     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1327                              Depth + 1))
1328       return true;
1329     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1330     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1331 
1332     // If the operands are constants, see if we can simplify them.
1333     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1334       return true;
1335 
1336     // Only known if known in both the LHS and RHS.
1337     Known.One &= Known2.One;
1338     Known.Zero &= Known2.Zero;
1339     break;
1340   case ISD::SETCC: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1344     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1345     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1346     // -1, we may be able to bypass the setcc.
1347     if (DemandedBits.isSignMask() &&
1348         Op0.getScalarValueSizeInBits() == BitWidth &&
1349         getBooleanContents(Op0.getValueType()) ==
1350             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1351       // If we're testing X < 0, then this compare isn't needed - just use X!
1352       // FIXME: We're limiting to integer types here, but this should also work
1353       // if we don't care about FP signed-zero. The use of SETLT with FP means
1354       // that we don't care about NaNs.
1355       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1356           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1357         return TLO.CombineTo(Op, Op0);
1358 
1359       // TODO: Should we check for other forms of sign-bit comparisons?
1360       // Examples: X <= -1, X >= 0
1361     }
1362     if (getBooleanContents(Op0.getValueType()) ==
1363             TargetLowering::ZeroOrOneBooleanContent &&
1364         BitWidth > 1)
1365       Known.Zero.setBitsFrom(1);
1366     break;
1367   }
1368   case ISD::SHL: {
1369     SDValue Op0 = Op.getOperand(0);
1370     SDValue Op1 = Op.getOperand(1);
1371     EVT ShiftVT = Op1.getValueType();
1372 
1373     if (const APInt *SA =
1374             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1375       unsigned ShAmt = SA->getZExtValue();
1376       if (ShAmt == 0)
1377         return TLO.CombineTo(Op, Op0);
1378 
1379       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1380       // single shift.  We can do this if the bottom bits (which are shifted
1381       // out) are never demanded.
1382       // TODO - support non-uniform vector amounts.
1383       if (Op0.getOpcode() == ISD::SRL) {
1384         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1385           if (const APInt *SA2 =
1386                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1387             if (SA2->ult(BitWidth)) {
1388               unsigned C1 = SA2->getZExtValue();
1389               unsigned Opc = ISD::SHL;
1390               int Diff = ShAmt - C1;
1391               if (Diff < 0) {
1392                 Diff = -Diff;
1393                 Opc = ISD::SRL;
1394               }
1395 
1396               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1397               return TLO.CombineTo(
1398                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1399             }
1400           }
1401         }
1402       }
1403 
1404       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1405       // are not demanded. This will likely allow the anyext to be folded away.
1406       // TODO - support non-uniform vector amounts.
1407       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1408         SDValue InnerOp = Op0.getOperand(0);
1409         EVT InnerVT = InnerOp.getValueType();
1410         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1411         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1412             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1413           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1414           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1415             ShTy = InnerVT;
1416           SDValue NarrowShl =
1417               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1418                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1419           return TLO.CombineTo(
1420               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1421         }
1422 
1423         // Repeat the SHL optimization above in cases where an extension
1424         // intervenes: (shl (anyext (shr x, c1)), c2) to
1425         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1426         // aren't demanded (as above) and that the shifted upper c1 bits of
1427         // x aren't demanded.
1428         // TODO - support non-uniform vector amounts.
1429         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1430             InnerOp.hasOneUse()) {
1431           if (const APInt *SA2 =
1432                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1433             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1434             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1435                 DemandedBits.getActiveBits() <=
1436                     (InnerBits - InnerShAmt + ShAmt) &&
1437                 DemandedBits.countTrailingZeros() >= ShAmt) {
1438               SDValue NewSA =
1439                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1440               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1441                                                InnerOp.getOperand(0));
1442               return TLO.CombineTo(
1443                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1444             }
1445           }
1446         }
1447       }
1448 
1449       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1450       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454       Known.Zero <<= ShAmt;
1455       Known.One <<= ShAmt;
1456       // low bits known zero.
1457       Known.Zero.setLowBits(ShAmt);
1458 
1459       // Try shrinking the operation as long as the shift amount will still be
1460       // in range.
1461       if ((ShAmt < DemandedBits.getActiveBits()) &&
1462           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1463         return true;
1464     }
1465     break;
1466   }
1467   case ISD::SRL: {
1468     SDValue Op0 = Op.getOperand(0);
1469     SDValue Op1 = Op.getOperand(1);
1470     EVT ShiftVT = Op1.getValueType();
1471 
1472     if (const APInt *SA =
1473             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1474       unsigned ShAmt = SA->getZExtValue();
1475       if (ShAmt == 0)
1476         return TLO.CombineTo(Op, Op0);
1477 
1478       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1479       // single shift.  We can do this if the top bits (which are shifted out)
1480       // are never demanded.
1481       // TODO - support non-uniform vector amounts.
1482       if (Op0.getOpcode() == ISD::SHL) {
1483         if (const APInt *SA2 =
1484                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1485           if (!DemandedBits.intersects(
1486                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1487             if (SA2->ult(BitWidth)) {
1488               unsigned C1 = SA2->getZExtValue();
1489               unsigned Opc = ISD::SRL;
1490               int Diff = ShAmt - C1;
1491               if (Diff < 0) {
1492                 Diff = -Diff;
1493                 Opc = ISD::SHL;
1494               }
1495 
1496               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1497               return TLO.CombineTo(
1498                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1499             }
1500           }
1501         }
1502       }
1503 
1504       APInt InDemandedMask = (DemandedBits << ShAmt);
1505 
1506       // If the shift is exact, then it does demand the low bits (and knows that
1507       // they are zero).
1508       if (Op->getFlags().hasExact())
1509         InDemandedMask.setLowBits(ShAmt);
1510 
1511       // Compute the new bits that are at the top now.
1512       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1513                                Depth + 1))
1514         return true;
1515       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516       Known.Zero.lshrInPlace(ShAmt);
1517       Known.One.lshrInPlace(ShAmt);
1518       // High bits known zero.
1519       Known.Zero.setHighBits(ShAmt);
1520     }
1521     break;
1522   }
1523   case ISD::SRA: {
1524     SDValue Op0 = Op.getOperand(0);
1525     SDValue Op1 = Op.getOperand(1);
1526     EVT ShiftVT = Op1.getValueType();
1527 
1528     // If we only want bits that already match the signbit then we don't need
1529     // to shift.
1530     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1531     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1532         NumHiDemandedBits)
1533       return TLO.CombineTo(Op, Op0);
1534 
1535     // If this is an arithmetic shift right and only the low-bit is set, we can
1536     // always convert this into a logical shr, even if the shift amount is
1537     // variable.  The low bit of the shift cannot be an input sign bit unless
1538     // the shift amount is >= the size of the datatype, which is undefined.
1539     if (DemandedBits.isOneValue())
1540       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       APInt InDemandedMask = (DemandedBits << ShAmt);
1549 
1550       // If the shift is exact, then it does demand the low bits (and knows that
1551       // they are zero).
1552       if (Op->getFlags().hasExact())
1553         InDemandedMask.setLowBits(ShAmt);
1554 
1555       // If any of the demanded bits are produced by the sign extension, we also
1556       // demand the input sign bit.
1557       if (DemandedBits.countLeadingZeros() < ShAmt)
1558         InDemandedMask.setSignBit();
1559 
1560       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1561                                Depth + 1))
1562         return true;
1563       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1564       Known.Zero.lshrInPlace(ShAmt);
1565       Known.One.lshrInPlace(ShAmt);
1566 
1567       // If the input sign bit is known to be zero, or if none of the top bits
1568       // are demanded, turn this into an unsigned shift right.
1569       if (Known.Zero[BitWidth - ShAmt - 1] ||
1570           DemandedBits.countLeadingZeros() >= ShAmt) {
1571         SDNodeFlags Flags;
1572         Flags.setExact(Op->getFlags().hasExact());
1573         return TLO.CombineTo(
1574             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1575       }
1576 
1577       int Log2 = DemandedBits.exactLogBase2();
1578       if (Log2 >= 0) {
1579         // The bit must come from the sign.
1580         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1581         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1582       }
1583 
1584       if (Known.One[BitWidth - ShAmt - 1])
1585         // New bits are known one.
1586         Known.One.setHighBits(ShAmt);
1587 
1588       // Attempt to avoid multi-use ops if we don't need anything from them.
1589       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1590         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1591             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1592         if (DemandedOp0) {
1593           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1594           return TLO.CombineTo(Op, NewOp);
1595         }
1596       }
1597     }
1598     break;
1599   }
1600   case ISD::FSHL:
1601   case ISD::FSHR: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     SDValue Op2 = Op.getOperand(2);
1605     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1606 
1607     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1608       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1609 
1610       // For fshl, 0-shift returns the 1st arg.
1611       // For fshr, 0-shift returns the 2nd arg.
1612       if (Amt == 0) {
1613         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1614                                  Known, TLO, Depth + 1))
1615           return true;
1616         break;
1617       }
1618 
1619       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1620       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1621       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1622       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1623       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1624                                Depth + 1))
1625         return true;
1626       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629 
1630       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1631       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1632       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1633       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1634       Known.One |= Known2.One;
1635       Known.Zero |= Known2.Zero;
1636     }
1637 
1638     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1639     if (isPowerOf2_32(BitWidth)) {
1640       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1641       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1642                                Known2, TLO, Depth + 1))
1643         return true;
1644     }
1645     break;
1646   }
1647   case ISD::ROTL:
1648   case ISD::ROTR: {
1649     SDValue Op0 = Op.getOperand(0);
1650     SDValue Op1 = Op.getOperand(1);
1651 
1652     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1653     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1654       return TLO.CombineTo(Op, Op0);
1655 
1656     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1657     if (isPowerOf2_32(BitWidth)) {
1658       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1659       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1660                                Depth + 1))
1661         return true;
1662     }
1663     break;
1664   }
1665   case ISD::BITREVERSE: {
1666     SDValue Src = Op.getOperand(0);
1667     APInt DemandedSrcBits = DemandedBits.reverseBits();
1668     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1669                              Depth + 1))
1670       return true;
1671     Known.One = Known2.One.reverseBits();
1672     Known.Zero = Known2.Zero.reverseBits();
1673     break;
1674   }
1675   case ISD::BSWAP: {
1676     SDValue Src = Op.getOperand(0);
1677     APInt DemandedSrcBits = DemandedBits.byteSwap();
1678     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1679                              Depth + 1))
1680       return true;
1681     Known.One = Known2.One.byteSwap();
1682     Known.Zero = Known2.Zero.byteSwap();
1683     break;
1684   }
1685   case ISD::SIGN_EXTEND_INREG: {
1686     SDValue Op0 = Op.getOperand(0);
1687     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1688     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1689 
1690     // If we only care about the highest bit, don't bother shifting right.
1691     if (DemandedBits.isSignMask()) {
1692       unsigned NumSignBits =
1693           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1694       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1695       // However if the input is already sign extended we expect the sign
1696       // extension to be dropped altogether later and do not simplify.
1697       if (!AlreadySignExtended) {
1698         // Compute the correct shift amount type, which must be getShiftAmountTy
1699         // for scalar types after legalization.
1700         EVT ShiftAmtTy = VT;
1701         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1702           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1703 
1704         SDValue ShiftAmt =
1705             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1706         return TLO.CombineTo(Op,
1707                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1708       }
1709     }
1710 
1711     // If none of the extended bits are demanded, eliminate the sextinreg.
1712     if (DemandedBits.getActiveBits() <= ExVTBits)
1713       return TLO.CombineTo(Op, Op0);
1714 
1715     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1716 
1717     // Since the sign extended bits are demanded, we know that the sign
1718     // bit is demanded.
1719     InputDemandedBits.setBit(ExVTBits - 1);
1720 
1721     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1722       return true;
1723     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1724 
1725     // If the sign bit of the input is known set or clear, then we know the
1726     // top bits of the result.
1727 
1728     // If the input sign bit is known zero, convert this into a zero extension.
1729     if (Known.Zero[ExVTBits - 1])
1730       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1731 
1732     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1733     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1734       Known.One.setBitsFrom(ExVTBits);
1735       Known.Zero &= Mask;
1736     } else { // Input sign bit unknown
1737       Known.Zero &= Mask;
1738       Known.One &= Mask;
1739     }
1740     break;
1741   }
1742   case ISD::BUILD_PAIR: {
1743     EVT HalfVT = Op.getOperand(0).getValueType();
1744     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1745 
1746     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1747     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1748 
1749     KnownBits KnownLo, KnownHi;
1750 
1751     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1752       return true;
1753 
1754     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1755       return true;
1756 
1757     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1758                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1759 
1760     Known.One = KnownLo.One.zext(BitWidth) |
1761                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1762     break;
1763   }
1764   case ISD::ZERO_EXTEND:
1765   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1766     SDValue Src = Op.getOperand(0);
1767     EVT SrcVT = Src.getValueType();
1768     unsigned InBits = SrcVT.getScalarSizeInBits();
1769     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1770     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1771 
1772     // If none of the top bits are demanded, convert this into an any_extend.
1773     if (DemandedBits.getActiveBits() <= InBits) {
1774       // If we only need the non-extended bits of the bottom element
1775       // then we can just bitcast to the result.
1776       if (IsVecInReg && DemandedElts == 1 &&
1777           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1778           TLO.DAG.getDataLayout().isLittleEndian())
1779         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1780 
1781       unsigned Opc =
1782           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1783       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1784         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1785     }
1786 
1787     APInt InDemandedBits = DemandedBits.trunc(InBits);
1788     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1789     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1790                              Depth + 1))
1791       return true;
1792     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1793     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1794     Known = Known.zext(BitWidth);
1795     break;
1796   }
1797   case ISD::SIGN_EXTEND:
1798   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1799     SDValue Src = Op.getOperand(0);
1800     EVT SrcVT = Src.getValueType();
1801     unsigned InBits = SrcVT.getScalarSizeInBits();
1802     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1803     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1804 
1805     // If none of the top bits are demanded, convert this into an any_extend.
1806     if (DemandedBits.getActiveBits() <= InBits) {
1807       // If we only need the non-extended bits of the bottom element
1808       // then we can just bitcast to the result.
1809       if (IsVecInReg && DemandedElts == 1 &&
1810           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1811           TLO.DAG.getDataLayout().isLittleEndian())
1812         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1813 
1814       unsigned Opc =
1815           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1816       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1817         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1818     }
1819 
1820     APInt InDemandedBits = DemandedBits.trunc(InBits);
1821     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1822 
1823     // Since some of the sign extended bits are demanded, we know that the sign
1824     // bit is demanded.
1825     InDemandedBits.setBit(InBits - 1);
1826 
1827     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1828                              Depth + 1))
1829       return true;
1830     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1831     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1832 
1833     // If the sign bit is known one, the top bits match.
1834     Known = Known.sext(BitWidth);
1835 
1836     // If the sign bit is known zero, convert this to a zero extend.
1837     if (Known.isNonNegative()) {
1838       unsigned Opc =
1839           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1840       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1841         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1842     }
1843     break;
1844   }
1845   case ISD::ANY_EXTEND:
1846   case ISD::ANY_EXTEND_VECTOR_INREG: {
1847     SDValue Src = Op.getOperand(0);
1848     EVT SrcVT = Src.getValueType();
1849     unsigned InBits = SrcVT.getScalarSizeInBits();
1850     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1851     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1852 
1853     // If we only need the bottom element then we can just bitcast.
1854     // TODO: Handle ANY_EXTEND?
1855     if (IsVecInReg && DemandedElts == 1 &&
1856         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1857         TLO.DAG.getDataLayout().isLittleEndian())
1858       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1859 
1860     APInt InDemandedBits = DemandedBits.trunc(InBits);
1861     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1862     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1863                              Depth + 1))
1864       return true;
1865     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1866     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1867     Known = Known.anyext(BitWidth);
1868 
1869     // Attempt to avoid multi-use ops if we don't need anything from them.
1870     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1871             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1872       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1873     break;
1874   }
1875   case ISD::TRUNCATE: {
1876     SDValue Src = Op.getOperand(0);
1877 
1878     // Simplify the input, using demanded bit information, and compute the known
1879     // zero/one bits live out.
1880     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1881     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1882     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1883       return true;
1884     Known = Known.trunc(BitWidth);
1885 
1886     // Attempt to avoid multi-use ops if we don't need anything from them.
1887     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1888             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1889       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1890 
1891     // If the input is only used by this truncate, see if we can shrink it based
1892     // on the known demanded bits.
1893     if (Src.getNode()->hasOneUse()) {
1894       switch (Src.getOpcode()) {
1895       default:
1896         break;
1897       case ISD::SRL:
1898         // Shrink SRL by a constant if none of the high bits shifted in are
1899         // demanded.
1900         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1901           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1902           // undesirable.
1903           break;
1904 
1905         SDValue ShAmt = Src.getOperand(1);
1906         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1907         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1908           break;
1909         uint64_t ShVal = ShAmtC->getZExtValue();
1910 
1911         APInt HighBits =
1912             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1913         HighBits.lshrInPlace(ShVal);
1914         HighBits = HighBits.trunc(BitWidth);
1915 
1916         if (!(HighBits & DemandedBits)) {
1917           // None of the shifted in bits are needed.  Add a truncate of the
1918           // shift input, then shift it.
1919           if (TLO.LegalTypes())
1920             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1921           SDValue NewTrunc =
1922               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1923           return TLO.CombineTo(
1924               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1925         }
1926         break;
1927       }
1928     }
1929 
1930     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1931     break;
1932   }
1933   case ISD::AssertZext: {
1934     // AssertZext demands all of the high bits, plus any of the low bits
1935     // demanded by its users.
1936     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1937     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1938     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1939                              TLO, Depth + 1))
1940       return true;
1941     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1942 
1943     Known.Zero |= ~InMask;
1944     break;
1945   }
1946   case ISD::EXTRACT_VECTOR_ELT: {
1947     SDValue Src = Op.getOperand(0);
1948     SDValue Idx = Op.getOperand(1);
1949     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1950     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1951 
1952     // Demand the bits from every vector element without a constant index.
1953     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1954     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1955       if (CIdx->getAPIntValue().ult(NumSrcElts))
1956         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1957 
1958     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1959     // anything about the extended bits.
1960     APInt DemandedSrcBits = DemandedBits;
1961     if (BitWidth > EltBitWidth)
1962       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1963 
1964     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1965                              Depth + 1))
1966       return true;
1967 
1968     // Attempt to avoid multi-use ops if we don't need anything from them.
1969     if (!DemandedSrcBits.isAllOnesValue() ||
1970         !DemandedSrcElts.isAllOnesValue()) {
1971       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1972               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1973         SDValue NewOp =
1974             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1975         return TLO.CombineTo(Op, NewOp);
1976       }
1977     }
1978 
1979     Known = Known2;
1980     if (BitWidth > EltBitWidth)
1981       Known = Known.anyext(BitWidth);
1982     break;
1983   }
1984   case ISD::BITCAST: {
1985     SDValue Src = Op.getOperand(0);
1986     EVT SrcVT = Src.getValueType();
1987     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1988 
1989     // If this is an FP->Int bitcast and if the sign bit is the only
1990     // thing demanded, turn this into a FGETSIGN.
1991     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1992         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1993         SrcVT.isFloatingPoint()) {
1994       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1995       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1996       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1997           SrcVT != MVT::f128) {
1998         // Cannot eliminate/lower SHL for f128 yet.
1999         EVT Ty = OpVTLegal ? VT : MVT::i32;
2000         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2001         // place.  We expect the SHL to be eliminated by other optimizations.
2002         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2003         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2004         if (!OpVTLegal && OpVTSizeInBits > 32)
2005           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2006         unsigned ShVal = Op.getValueSizeInBits() - 1;
2007         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2008         return TLO.CombineTo(Op,
2009                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2010       }
2011     }
2012 
2013     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2014     // Demand the elt/bit if any of the original elts/bits are demanded.
2015     // TODO - bigendian once we have test coverage.
2016     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2017         TLO.DAG.getDataLayout().isLittleEndian()) {
2018       unsigned Scale = BitWidth / NumSrcEltBits;
2019       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2020       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2021       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2022       for (unsigned i = 0; i != Scale; ++i) {
2023         unsigned Offset = i * NumSrcEltBits;
2024         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2025         if (!Sub.isNullValue()) {
2026           DemandedSrcBits |= Sub;
2027           for (unsigned j = 0; j != NumElts; ++j)
2028             if (DemandedElts[j])
2029               DemandedSrcElts.setBit((j * Scale) + i);
2030         }
2031       }
2032 
2033       APInt KnownSrcUndef, KnownSrcZero;
2034       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2035                                      KnownSrcZero, TLO, Depth + 1))
2036         return true;
2037 
2038       KnownBits KnownSrcBits;
2039       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2040                                KnownSrcBits, TLO, Depth + 1))
2041         return true;
2042     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2043                TLO.DAG.getDataLayout().isLittleEndian()) {
2044       unsigned Scale = NumSrcEltBits / BitWidth;
2045       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2046       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2047       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2048       for (unsigned i = 0; i != NumElts; ++i)
2049         if (DemandedElts[i]) {
2050           unsigned Offset = (i % Scale) * BitWidth;
2051           DemandedSrcBits.insertBits(DemandedBits, Offset);
2052           DemandedSrcElts.setBit(i / Scale);
2053         }
2054 
2055       if (SrcVT.isVector()) {
2056         APInt KnownSrcUndef, KnownSrcZero;
2057         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2058                                        KnownSrcZero, TLO, Depth + 1))
2059           return true;
2060       }
2061 
2062       KnownBits KnownSrcBits;
2063       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2064                                KnownSrcBits, TLO, Depth + 1))
2065         return true;
2066     }
2067 
2068     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2069     // recursive call where Known may be useful to the caller.
2070     if (Depth > 0) {
2071       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2072       return false;
2073     }
2074     break;
2075   }
2076   case ISD::ADD:
2077   case ISD::MUL:
2078   case ISD::SUB: {
2079     // Add, Sub, and Mul don't demand any bits in positions beyond that
2080     // of the highest bit demanded of them.
2081     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2082     SDNodeFlags Flags = Op.getNode()->getFlags();
2083     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2084     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2085     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2086                              Depth + 1) ||
2087         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2088                              Depth + 1) ||
2089         // See if the operation should be performed at a smaller bit width.
2090         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2091       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2092         // Disable the nsw and nuw flags. We can no longer guarantee that we
2093         // won't wrap after simplification.
2094         Flags.setNoSignedWrap(false);
2095         Flags.setNoUnsignedWrap(false);
2096         SDValue NewOp =
2097             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2098         return TLO.CombineTo(Op, NewOp);
2099       }
2100       return true;
2101     }
2102 
2103     // Attempt to avoid multi-use ops if we don't need anything from them.
2104     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2105       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2106           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2107       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2108           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2109       if (DemandedOp0 || DemandedOp1) {
2110         Flags.setNoSignedWrap(false);
2111         Flags.setNoUnsignedWrap(false);
2112         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2113         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2114         SDValue NewOp =
2115             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2116         return TLO.CombineTo(Op, NewOp);
2117       }
2118     }
2119 
2120     // If we have a constant operand, we may be able to turn it into -1 if we
2121     // do not demand the high bits. This can make the constant smaller to
2122     // encode, allow more general folding, or match specialized instruction
2123     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2124     // is probably not useful (and could be detrimental).
2125     ConstantSDNode *C = isConstOrConstSplat(Op1);
2126     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2127     if (C && !C->isAllOnesValue() && !C->isOne() &&
2128         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2129       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2130       // Disable the nsw and nuw flags. We can no longer guarantee that we
2131       // won't wrap after simplification.
2132       Flags.setNoSignedWrap(false);
2133       Flags.setNoUnsignedWrap(false);
2134       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2135       return TLO.CombineTo(Op, NewOp);
2136     }
2137 
2138     LLVM_FALLTHROUGH;
2139   }
2140   default:
2141     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2142       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2143                                             Known, TLO, Depth))
2144         return true;
2145       break;
2146     }
2147 
2148     // Just use computeKnownBits to compute output bits.
2149     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2150     break;
2151   }
2152 
2153   // If we know the value of all of the demanded bits, return this as a
2154   // constant.
2155   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2156     // Avoid folding to a constant if any OpaqueConstant is involved.
2157     const SDNode *N = Op.getNode();
2158     for (SDNodeIterator I = SDNodeIterator::begin(N),
2159                         E = SDNodeIterator::end(N);
2160          I != E; ++I) {
2161       SDNode *Op = *I;
2162       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2163         if (C->isOpaque())
2164           return false;
2165     }
2166     // TODO: Handle float bits as well.
2167     if (VT.isInteger())
2168       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2169   }
2170 
2171   return false;
2172 }
2173 
2174 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2175                                                 const APInt &DemandedElts,
2176                                                 APInt &KnownUndef,
2177                                                 APInt &KnownZero,
2178                                                 DAGCombinerInfo &DCI) const {
2179   SelectionDAG &DAG = DCI.DAG;
2180   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2181                         !DCI.isBeforeLegalizeOps());
2182 
2183   bool Simplified =
2184       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2185   if (Simplified) {
2186     DCI.AddToWorklist(Op.getNode());
2187     DCI.CommitTargetLoweringOpt(TLO);
2188   }
2189 
2190   return Simplified;
2191 }
2192 
2193 /// Given a vector binary operation and known undefined elements for each input
2194 /// operand, compute whether each element of the output is undefined.
2195 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2196                                          const APInt &UndefOp0,
2197                                          const APInt &UndefOp1) {
2198   EVT VT = BO.getValueType();
2199   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2200          "Vector binop only");
2201 
2202   EVT EltVT = VT.getVectorElementType();
2203   unsigned NumElts = VT.getVectorNumElements();
2204   assert(UndefOp0.getBitWidth() == NumElts &&
2205          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2206 
2207   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2208                                    const APInt &UndefVals) {
2209     if (UndefVals[Index])
2210       return DAG.getUNDEF(EltVT);
2211 
2212     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2213       // Try hard to make sure that the getNode() call is not creating temporary
2214       // nodes. Ignore opaque integers because they do not constant fold.
2215       SDValue Elt = BV->getOperand(Index);
2216       auto *C = dyn_cast<ConstantSDNode>(Elt);
2217       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2218         return Elt;
2219     }
2220 
2221     return SDValue();
2222   };
2223 
2224   APInt KnownUndef = APInt::getNullValue(NumElts);
2225   for (unsigned i = 0; i != NumElts; ++i) {
2226     // If both inputs for this element are either constant or undef and match
2227     // the element type, compute the constant/undef result for this element of
2228     // the vector.
2229     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2230     // not handle FP constants. The code within getNode() should be refactored
2231     // to avoid the danger of creating a bogus temporary node here.
2232     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2233     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2234     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2235       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2236         KnownUndef.setBit(i);
2237   }
2238   return KnownUndef;
2239 }
2240 
2241 bool TargetLowering::SimplifyDemandedVectorElts(
2242     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2243     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2244     bool AssumeSingleUse) const {
2245   EVT VT = Op.getValueType();
2246   APInt DemandedElts = OriginalDemandedElts;
2247   unsigned NumElts = DemandedElts.getBitWidth();
2248   assert(VT.isVector() && "Expected vector op");
2249   assert(VT.getVectorNumElements() == NumElts &&
2250          "Mask size mismatches value type element count!");
2251 
2252   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2253 
2254   // Undef operand.
2255   if (Op.isUndef()) {
2256     KnownUndef.setAllBits();
2257     return false;
2258   }
2259 
2260   // If Op has other users, assume that all elements are needed.
2261   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2262     DemandedElts.setAllBits();
2263 
2264   // Not demanding any elements from Op.
2265   if (DemandedElts == 0) {
2266     KnownUndef.setAllBits();
2267     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2268   }
2269 
2270   // Limit search depth.
2271   if (Depth >= SelectionDAG::MaxRecursionDepth)
2272     return false;
2273 
2274   SDLoc DL(Op);
2275   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2276 
2277   switch (Op.getOpcode()) {
2278   case ISD::SCALAR_TO_VECTOR: {
2279     if (!DemandedElts[0]) {
2280       KnownUndef.setAllBits();
2281       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2282     }
2283     KnownUndef.setHighBits(NumElts - 1);
2284     break;
2285   }
2286   case ISD::BITCAST: {
2287     SDValue Src = Op.getOperand(0);
2288     EVT SrcVT = Src.getValueType();
2289 
2290     // We only handle vectors here.
2291     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2292     if (!SrcVT.isVector())
2293       break;
2294 
2295     // Fast handling of 'identity' bitcasts.
2296     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2297     if (NumSrcElts == NumElts)
2298       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2299                                         KnownZero, TLO, Depth + 1);
2300 
2301     APInt SrcZero, SrcUndef;
2302     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2303 
2304     // Bitcast from 'large element' src vector to 'small element' vector, we
2305     // must demand a source element if any DemandedElt maps to it.
2306     if ((NumElts % NumSrcElts) == 0) {
2307       unsigned Scale = NumElts / NumSrcElts;
2308       for (unsigned i = 0; i != NumElts; ++i)
2309         if (DemandedElts[i])
2310           SrcDemandedElts.setBit(i / Scale);
2311 
2312       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2313                                      TLO, Depth + 1))
2314         return true;
2315 
2316       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2317       // of the large element.
2318       // TODO - bigendian once we have test coverage.
2319       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2320         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2321         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2322         for (unsigned i = 0; i != NumElts; ++i)
2323           if (DemandedElts[i]) {
2324             unsigned Ofs = (i % Scale) * EltSizeInBits;
2325             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2326           }
2327 
2328         KnownBits Known;
2329         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2330                                  TLO, Depth + 1))
2331           return true;
2332       }
2333 
2334       // If the src element is zero/undef then all the output elements will be -
2335       // only demanded elements are guaranteed to be correct.
2336       for (unsigned i = 0; i != NumSrcElts; ++i) {
2337         if (SrcDemandedElts[i]) {
2338           if (SrcZero[i])
2339             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2340           if (SrcUndef[i])
2341             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2342         }
2343       }
2344     }
2345 
2346     // Bitcast from 'small element' src vector to 'large element' vector, we
2347     // demand all smaller source elements covered by the larger demanded element
2348     // of this vector.
2349     if ((NumSrcElts % NumElts) == 0) {
2350       unsigned Scale = NumSrcElts / NumElts;
2351       for (unsigned i = 0; i != NumElts; ++i)
2352         if (DemandedElts[i])
2353           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2354 
2355       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2356                                      TLO, Depth + 1))
2357         return true;
2358 
2359       // If all the src elements covering an output element are zero/undef, then
2360       // the output element will be as well, assuming it was demanded.
2361       for (unsigned i = 0; i != NumElts; ++i) {
2362         if (DemandedElts[i]) {
2363           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2364             KnownZero.setBit(i);
2365           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2366             KnownUndef.setBit(i);
2367         }
2368       }
2369     }
2370     break;
2371   }
2372   case ISD::BUILD_VECTOR: {
2373     // Check all elements and simplify any unused elements with UNDEF.
2374     if (!DemandedElts.isAllOnesValue()) {
2375       // Don't simplify BROADCASTS.
2376       if (llvm::any_of(Op->op_values(),
2377                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2378         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2379         bool Updated = false;
2380         for (unsigned i = 0; i != NumElts; ++i) {
2381           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2382             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2383             KnownUndef.setBit(i);
2384             Updated = true;
2385           }
2386         }
2387         if (Updated)
2388           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2389       }
2390     }
2391     for (unsigned i = 0; i != NumElts; ++i) {
2392       SDValue SrcOp = Op.getOperand(i);
2393       if (SrcOp.isUndef()) {
2394         KnownUndef.setBit(i);
2395       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2396                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2397         KnownZero.setBit(i);
2398       }
2399     }
2400     break;
2401   }
2402   case ISD::CONCAT_VECTORS: {
2403     EVT SubVT = Op.getOperand(0).getValueType();
2404     unsigned NumSubVecs = Op.getNumOperands();
2405     unsigned NumSubElts = SubVT.getVectorNumElements();
2406     for (unsigned i = 0; i != NumSubVecs; ++i) {
2407       SDValue SubOp = Op.getOperand(i);
2408       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2409       APInt SubUndef, SubZero;
2410       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2411                                      Depth + 1))
2412         return true;
2413       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2414       KnownZero.insertBits(SubZero, i * NumSubElts);
2415     }
2416     break;
2417   }
2418   case ISD::INSERT_SUBVECTOR: {
2419     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2420       break;
2421     SDValue Base = Op.getOperand(0);
2422     SDValue Sub = Op.getOperand(1);
2423     EVT SubVT = Sub.getValueType();
2424     unsigned NumSubElts = SubVT.getVectorNumElements();
2425     const APInt &Idx = Op.getConstantOperandAPInt(2);
2426     if (Idx.ugt(NumElts - NumSubElts))
2427       break;
2428     unsigned SubIdx = Idx.getZExtValue();
2429     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2430     APInt SubUndef, SubZero;
2431     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2432                                    Depth + 1))
2433       return true;
2434     APInt BaseElts = DemandedElts;
2435     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2436 
2437     // If none of the base operand elements are demanded, replace it with undef.
2438     if (!BaseElts && !Base.isUndef())
2439       return TLO.CombineTo(Op,
2440                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2441                                            TLO.DAG.getUNDEF(VT),
2442                                            Op.getOperand(1),
2443                                            Op.getOperand(2)));
2444 
2445     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2446                                    Depth + 1))
2447       return true;
2448     KnownUndef.insertBits(SubUndef, SubIdx);
2449     KnownZero.insertBits(SubZero, SubIdx);
2450     break;
2451   }
2452   case ISD::EXTRACT_SUBVECTOR: {
2453     SDValue Src = Op.getOperand(0);
2454     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2455     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2456     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2457       // Offset the demanded elts by the subvector index.
2458       uint64_t Idx = SubIdx->getZExtValue();
2459       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2460       APInt SrcUndef, SrcZero;
2461       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2462                                      Depth + 1))
2463         return true;
2464       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2465       KnownZero = SrcZero.extractBits(NumElts, Idx);
2466     }
2467     break;
2468   }
2469   case ISD::INSERT_VECTOR_ELT: {
2470     SDValue Vec = Op.getOperand(0);
2471     SDValue Scl = Op.getOperand(1);
2472     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2473 
2474     // For a legal, constant insertion index, if we don't need this insertion
2475     // then strip it, else remove it from the demanded elts.
2476     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2477       unsigned Idx = CIdx->getZExtValue();
2478       if (!DemandedElts[Idx])
2479         return TLO.CombineTo(Op, Vec);
2480 
2481       APInt DemandedVecElts(DemandedElts);
2482       DemandedVecElts.clearBit(Idx);
2483       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2484                                      KnownZero, TLO, Depth + 1))
2485         return true;
2486 
2487       KnownUndef.clearBit(Idx);
2488       if (Scl.isUndef())
2489         KnownUndef.setBit(Idx);
2490 
2491       KnownZero.clearBit(Idx);
2492       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2493         KnownZero.setBit(Idx);
2494       break;
2495     }
2496 
2497     APInt VecUndef, VecZero;
2498     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2499                                    Depth + 1))
2500       return true;
2501     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2502     break;
2503   }
2504   case ISD::VSELECT: {
2505     // Try to transform the select condition based on the current demanded
2506     // elements.
2507     // TODO: If a condition element is undef, we can choose from one arm of the
2508     //       select (and if one arm is undef, then we can propagate that to the
2509     //       result).
2510     // TODO - add support for constant vselect masks (see IR version of this).
2511     APInt UnusedUndef, UnusedZero;
2512     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2513                                    UnusedZero, TLO, Depth + 1))
2514       return true;
2515 
2516     // See if we can simplify either vselect operand.
2517     APInt DemandedLHS(DemandedElts);
2518     APInt DemandedRHS(DemandedElts);
2519     APInt UndefLHS, ZeroLHS;
2520     APInt UndefRHS, ZeroRHS;
2521     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2522                                    ZeroLHS, TLO, Depth + 1))
2523       return true;
2524     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2525                                    ZeroRHS, TLO, Depth + 1))
2526       return true;
2527 
2528     KnownUndef = UndefLHS & UndefRHS;
2529     KnownZero = ZeroLHS & ZeroRHS;
2530     break;
2531   }
2532   case ISD::VECTOR_SHUFFLE: {
2533     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2534 
2535     // Collect demanded elements from shuffle operands..
2536     APInt DemandedLHS(NumElts, 0);
2537     APInt DemandedRHS(NumElts, 0);
2538     for (unsigned i = 0; i != NumElts; ++i) {
2539       int M = ShuffleMask[i];
2540       if (M < 0 || !DemandedElts[i])
2541         continue;
2542       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2543       if (M < (int)NumElts)
2544         DemandedLHS.setBit(M);
2545       else
2546         DemandedRHS.setBit(M - NumElts);
2547     }
2548 
2549     // See if we can simplify either shuffle operand.
2550     APInt UndefLHS, ZeroLHS;
2551     APInt UndefRHS, ZeroRHS;
2552     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2553                                    ZeroLHS, TLO, Depth + 1))
2554       return true;
2555     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2556                                    ZeroRHS, TLO, Depth + 1))
2557       return true;
2558 
2559     // Simplify mask using undef elements from LHS/RHS.
2560     bool Updated = false;
2561     bool IdentityLHS = true, IdentityRHS = true;
2562     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2563     for (unsigned i = 0; i != NumElts; ++i) {
2564       int &M = NewMask[i];
2565       if (M < 0)
2566         continue;
2567       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2568           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2569         Updated = true;
2570         M = -1;
2571       }
2572       IdentityLHS &= (M < 0) || (M == (int)i);
2573       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2574     }
2575 
2576     // Update legal shuffle masks based on demanded elements if it won't reduce
2577     // to Identity which can cause premature removal of the shuffle mask.
2578     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2579       SDValue LegalShuffle =
2580           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2581                                   NewMask, TLO.DAG);
2582       if (LegalShuffle)
2583         return TLO.CombineTo(Op, LegalShuffle);
2584     }
2585 
2586     // Propagate undef/zero elements from LHS/RHS.
2587     for (unsigned i = 0; i != NumElts; ++i) {
2588       int M = ShuffleMask[i];
2589       if (M < 0) {
2590         KnownUndef.setBit(i);
2591       } else if (M < (int)NumElts) {
2592         if (UndefLHS[M])
2593           KnownUndef.setBit(i);
2594         if (ZeroLHS[M])
2595           KnownZero.setBit(i);
2596       } else {
2597         if (UndefRHS[M - NumElts])
2598           KnownUndef.setBit(i);
2599         if (ZeroRHS[M - NumElts])
2600           KnownZero.setBit(i);
2601       }
2602     }
2603     break;
2604   }
2605   case ISD::ANY_EXTEND_VECTOR_INREG:
2606   case ISD::SIGN_EXTEND_VECTOR_INREG:
2607   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2608     APInt SrcUndef, SrcZero;
2609     SDValue Src = Op.getOperand(0);
2610     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2611     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2612     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2613                                    Depth + 1))
2614       return true;
2615     KnownZero = SrcZero.zextOrTrunc(NumElts);
2616     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2617 
2618     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2619         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2620         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2621       // aext - if we just need the bottom element then we can bitcast.
2622       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2623     }
2624 
2625     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2626       // zext(undef) upper bits are guaranteed to be zero.
2627       if (DemandedElts.isSubsetOf(KnownUndef))
2628         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2629       KnownUndef.clearAllBits();
2630     }
2631     break;
2632   }
2633 
2634   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2635   // MAX, saturated math, etc.
2636   case ISD::OR:
2637   case ISD::XOR:
2638   case ISD::ADD:
2639   case ISD::SUB:
2640   case ISD::FADD:
2641   case ISD::FSUB:
2642   case ISD::FMUL:
2643   case ISD::FDIV:
2644   case ISD::FREM: {
2645     APInt UndefRHS, ZeroRHS;
2646     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2647                                    ZeroRHS, TLO, Depth + 1))
2648       return true;
2649     APInt UndefLHS, ZeroLHS;
2650     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2651                                    ZeroLHS, TLO, Depth + 1))
2652       return true;
2653 
2654     KnownZero = ZeroLHS & ZeroRHS;
2655     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2656     break;
2657   }
2658   case ISD::SHL:
2659   case ISD::SRL:
2660   case ISD::SRA:
2661   case ISD::ROTL:
2662   case ISD::ROTR: {
2663     APInt UndefRHS, ZeroRHS;
2664     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2665                                    ZeroRHS, TLO, Depth + 1))
2666       return true;
2667     APInt UndefLHS, ZeroLHS;
2668     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2669                                    ZeroLHS, TLO, Depth + 1))
2670       return true;
2671 
2672     KnownZero = ZeroLHS;
2673     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2674     break;
2675   }
2676   case ISD::MUL:
2677   case ISD::AND: {
2678     APInt SrcUndef, SrcZero;
2679     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2680                                    SrcZero, TLO, Depth + 1))
2681       return true;
2682     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2683                                    KnownZero, TLO, Depth + 1))
2684       return true;
2685 
2686     // If either side has a zero element, then the result element is zero, even
2687     // if the other is an UNDEF.
2688     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2689     // and then handle 'and' nodes with the rest of the binop opcodes.
2690     KnownZero |= SrcZero;
2691     KnownUndef &= SrcUndef;
2692     KnownUndef &= ~KnownZero;
2693     break;
2694   }
2695   case ISD::TRUNCATE:
2696   case ISD::SIGN_EXTEND:
2697   case ISD::ZERO_EXTEND:
2698     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2699                                    KnownZero, TLO, Depth + 1))
2700       return true;
2701 
2702     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2703       // zext(undef) upper bits are guaranteed to be zero.
2704       if (DemandedElts.isSubsetOf(KnownUndef))
2705         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2706       KnownUndef.clearAllBits();
2707     }
2708     break;
2709   default: {
2710     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2711       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2712                                                   KnownZero, TLO, Depth))
2713         return true;
2714     } else {
2715       KnownBits Known;
2716       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2717       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2718                                TLO, Depth, AssumeSingleUse))
2719         return true;
2720     }
2721     break;
2722   }
2723   }
2724   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2725 
2726   // Constant fold all undef cases.
2727   // TODO: Handle zero cases as well.
2728   if (DemandedElts.isSubsetOf(KnownUndef))
2729     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2730 
2731   return false;
2732 }
2733 
2734 /// Determine which of the bits specified in Mask are known to be either zero or
2735 /// one and return them in the Known.
2736 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2737                                                    KnownBits &Known,
2738                                                    const APInt &DemandedElts,
2739                                                    const SelectionDAG &DAG,
2740                                                    unsigned Depth) const {
2741   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2742           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2743           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2744           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2745          "Should use MaskedValueIsZero if you don't know whether Op"
2746          " is a target node!");
2747   Known.resetAll();
2748 }
2749 
2750 void TargetLowering::computeKnownBitsForTargetInstr(
2751     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2752     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2753     unsigned Depth) const {
2754   Known.resetAll();
2755 }
2756 
2757 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2758                                                    KnownBits &Known,
2759                                                    const APInt &DemandedElts,
2760                                                    const SelectionDAG &DAG,
2761                                                    unsigned Depth) const {
2762   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2763 
2764   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2765     // The low bits are known zero if the pointer is aligned.
2766     Known.Zero.setLowBits(Log2(*Alignment));
2767   }
2768 }
2769 
2770 /// This method can be implemented by targets that want to expose additional
2771 /// information about sign bits to the DAG Combiner.
2772 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2773                                                          const APInt &,
2774                                                          const SelectionDAG &,
2775                                                          unsigned Depth) const {
2776   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2777           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2778           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2779           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2780          "Should use ComputeNumSignBits if you don't know whether Op"
2781          " is a target node!");
2782   return 1;
2783 }
2784 
2785 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2786   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2787   const MachineRegisterInfo &MRI, unsigned Depth) const {
2788   return 1;
2789 }
2790 
2791 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2792     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2793     TargetLoweringOpt &TLO, unsigned Depth) const {
2794   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2795           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2796           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2797           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2798          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2799          " is a target node!");
2800   return false;
2801 }
2802 
2803 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2804     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2805     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2806   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2807           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2808           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2809           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2810          "Should use SimplifyDemandedBits if you don't know whether Op"
2811          " is a target node!");
2812   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2813   return false;
2814 }
2815 
2816 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2817     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2818     SelectionDAG &DAG, unsigned Depth) const {
2819   assert(
2820       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2821        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2822        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2823        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2824       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2825       " is a target node!");
2826   return SDValue();
2827 }
2828 
2829 SDValue
2830 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2831                                         SDValue N1, MutableArrayRef<int> Mask,
2832                                         SelectionDAG &DAG) const {
2833   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2834   if (!LegalMask) {
2835     std::swap(N0, N1);
2836     ShuffleVectorSDNode::commuteMask(Mask);
2837     LegalMask = isShuffleMaskLegal(Mask, VT);
2838   }
2839 
2840   if (!LegalMask)
2841     return SDValue();
2842 
2843   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2844 }
2845 
2846 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2847   return nullptr;
2848 }
2849 
2850 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2851                                                   const SelectionDAG &DAG,
2852                                                   bool SNaN,
2853                                                   unsigned Depth) const {
2854   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2855           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2856           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2857           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2858          "Should use isKnownNeverNaN if you don't know whether Op"
2859          " is a target node!");
2860   return false;
2861 }
2862 
2863 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2864 // work with truncating build vectors and vectors with elements of less than
2865 // 8 bits.
2866 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2867   if (!N)
2868     return false;
2869 
2870   APInt CVal;
2871   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2872     CVal = CN->getAPIntValue();
2873   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2874     auto *CN = BV->getConstantSplatNode();
2875     if (!CN)
2876       return false;
2877 
2878     // If this is a truncating build vector, truncate the splat value.
2879     // Otherwise, we may fail to match the expected values below.
2880     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2881     CVal = CN->getAPIntValue();
2882     if (BVEltWidth < CVal.getBitWidth())
2883       CVal = CVal.trunc(BVEltWidth);
2884   } else {
2885     return false;
2886   }
2887 
2888   switch (getBooleanContents(N->getValueType(0))) {
2889   case UndefinedBooleanContent:
2890     return CVal[0];
2891   case ZeroOrOneBooleanContent:
2892     return CVal.isOneValue();
2893   case ZeroOrNegativeOneBooleanContent:
2894     return CVal.isAllOnesValue();
2895   }
2896 
2897   llvm_unreachable("Invalid boolean contents");
2898 }
2899 
2900 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2901   if (!N)
2902     return false;
2903 
2904   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2905   if (!CN) {
2906     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2907     if (!BV)
2908       return false;
2909 
2910     // Only interested in constant splats, we don't care about undef
2911     // elements in identifying boolean constants and getConstantSplatNode
2912     // returns NULL if all ops are undef;
2913     CN = BV->getConstantSplatNode();
2914     if (!CN)
2915       return false;
2916   }
2917 
2918   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2919     return !CN->getAPIntValue()[0];
2920 
2921   return CN->isNullValue();
2922 }
2923 
2924 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2925                                        bool SExt) const {
2926   if (VT == MVT::i1)
2927     return N->isOne();
2928 
2929   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2930   switch (Cnt) {
2931   case TargetLowering::ZeroOrOneBooleanContent:
2932     // An extended value of 1 is always true, unless its original type is i1,
2933     // in which case it will be sign extended to -1.
2934     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2935   case TargetLowering::UndefinedBooleanContent:
2936   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2937     return N->isAllOnesValue() && SExt;
2938   }
2939   llvm_unreachable("Unexpected enumeration.");
2940 }
2941 
2942 /// This helper function of SimplifySetCC tries to optimize the comparison when
2943 /// either operand of the SetCC node is a bitwise-and instruction.
2944 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2945                                          ISD::CondCode Cond, const SDLoc &DL,
2946                                          DAGCombinerInfo &DCI) const {
2947   // Match these patterns in any of their permutations:
2948   // (X & Y) == Y
2949   // (X & Y) != Y
2950   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2951     std::swap(N0, N1);
2952 
2953   EVT OpVT = N0.getValueType();
2954   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2955       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2956     return SDValue();
2957 
2958   SDValue X, Y;
2959   if (N0.getOperand(0) == N1) {
2960     X = N0.getOperand(1);
2961     Y = N0.getOperand(0);
2962   } else if (N0.getOperand(1) == N1) {
2963     X = N0.getOperand(0);
2964     Y = N0.getOperand(1);
2965   } else {
2966     return SDValue();
2967   }
2968 
2969   SelectionDAG &DAG = DCI.DAG;
2970   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2971   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2972     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2973     // Note that where Y is variable and is known to have at most one bit set
2974     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2975     // equivalent when Y == 0.
2976     assert(OpVT.isInteger());
2977     Cond = ISD::getSetCCInverse(Cond, OpVT);
2978     if (DCI.isBeforeLegalizeOps() ||
2979         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2980       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2981   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2982     // If the target supports an 'and-not' or 'and-complement' logic operation,
2983     // try to use that to make a comparison operation more efficient.
2984     // But don't do this transform if the mask is a single bit because there are
2985     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2986     // 'rlwinm' on PPC).
2987 
2988     // Bail out if the compare operand that we want to turn into a zero is
2989     // already a zero (otherwise, infinite loop).
2990     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2991     if (YConst && YConst->isNullValue())
2992       return SDValue();
2993 
2994     // Transform this into: ~X & Y == 0.
2995     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2996     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2997     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2998   }
2999 
3000   return SDValue();
3001 }
3002 
3003 /// There are multiple IR patterns that could be checking whether certain
3004 /// truncation of a signed number would be lossy or not. The pattern which is
3005 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3006 /// We are looking for the following pattern: (KeptBits is a constant)
3007 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3008 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3009 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3010 /// We will unfold it into the natural trunc+sext pattern:
3011 ///   ((%x << C) a>> C) dstcond %x
3012 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3013 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3014     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3015     const SDLoc &DL) const {
3016   // We must be comparing with a constant.
3017   ConstantSDNode *C1;
3018   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3019     return SDValue();
3020 
3021   // N0 should be:  add %x, (1 << (KeptBits-1))
3022   if (N0->getOpcode() != ISD::ADD)
3023     return SDValue();
3024 
3025   // And we must be 'add'ing a constant.
3026   ConstantSDNode *C01;
3027   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3028     return SDValue();
3029 
3030   SDValue X = N0->getOperand(0);
3031   EVT XVT = X.getValueType();
3032 
3033   // Validate constants ...
3034 
3035   APInt I1 = C1->getAPIntValue();
3036 
3037   ISD::CondCode NewCond;
3038   if (Cond == ISD::CondCode::SETULT) {
3039     NewCond = ISD::CondCode::SETEQ;
3040   } else if (Cond == ISD::CondCode::SETULE) {
3041     NewCond = ISD::CondCode::SETEQ;
3042     // But need to 'canonicalize' the constant.
3043     I1 += 1;
3044   } else if (Cond == ISD::CondCode::SETUGT) {
3045     NewCond = ISD::CondCode::SETNE;
3046     // But need to 'canonicalize' the constant.
3047     I1 += 1;
3048   } else if (Cond == ISD::CondCode::SETUGE) {
3049     NewCond = ISD::CondCode::SETNE;
3050   } else
3051     return SDValue();
3052 
3053   APInt I01 = C01->getAPIntValue();
3054 
3055   auto checkConstants = [&I1, &I01]() -> bool {
3056     // Both of them must be power-of-two, and the constant from setcc is bigger.
3057     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3058   };
3059 
3060   if (checkConstants()) {
3061     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3062   } else {
3063     // What if we invert constants? (and the target predicate)
3064     I1.negate();
3065     I01.negate();
3066     assert(XVT.isInteger());
3067     NewCond = getSetCCInverse(NewCond, XVT);
3068     if (!checkConstants())
3069       return SDValue();
3070     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3071   }
3072 
3073   // They are power-of-two, so which bit is set?
3074   const unsigned KeptBits = I1.logBase2();
3075   const unsigned KeptBitsMinusOne = I01.logBase2();
3076 
3077   // Magic!
3078   if (KeptBits != (KeptBitsMinusOne + 1))
3079     return SDValue();
3080   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3081 
3082   // We don't want to do this in every single case.
3083   SelectionDAG &DAG = DCI.DAG;
3084   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3085           XVT, KeptBits))
3086     return SDValue();
3087 
3088   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3089   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3090 
3091   // Unfold into:  ((%x << C) a>> C) cond %x
3092   // Where 'cond' will be either 'eq' or 'ne'.
3093   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3094   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3095   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3096   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3097 
3098   return T2;
3099 }
3100 
3101 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3102 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3103     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3104     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3105   assert(isConstOrConstSplat(N1C) &&
3106          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3107          "Should be a comparison with 0.");
3108   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3109          "Valid only for [in]equality comparisons.");
3110 
3111   unsigned NewShiftOpcode;
3112   SDValue X, C, Y;
3113 
3114   SelectionDAG &DAG = DCI.DAG;
3115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3116 
3117   // Look for '(C l>>/<< Y)'.
3118   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3119     // The shift should be one-use.
3120     if (!V.hasOneUse())
3121       return false;
3122     unsigned OldShiftOpcode = V.getOpcode();
3123     switch (OldShiftOpcode) {
3124     case ISD::SHL:
3125       NewShiftOpcode = ISD::SRL;
3126       break;
3127     case ISD::SRL:
3128       NewShiftOpcode = ISD::SHL;
3129       break;
3130     default:
3131       return false; // must be a logical shift.
3132     }
3133     // We should be shifting a constant.
3134     // FIXME: best to use isConstantOrConstantVector().
3135     C = V.getOperand(0);
3136     ConstantSDNode *CC =
3137         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3138     if (!CC)
3139       return false;
3140     Y = V.getOperand(1);
3141 
3142     ConstantSDNode *XC =
3143         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3144     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3145         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3146   };
3147 
3148   // LHS of comparison should be an one-use 'and'.
3149   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3150     return SDValue();
3151 
3152   X = N0.getOperand(0);
3153   SDValue Mask = N0.getOperand(1);
3154 
3155   // 'and' is commutative!
3156   if (!Match(Mask)) {
3157     std::swap(X, Mask);
3158     if (!Match(Mask))
3159       return SDValue();
3160   }
3161 
3162   EVT VT = X.getValueType();
3163 
3164   // Produce:
3165   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3166   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3167   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3168   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3169   return T2;
3170 }
3171 
3172 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3173 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3174 /// handle the commuted versions of these patterns.
3175 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3176                                            ISD::CondCode Cond, const SDLoc &DL,
3177                                            DAGCombinerInfo &DCI) const {
3178   unsigned BOpcode = N0.getOpcode();
3179   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3180          "Unexpected binop");
3181   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3182 
3183   // (X + Y) == X --> Y == 0
3184   // (X - Y) == X --> Y == 0
3185   // (X ^ Y) == X --> Y == 0
3186   SelectionDAG &DAG = DCI.DAG;
3187   EVT OpVT = N0.getValueType();
3188   SDValue X = N0.getOperand(0);
3189   SDValue Y = N0.getOperand(1);
3190   if (X == N1)
3191     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3192 
3193   if (Y != N1)
3194     return SDValue();
3195 
3196   // (X + Y) == Y --> X == 0
3197   // (X ^ Y) == Y --> X == 0
3198   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3199     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3200 
3201   // The shift would not be valid if the operands are boolean (i1).
3202   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3203     return SDValue();
3204 
3205   // (X - Y) == Y --> X == Y << 1
3206   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3207                                  !DCI.isBeforeLegalize());
3208   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3209   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3210   if (!DCI.isCalledByLegalizer())
3211     DCI.AddToWorklist(YShl1.getNode());
3212   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3213 }
3214 
3215 /// Try to simplify a setcc built with the specified operands and cc. If it is
3216 /// unable to simplify it, return a null SDValue.
3217 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3218                                       ISD::CondCode Cond, bool foldBooleans,
3219                                       DAGCombinerInfo &DCI,
3220                                       const SDLoc &dl) const {
3221   SelectionDAG &DAG = DCI.DAG;
3222   const DataLayout &Layout = DAG.getDataLayout();
3223   EVT OpVT = N0.getValueType();
3224 
3225   // Constant fold or commute setcc.
3226   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3227     return Fold;
3228 
3229   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3230   // TODO: Handle non-splat vector constants. All undef causes trouble.
3231   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3232   if (isConstOrConstSplat(N0) &&
3233       (DCI.isBeforeLegalizeOps() ||
3234        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3235     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3236 
3237   // If we have a subtract with the same 2 non-constant operands as this setcc
3238   // -- but in reverse order -- then try to commute the operands of this setcc
3239   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3240   // instruction on some targets.
3241   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3242       (DCI.isBeforeLegalizeOps() ||
3243        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3244       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3245       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3246     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3247 
3248   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3249     const APInt &C1 = N1C->getAPIntValue();
3250 
3251     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3252     // equality comparison, then we're just comparing whether X itself is
3253     // zero.
3254     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3255         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3256         N0.getOperand(1).getOpcode() == ISD::Constant) {
3257       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3258       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3259           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3260         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3261           // (srl (ctlz x), 5) == 0  -> X != 0
3262           // (srl (ctlz x), 5) != 1  -> X != 0
3263           Cond = ISD::SETNE;
3264         } else {
3265           // (srl (ctlz x), 5) != 0  -> X == 0
3266           // (srl (ctlz x), 5) == 1  -> X == 0
3267           Cond = ISD::SETEQ;
3268         }
3269         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3270         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3271                             Zero, Cond);
3272       }
3273     }
3274 
3275     SDValue CTPOP = N0;
3276     // Look through truncs that don't change the value of a ctpop.
3277     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3278       CTPOP = N0.getOperand(0);
3279 
3280     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3281         (N0 == CTPOP ||
3282          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3283       EVT CTVT = CTPOP.getValueType();
3284       SDValue CTOp = CTPOP.getOperand(0);
3285 
3286       // (ctpop x) u< 2 -> (x & x-1) == 0
3287       // (ctpop x) u> 1 -> (x & x-1) != 0
3288       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3289         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3290         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3291         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3292         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3293         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3294       }
3295 
3296       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3297       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3298           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3299         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3300         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3301         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3302         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3303         assert(CTVT.isInteger());
3304         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3305         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3306         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3307         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3308         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3309         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3310         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3311       }
3312     }
3313 
3314     // (zext x) == C --> x == (trunc C)
3315     // (sext x) == C --> x == (trunc C)
3316     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3317         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3318       unsigned MinBits = N0.getValueSizeInBits();
3319       SDValue PreExt;
3320       bool Signed = false;
3321       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3322         // ZExt
3323         MinBits = N0->getOperand(0).getValueSizeInBits();
3324         PreExt = N0->getOperand(0);
3325       } else if (N0->getOpcode() == ISD::AND) {
3326         // DAGCombine turns costly ZExts into ANDs
3327         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3328           if ((C->getAPIntValue()+1).isPowerOf2()) {
3329             MinBits = C->getAPIntValue().countTrailingOnes();
3330             PreExt = N0->getOperand(0);
3331           }
3332       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3333         // SExt
3334         MinBits = N0->getOperand(0).getValueSizeInBits();
3335         PreExt = N0->getOperand(0);
3336         Signed = true;
3337       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3338         // ZEXTLOAD / SEXTLOAD
3339         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3340           MinBits = LN0->getMemoryVT().getSizeInBits();
3341           PreExt = N0;
3342         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3343           Signed = true;
3344           MinBits = LN0->getMemoryVT().getSizeInBits();
3345           PreExt = N0;
3346         }
3347       }
3348 
3349       // Figure out how many bits we need to preserve this constant.
3350       unsigned ReqdBits = Signed ?
3351         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3352         C1.getActiveBits();
3353 
3354       // Make sure we're not losing bits from the constant.
3355       if (MinBits > 0 &&
3356           MinBits < C1.getBitWidth() &&
3357           MinBits >= ReqdBits) {
3358         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3359         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3360           // Will get folded away.
3361           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3362           if (MinBits == 1 && C1 == 1)
3363             // Invert the condition.
3364             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3365                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3366           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3367           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3368         }
3369 
3370         // If truncating the setcc operands is not desirable, we can still
3371         // simplify the expression in some cases:
3372         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3373         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3374         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3375         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3376         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3377         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3378         SDValue TopSetCC = N0->getOperand(0);
3379         unsigned N0Opc = N0->getOpcode();
3380         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3381         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3382             TopSetCC.getOpcode() == ISD::SETCC &&
3383             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3384             (isConstFalseVal(N1C) ||
3385              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3386 
3387           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3388                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3389 
3390           if (!Inverse)
3391             return TopSetCC;
3392 
3393           ISD::CondCode InvCond = ISD::getSetCCInverse(
3394               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3395               TopSetCC.getOperand(0).getValueType());
3396           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3397                                       TopSetCC.getOperand(1),
3398                                       InvCond);
3399         }
3400       }
3401     }
3402 
3403     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3404     // equality or unsigned, and all 1 bits of the const are in the same
3405     // partial word, see if we can shorten the load.
3406     if (DCI.isBeforeLegalize() &&
3407         !ISD::isSignedIntSetCC(Cond) &&
3408         N0.getOpcode() == ISD::AND && C1 == 0 &&
3409         N0.getNode()->hasOneUse() &&
3410         isa<LoadSDNode>(N0.getOperand(0)) &&
3411         N0.getOperand(0).getNode()->hasOneUse() &&
3412         isa<ConstantSDNode>(N0.getOperand(1))) {
3413       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3414       APInt bestMask;
3415       unsigned bestWidth = 0, bestOffset = 0;
3416       if (Lod->isSimple() && Lod->isUnindexed()) {
3417         unsigned origWidth = N0.getValueSizeInBits();
3418         unsigned maskWidth = origWidth;
3419         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3420         // 8 bits, but have to be careful...
3421         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3422           origWidth = Lod->getMemoryVT().getSizeInBits();
3423         const APInt &Mask = N0.getConstantOperandAPInt(1);
3424         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3425           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3426           for (unsigned offset=0; offset<origWidth/width; offset++) {
3427             if (Mask.isSubsetOf(newMask)) {
3428               if (Layout.isLittleEndian())
3429                 bestOffset = (uint64_t)offset * (width/8);
3430               else
3431                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3432               bestMask = Mask.lshr(offset * (width/8) * 8);
3433               bestWidth = width;
3434               break;
3435             }
3436             newMask <<= width;
3437           }
3438         }
3439       }
3440       if (bestWidth) {
3441         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3442         if (newVT.isRound() &&
3443             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3444           SDValue Ptr = Lod->getBasePtr();
3445           if (bestOffset != 0)
3446             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3447           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3448           SDValue NewLoad = DAG.getLoad(
3449               newVT, dl, Lod->getChain(), Ptr,
3450               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3451           return DAG.getSetCC(dl, VT,
3452                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3453                                       DAG.getConstant(bestMask.trunc(bestWidth),
3454                                                       dl, newVT)),
3455                               DAG.getConstant(0LL, dl, newVT), Cond);
3456         }
3457       }
3458     }
3459 
3460     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3461     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3462       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3463 
3464       // If the comparison constant has bits in the upper part, the
3465       // zero-extended value could never match.
3466       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3467                                               C1.getBitWidth() - InSize))) {
3468         switch (Cond) {
3469         case ISD::SETUGT:
3470         case ISD::SETUGE:
3471         case ISD::SETEQ:
3472           return DAG.getConstant(0, dl, VT);
3473         case ISD::SETULT:
3474         case ISD::SETULE:
3475         case ISD::SETNE:
3476           return DAG.getConstant(1, dl, VT);
3477         case ISD::SETGT:
3478         case ISD::SETGE:
3479           // True if the sign bit of C1 is set.
3480           return DAG.getConstant(C1.isNegative(), dl, VT);
3481         case ISD::SETLT:
3482         case ISD::SETLE:
3483           // True if the sign bit of C1 isn't set.
3484           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3485         default:
3486           break;
3487         }
3488       }
3489 
3490       // Otherwise, we can perform the comparison with the low bits.
3491       switch (Cond) {
3492       case ISD::SETEQ:
3493       case ISD::SETNE:
3494       case ISD::SETUGT:
3495       case ISD::SETUGE:
3496       case ISD::SETULT:
3497       case ISD::SETULE: {
3498         EVT newVT = N0.getOperand(0).getValueType();
3499         if (DCI.isBeforeLegalizeOps() ||
3500             (isOperationLegal(ISD::SETCC, newVT) &&
3501              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3502           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3503           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3504 
3505           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3506                                           NewConst, Cond);
3507           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3508         }
3509         break;
3510       }
3511       default:
3512         break; // todo, be more careful with signed comparisons
3513       }
3514     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3515                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3516       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3517       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3518       EVT ExtDstTy = N0.getValueType();
3519       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3520 
3521       // If the constant doesn't fit into the number of bits for the source of
3522       // the sign extension, it is impossible for both sides to be equal.
3523       if (C1.getMinSignedBits() > ExtSrcTyBits)
3524         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3525 
3526       SDValue ZextOp;
3527       EVT Op0Ty = N0.getOperand(0).getValueType();
3528       if (Op0Ty == ExtSrcTy) {
3529         ZextOp = N0.getOperand(0);
3530       } else {
3531         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3532         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3533                              DAG.getConstant(Imm, dl, Op0Ty));
3534       }
3535       if (!DCI.isCalledByLegalizer())
3536         DCI.AddToWorklist(ZextOp.getNode());
3537       // Otherwise, make this a use of a zext.
3538       return DAG.getSetCC(dl, VT, ZextOp,
3539                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3540                                                               ExtDstTyBits,
3541                                                               ExtSrcTyBits),
3542                                           dl, ExtDstTy),
3543                           Cond);
3544     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3545                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3546       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3547       if (N0.getOpcode() == ISD::SETCC &&
3548           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3549           (N0.getValueType() == MVT::i1 ||
3550            getBooleanContents(N0.getOperand(0).getValueType()) ==
3551                        ZeroOrOneBooleanContent)) {
3552         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3553         if (TrueWhenTrue)
3554           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3555         // Invert the condition.
3556         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3557         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3558         if (DCI.isBeforeLegalizeOps() ||
3559             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3560           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3561       }
3562 
3563       if ((N0.getOpcode() == ISD::XOR ||
3564            (N0.getOpcode() == ISD::AND &&
3565             N0.getOperand(0).getOpcode() == ISD::XOR &&
3566             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3567           isa<ConstantSDNode>(N0.getOperand(1)) &&
3568           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3569         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3570         // can only do this if the top bits are known zero.
3571         unsigned BitWidth = N0.getValueSizeInBits();
3572         if (DAG.MaskedValueIsZero(N0,
3573                                   APInt::getHighBitsSet(BitWidth,
3574                                                         BitWidth-1))) {
3575           // Okay, get the un-inverted input value.
3576           SDValue Val;
3577           if (N0.getOpcode() == ISD::XOR) {
3578             Val = N0.getOperand(0);
3579           } else {
3580             assert(N0.getOpcode() == ISD::AND &&
3581                     N0.getOperand(0).getOpcode() == ISD::XOR);
3582             // ((X^1)&1)^1 -> X & 1
3583             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3584                               N0.getOperand(0).getOperand(0),
3585                               N0.getOperand(1));
3586           }
3587 
3588           return DAG.getSetCC(dl, VT, Val, N1,
3589                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3590         }
3591       } else if (N1C->isOne()) {
3592         SDValue Op0 = N0;
3593         if (Op0.getOpcode() == ISD::TRUNCATE)
3594           Op0 = Op0.getOperand(0);
3595 
3596         if ((Op0.getOpcode() == ISD::XOR) &&
3597             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3598             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3599           SDValue XorLHS = Op0.getOperand(0);
3600           SDValue XorRHS = Op0.getOperand(1);
3601           // Ensure that the input setccs return an i1 type or 0/1 value.
3602           if (Op0.getValueType() == MVT::i1 ||
3603               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3604                       ZeroOrOneBooleanContent &&
3605                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3606                         ZeroOrOneBooleanContent)) {
3607             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3608             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3609             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3610           }
3611         }
3612         if (Op0.getOpcode() == ISD::AND &&
3613             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3614             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3615           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3616           if (Op0.getValueType().bitsGT(VT))
3617             Op0 = DAG.getNode(ISD::AND, dl, VT,
3618                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3619                           DAG.getConstant(1, dl, VT));
3620           else if (Op0.getValueType().bitsLT(VT))
3621             Op0 = DAG.getNode(ISD::AND, dl, VT,
3622                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3623                         DAG.getConstant(1, dl, VT));
3624 
3625           return DAG.getSetCC(dl, VT, Op0,
3626                               DAG.getConstant(0, dl, Op0.getValueType()),
3627                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3628         }
3629         if (Op0.getOpcode() == ISD::AssertZext &&
3630             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3631           return DAG.getSetCC(dl, VT, Op0,
3632                               DAG.getConstant(0, dl, Op0.getValueType()),
3633                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3634       }
3635     }
3636 
3637     // Given:
3638     //   icmp eq/ne (urem %x, %y), 0
3639     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3640     //   icmp eq/ne %x, 0
3641     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3642         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3643       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3644       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3645       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3646         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3647     }
3648 
3649     if (SDValue V =
3650             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3651       return V;
3652   }
3653 
3654   // These simplifications apply to splat vectors as well.
3655   // TODO: Handle more splat vector cases.
3656   if (auto *N1C = isConstOrConstSplat(N1)) {
3657     const APInt &C1 = N1C->getAPIntValue();
3658 
3659     APInt MinVal, MaxVal;
3660     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3661     if (ISD::isSignedIntSetCC(Cond)) {
3662       MinVal = APInt::getSignedMinValue(OperandBitSize);
3663       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3664     } else {
3665       MinVal = APInt::getMinValue(OperandBitSize);
3666       MaxVal = APInt::getMaxValue(OperandBitSize);
3667     }
3668 
3669     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3670     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3671       // X >= MIN --> true
3672       if (C1 == MinVal)
3673         return DAG.getBoolConstant(true, dl, VT, OpVT);
3674 
3675       if (!VT.isVector()) { // TODO: Support this for vectors.
3676         // X >= C0 --> X > (C0 - 1)
3677         APInt C = C1 - 1;
3678         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3679         if ((DCI.isBeforeLegalizeOps() ||
3680              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3681             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3682                                   isLegalICmpImmediate(C.getSExtValue())))) {
3683           return DAG.getSetCC(dl, VT, N0,
3684                               DAG.getConstant(C, dl, N1.getValueType()),
3685                               NewCC);
3686         }
3687       }
3688     }
3689 
3690     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3691       // X <= MAX --> true
3692       if (C1 == MaxVal)
3693         return DAG.getBoolConstant(true, dl, VT, OpVT);
3694 
3695       // X <= C0 --> X < (C0 + 1)
3696       if (!VT.isVector()) { // TODO: Support this for vectors.
3697         APInt C = C1 + 1;
3698         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3699         if ((DCI.isBeforeLegalizeOps() ||
3700              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3701             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3702                                   isLegalICmpImmediate(C.getSExtValue())))) {
3703           return DAG.getSetCC(dl, VT, N0,
3704                               DAG.getConstant(C, dl, N1.getValueType()),
3705                               NewCC);
3706         }
3707       }
3708     }
3709 
3710     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3711       if (C1 == MinVal)
3712         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3713 
3714       // TODO: Support this for vectors after legalize ops.
3715       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3716         // Canonicalize setlt X, Max --> setne X, Max
3717         if (C1 == MaxVal)
3718           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3719 
3720         // If we have setult X, 1, turn it into seteq X, 0
3721         if (C1 == MinVal+1)
3722           return DAG.getSetCC(dl, VT, N0,
3723                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3724                               ISD::SETEQ);
3725       }
3726     }
3727 
3728     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3729       if (C1 == MaxVal)
3730         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3731 
3732       // TODO: Support this for vectors after legalize ops.
3733       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3734         // Canonicalize setgt X, Min --> setne X, Min
3735         if (C1 == MinVal)
3736           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3737 
3738         // If we have setugt X, Max-1, turn it into seteq X, Max
3739         if (C1 == MaxVal-1)
3740           return DAG.getSetCC(dl, VT, N0,
3741                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3742                               ISD::SETEQ);
3743       }
3744     }
3745 
3746     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3747       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3748       if (C1.isNullValue())
3749         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3750                 VT, N0, N1, Cond, DCI, dl))
3751           return CC;
3752     }
3753 
3754     // If we have "setcc X, C0", check to see if we can shrink the immediate
3755     // by changing cc.
3756     // TODO: Support this for vectors after legalize ops.
3757     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3758       // SETUGT X, SINTMAX  -> SETLT X, 0
3759       if (Cond == ISD::SETUGT &&
3760           C1 == APInt::getSignedMaxValue(OperandBitSize))
3761         return DAG.getSetCC(dl, VT, N0,
3762                             DAG.getConstant(0, dl, N1.getValueType()),
3763                             ISD::SETLT);
3764 
3765       // SETULT X, SINTMIN  -> SETGT X, -1
3766       if (Cond == ISD::SETULT &&
3767           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3768         SDValue ConstMinusOne =
3769             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3770                             N1.getValueType());
3771         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3772       }
3773     }
3774   }
3775 
3776   // Back to non-vector simplifications.
3777   // TODO: Can we do these for vector splats?
3778   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3779     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3780     const APInt &C1 = N1C->getAPIntValue();
3781     EVT ShValTy = N0.getValueType();
3782 
3783     // Fold bit comparisons when we can.
3784     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3785         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3786         N0.getOpcode() == ISD::AND) {
3787       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3788         EVT ShiftTy =
3789             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3790         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3791           // Perform the xform if the AND RHS is a single bit.
3792           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3793           if (AndRHS->getAPIntValue().isPowerOf2() &&
3794               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3795             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3796                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3797                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3798           }
3799         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3800           // (X & 8) == 8  -->  (X & 8) >> 3
3801           // Perform the xform if C1 is a single bit.
3802           unsigned ShCt = C1.logBase2();
3803           if (C1.isPowerOf2() &&
3804               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3805             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3806                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3807                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3808           }
3809         }
3810       }
3811     }
3812 
3813     if (C1.getMinSignedBits() <= 64 &&
3814         !isLegalICmpImmediate(C1.getSExtValue())) {
3815       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3816       // (X & -256) == 256 -> (X >> 8) == 1
3817       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3818           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3819         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3820           const APInt &AndRHSC = AndRHS->getAPIntValue();
3821           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3822             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3823             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3824               SDValue Shift =
3825                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3826                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3827               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3828               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3829             }
3830           }
3831         }
3832       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3833                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3834         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3835         // X <  0x100000000 -> (X >> 32) <  1
3836         // X >= 0x100000000 -> (X >> 32) >= 1
3837         // X <= 0x0ffffffff -> (X >> 32) <  1
3838         // X >  0x0ffffffff -> (X >> 32) >= 1
3839         unsigned ShiftBits;
3840         APInt NewC = C1;
3841         ISD::CondCode NewCond = Cond;
3842         if (AdjOne) {
3843           ShiftBits = C1.countTrailingOnes();
3844           NewC = NewC + 1;
3845           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3846         } else {
3847           ShiftBits = C1.countTrailingZeros();
3848         }
3849         NewC.lshrInPlace(ShiftBits);
3850         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3851             isLegalICmpImmediate(NewC.getSExtValue()) &&
3852             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3853           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3854                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3855           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3856           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3857         }
3858       }
3859     }
3860   }
3861 
3862   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3863     auto *CFP = cast<ConstantFPSDNode>(N1);
3864     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3865 
3866     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3867     // constant if knowing that the operand is non-nan is enough.  We prefer to
3868     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3869     // materialize 0.0.
3870     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3871       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3872 
3873     // setcc (fneg x), C -> setcc swap(pred) x, -C
3874     if (N0.getOpcode() == ISD::FNEG) {
3875       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3876       if (DCI.isBeforeLegalizeOps() ||
3877           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3878         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3879         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3880       }
3881     }
3882 
3883     // If the condition is not legal, see if we can find an equivalent one
3884     // which is legal.
3885     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3886       // If the comparison was an awkward floating-point == or != and one of
3887       // the comparison operands is infinity or negative infinity, convert the
3888       // condition to a less-awkward <= or >=.
3889       if (CFP->getValueAPF().isInfinity()) {
3890         bool IsNegInf = CFP->getValueAPF().isNegative();
3891         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3892         switch (Cond) {
3893         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3894         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3895         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3896         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3897         default: break;
3898         }
3899         if (NewCond != ISD::SETCC_INVALID &&
3900             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3901           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3902       }
3903     }
3904   }
3905 
3906   if (N0 == N1) {
3907     // The sext(setcc()) => setcc() optimization relies on the appropriate
3908     // constant being emitted.
3909     assert(!N0.getValueType().isInteger() &&
3910            "Integer types should be handled by FoldSetCC");
3911 
3912     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3913     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3914     if (UOF == 2) // FP operators that are undefined on NaNs.
3915       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3916     if (UOF == unsigned(EqTrue))
3917       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3918     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3919     // if it is not already.
3920     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3921     if (NewCond != Cond &&
3922         (DCI.isBeforeLegalizeOps() ||
3923                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3924       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3925   }
3926 
3927   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3928       N0.getValueType().isInteger()) {
3929     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3930         N0.getOpcode() == ISD::XOR) {
3931       // Simplify (X+Y) == (X+Z) -->  Y == Z
3932       if (N0.getOpcode() == N1.getOpcode()) {
3933         if (N0.getOperand(0) == N1.getOperand(0))
3934           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3935         if (N0.getOperand(1) == N1.getOperand(1))
3936           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3937         if (isCommutativeBinOp(N0.getOpcode())) {
3938           // If X op Y == Y op X, try other combinations.
3939           if (N0.getOperand(0) == N1.getOperand(1))
3940             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3941                                 Cond);
3942           if (N0.getOperand(1) == N1.getOperand(0))
3943             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3944                                 Cond);
3945         }
3946       }
3947 
3948       // If RHS is a legal immediate value for a compare instruction, we need
3949       // to be careful about increasing register pressure needlessly.
3950       bool LegalRHSImm = false;
3951 
3952       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3953         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3954           // Turn (X+C1) == C2 --> X == C2-C1
3955           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3956             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3957                                 DAG.getConstant(RHSC->getAPIntValue()-
3958                                                 LHSR->getAPIntValue(),
3959                                 dl, N0.getValueType()), Cond);
3960           }
3961 
3962           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3963           if (N0.getOpcode() == ISD::XOR)
3964             // If we know that all of the inverted bits are zero, don't bother
3965             // performing the inversion.
3966             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3967               return
3968                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3969                              DAG.getConstant(LHSR->getAPIntValue() ^
3970                                                RHSC->getAPIntValue(),
3971                                              dl, N0.getValueType()),
3972                              Cond);
3973         }
3974 
3975         // Turn (C1-X) == C2 --> X == C1-C2
3976         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3977           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3978             return
3979               DAG.getSetCC(dl, VT, N0.getOperand(1),
3980                            DAG.getConstant(SUBC->getAPIntValue() -
3981                                              RHSC->getAPIntValue(),
3982                                            dl, N0.getValueType()),
3983                            Cond);
3984           }
3985         }
3986 
3987         // Could RHSC fold directly into a compare?
3988         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3989           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3990       }
3991 
3992       // (X+Y) == X --> Y == 0 and similar folds.
3993       // Don't do this if X is an immediate that can fold into a cmp
3994       // instruction and X+Y has other uses. It could be an induction variable
3995       // chain, and the transform would increase register pressure.
3996       if (!LegalRHSImm || N0.hasOneUse())
3997         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3998           return V;
3999     }
4000 
4001     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4002         N1.getOpcode() == ISD::XOR)
4003       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4004         return V;
4005 
4006     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4007       return V;
4008   }
4009 
4010   // Fold remainder of division by a constant.
4011   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4012       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4013     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4014 
4015     // When division is cheap or optimizing for minimum size,
4016     // fall through to DIVREM creation by skipping this fold.
4017     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4018       if (N0.getOpcode() == ISD::UREM) {
4019         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4020           return Folded;
4021       } else if (N0.getOpcode() == ISD::SREM) {
4022         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4023           return Folded;
4024       }
4025     }
4026   }
4027 
4028   // Fold away ALL boolean setcc's.
4029   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4030     SDValue Temp;
4031     switch (Cond) {
4032     default: llvm_unreachable("Unknown integer setcc!");
4033     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4034       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4035       N0 = DAG.getNOT(dl, Temp, OpVT);
4036       if (!DCI.isCalledByLegalizer())
4037         DCI.AddToWorklist(Temp.getNode());
4038       break;
4039     case ISD::SETNE:  // X != Y   -->  (X^Y)
4040       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4041       break;
4042     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4043     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4044       Temp = DAG.getNOT(dl, N0, OpVT);
4045       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4046       if (!DCI.isCalledByLegalizer())
4047         DCI.AddToWorklist(Temp.getNode());
4048       break;
4049     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4050     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4051       Temp = DAG.getNOT(dl, N1, OpVT);
4052       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4053       if (!DCI.isCalledByLegalizer())
4054         DCI.AddToWorklist(Temp.getNode());
4055       break;
4056     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4057     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4058       Temp = DAG.getNOT(dl, N0, OpVT);
4059       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4060       if (!DCI.isCalledByLegalizer())
4061         DCI.AddToWorklist(Temp.getNode());
4062       break;
4063     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4064     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4065       Temp = DAG.getNOT(dl, N1, OpVT);
4066       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4067       break;
4068     }
4069     if (VT.getScalarType() != MVT::i1) {
4070       if (!DCI.isCalledByLegalizer())
4071         DCI.AddToWorklist(N0.getNode());
4072       // FIXME: If running after legalize, we probably can't do this.
4073       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4074       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4075     }
4076     return N0;
4077   }
4078 
4079   // Could not fold it.
4080   return SDValue();
4081 }
4082 
4083 /// Returns true (and the GlobalValue and the offset) if the node is a
4084 /// GlobalAddress + offset.
4085 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4086                                     int64_t &Offset) const {
4087 
4088   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4089 
4090   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4091     GA = GASD->getGlobal();
4092     Offset += GASD->getOffset();
4093     return true;
4094   }
4095 
4096   if (N->getOpcode() == ISD::ADD) {
4097     SDValue N1 = N->getOperand(0);
4098     SDValue N2 = N->getOperand(1);
4099     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4100       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4101         Offset += V->getSExtValue();
4102         return true;
4103       }
4104     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4105       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4106         Offset += V->getSExtValue();
4107         return true;
4108       }
4109     }
4110   }
4111 
4112   return false;
4113 }
4114 
4115 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4116                                           DAGCombinerInfo &DCI) const {
4117   // Default implementation: no optimization.
4118   return SDValue();
4119 }
4120 
4121 //===----------------------------------------------------------------------===//
4122 //  Inline Assembler Implementation Methods
4123 //===----------------------------------------------------------------------===//
4124 
4125 TargetLowering::ConstraintType
4126 TargetLowering::getConstraintType(StringRef Constraint) const {
4127   unsigned S = Constraint.size();
4128 
4129   if (S == 1) {
4130     switch (Constraint[0]) {
4131     default: break;
4132     case 'r':
4133       return C_RegisterClass;
4134     case 'm': // memory
4135     case 'o': // offsetable
4136     case 'V': // not offsetable
4137       return C_Memory;
4138     case 'n': // Simple Integer
4139     case 'E': // Floating Point Constant
4140     case 'F': // Floating Point Constant
4141       return C_Immediate;
4142     case 'i': // Simple Integer or Relocatable Constant
4143     case 's': // Relocatable Constant
4144     case 'p': // Address.
4145     case 'X': // Allow ANY value.
4146     case 'I': // Target registers.
4147     case 'J':
4148     case 'K':
4149     case 'L':
4150     case 'M':
4151     case 'N':
4152     case 'O':
4153     case 'P':
4154     case '<':
4155     case '>':
4156       return C_Other;
4157     }
4158   }
4159 
4160   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4161     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4162       return C_Memory;
4163     return C_Register;
4164   }
4165   return C_Unknown;
4166 }
4167 
4168 /// Try to replace an X constraint, which matches anything, with another that
4169 /// has more specific requirements based on the type of the corresponding
4170 /// operand.
4171 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4172   if (ConstraintVT.isInteger())
4173     return "r";
4174   if (ConstraintVT.isFloatingPoint())
4175     return "f"; // works for many targets
4176   return nullptr;
4177 }
4178 
4179 SDValue TargetLowering::LowerAsmOutputForConstraint(
4180     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4181     SelectionDAG &DAG) const {
4182   return SDValue();
4183 }
4184 
4185 /// Lower the specified operand into the Ops vector.
4186 /// If it is invalid, don't add anything to Ops.
4187 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4188                                                   std::string &Constraint,
4189                                                   std::vector<SDValue> &Ops,
4190                                                   SelectionDAG &DAG) const {
4191 
4192   if (Constraint.length() > 1) return;
4193 
4194   char ConstraintLetter = Constraint[0];
4195   switch (ConstraintLetter) {
4196   default: break;
4197   case 'X':     // Allows any operand; labels (basic block) use this.
4198     if (Op.getOpcode() == ISD::BasicBlock ||
4199         Op.getOpcode() == ISD::TargetBlockAddress) {
4200       Ops.push_back(Op);
4201       return;
4202     }
4203     LLVM_FALLTHROUGH;
4204   case 'i':    // Simple Integer or Relocatable Constant
4205   case 'n':    // Simple Integer
4206   case 's': {  // Relocatable Constant
4207 
4208     GlobalAddressSDNode *GA;
4209     ConstantSDNode *C;
4210     BlockAddressSDNode *BA;
4211     uint64_t Offset = 0;
4212 
4213     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4214     // etc., since getelementpointer is variadic. We can't use
4215     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4216     // while in this case the GA may be furthest from the root node which is
4217     // likely an ISD::ADD.
4218     while (1) {
4219       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4220         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4221                                                  GA->getValueType(0),
4222                                                  Offset + GA->getOffset()));
4223         return;
4224       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4225                  ConstraintLetter != 's') {
4226         // gcc prints these as sign extended.  Sign extend value to 64 bits
4227         // now; without this it would get ZExt'd later in
4228         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4229         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4230         BooleanContent BCont = getBooleanContents(MVT::i64);
4231         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4232                                       : ISD::SIGN_EXTEND;
4233         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4234                                                     : C->getSExtValue();
4235         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4236                                             SDLoc(C), MVT::i64));
4237         return;
4238       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4239                  ConstraintLetter != 'n') {
4240         Ops.push_back(DAG.getTargetBlockAddress(
4241             BA->getBlockAddress(), BA->getValueType(0),
4242             Offset + BA->getOffset(), BA->getTargetFlags()));
4243         return;
4244       } else {
4245         const unsigned OpCode = Op.getOpcode();
4246         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4247           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4248             Op = Op.getOperand(1);
4249           // Subtraction is not commutative.
4250           else if (OpCode == ISD::ADD &&
4251                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4252             Op = Op.getOperand(0);
4253           else
4254             return;
4255           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4256           continue;
4257         }
4258       }
4259       return;
4260     }
4261     break;
4262   }
4263   }
4264 }
4265 
4266 std::pair<unsigned, const TargetRegisterClass *>
4267 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4268                                              StringRef Constraint,
4269                                              MVT VT) const {
4270   if (Constraint.empty() || Constraint[0] != '{')
4271     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4272   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4273 
4274   // Remove the braces from around the name.
4275   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4276 
4277   std::pair<unsigned, const TargetRegisterClass *> R =
4278       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4279 
4280   // Figure out which register class contains this reg.
4281   for (const TargetRegisterClass *RC : RI->regclasses()) {
4282     // If none of the value types for this register class are valid, we
4283     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4284     if (!isLegalRC(*RI, *RC))
4285       continue;
4286 
4287     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4288          I != E; ++I) {
4289       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4290         std::pair<unsigned, const TargetRegisterClass *> S =
4291             std::make_pair(*I, RC);
4292 
4293         // If this register class has the requested value type, return it,
4294         // otherwise keep searching and return the first class found
4295         // if no other is found which explicitly has the requested type.
4296         if (RI->isTypeLegalForClass(*RC, VT))
4297           return S;
4298         if (!R.second)
4299           R = S;
4300       }
4301     }
4302   }
4303 
4304   return R;
4305 }
4306 
4307 //===----------------------------------------------------------------------===//
4308 // Constraint Selection.
4309 
4310 /// Return true of this is an input operand that is a matching constraint like
4311 /// "4".
4312 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4313   assert(!ConstraintCode.empty() && "No known constraint!");
4314   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4315 }
4316 
4317 /// If this is an input matching constraint, this method returns the output
4318 /// operand it matches.
4319 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4320   assert(!ConstraintCode.empty() && "No known constraint!");
4321   return atoi(ConstraintCode.c_str());
4322 }
4323 
4324 /// Split up the constraint string from the inline assembly value into the
4325 /// specific constraints and their prefixes, and also tie in the associated
4326 /// operand values.
4327 /// If this returns an empty vector, and if the constraint string itself
4328 /// isn't empty, there was an error parsing.
4329 TargetLowering::AsmOperandInfoVector
4330 TargetLowering::ParseConstraints(const DataLayout &DL,
4331                                  const TargetRegisterInfo *TRI,
4332                                  ImmutableCallSite CS) const {
4333   /// Information about all of the constraints.
4334   AsmOperandInfoVector ConstraintOperands;
4335   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4336   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4337 
4338   // Do a prepass over the constraints, canonicalizing them, and building up the
4339   // ConstraintOperands list.
4340   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4341   unsigned ResNo = 0; // ResNo - The result number of the next output.
4342 
4343   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4344     ConstraintOperands.emplace_back(std::move(CI));
4345     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4346 
4347     // Update multiple alternative constraint count.
4348     if (OpInfo.multipleAlternatives.size() > maCount)
4349       maCount = OpInfo.multipleAlternatives.size();
4350 
4351     OpInfo.ConstraintVT = MVT::Other;
4352 
4353     // Compute the value type for each operand.
4354     switch (OpInfo.Type) {
4355     case InlineAsm::isOutput:
4356       // Indirect outputs just consume an argument.
4357       if (OpInfo.isIndirect) {
4358         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4359         break;
4360       }
4361 
4362       // The return value of the call is this value.  As such, there is no
4363       // corresponding argument.
4364       assert(!CS.getType()->isVoidTy() &&
4365              "Bad inline asm!");
4366       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4367         OpInfo.ConstraintVT =
4368             getSimpleValueType(DL, STy->getElementType(ResNo));
4369       } else {
4370         assert(ResNo == 0 && "Asm only has one result!");
4371         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4372       }
4373       ++ResNo;
4374       break;
4375     case InlineAsm::isInput:
4376       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4377       break;
4378     case InlineAsm::isClobber:
4379       // Nothing to do.
4380       break;
4381     }
4382 
4383     if (OpInfo.CallOperandVal) {
4384       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4385       if (OpInfo.isIndirect) {
4386         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4387         if (!PtrTy)
4388           report_fatal_error("Indirect operand for inline asm not a pointer!");
4389         OpTy = PtrTy->getElementType();
4390       }
4391 
4392       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4393       if (StructType *STy = dyn_cast<StructType>(OpTy))
4394         if (STy->getNumElements() == 1)
4395           OpTy = STy->getElementType(0);
4396 
4397       // If OpTy is not a single value, it may be a struct/union that we
4398       // can tile with integers.
4399       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4400         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4401         switch (BitSize) {
4402         default: break;
4403         case 1:
4404         case 8:
4405         case 16:
4406         case 32:
4407         case 64:
4408         case 128:
4409           OpInfo.ConstraintVT =
4410               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4411           break;
4412         }
4413       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4414         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4415         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4416       } else {
4417         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4418       }
4419     }
4420   }
4421 
4422   // If we have multiple alternative constraints, select the best alternative.
4423   if (!ConstraintOperands.empty()) {
4424     if (maCount) {
4425       unsigned bestMAIndex = 0;
4426       int bestWeight = -1;
4427       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4428       int weight = -1;
4429       unsigned maIndex;
4430       // Compute the sums of the weights for each alternative, keeping track
4431       // of the best (highest weight) one so far.
4432       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4433         int weightSum = 0;
4434         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4435              cIndex != eIndex; ++cIndex) {
4436           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4437           if (OpInfo.Type == InlineAsm::isClobber)
4438             continue;
4439 
4440           // If this is an output operand with a matching input operand,
4441           // look up the matching input. If their types mismatch, e.g. one
4442           // is an integer, the other is floating point, or their sizes are
4443           // different, flag it as an maCantMatch.
4444           if (OpInfo.hasMatchingInput()) {
4445             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4446             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4447               if ((OpInfo.ConstraintVT.isInteger() !=
4448                    Input.ConstraintVT.isInteger()) ||
4449                   (OpInfo.ConstraintVT.getSizeInBits() !=
4450                    Input.ConstraintVT.getSizeInBits())) {
4451                 weightSum = -1; // Can't match.
4452                 break;
4453               }
4454             }
4455           }
4456           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4457           if (weight == -1) {
4458             weightSum = -1;
4459             break;
4460           }
4461           weightSum += weight;
4462         }
4463         // Update best.
4464         if (weightSum > bestWeight) {
4465           bestWeight = weightSum;
4466           bestMAIndex = maIndex;
4467         }
4468       }
4469 
4470       // Now select chosen alternative in each constraint.
4471       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4472            cIndex != eIndex; ++cIndex) {
4473         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4474         if (cInfo.Type == InlineAsm::isClobber)
4475           continue;
4476         cInfo.selectAlternative(bestMAIndex);
4477       }
4478     }
4479   }
4480 
4481   // Check and hook up tied operands, choose constraint code to use.
4482   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4483        cIndex != eIndex; ++cIndex) {
4484     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4485 
4486     // If this is an output operand with a matching input operand, look up the
4487     // matching input. If their types mismatch, e.g. one is an integer, the
4488     // other is floating point, or their sizes are different, flag it as an
4489     // error.
4490     if (OpInfo.hasMatchingInput()) {
4491       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4492 
4493       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4494         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4495             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4496                                          OpInfo.ConstraintVT);
4497         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4498             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4499                                          Input.ConstraintVT);
4500         if ((OpInfo.ConstraintVT.isInteger() !=
4501              Input.ConstraintVT.isInteger()) ||
4502             (MatchRC.second != InputRC.second)) {
4503           report_fatal_error("Unsupported asm: input constraint"
4504                              " with a matching output constraint of"
4505                              " incompatible type!");
4506         }
4507       }
4508     }
4509   }
4510 
4511   return ConstraintOperands;
4512 }
4513 
4514 /// Return an integer indicating how general CT is.
4515 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4516   switch (CT) {
4517   case TargetLowering::C_Immediate:
4518   case TargetLowering::C_Other:
4519   case TargetLowering::C_Unknown:
4520     return 0;
4521   case TargetLowering::C_Register:
4522     return 1;
4523   case TargetLowering::C_RegisterClass:
4524     return 2;
4525   case TargetLowering::C_Memory:
4526     return 3;
4527   }
4528   llvm_unreachable("Invalid constraint type");
4529 }
4530 
4531 /// Examine constraint type and operand type and determine a weight value.
4532 /// This object must already have been set up with the operand type
4533 /// and the current alternative constraint selected.
4534 TargetLowering::ConstraintWeight
4535   TargetLowering::getMultipleConstraintMatchWeight(
4536     AsmOperandInfo &info, int maIndex) const {
4537   InlineAsm::ConstraintCodeVector *rCodes;
4538   if (maIndex >= (int)info.multipleAlternatives.size())
4539     rCodes = &info.Codes;
4540   else
4541     rCodes = &info.multipleAlternatives[maIndex].Codes;
4542   ConstraintWeight BestWeight = CW_Invalid;
4543 
4544   // Loop over the options, keeping track of the most general one.
4545   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4546     ConstraintWeight weight =
4547       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4548     if (weight > BestWeight)
4549       BestWeight = weight;
4550   }
4551 
4552   return BestWeight;
4553 }
4554 
4555 /// Examine constraint type and operand type and determine a weight value.
4556 /// This object must already have been set up with the operand type
4557 /// and the current alternative constraint selected.
4558 TargetLowering::ConstraintWeight
4559   TargetLowering::getSingleConstraintMatchWeight(
4560     AsmOperandInfo &info, const char *constraint) const {
4561   ConstraintWeight weight = CW_Invalid;
4562   Value *CallOperandVal = info.CallOperandVal;
4563     // If we don't have a value, we can't do a match,
4564     // but allow it at the lowest weight.
4565   if (!CallOperandVal)
4566     return CW_Default;
4567   // Look at the constraint type.
4568   switch (*constraint) {
4569     case 'i': // immediate integer.
4570     case 'n': // immediate integer with a known value.
4571       if (isa<ConstantInt>(CallOperandVal))
4572         weight = CW_Constant;
4573       break;
4574     case 's': // non-explicit intregal immediate.
4575       if (isa<GlobalValue>(CallOperandVal))
4576         weight = CW_Constant;
4577       break;
4578     case 'E': // immediate float if host format.
4579     case 'F': // immediate float.
4580       if (isa<ConstantFP>(CallOperandVal))
4581         weight = CW_Constant;
4582       break;
4583     case '<': // memory operand with autodecrement.
4584     case '>': // memory operand with autoincrement.
4585     case 'm': // memory operand.
4586     case 'o': // offsettable memory operand
4587     case 'V': // non-offsettable memory operand
4588       weight = CW_Memory;
4589       break;
4590     case 'r': // general register.
4591     case 'g': // general register, memory operand or immediate integer.
4592               // note: Clang converts "g" to "imr".
4593       if (CallOperandVal->getType()->isIntegerTy())
4594         weight = CW_Register;
4595       break;
4596     case 'X': // any operand.
4597   default:
4598     weight = CW_Default;
4599     break;
4600   }
4601   return weight;
4602 }
4603 
4604 /// If there are multiple different constraints that we could pick for this
4605 /// operand (e.g. "imr") try to pick the 'best' one.
4606 /// This is somewhat tricky: constraints fall into four classes:
4607 ///    Other         -> immediates and magic values
4608 ///    Register      -> one specific register
4609 ///    RegisterClass -> a group of regs
4610 ///    Memory        -> memory
4611 /// Ideally, we would pick the most specific constraint possible: if we have
4612 /// something that fits into a register, we would pick it.  The problem here
4613 /// is that if we have something that could either be in a register or in
4614 /// memory that use of the register could cause selection of *other*
4615 /// operands to fail: they might only succeed if we pick memory.  Because of
4616 /// this the heuristic we use is:
4617 ///
4618 ///  1) If there is an 'other' constraint, and if the operand is valid for
4619 ///     that constraint, use it.  This makes us take advantage of 'i'
4620 ///     constraints when available.
4621 ///  2) Otherwise, pick the most general constraint present.  This prefers
4622 ///     'm' over 'r', for example.
4623 ///
4624 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4625                              const TargetLowering &TLI,
4626                              SDValue Op, SelectionDAG *DAG) {
4627   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4628   unsigned BestIdx = 0;
4629   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4630   int BestGenerality = -1;
4631 
4632   // Loop over the options, keeping track of the most general one.
4633   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4634     TargetLowering::ConstraintType CType =
4635       TLI.getConstraintType(OpInfo.Codes[i]);
4636 
4637     // Indirect 'other' or 'immediate' constraints are not allowed.
4638     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4639                                CType == TargetLowering::C_Register ||
4640                                CType == TargetLowering::C_RegisterClass))
4641       continue;
4642 
4643     // If this is an 'other' or 'immediate' constraint, see if the operand is
4644     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4645     // the operand is an integer in the range [0..31] we want to use I (saving a
4646     // load of a register), otherwise we must use 'r'.
4647     if ((CType == TargetLowering::C_Other ||
4648          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4649       assert(OpInfo.Codes[i].size() == 1 &&
4650              "Unhandled multi-letter 'other' constraint");
4651       std::vector<SDValue> ResultOps;
4652       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4653                                        ResultOps, *DAG);
4654       if (!ResultOps.empty()) {
4655         BestType = CType;
4656         BestIdx = i;
4657         break;
4658       }
4659     }
4660 
4661     // Things with matching constraints can only be registers, per gcc
4662     // documentation.  This mainly affects "g" constraints.
4663     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4664       continue;
4665 
4666     // This constraint letter is more general than the previous one, use it.
4667     int Generality = getConstraintGenerality(CType);
4668     if (Generality > BestGenerality) {
4669       BestType = CType;
4670       BestIdx = i;
4671       BestGenerality = Generality;
4672     }
4673   }
4674 
4675   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4676   OpInfo.ConstraintType = BestType;
4677 }
4678 
4679 /// Determines the constraint code and constraint type to use for the specific
4680 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4681 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4682                                             SDValue Op,
4683                                             SelectionDAG *DAG) const {
4684   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4685 
4686   // Single-letter constraints ('r') are very common.
4687   if (OpInfo.Codes.size() == 1) {
4688     OpInfo.ConstraintCode = OpInfo.Codes[0];
4689     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4690   } else {
4691     ChooseConstraint(OpInfo, *this, Op, DAG);
4692   }
4693 
4694   // 'X' matches anything.
4695   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4696     // Labels and constants are handled elsewhere ('X' is the only thing
4697     // that matches labels).  For Functions, the type here is the type of
4698     // the result, which is not what we want to look at; leave them alone.
4699     Value *v = OpInfo.CallOperandVal;
4700     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4701       OpInfo.CallOperandVal = v;
4702       return;
4703     }
4704 
4705     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4706       return;
4707 
4708     // Otherwise, try to resolve it to something we know about by looking at
4709     // the actual operand type.
4710     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4711       OpInfo.ConstraintCode = Repl;
4712       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4713     }
4714   }
4715 }
4716 
4717 /// Given an exact SDIV by a constant, create a multiplication
4718 /// with the multiplicative inverse of the constant.
4719 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4720                               const SDLoc &dl, SelectionDAG &DAG,
4721                               SmallVectorImpl<SDNode *> &Created) {
4722   SDValue Op0 = N->getOperand(0);
4723   SDValue Op1 = N->getOperand(1);
4724   EVT VT = N->getValueType(0);
4725   EVT SVT = VT.getScalarType();
4726   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4727   EVT ShSVT = ShVT.getScalarType();
4728 
4729   bool UseSRA = false;
4730   SmallVector<SDValue, 16> Shifts, Factors;
4731 
4732   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4733     if (C->isNullValue())
4734       return false;
4735     APInt Divisor = C->getAPIntValue();
4736     unsigned Shift = Divisor.countTrailingZeros();
4737     if (Shift) {
4738       Divisor.ashrInPlace(Shift);
4739       UseSRA = true;
4740     }
4741     // Calculate the multiplicative inverse, using Newton's method.
4742     APInt t;
4743     APInt Factor = Divisor;
4744     while ((t = Divisor * Factor) != 1)
4745       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4746     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4747     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4748     return true;
4749   };
4750 
4751   // Collect all magic values from the build vector.
4752   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4753     return SDValue();
4754 
4755   SDValue Shift, Factor;
4756   if (VT.isVector()) {
4757     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4758     Factor = DAG.getBuildVector(VT, dl, Factors);
4759   } else {
4760     Shift = Shifts[0];
4761     Factor = Factors[0];
4762   }
4763 
4764   SDValue Res = Op0;
4765 
4766   // Shift the value upfront if it is even, so the LSB is one.
4767   if (UseSRA) {
4768     // TODO: For UDIV use SRL instead of SRA.
4769     SDNodeFlags Flags;
4770     Flags.setExact(true);
4771     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4772     Created.push_back(Res.getNode());
4773   }
4774 
4775   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4776 }
4777 
4778 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4779                               SelectionDAG &DAG,
4780                               SmallVectorImpl<SDNode *> &Created) const {
4781   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4783   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4784     return SDValue(N, 0); // Lower SDIV as SDIV
4785   return SDValue();
4786 }
4787 
4788 /// Given an ISD::SDIV node expressing a divide by constant,
4789 /// return a DAG expression to select that will generate the same value by
4790 /// multiplying by a magic number.
4791 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4792 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4793                                   bool IsAfterLegalization,
4794                                   SmallVectorImpl<SDNode *> &Created) const {
4795   SDLoc dl(N);
4796   EVT VT = N->getValueType(0);
4797   EVT SVT = VT.getScalarType();
4798   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4799   EVT ShSVT = ShVT.getScalarType();
4800   unsigned EltBits = VT.getScalarSizeInBits();
4801 
4802   // Check to see if we can do this.
4803   // FIXME: We should be more aggressive here.
4804   if (!isTypeLegal(VT))
4805     return SDValue();
4806 
4807   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4808   if (N->getFlags().hasExact())
4809     return BuildExactSDIV(*this, N, dl, DAG, Created);
4810 
4811   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4812 
4813   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4814     if (C->isNullValue())
4815       return false;
4816 
4817     const APInt &Divisor = C->getAPIntValue();
4818     APInt::ms magics = Divisor.magic();
4819     int NumeratorFactor = 0;
4820     int ShiftMask = -1;
4821 
4822     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4823       // If d is +1/-1, we just multiply the numerator by +1/-1.
4824       NumeratorFactor = Divisor.getSExtValue();
4825       magics.m = 0;
4826       magics.s = 0;
4827       ShiftMask = 0;
4828     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4829       // If d > 0 and m < 0, add the numerator.
4830       NumeratorFactor = 1;
4831     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4832       // If d < 0 and m > 0, subtract the numerator.
4833       NumeratorFactor = -1;
4834     }
4835 
4836     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4837     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4838     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4839     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4840     return true;
4841   };
4842 
4843   SDValue N0 = N->getOperand(0);
4844   SDValue N1 = N->getOperand(1);
4845 
4846   // Collect the shifts / magic values from each element.
4847   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4848     return SDValue();
4849 
4850   SDValue MagicFactor, Factor, Shift, ShiftMask;
4851   if (VT.isVector()) {
4852     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4853     Factor = DAG.getBuildVector(VT, dl, Factors);
4854     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4855     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4856   } else {
4857     MagicFactor = MagicFactors[0];
4858     Factor = Factors[0];
4859     Shift = Shifts[0];
4860     ShiftMask = ShiftMasks[0];
4861   }
4862 
4863   // Multiply the numerator (operand 0) by the magic value.
4864   // FIXME: We should support doing a MUL in a wider type.
4865   SDValue Q;
4866   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4867                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4868     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4869   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4870                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4871     SDValue LoHi =
4872         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4873     Q = SDValue(LoHi.getNode(), 1);
4874   } else
4875     return SDValue(); // No mulhs or equivalent.
4876   Created.push_back(Q.getNode());
4877 
4878   // (Optionally) Add/subtract the numerator using Factor.
4879   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4880   Created.push_back(Factor.getNode());
4881   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4882   Created.push_back(Q.getNode());
4883 
4884   // Shift right algebraic by shift value.
4885   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4886   Created.push_back(Q.getNode());
4887 
4888   // Extract the sign bit, mask it and add it to the quotient.
4889   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4890   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4891   Created.push_back(T.getNode());
4892   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4893   Created.push_back(T.getNode());
4894   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4895 }
4896 
4897 /// Given an ISD::UDIV node expressing a divide by constant,
4898 /// return a DAG expression to select that will generate the same value by
4899 /// multiplying by a magic number.
4900 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4901 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4902                                   bool IsAfterLegalization,
4903                                   SmallVectorImpl<SDNode *> &Created) const {
4904   SDLoc dl(N);
4905   EVT VT = N->getValueType(0);
4906   EVT SVT = VT.getScalarType();
4907   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4908   EVT ShSVT = ShVT.getScalarType();
4909   unsigned EltBits = VT.getScalarSizeInBits();
4910 
4911   // Check to see if we can do this.
4912   // FIXME: We should be more aggressive here.
4913   if (!isTypeLegal(VT))
4914     return SDValue();
4915 
4916   bool UseNPQ = false;
4917   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4918 
4919   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4920     if (C->isNullValue())
4921       return false;
4922     // FIXME: We should use a narrower constant when the upper
4923     // bits are known to be zero.
4924     APInt Divisor = C->getAPIntValue();
4925     APInt::mu magics = Divisor.magicu();
4926     unsigned PreShift = 0, PostShift = 0;
4927 
4928     // If the divisor is even, we can avoid using the expensive fixup by
4929     // shifting the divided value upfront.
4930     if (magics.a != 0 && !Divisor[0]) {
4931       PreShift = Divisor.countTrailingZeros();
4932       // Get magic number for the shifted divisor.
4933       magics = Divisor.lshr(PreShift).magicu(PreShift);
4934       assert(magics.a == 0 && "Should use cheap fixup now");
4935     }
4936 
4937     APInt Magic = magics.m;
4938 
4939     unsigned SelNPQ;
4940     if (magics.a == 0 || Divisor.isOneValue()) {
4941       assert(magics.s < Divisor.getBitWidth() &&
4942              "We shouldn't generate an undefined shift!");
4943       PostShift = magics.s;
4944       SelNPQ = false;
4945     } else {
4946       PostShift = magics.s - 1;
4947       SelNPQ = true;
4948     }
4949 
4950     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4951     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4952     NPQFactors.push_back(
4953         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4954                                : APInt::getNullValue(EltBits),
4955                         dl, SVT));
4956     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4957     UseNPQ |= SelNPQ;
4958     return true;
4959   };
4960 
4961   SDValue N0 = N->getOperand(0);
4962   SDValue N1 = N->getOperand(1);
4963 
4964   // Collect the shifts/magic values from each element.
4965   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4966     return SDValue();
4967 
4968   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4969   if (VT.isVector()) {
4970     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4971     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4972     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4973     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4974   } else {
4975     PreShift = PreShifts[0];
4976     MagicFactor = MagicFactors[0];
4977     PostShift = PostShifts[0];
4978   }
4979 
4980   SDValue Q = N0;
4981   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4982   Created.push_back(Q.getNode());
4983 
4984   // FIXME: We should support doing a MUL in a wider type.
4985   auto GetMULHU = [&](SDValue X, SDValue Y) {
4986     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4987                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4988       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4989     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4990                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4991       SDValue LoHi =
4992           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4993       return SDValue(LoHi.getNode(), 1);
4994     }
4995     return SDValue(); // No mulhu or equivalent
4996   };
4997 
4998   // Multiply the numerator (operand 0) by the magic value.
4999   Q = GetMULHU(Q, MagicFactor);
5000   if (!Q)
5001     return SDValue();
5002 
5003   Created.push_back(Q.getNode());
5004 
5005   if (UseNPQ) {
5006     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5007     Created.push_back(NPQ.getNode());
5008 
5009     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5010     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5011     if (VT.isVector())
5012       NPQ = GetMULHU(NPQ, NPQFactor);
5013     else
5014       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5015 
5016     Created.push_back(NPQ.getNode());
5017 
5018     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5019     Created.push_back(Q.getNode());
5020   }
5021 
5022   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5023   Created.push_back(Q.getNode());
5024 
5025   SDValue One = DAG.getConstant(1, dl, VT);
5026   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5027   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5028 }
5029 
5030 /// If all values in Values that *don't* match the predicate are same 'splat'
5031 /// value, then replace all values with that splat value.
5032 /// Else, if AlternativeReplacement was provided, then replace all values that
5033 /// do match predicate with AlternativeReplacement value.
5034 static void
5035 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5036                           std::function<bool(SDValue)> Predicate,
5037                           SDValue AlternativeReplacement = SDValue()) {
5038   SDValue Replacement;
5039   // Is there a value for which the Predicate does *NOT* match? What is it?
5040   auto SplatValue = llvm::find_if_not(Values, Predicate);
5041   if (SplatValue != Values.end()) {
5042     // Does Values consist only of SplatValue's and values matching Predicate?
5043     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5044           return Value == *SplatValue || Predicate(Value);
5045         })) // Then we shall replace values matching predicate with SplatValue.
5046       Replacement = *SplatValue;
5047   }
5048   if (!Replacement) {
5049     // Oops, we did not find the "baseline" splat value.
5050     if (!AlternativeReplacement)
5051       return; // Nothing to do.
5052     // Let's replace with provided value then.
5053     Replacement = AlternativeReplacement;
5054   }
5055   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5056 }
5057 
5058 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5059 /// where the divisor is constant and the comparison target is zero,
5060 /// return a DAG expression that will generate the same comparison result
5061 /// using only multiplications, additions and shifts/rotations.
5062 /// Ref: "Hacker's Delight" 10-17.
5063 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5064                                         SDValue CompTargetNode,
5065                                         ISD::CondCode Cond,
5066                                         DAGCombinerInfo &DCI,
5067                                         const SDLoc &DL) const {
5068   SmallVector<SDNode *, 5> Built;
5069   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5070                                          DCI, DL, Built)) {
5071     for (SDNode *N : Built)
5072       DCI.AddToWorklist(N);
5073     return Folded;
5074   }
5075 
5076   return SDValue();
5077 }
5078 
5079 SDValue
5080 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5081                                   SDValue CompTargetNode, ISD::CondCode Cond,
5082                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5083                                   SmallVectorImpl<SDNode *> &Created) const {
5084   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5085   // - D must be constant, with D = D0 * 2^K where D0 is odd
5086   // - P is the multiplicative inverse of D0 modulo 2^W
5087   // - Q = floor(((2^W) - 1) / D)
5088   // where W is the width of the common type of N and D.
5089   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5090          "Only applicable for (in)equality comparisons.");
5091 
5092   SelectionDAG &DAG = DCI.DAG;
5093 
5094   EVT VT = REMNode.getValueType();
5095   EVT SVT = VT.getScalarType();
5096   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5097   EVT ShSVT = ShVT.getScalarType();
5098 
5099   // If MUL is unavailable, we cannot proceed in any case.
5100   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5101     return SDValue();
5102 
5103   bool ComparingWithAllZeros = true;
5104   bool AllComparisonsWithNonZerosAreTautological = true;
5105   bool HadTautologicalLanes = false;
5106   bool AllLanesAreTautological = true;
5107   bool HadEvenDivisor = false;
5108   bool AllDivisorsArePowerOfTwo = true;
5109   bool HadTautologicalInvertedLanes = false;
5110   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5111 
5112   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5113     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5114     if (CDiv->isNullValue())
5115       return false;
5116 
5117     const APInt &D = CDiv->getAPIntValue();
5118     const APInt &Cmp = CCmp->getAPIntValue();
5119 
5120     ComparingWithAllZeros &= Cmp.isNullValue();
5121 
5122     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5123     // if C2 is not less than C1, the comparison is always false.
5124     // But we will only be able to produce the comparison that will give the
5125     // opposive tautological answer. So this lane would need to be fixed up.
5126     bool TautologicalInvertedLane = D.ule(Cmp);
5127     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5128 
5129     // If all lanes are tautological (either all divisors are ones, or divisor
5130     // is not greater than the constant we are comparing with),
5131     // we will prefer to avoid the fold.
5132     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5133     HadTautologicalLanes |= TautologicalLane;
5134     AllLanesAreTautological &= TautologicalLane;
5135 
5136     // If we are comparing with non-zero, we need'll need  to subtract said
5137     // comparison value from the LHS. But there is no point in doing that if
5138     // every lane where we are comparing with non-zero is tautological..
5139     if (!Cmp.isNullValue())
5140       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5141 
5142     // Decompose D into D0 * 2^K
5143     unsigned K = D.countTrailingZeros();
5144     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5145     APInt D0 = D.lshr(K);
5146 
5147     // D is even if it has trailing zeros.
5148     HadEvenDivisor |= (K != 0);
5149     // D is a power-of-two if D0 is one.
5150     // If all divisors are power-of-two, we will prefer to avoid the fold.
5151     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5152 
5153     // P = inv(D0, 2^W)
5154     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5155     unsigned W = D.getBitWidth();
5156     APInt P = D0.zext(W + 1)
5157                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5158                   .trunc(W);
5159     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5160     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5161 
5162     // Q = floor((2^W - 1) u/ D)
5163     // R = ((2^W - 1) u% D)
5164     APInt Q, R;
5165     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5166 
5167     // If we are comparing with zero, then that comparison constant is okay,
5168     // else it may need to be one less than that.
5169     if (Cmp.ugt(R))
5170       Q -= 1;
5171 
5172     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5173            "We are expecting that K is always less than all-ones for ShSVT");
5174 
5175     // If the lane is tautological the result can be constant-folded.
5176     if (TautologicalLane) {
5177       // Set P and K amount to a bogus values so we can try to splat them.
5178       P = 0;
5179       K = -1;
5180       // And ensure that comparison constant is tautological,
5181       // it will always compare true/false.
5182       Q = -1;
5183     }
5184 
5185     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5186     KAmts.push_back(
5187         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5188     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5189     return true;
5190   };
5191 
5192   SDValue N = REMNode.getOperand(0);
5193   SDValue D = REMNode.getOperand(1);
5194 
5195   // Collect the values from each element.
5196   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5197     return SDValue();
5198 
5199   // If all lanes are tautological, the result can be constant-folded.
5200   if (AllLanesAreTautological)
5201     return SDValue();
5202 
5203   // If this is a urem by a powers-of-two, avoid the fold since it can be
5204   // best implemented as a bit test.
5205   if (AllDivisorsArePowerOfTwo)
5206     return SDValue();
5207 
5208   SDValue PVal, KVal, QVal;
5209   if (VT.isVector()) {
5210     if (HadTautologicalLanes) {
5211       // Try to turn PAmts into a splat, since we don't care about the values
5212       // that are currently '0'. If we can't, just keep '0'`s.
5213       turnVectorIntoSplatVector(PAmts, isNullConstant);
5214       // Try to turn KAmts into a splat, since we don't care about the values
5215       // that are currently '-1'. If we can't, change them to '0'`s.
5216       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5217                                 DAG.getConstant(0, DL, ShSVT));
5218     }
5219 
5220     PVal = DAG.getBuildVector(VT, DL, PAmts);
5221     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5222     QVal = DAG.getBuildVector(VT, DL, QAmts);
5223   } else {
5224     PVal = PAmts[0];
5225     KVal = KAmts[0];
5226     QVal = QAmts[0];
5227   }
5228 
5229   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5230     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5231       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5232     assert(CompTargetNode.getValueType() == N.getValueType() &&
5233            "Expecting that the types on LHS and RHS of comparisons match.");
5234     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5235   }
5236 
5237   // (mul N, P)
5238   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5239   Created.push_back(Op0.getNode());
5240 
5241   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5242   // divisors as a performance improvement, since rotating by 0 is a no-op.
5243   if (HadEvenDivisor) {
5244     // We need ROTR to do this.
5245     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5246       return SDValue();
5247     SDNodeFlags Flags;
5248     Flags.setExact(true);
5249     // UREM: (rotr (mul N, P), K)
5250     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5251     Created.push_back(Op0.getNode());
5252   }
5253 
5254   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5255   SDValue NewCC =
5256       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5257                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5258   if (!HadTautologicalInvertedLanes)
5259     return NewCC;
5260 
5261   // If any lanes previously compared always-false, the NewCC will give
5262   // always-true result for them, so we need to fixup those lanes.
5263   // Or the other way around for inequality predicate.
5264   assert(VT.isVector() && "Can/should only get here for vectors.");
5265   Created.push_back(NewCC.getNode());
5266 
5267   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5268   // if C2 is not less than C1, the comparison is always false.
5269   // But we have produced the comparison that will give the
5270   // opposive tautological answer. So these lanes would need to be fixed up.
5271   SDValue TautologicalInvertedChannels =
5272       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5273   Created.push_back(TautologicalInvertedChannels.getNode());
5274 
5275   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5276     // If we have a vector select, let's replace the comparison results in the
5277     // affected lanes with the correct tautological result.
5278     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5279                                               DL, SETCCVT, SETCCVT);
5280     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5281                        Replacement, NewCC);
5282   }
5283 
5284   // Else, we can just invert the comparison result in the appropriate lanes.
5285   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5286     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5287                        TautologicalInvertedChannels);
5288 
5289   return SDValue(); // Don't know how to lower.
5290 }
5291 
5292 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5293 /// where the divisor is constant and the comparison target is zero,
5294 /// return a DAG expression that will generate the same comparison result
5295 /// using only multiplications, additions and shifts/rotations.
5296 /// Ref: "Hacker's Delight" 10-17.
5297 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5298                                         SDValue CompTargetNode,
5299                                         ISD::CondCode Cond,
5300                                         DAGCombinerInfo &DCI,
5301                                         const SDLoc &DL) const {
5302   SmallVector<SDNode *, 7> Built;
5303   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5304                                          DCI, DL, Built)) {
5305     assert(Built.size() <= 7 && "Max size prediction failed.");
5306     for (SDNode *N : Built)
5307       DCI.AddToWorklist(N);
5308     return Folded;
5309   }
5310 
5311   return SDValue();
5312 }
5313 
5314 SDValue
5315 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5316                                   SDValue CompTargetNode, ISD::CondCode Cond,
5317                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5318                                   SmallVectorImpl<SDNode *> &Created) const {
5319   // Fold:
5320   //   (seteq/ne (srem N, D), 0)
5321   // To:
5322   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5323   //
5324   // - D must be constant, with D = D0 * 2^K where D0 is odd
5325   // - P is the multiplicative inverse of D0 modulo 2^W
5326   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5327   // - Q = floor((2 * A) / (2^K))
5328   // where W is the width of the common type of N and D.
5329   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5330          "Only applicable for (in)equality comparisons.");
5331 
5332   SelectionDAG &DAG = DCI.DAG;
5333 
5334   EVT VT = REMNode.getValueType();
5335   EVT SVT = VT.getScalarType();
5336   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5337   EVT ShSVT = ShVT.getScalarType();
5338 
5339   // If MUL is unavailable, we cannot proceed in any case.
5340   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5341     return SDValue();
5342 
5343   // TODO: Could support comparing with non-zero too.
5344   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5345   if (!CompTarget || !CompTarget->isNullValue())
5346     return SDValue();
5347 
5348   bool HadIntMinDivisor = false;
5349   bool HadOneDivisor = false;
5350   bool AllDivisorsAreOnes = true;
5351   bool HadEvenDivisor = false;
5352   bool NeedToApplyOffset = false;
5353   bool AllDivisorsArePowerOfTwo = true;
5354   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5355 
5356   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5357     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5358     if (C->isNullValue())
5359       return false;
5360 
5361     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5362 
5363     // WARNING: this fold is only valid for positive divisors!
5364     APInt D = C->getAPIntValue();
5365     if (D.isNegative())
5366       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5367 
5368     HadIntMinDivisor |= D.isMinSignedValue();
5369 
5370     // If all divisors are ones, we will prefer to avoid the fold.
5371     HadOneDivisor |= D.isOneValue();
5372     AllDivisorsAreOnes &= D.isOneValue();
5373 
5374     // Decompose D into D0 * 2^K
5375     unsigned K = D.countTrailingZeros();
5376     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5377     APInt D0 = D.lshr(K);
5378 
5379     if (!D.isMinSignedValue()) {
5380       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5381       // we don't care about this lane in this fold, we'll special-handle it.
5382       HadEvenDivisor |= (K != 0);
5383     }
5384 
5385     // D is a power-of-two if D0 is one. This includes INT_MIN.
5386     // If all divisors are power-of-two, we will prefer to avoid the fold.
5387     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5388 
5389     // P = inv(D0, 2^W)
5390     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5391     unsigned W = D.getBitWidth();
5392     APInt P = D0.zext(W + 1)
5393                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5394                   .trunc(W);
5395     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5396     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5397 
5398     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5399     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5400     A.clearLowBits(K);
5401 
5402     if (!D.isMinSignedValue()) {
5403       // If divisor INT_MIN, then we don't care about this lane in this fold,
5404       // we'll special-handle it.
5405       NeedToApplyOffset |= A != 0;
5406     }
5407 
5408     // Q = floor((2 * A) / (2^K))
5409     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5410 
5411     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5412            "We are expecting that A is always less than all-ones for SVT");
5413     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5414            "We are expecting that K is always less than all-ones for ShSVT");
5415 
5416     // If the divisor is 1 the result can be constant-folded. Likewise, we
5417     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5418     if (D.isOneValue()) {
5419       // Set P, A and K to a bogus values so we can try to splat them.
5420       P = 0;
5421       A = -1;
5422       K = -1;
5423 
5424       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5425       Q = -1;
5426     }
5427 
5428     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5429     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5430     KAmts.push_back(
5431         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5432     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5433     return true;
5434   };
5435 
5436   SDValue N = REMNode.getOperand(0);
5437   SDValue D = REMNode.getOperand(1);
5438 
5439   // Collect the values from each element.
5440   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5441     return SDValue();
5442 
5443   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5444   if (AllDivisorsAreOnes)
5445     return SDValue();
5446 
5447   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5448   // since it can be best implemented as a bit test.
5449   if (AllDivisorsArePowerOfTwo)
5450     return SDValue();
5451 
5452   SDValue PVal, AVal, KVal, QVal;
5453   if (VT.isVector()) {
5454     if (HadOneDivisor) {
5455       // Try to turn PAmts into a splat, since we don't care about the values
5456       // that are currently '0'. If we can't, just keep '0'`s.
5457       turnVectorIntoSplatVector(PAmts, isNullConstant);
5458       // Try to turn AAmts into a splat, since we don't care about the
5459       // values that are currently '-1'. If we can't, change them to '0'`s.
5460       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5461                                 DAG.getConstant(0, DL, SVT));
5462       // Try to turn KAmts into a splat, since we don't care about the values
5463       // that are currently '-1'. If we can't, change them to '0'`s.
5464       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5465                                 DAG.getConstant(0, DL, ShSVT));
5466     }
5467 
5468     PVal = DAG.getBuildVector(VT, DL, PAmts);
5469     AVal = DAG.getBuildVector(VT, DL, AAmts);
5470     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5471     QVal = DAG.getBuildVector(VT, DL, QAmts);
5472   } else {
5473     PVal = PAmts[0];
5474     AVal = AAmts[0];
5475     KVal = KAmts[0];
5476     QVal = QAmts[0];
5477   }
5478 
5479   // (mul N, P)
5480   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5481   Created.push_back(Op0.getNode());
5482 
5483   if (NeedToApplyOffset) {
5484     // We need ADD to do this.
5485     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5486       return SDValue();
5487 
5488     // (add (mul N, P), A)
5489     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5490     Created.push_back(Op0.getNode());
5491   }
5492 
5493   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5494   // divisors as a performance improvement, since rotating by 0 is a no-op.
5495   if (HadEvenDivisor) {
5496     // We need ROTR to do this.
5497     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5498       return SDValue();
5499     SDNodeFlags Flags;
5500     Flags.setExact(true);
5501     // SREM: (rotr (add (mul N, P), A), K)
5502     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5503     Created.push_back(Op0.getNode());
5504   }
5505 
5506   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5507   SDValue Fold =
5508       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5509                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5510 
5511   // If we didn't have lanes with INT_MIN divisor, then we're done.
5512   if (!HadIntMinDivisor)
5513     return Fold;
5514 
5515   // That fold is only valid for positive divisors. Which effectively means,
5516   // it is invalid for INT_MIN divisors. So if we have such a lane,
5517   // we must fix-up results for said lanes.
5518   assert(VT.isVector() && "Can/should only get here for vectors.");
5519 
5520   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5521       !isOperationLegalOrCustom(ISD::AND, VT) ||
5522       !isOperationLegalOrCustom(Cond, VT) ||
5523       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5524     return SDValue();
5525 
5526   Created.push_back(Fold.getNode());
5527 
5528   SDValue IntMin = DAG.getConstant(
5529       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5530   SDValue IntMax = DAG.getConstant(
5531       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5532   SDValue Zero =
5533       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5534 
5535   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5536   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5537   Created.push_back(DivisorIsIntMin.getNode());
5538 
5539   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5540   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5541   Created.push_back(Masked.getNode());
5542   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5543   Created.push_back(MaskedIsZero.getNode());
5544 
5545   // To produce final result we need to blend 2 vectors: 'SetCC' and
5546   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5547   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5548   // constant-folded, select can get lowered to a shuffle with constant mask.
5549   SDValue Blended =
5550       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5551 
5552   return Blended;
5553 }
5554 
5555 bool TargetLowering::
5556 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5557   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5558     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5559                                 "be a constant integer");
5560     return true;
5561   }
5562 
5563   return false;
5564 }
5565 
5566 TargetLowering::NegatibleCost
5567 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5568                                  bool LegalOperations, bool ForCodeSize,
5569                                  unsigned Depth) const {
5570   // fneg is removable even if it has multiple uses.
5571   if (Op.getOpcode() == ISD::FNEG)
5572     return NegatibleCost::Cheaper;
5573 
5574   // Don't allow anything with multiple uses unless we know it is free.
5575   EVT VT = Op.getValueType();
5576   const SDNodeFlags Flags = Op->getFlags();
5577   const TargetOptions &Options = DAG.getTarget().Options;
5578   if (!Op.hasOneUse()) {
5579     bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND &&
5580                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5581 
5582     // If we already have the use of the negated floating constant, it is free
5583     // to negate it even it has multiple uses.
5584     bool IsFreeConstant =
5585         Op.getOpcode() == ISD::ConstantFP &&
5586         !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize)
5587              .use_empty();
5588 
5589     if (!IsFreeExtend && !IsFreeConstant)
5590       return NegatibleCost::Expensive;
5591   }
5592 
5593   // Don't recurse exponentially.
5594   if (Depth > SelectionDAG::MaxRecursionDepth)
5595     return NegatibleCost::Expensive;
5596 
5597   switch (Op.getOpcode()) {
5598   case ISD::ConstantFP: {
5599     if (!LegalOperations)
5600       return NegatibleCost::Neutral;
5601 
5602     // Don't invert constant FP values after legalization unless the target says
5603     // the negated constant is legal.
5604     if (isOperationLegal(ISD::ConstantFP, VT) ||
5605         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5606                      ForCodeSize))
5607       return NegatibleCost::Neutral;
5608     break;
5609   }
5610   case ISD::BUILD_VECTOR: {
5611     // Only permit BUILD_VECTOR of constants.
5612     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5613           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5614         }))
5615       return NegatibleCost::Expensive;
5616     if (!LegalOperations)
5617       return NegatibleCost::Neutral;
5618     if (isOperationLegal(ISD::ConstantFP, VT) &&
5619         isOperationLegal(ISD::BUILD_VECTOR, VT))
5620       return NegatibleCost::Neutral;
5621     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5622           return N.isUndef() ||
5623                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5624                               ForCodeSize);
5625         }))
5626       return NegatibleCost::Neutral;
5627     break;
5628   }
5629   case ISD::FADD: {
5630     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5631       return NegatibleCost::Expensive;
5632 
5633     // After operation legalization, it might not be legal to create new FSUBs.
5634     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5635       return NegatibleCost::Expensive;
5636 
5637     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5638     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5639                                         ForCodeSize, Depth + 1);
5640     if (V0 != NegatibleCost::Expensive)
5641       return V0;
5642     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5643     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5644                             Depth + 1);
5645   }
5646   case ISD::FSUB:
5647     // We can't turn -(A-B) into B-A when we honor signed zeros.
5648     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5649       return NegatibleCost::Expensive;
5650 
5651     // fold (fneg (fsub A, B)) -> (fsub B, A)
5652     return NegatibleCost::Neutral;
5653   case ISD::FMUL:
5654   case ISD::FDIV: {
5655     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5656     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5657                                         ForCodeSize, Depth + 1);
5658     if (V0 != NegatibleCost::Expensive)
5659       return V0;
5660 
5661     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5662     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5663       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5664         return NegatibleCost::Expensive;
5665 
5666     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5667                             Depth + 1);
5668   }
5669   case ISD::FMA:
5670   case ISD::FMAD: {
5671     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5672       return NegatibleCost::Expensive;
5673 
5674     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5675     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5676     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5677                                         ForCodeSize, Depth + 1);
5678     if (NegatibleCost::Expensive == V2)
5679       return NegatibleCost::Expensive;
5680 
5681     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5682     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5683                                         ForCodeSize, Depth + 1);
5684     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5685                                         ForCodeSize, Depth + 1);
5686     NegatibleCost V01 = std::max(V0, V1);
5687     if (V01 == NegatibleCost::Expensive)
5688       return NegatibleCost::Expensive;
5689     return std::max(V01, V2);
5690   }
5691 
5692   case ISD::FP_EXTEND:
5693   case ISD::FP_ROUND:
5694   case ISD::FSIN:
5695     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5696                             Depth + 1);
5697   }
5698 
5699   return NegatibleCost::Expensive;
5700 }
5701 
5702 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5703                                              bool LegalOps, bool OptForSize,
5704                                              unsigned Depth) const {
5705   // fneg is removable even if it has multiple uses.
5706   if (Op.getOpcode() == ISD::FNEG)
5707     return Op.getOperand(0);
5708 
5709   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5710          "getNegatedExpression doesn't match getNegatibleCost");
5711 
5712   // Pre-increment recursion depth for use in recursive calls.
5713   ++Depth;
5714   const SDNodeFlags Flags = Op->getFlags();
5715   EVT VT = Op.getValueType();
5716   unsigned Opcode = Op.getOpcode();
5717   SDLoc DL(Op);
5718 
5719   switch (Opcode) {
5720   case ISD::ConstantFP: {
5721     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5722     V.changeSign();
5723     return DAG.getConstantFP(V, DL, VT);
5724   }
5725   case ISD::BUILD_VECTOR: {
5726     SmallVector<SDValue, 4> Ops;
5727     for (SDValue C : Op->op_values()) {
5728       if (C.isUndef()) {
5729         Ops.push_back(C);
5730         continue;
5731       }
5732       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5733       V.changeSign();
5734       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5735     }
5736     return DAG.getBuildVector(VT, DL, Ops);
5737   }
5738   case ISD::FADD: {
5739     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5740     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5741             Flags.hasNoSignedZeros()) &&
5742            "Expected NSZ fp-flag");
5743 
5744     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5745     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5746     if (CostX != NegatibleCost::Expensive)
5747       return DAG.getNode(
5748           ISD::FSUB, DL, VT,
5749           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5750 
5751     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5752     return DAG.getNode(
5753         ISD::FSUB, DL, VT,
5754         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), X, Flags);
5755   }
5756   case ISD::FSUB: {
5757     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5758     // fold (fneg (fsub 0, Y)) -> Y
5759     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5760       if (C->isZero())
5761         return Y;
5762 
5763     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5764     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5765   }
5766   case ISD::FMUL:
5767   case ISD::FDIV: {
5768     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5769     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5770     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5771     if (CostX != NegatibleCost::Expensive)
5772       return DAG.getNode(
5773           Opcode, DL, VT,
5774           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5775 
5776     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5777     return DAG.getNode(
5778         Opcode, DL, VT, X,
5779         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), Flags);
5780   }
5781   case ISD::FMA:
5782   case ISD::FMAD: {
5783     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5784             Flags.hasNoSignedZeros()) &&
5785            "Expected NSZ fp-flag");
5786 
5787     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5788     SDValue NegZ = getNegatedExpression(Z, DAG, LegalOps, OptForSize, Depth);
5789     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5790     NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth);
5791     if (CostX > CostY) {
5792       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5793       SDValue NegX = getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth);
5794       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5795     }
5796 
5797     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5798     SDValue NegY = getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth);
5799     return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5800   }
5801 
5802   case ISD::FP_EXTEND:
5803   case ISD::FSIN:
5804     return DAG.getNode(Opcode, DL, VT,
5805                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5806                                             OptForSize, Depth));
5807   case ISD::FP_ROUND:
5808     return DAG.getNode(ISD::FP_ROUND, DL, VT,
5809                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5810                                             OptForSize, Depth),
5811                        Op.getOperand(1));
5812   }
5813 
5814   llvm_unreachable("Unknown code");
5815 }
5816 
5817 //===----------------------------------------------------------------------===//
5818 // Legalization Utilities
5819 //===----------------------------------------------------------------------===//
5820 
5821 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5822                                     SDValue LHS, SDValue RHS,
5823                                     SmallVectorImpl<SDValue> &Result,
5824                                     EVT HiLoVT, SelectionDAG &DAG,
5825                                     MulExpansionKind Kind, SDValue LL,
5826                                     SDValue LH, SDValue RL, SDValue RH) const {
5827   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5828          Opcode == ISD::SMUL_LOHI);
5829 
5830   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5831                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5832   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5833                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5834   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5835                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5836   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5837                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5838 
5839   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5840     return false;
5841 
5842   unsigned OuterBitSize = VT.getScalarSizeInBits();
5843   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5844   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5845   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5846 
5847   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5848   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5849          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5850 
5851   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5852   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5853                           bool Signed) -> bool {
5854     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5855       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5856       Hi = SDValue(Lo.getNode(), 1);
5857       return true;
5858     }
5859     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5860       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5861       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5862       return true;
5863     }
5864     return false;
5865   };
5866 
5867   SDValue Lo, Hi;
5868 
5869   if (!LL.getNode() && !RL.getNode() &&
5870       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5871     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5872     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5873   }
5874 
5875   if (!LL.getNode())
5876     return false;
5877 
5878   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5879   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5880       DAG.MaskedValueIsZero(RHS, HighMask)) {
5881     // The inputs are both zero-extended.
5882     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5883       Result.push_back(Lo);
5884       Result.push_back(Hi);
5885       if (Opcode != ISD::MUL) {
5886         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5887         Result.push_back(Zero);
5888         Result.push_back(Zero);
5889       }
5890       return true;
5891     }
5892   }
5893 
5894   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5895       RHSSB > InnerBitSize) {
5896     // The input values are both sign-extended.
5897     // TODO non-MUL case?
5898     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5899       Result.push_back(Lo);
5900       Result.push_back(Hi);
5901       return true;
5902     }
5903   }
5904 
5905   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5906   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5907   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5908     // FIXME getShiftAmountTy does not always return a sensible result when VT
5909     // is an illegal type, and so the type may be too small to fit the shift
5910     // amount. Override it with i32. The shift will have to be legalized.
5911     ShiftAmountTy = MVT::i32;
5912   }
5913   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5914 
5915   if (!LH.getNode() && !RH.getNode() &&
5916       isOperationLegalOrCustom(ISD::SRL, VT) &&
5917       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5918     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5919     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5920     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5921     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5922   }
5923 
5924   if (!LH.getNode())
5925     return false;
5926 
5927   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5928     return false;
5929 
5930   Result.push_back(Lo);
5931 
5932   if (Opcode == ISD::MUL) {
5933     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5934     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5935     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5936     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5937     Result.push_back(Hi);
5938     return true;
5939   }
5940 
5941   // Compute the full width result.
5942   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5943     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5944     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5945     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5946     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5947   };
5948 
5949   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5950   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5951     return false;
5952 
5953   // This is effectively the add part of a multiply-add of half-sized operands,
5954   // so it cannot overflow.
5955   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5956 
5957   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5958     return false;
5959 
5960   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5961   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5962 
5963   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5964                   isOperationLegalOrCustom(ISD::ADDE, VT));
5965   if (UseGlue)
5966     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5967                        Merge(Lo, Hi));
5968   else
5969     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5970                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5971 
5972   SDValue Carry = Next.getValue(1);
5973   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5974   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5975 
5976   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5977     return false;
5978 
5979   if (UseGlue)
5980     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5981                      Carry);
5982   else
5983     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5984                      Zero, Carry);
5985 
5986   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5987 
5988   if (Opcode == ISD::SMUL_LOHI) {
5989     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5990                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5991     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5992 
5993     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5994                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5995     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5996   }
5997 
5998   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5999   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6000   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6001   return true;
6002 }
6003 
6004 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6005                                SelectionDAG &DAG, MulExpansionKind Kind,
6006                                SDValue LL, SDValue LH, SDValue RL,
6007                                SDValue RH) const {
6008   SmallVector<SDValue, 2> Result;
6009   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6010                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6011                            DAG, Kind, LL, LH, RL, RH);
6012   if (Ok) {
6013     assert(Result.size() == 2);
6014     Lo = Result[0];
6015     Hi = Result[1];
6016   }
6017   return Ok;
6018 }
6019 
6020 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6021                                        SelectionDAG &DAG) const {
6022   EVT VT = Node->getValueType(0);
6023 
6024   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6025                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6026                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6027                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6028     return false;
6029 
6030   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6031   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6032   SDValue X = Node->getOperand(0);
6033   SDValue Y = Node->getOperand(1);
6034   SDValue Z = Node->getOperand(2);
6035 
6036   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6037   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6038   SDLoc DL(SDValue(Node, 0));
6039 
6040   EVT ShVT = Z.getValueType();
6041   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6042   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6043 
6044   SDValue ShAmt;
6045   if (isPowerOf2_32(EltSizeInBits)) {
6046     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6047     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6048   } else {
6049     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6050   }
6051 
6052   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6053   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6054   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6055   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6056 
6057   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6058   // and that is undefined. We must compare and select to avoid UB.
6059   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6060 
6061   // For fshl, 0-shift returns the 1st arg (X).
6062   // For fshr, 0-shift returns the 2nd arg (Y).
6063   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6064   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6065   return true;
6066 }
6067 
6068 // TODO: Merge with expandFunnelShift.
6069 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6070                                SelectionDAG &DAG) const {
6071   EVT VT = Node->getValueType(0);
6072   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6073   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6074   SDValue Op0 = Node->getOperand(0);
6075   SDValue Op1 = Node->getOperand(1);
6076   SDLoc DL(SDValue(Node, 0));
6077 
6078   EVT ShVT = Op1.getValueType();
6079   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6080 
6081   // If a rotate in the other direction is legal, use it.
6082   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6083   if (isOperationLegal(RevRot, VT)) {
6084     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6085     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6086     return true;
6087   }
6088 
6089   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6090                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6091                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6092                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6093                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6094     return false;
6095 
6096   // Otherwise,
6097   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6098   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6099   //
6100   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6101          "Expecting the type bitwidth to be a power of 2");
6102   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6103   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6104   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6105   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6106   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6107   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6108   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6109                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6110   return true;
6111 }
6112 
6113 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6114                                       SelectionDAG &DAG) const {
6115   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6116   SDValue Src = Node->getOperand(OpNo);
6117   EVT SrcVT = Src.getValueType();
6118   EVT DstVT = Node->getValueType(0);
6119   SDLoc dl(SDValue(Node, 0));
6120 
6121   // FIXME: Only f32 to i64 conversions are supported.
6122   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6123     return false;
6124 
6125   if (Node->isStrictFPOpcode())
6126     // When a NaN is converted to an integer a trap is allowed. We can't
6127     // use this expansion here because it would eliminate that trap. Other
6128     // traps are also allowed and cannot be eliminated. See
6129     // IEEE 754-2008 sec 5.8.
6130     return false;
6131 
6132   // Expand f32 -> i64 conversion
6133   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6134   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6135   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6136   EVT IntVT = SrcVT.changeTypeToInteger();
6137   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6138 
6139   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6140   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6141   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6142   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6143   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6144   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6145 
6146   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6147 
6148   SDValue ExponentBits = DAG.getNode(
6149       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6150       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6151   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6152 
6153   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6154                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6155                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6156   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6157 
6158   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6159                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6160                           DAG.getConstant(0x00800000, dl, IntVT));
6161 
6162   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6163 
6164   R = DAG.getSelectCC(
6165       dl, Exponent, ExponentLoBit,
6166       DAG.getNode(ISD::SHL, dl, DstVT, R,
6167                   DAG.getZExtOrTrunc(
6168                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6169                       dl, IntShVT)),
6170       DAG.getNode(ISD::SRL, dl, DstVT, R,
6171                   DAG.getZExtOrTrunc(
6172                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6173                       dl, IntShVT)),
6174       ISD::SETGT);
6175 
6176   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6177                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6178 
6179   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6180                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6181   return true;
6182 }
6183 
6184 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6185                                       SDValue &Chain,
6186                                       SelectionDAG &DAG) const {
6187   SDLoc dl(SDValue(Node, 0));
6188   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6189   SDValue Src = Node->getOperand(OpNo);
6190 
6191   EVT SrcVT = Src.getValueType();
6192   EVT DstVT = Node->getValueType(0);
6193   EVT SetCCVT =
6194       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6195   EVT DstSetCCVT =
6196       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6197 
6198   // Only expand vector types if we have the appropriate vector bit operations.
6199   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6200                                                    ISD::FP_TO_SINT;
6201   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6202                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6203     return false;
6204 
6205   // If the maximum float value is smaller then the signed integer range,
6206   // the destination signmask can't be represented by the float, so we can
6207   // just use FP_TO_SINT directly.
6208   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6209   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6210   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6211   if (APFloat::opOverflow &
6212       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6213     if (Node->isStrictFPOpcode()) {
6214       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6215                            { Node->getOperand(0), Src });
6216       Chain = Result.getValue(1);
6217     } else
6218       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6219     return true;
6220   }
6221 
6222   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6223   SDValue Sel;
6224 
6225   if (Node->isStrictFPOpcode()) {
6226     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6227                        Node->getOperand(0), /*IsSignaling*/ true);
6228     Chain = Sel.getValue(1);
6229   } else {
6230     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6231   }
6232 
6233   bool Strict = Node->isStrictFPOpcode() ||
6234                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6235 
6236   if (Strict) {
6237     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6238     // signmask then offset (the result of which should be fully representable).
6239     // Sel = Src < 0x8000000000000000
6240     // FltOfs = select Sel, 0, 0x8000000000000000
6241     // IntOfs = select Sel, 0, 0x8000000000000000
6242     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6243 
6244     // TODO: Should any fast-math-flags be set for the FSUB?
6245     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6246                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6247     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6248     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6249                                    DAG.getConstant(0, dl, DstVT),
6250                                    DAG.getConstant(SignMask, dl, DstVT));
6251     SDValue SInt;
6252     if (Node->isStrictFPOpcode()) {
6253       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6254                                 { Chain, Src, FltOfs });
6255       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6256                          { Val.getValue(1), Val });
6257       Chain = SInt.getValue(1);
6258     } else {
6259       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6260       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6261     }
6262     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6263   } else {
6264     // Expand based on maximum range of FP_TO_SINT:
6265     // True = fp_to_sint(Src)
6266     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6267     // Result = select (Src < 0x8000000000000000), True, False
6268 
6269     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6270     // TODO: Should any fast-math-flags be set for the FSUB?
6271     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6272                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6273     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6274                         DAG.getConstant(SignMask, dl, DstVT));
6275     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6276     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6277   }
6278   return true;
6279 }
6280 
6281 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6282                                       SDValue &Chain,
6283                                       SelectionDAG &DAG) const {
6284   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6285   SDValue Src = Node->getOperand(OpNo);
6286   EVT SrcVT = Src.getValueType();
6287   EVT DstVT = Node->getValueType(0);
6288 
6289   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6290     return false;
6291 
6292   // Only expand vector types if we have the appropriate vector bit operations.
6293   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6294                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6295                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6296                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6297                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6298     return false;
6299 
6300   SDLoc dl(SDValue(Node, 0));
6301   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6302 
6303   // Implementation of unsigned i64 to f64 following the algorithm in
6304   // __floatundidf in compiler_rt. This implementation has the advantage
6305   // of performing rounding correctly, both in the default rounding mode
6306   // and in all alternate rounding modes.
6307   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6308   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6309       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6310   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6311   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6312   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6313 
6314   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6315   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6316   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6317   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6318   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6319   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6320   if (Node->isStrictFPOpcode()) {
6321     SDValue HiSub =
6322         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6323                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6324     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6325                          {HiSub.getValue(1), LoFlt, HiSub});
6326     Chain = Result.getValue(1);
6327   } else {
6328     SDValue HiSub =
6329         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6330     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6331   }
6332   return true;
6333 }
6334 
6335 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6336                                               SelectionDAG &DAG) const {
6337   SDLoc dl(Node);
6338   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6339     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6340   EVT VT = Node->getValueType(0);
6341   if (isOperationLegalOrCustom(NewOp, VT)) {
6342     SDValue Quiet0 = Node->getOperand(0);
6343     SDValue Quiet1 = Node->getOperand(1);
6344 
6345     if (!Node->getFlags().hasNoNaNs()) {
6346       // Insert canonicalizes if it's possible we need to quiet to get correct
6347       // sNaN behavior.
6348       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6349         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6350                              Node->getFlags());
6351       }
6352       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6353         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6354                              Node->getFlags());
6355       }
6356     }
6357 
6358     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6359   }
6360 
6361   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6362   // instead if there are no NaNs.
6363   if (Node->getFlags().hasNoNaNs()) {
6364     unsigned IEEE2018Op =
6365         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6366     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6367       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6368                          Node->getOperand(1), Node->getFlags());
6369     }
6370   }
6371 
6372   // If none of the above worked, but there are no NaNs, then expand to
6373   // a compare/select sequence.  This is required for correctness since
6374   // InstCombine might have canonicalized a fcmp+select sequence to a
6375   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6376   // expansion to libcall, we might introduce a link-time dependency
6377   // on libm into a file that originally did not have one.
6378   if (Node->getFlags().hasNoNaNs()) {
6379     ISD::CondCode Pred =
6380         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6381     SDValue Op1 = Node->getOperand(0);
6382     SDValue Op2 = Node->getOperand(1);
6383     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6384     // Copy FMF flags, but always set the no-signed-zeros flag
6385     // as this is implied by the FMINNUM/FMAXNUM semantics.
6386     SDNodeFlags Flags = Node->getFlags();
6387     Flags.setNoSignedZeros(true);
6388     SelCC->setFlags(Flags);
6389     return SelCC;
6390   }
6391 
6392   return SDValue();
6393 }
6394 
6395 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6396                                  SelectionDAG &DAG) const {
6397   SDLoc dl(Node);
6398   EVT VT = Node->getValueType(0);
6399   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6400   SDValue Op = Node->getOperand(0);
6401   unsigned Len = VT.getScalarSizeInBits();
6402   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6403 
6404   // TODO: Add support for irregular type lengths.
6405   if (!(Len <= 128 && Len % 8 == 0))
6406     return false;
6407 
6408   // Only expand vector types if we have the appropriate vector bit operations.
6409   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6410                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6411                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6412                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6413                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6414     return false;
6415 
6416   // This is the "best" algorithm from
6417   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6418   SDValue Mask55 =
6419       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6420   SDValue Mask33 =
6421       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6422   SDValue Mask0F =
6423       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6424   SDValue Mask01 =
6425       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6426 
6427   // v = v - ((v >> 1) & 0x55555555...)
6428   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6429                    DAG.getNode(ISD::AND, dl, VT,
6430                                DAG.getNode(ISD::SRL, dl, VT, Op,
6431                                            DAG.getConstant(1, dl, ShVT)),
6432                                Mask55));
6433   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6434   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6435                    DAG.getNode(ISD::AND, dl, VT,
6436                                DAG.getNode(ISD::SRL, dl, VT, Op,
6437                                            DAG.getConstant(2, dl, ShVT)),
6438                                Mask33));
6439   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6440   Op = DAG.getNode(ISD::AND, dl, VT,
6441                    DAG.getNode(ISD::ADD, dl, VT, Op,
6442                                DAG.getNode(ISD::SRL, dl, VT, Op,
6443                                            DAG.getConstant(4, dl, ShVT))),
6444                    Mask0F);
6445   // v = (v * 0x01010101...) >> (Len - 8)
6446   if (Len > 8)
6447     Op =
6448         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6449                     DAG.getConstant(Len - 8, dl, ShVT));
6450 
6451   Result = Op;
6452   return true;
6453 }
6454 
6455 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6456                                 SelectionDAG &DAG) const {
6457   SDLoc dl(Node);
6458   EVT VT = Node->getValueType(0);
6459   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6460   SDValue Op = Node->getOperand(0);
6461   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6462 
6463   // If the non-ZERO_UNDEF version is supported we can use that instead.
6464   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6465       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6466     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6467     return true;
6468   }
6469 
6470   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6471   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6472     EVT SetCCVT =
6473         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6474     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6475     SDValue Zero = DAG.getConstant(0, dl, VT);
6476     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6477     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6478                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6479     return true;
6480   }
6481 
6482   // Only expand vector types if we have the appropriate vector bit operations.
6483   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6484                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6485                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6486                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6487     return false;
6488 
6489   // for now, we do this:
6490   // x = x | (x >> 1);
6491   // x = x | (x >> 2);
6492   // ...
6493   // x = x | (x >>16);
6494   // x = x | (x >>32); // for 64-bit input
6495   // return popcount(~x);
6496   //
6497   // Ref: "Hacker's Delight" by Henry Warren
6498   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6499     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6500     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6501                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6502   }
6503   Op = DAG.getNOT(dl, Op, VT);
6504   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6505   return true;
6506 }
6507 
6508 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6509                                 SelectionDAG &DAG) const {
6510   SDLoc dl(Node);
6511   EVT VT = Node->getValueType(0);
6512   SDValue Op = Node->getOperand(0);
6513   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6514 
6515   // If the non-ZERO_UNDEF version is supported we can use that instead.
6516   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6517       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6518     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6519     return true;
6520   }
6521 
6522   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6523   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6524     EVT SetCCVT =
6525         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6526     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6527     SDValue Zero = DAG.getConstant(0, dl, VT);
6528     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6529     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6530                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6531     return true;
6532   }
6533 
6534   // Only expand vector types if we have the appropriate vector bit operations.
6535   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6536                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6537                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6538                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6539                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6540                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6541     return false;
6542 
6543   // for now, we use: { return popcount(~x & (x - 1)); }
6544   // unless the target has ctlz but not ctpop, in which case we use:
6545   // { return 32 - nlz(~x & (x-1)); }
6546   // Ref: "Hacker's Delight" by Henry Warren
6547   SDValue Tmp = DAG.getNode(
6548       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6549       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6550 
6551   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6552   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6553     Result =
6554         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6555                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6556     return true;
6557   }
6558 
6559   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6560   return true;
6561 }
6562 
6563 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6564                                SelectionDAG &DAG) const {
6565   SDLoc dl(N);
6566   EVT VT = N->getValueType(0);
6567   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6568   SDValue Op = N->getOperand(0);
6569 
6570   // Only expand vector types if we have the appropriate vector operations.
6571   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6572                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6573                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6574     return false;
6575 
6576   SDValue Shift =
6577       DAG.getNode(ISD::SRA, dl, VT, Op,
6578                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6579   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6580   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6581   return true;
6582 }
6583 
6584 std::pair<SDValue, SDValue>
6585 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6586                                     SelectionDAG &DAG) const {
6587   SDLoc SL(LD);
6588   SDValue Chain = LD->getChain();
6589   SDValue BasePTR = LD->getBasePtr();
6590   EVT SrcVT = LD->getMemoryVT();
6591   EVT DstVT = LD->getValueType(0);
6592   ISD::LoadExtType ExtType = LD->getExtensionType();
6593 
6594   unsigned NumElem = SrcVT.getVectorNumElements();
6595 
6596   EVT SrcEltVT = SrcVT.getScalarType();
6597   EVT DstEltVT = DstVT.getScalarType();
6598 
6599   // A vector must always be stored in memory as-is, i.e. without any padding
6600   // between the elements, since various code depend on it, e.g. in the
6601   // handling of a bitcast of a vector type to int, which may be done with a
6602   // vector store followed by an integer load. A vector that does not have
6603   // elements that are byte-sized must therefore be stored as an integer
6604   // built out of the extracted vector elements.
6605   if (!SrcEltVT.isByteSized()) {
6606     unsigned NumBits = SrcVT.getSizeInBits();
6607     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6608 
6609     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6610                                LD->getAlignment(),
6611                                LD->getMemOperand()->getFlags(),
6612                                LD->getAAInfo());
6613 
6614     SmallVector<SDValue, 8> Vals;
6615     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6616       unsigned ShiftIntoIdx =
6617           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6618       SDValue ShiftAmount =
6619           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6620       SDValue ShiftedElt =
6621           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6622       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6623       if (ExtType != ISD::NON_EXTLOAD) {
6624         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6625         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6626       }
6627       Vals.push_back(Scalar);
6628     }
6629 
6630     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6631     return std::make_pair(Value, Load.getValue(1));
6632   }
6633 
6634   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6635   assert(SrcEltVT.isByteSized());
6636 
6637   SmallVector<SDValue, 8> Vals;
6638   SmallVector<SDValue, 8> LoadChains;
6639 
6640   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6641     SDValue ScalarLoad =
6642         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6643                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6644                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6645                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6646 
6647     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6648 
6649     Vals.push_back(ScalarLoad.getValue(0));
6650     LoadChains.push_back(ScalarLoad.getValue(1));
6651   }
6652 
6653   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6654   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6655 
6656   return std::make_pair(Value, NewChain);
6657 }
6658 
6659 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6660                                              SelectionDAG &DAG) const {
6661   SDLoc SL(ST);
6662 
6663   SDValue Chain = ST->getChain();
6664   SDValue BasePtr = ST->getBasePtr();
6665   SDValue Value = ST->getValue();
6666   EVT StVT = ST->getMemoryVT();
6667 
6668   // The type of the data we want to save
6669   EVT RegVT = Value.getValueType();
6670   EVT RegSclVT = RegVT.getScalarType();
6671 
6672   // The type of data as saved in memory.
6673   EVT MemSclVT = StVT.getScalarType();
6674 
6675   unsigned NumElem = StVT.getVectorNumElements();
6676 
6677   // A vector must always be stored in memory as-is, i.e. without any padding
6678   // between the elements, since various code depend on it, e.g. in the
6679   // handling of a bitcast of a vector type to int, which may be done with a
6680   // vector store followed by an integer load. A vector that does not have
6681   // elements that are byte-sized must therefore be stored as an integer
6682   // built out of the extracted vector elements.
6683   if (!MemSclVT.isByteSized()) {
6684     unsigned NumBits = StVT.getSizeInBits();
6685     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6686 
6687     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6688 
6689     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6690       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6691                                 DAG.getVectorIdxConstant(Idx, SL));
6692       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6693       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6694       unsigned ShiftIntoIdx =
6695           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6696       SDValue ShiftAmount =
6697           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6698       SDValue ShiftedElt =
6699           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6700       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6701     }
6702 
6703     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6704                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6705                         ST->getAAInfo());
6706   }
6707 
6708   // Store Stride in bytes
6709   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6710   assert(Stride && "Zero stride!");
6711   // Extract each of the elements from the original vector and save them into
6712   // memory individually.
6713   SmallVector<SDValue, 8> Stores;
6714   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6715     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6716                               DAG.getVectorIdxConstant(Idx, SL));
6717 
6718     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6719 
6720     // This scalar TruncStore may be illegal, but we legalize it later.
6721     SDValue Store = DAG.getTruncStore(
6722         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6723         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6724         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6725 
6726     Stores.push_back(Store);
6727   }
6728 
6729   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6730 }
6731 
6732 std::pair<SDValue, SDValue>
6733 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6734   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6735          "unaligned indexed loads not implemented!");
6736   SDValue Chain = LD->getChain();
6737   SDValue Ptr = LD->getBasePtr();
6738   EVT VT = LD->getValueType(0);
6739   EVT LoadedVT = LD->getMemoryVT();
6740   SDLoc dl(LD);
6741   auto &MF = DAG.getMachineFunction();
6742 
6743   if (VT.isFloatingPoint() || VT.isVector()) {
6744     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6745     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6746       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6747           LoadedVT.isVector()) {
6748         // Scalarize the load and let the individual components be handled.
6749         return scalarizeVectorLoad(LD, DAG);
6750       }
6751 
6752       // Expand to a (misaligned) integer load of the same size,
6753       // then bitconvert to floating point or vector.
6754       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6755                                     LD->getMemOperand());
6756       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6757       if (LoadedVT != VT)
6758         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6759                              ISD::ANY_EXTEND, dl, VT, Result);
6760 
6761       return std::make_pair(Result, newLoad.getValue(1));
6762     }
6763 
6764     // Copy the value to a (aligned) stack slot using (unaligned) integer
6765     // loads and stores, then do a (aligned) load from the stack slot.
6766     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6767     unsigned LoadedBytes = LoadedVT.getStoreSize();
6768     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6769     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6770 
6771     // Make sure the stack slot is also aligned for the register type.
6772     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6773     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6774     SmallVector<SDValue, 8> Stores;
6775     SDValue StackPtr = StackBase;
6776     unsigned Offset = 0;
6777 
6778     EVT PtrVT = Ptr.getValueType();
6779     EVT StackPtrVT = StackPtr.getValueType();
6780 
6781     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6782     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6783 
6784     // Do all but one copies using the full register width.
6785     for (unsigned i = 1; i < NumRegs; i++) {
6786       // Load one integer register's worth from the original location.
6787       SDValue Load = DAG.getLoad(
6788           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6789           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6790           LD->getAAInfo());
6791       // Follow the load with a store to the stack slot.  Remember the store.
6792       Stores.push_back(DAG.getStore(
6793           Load.getValue(1), dl, Load, StackPtr,
6794           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6795       // Increment the pointers.
6796       Offset += RegBytes;
6797 
6798       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6799       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6800     }
6801 
6802     // The last copy may be partial.  Do an extending load.
6803     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6804                                   8 * (LoadedBytes - Offset));
6805     SDValue Load =
6806         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6807                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6808                        MinAlign(LD->getAlignment(), Offset),
6809                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6810     // Follow the load with a store to the stack slot.  Remember the store.
6811     // On big-endian machines this requires a truncating store to ensure
6812     // that the bits end up in the right place.
6813     Stores.push_back(DAG.getTruncStore(
6814         Load.getValue(1), dl, Load, StackPtr,
6815         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6816 
6817     // The order of the stores doesn't matter - say it with a TokenFactor.
6818     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6819 
6820     // Finally, perform the original load only redirected to the stack slot.
6821     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6822                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6823                           LoadedVT);
6824 
6825     // Callers expect a MERGE_VALUES node.
6826     return std::make_pair(Load, TF);
6827   }
6828 
6829   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6830          "Unaligned load of unsupported type.");
6831 
6832   // Compute the new VT that is half the size of the old one.  This is an
6833   // integer MVT.
6834   unsigned NumBits = LoadedVT.getSizeInBits();
6835   EVT NewLoadedVT;
6836   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6837   NumBits >>= 1;
6838 
6839   unsigned Alignment = LD->getAlignment();
6840   unsigned IncrementSize = NumBits / 8;
6841   ISD::LoadExtType HiExtType = LD->getExtensionType();
6842 
6843   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6844   if (HiExtType == ISD::NON_EXTLOAD)
6845     HiExtType = ISD::ZEXTLOAD;
6846 
6847   // Load the value in two parts
6848   SDValue Lo, Hi;
6849   if (DAG.getDataLayout().isLittleEndian()) {
6850     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6851                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6852                         LD->getAAInfo());
6853 
6854     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6855     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6856                         LD->getPointerInfo().getWithOffset(IncrementSize),
6857                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6858                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6859   } else {
6860     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6861                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6862                         LD->getAAInfo());
6863 
6864     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6865     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6866                         LD->getPointerInfo().getWithOffset(IncrementSize),
6867                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6868                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6869   }
6870 
6871   // aggregate the two parts
6872   SDValue ShiftAmount =
6873       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6874                                                     DAG.getDataLayout()));
6875   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6876   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6877 
6878   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6879                              Hi.getValue(1));
6880 
6881   return std::make_pair(Result, TF);
6882 }
6883 
6884 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6885                                              SelectionDAG &DAG) const {
6886   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6887          "unaligned indexed stores not implemented!");
6888   SDValue Chain = ST->getChain();
6889   SDValue Ptr = ST->getBasePtr();
6890   SDValue Val = ST->getValue();
6891   EVT VT = Val.getValueType();
6892   int Alignment = ST->getAlignment();
6893   auto &MF = DAG.getMachineFunction();
6894   EVT StoreMemVT = ST->getMemoryVT();
6895 
6896   SDLoc dl(ST);
6897   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6898     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6899     if (isTypeLegal(intVT)) {
6900       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6901           StoreMemVT.isVector()) {
6902         // Scalarize the store and let the individual components be handled.
6903         SDValue Result = scalarizeVectorStore(ST, DAG);
6904         return Result;
6905       }
6906       // Expand to a bitconvert of the value to the integer type of the
6907       // same size, then a (misaligned) int store.
6908       // FIXME: Does not handle truncating floating point stores!
6909       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6910       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6911                             Alignment, ST->getMemOperand()->getFlags());
6912       return Result;
6913     }
6914     // Do a (aligned) store to a stack slot, then copy from the stack slot
6915     // to the final destination using (unaligned) integer loads and stores.
6916     MVT RegVT = getRegisterType(
6917         *DAG.getContext(),
6918         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6919     EVT PtrVT = Ptr.getValueType();
6920     unsigned StoredBytes = StoreMemVT.getStoreSize();
6921     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6922     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6923 
6924     // Make sure the stack slot is also aligned for the register type.
6925     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6926     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6927 
6928     // Perform the original store, only redirected to the stack slot.
6929     SDValue Store = DAG.getTruncStore(
6930         Chain, dl, Val, StackPtr,
6931         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6932 
6933     EVT StackPtrVT = StackPtr.getValueType();
6934 
6935     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6936     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6937     SmallVector<SDValue, 8> Stores;
6938     unsigned Offset = 0;
6939 
6940     // Do all but one copies using the full register width.
6941     for (unsigned i = 1; i < NumRegs; i++) {
6942       // Load one integer register's worth from the stack slot.
6943       SDValue Load = DAG.getLoad(
6944           RegVT, dl, Store, StackPtr,
6945           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6946       // Store it to the final location.  Remember the store.
6947       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6948                                     ST->getPointerInfo().getWithOffset(Offset),
6949                                     MinAlign(ST->getAlignment(), Offset),
6950                                     ST->getMemOperand()->getFlags()));
6951       // Increment the pointers.
6952       Offset += RegBytes;
6953       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6954       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6955     }
6956 
6957     // The last store may be partial.  Do a truncating store.  On big-endian
6958     // machines this requires an extending load from the stack slot to ensure
6959     // that the bits are in the right place.
6960     EVT LoadMemVT =
6961         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6962 
6963     // Load from the stack slot.
6964     SDValue Load = DAG.getExtLoad(
6965         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6966         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6967 
6968     Stores.push_back(
6969         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6970                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6971                           MinAlign(ST->getAlignment(), Offset),
6972                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6973     // The order of the stores doesn't matter - say it with a TokenFactor.
6974     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6975     return Result;
6976   }
6977 
6978   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6979          "Unaligned store of unknown type.");
6980   // Get the half-size VT
6981   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6982   int NumBits = NewStoredVT.getSizeInBits();
6983   int IncrementSize = NumBits / 8;
6984 
6985   // Divide the stored value in two parts.
6986   SDValue ShiftAmount = DAG.getConstant(
6987       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6988   SDValue Lo = Val;
6989   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6990 
6991   // Store the two parts
6992   SDValue Store1, Store2;
6993   Store1 = DAG.getTruncStore(Chain, dl,
6994                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6995                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6996                              ST->getMemOperand()->getFlags());
6997 
6998   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6999   Alignment = MinAlign(Alignment, IncrementSize);
7000   Store2 = DAG.getTruncStore(
7001       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7002       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7003       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7004 
7005   SDValue Result =
7006       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7007   return Result;
7008 }
7009 
7010 SDValue
7011 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7012                                        const SDLoc &DL, EVT DataVT,
7013                                        SelectionDAG &DAG,
7014                                        bool IsCompressedMemory) const {
7015   SDValue Increment;
7016   EVT AddrVT = Addr.getValueType();
7017   EVT MaskVT = Mask.getValueType();
7018   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7019          "Incompatible types of Data and Mask");
7020   if (IsCompressedMemory) {
7021     // Incrementing the pointer according to number of '1's in the mask.
7022     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7023     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7024     if (MaskIntVT.getSizeInBits() < 32) {
7025       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7026       MaskIntVT = MVT::i32;
7027     }
7028 
7029     // Count '1's with POPCNT.
7030     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7031     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7032     // Scale is an element size in bytes.
7033     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7034                                     AddrVT);
7035     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7036   } else
7037     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7038 
7039   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7040 }
7041 
7042 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7043                                        SDValue Idx,
7044                                        EVT VecVT,
7045                                        const SDLoc &dl) {
7046   if (isa<ConstantSDNode>(Idx))
7047     return Idx;
7048 
7049   EVT IdxVT = Idx.getValueType();
7050   unsigned NElts = VecVT.getVectorNumElements();
7051   if (isPowerOf2_32(NElts)) {
7052     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7053                                      Log2_32(NElts));
7054     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7055                        DAG.getConstant(Imm, dl, IdxVT));
7056   }
7057 
7058   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7059                      DAG.getConstant(NElts - 1, dl, IdxVT));
7060 }
7061 
7062 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7063                                                 SDValue VecPtr, EVT VecVT,
7064                                                 SDValue Index) const {
7065   SDLoc dl(Index);
7066   // Make sure the index type is big enough to compute in.
7067   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7068 
7069   EVT EltVT = VecVT.getVectorElementType();
7070 
7071   // Calculate the element offset and add it to the pointer.
7072   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7073   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7074          "Converting bits to bytes lost precision");
7075 
7076   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7077 
7078   EVT IdxVT = Index.getValueType();
7079 
7080   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7081                       DAG.getConstant(EltSize, dl, IdxVT));
7082   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7083 }
7084 
7085 //===----------------------------------------------------------------------===//
7086 // Implementation of Emulated TLS Model
7087 //===----------------------------------------------------------------------===//
7088 
7089 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7090                                                 SelectionDAG &DAG) const {
7091   // Access to address of TLS varialbe xyz is lowered to a function call:
7092   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7093   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7094   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7095   SDLoc dl(GA);
7096 
7097   ArgListTy Args;
7098   ArgListEntry Entry;
7099   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7100   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7101   StringRef EmuTlsVarName(NameString);
7102   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7103   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7104   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7105   Entry.Ty = VoidPtrType;
7106   Args.push_back(Entry);
7107 
7108   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7109 
7110   TargetLowering::CallLoweringInfo CLI(DAG);
7111   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7112   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7113   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7114 
7115   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7116   // At last for X86 targets, maybe good for other targets too?
7117   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7118   MFI.setAdjustsStack(true); // Is this only for X86 target?
7119   MFI.setHasCalls(true);
7120 
7121   assert((GA->getOffset() == 0) &&
7122          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7123   return CallResult.first;
7124 }
7125 
7126 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7127                                                 SelectionDAG &DAG) const {
7128   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7129   if (!isCtlzFast())
7130     return SDValue();
7131   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7132   SDLoc dl(Op);
7133   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7134     if (C->isNullValue() && CC == ISD::SETEQ) {
7135       EVT VT = Op.getOperand(0).getValueType();
7136       SDValue Zext = Op.getOperand(0);
7137       if (VT.bitsLT(MVT::i32)) {
7138         VT = MVT::i32;
7139         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7140       }
7141       unsigned Log2b = Log2_32(VT.getSizeInBits());
7142       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7143       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7144                                 DAG.getConstant(Log2b, dl, MVT::i32));
7145       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7146     }
7147   }
7148   return SDValue();
7149 }
7150 
7151 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7152   unsigned Opcode = Node->getOpcode();
7153   SDValue LHS = Node->getOperand(0);
7154   SDValue RHS = Node->getOperand(1);
7155   EVT VT = LHS.getValueType();
7156   SDLoc dl(Node);
7157 
7158   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7159   assert(VT.isInteger() && "Expected operands to be integers");
7160 
7161   // usub.sat(a, b) -> umax(a, b) - b
7162   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7163     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7164     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7165   }
7166 
7167   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7168     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7169     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7170     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7171   }
7172 
7173   unsigned OverflowOp;
7174   switch (Opcode) {
7175   case ISD::SADDSAT:
7176     OverflowOp = ISD::SADDO;
7177     break;
7178   case ISD::UADDSAT:
7179     OverflowOp = ISD::UADDO;
7180     break;
7181   case ISD::SSUBSAT:
7182     OverflowOp = ISD::SSUBO;
7183     break;
7184   case ISD::USUBSAT:
7185     OverflowOp = ISD::USUBO;
7186     break;
7187   default:
7188     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7189                      "addition or subtraction node.");
7190   }
7191 
7192   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7193   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7194   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7195                                LHS, RHS);
7196   SDValue SumDiff = Result.getValue(0);
7197   SDValue Overflow = Result.getValue(1);
7198   SDValue Zero = DAG.getConstant(0, dl, VT);
7199   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7200 
7201   if (Opcode == ISD::UADDSAT) {
7202     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7203       // (LHS + RHS) | OverflowMask
7204       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7205       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7206     }
7207     // Overflow ? 0xffff.... : (LHS + RHS)
7208     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7209   } else if (Opcode == ISD::USUBSAT) {
7210     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7211       // (LHS - RHS) & ~OverflowMask
7212       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7213       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7214       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7215     }
7216     // Overflow ? 0 : (LHS - RHS)
7217     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7218   } else {
7219     // SatMax -> Overflow && SumDiff < 0
7220     // SatMin -> Overflow && SumDiff >= 0
7221     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7222     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7223     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7224     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7225     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7226     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7227     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7228   }
7229 }
7230 
7231 SDValue
7232 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7233   assert((Node->getOpcode() == ISD::SMULFIX ||
7234           Node->getOpcode() == ISD::UMULFIX ||
7235           Node->getOpcode() == ISD::SMULFIXSAT ||
7236           Node->getOpcode() == ISD::UMULFIXSAT) &&
7237          "Expected a fixed point multiplication opcode");
7238 
7239   SDLoc dl(Node);
7240   SDValue LHS = Node->getOperand(0);
7241   SDValue RHS = Node->getOperand(1);
7242   EVT VT = LHS.getValueType();
7243   unsigned Scale = Node->getConstantOperandVal(2);
7244   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7245                      Node->getOpcode() == ISD::UMULFIXSAT);
7246   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7247                  Node->getOpcode() == ISD::SMULFIXSAT);
7248   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7249   unsigned VTSize = VT.getScalarSizeInBits();
7250 
7251   if (!Scale) {
7252     // [us]mul.fix(a, b, 0) -> mul(a, b)
7253     if (!Saturating) {
7254       if (isOperationLegalOrCustom(ISD::MUL, VT))
7255         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7256     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7257       SDValue Result =
7258           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7259       SDValue Product = Result.getValue(0);
7260       SDValue Overflow = Result.getValue(1);
7261       SDValue Zero = DAG.getConstant(0, dl, VT);
7262 
7263       APInt MinVal = APInt::getSignedMinValue(VTSize);
7264       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7265       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7266       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7267       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7268       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7269       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7270     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7271       SDValue Result =
7272           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7273       SDValue Product = Result.getValue(0);
7274       SDValue Overflow = Result.getValue(1);
7275 
7276       APInt MaxVal = APInt::getMaxValue(VTSize);
7277       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7278       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7279     }
7280   }
7281 
7282   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7283          "Expected scale to be less than the number of bits if signed or at "
7284          "most the number of bits if unsigned.");
7285   assert(LHS.getValueType() == RHS.getValueType() &&
7286          "Expected both operands to be the same type");
7287 
7288   // Get the upper and lower bits of the result.
7289   SDValue Lo, Hi;
7290   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7291   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7292   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7293     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7294     Lo = Result.getValue(0);
7295     Hi = Result.getValue(1);
7296   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7297     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7298     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7299   } else if (VT.isVector()) {
7300     return SDValue();
7301   } else {
7302     report_fatal_error("Unable to expand fixed point multiplication.");
7303   }
7304 
7305   if (Scale == VTSize)
7306     // Result is just the top half since we'd be shifting by the width of the
7307     // operand. Overflow impossible so this works for both UMULFIX and
7308     // UMULFIXSAT.
7309     return Hi;
7310 
7311   // The result will need to be shifted right by the scale since both operands
7312   // are scaled. The result is given to us in 2 halves, so we only want part of
7313   // both in the result.
7314   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7315   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7316                                DAG.getConstant(Scale, dl, ShiftTy));
7317   if (!Saturating)
7318     return Result;
7319 
7320   if (!Signed) {
7321     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7322     // widened multiplication) aren't all zeroes.
7323 
7324     // Saturate to max if ((Hi >> Scale) != 0),
7325     // which is the same as if (Hi > ((1 << Scale) - 1))
7326     APInt MaxVal = APInt::getMaxValue(VTSize);
7327     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7328                                       dl, VT);
7329     Result = DAG.getSelectCC(dl, Hi, LowMask,
7330                              DAG.getConstant(MaxVal, dl, VT), Result,
7331                              ISD::SETUGT);
7332 
7333     return Result;
7334   }
7335 
7336   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7337   // widened multiplication) aren't all ones or all zeroes.
7338 
7339   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7340   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7341 
7342   if (Scale == 0) {
7343     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7344                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7345     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7346     // Saturated to SatMin if wide product is negative, and SatMax if wide
7347     // product is positive ...
7348     SDValue Zero = DAG.getConstant(0, dl, VT);
7349     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7350                                                ISD::SETLT);
7351     // ... but only if we overflowed.
7352     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7353   }
7354 
7355   //  We handled Scale==0 above so all the bits to examine is in Hi.
7356 
7357   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7358   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7359   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7360                                     dl, VT);
7361   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7362   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7363   // which is the same as if (HI < (-1 << (Scale - 1))
7364   SDValue HighMask =
7365       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7366                       dl, VT);
7367   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7368   return Result;
7369 }
7370 
7371 SDValue
7372 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7373                                     SDValue LHS, SDValue RHS,
7374                                     unsigned Scale, SelectionDAG &DAG) const {
7375   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7376           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7377          "Expected a fixed point division opcode");
7378 
7379   EVT VT = LHS.getValueType();
7380   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7381   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7382   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7383 
7384   // If there is enough room in the type to upscale the LHS or downscale the
7385   // RHS before the division, we can perform it in this type without having to
7386   // resize. For signed operations, the LHS headroom is the number of
7387   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7388   // The headroom for the RHS is the number of trailing zeroes.
7389   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7390                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7391   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7392 
7393   // For signed saturating operations, we need to be able to detect true integer
7394   // division overflow; that is, when you have MIN / -EPS. However, this
7395   // is undefined behavior and if we emit divisions that could take such
7396   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7397   // example).
7398   // Avoid this by requiring an extra bit so that we never get this case.
7399   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7400   // signed saturating division, we need to emit a whopping 32-bit division.
7401   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7402     return SDValue();
7403 
7404   unsigned LHSShift = std::min(LHSLead, Scale);
7405   unsigned RHSShift = Scale - LHSShift;
7406 
7407   // At this point, we know that if we shift the LHS up by LHSShift and the
7408   // RHS down by RHSShift, we can emit a regular division with a final scaling
7409   // factor of Scale.
7410 
7411   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7412   if (LHSShift)
7413     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7414                       DAG.getConstant(LHSShift, dl, ShiftTy));
7415   if (RHSShift)
7416     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7417                       DAG.getConstant(RHSShift, dl, ShiftTy));
7418 
7419   SDValue Quot;
7420   if (Signed) {
7421     // For signed operations, if the resulting quotient is negative and the
7422     // remainder is nonzero, subtract 1 from the quotient to round towards
7423     // negative infinity.
7424     SDValue Rem;
7425     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7426     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7427     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7428     if (isTypeLegal(VT) &&
7429         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7430       Quot = DAG.getNode(ISD::SDIVREM, dl,
7431                          DAG.getVTList(VT, VT),
7432                          LHS, RHS);
7433       Rem = Quot.getValue(1);
7434       Quot = Quot.getValue(0);
7435     } else {
7436       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7437                          LHS, RHS);
7438       Rem = DAG.getNode(ISD::SREM, dl, VT,
7439                         LHS, RHS);
7440     }
7441     SDValue Zero = DAG.getConstant(0, dl, VT);
7442     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7443     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7444     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7445     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7446     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7447                                DAG.getConstant(1, dl, VT));
7448     Quot = DAG.getSelect(dl, VT,
7449                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7450                          Sub1, Quot);
7451   } else
7452     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7453                        LHS, RHS);
7454 
7455   return Quot;
7456 }
7457 
7458 void TargetLowering::expandUADDSUBO(
7459     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7460   SDLoc dl(Node);
7461   SDValue LHS = Node->getOperand(0);
7462   SDValue RHS = Node->getOperand(1);
7463   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7464 
7465   // If ADD/SUBCARRY is legal, use that instead.
7466   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7467   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7468     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7469     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7470                                     { LHS, RHS, CarryIn });
7471     Result = SDValue(NodeCarry.getNode(), 0);
7472     Overflow = SDValue(NodeCarry.getNode(), 1);
7473     return;
7474   }
7475 
7476   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7477                             LHS.getValueType(), LHS, RHS);
7478 
7479   EVT ResultType = Node->getValueType(1);
7480   EVT SetCCType = getSetCCResultType(
7481       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7482   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7483   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7484   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7485 }
7486 
7487 void TargetLowering::expandSADDSUBO(
7488     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7489   SDLoc dl(Node);
7490   SDValue LHS = Node->getOperand(0);
7491   SDValue RHS = Node->getOperand(1);
7492   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7493 
7494   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7495                             LHS.getValueType(), LHS, RHS);
7496 
7497   EVT ResultType = Node->getValueType(1);
7498   EVT OType = getSetCCResultType(
7499       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7500 
7501   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7502   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7503   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7504     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7505     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7506     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7507     return;
7508   }
7509 
7510   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7511 
7512   // For an addition, the result should be less than one of the operands (LHS)
7513   // if and only if the other operand (RHS) is negative, otherwise there will
7514   // be overflow.
7515   // For a subtraction, the result should be less than one of the operands
7516   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7517   // otherwise there will be overflow.
7518   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7519   SDValue ConditionRHS =
7520       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7521 
7522   Overflow = DAG.getBoolExtOrTrunc(
7523       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7524       ResultType, ResultType);
7525 }
7526 
7527 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7528                                 SDValue &Overflow, SelectionDAG &DAG) const {
7529   SDLoc dl(Node);
7530   EVT VT = Node->getValueType(0);
7531   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7532   SDValue LHS = Node->getOperand(0);
7533   SDValue RHS = Node->getOperand(1);
7534   bool isSigned = Node->getOpcode() == ISD::SMULO;
7535 
7536   // For power-of-two multiplications we can use a simpler shift expansion.
7537   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7538     const APInt &C = RHSC->getAPIntValue();
7539     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7540     if (C.isPowerOf2()) {
7541       // smulo(x, signed_min) is same as umulo(x, signed_min).
7542       bool UseArithShift = isSigned && !C.isMinSignedValue();
7543       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7544       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7545       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7546       Overflow = DAG.getSetCC(dl, SetCCVT,
7547           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7548                       dl, VT, Result, ShiftAmt),
7549           LHS, ISD::SETNE);
7550       return true;
7551     }
7552   }
7553 
7554   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7555   if (VT.isVector())
7556     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7557                               VT.getVectorNumElements());
7558 
7559   SDValue BottomHalf;
7560   SDValue TopHalf;
7561   static const unsigned Ops[2][3] =
7562       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7563         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7564   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7565     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7566     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7567   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7568     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7569                              RHS);
7570     TopHalf = BottomHalf.getValue(1);
7571   } else if (isTypeLegal(WideVT)) {
7572     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7573     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7574     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7575     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7576     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7577         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7578     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7579                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7580   } else {
7581     if (VT.isVector())
7582       return false;
7583 
7584     // We can fall back to a libcall with an illegal type for the MUL if we
7585     // have a libcall big enough.
7586     // Also, we can fall back to a division in some cases, but that's a big
7587     // performance hit in the general case.
7588     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7589     if (WideVT == MVT::i16)
7590       LC = RTLIB::MUL_I16;
7591     else if (WideVT == MVT::i32)
7592       LC = RTLIB::MUL_I32;
7593     else if (WideVT == MVT::i64)
7594       LC = RTLIB::MUL_I64;
7595     else if (WideVT == MVT::i128)
7596       LC = RTLIB::MUL_I128;
7597     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7598 
7599     SDValue HiLHS;
7600     SDValue HiRHS;
7601     if (isSigned) {
7602       // The high part is obtained by SRA'ing all but one of the bits of low
7603       // part.
7604       unsigned LoSize = VT.getSizeInBits();
7605       HiLHS =
7606           DAG.getNode(ISD::SRA, dl, VT, LHS,
7607                       DAG.getConstant(LoSize - 1, dl,
7608                                       getPointerTy(DAG.getDataLayout())));
7609       HiRHS =
7610           DAG.getNode(ISD::SRA, dl, VT, RHS,
7611                       DAG.getConstant(LoSize - 1, dl,
7612                                       getPointerTy(DAG.getDataLayout())));
7613     } else {
7614         HiLHS = DAG.getConstant(0, dl, VT);
7615         HiRHS = DAG.getConstant(0, dl, VT);
7616     }
7617 
7618     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7619     // pre-lowered to the correct types. This all depends upon WideVT not
7620     // being a legal type for the architecture and thus has to be split to
7621     // two arguments.
7622     SDValue Ret;
7623     TargetLowering::MakeLibCallOptions CallOptions;
7624     CallOptions.setSExt(isSigned);
7625     CallOptions.setIsPostTypeLegalization(true);
7626     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7627       // Halves of WideVT are packed into registers in different order
7628       // depending on platform endianness. This is usually handled by
7629       // the C calling convention, but we can't defer to it in
7630       // the legalizer.
7631       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7632       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7633     } else {
7634       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7635       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7636     }
7637     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7638            "Ret value is a collection of constituent nodes holding result.");
7639     if (DAG.getDataLayout().isLittleEndian()) {
7640       // Same as above.
7641       BottomHalf = Ret.getOperand(0);
7642       TopHalf = Ret.getOperand(1);
7643     } else {
7644       BottomHalf = Ret.getOperand(1);
7645       TopHalf = Ret.getOperand(0);
7646     }
7647   }
7648 
7649   Result = BottomHalf;
7650   if (isSigned) {
7651     SDValue ShiftAmt = DAG.getConstant(
7652         VT.getScalarSizeInBits() - 1, dl,
7653         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7654     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7655     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7656   } else {
7657     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7658                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7659   }
7660 
7661   // Truncate the result if SetCC returns a larger type than needed.
7662   EVT RType = Node->getValueType(1);
7663   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7664     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7665 
7666   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7667          "Unexpected result type for S/UMULO legalization");
7668   return true;
7669 }
7670 
7671 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7672   SDLoc dl(Node);
7673   bool NoNaN = Node->getFlags().hasNoNaNs();
7674   unsigned BaseOpcode = 0;
7675   switch (Node->getOpcode()) {
7676   default: llvm_unreachable("Expected VECREDUCE opcode");
7677   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7678   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7679   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7680   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7681   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7682   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7683   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7684   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7685   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7686   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7687   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7688   case ISD::VECREDUCE_FMAX:
7689     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7690     break;
7691   case ISD::VECREDUCE_FMIN:
7692     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7693     break;
7694   }
7695 
7696   SDValue Op = Node->getOperand(0);
7697   EVT VT = Op.getValueType();
7698 
7699   // Try to use a shuffle reduction for power of two vectors.
7700   if (VT.isPow2VectorType()) {
7701     while (VT.getVectorNumElements() > 1) {
7702       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7703       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7704         break;
7705 
7706       SDValue Lo, Hi;
7707       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7708       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7709       VT = HalfVT;
7710     }
7711   }
7712 
7713   EVT EltVT = VT.getVectorElementType();
7714   unsigned NumElts = VT.getVectorNumElements();
7715 
7716   SmallVector<SDValue, 8> Ops;
7717   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7718 
7719   SDValue Res = Ops[0];
7720   for (unsigned i = 1; i < NumElts; i++)
7721     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7722 
7723   // Result type may be wider than element type.
7724   if (EltVT != Node->getValueType(0))
7725     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7726   return Res;
7727 }
7728