1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes(), AttributeList::ReturnIndex); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 bool IsLE = DAG.getDataLayout().isLittleEndian(); 649 unsigned NumElts = DemandedElts.getBitWidth(); 650 unsigned BitWidth = DemandedBits.getBitWidth(); 651 KnownBits LHSKnown, RHSKnown; 652 switch (Op.getOpcode()) { 653 case ISD::BITCAST: { 654 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 655 EVT SrcVT = Src.getValueType(); 656 EVT DstVT = Op.getValueType(); 657 if (SrcVT == DstVT) 658 return Src; 659 660 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 661 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 662 if (NumSrcEltBits == NumDstEltBits) 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 674 unsigned BitOffset = EltOffset * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (IsLE && DemandedElts == 1 && 805 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1810 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1811 Depth + 1)) 1812 return true; 1813 Known.One = Known2.One.byteSwap(); 1814 Known.Zero = Known2.Zero.byteSwap(); 1815 break; 1816 } 1817 case ISD::CTPOP: { 1818 // If only 1 bit is demanded, replace with PARITY as long as we're before 1819 // op legalization. 1820 // FIXME: Limit to scalars for now. 1821 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1822 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1823 Op.getOperand(0))); 1824 1825 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1826 break; 1827 } 1828 case ISD::SIGN_EXTEND_INREG: { 1829 SDValue Op0 = Op.getOperand(0); 1830 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1831 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1832 1833 // If we only care about the highest bit, don't bother shifting right. 1834 if (DemandedBits.isSignMask()) { 1835 unsigned MinSignedBits = 1836 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1837 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1838 // However if the input is already sign extended we expect the sign 1839 // extension to be dropped altogether later and do not simplify. 1840 if (!AlreadySignExtended) { 1841 // Compute the correct shift amount type, which must be getShiftAmountTy 1842 // for scalar types after legalization. 1843 EVT ShiftAmtTy = VT; 1844 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1845 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1846 1847 SDValue ShiftAmt = 1848 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1849 return TLO.CombineTo(Op, 1850 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1851 } 1852 } 1853 1854 // If none of the extended bits are demanded, eliminate the sextinreg. 1855 if (DemandedBits.getActiveBits() <= ExVTBits) 1856 return TLO.CombineTo(Op, Op0); 1857 1858 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1859 1860 // Since the sign extended bits are demanded, we know that the sign 1861 // bit is demanded. 1862 InputDemandedBits.setBit(ExVTBits - 1); 1863 1864 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1865 return true; 1866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1867 1868 // If the sign bit of the input is known set or clear, then we know the 1869 // top bits of the result. 1870 1871 // If the input sign bit is known zero, convert this into a zero extension. 1872 if (Known.Zero[ExVTBits - 1]) 1873 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1874 1875 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1876 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1877 Known.One.setBitsFrom(ExVTBits); 1878 Known.Zero &= Mask; 1879 } else { // Input sign bit unknown 1880 Known.Zero &= Mask; 1881 Known.One &= Mask; 1882 } 1883 break; 1884 } 1885 case ISD::BUILD_PAIR: { 1886 EVT HalfVT = Op.getOperand(0).getValueType(); 1887 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1888 1889 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1890 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1891 1892 KnownBits KnownLo, KnownHi; 1893 1894 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1895 return true; 1896 1897 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1898 return true; 1899 1900 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1901 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1902 1903 Known.One = KnownLo.One.zext(BitWidth) | 1904 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1905 break; 1906 } 1907 case ISD::ZERO_EXTEND: 1908 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1909 SDValue Src = Op.getOperand(0); 1910 EVT SrcVT = Src.getValueType(); 1911 unsigned InBits = SrcVT.getScalarSizeInBits(); 1912 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1913 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1914 1915 // If none of the top bits are demanded, convert this into an any_extend. 1916 if (DemandedBits.getActiveBits() <= InBits) { 1917 // If we only need the non-extended bits of the bottom element 1918 // then we can just bitcast to the result. 1919 if (IsLE && IsVecInReg && DemandedElts == 1 && 1920 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1921 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1922 1923 unsigned Opc = 1924 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1925 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1926 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1927 } 1928 1929 APInt InDemandedBits = DemandedBits.trunc(InBits); 1930 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1931 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1932 Depth + 1)) 1933 return true; 1934 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1935 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1936 Known = Known.zext(BitWidth); 1937 1938 // Attempt to avoid multi-use ops if we don't need anything from them. 1939 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1940 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1941 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1942 break; 1943 } 1944 case ISD::SIGN_EXTEND: 1945 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1946 SDValue Src = Op.getOperand(0); 1947 EVT SrcVT = Src.getValueType(); 1948 unsigned InBits = SrcVT.getScalarSizeInBits(); 1949 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1950 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1951 1952 // If none of the top bits are demanded, convert this into an any_extend. 1953 if (DemandedBits.getActiveBits() <= InBits) { 1954 // If we only need the non-extended bits of the bottom element 1955 // then we can just bitcast to the result. 1956 if (IsLE && IsVecInReg && DemandedElts == 1 && 1957 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1958 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1959 1960 unsigned Opc = 1961 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1962 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1963 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1964 } 1965 1966 APInt InDemandedBits = DemandedBits.trunc(InBits); 1967 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1968 1969 // Since some of the sign extended bits are demanded, we know that the sign 1970 // bit is demanded. 1971 InDemandedBits.setBit(InBits - 1); 1972 1973 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1974 Depth + 1)) 1975 return true; 1976 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1977 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1978 1979 // If the sign bit is known one, the top bits match. 1980 Known = Known.sext(BitWidth); 1981 1982 // If the sign bit is known zero, convert this to a zero extend. 1983 if (Known.isNonNegative()) { 1984 unsigned Opc = 1985 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1986 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1987 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1988 } 1989 1990 // Attempt to avoid multi-use ops if we don't need anything from them. 1991 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1992 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1993 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1994 break; 1995 } 1996 case ISD::ANY_EXTEND: 1997 case ISD::ANY_EXTEND_VECTOR_INREG: { 1998 SDValue Src = Op.getOperand(0); 1999 EVT SrcVT = Src.getValueType(); 2000 unsigned InBits = SrcVT.getScalarSizeInBits(); 2001 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2002 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2003 2004 // If we only need the bottom element then we can just bitcast. 2005 // TODO: Handle ANY_EXTEND? 2006 if (IsLE && IsVecInReg && DemandedElts == 1 && 2007 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2008 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2009 2010 APInt InDemandedBits = DemandedBits.trunc(InBits); 2011 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2012 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2013 Depth + 1)) 2014 return true; 2015 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2016 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2017 Known = Known.anyext(BitWidth); 2018 2019 // Attempt to avoid multi-use ops if we don't need anything from them. 2020 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2021 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2022 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2023 break; 2024 } 2025 case ISD::TRUNCATE: { 2026 SDValue Src = Op.getOperand(0); 2027 2028 // Simplify the input, using demanded bit information, and compute the known 2029 // zero/one bits live out. 2030 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2031 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2032 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2033 Depth + 1)) 2034 return true; 2035 Known = Known.trunc(BitWidth); 2036 2037 // Attempt to avoid multi-use ops if we don't need anything from them. 2038 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2039 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2040 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2041 2042 // If the input is only used by this truncate, see if we can shrink it based 2043 // on the known demanded bits. 2044 if (Src.getNode()->hasOneUse()) { 2045 switch (Src.getOpcode()) { 2046 default: 2047 break; 2048 case ISD::SRL: 2049 // Shrink SRL by a constant if none of the high bits shifted in are 2050 // demanded. 2051 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2052 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2053 // undesirable. 2054 break; 2055 2056 const APInt *ShAmtC = 2057 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2058 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2059 break; 2060 uint64_t ShVal = ShAmtC->getZExtValue(); 2061 2062 APInt HighBits = 2063 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2064 HighBits.lshrInPlace(ShVal); 2065 HighBits = HighBits.trunc(BitWidth); 2066 2067 if (!(HighBits & DemandedBits)) { 2068 // None of the shifted in bits are needed. Add a truncate of the 2069 // shift input, then shift it. 2070 SDValue NewShAmt = TLO.DAG.getConstant( 2071 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2072 SDValue NewTrunc = 2073 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2074 return TLO.CombineTo( 2075 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2076 } 2077 break; 2078 } 2079 } 2080 2081 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2082 break; 2083 } 2084 case ISD::AssertZext: { 2085 // AssertZext demands all of the high bits, plus any of the low bits 2086 // demanded by its users. 2087 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2088 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2089 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2090 TLO, Depth + 1)) 2091 return true; 2092 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2093 2094 Known.Zero |= ~InMask; 2095 break; 2096 } 2097 case ISD::EXTRACT_VECTOR_ELT: { 2098 SDValue Src = Op.getOperand(0); 2099 SDValue Idx = Op.getOperand(1); 2100 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2101 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2102 2103 if (SrcEltCnt.isScalable()) 2104 return false; 2105 2106 // Demand the bits from every vector element without a constant index. 2107 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2108 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2109 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2110 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2111 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2112 2113 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2114 // anything about the extended bits. 2115 APInt DemandedSrcBits = DemandedBits; 2116 if (BitWidth > EltBitWidth) 2117 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2118 2119 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2120 Depth + 1)) 2121 return true; 2122 2123 // Attempt to avoid multi-use ops if we don't need anything from them. 2124 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2125 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2126 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2127 SDValue NewOp = 2128 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2129 return TLO.CombineTo(Op, NewOp); 2130 } 2131 } 2132 2133 Known = Known2; 2134 if (BitWidth > EltBitWidth) 2135 Known = Known.anyext(BitWidth); 2136 break; 2137 } 2138 case ISD::BITCAST: { 2139 SDValue Src = Op.getOperand(0); 2140 EVT SrcVT = Src.getValueType(); 2141 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2142 2143 // If this is an FP->Int bitcast and if the sign bit is the only 2144 // thing demanded, turn this into a FGETSIGN. 2145 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2146 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2147 SrcVT.isFloatingPoint()) { 2148 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2149 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2150 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2151 SrcVT != MVT::f128) { 2152 // Cannot eliminate/lower SHL for f128 yet. 2153 EVT Ty = OpVTLegal ? VT : MVT::i32; 2154 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2155 // place. We expect the SHL to be eliminated by other optimizations. 2156 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2157 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2158 if (!OpVTLegal && OpVTSizeInBits > 32) 2159 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2160 unsigned ShVal = Op.getValueSizeInBits() - 1; 2161 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2162 return TLO.CombineTo(Op, 2163 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2164 } 2165 } 2166 2167 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2168 // Demand the elt/bit if any of the original elts/bits are demanded. 2169 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2170 unsigned Scale = BitWidth / NumSrcEltBits; 2171 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2172 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2173 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2174 for (unsigned i = 0; i != Scale; ++i) { 2175 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2176 unsigned BitOffset = EltOffset * NumSrcEltBits; 2177 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2178 if (!Sub.isZero()) { 2179 DemandedSrcBits |= Sub; 2180 for (unsigned j = 0; j != NumElts; ++j) 2181 if (DemandedElts[j]) 2182 DemandedSrcElts.setBit((j * Scale) + i); 2183 } 2184 } 2185 2186 APInt KnownSrcUndef, KnownSrcZero; 2187 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2188 KnownSrcZero, TLO, Depth + 1)) 2189 return true; 2190 2191 KnownBits KnownSrcBits; 2192 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2193 KnownSrcBits, TLO, Depth + 1)) 2194 return true; 2195 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2196 // TODO - bigendian once we have test coverage. 2197 unsigned Scale = NumSrcEltBits / BitWidth; 2198 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2199 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2200 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2201 for (unsigned i = 0; i != NumElts; ++i) 2202 if (DemandedElts[i]) { 2203 unsigned Offset = (i % Scale) * BitWidth; 2204 DemandedSrcBits.insertBits(DemandedBits, Offset); 2205 DemandedSrcElts.setBit(i / Scale); 2206 } 2207 2208 if (SrcVT.isVector()) { 2209 APInt KnownSrcUndef, KnownSrcZero; 2210 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2211 KnownSrcZero, TLO, Depth + 1)) 2212 return true; 2213 } 2214 2215 KnownBits KnownSrcBits; 2216 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2217 KnownSrcBits, TLO, Depth + 1)) 2218 return true; 2219 } 2220 2221 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2222 // recursive call where Known may be useful to the caller. 2223 if (Depth > 0) { 2224 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2225 return false; 2226 } 2227 break; 2228 } 2229 case ISD::ADD: 2230 case ISD::MUL: 2231 case ISD::SUB: { 2232 // Add, Sub, and Mul don't demand any bits in positions beyond that 2233 // of the highest bit demanded of them. 2234 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2235 SDNodeFlags Flags = Op.getNode()->getFlags(); 2236 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2237 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2238 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2239 Depth + 1) || 2240 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2241 Depth + 1) || 2242 // See if the operation should be performed at a smaller bit width. 2243 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2244 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2245 // Disable the nsw and nuw flags. We can no longer guarantee that we 2246 // won't wrap after simplification. 2247 Flags.setNoSignedWrap(false); 2248 Flags.setNoUnsignedWrap(false); 2249 SDValue NewOp = 2250 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2251 return TLO.CombineTo(Op, NewOp); 2252 } 2253 return true; 2254 } 2255 2256 // Attempt to avoid multi-use ops if we don't need anything from them. 2257 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2258 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2259 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2260 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2261 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2262 if (DemandedOp0 || DemandedOp1) { 2263 Flags.setNoSignedWrap(false); 2264 Flags.setNoUnsignedWrap(false); 2265 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2266 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2267 SDValue NewOp = 2268 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2269 return TLO.CombineTo(Op, NewOp); 2270 } 2271 } 2272 2273 // If we have a constant operand, we may be able to turn it into -1 if we 2274 // do not demand the high bits. This can make the constant smaller to 2275 // encode, allow more general folding, or match specialized instruction 2276 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2277 // is probably not useful (and could be detrimental). 2278 ConstantSDNode *C = isConstOrConstSplat(Op1); 2279 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2280 if (C && !C->isAllOnes() && !C->isOne() && 2281 (C->getAPIntValue() | HighMask).isAllOnes()) { 2282 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2283 // Disable the nsw and nuw flags. We can no longer guarantee that we 2284 // won't wrap after simplification. 2285 Flags.setNoSignedWrap(false); 2286 Flags.setNoUnsignedWrap(false); 2287 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2288 return TLO.CombineTo(Op, NewOp); 2289 } 2290 2291 LLVM_FALLTHROUGH; 2292 } 2293 default: 2294 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2295 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2296 Known, TLO, Depth)) 2297 return true; 2298 break; 2299 } 2300 2301 // Just use computeKnownBits to compute output bits. 2302 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2303 break; 2304 } 2305 2306 // If we know the value of all of the demanded bits, return this as a 2307 // constant. 2308 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2309 // Avoid folding to a constant if any OpaqueConstant is involved. 2310 const SDNode *N = Op.getNode(); 2311 for (SDNode *Op : 2312 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2314 if (C->isOpaque()) 2315 return false; 2316 } 2317 if (VT.isInteger()) 2318 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2319 if (VT.isFloatingPoint()) 2320 return TLO.CombineTo( 2321 Op, 2322 TLO.DAG.getConstantFP( 2323 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2324 } 2325 2326 return false; 2327 } 2328 2329 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2330 const APInt &DemandedElts, 2331 APInt &KnownUndef, 2332 APInt &KnownZero, 2333 DAGCombinerInfo &DCI) const { 2334 SelectionDAG &DAG = DCI.DAG; 2335 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2336 !DCI.isBeforeLegalizeOps()); 2337 2338 bool Simplified = 2339 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2340 if (Simplified) { 2341 DCI.AddToWorklist(Op.getNode()); 2342 DCI.CommitTargetLoweringOpt(TLO); 2343 } 2344 2345 return Simplified; 2346 } 2347 2348 /// Given a vector binary operation and known undefined elements for each input 2349 /// operand, compute whether each element of the output is undefined. 2350 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2351 const APInt &UndefOp0, 2352 const APInt &UndefOp1) { 2353 EVT VT = BO.getValueType(); 2354 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2355 "Vector binop only"); 2356 2357 EVT EltVT = VT.getVectorElementType(); 2358 unsigned NumElts = VT.getVectorNumElements(); 2359 assert(UndefOp0.getBitWidth() == NumElts && 2360 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2361 2362 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2363 const APInt &UndefVals) { 2364 if (UndefVals[Index]) 2365 return DAG.getUNDEF(EltVT); 2366 2367 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2368 // Try hard to make sure that the getNode() call is not creating temporary 2369 // nodes. Ignore opaque integers because they do not constant fold. 2370 SDValue Elt = BV->getOperand(Index); 2371 auto *C = dyn_cast<ConstantSDNode>(Elt); 2372 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2373 return Elt; 2374 } 2375 2376 return SDValue(); 2377 }; 2378 2379 APInt KnownUndef = APInt::getZero(NumElts); 2380 for (unsigned i = 0; i != NumElts; ++i) { 2381 // If both inputs for this element are either constant or undef and match 2382 // the element type, compute the constant/undef result for this element of 2383 // the vector. 2384 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2385 // not handle FP constants. The code within getNode() should be refactored 2386 // to avoid the danger of creating a bogus temporary node here. 2387 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2388 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2389 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2390 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2391 KnownUndef.setBit(i); 2392 } 2393 return KnownUndef; 2394 } 2395 2396 bool TargetLowering::SimplifyDemandedVectorElts( 2397 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2398 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2399 bool AssumeSingleUse) const { 2400 EVT VT = Op.getValueType(); 2401 unsigned Opcode = Op.getOpcode(); 2402 APInt DemandedElts = OriginalDemandedElts; 2403 unsigned NumElts = DemandedElts.getBitWidth(); 2404 assert(VT.isVector() && "Expected vector op"); 2405 2406 KnownUndef = KnownZero = APInt::getZero(NumElts); 2407 2408 // TODO: For now we assume we know nothing about scalable vectors. 2409 if (VT.isScalableVector()) 2410 return false; 2411 2412 assert(VT.getVectorNumElements() == NumElts && 2413 "Mask size mismatches value type element count!"); 2414 2415 // Undef operand. 2416 if (Op.isUndef()) { 2417 KnownUndef.setAllBits(); 2418 return false; 2419 } 2420 2421 // If Op has other users, assume that all elements are needed. 2422 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2423 DemandedElts.setAllBits(); 2424 2425 // Not demanding any elements from Op. 2426 if (DemandedElts == 0) { 2427 KnownUndef.setAllBits(); 2428 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2429 } 2430 2431 // Limit search depth. 2432 if (Depth >= SelectionDAG::MaxRecursionDepth) 2433 return false; 2434 2435 SDLoc DL(Op); 2436 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2437 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2438 2439 // Helper for demanding the specified elements and all the bits of both binary 2440 // operands. 2441 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2442 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2443 TLO.DAG, Depth + 1); 2444 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2445 TLO.DAG, Depth + 1); 2446 if (NewOp0 || NewOp1) { 2447 SDValue NewOp = TLO.DAG.getNode( 2448 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2449 return TLO.CombineTo(Op, NewOp); 2450 } 2451 return false; 2452 }; 2453 2454 switch (Opcode) { 2455 case ISD::SCALAR_TO_VECTOR: { 2456 if (!DemandedElts[0]) { 2457 KnownUndef.setAllBits(); 2458 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2459 } 2460 SDValue ScalarSrc = Op.getOperand(0); 2461 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2462 SDValue Src = ScalarSrc.getOperand(0); 2463 SDValue Idx = ScalarSrc.getOperand(1); 2464 EVT SrcVT = Src.getValueType(); 2465 2466 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2467 2468 if (SrcEltCnt.isScalable()) 2469 return false; 2470 2471 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2472 if (isNullConstant(Idx)) { 2473 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2474 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2475 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2476 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2477 TLO, Depth + 1)) 2478 return true; 2479 } 2480 } 2481 KnownUndef.setHighBits(NumElts - 1); 2482 break; 2483 } 2484 case ISD::BITCAST: { 2485 SDValue Src = Op.getOperand(0); 2486 EVT SrcVT = Src.getValueType(); 2487 2488 // We only handle vectors here. 2489 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2490 if (!SrcVT.isVector()) 2491 break; 2492 2493 // Fast handling of 'identity' bitcasts. 2494 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2495 if (NumSrcElts == NumElts) 2496 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2497 KnownZero, TLO, Depth + 1); 2498 2499 APInt SrcDemandedElts, SrcZero, SrcUndef; 2500 2501 // Bitcast from 'large element' src vector to 'small element' vector, we 2502 // must demand a source element if any DemandedElt maps to it. 2503 if ((NumElts % NumSrcElts) == 0) { 2504 unsigned Scale = NumElts / NumSrcElts; 2505 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2506 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2507 TLO, Depth + 1)) 2508 return true; 2509 2510 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2511 // of the large element. 2512 // TODO - bigendian once we have test coverage. 2513 if (IsLE) { 2514 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2515 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2516 for (unsigned i = 0; i != NumElts; ++i) 2517 if (DemandedElts[i]) { 2518 unsigned Ofs = (i % Scale) * EltSizeInBits; 2519 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2520 } 2521 2522 KnownBits Known; 2523 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2524 TLO, Depth + 1)) 2525 return true; 2526 } 2527 2528 // If the src element is zero/undef then all the output elements will be - 2529 // only demanded elements are guaranteed to be correct. 2530 for (unsigned i = 0; i != NumSrcElts; ++i) { 2531 if (SrcDemandedElts[i]) { 2532 if (SrcZero[i]) 2533 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2534 if (SrcUndef[i]) 2535 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2536 } 2537 } 2538 } 2539 2540 // Bitcast from 'small element' src vector to 'large element' vector, we 2541 // demand all smaller source elements covered by the larger demanded element 2542 // of this vector. 2543 if ((NumSrcElts % NumElts) == 0) { 2544 unsigned Scale = NumSrcElts / NumElts; 2545 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2546 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2547 TLO, Depth + 1)) 2548 return true; 2549 2550 // If all the src elements covering an output element are zero/undef, then 2551 // the output element will be as well, assuming it was demanded. 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 if (DemandedElts[i]) { 2554 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2555 KnownZero.setBit(i); 2556 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2557 KnownUndef.setBit(i); 2558 } 2559 } 2560 } 2561 break; 2562 } 2563 case ISD::BUILD_VECTOR: { 2564 // Check all elements and simplify any unused elements with UNDEF. 2565 if (!DemandedElts.isAllOnes()) { 2566 // Don't simplify BROADCASTS. 2567 if (llvm::any_of(Op->op_values(), 2568 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2569 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2570 bool Updated = false; 2571 for (unsigned i = 0; i != NumElts; ++i) { 2572 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2573 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2574 KnownUndef.setBit(i); 2575 Updated = true; 2576 } 2577 } 2578 if (Updated) 2579 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2580 } 2581 } 2582 for (unsigned i = 0; i != NumElts; ++i) { 2583 SDValue SrcOp = Op.getOperand(i); 2584 if (SrcOp.isUndef()) { 2585 KnownUndef.setBit(i); 2586 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2587 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2588 KnownZero.setBit(i); 2589 } 2590 } 2591 break; 2592 } 2593 case ISD::CONCAT_VECTORS: { 2594 EVT SubVT = Op.getOperand(0).getValueType(); 2595 unsigned NumSubVecs = Op.getNumOperands(); 2596 unsigned NumSubElts = SubVT.getVectorNumElements(); 2597 for (unsigned i = 0; i != NumSubVecs; ++i) { 2598 SDValue SubOp = Op.getOperand(i); 2599 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2600 APInt SubUndef, SubZero; 2601 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2602 Depth + 1)) 2603 return true; 2604 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2605 KnownZero.insertBits(SubZero, i * NumSubElts); 2606 } 2607 break; 2608 } 2609 case ISD::INSERT_SUBVECTOR: { 2610 // Demand any elements from the subvector and the remainder from the src its 2611 // inserted into. 2612 SDValue Src = Op.getOperand(0); 2613 SDValue Sub = Op.getOperand(1); 2614 uint64_t Idx = Op.getConstantOperandVal(2); 2615 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2616 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2617 APInt DemandedSrcElts = DemandedElts; 2618 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2619 2620 APInt SubUndef, SubZero; 2621 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2622 Depth + 1)) 2623 return true; 2624 2625 // If none of the src operand elements are demanded, replace it with undef. 2626 if (!DemandedSrcElts && !Src.isUndef()) 2627 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2628 TLO.DAG.getUNDEF(VT), Sub, 2629 Op.getOperand(2))); 2630 2631 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2632 TLO, Depth + 1)) 2633 return true; 2634 KnownUndef.insertBits(SubUndef, Idx); 2635 KnownZero.insertBits(SubZero, Idx); 2636 2637 // Attempt to avoid multi-use ops if we don't need anything from them. 2638 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2639 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2640 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2641 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2642 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2643 if (NewSrc || NewSub) { 2644 NewSrc = NewSrc ? NewSrc : Src; 2645 NewSub = NewSub ? NewSub : Sub; 2646 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2647 NewSub, Op.getOperand(2)); 2648 return TLO.CombineTo(Op, NewOp); 2649 } 2650 } 2651 break; 2652 } 2653 case ISD::EXTRACT_SUBVECTOR: { 2654 // Offset the demanded elts by the subvector index. 2655 SDValue Src = Op.getOperand(0); 2656 if (Src.getValueType().isScalableVector()) 2657 break; 2658 uint64_t Idx = Op.getConstantOperandVal(1); 2659 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2660 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2661 2662 APInt SrcUndef, SrcZero; 2663 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2664 Depth + 1)) 2665 return true; 2666 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2667 KnownZero = SrcZero.extractBits(NumElts, Idx); 2668 2669 // Attempt to avoid multi-use ops if we don't need anything from them. 2670 if (!DemandedElts.isAllOnes()) { 2671 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2672 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2673 if (NewSrc) { 2674 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2675 Op.getOperand(1)); 2676 return TLO.CombineTo(Op, NewOp); 2677 } 2678 } 2679 break; 2680 } 2681 case ISD::INSERT_VECTOR_ELT: { 2682 SDValue Vec = Op.getOperand(0); 2683 SDValue Scl = Op.getOperand(1); 2684 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2685 2686 // For a legal, constant insertion index, if we don't need this insertion 2687 // then strip it, else remove it from the demanded elts. 2688 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2689 unsigned Idx = CIdx->getZExtValue(); 2690 if (!DemandedElts[Idx]) 2691 return TLO.CombineTo(Op, Vec); 2692 2693 APInt DemandedVecElts(DemandedElts); 2694 DemandedVecElts.clearBit(Idx); 2695 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2696 KnownZero, TLO, Depth + 1)) 2697 return true; 2698 2699 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2700 2701 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2702 break; 2703 } 2704 2705 APInt VecUndef, VecZero; 2706 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2707 Depth + 1)) 2708 return true; 2709 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2710 break; 2711 } 2712 case ISD::VSELECT: { 2713 // Try to transform the select condition based on the current demanded 2714 // elements. 2715 // TODO: If a condition element is undef, we can choose from one arm of the 2716 // select (and if one arm is undef, then we can propagate that to the 2717 // result). 2718 // TODO - add support for constant vselect masks (see IR version of this). 2719 APInt UnusedUndef, UnusedZero; 2720 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2721 UnusedZero, TLO, Depth + 1)) 2722 return true; 2723 2724 // See if we can simplify either vselect operand. 2725 APInt DemandedLHS(DemandedElts); 2726 APInt DemandedRHS(DemandedElts); 2727 APInt UndefLHS, ZeroLHS; 2728 APInt UndefRHS, ZeroRHS; 2729 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2730 ZeroLHS, TLO, Depth + 1)) 2731 return true; 2732 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2733 ZeroRHS, TLO, Depth + 1)) 2734 return true; 2735 2736 KnownUndef = UndefLHS & UndefRHS; 2737 KnownZero = ZeroLHS & ZeroRHS; 2738 break; 2739 } 2740 case ISD::VECTOR_SHUFFLE: { 2741 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2742 2743 // Collect demanded elements from shuffle operands.. 2744 APInt DemandedLHS(NumElts, 0); 2745 APInt DemandedRHS(NumElts, 0); 2746 for (unsigned i = 0; i != NumElts; ++i) { 2747 int M = ShuffleMask[i]; 2748 if (M < 0 || !DemandedElts[i]) 2749 continue; 2750 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2751 if (M < (int)NumElts) 2752 DemandedLHS.setBit(M); 2753 else 2754 DemandedRHS.setBit(M - NumElts); 2755 } 2756 2757 // See if we can simplify either shuffle operand. 2758 APInt UndefLHS, ZeroLHS; 2759 APInt UndefRHS, ZeroRHS; 2760 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2761 ZeroLHS, TLO, Depth + 1)) 2762 return true; 2763 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2764 ZeroRHS, TLO, Depth + 1)) 2765 return true; 2766 2767 // Simplify mask using undef elements from LHS/RHS. 2768 bool Updated = false; 2769 bool IdentityLHS = true, IdentityRHS = true; 2770 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2771 for (unsigned i = 0; i != NumElts; ++i) { 2772 int &M = NewMask[i]; 2773 if (M < 0) 2774 continue; 2775 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2776 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2777 Updated = true; 2778 M = -1; 2779 } 2780 IdentityLHS &= (M < 0) || (M == (int)i); 2781 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2782 } 2783 2784 // Update legal shuffle masks based on demanded elements if it won't reduce 2785 // to Identity which can cause premature removal of the shuffle mask. 2786 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2787 SDValue LegalShuffle = 2788 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2789 NewMask, TLO.DAG); 2790 if (LegalShuffle) 2791 return TLO.CombineTo(Op, LegalShuffle); 2792 } 2793 2794 // Propagate undef/zero elements from LHS/RHS. 2795 for (unsigned i = 0; i != NumElts; ++i) { 2796 int M = ShuffleMask[i]; 2797 if (M < 0) { 2798 KnownUndef.setBit(i); 2799 } else if (M < (int)NumElts) { 2800 if (UndefLHS[M]) 2801 KnownUndef.setBit(i); 2802 if (ZeroLHS[M]) 2803 KnownZero.setBit(i); 2804 } else { 2805 if (UndefRHS[M - NumElts]) 2806 KnownUndef.setBit(i); 2807 if (ZeroRHS[M - NumElts]) 2808 KnownZero.setBit(i); 2809 } 2810 } 2811 break; 2812 } 2813 case ISD::ANY_EXTEND_VECTOR_INREG: 2814 case ISD::SIGN_EXTEND_VECTOR_INREG: 2815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2816 APInt SrcUndef, SrcZero; 2817 SDValue Src = Op.getOperand(0); 2818 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2819 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2820 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2821 Depth + 1)) 2822 return true; 2823 KnownZero = SrcZero.zextOrTrunc(NumElts); 2824 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2825 2826 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2827 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2828 DemandedSrcElts == 1) { 2829 // aext - if we just need the bottom element then we can bitcast. 2830 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2831 } 2832 2833 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2834 // zext(undef) upper bits are guaranteed to be zero. 2835 if (DemandedElts.isSubsetOf(KnownUndef)) 2836 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2837 KnownUndef.clearAllBits(); 2838 2839 // zext - if we just need the bottom element then we can mask: 2840 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2841 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2842 Op->isOnlyUserOf(Src.getNode()) && 2843 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2844 SDLoc DL(Op); 2845 EVT SrcVT = Src.getValueType(); 2846 EVT SrcSVT = SrcVT.getScalarType(); 2847 SmallVector<SDValue> MaskElts; 2848 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2849 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2850 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2851 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2852 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2853 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2854 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2855 } 2856 } 2857 } 2858 break; 2859 } 2860 2861 // TODO: There are more binop opcodes that could be handled here - MIN, 2862 // MAX, saturated math, etc. 2863 case ISD::ADD: { 2864 SDValue Op0 = Op.getOperand(0); 2865 SDValue Op1 = Op.getOperand(1); 2866 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2867 APInt UndefLHS, ZeroLHS; 2868 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2869 Depth + 1, /*AssumeSingleUse*/ true)) 2870 return true; 2871 } 2872 LLVM_FALLTHROUGH; 2873 } 2874 case ISD::OR: 2875 case ISD::XOR: 2876 case ISD::SUB: 2877 case ISD::FADD: 2878 case ISD::FSUB: 2879 case ISD::FMUL: 2880 case ISD::FDIV: 2881 case ISD::FREM: { 2882 SDValue Op0 = Op.getOperand(0); 2883 SDValue Op1 = Op.getOperand(1); 2884 2885 APInt UndefRHS, ZeroRHS; 2886 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2887 Depth + 1)) 2888 return true; 2889 APInt UndefLHS, ZeroLHS; 2890 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2891 Depth + 1)) 2892 return true; 2893 2894 KnownZero = ZeroLHS & ZeroRHS; 2895 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2896 2897 // Attempt to avoid multi-use ops if we don't need anything from them. 2898 // TODO - use KnownUndef to relax the demandedelts? 2899 if (!DemandedElts.isAllOnes()) 2900 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2901 return true; 2902 break; 2903 } 2904 case ISD::SHL: 2905 case ISD::SRL: 2906 case ISD::SRA: 2907 case ISD::ROTL: 2908 case ISD::ROTR: { 2909 SDValue Op0 = Op.getOperand(0); 2910 SDValue Op1 = Op.getOperand(1); 2911 2912 APInt UndefRHS, ZeroRHS; 2913 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2914 Depth + 1)) 2915 return true; 2916 APInt UndefLHS, ZeroLHS; 2917 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2918 Depth + 1)) 2919 return true; 2920 2921 KnownZero = ZeroLHS; 2922 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2923 2924 // Attempt to avoid multi-use ops if we don't need anything from them. 2925 // TODO - use KnownUndef to relax the demandedelts? 2926 if (!DemandedElts.isAllOnes()) 2927 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2928 return true; 2929 break; 2930 } 2931 case ISD::MUL: 2932 case ISD::AND: { 2933 SDValue Op0 = Op.getOperand(0); 2934 SDValue Op1 = Op.getOperand(1); 2935 2936 APInt SrcUndef, SrcZero; 2937 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2938 Depth + 1)) 2939 return true; 2940 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2941 TLO, Depth + 1)) 2942 return true; 2943 2944 // If either side has a zero element, then the result element is zero, even 2945 // if the other is an UNDEF. 2946 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2947 // and then handle 'and' nodes with the rest of the binop opcodes. 2948 KnownZero |= SrcZero; 2949 KnownUndef &= SrcUndef; 2950 KnownUndef &= ~KnownZero; 2951 2952 // Attempt to avoid multi-use ops if we don't need anything from them. 2953 // TODO - use KnownUndef to relax the demandedelts? 2954 if (!DemandedElts.isAllOnes()) 2955 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2956 return true; 2957 break; 2958 } 2959 case ISD::TRUNCATE: 2960 case ISD::SIGN_EXTEND: 2961 case ISD::ZERO_EXTEND: 2962 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2963 KnownZero, TLO, Depth + 1)) 2964 return true; 2965 2966 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2967 // zext(undef) upper bits are guaranteed to be zero. 2968 if (DemandedElts.isSubsetOf(KnownUndef)) 2969 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2970 KnownUndef.clearAllBits(); 2971 } 2972 break; 2973 default: { 2974 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2975 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2976 KnownZero, TLO, Depth)) 2977 return true; 2978 } else { 2979 KnownBits Known; 2980 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2981 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2982 TLO, Depth, AssumeSingleUse)) 2983 return true; 2984 } 2985 break; 2986 } 2987 } 2988 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2989 2990 // Constant fold all undef cases. 2991 // TODO: Handle zero cases as well. 2992 if (DemandedElts.isSubsetOf(KnownUndef)) 2993 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2994 2995 return false; 2996 } 2997 2998 /// Determine which of the bits specified in Mask are known to be either zero or 2999 /// one and return them in the Known. 3000 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3001 KnownBits &Known, 3002 const APInt &DemandedElts, 3003 const SelectionDAG &DAG, 3004 unsigned Depth) const { 3005 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3006 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3007 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3008 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3009 "Should use MaskedValueIsZero if you don't know whether Op" 3010 " is a target node!"); 3011 Known.resetAll(); 3012 } 3013 3014 void TargetLowering::computeKnownBitsForTargetInstr( 3015 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3016 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3017 unsigned Depth) const { 3018 Known.resetAll(); 3019 } 3020 3021 void TargetLowering::computeKnownBitsForFrameIndex( 3022 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3023 // The low bits are known zero if the pointer is aligned. 3024 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3025 } 3026 3027 Align TargetLowering::computeKnownAlignForTargetInstr( 3028 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3029 unsigned Depth) const { 3030 return Align(1); 3031 } 3032 3033 /// This method can be implemented by targets that want to expose additional 3034 /// information about sign bits to the DAG Combiner. 3035 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3036 const APInt &, 3037 const SelectionDAG &, 3038 unsigned Depth) const { 3039 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3040 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3041 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3042 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3043 "Should use ComputeNumSignBits if you don't know whether Op" 3044 " is a target node!"); 3045 return 1; 3046 } 3047 3048 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3049 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3050 const MachineRegisterInfo &MRI, unsigned Depth) const { 3051 return 1; 3052 } 3053 3054 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3055 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3056 TargetLoweringOpt &TLO, unsigned Depth) const { 3057 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3058 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3059 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3060 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3061 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3062 " is a target node!"); 3063 return false; 3064 } 3065 3066 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3067 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3068 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3069 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3070 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3071 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3072 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3073 "Should use SimplifyDemandedBits if you don't know whether Op" 3074 " is a target node!"); 3075 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3076 return false; 3077 } 3078 3079 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3080 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3081 SelectionDAG &DAG, unsigned Depth) const { 3082 assert( 3083 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3084 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3085 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3086 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3087 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3088 " is a target node!"); 3089 return SDValue(); 3090 } 3091 3092 SDValue 3093 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3094 SDValue N1, MutableArrayRef<int> Mask, 3095 SelectionDAG &DAG) const { 3096 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3097 if (!LegalMask) { 3098 std::swap(N0, N1); 3099 ShuffleVectorSDNode::commuteMask(Mask); 3100 LegalMask = isShuffleMaskLegal(Mask, VT); 3101 } 3102 3103 if (!LegalMask) 3104 return SDValue(); 3105 3106 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3107 } 3108 3109 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3110 return nullptr; 3111 } 3112 3113 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3114 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3115 bool PoisonOnly, unsigned Depth) const { 3116 assert( 3117 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3118 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3119 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3120 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3121 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3122 " is a target node!"); 3123 return false; 3124 } 3125 3126 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3127 const SelectionDAG &DAG, 3128 bool SNaN, 3129 unsigned Depth) const { 3130 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3131 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3132 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3133 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3134 "Should use isKnownNeverNaN if you don't know whether Op" 3135 " is a target node!"); 3136 return false; 3137 } 3138 3139 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3140 const APInt &DemandedElts, 3141 APInt &UndefElts, 3142 unsigned Depth) const { 3143 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3144 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3145 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3146 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3147 "Should use isSplatValue if you don't know whether Op" 3148 " is a target node!"); 3149 return false; 3150 } 3151 3152 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3153 // work with truncating build vectors and vectors with elements of less than 3154 // 8 bits. 3155 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3156 if (!N) 3157 return false; 3158 3159 APInt CVal; 3160 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3161 CVal = CN->getAPIntValue(); 3162 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3163 auto *CN = BV->getConstantSplatNode(); 3164 if (!CN) 3165 return false; 3166 3167 // If this is a truncating build vector, truncate the splat value. 3168 // Otherwise, we may fail to match the expected values below. 3169 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3170 CVal = CN->getAPIntValue(); 3171 if (BVEltWidth < CVal.getBitWidth()) 3172 CVal = CVal.trunc(BVEltWidth); 3173 } else { 3174 return false; 3175 } 3176 3177 switch (getBooleanContents(N->getValueType(0))) { 3178 case UndefinedBooleanContent: 3179 return CVal[0]; 3180 case ZeroOrOneBooleanContent: 3181 return CVal.isOne(); 3182 case ZeroOrNegativeOneBooleanContent: 3183 return CVal.isAllOnes(); 3184 } 3185 3186 llvm_unreachable("Invalid boolean contents"); 3187 } 3188 3189 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3190 if (!N) 3191 return false; 3192 3193 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3194 if (!CN) { 3195 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3196 if (!BV) 3197 return false; 3198 3199 // Only interested in constant splats, we don't care about undef 3200 // elements in identifying boolean constants and getConstantSplatNode 3201 // returns NULL if all ops are undef; 3202 CN = BV->getConstantSplatNode(); 3203 if (!CN) 3204 return false; 3205 } 3206 3207 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3208 return !CN->getAPIntValue()[0]; 3209 3210 return CN->isZero(); 3211 } 3212 3213 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3214 bool SExt) const { 3215 if (VT == MVT::i1) 3216 return N->isOne(); 3217 3218 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3219 switch (Cnt) { 3220 case TargetLowering::ZeroOrOneBooleanContent: 3221 // An extended value of 1 is always true, unless its original type is i1, 3222 // in which case it will be sign extended to -1. 3223 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3224 case TargetLowering::UndefinedBooleanContent: 3225 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3226 return N->isAllOnes() && SExt; 3227 } 3228 llvm_unreachable("Unexpected enumeration."); 3229 } 3230 3231 /// This helper function of SimplifySetCC tries to optimize the comparison when 3232 /// either operand of the SetCC node is a bitwise-and instruction. 3233 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3234 ISD::CondCode Cond, const SDLoc &DL, 3235 DAGCombinerInfo &DCI) const { 3236 // Match these patterns in any of their permutations: 3237 // (X & Y) == Y 3238 // (X & Y) != Y 3239 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3240 std::swap(N0, N1); 3241 3242 EVT OpVT = N0.getValueType(); 3243 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3244 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3245 return SDValue(); 3246 3247 SDValue X, Y; 3248 if (N0.getOperand(0) == N1) { 3249 X = N0.getOperand(1); 3250 Y = N0.getOperand(0); 3251 } else if (N0.getOperand(1) == N1) { 3252 X = N0.getOperand(0); 3253 Y = N0.getOperand(1); 3254 } else { 3255 return SDValue(); 3256 } 3257 3258 SelectionDAG &DAG = DCI.DAG; 3259 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3260 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3261 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3262 // Note that where Y is variable and is known to have at most one bit set 3263 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3264 // equivalent when Y == 0. 3265 assert(OpVT.isInteger()); 3266 Cond = ISD::getSetCCInverse(Cond, OpVT); 3267 if (DCI.isBeforeLegalizeOps() || 3268 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3269 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3270 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3271 // If the target supports an 'and-not' or 'and-complement' logic operation, 3272 // try to use that to make a comparison operation more efficient. 3273 // But don't do this transform if the mask is a single bit because there are 3274 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3275 // 'rlwinm' on PPC). 3276 3277 // Bail out if the compare operand that we want to turn into a zero is 3278 // already a zero (otherwise, infinite loop). 3279 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3280 if (YConst && YConst->isZero()) 3281 return SDValue(); 3282 3283 // Transform this into: ~X & Y == 0. 3284 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3285 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3286 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3287 } 3288 3289 return SDValue(); 3290 } 3291 3292 /// There are multiple IR patterns that could be checking whether certain 3293 /// truncation of a signed number would be lossy or not. The pattern which is 3294 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3295 /// We are looking for the following pattern: (KeptBits is a constant) 3296 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3297 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3298 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3299 /// We will unfold it into the natural trunc+sext pattern: 3300 /// ((%x << C) a>> C) dstcond %x 3301 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3302 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3303 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3304 const SDLoc &DL) const { 3305 // We must be comparing with a constant. 3306 ConstantSDNode *C1; 3307 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3308 return SDValue(); 3309 3310 // N0 should be: add %x, (1 << (KeptBits-1)) 3311 if (N0->getOpcode() != ISD::ADD) 3312 return SDValue(); 3313 3314 // And we must be 'add'ing a constant. 3315 ConstantSDNode *C01; 3316 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3317 return SDValue(); 3318 3319 SDValue X = N0->getOperand(0); 3320 EVT XVT = X.getValueType(); 3321 3322 // Validate constants ... 3323 3324 APInt I1 = C1->getAPIntValue(); 3325 3326 ISD::CondCode NewCond; 3327 if (Cond == ISD::CondCode::SETULT) { 3328 NewCond = ISD::CondCode::SETEQ; 3329 } else if (Cond == ISD::CondCode::SETULE) { 3330 NewCond = ISD::CondCode::SETEQ; 3331 // But need to 'canonicalize' the constant. 3332 I1 += 1; 3333 } else if (Cond == ISD::CondCode::SETUGT) { 3334 NewCond = ISD::CondCode::SETNE; 3335 // But need to 'canonicalize' the constant. 3336 I1 += 1; 3337 } else if (Cond == ISD::CondCode::SETUGE) { 3338 NewCond = ISD::CondCode::SETNE; 3339 } else 3340 return SDValue(); 3341 3342 APInt I01 = C01->getAPIntValue(); 3343 3344 auto checkConstants = [&I1, &I01]() -> bool { 3345 // Both of them must be power-of-two, and the constant from setcc is bigger. 3346 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3347 }; 3348 3349 if (checkConstants()) { 3350 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3351 } else { 3352 // What if we invert constants? (and the target predicate) 3353 I1.negate(); 3354 I01.negate(); 3355 assert(XVT.isInteger()); 3356 NewCond = getSetCCInverse(NewCond, XVT); 3357 if (!checkConstants()) 3358 return SDValue(); 3359 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3360 } 3361 3362 // They are power-of-two, so which bit is set? 3363 const unsigned KeptBits = I1.logBase2(); 3364 const unsigned KeptBitsMinusOne = I01.logBase2(); 3365 3366 // Magic! 3367 if (KeptBits != (KeptBitsMinusOne + 1)) 3368 return SDValue(); 3369 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3370 3371 // We don't want to do this in every single case. 3372 SelectionDAG &DAG = DCI.DAG; 3373 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3374 XVT, KeptBits)) 3375 return SDValue(); 3376 3377 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3378 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3379 3380 // Unfold into: ((%x << C) a>> C) cond %x 3381 // Where 'cond' will be either 'eq' or 'ne'. 3382 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3383 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3384 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3385 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3386 3387 return T2; 3388 } 3389 3390 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3391 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3392 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3393 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3394 assert(isConstOrConstSplat(N1C) && 3395 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3396 "Should be a comparison with 0."); 3397 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3398 "Valid only for [in]equality comparisons."); 3399 3400 unsigned NewShiftOpcode; 3401 SDValue X, C, Y; 3402 3403 SelectionDAG &DAG = DCI.DAG; 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 3406 // Look for '(C l>>/<< Y)'. 3407 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3408 // The shift should be one-use. 3409 if (!V.hasOneUse()) 3410 return false; 3411 unsigned OldShiftOpcode = V.getOpcode(); 3412 switch (OldShiftOpcode) { 3413 case ISD::SHL: 3414 NewShiftOpcode = ISD::SRL; 3415 break; 3416 case ISD::SRL: 3417 NewShiftOpcode = ISD::SHL; 3418 break; 3419 default: 3420 return false; // must be a logical shift. 3421 } 3422 // We should be shifting a constant. 3423 // FIXME: best to use isConstantOrConstantVector(). 3424 C = V.getOperand(0); 3425 ConstantSDNode *CC = 3426 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3427 if (!CC) 3428 return false; 3429 Y = V.getOperand(1); 3430 3431 ConstantSDNode *XC = 3432 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3433 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3434 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3435 }; 3436 3437 // LHS of comparison should be an one-use 'and'. 3438 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3439 return SDValue(); 3440 3441 X = N0.getOperand(0); 3442 SDValue Mask = N0.getOperand(1); 3443 3444 // 'and' is commutative! 3445 if (!Match(Mask)) { 3446 std::swap(X, Mask); 3447 if (!Match(Mask)) 3448 return SDValue(); 3449 } 3450 3451 EVT VT = X.getValueType(); 3452 3453 // Produce: 3454 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3455 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3456 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3457 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3458 return T2; 3459 } 3460 3461 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3462 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3463 /// handle the commuted versions of these patterns. 3464 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3465 ISD::CondCode Cond, const SDLoc &DL, 3466 DAGCombinerInfo &DCI) const { 3467 unsigned BOpcode = N0.getOpcode(); 3468 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3469 "Unexpected binop"); 3470 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3471 3472 // (X + Y) == X --> Y == 0 3473 // (X - Y) == X --> Y == 0 3474 // (X ^ Y) == X --> Y == 0 3475 SelectionDAG &DAG = DCI.DAG; 3476 EVT OpVT = N0.getValueType(); 3477 SDValue X = N0.getOperand(0); 3478 SDValue Y = N0.getOperand(1); 3479 if (X == N1) 3480 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3481 3482 if (Y != N1) 3483 return SDValue(); 3484 3485 // (X + Y) == Y --> X == 0 3486 // (X ^ Y) == Y --> X == 0 3487 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3488 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3489 3490 // The shift would not be valid if the operands are boolean (i1). 3491 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3492 return SDValue(); 3493 3494 // (X - Y) == Y --> X == Y << 1 3495 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3496 !DCI.isBeforeLegalize()); 3497 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3498 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3499 if (!DCI.isCalledByLegalizer()) 3500 DCI.AddToWorklist(YShl1.getNode()); 3501 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3502 } 3503 3504 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3505 SDValue N0, const APInt &C1, 3506 ISD::CondCode Cond, const SDLoc &dl, 3507 SelectionDAG &DAG) { 3508 // Look through truncs that don't change the value of a ctpop. 3509 // FIXME: Add vector support? Need to be careful with setcc result type below. 3510 SDValue CTPOP = N0; 3511 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3512 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3513 CTPOP = N0.getOperand(0); 3514 3515 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3516 return SDValue(); 3517 3518 EVT CTVT = CTPOP.getValueType(); 3519 SDValue CTOp = CTPOP.getOperand(0); 3520 3521 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3522 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3523 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3524 return SDValue(); 3525 3526 // (ctpop x) u< 2 -> (x & x-1) == 0 3527 // (ctpop x) u> 1 -> (x & x-1) != 0 3528 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3529 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3530 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3531 return SDValue(); 3532 if (C1 == 0 && (Cond == ISD::SETULT)) 3533 return SDValue(); // This is handled elsewhere. 3534 3535 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3536 3537 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3538 SDValue Result = CTOp; 3539 for (unsigned i = 0; i < Passes; i++) { 3540 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3541 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3542 } 3543 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3544 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3545 } 3546 3547 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3548 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3549 // For scalars, keep CTPOP if it is legal or custom. 3550 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3551 return SDValue(); 3552 // This is based on X86's custom lowering for CTPOP which produces more 3553 // instructions than the expansion here. 3554 3555 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3556 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3557 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3558 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3559 assert(CTVT.isInteger()); 3560 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3561 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3562 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3563 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3564 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3565 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3566 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3567 } 3568 3569 return SDValue(); 3570 } 3571 3572 /// Try to simplify a setcc built with the specified operands and cc. If it is 3573 /// unable to simplify it, return a null SDValue. 3574 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3575 ISD::CondCode Cond, bool foldBooleans, 3576 DAGCombinerInfo &DCI, 3577 const SDLoc &dl) const { 3578 SelectionDAG &DAG = DCI.DAG; 3579 const DataLayout &Layout = DAG.getDataLayout(); 3580 EVT OpVT = N0.getValueType(); 3581 3582 // Constant fold or commute setcc. 3583 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3584 return Fold; 3585 3586 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3587 // TODO: Handle non-splat vector constants. All undef causes trouble. 3588 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3589 // infinite loop here when we encounter one. 3590 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3591 if (isConstOrConstSplat(N0) && 3592 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3593 (DCI.isBeforeLegalizeOps() || 3594 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3595 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3596 3597 // If we have a subtract with the same 2 non-constant operands as this setcc 3598 // -- but in reverse order -- then try to commute the operands of this setcc 3599 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3600 // instruction on some targets. 3601 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3602 (DCI.isBeforeLegalizeOps() || 3603 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3604 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3605 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3606 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3607 3608 if (auto *N1C = isConstOrConstSplat(N1)) { 3609 const APInt &C1 = N1C->getAPIntValue(); 3610 3611 // Optimize some CTPOP cases. 3612 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3613 return V; 3614 3615 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3616 // equality comparison, then we're just comparing whether X itself is 3617 // zero. 3618 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3619 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3620 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3621 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3622 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3623 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3624 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3625 // (srl (ctlz x), 5) == 0 -> X != 0 3626 // (srl (ctlz x), 5) != 1 -> X != 0 3627 Cond = ISD::SETNE; 3628 } else { 3629 // (srl (ctlz x), 5) != 0 -> X == 0 3630 // (srl (ctlz x), 5) == 1 -> X == 0 3631 Cond = ISD::SETEQ; 3632 } 3633 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3634 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3635 Cond); 3636 } 3637 } 3638 } 3639 } 3640 3641 // FIXME: Support vectors. 3642 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3643 const APInt &C1 = N1C->getAPIntValue(); 3644 3645 // (zext x) == C --> x == (trunc C) 3646 // (sext x) == C --> x == (trunc C) 3647 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3648 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3649 unsigned MinBits = N0.getValueSizeInBits(); 3650 SDValue PreExt; 3651 bool Signed = false; 3652 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3653 // ZExt 3654 MinBits = N0->getOperand(0).getValueSizeInBits(); 3655 PreExt = N0->getOperand(0); 3656 } else if (N0->getOpcode() == ISD::AND) { 3657 // DAGCombine turns costly ZExts into ANDs 3658 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3659 if ((C->getAPIntValue()+1).isPowerOf2()) { 3660 MinBits = C->getAPIntValue().countTrailingOnes(); 3661 PreExt = N0->getOperand(0); 3662 } 3663 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3664 // SExt 3665 MinBits = N0->getOperand(0).getValueSizeInBits(); 3666 PreExt = N0->getOperand(0); 3667 Signed = true; 3668 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3669 // ZEXTLOAD / SEXTLOAD 3670 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3671 MinBits = LN0->getMemoryVT().getSizeInBits(); 3672 PreExt = N0; 3673 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3674 Signed = true; 3675 MinBits = LN0->getMemoryVT().getSizeInBits(); 3676 PreExt = N0; 3677 } 3678 } 3679 3680 // Figure out how many bits we need to preserve this constant. 3681 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3682 3683 // Make sure we're not losing bits from the constant. 3684 if (MinBits > 0 && 3685 MinBits < C1.getBitWidth() && 3686 MinBits >= ReqdBits) { 3687 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3688 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3689 // Will get folded away. 3690 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3691 if (MinBits == 1 && C1 == 1) 3692 // Invert the condition. 3693 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3694 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3695 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3696 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3697 } 3698 3699 // If truncating the setcc operands is not desirable, we can still 3700 // simplify the expression in some cases: 3701 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3702 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3703 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3704 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3705 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3706 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3707 SDValue TopSetCC = N0->getOperand(0); 3708 unsigned N0Opc = N0->getOpcode(); 3709 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3710 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3711 TopSetCC.getOpcode() == ISD::SETCC && 3712 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3713 (isConstFalseVal(N1C) || 3714 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3715 3716 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3717 (!N1C->isZero() && Cond == ISD::SETNE); 3718 3719 if (!Inverse) 3720 return TopSetCC; 3721 3722 ISD::CondCode InvCond = ISD::getSetCCInverse( 3723 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3724 TopSetCC.getOperand(0).getValueType()); 3725 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3726 TopSetCC.getOperand(1), 3727 InvCond); 3728 } 3729 } 3730 } 3731 3732 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3733 // equality or unsigned, and all 1 bits of the const are in the same 3734 // partial word, see if we can shorten the load. 3735 if (DCI.isBeforeLegalize() && 3736 !ISD::isSignedIntSetCC(Cond) && 3737 N0.getOpcode() == ISD::AND && C1 == 0 && 3738 N0.getNode()->hasOneUse() && 3739 isa<LoadSDNode>(N0.getOperand(0)) && 3740 N0.getOperand(0).getNode()->hasOneUse() && 3741 isa<ConstantSDNode>(N0.getOperand(1))) { 3742 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3743 APInt bestMask; 3744 unsigned bestWidth = 0, bestOffset = 0; 3745 if (Lod->isSimple() && Lod->isUnindexed()) { 3746 unsigned origWidth = N0.getValueSizeInBits(); 3747 unsigned maskWidth = origWidth; 3748 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3749 // 8 bits, but have to be careful... 3750 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3751 origWidth = Lod->getMemoryVT().getSizeInBits(); 3752 const APInt &Mask = N0.getConstantOperandAPInt(1); 3753 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3754 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3755 for (unsigned offset=0; offset<origWidth/width; offset++) { 3756 if (Mask.isSubsetOf(newMask)) { 3757 if (Layout.isLittleEndian()) 3758 bestOffset = (uint64_t)offset * (width/8); 3759 else 3760 bestOffset = (origWidth/width - offset - 1) * (width/8); 3761 bestMask = Mask.lshr(offset * (width/8) * 8); 3762 bestWidth = width; 3763 break; 3764 } 3765 newMask <<= width; 3766 } 3767 } 3768 } 3769 if (bestWidth) { 3770 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3771 if (newVT.isRound() && 3772 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3773 SDValue Ptr = Lod->getBasePtr(); 3774 if (bestOffset != 0) 3775 Ptr = 3776 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3777 SDValue NewLoad = 3778 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3779 Lod->getPointerInfo().getWithOffset(bestOffset), 3780 Lod->getOriginalAlign()); 3781 return DAG.getSetCC(dl, VT, 3782 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3783 DAG.getConstant(bestMask.trunc(bestWidth), 3784 dl, newVT)), 3785 DAG.getConstant(0LL, dl, newVT), Cond); 3786 } 3787 } 3788 } 3789 3790 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3791 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3792 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3793 3794 // If the comparison constant has bits in the upper part, the 3795 // zero-extended value could never match. 3796 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3797 C1.getBitWidth() - InSize))) { 3798 switch (Cond) { 3799 case ISD::SETUGT: 3800 case ISD::SETUGE: 3801 case ISD::SETEQ: 3802 return DAG.getConstant(0, dl, VT); 3803 case ISD::SETULT: 3804 case ISD::SETULE: 3805 case ISD::SETNE: 3806 return DAG.getConstant(1, dl, VT); 3807 case ISD::SETGT: 3808 case ISD::SETGE: 3809 // True if the sign bit of C1 is set. 3810 return DAG.getConstant(C1.isNegative(), dl, VT); 3811 case ISD::SETLT: 3812 case ISD::SETLE: 3813 // True if the sign bit of C1 isn't set. 3814 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3815 default: 3816 break; 3817 } 3818 } 3819 3820 // Otherwise, we can perform the comparison with the low bits. 3821 switch (Cond) { 3822 case ISD::SETEQ: 3823 case ISD::SETNE: 3824 case ISD::SETUGT: 3825 case ISD::SETUGE: 3826 case ISD::SETULT: 3827 case ISD::SETULE: { 3828 EVT newVT = N0.getOperand(0).getValueType(); 3829 if (DCI.isBeforeLegalizeOps() || 3830 (isOperationLegal(ISD::SETCC, newVT) && 3831 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3832 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3833 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3834 3835 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3836 NewConst, Cond); 3837 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3838 } 3839 break; 3840 } 3841 default: 3842 break; // todo, be more careful with signed comparisons 3843 } 3844 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3845 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3846 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3847 OpVT)) { 3848 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3849 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3850 EVT ExtDstTy = N0.getValueType(); 3851 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3852 3853 // If the constant doesn't fit into the number of bits for the source of 3854 // the sign extension, it is impossible for both sides to be equal. 3855 if (C1.getMinSignedBits() > ExtSrcTyBits) 3856 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3857 3858 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3859 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3860 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3861 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3862 DAG.getConstant(Imm, dl, ExtDstTy)); 3863 if (!DCI.isCalledByLegalizer()) 3864 DCI.AddToWorklist(ZextOp.getNode()); 3865 // Otherwise, make this a use of a zext. 3866 return DAG.getSetCC(dl, VT, ZextOp, 3867 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3868 } else if ((N1C->isZero() || N1C->isOne()) && 3869 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3870 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3871 if (N0.getOpcode() == ISD::SETCC && 3872 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3873 (N0.getValueType() == MVT::i1 || 3874 getBooleanContents(N0.getOperand(0).getValueType()) == 3875 ZeroOrOneBooleanContent)) { 3876 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3877 if (TrueWhenTrue) 3878 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3879 // Invert the condition. 3880 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3881 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3882 if (DCI.isBeforeLegalizeOps() || 3883 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3884 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3885 } 3886 3887 if ((N0.getOpcode() == ISD::XOR || 3888 (N0.getOpcode() == ISD::AND && 3889 N0.getOperand(0).getOpcode() == ISD::XOR && 3890 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3891 isOneConstant(N0.getOperand(1))) { 3892 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3893 // can only do this if the top bits are known zero. 3894 unsigned BitWidth = N0.getValueSizeInBits(); 3895 if (DAG.MaskedValueIsZero(N0, 3896 APInt::getHighBitsSet(BitWidth, 3897 BitWidth-1))) { 3898 // Okay, get the un-inverted input value. 3899 SDValue Val; 3900 if (N0.getOpcode() == ISD::XOR) { 3901 Val = N0.getOperand(0); 3902 } else { 3903 assert(N0.getOpcode() == ISD::AND && 3904 N0.getOperand(0).getOpcode() == ISD::XOR); 3905 // ((X^1)&1)^1 -> X & 1 3906 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3907 N0.getOperand(0).getOperand(0), 3908 N0.getOperand(1)); 3909 } 3910 3911 return DAG.getSetCC(dl, VT, Val, N1, 3912 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3913 } 3914 } else if (N1C->isOne()) { 3915 SDValue Op0 = N0; 3916 if (Op0.getOpcode() == ISD::TRUNCATE) 3917 Op0 = Op0.getOperand(0); 3918 3919 if ((Op0.getOpcode() == ISD::XOR) && 3920 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3921 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3922 SDValue XorLHS = Op0.getOperand(0); 3923 SDValue XorRHS = Op0.getOperand(1); 3924 // Ensure that the input setccs return an i1 type or 0/1 value. 3925 if (Op0.getValueType() == MVT::i1 || 3926 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3927 ZeroOrOneBooleanContent && 3928 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3929 ZeroOrOneBooleanContent)) { 3930 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3931 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3932 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3933 } 3934 } 3935 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3936 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3937 if (Op0.getValueType().bitsGT(VT)) 3938 Op0 = DAG.getNode(ISD::AND, dl, VT, 3939 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3940 DAG.getConstant(1, dl, VT)); 3941 else if (Op0.getValueType().bitsLT(VT)) 3942 Op0 = DAG.getNode(ISD::AND, dl, VT, 3943 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3944 DAG.getConstant(1, dl, VT)); 3945 3946 return DAG.getSetCC(dl, VT, Op0, 3947 DAG.getConstant(0, dl, Op0.getValueType()), 3948 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3949 } 3950 if (Op0.getOpcode() == ISD::AssertZext && 3951 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3952 return DAG.getSetCC(dl, VT, Op0, 3953 DAG.getConstant(0, dl, Op0.getValueType()), 3954 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3955 } 3956 } 3957 3958 // Given: 3959 // icmp eq/ne (urem %x, %y), 0 3960 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3961 // icmp eq/ne %x, 0 3962 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3963 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3964 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3965 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3966 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3967 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3968 } 3969 3970 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3971 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3972 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3973 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3974 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3975 N1C && N1C->isAllOnes()) { 3976 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3977 DAG.getConstant(0, dl, OpVT), 3978 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3979 } 3980 3981 if (SDValue V = 3982 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3983 return V; 3984 } 3985 3986 // These simplifications apply to splat vectors as well. 3987 // TODO: Handle more splat vector cases. 3988 if (auto *N1C = isConstOrConstSplat(N1)) { 3989 const APInt &C1 = N1C->getAPIntValue(); 3990 3991 APInt MinVal, MaxVal; 3992 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3993 if (ISD::isSignedIntSetCC(Cond)) { 3994 MinVal = APInt::getSignedMinValue(OperandBitSize); 3995 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3996 } else { 3997 MinVal = APInt::getMinValue(OperandBitSize); 3998 MaxVal = APInt::getMaxValue(OperandBitSize); 3999 } 4000 4001 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4002 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4003 // X >= MIN --> true 4004 if (C1 == MinVal) 4005 return DAG.getBoolConstant(true, dl, VT, OpVT); 4006 4007 if (!VT.isVector()) { // TODO: Support this for vectors. 4008 // X >= C0 --> X > (C0 - 1) 4009 APInt C = C1 - 1; 4010 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4011 if ((DCI.isBeforeLegalizeOps() || 4012 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4013 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4014 isLegalICmpImmediate(C.getSExtValue())))) { 4015 return DAG.getSetCC(dl, VT, N0, 4016 DAG.getConstant(C, dl, N1.getValueType()), 4017 NewCC); 4018 } 4019 } 4020 } 4021 4022 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4023 // X <= MAX --> true 4024 if (C1 == MaxVal) 4025 return DAG.getBoolConstant(true, dl, VT, OpVT); 4026 4027 // X <= C0 --> X < (C0 + 1) 4028 if (!VT.isVector()) { // TODO: Support this for vectors. 4029 APInt C = C1 + 1; 4030 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4031 if ((DCI.isBeforeLegalizeOps() || 4032 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4033 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4034 isLegalICmpImmediate(C.getSExtValue())))) { 4035 return DAG.getSetCC(dl, VT, N0, 4036 DAG.getConstant(C, dl, N1.getValueType()), 4037 NewCC); 4038 } 4039 } 4040 } 4041 4042 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4043 if (C1 == MinVal) 4044 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4045 4046 // TODO: Support this for vectors after legalize ops. 4047 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4048 // Canonicalize setlt X, Max --> setne X, Max 4049 if (C1 == MaxVal) 4050 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4051 4052 // If we have setult X, 1, turn it into seteq X, 0 4053 if (C1 == MinVal+1) 4054 return DAG.getSetCC(dl, VT, N0, 4055 DAG.getConstant(MinVal, dl, N0.getValueType()), 4056 ISD::SETEQ); 4057 } 4058 } 4059 4060 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4061 if (C1 == MaxVal) 4062 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4063 4064 // TODO: Support this for vectors after legalize ops. 4065 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4066 // Canonicalize setgt X, Min --> setne X, Min 4067 if (C1 == MinVal) 4068 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4069 4070 // If we have setugt X, Max-1, turn it into seteq X, Max 4071 if (C1 == MaxVal-1) 4072 return DAG.getSetCC(dl, VT, N0, 4073 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4074 ISD::SETEQ); 4075 } 4076 } 4077 4078 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4079 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4080 if (C1.isZero()) 4081 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4082 VT, N0, N1, Cond, DCI, dl)) 4083 return CC; 4084 4085 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4086 // For example, when high 32-bits of i64 X are known clear: 4087 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4088 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4089 bool CmpZero = N1C->getAPIntValue().isZero(); 4090 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4091 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4092 // Match or(lo,shl(hi,bw/2)) pattern. 4093 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4094 unsigned EltBits = V.getScalarValueSizeInBits(); 4095 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4096 return false; 4097 SDValue LHS = V.getOperand(0); 4098 SDValue RHS = V.getOperand(1); 4099 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4100 // Unshifted element must have zero upperbits. 4101 if (RHS.getOpcode() == ISD::SHL && 4102 isa<ConstantSDNode>(RHS.getOperand(1)) && 4103 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4104 DAG.MaskedValueIsZero(LHS, HiBits)) { 4105 Lo = LHS; 4106 Hi = RHS.getOperand(0); 4107 return true; 4108 } 4109 if (LHS.getOpcode() == ISD::SHL && 4110 isa<ConstantSDNode>(LHS.getOperand(1)) && 4111 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4112 DAG.MaskedValueIsZero(RHS, HiBits)) { 4113 Lo = RHS; 4114 Hi = LHS.getOperand(0); 4115 return true; 4116 } 4117 return false; 4118 }; 4119 4120 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4121 unsigned EltBits = N0.getScalarValueSizeInBits(); 4122 unsigned HalfBits = EltBits / 2; 4123 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4124 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4125 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4126 SDValue NewN0 = 4127 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4128 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4129 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4130 }; 4131 4132 SDValue Lo, Hi; 4133 if (IsConcat(N0, Lo, Hi)) 4134 return MergeConcat(Lo, Hi); 4135 4136 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4137 SDValue Lo0, Lo1, Hi0, Hi1; 4138 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4139 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4140 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4141 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4142 } 4143 } 4144 } 4145 } 4146 4147 // If we have "setcc X, C0", check to see if we can shrink the immediate 4148 // by changing cc. 4149 // TODO: Support this for vectors after legalize ops. 4150 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4151 // SETUGT X, SINTMAX -> SETLT X, 0 4152 // SETUGE X, SINTMIN -> SETLT X, 0 4153 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4154 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4155 return DAG.getSetCC(dl, VT, N0, 4156 DAG.getConstant(0, dl, N1.getValueType()), 4157 ISD::SETLT); 4158 4159 // SETULT X, SINTMIN -> SETGT X, -1 4160 // SETULE X, SINTMAX -> SETGT X, -1 4161 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4162 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4163 return DAG.getSetCC(dl, VT, N0, 4164 DAG.getAllOnesConstant(dl, N1.getValueType()), 4165 ISD::SETGT); 4166 } 4167 } 4168 4169 // Back to non-vector simplifications. 4170 // TODO: Can we do these for vector splats? 4171 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 const APInt &C1 = N1C->getAPIntValue(); 4174 EVT ShValTy = N0.getValueType(); 4175 4176 // Fold bit comparisons when we can. This will result in an 4177 // incorrect value when boolean false is negative one, unless 4178 // the bitsize is 1 in which case the false value is the same 4179 // in practice regardless of the representation. 4180 if ((VT.getSizeInBits() == 1 || 4181 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4182 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4183 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4184 N0.getOpcode() == ISD::AND) { 4185 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4186 EVT ShiftTy = 4187 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4188 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4189 // Perform the xform if the AND RHS is a single bit. 4190 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4191 if (AndRHS->getAPIntValue().isPowerOf2() && 4192 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4193 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4194 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4195 DAG.getConstant(ShCt, dl, ShiftTy))); 4196 } 4197 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4198 // (X & 8) == 8 --> (X & 8) >> 3 4199 // Perform the xform if C1 is a single bit. 4200 unsigned ShCt = C1.logBase2(); 4201 if (C1.isPowerOf2() && 4202 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4203 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4204 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4205 DAG.getConstant(ShCt, dl, ShiftTy))); 4206 } 4207 } 4208 } 4209 } 4210 4211 if (C1.getMinSignedBits() <= 64 && 4212 !isLegalICmpImmediate(C1.getSExtValue())) { 4213 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4214 // (X & -256) == 256 -> (X >> 8) == 1 4215 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4216 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4217 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4218 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4219 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4220 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4221 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4222 SDValue Shift = 4223 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4224 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4225 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4226 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4227 } 4228 } 4229 } 4230 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4231 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4232 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4233 // X < 0x100000000 -> (X >> 32) < 1 4234 // X >= 0x100000000 -> (X >> 32) >= 1 4235 // X <= 0x0ffffffff -> (X >> 32) < 1 4236 // X > 0x0ffffffff -> (X >> 32) >= 1 4237 unsigned ShiftBits; 4238 APInt NewC = C1; 4239 ISD::CondCode NewCond = Cond; 4240 if (AdjOne) { 4241 ShiftBits = C1.countTrailingOnes(); 4242 NewC = NewC + 1; 4243 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4244 } else { 4245 ShiftBits = C1.countTrailingZeros(); 4246 } 4247 NewC.lshrInPlace(ShiftBits); 4248 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4249 isLegalICmpImmediate(NewC.getSExtValue()) && 4250 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4251 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4252 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4253 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4254 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4255 } 4256 } 4257 } 4258 } 4259 4260 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4261 auto *CFP = cast<ConstantFPSDNode>(N1); 4262 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4263 4264 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4265 // constant if knowing that the operand is non-nan is enough. We prefer to 4266 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4267 // materialize 0.0. 4268 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4269 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4270 4271 // setcc (fneg x), C -> setcc swap(pred) x, -C 4272 if (N0.getOpcode() == ISD::FNEG) { 4273 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4274 if (DCI.isBeforeLegalizeOps() || 4275 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4276 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4277 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4278 } 4279 } 4280 4281 // If the condition is not legal, see if we can find an equivalent one 4282 // which is legal. 4283 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4284 // If the comparison was an awkward floating-point == or != and one of 4285 // the comparison operands is infinity or negative infinity, convert the 4286 // condition to a less-awkward <= or >=. 4287 if (CFP->getValueAPF().isInfinity()) { 4288 bool IsNegInf = CFP->getValueAPF().isNegative(); 4289 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4290 switch (Cond) { 4291 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4292 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4293 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4294 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4295 default: break; 4296 } 4297 if (NewCond != ISD::SETCC_INVALID && 4298 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4299 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4300 } 4301 } 4302 } 4303 4304 if (N0 == N1) { 4305 // The sext(setcc()) => setcc() optimization relies on the appropriate 4306 // constant being emitted. 4307 assert(!N0.getValueType().isInteger() && 4308 "Integer types should be handled by FoldSetCC"); 4309 4310 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4311 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4312 if (UOF == 2) // FP operators that are undefined on NaNs. 4313 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4314 if (UOF == unsigned(EqTrue)) 4315 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4316 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4317 // if it is not already. 4318 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4319 if (NewCond != Cond && 4320 (DCI.isBeforeLegalizeOps() || 4321 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4322 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4323 } 4324 4325 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4326 N0.getValueType().isInteger()) { 4327 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4328 N0.getOpcode() == ISD::XOR) { 4329 // Simplify (X+Y) == (X+Z) --> Y == Z 4330 if (N0.getOpcode() == N1.getOpcode()) { 4331 if (N0.getOperand(0) == N1.getOperand(0)) 4332 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4333 if (N0.getOperand(1) == N1.getOperand(1)) 4334 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4335 if (isCommutativeBinOp(N0.getOpcode())) { 4336 // If X op Y == Y op X, try other combinations. 4337 if (N0.getOperand(0) == N1.getOperand(1)) 4338 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4339 Cond); 4340 if (N0.getOperand(1) == N1.getOperand(0)) 4341 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4342 Cond); 4343 } 4344 } 4345 4346 // If RHS is a legal immediate value for a compare instruction, we need 4347 // to be careful about increasing register pressure needlessly. 4348 bool LegalRHSImm = false; 4349 4350 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4351 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4352 // Turn (X+C1) == C2 --> X == C2-C1 4353 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4354 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4355 DAG.getConstant(RHSC->getAPIntValue()- 4356 LHSR->getAPIntValue(), 4357 dl, N0.getValueType()), Cond); 4358 } 4359 4360 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4361 if (N0.getOpcode() == ISD::XOR) 4362 // If we know that all of the inverted bits are zero, don't bother 4363 // performing the inversion. 4364 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4365 return 4366 DAG.getSetCC(dl, VT, N0.getOperand(0), 4367 DAG.getConstant(LHSR->getAPIntValue() ^ 4368 RHSC->getAPIntValue(), 4369 dl, N0.getValueType()), 4370 Cond); 4371 } 4372 4373 // Turn (C1-X) == C2 --> X == C1-C2 4374 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4375 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4376 return 4377 DAG.getSetCC(dl, VT, N0.getOperand(1), 4378 DAG.getConstant(SUBC->getAPIntValue() - 4379 RHSC->getAPIntValue(), 4380 dl, N0.getValueType()), 4381 Cond); 4382 } 4383 } 4384 4385 // Could RHSC fold directly into a compare? 4386 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4387 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4388 } 4389 4390 // (X+Y) == X --> Y == 0 and similar folds. 4391 // Don't do this if X is an immediate that can fold into a cmp 4392 // instruction and X+Y has other uses. It could be an induction variable 4393 // chain, and the transform would increase register pressure. 4394 if (!LegalRHSImm || N0.hasOneUse()) 4395 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4396 return V; 4397 } 4398 4399 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4400 N1.getOpcode() == ISD::XOR) 4401 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4402 return V; 4403 4404 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4405 return V; 4406 } 4407 4408 // Fold remainder of division by a constant. 4409 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4410 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4411 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4412 4413 // When division is cheap or optimizing for minimum size, 4414 // fall through to DIVREM creation by skipping this fold. 4415 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4416 if (N0.getOpcode() == ISD::UREM) { 4417 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4418 return Folded; 4419 } else if (N0.getOpcode() == ISD::SREM) { 4420 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4421 return Folded; 4422 } 4423 } 4424 } 4425 4426 // Fold away ALL boolean setcc's. 4427 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4428 SDValue Temp; 4429 switch (Cond) { 4430 default: llvm_unreachable("Unknown integer setcc!"); 4431 case ISD::SETEQ: // X == Y -> ~(X^Y) 4432 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4433 N0 = DAG.getNOT(dl, Temp, OpVT); 4434 if (!DCI.isCalledByLegalizer()) 4435 DCI.AddToWorklist(Temp.getNode()); 4436 break; 4437 case ISD::SETNE: // X != Y --> (X^Y) 4438 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4439 break; 4440 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4441 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4442 Temp = DAG.getNOT(dl, N0, OpVT); 4443 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4444 if (!DCI.isCalledByLegalizer()) 4445 DCI.AddToWorklist(Temp.getNode()); 4446 break; 4447 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4448 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4449 Temp = DAG.getNOT(dl, N1, OpVT); 4450 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4451 if (!DCI.isCalledByLegalizer()) 4452 DCI.AddToWorklist(Temp.getNode()); 4453 break; 4454 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4455 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4456 Temp = DAG.getNOT(dl, N0, OpVT); 4457 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4458 if (!DCI.isCalledByLegalizer()) 4459 DCI.AddToWorklist(Temp.getNode()); 4460 break; 4461 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4462 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4463 Temp = DAG.getNOT(dl, N1, OpVT); 4464 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4465 break; 4466 } 4467 if (VT.getScalarType() != MVT::i1) { 4468 if (!DCI.isCalledByLegalizer()) 4469 DCI.AddToWorklist(N0.getNode()); 4470 // FIXME: If running after legalize, we probably can't do this. 4471 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4472 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4473 } 4474 return N0; 4475 } 4476 4477 // Could not fold it. 4478 return SDValue(); 4479 } 4480 4481 /// Returns true (and the GlobalValue and the offset) if the node is a 4482 /// GlobalAddress + offset. 4483 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4484 int64_t &Offset) const { 4485 4486 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4487 4488 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4489 GA = GASD->getGlobal(); 4490 Offset += GASD->getOffset(); 4491 return true; 4492 } 4493 4494 if (N->getOpcode() == ISD::ADD) { 4495 SDValue N1 = N->getOperand(0); 4496 SDValue N2 = N->getOperand(1); 4497 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4498 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4499 Offset += V->getSExtValue(); 4500 return true; 4501 } 4502 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4503 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4504 Offset += V->getSExtValue(); 4505 return true; 4506 } 4507 } 4508 } 4509 4510 return false; 4511 } 4512 4513 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4514 DAGCombinerInfo &DCI) const { 4515 // Default implementation: no optimization. 4516 return SDValue(); 4517 } 4518 4519 //===----------------------------------------------------------------------===// 4520 // Inline Assembler Implementation Methods 4521 //===----------------------------------------------------------------------===// 4522 4523 TargetLowering::ConstraintType 4524 TargetLowering::getConstraintType(StringRef Constraint) const { 4525 unsigned S = Constraint.size(); 4526 4527 if (S == 1) { 4528 switch (Constraint[0]) { 4529 default: break; 4530 case 'r': 4531 return C_RegisterClass; 4532 case 'm': // memory 4533 case 'o': // offsetable 4534 case 'V': // not offsetable 4535 return C_Memory; 4536 case 'n': // Simple Integer 4537 case 'E': // Floating Point Constant 4538 case 'F': // Floating Point Constant 4539 return C_Immediate; 4540 case 'i': // Simple Integer or Relocatable Constant 4541 case 's': // Relocatable Constant 4542 case 'p': // Address. 4543 case 'X': // Allow ANY value. 4544 case 'I': // Target registers. 4545 case 'J': 4546 case 'K': 4547 case 'L': 4548 case 'M': 4549 case 'N': 4550 case 'O': 4551 case 'P': 4552 case '<': 4553 case '>': 4554 return C_Other; 4555 } 4556 } 4557 4558 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4559 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4560 return C_Memory; 4561 return C_Register; 4562 } 4563 return C_Unknown; 4564 } 4565 4566 /// Try to replace an X constraint, which matches anything, with another that 4567 /// has more specific requirements based on the type of the corresponding 4568 /// operand. 4569 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4570 if (ConstraintVT.isInteger()) 4571 return "r"; 4572 if (ConstraintVT.isFloatingPoint()) 4573 return "f"; // works for many targets 4574 return nullptr; 4575 } 4576 4577 SDValue TargetLowering::LowerAsmOutputForConstraint( 4578 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4579 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4580 return SDValue(); 4581 } 4582 4583 /// Lower the specified operand into the Ops vector. 4584 /// If it is invalid, don't add anything to Ops. 4585 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4586 std::string &Constraint, 4587 std::vector<SDValue> &Ops, 4588 SelectionDAG &DAG) const { 4589 4590 if (Constraint.length() > 1) return; 4591 4592 char ConstraintLetter = Constraint[0]; 4593 switch (ConstraintLetter) { 4594 default: break; 4595 case 'X': // Allows any operand 4596 case 'i': // Simple Integer or Relocatable Constant 4597 case 'n': // Simple Integer 4598 case 's': { // Relocatable Constant 4599 4600 ConstantSDNode *C; 4601 uint64_t Offset = 0; 4602 4603 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4604 // etc., since getelementpointer is variadic. We can't use 4605 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4606 // while in this case the GA may be furthest from the root node which is 4607 // likely an ISD::ADD. 4608 while (true) { 4609 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4610 // gcc prints these as sign extended. Sign extend value to 64 bits 4611 // now; without this it would get ZExt'd later in 4612 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4613 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4614 BooleanContent BCont = getBooleanContents(MVT::i64); 4615 ISD::NodeType ExtOpc = 4616 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4617 int64_t ExtVal = 4618 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4619 Ops.push_back( 4620 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4621 return; 4622 } 4623 if (ConstraintLetter != 'n') { 4624 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4625 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4626 GA->getValueType(0), 4627 Offset + GA->getOffset())); 4628 return; 4629 } 4630 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4631 Ops.push_back(DAG.getTargetBlockAddress( 4632 BA->getBlockAddress(), BA->getValueType(0), 4633 Offset + BA->getOffset(), BA->getTargetFlags())); 4634 return; 4635 } 4636 if (isa<BasicBlockSDNode>(Op)) { 4637 Ops.push_back(Op); 4638 return; 4639 } 4640 } 4641 const unsigned OpCode = Op.getOpcode(); 4642 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4643 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4644 Op = Op.getOperand(1); 4645 // Subtraction is not commutative. 4646 else if (OpCode == ISD::ADD && 4647 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4648 Op = Op.getOperand(0); 4649 else 4650 return; 4651 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4652 continue; 4653 } 4654 return; 4655 } 4656 break; 4657 } 4658 } 4659 } 4660 4661 std::pair<unsigned, const TargetRegisterClass *> 4662 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4663 StringRef Constraint, 4664 MVT VT) const { 4665 if (Constraint.empty() || Constraint[0] != '{') 4666 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4667 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4668 4669 // Remove the braces from around the name. 4670 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4671 4672 std::pair<unsigned, const TargetRegisterClass *> R = 4673 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4674 4675 // Figure out which register class contains this reg. 4676 for (const TargetRegisterClass *RC : RI->regclasses()) { 4677 // If none of the value types for this register class are valid, we 4678 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4679 if (!isLegalRC(*RI, *RC)) 4680 continue; 4681 4682 for (const MCPhysReg &PR : *RC) { 4683 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4684 std::pair<unsigned, const TargetRegisterClass *> S = 4685 std::make_pair(PR, RC); 4686 4687 // If this register class has the requested value type, return it, 4688 // otherwise keep searching and return the first class found 4689 // if no other is found which explicitly has the requested type. 4690 if (RI->isTypeLegalForClass(*RC, VT)) 4691 return S; 4692 if (!R.second) 4693 R = S; 4694 } 4695 } 4696 } 4697 4698 return R; 4699 } 4700 4701 //===----------------------------------------------------------------------===// 4702 // Constraint Selection. 4703 4704 /// Return true of this is an input operand that is a matching constraint like 4705 /// "4". 4706 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4707 assert(!ConstraintCode.empty() && "No known constraint!"); 4708 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4709 } 4710 4711 /// If this is an input matching constraint, this method returns the output 4712 /// operand it matches. 4713 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4714 assert(!ConstraintCode.empty() && "No known constraint!"); 4715 return atoi(ConstraintCode.c_str()); 4716 } 4717 4718 /// Split up the constraint string from the inline assembly value into the 4719 /// specific constraints and their prefixes, and also tie in the associated 4720 /// operand values. 4721 /// If this returns an empty vector, and if the constraint string itself 4722 /// isn't empty, there was an error parsing. 4723 TargetLowering::AsmOperandInfoVector 4724 TargetLowering::ParseConstraints(const DataLayout &DL, 4725 const TargetRegisterInfo *TRI, 4726 const CallBase &Call) const { 4727 /// Information about all of the constraints. 4728 AsmOperandInfoVector ConstraintOperands; 4729 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4730 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4731 4732 // Do a prepass over the constraints, canonicalizing them, and building up the 4733 // ConstraintOperands list. 4734 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4735 unsigned ResNo = 0; // ResNo - The result number of the next output. 4736 4737 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4738 ConstraintOperands.emplace_back(std::move(CI)); 4739 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4740 4741 // Update multiple alternative constraint count. 4742 if (OpInfo.multipleAlternatives.size() > maCount) 4743 maCount = OpInfo.multipleAlternatives.size(); 4744 4745 OpInfo.ConstraintVT = MVT::Other; 4746 4747 // Compute the value type for each operand. 4748 switch (OpInfo.Type) { 4749 case InlineAsm::isOutput: 4750 // Indirect outputs just consume an argument. 4751 if (OpInfo.isIndirect) { 4752 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4753 break; 4754 } 4755 4756 // The return value of the call is this value. As such, there is no 4757 // corresponding argument. 4758 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4759 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4760 OpInfo.ConstraintVT = 4761 getSimpleValueType(DL, STy->getElementType(ResNo)); 4762 } else { 4763 assert(ResNo == 0 && "Asm only has one result!"); 4764 OpInfo.ConstraintVT = 4765 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4766 } 4767 ++ResNo; 4768 break; 4769 case InlineAsm::isInput: 4770 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4771 break; 4772 case InlineAsm::isClobber: 4773 // Nothing to do. 4774 break; 4775 } 4776 4777 if (OpInfo.CallOperandVal) { 4778 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4779 if (OpInfo.isIndirect) { 4780 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4781 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4782 } 4783 4784 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4785 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4786 if (STy->getNumElements() == 1) 4787 OpTy = STy->getElementType(0); 4788 4789 // If OpTy is not a single value, it may be a struct/union that we 4790 // can tile with integers. 4791 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4792 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4793 switch (BitSize) { 4794 default: break; 4795 case 1: 4796 case 8: 4797 case 16: 4798 case 32: 4799 case 64: 4800 case 128: 4801 OpInfo.ConstraintVT = 4802 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4803 break; 4804 } 4805 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4806 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4807 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4808 } else { 4809 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4810 } 4811 4812 ArgNo++; 4813 } 4814 } 4815 4816 // If we have multiple alternative constraints, select the best alternative. 4817 if (!ConstraintOperands.empty()) { 4818 if (maCount) { 4819 unsigned bestMAIndex = 0; 4820 int bestWeight = -1; 4821 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4822 int weight = -1; 4823 unsigned maIndex; 4824 // Compute the sums of the weights for each alternative, keeping track 4825 // of the best (highest weight) one so far. 4826 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4827 int weightSum = 0; 4828 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4829 cIndex != eIndex; ++cIndex) { 4830 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4831 if (OpInfo.Type == InlineAsm::isClobber) 4832 continue; 4833 4834 // If this is an output operand with a matching input operand, 4835 // look up the matching input. If their types mismatch, e.g. one 4836 // is an integer, the other is floating point, or their sizes are 4837 // different, flag it as an maCantMatch. 4838 if (OpInfo.hasMatchingInput()) { 4839 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4840 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4841 if ((OpInfo.ConstraintVT.isInteger() != 4842 Input.ConstraintVT.isInteger()) || 4843 (OpInfo.ConstraintVT.getSizeInBits() != 4844 Input.ConstraintVT.getSizeInBits())) { 4845 weightSum = -1; // Can't match. 4846 break; 4847 } 4848 } 4849 } 4850 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4851 if (weight == -1) { 4852 weightSum = -1; 4853 break; 4854 } 4855 weightSum += weight; 4856 } 4857 // Update best. 4858 if (weightSum > bestWeight) { 4859 bestWeight = weightSum; 4860 bestMAIndex = maIndex; 4861 } 4862 } 4863 4864 // Now select chosen alternative in each constraint. 4865 for (AsmOperandInfo &cInfo : ConstraintOperands) 4866 if (cInfo.Type != InlineAsm::isClobber) 4867 cInfo.selectAlternative(bestMAIndex); 4868 } 4869 } 4870 4871 // Check and hook up tied operands, choose constraint code to use. 4872 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4873 cIndex != eIndex; ++cIndex) { 4874 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4875 4876 // If this is an output operand with a matching input operand, look up the 4877 // matching input. If their types mismatch, e.g. one is an integer, the 4878 // other is floating point, or their sizes are different, flag it as an 4879 // error. 4880 if (OpInfo.hasMatchingInput()) { 4881 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4882 4883 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4884 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4885 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4886 OpInfo.ConstraintVT); 4887 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4888 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4889 Input.ConstraintVT); 4890 if ((OpInfo.ConstraintVT.isInteger() != 4891 Input.ConstraintVT.isInteger()) || 4892 (MatchRC.second != InputRC.second)) { 4893 report_fatal_error("Unsupported asm: input constraint" 4894 " with a matching output constraint of" 4895 " incompatible type!"); 4896 } 4897 } 4898 } 4899 } 4900 4901 return ConstraintOperands; 4902 } 4903 4904 /// Return an integer indicating how general CT is. 4905 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4906 switch (CT) { 4907 case TargetLowering::C_Immediate: 4908 case TargetLowering::C_Other: 4909 case TargetLowering::C_Unknown: 4910 return 0; 4911 case TargetLowering::C_Register: 4912 return 1; 4913 case TargetLowering::C_RegisterClass: 4914 return 2; 4915 case TargetLowering::C_Memory: 4916 return 3; 4917 } 4918 llvm_unreachable("Invalid constraint type"); 4919 } 4920 4921 /// Examine constraint type and operand type and determine a weight value. 4922 /// This object must already have been set up with the operand type 4923 /// and the current alternative constraint selected. 4924 TargetLowering::ConstraintWeight 4925 TargetLowering::getMultipleConstraintMatchWeight( 4926 AsmOperandInfo &info, int maIndex) const { 4927 InlineAsm::ConstraintCodeVector *rCodes; 4928 if (maIndex >= (int)info.multipleAlternatives.size()) 4929 rCodes = &info.Codes; 4930 else 4931 rCodes = &info.multipleAlternatives[maIndex].Codes; 4932 ConstraintWeight BestWeight = CW_Invalid; 4933 4934 // Loop over the options, keeping track of the most general one. 4935 for (const std::string &rCode : *rCodes) { 4936 ConstraintWeight weight = 4937 getSingleConstraintMatchWeight(info, rCode.c_str()); 4938 if (weight > BestWeight) 4939 BestWeight = weight; 4940 } 4941 4942 return BestWeight; 4943 } 4944 4945 /// Examine constraint type and operand type and determine a weight value. 4946 /// This object must already have been set up with the operand type 4947 /// and the current alternative constraint selected. 4948 TargetLowering::ConstraintWeight 4949 TargetLowering::getSingleConstraintMatchWeight( 4950 AsmOperandInfo &info, const char *constraint) const { 4951 ConstraintWeight weight = CW_Invalid; 4952 Value *CallOperandVal = info.CallOperandVal; 4953 // If we don't have a value, we can't do a match, 4954 // but allow it at the lowest weight. 4955 if (!CallOperandVal) 4956 return CW_Default; 4957 // Look at the constraint type. 4958 switch (*constraint) { 4959 case 'i': // immediate integer. 4960 case 'n': // immediate integer with a known value. 4961 if (isa<ConstantInt>(CallOperandVal)) 4962 weight = CW_Constant; 4963 break; 4964 case 's': // non-explicit intregal immediate. 4965 if (isa<GlobalValue>(CallOperandVal)) 4966 weight = CW_Constant; 4967 break; 4968 case 'E': // immediate float if host format. 4969 case 'F': // immediate float. 4970 if (isa<ConstantFP>(CallOperandVal)) 4971 weight = CW_Constant; 4972 break; 4973 case '<': // memory operand with autodecrement. 4974 case '>': // memory operand with autoincrement. 4975 case 'm': // memory operand. 4976 case 'o': // offsettable memory operand 4977 case 'V': // non-offsettable memory operand 4978 weight = CW_Memory; 4979 break; 4980 case 'r': // general register. 4981 case 'g': // general register, memory operand or immediate integer. 4982 // note: Clang converts "g" to "imr". 4983 if (CallOperandVal->getType()->isIntegerTy()) 4984 weight = CW_Register; 4985 break; 4986 case 'X': // any operand. 4987 default: 4988 weight = CW_Default; 4989 break; 4990 } 4991 return weight; 4992 } 4993 4994 /// If there are multiple different constraints that we could pick for this 4995 /// operand (e.g. "imr") try to pick the 'best' one. 4996 /// This is somewhat tricky: constraints fall into four classes: 4997 /// Other -> immediates and magic values 4998 /// Register -> one specific register 4999 /// RegisterClass -> a group of regs 5000 /// Memory -> memory 5001 /// Ideally, we would pick the most specific constraint possible: if we have 5002 /// something that fits into a register, we would pick it. The problem here 5003 /// is that if we have something that could either be in a register or in 5004 /// memory that use of the register could cause selection of *other* 5005 /// operands to fail: they might only succeed if we pick memory. Because of 5006 /// this the heuristic we use is: 5007 /// 5008 /// 1) If there is an 'other' constraint, and if the operand is valid for 5009 /// that constraint, use it. This makes us take advantage of 'i' 5010 /// constraints when available. 5011 /// 2) Otherwise, pick the most general constraint present. This prefers 5012 /// 'm' over 'r', for example. 5013 /// 5014 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5015 const TargetLowering &TLI, 5016 SDValue Op, SelectionDAG *DAG) { 5017 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5018 unsigned BestIdx = 0; 5019 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5020 int BestGenerality = -1; 5021 5022 // Loop over the options, keeping track of the most general one. 5023 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5024 TargetLowering::ConstraintType CType = 5025 TLI.getConstraintType(OpInfo.Codes[i]); 5026 5027 // Indirect 'other' or 'immediate' constraints are not allowed. 5028 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5029 CType == TargetLowering::C_Register || 5030 CType == TargetLowering::C_RegisterClass)) 5031 continue; 5032 5033 // If this is an 'other' or 'immediate' constraint, see if the operand is 5034 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5035 // the operand is an integer in the range [0..31] we want to use I (saving a 5036 // load of a register), otherwise we must use 'r'. 5037 if ((CType == TargetLowering::C_Other || 5038 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5039 assert(OpInfo.Codes[i].size() == 1 && 5040 "Unhandled multi-letter 'other' constraint"); 5041 std::vector<SDValue> ResultOps; 5042 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5043 ResultOps, *DAG); 5044 if (!ResultOps.empty()) { 5045 BestType = CType; 5046 BestIdx = i; 5047 break; 5048 } 5049 } 5050 5051 // Things with matching constraints can only be registers, per gcc 5052 // documentation. This mainly affects "g" constraints. 5053 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5054 continue; 5055 5056 // This constraint letter is more general than the previous one, use it. 5057 int Generality = getConstraintGenerality(CType); 5058 if (Generality > BestGenerality) { 5059 BestType = CType; 5060 BestIdx = i; 5061 BestGenerality = Generality; 5062 } 5063 } 5064 5065 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5066 OpInfo.ConstraintType = BestType; 5067 } 5068 5069 /// Determines the constraint code and constraint type to use for the specific 5070 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5071 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5072 SDValue Op, 5073 SelectionDAG *DAG) const { 5074 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5075 5076 // Single-letter constraints ('r') are very common. 5077 if (OpInfo.Codes.size() == 1) { 5078 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5079 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5080 } else { 5081 ChooseConstraint(OpInfo, *this, Op, DAG); 5082 } 5083 5084 // 'X' matches anything. 5085 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5086 // Constants are handled elsewhere. For Functions, the type here is the 5087 // type of the result, which is not what we want to look at; leave them 5088 // alone. 5089 Value *v = OpInfo.CallOperandVal; 5090 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5091 return; 5092 } 5093 5094 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5095 OpInfo.ConstraintCode = "i"; 5096 return; 5097 } 5098 5099 // Otherwise, try to resolve it to something we know about by looking at 5100 // the actual operand type. 5101 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5102 OpInfo.ConstraintCode = Repl; 5103 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5104 } 5105 } 5106 } 5107 5108 /// Given an exact SDIV by a constant, create a multiplication 5109 /// with the multiplicative inverse of the constant. 5110 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5111 const SDLoc &dl, SelectionDAG &DAG, 5112 SmallVectorImpl<SDNode *> &Created) { 5113 SDValue Op0 = N->getOperand(0); 5114 SDValue Op1 = N->getOperand(1); 5115 EVT VT = N->getValueType(0); 5116 EVT SVT = VT.getScalarType(); 5117 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5118 EVT ShSVT = ShVT.getScalarType(); 5119 5120 bool UseSRA = false; 5121 SmallVector<SDValue, 16> Shifts, Factors; 5122 5123 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5124 if (C->isZero()) 5125 return false; 5126 APInt Divisor = C->getAPIntValue(); 5127 unsigned Shift = Divisor.countTrailingZeros(); 5128 if (Shift) { 5129 Divisor.ashrInPlace(Shift); 5130 UseSRA = true; 5131 } 5132 // Calculate the multiplicative inverse, using Newton's method. 5133 APInt t; 5134 APInt Factor = Divisor; 5135 while ((t = Divisor * Factor) != 1) 5136 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5137 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5138 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5139 return true; 5140 }; 5141 5142 // Collect all magic values from the build vector. 5143 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5144 return SDValue(); 5145 5146 SDValue Shift, Factor; 5147 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5148 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5149 Factor = DAG.getBuildVector(VT, dl, Factors); 5150 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5151 assert(Shifts.size() == 1 && Factors.size() == 1 && 5152 "Expected matchUnaryPredicate to return one element for scalable " 5153 "vectors"); 5154 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5155 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5156 } else { 5157 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5158 Shift = Shifts[0]; 5159 Factor = Factors[0]; 5160 } 5161 5162 SDValue Res = Op0; 5163 5164 // Shift the value upfront if it is even, so the LSB is one. 5165 if (UseSRA) { 5166 // TODO: For UDIV use SRL instead of SRA. 5167 SDNodeFlags Flags; 5168 Flags.setExact(true); 5169 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5170 Created.push_back(Res.getNode()); 5171 } 5172 5173 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5174 } 5175 5176 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5177 SelectionDAG &DAG, 5178 SmallVectorImpl<SDNode *> &Created) const { 5179 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5181 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5182 return SDValue(N, 0); // Lower SDIV as SDIV 5183 return SDValue(); 5184 } 5185 5186 /// Given an ISD::SDIV node expressing a divide by constant, 5187 /// return a DAG expression to select that will generate the same value by 5188 /// multiplying by a magic number. 5189 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5190 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5191 bool IsAfterLegalization, 5192 SmallVectorImpl<SDNode *> &Created) const { 5193 SDLoc dl(N); 5194 EVT VT = N->getValueType(0); 5195 EVT SVT = VT.getScalarType(); 5196 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5197 EVT ShSVT = ShVT.getScalarType(); 5198 unsigned EltBits = VT.getScalarSizeInBits(); 5199 EVT MulVT; 5200 5201 // Check to see if we can do this. 5202 // FIXME: We should be more aggressive here. 5203 if (!isTypeLegal(VT)) { 5204 // Limit this to simple scalars for now. 5205 if (VT.isVector() || !VT.isSimple()) 5206 return SDValue(); 5207 5208 // If this type will be promoted to a large enough type with a legal 5209 // multiply operation, we can go ahead and do this transform. 5210 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5211 return SDValue(); 5212 5213 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5214 if (MulVT.getSizeInBits() < (2 * EltBits) || 5215 !isOperationLegal(ISD::MUL, MulVT)) 5216 return SDValue(); 5217 } 5218 5219 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5220 if (N->getFlags().hasExact()) 5221 return BuildExactSDIV(*this, N, dl, DAG, Created); 5222 5223 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5224 5225 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5226 if (C->isZero()) 5227 return false; 5228 5229 const APInt &Divisor = C->getAPIntValue(); 5230 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5231 int NumeratorFactor = 0; 5232 int ShiftMask = -1; 5233 5234 if (Divisor.isOne() || Divisor.isAllOnes()) { 5235 // If d is +1/-1, we just multiply the numerator by +1/-1. 5236 NumeratorFactor = Divisor.getSExtValue(); 5237 magics.Magic = 0; 5238 magics.ShiftAmount = 0; 5239 ShiftMask = 0; 5240 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5241 // If d > 0 and m < 0, add the numerator. 5242 NumeratorFactor = 1; 5243 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5244 // If d < 0 and m > 0, subtract the numerator. 5245 NumeratorFactor = -1; 5246 } 5247 5248 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5249 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5250 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5251 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5252 return true; 5253 }; 5254 5255 SDValue N0 = N->getOperand(0); 5256 SDValue N1 = N->getOperand(1); 5257 5258 // Collect the shifts / magic values from each element. 5259 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5260 return SDValue(); 5261 5262 SDValue MagicFactor, Factor, Shift, ShiftMask; 5263 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5264 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5265 Factor = DAG.getBuildVector(VT, dl, Factors); 5266 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5267 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5268 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5269 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5270 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5271 "Expected matchUnaryPredicate to return one element for scalable " 5272 "vectors"); 5273 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5274 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5275 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5276 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5277 } else { 5278 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5279 MagicFactor = MagicFactors[0]; 5280 Factor = Factors[0]; 5281 Shift = Shifts[0]; 5282 ShiftMask = ShiftMasks[0]; 5283 } 5284 5285 // Multiply the numerator (operand 0) by the magic value. 5286 // FIXME: We should support doing a MUL in a wider type. 5287 auto GetMULHS = [&](SDValue X, SDValue Y) { 5288 // If the type isn't legal, use a wider mul of the the type calculated 5289 // earlier. 5290 if (!isTypeLegal(VT)) { 5291 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5292 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5293 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5294 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5295 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5296 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5297 } 5298 5299 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5300 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5301 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5302 SDValue LoHi = 5303 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5304 return SDValue(LoHi.getNode(), 1); 5305 } 5306 return SDValue(); 5307 }; 5308 5309 SDValue Q = GetMULHS(N0, MagicFactor); 5310 if (!Q) 5311 return SDValue(); 5312 5313 Created.push_back(Q.getNode()); 5314 5315 // (Optionally) Add/subtract the numerator using Factor. 5316 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5317 Created.push_back(Factor.getNode()); 5318 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5319 Created.push_back(Q.getNode()); 5320 5321 // Shift right algebraic by shift value. 5322 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5323 Created.push_back(Q.getNode()); 5324 5325 // Extract the sign bit, mask it and add it to the quotient. 5326 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5327 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5328 Created.push_back(T.getNode()); 5329 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5330 Created.push_back(T.getNode()); 5331 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5332 } 5333 5334 /// Given an ISD::UDIV node expressing a divide by constant, 5335 /// return a DAG expression to select that will generate the same value by 5336 /// multiplying by a magic number. 5337 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5338 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5339 bool IsAfterLegalization, 5340 SmallVectorImpl<SDNode *> &Created) const { 5341 SDLoc dl(N); 5342 EVT VT = N->getValueType(0); 5343 EVT SVT = VT.getScalarType(); 5344 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5345 EVT ShSVT = ShVT.getScalarType(); 5346 unsigned EltBits = VT.getScalarSizeInBits(); 5347 EVT MulVT; 5348 5349 // Check to see if we can do this. 5350 // FIXME: We should be more aggressive here. 5351 if (!isTypeLegal(VT)) { 5352 // Limit this to simple scalars for now. 5353 if (VT.isVector() || !VT.isSimple()) 5354 return SDValue(); 5355 5356 // If this type will be promoted to a large enough type with a legal 5357 // multiply operation, we can go ahead and do this transform. 5358 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5359 return SDValue(); 5360 5361 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5362 if (MulVT.getSizeInBits() < (2 * EltBits) || 5363 !isOperationLegal(ISD::MUL, MulVT)) 5364 return SDValue(); 5365 } 5366 5367 bool UseNPQ = false; 5368 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5369 5370 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5371 if (C->isZero()) 5372 return false; 5373 // FIXME: We should use a narrower constant when the upper 5374 // bits are known to be zero. 5375 const APInt& Divisor = C->getAPIntValue(); 5376 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5377 unsigned PreShift = 0, PostShift = 0; 5378 5379 // If the divisor is even, we can avoid using the expensive fixup by 5380 // shifting the divided value upfront. 5381 if (magics.IsAdd != 0 && !Divisor[0]) { 5382 PreShift = Divisor.countTrailingZeros(); 5383 // Get magic number for the shifted divisor. 5384 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5385 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5386 } 5387 5388 APInt Magic = magics.Magic; 5389 5390 unsigned SelNPQ; 5391 if (magics.IsAdd == 0 || Divisor.isOne()) { 5392 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5393 "We shouldn't generate an undefined shift!"); 5394 PostShift = magics.ShiftAmount; 5395 SelNPQ = false; 5396 } else { 5397 PostShift = magics.ShiftAmount - 1; 5398 SelNPQ = true; 5399 } 5400 5401 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5402 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5403 NPQFactors.push_back( 5404 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5405 : APInt::getZero(EltBits), 5406 dl, SVT)); 5407 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5408 UseNPQ |= SelNPQ; 5409 return true; 5410 }; 5411 5412 SDValue N0 = N->getOperand(0); 5413 SDValue N1 = N->getOperand(1); 5414 5415 // Collect the shifts/magic values from each element. 5416 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5417 return SDValue(); 5418 5419 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5420 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5421 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5422 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5423 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5424 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5425 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5426 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5427 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5428 "Expected matchUnaryPredicate to return one for scalable vectors"); 5429 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5430 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5431 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5432 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5433 } else { 5434 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5435 PreShift = PreShifts[0]; 5436 MagicFactor = MagicFactors[0]; 5437 PostShift = PostShifts[0]; 5438 } 5439 5440 SDValue Q = N0; 5441 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5442 Created.push_back(Q.getNode()); 5443 5444 // FIXME: We should support doing a MUL in a wider type. 5445 auto GetMULHU = [&](SDValue X, SDValue Y) { 5446 // If the type isn't legal, use a wider mul of the the type calculated 5447 // earlier. 5448 if (!isTypeLegal(VT)) { 5449 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5450 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5451 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5452 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5453 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5454 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5455 } 5456 5457 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5458 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5459 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5460 SDValue LoHi = 5461 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5462 return SDValue(LoHi.getNode(), 1); 5463 } 5464 return SDValue(); // No mulhu or equivalent 5465 }; 5466 5467 // Multiply the numerator (operand 0) by the magic value. 5468 Q = GetMULHU(Q, MagicFactor); 5469 if (!Q) 5470 return SDValue(); 5471 5472 Created.push_back(Q.getNode()); 5473 5474 if (UseNPQ) { 5475 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5476 Created.push_back(NPQ.getNode()); 5477 5478 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5479 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5480 if (VT.isVector()) 5481 NPQ = GetMULHU(NPQ, NPQFactor); 5482 else 5483 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5484 5485 Created.push_back(NPQ.getNode()); 5486 5487 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5488 Created.push_back(Q.getNode()); 5489 } 5490 5491 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5492 Created.push_back(Q.getNode()); 5493 5494 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5495 5496 SDValue One = DAG.getConstant(1, dl, VT); 5497 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5498 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5499 } 5500 5501 /// If all values in Values that *don't* match the predicate are same 'splat' 5502 /// value, then replace all values with that splat value. 5503 /// Else, if AlternativeReplacement was provided, then replace all values that 5504 /// do match predicate with AlternativeReplacement value. 5505 static void 5506 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5507 std::function<bool(SDValue)> Predicate, 5508 SDValue AlternativeReplacement = SDValue()) { 5509 SDValue Replacement; 5510 // Is there a value for which the Predicate does *NOT* match? What is it? 5511 auto SplatValue = llvm::find_if_not(Values, Predicate); 5512 if (SplatValue != Values.end()) { 5513 // Does Values consist only of SplatValue's and values matching Predicate? 5514 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5515 return Value == *SplatValue || Predicate(Value); 5516 })) // Then we shall replace values matching predicate with SplatValue. 5517 Replacement = *SplatValue; 5518 } 5519 if (!Replacement) { 5520 // Oops, we did not find the "baseline" splat value. 5521 if (!AlternativeReplacement) 5522 return; // Nothing to do. 5523 // Let's replace with provided value then. 5524 Replacement = AlternativeReplacement; 5525 } 5526 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5527 } 5528 5529 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5530 /// where the divisor is constant and the comparison target is zero, 5531 /// return a DAG expression that will generate the same comparison result 5532 /// using only multiplications, additions and shifts/rotations. 5533 /// Ref: "Hacker's Delight" 10-17. 5534 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5535 SDValue CompTargetNode, 5536 ISD::CondCode Cond, 5537 DAGCombinerInfo &DCI, 5538 const SDLoc &DL) const { 5539 SmallVector<SDNode *, 5> Built; 5540 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5541 DCI, DL, Built)) { 5542 for (SDNode *N : Built) 5543 DCI.AddToWorklist(N); 5544 return Folded; 5545 } 5546 5547 return SDValue(); 5548 } 5549 5550 SDValue 5551 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5552 SDValue CompTargetNode, ISD::CondCode Cond, 5553 DAGCombinerInfo &DCI, const SDLoc &DL, 5554 SmallVectorImpl<SDNode *> &Created) const { 5555 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5556 // - D must be constant, with D = D0 * 2^K where D0 is odd 5557 // - P is the multiplicative inverse of D0 modulo 2^W 5558 // - Q = floor(((2^W) - 1) / D) 5559 // where W is the width of the common type of N and D. 5560 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5561 "Only applicable for (in)equality comparisons."); 5562 5563 SelectionDAG &DAG = DCI.DAG; 5564 5565 EVT VT = REMNode.getValueType(); 5566 EVT SVT = VT.getScalarType(); 5567 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5568 EVT ShSVT = ShVT.getScalarType(); 5569 5570 // If MUL is unavailable, we cannot proceed in any case. 5571 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5572 return SDValue(); 5573 5574 bool ComparingWithAllZeros = true; 5575 bool AllComparisonsWithNonZerosAreTautological = true; 5576 bool HadTautologicalLanes = false; 5577 bool AllLanesAreTautological = true; 5578 bool HadEvenDivisor = false; 5579 bool AllDivisorsArePowerOfTwo = true; 5580 bool HadTautologicalInvertedLanes = false; 5581 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5582 5583 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5584 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5585 if (CDiv->isZero()) 5586 return false; 5587 5588 const APInt &D = CDiv->getAPIntValue(); 5589 const APInt &Cmp = CCmp->getAPIntValue(); 5590 5591 ComparingWithAllZeros &= Cmp.isZero(); 5592 5593 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5594 // if C2 is not less than C1, the comparison is always false. 5595 // But we will only be able to produce the comparison that will give the 5596 // opposive tautological answer. So this lane would need to be fixed up. 5597 bool TautologicalInvertedLane = D.ule(Cmp); 5598 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5599 5600 // If all lanes are tautological (either all divisors are ones, or divisor 5601 // is not greater than the constant we are comparing with), 5602 // we will prefer to avoid the fold. 5603 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5604 HadTautologicalLanes |= TautologicalLane; 5605 AllLanesAreTautological &= TautologicalLane; 5606 5607 // If we are comparing with non-zero, we need'll need to subtract said 5608 // comparison value from the LHS. But there is no point in doing that if 5609 // every lane where we are comparing with non-zero is tautological.. 5610 if (!Cmp.isZero()) 5611 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5612 5613 // Decompose D into D0 * 2^K 5614 unsigned K = D.countTrailingZeros(); 5615 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5616 APInt D0 = D.lshr(K); 5617 5618 // D is even if it has trailing zeros. 5619 HadEvenDivisor |= (K != 0); 5620 // D is a power-of-two if D0 is one. 5621 // If all divisors are power-of-two, we will prefer to avoid the fold. 5622 AllDivisorsArePowerOfTwo &= D0.isOne(); 5623 5624 // P = inv(D0, 2^W) 5625 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5626 unsigned W = D.getBitWidth(); 5627 APInt P = D0.zext(W + 1) 5628 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5629 .trunc(W); 5630 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5631 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5632 5633 // Q = floor((2^W - 1) u/ D) 5634 // R = ((2^W - 1) u% D) 5635 APInt Q, R; 5636 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5637 5638 // If we are comparing with zero, then that comparison constant is okay, 5639 // else it may need to be one less than that. 5640 if (Cmp.ugt(R)) 5641 Q -= 1; 5642 5643 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5644 "We are expecting that K is always less than all-ones for ShSVT"); 5645 5646 // If the lane is tautological the result can be constant-folded. 5647 if (TautologicalLane) { 5648 // Set P and K amount to a bogus values so we can try to splat them. 5649 P = 0; 5650 K = -1; 5651 // And ensure that comparison constant is tautological, 5652 // it will always compare true/false. 5653 Q = -1; 5654 } 5655 5656 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5657 KAmts.push_back( 5658 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5659 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5660 return true; 5661 }; 5662 5663 SDValue N = REMNode.getOperand(0); 5664 SDValue D = REMNode.getOperand(1); 5665 5666 // Collect the values from each element. 5667 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5668 return SDValue(); 5669 5670 // If all lanes are tautological, the result can be constant-folded. 5671 if (AllLanesAreTautological) 5672 return SDValue(); 5673 5674 // If this is a urem by a powers-of-two, avoid the fold since it can be 5675 // best implemented as a bit test. 5676 if (AllDivisorsArePowerOfTwo) 5677 return SDValue(); 5678 5679 SDValue PVal, KVal, QVal; 5680 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5681 if (HadTautologicalLanes) { 5682 // Try to turn PAmts into a splat, since we don't care about the values 5683 // that are currently '0'. If we can't, just keep '0'`s. 5684 turnVectorIntoSplatVector(PAmts, isNullConstant); 5685 // Try to turn KAmts into a splat, since we don't care about the values 5686 // that are currently '-1'. If we can't, change them to '0'`s. 5687 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5688 DAG.getConstant(0, DL, ShSVT)); 5689 } 5690 5691 PVal = DAG.getBuildVector(VT, DL, PAmts); 5692 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5693 QVal = DAG.getBuildVector(VT, DL, QAmts); 5694 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5695 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5696 "Expected matchBinaryPredicate to return one element for " 5697 "SPLAT_VECTORs"); 5698 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5699 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5700 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5701 } else { 5702 PVal = PAmts[0]; 5703 KVal = KAmts[0]; 5704 QVal = QAmts[0]; 5705 } 5706 5707 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5708 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5709 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5710 assert(CompTargetNode.getValueType() == N.getValueType() && 5711 "Expecting that the types on LHS and RHS of comparisons match."); 5712 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5713 } 5714 5715 // (mul N, P) 5716 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5717 Created.push_back(Op0.getNode()); 5718 5719 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5720 // divisors as a performance improvement, since rotating by 0 is a no-op. 5721 if (HadEvenDivisor) { 5722 // We need ROTR to do this. 5723 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5724 return SDValue(); 5725 // UREM: (rotr (mul N, P), K) 5726 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5727 Created.push_back(Op0.getNode()); 5728 } 5729 5730 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5731 SDValue NewCC = 5732 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5733 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5734 if (!HadTautologicalInvertedLanes) 5735 return NewCC; 5736 5737 // If any lanes previously compared always-false, the NewCC will give 5738 // always-true result for them, so we need to fixup those lanes. 5739 // Or the other way around for inequality predicate. 5740 assert(VT.isVector() && "Can/should only get here for vectors."); 5741 Created.push_back(NewCC.getNode()); 5742 5743 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5744 // if C2 is not less than C1, the comparison is always false. 5745 // But we have produced the comparison that will give the 5746 // opposive tautological answer. So these lanes would need to be fixed up. 5747 SDValue TautologicalInvertedChannels = 5748 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5749 Created.push_back(TautologicalInvertedChannels.getNode()); 5750 5751 // NOTE: we avoid letting illegal types through even if we're before legalize 5752 // ops – legalization has a hard time producing good code for this. 5753 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5754 // If we have a vector select, let's replace the comparison results in the 5755 // affected lanes with the correct tautological result. 5756 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5757 DL, SETCCVT, SETCCVT); 5758 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5759 Replacement, NewCC); 5760 } 5761 5762 // Else, we can just invert the comparison result in the appropriate lanes. 5763 // 5764 // NOTE: see the note above VSELECT above. 5765 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5766 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5767 TautologicalInvertedChannels); 5768 5769 return SDValue(); // Don't know how to lower. 5770 } 5771 5772 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5773 /// where the divisor is constant and the comparison target is zero, 5774 /// return a DAG expression that will generate the same comparison result 5775 /// using only multiplications, additions and shifts/rotations. 5776 /// Ref: "Hacker's Delight" 10-17. 5777 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5778 SDValue CompTargetNode, 5779 ISD::CondCode Cond, 5780 DAGCombinerInfo &DCI, 5781 const SDLoc &DL) const { 5782 SmallVector<SDNode *, 7> Built; 5783 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5784 DCI, DL, Built)) { 5785 assert(Built.size() <= 7 && "Max size prediction failed."); 5786 for (SDNode *N : Built) 5787 DCI.AddToWorklist(N); 5788 return Folded; 5789 } 5790 5791 return SDValue(); 5792 } 5793 5794 SDValue 5795 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5796 SDValue CompTargetNode, ISD::CondCode Cond, 5797 DAGCombinerInfo &DCI, const SDLoc &DL, 5798 SmallVectorImpl<SDNode *> &Created) const { 5799 // Fold: 5800 // (seteq/ne (srem N, D), 0) 5801 // To: 5802 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5803 // 5804 // - D must be constant, with D = D0 * 2^K where D0 is odd 5805 // - P is the multiplicative inverse of D0 modulo 2^W 5806 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5807 // - Q = floor((2 * A) / (2^K)) 5808 // where W is the width of the common type of N and D. 5809 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5810 "Only applicable for (in)equality comparisons."); 5811 5812 SelectionDAG &DAG = DCI.DAG; 5813 5814 EVT VT = REMNode.getValueType(); 5815 EVT SVT = VT.getScalarType(); 5816 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5817 EVT ShSVT = ShVT.getScalarType(); 5818 5819 // If we are after ops legalization, and MUL is unavailable, we can not 5820 // proceed. 5821 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5822 return SDValue(); 5823 5824 // TODO: Could support comparing with non-zero too. 5825 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5826 if (!CompTarget || !CompTarget->isZero()) 5827 return SDValue(); 5828 5829 bool HadIntMinDivisor = false; 5830 bool HadOneDivisor = false; 5831 bool AllDivisorsAreOnes = true; 5832 bool HadEvenDivisor = false; 5833 bool NeedToApplyOffset = false; 5834 bool AllDivisorsArePowerOfTwo = true; 5835 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5836 5837 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5838 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5839 if (C->isZero()) 5840 return false; 5841 5842 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5843 5844 // WARNING: this fold is only valid for positive divisors! 5845 APInt D = C->getAPIntValue(); 5846 if (D.isNegative()) 5847 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5848 5849 HadIntMinDivisor |= D.isMinSignedValue(); 5850 5851 // If all divisors are ones, we will prefer to avoid the fold. 5852 HadOneDivisor |= D.isOne(); 5853 AllDivisorsAreOnes &= D.isOne(); 5854 5855 // Decompose D into D0 * 2^K 5856 unsigned K = D.countTrailingZeros(); 5857 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5858 APInt D0 = D.lshr(K); 5859 5860 if (!D.isMinSignedValue()) { 5861 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5862 // we don't care about this lane in this fold, we'll special-handle it. 5863 HadEvenDivisor |= (K != 0); 5864 } 5865 5866 // D is a power-of-two if D0 is one. This includes INT_MIN. 5867 // If all divisors are power-of-two, we will prefer to avoid the fold. 5868 AllDivisorsArePowerOfTwo &= D0.isOne(); 5869 5870 // P = inv(D0, 2^W) 5871 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5872 unsigned W = D.getBitWidth(); 5873 APInt P = D0.zext(W + 1) 5874 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5875 .trunc(W); 5876 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5877 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5878 5879 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5880 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5881 A.clearLowBits(K); 5882 5883 if (!D.isMinSignedValue()) { 5884 // If divisor INT_MIN, then we don't care about this lane in this fold, 5885 // we'll special-handle it. 5886 NeedToApplyOffset |= A != 0; 5887 } 5888 5889 // Q = floor((2 * A) / (2^K)) 5890 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5891 5892 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5893 "We are expecting that A is always less than all-ones for SVT"); 5894 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5895 "We are expecting that K is always less than all-ones for ShSVT"); 5896 5897 // If the divisor is 1 the result can be constant-folded. Likewise, we 5898 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5899 if (D.isOne()) { 5900 // Set P, A and K to a bogus values so we can try to splat them. 5901 P = 0; 5902 A = -1; 5903 K = -1; 5904 5905 // x ?% 1 == 0 <--> true <--> x u<= -1 5906 Q = -1; 5907 } 5908 5909 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5910 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5911 KAmts.push_back( 5912 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5913 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5914 return true; 5915 }; 5916 5917 SDValue N = REMNode.getOperand(0); 5918 SDValue D = REMNode.getOperand(1); 5919 5920 // Collect the values from each element. 5921 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5922 return SDValue(); 5923 5924 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5925 if (AllDivisorsAreOnes) 5926 return SDValue(); 5927 5928 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5929 // since it can be best implemented as a bit test. 5930 if (AllDivisorsArePowerOfTwo) 5931 return SDValue(); 5932 5933 SDValue PVal, AVal, KVal, QVal; 5934 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5935 if (HadOneDivisor) { 5936 // Try to turn PAmts into a splat, since we don't care about the values 5937 // that are currently '0'. If we can't, just keep '0'`s. 5938 turnVectorIntoSplatVector(PAmts, isNullConstant); 5939 // Try to turn AAmts into a splat, since we don't care about the 5940 // values that are currently '-1'. If we can't, change them to '0'`s. 5941 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5942 DAG.getConstant(0, DL, SVT)); 5943 // Try to turn KAmts into a splat, since we don't care about the values 5944 // that are currently '-1'. If we can't, change them to '0'`s. 5945 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5946 DAG.getConstant(0, DL, ShSVT)); 5947 } 5948 5949 PVal = DAG.getBuildVector(VT, DL, PAmts); 5950 AVal = DAG.getBuildVector(VT, DL, AAmts); 5951 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5952 QVal = DAG.getBuildVector(VT, DL, QAmts); 5953 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5954 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5955 QAmts.size() == 1 && 5956 "Expected matchUnaryPredicate to return one element for scalable " 5957 "vectors"); 5958 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5959 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5960 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5961 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5962 } else { 5963 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5964 PVal = PAmts[0]; 5965 AVal = AAmts[0]; 5966 KVal = KAmts[0]; 5967 QVal = QAmts[0]; 5968 } 5969 5970 // (mul N, P) 5971 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5972 Created.push_back(Op0.getNode()); 5973 5974 if (NeedToApplyOffset) { 5975 // We need ADD to do this. 5976 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5977 return SDValue(); 5978 5979 // (add (mul N, P), A) 5980 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5981 Created.push_back(Op0.getNode()); 5982 } 5983 5984 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5985 // divisors as a performance improvement, since rotating by 0 is a no-op. 5986 if (HadEvenDivisor) { 5987 // We need ROTR to do this. 5988 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5989 return SDValue(); 5990 // SREM: (rotr (add (mul N, P), A), K) 5991 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5992 Created.push_back(Op0.getNode()); 5993 } 5994 5995 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5996 SDValue Fold = 5997 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5998 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5999 6000 // If we didn't have lanes with INT_MIN divisor, then we're done. 6001 if (!HadIntMinDivisor) 6002 return Fold; 6003 6004 // That fold is only valid for positive divisors. Which effectively means, 6005 // it is invalid for INT_MIN divisors. So if we have such a lane, 6006 // we must fix-up results for said lanes. 6007 assert(VT.isVector() && "Can/should only get here for vectors."); 6008 6009 // NOTE: we avoid letting illegal types through even if we're before legalize 6010 // ops – legalization has a hard time producing good code for the code that 6011 // follows. 6012 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6013 !isOperationLegalOrCustom(ISD::AND, VT) || 6014 !isOperationLegalOrCustom(Cond, VT) || 6015 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6016 return SDValue(); 6017 6018 Created.push_back(Fold.getNode()); 6019 6020 SDValue IntMin = DAG.getConstant( 6021 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6022 SDValue IntMax = DAG.getConstant( 6023 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6024 SDValue Zero = 6025 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6026 6027 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6028 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6029 Created.push_back(DivisorIsIntMin.getNode()); 6030 6031 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6032 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6033 Created.push_back(Masked.getNode()); 6034 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6035 Created.push_back(MaskedIsZero.getNode()); 6036 6037 // To produce final result we need to blend 2 vectors: 'SetCC' and 6038 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6039 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6040 // constant-folded, select can get lowered to a shuffle with constant mask. 6041 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6042 MaskedIsZero, Fold); 6043 6044 return Blended; 6045 } 6046 6047 bool TargetLowering:: 6048 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6049 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6050 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6051 "be a constant integer"); 6052 return true; 6053 } 6054 6055 return false; 6056 } 6057 6058 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6059 const DenormalMode &Mode) const { 6060 SDLoc DL(Op); 6061 EVT VT = Op.getValueType(); 6062 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6063 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6064 // Testing it with denormal inputs to avoid wrong estimate. 6065 if (Mode.Input == DenormalMode::IEEE) { 6066 // This is specifically a check for the handling of denormal inputs, 6067 // not the result. 6068 6069 // Test = fabs(X) < SmallestNormal 6070 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6071 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6072 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6073 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6074 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6075 } 6076 // Test = X == 0.0 6077 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6078 } 6079 6080 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6081 bool LegalOps, bool OptForSize, 6082 NegatibleCost &Cost, 6083 unsigned Depth) const { 6084 // fneg is removable even if it has multiple uses. 6085 if (Op.getOpcode() == ISD::FNEG) { 6086 Cost = NegatibleCost::Cheaper; 6087 return Op.getOperand(0); 6088 } 6089 6090 // Don't recurse exponentially. 6091 if (Depth > SelectionDAG::MaxRecursionDepth) 6092 return SDValue(); 6093 6094 // Pre-increment recursion depth for use in recursive calls. 6095 ++Depth; 6096 const SDNodeFlags Flags = Op->getFlags(); 6097 const TargetOptions &Options = DAG.getTarget().Options; 6098 EVT VT = Op.getValueType(); 6099 unsigned Opcode = Op.getOpcode(); 6100 6101 // Don't allow anything with multiple uses unless we know it is free. 6102 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6103 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6104 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6105 if (!IsFreeExtend) 6106 return SDValue(); 6107 } 6108 6109 auto RemoveDeadNode = [&](SDValue N) { 6110 if (N && N.getNode()->use_empty()) 6111 DAG.RemoveDeadNode(N.getNode()); 6112 }; 6113 6114 SDLoc DL(Op); 6115 6116 // Because getNegatedExpression can delete nodes we need a handle to keep 6117 // temporary nodes alive in case the recursion manages to create an identical 6118 // node. 6119 std::list<HandleSDNode> Handles; 6120 6121 switch (Opcode) { 6122 case ISD::ConstantFP: { 6123 // Don't invert constant FP values after legalization unless the target says 6124 // the negated constant is legal. 6125 bool IsOpLegal = 6126 isOperationLegal(ISD::ConstantFP, VT) || 6127 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6128 OptForSize); 6129 6130 if (LegalOps && !IsOpLegal) 6131 break; 6132 6133 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6134 V.changeSign(); 6135 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6136 6137 // If we already have the use of the negated floating constant, it is free 6138 // to negate it even it has multiple uses. 6139 if (!Op.hasOneUse() && CFP.use_empty()) 6140 break; 6141 Cost = NegatibleCost::Neutral; 6142 return CFP; 6143 } 6144 case ISD::BUILD_VECTOR: { 6145 // Only permit BUILD_VECTOR of constants. 6146 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6147 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6148 })) 6149 break; 6150 6151 bool IsOpLegal = 6152 (isOperationLegal(ISD::ConstantFP, VT) && 6153 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6154 llvm::all_of(Op->op_values(), [&](SDValue N) { 6155 return N.isUndef() || 6156 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6157 OptForSize); 6158 }); 6159 6160 if (LegalOps && !IsOpLegal) 6161 break; 6162 6163 SmallVector<SDValue, 4> Ops; 6164 for (SDValue C : Op->op_values()) { 6165 if (C.isUndef()) { 6166 Ops.push_back(C); 6167 continue; 6168 } 6169 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6170 V.changeSign(); 6171 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6172 } 6173 Cost = NegatibleCost::Neutral; 6174 return DAG.getBuildVector(VT, DL, Ops); 6175 } 6176 case ISD::FADD: { 6177 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6178 break; 6179 6180 // After operation legalization, it might not be legal to create new FSUBs. 6181 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6182 break; 6183 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6184 6185 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6186 NegatibleCost CostX = NegatibleCost::Expensive; 6187 SDValue NegX = 6188 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6189 // Prevent this node from being deleted by the next call. 6190 if (NegX) 6191 Handles.emplace_back(NegX); 6192 6193 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6194 NegatibleCost CostY = NegatibleCost::Expensive; 6195 SDValue NegY = 6196 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6197 6198 // We're done with the handles. 6199 Handles.clear(); 6200 6201 // Negate the X if its cost is less or equal than Y. 6202 if (NegX && (CostX <= CostY)) { 6203 Cost = CostX; 6204 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6205 if (NegY != N) 6206 RemoveDeadNode(NegY); 6207 return N; 6208 } 6209 6210 // Negate the Y if it is not expensive. 6211 if (NegY) { 6212 Cost = CostY; 6213 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6214 if (NegX != N) 6215 RemoveDeadNode(NegX); 6216 return N; 6217 } 6218 break; 6219 } 6220 case ISD::FSUB: { 6221 // We can't turn -(A-B) into B-A when we honor signed zeros. 6222 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6223 break; 6224 6225 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6226 // fold (fneg (fsub 0, Y)) -> Y 6227 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6228 if (C->isZero()) { 6229 Cost = NegatibleCost::Cheaper; 6230 return Y; 6231 } 6232 6233 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6234 Cost = NegatibleCost::Neutral; 6235 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6236 } 6237 case ISD::FMUL: 6238 case ISD::FDIV: { 6239 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6240 6241 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6242 NegatibleCost CostX = NegatibleCost::Expensive; 6243 SDValue NegX = 6244 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6245 // Prevent this node from being deleted by the next call. 6246 if (NegX) 6247 Handles.emplace_back(NegX); 6248 6249 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6250 NegatibleCost CostY = NegatibleCost::Expensive; 6251 SDValue NegY = 6252 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6253 6254 // We're done with the handles. 6255 Handles.clear(); 6256 6257 // Negate the X if its cost is less or equal than Y. 6258 if (NegX && (CostX <= CostY)) { 6259 Cost = CostX; 6260 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6261 if (NegY != N) 6262 RemoveDeadNode(NegY); 6263 return N; 6264 } 6265 6266 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6267 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6268 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6269 break; 6270 6271 // Negate the Y if it is not expensive. 6272 if (NegY) { 6273 Cost = CostY; 6274 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6275 if (NegX != N) 6276 RemoveDeadNode(NegX); 6277 return N; 6278 } 6279 break; 6280 } 6281 case ISD::FMA: 6282 case ISD::FMAD: { 6283 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6284 break; 6285 6286 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6287 NegatibleCost CostZ = NegatibleCost::Expensive; 6288 SDValue NegZ = 6289 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6290 // Give up if fail to negate the Z. 6291 if (!NegZ) 6292 break; 6293 6294 // Prevent this node from being deleted by the next two calls. 6295 Handles.emplace_back(NegZ); 6296 6297 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6298 NegatibleCost CostX = NegatibleCost::Expensive; 6299 SDValue NegX = 6300 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6301 // Prevent this node from being deleted by the next call. 6302 if (NegX) 6303 Handles.emplace_back(NegX); 6304 6305 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6306 NegatibleCost CostY = NegatibleCost::Expensive; 6307 SDValue NegY = 6308 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6309 6310 // We're done with the handles. 6311 Handles.clear(); 6312 6313 // Negate the X if its cost is less or equal than Y. 6314 if (NegX && (CostX <= CostY)) { 6315 Cost = std::min(CostX, CostZ); 6316 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6317 if (NegY != N) 6318 RemoveDeadNode(NegY); 6319 return N; 6320 } 6321 6322 // Negate the Y if it is not expensive. 6323 if (NegY) { 6324 Cost = std::min(CostY, CostZ); 6325 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6326 if (NegX != N) 6327 RemoveDeadNode(NegX); 6328 return N; 6329 } 6330 break; 6331 } 6332 6333 case ISD::FP_EXTEND: 6334 case ISD::FSIN: 6335 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6336 OptForSize, Cost, Depth)) 6337 return DAG.getNode(Opcode, DL, VT, NegV); 6338 break; 6339 case ISD::FP_ROUND: 6340 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6341 OptForSize, Cost, Depth)) 6342 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6343 break; 6344 } 6345 6346 return SDValue(); 6347 } 6348 6349 //===----------------------------------------------------------------------===// 6350 // Legalization Utilities 6351 //===----------------------------------------------------------------------===// 6352 6353 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6354 SDValue LHS, SDValue RHS, 6355 SmallVectorImpl<SDValue> &Result, 6356 EVT HiLoVT, SelectionDAG &DAG, 6357 MulExpansionKind Kind, SDValue LL, 6358 SDValue LH, SDValue RL, SDValue RH) const { 6359 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6360 Opcode == ISD::SMUL_LOHI); 6361 6362 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6363 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6364 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6365 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6366 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6367 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6368 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6369 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6370 6371 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6372 return false; 6373 6374 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6375 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6376 6377 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6378 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6379 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6380 6381 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6382 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6383 bool Signed) -> bool { 6384 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6385 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6386 Hi = SDValue(Lo.getNode(), 1); 6387 return true; 6388 } 6389 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6390 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6391 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6392 return true; 6393 } 6394 return false; 6395 }; 6396 6397 SDValue Lo, Hi; 6398 6399 if (!LL.getNode() && !RL.getNode() && 6400 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6401 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6402 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6403 } 6404 6405 if (!LL.getNode()) 6406 return false; 6407 6408 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6409 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6410 DAG.MaskedValueIsZero(RHS, HighMask)) { 6411 // The inputs are both zero-extended. 6412 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6413 Result.push_back(Lo); 6414 Result.push_back(Hi); 6415 if (Opcode != ISD::MUL) { 6416 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6417 Result.push_back(Zero); 6418 Result.push_back(Zero); 6419 } 6420 return true; 6421 } 6422 } 6423 6424 if (!VT.isVector() && Opcode == ISD::MUL && 6425 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6426 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6427 // The input values are both sign-extended. 6428 // TODO non-MUL case? 6429 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6430 Result.push_back(Lo); 6431 Result.push_back(Hi); 6432 return true; 6433 } 6434 } 6435 6436 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6437 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6438 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6439 6440 if (!LH.getNode() && !RH.getNode() && 6441 isOperationLegalOrCustom(ISD::SRL, VT) && 6442 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6443 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6444 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6445 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6446 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6447 } 6448 6449 if (!LH.getNode()) 6450 return false; 6451 6452 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6453 return false; 6454 6455 Result.push_back(Lo); 6456 6457 if (Opcode == ISD::MUL) { 6458 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6459 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6460 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6461 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6462 Result.push_back(Hi); 6463 return true; 6464 } 6465 6466 // Compute the full width result. 6467 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6468 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6469 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6470 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6471 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6472 }; 6473 6474 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6475 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6476 return false; 6477 6478 // This is effectively the add part of a multiply-add of half-sized operands, 6479 // so it cannot overflow. 6480 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6481 6482 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6483 return false; 6484 6485 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6486 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6487 6488 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6489 isOperationLegalOrCustom(ISD::ADDE, VT)); 6490 if (UseGlue) 6491 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6492 Merge(Lo, Hi)); 6493 else 6494 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6495 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6496 6497 SDValue Carry = Next.getValue(1); 6498 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6499 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6500 6501 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6502 return false; 6503 6504 if (UseGlue) 6505 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6506 Carry); 6507 else 6508 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6509 Zero, Carry); 6510 6511 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6512 6513 if (Opcode == ISD::SMUL_LOHI) { 6514 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6515 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6516 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6517 6518 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6519 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6520 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6521 } 6522 6523 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6524 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6525 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6526 return true; 6527 } 6528 6529 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6530 SelectionDAG &DAG, MulExpansionKind Kind, 6531 SDValue LL, SDValue LH, SDValue RL, 6532 SDValue RH) const { 6533 SmallVector<SDValue, 2> Result; 6534 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6535 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6536 DAG, Kind, LL, LH, RL, RH); 6537 if (Ok) { 6538 assert(Result.size() == 2); 6539 Lo = Result[0]; 6540 Hi = Result[1]; 6541 } 6542 return Ok; 6543 } 6544 6545 // Check that (every element of) Z is undef or not an exact multiple of BW. 6546 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6547 return ISD::matchUnaryPredicate( 6548 Z, 6549 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6550 true); 6551 } 6552 6553 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6554 SelectionDAG &DAG) const { 6555 EVT VT = Node->getValueType(0); 6556 6557 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6558 !isOperationLegalOrCustom(ISD::SRL, VT) || 6559 !isOperationLegalOrCustom(ISD::SUB, VT) || 6560 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6561 return SDValue(); 6562 6563 SDValue X = Node->getOperand(0); 6564 SDValue Y = Node->getOperand(1); 6565 SDValue Z = Node->getOperand(2); 6566 6567 unsigned BW = VT.getScalarSizeInBits(); 6568 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6569 SDLoc DL(SDValue(Node, 0)); 6570 6571 EVT ShVT = Z.getValueType(); 6572 6573 // If a funnel shift in the other direction is more supported, use it. 6574 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6575 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6576 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6577 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6578 // fshl X, Y, Z -> fshr X, Y, -Z 6579 // fshr X, Y, Z -> fshl X, Y, -Z 6580 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6581 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6582 } else { 6583 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6584 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6585 SDValue One = DAG.getConstant(1, DL, ShVT); 6586 if (IsFSHL) { 6587 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6588 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6589 } else { 6590 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6591 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6592 } 6593 Z = DAG.getNOT(DL, Z, ShVT); 6594 } 6595 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6596 } 6597 6598 SDValue ShX, ShY; 6599 SDValue ShAmt, InvShAmt; 6600 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6601 // fshl: X << C | Y >> (BW - C) 6602 // fshr: X << (BW - C) | Y >> C 6603 // where C = Z % BW is not zero 6604 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6605 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6606 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6607 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6608 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6609 } else { 6610 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6611 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6612 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6613 if (isPowerOf2_32(BW)) { 6614 // Z % BW -> Z & (BW - 1) 6615 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6616 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6617 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6618 } else { 6619 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6620 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6621 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6622 } 6623 6624 SDValue One = DAG.getConstant(1, DL, ShVT); 6625 if (IsFSHL) { 6626 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6627 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6628 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6629 } else { 6630 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6631 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6632 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6633 } 6634 } 6635 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6636 } 6637 6638 // TODO: Merge with expandFunnelShift. 6639 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6640 SelectionDAG &DAG) const { 6641 EVT VT = Node->getValueType(0); 6642 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6643 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6644 SDValue Op0 = Node->getOperand(0); 6645 SDValue Op1 = Node->getOperand(1); 6646 SDLoc DL(SDValue(Node, 0)); 6647 6648 EVT ShVT = Op1.getValueType(); 6649 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6650 6651 // If a rotate in the other direction is more supported, use it. 6652 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6653 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6654 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6655 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6656 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6657 } 6658 6659 if (!AllowVectorOps && VT.isVector() && 6660 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6661 !isOperationLegalOrCustom(ISD::SRL, VT) || 6662 !isOperationLegalOrCustom(ISD::SUB, VT) || 6663 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6664 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6665 return SDValue(); 6666 6667 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6668 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6669 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6670 SDValue ShVal; 6671 SDValue HsVal; 6672 if (isPowerOf2_32(EltSizeInBits)) { 6673 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6674 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6675 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6676 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6677 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6678 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6679 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6680 } else { 6681 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6682 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6683 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6684 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6685 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6686 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6687 SDValue One = DAG.getConstant(1, DL, ShVT); 6688 HsVal = 6689 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6690 } 6691 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6692 } 6693 6694 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6695 SelectionDAG &DAG) const { 6696 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6697 EVT VT = Node->getValueType(0); 6698 unsigned VTBits = VT.getScalarSizeInBits(); 6699 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6700 6701 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6702 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6703 SDValue ShOpLo = Node->getOperand(0); 6704 SDValue ShOpHi = Node->getOperand(1); 6705 SDValue ShAmt = Node->getOperand(2); 6706 EVT ShAmtVT = ShAmt.getValueType(); 6707 EVT ShAmtCCVT = 6708 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6709 SDLoc dl(Node); 6710 6711 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6712 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6713 // away during isel. 6714 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6715 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6716 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6717 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6718 : DAG.getConstant(0, dl, VT); 6719 6720 SDValue Tmp2, Tmp3; 6721 if (IsSHL) { 6722 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6723 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6724 } else { 6725 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6726 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6727 } 6728 6729 // If the shift amount is larger or equal than the width of a part we don't 6730 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6731 // values for large shift amounts. 6732 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6733 DAG.getConstant(VTBits, dl, ShAmtVT)); 6734 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6735 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6736 6737 if (IsSHL) { 6738 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6739 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6740 } else { 6741 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6742 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6743 } 6744 } 6745 6746 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6747 SelectionDAG &DAG) const { 6748 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6749 SDValue Src = Node->getOperand(OpNo); 6750 EVT SrcVT = Src.getValueType(); 6751 EVT DstVT = Node->getValueType(0); 6752 SDLoc dl(SDValue(Node, 0)); 6753 6754 // FIXME: Only f32 to i64 conversions are supported. 6755 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6756 return false; 6757 6758 if (Node->isStrictFPOpcode()) 6759 // When a NaN is converted to an integer a trap is allowed. We can't 6760 // use this expansion here because it would eliminate that trap. Other 6761 // traps are also allowed and cannot be eliminated. See 6762 // IEEE 754-2008 sec 5.8. 6763 return false; 6764 6765 // Expand f32 -> i64 conversion 6766 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6767 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6768 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6769 EVT IntVT = SrcVT.changeTypeToInteger(); 6770 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6771 6772 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6773 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6774 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6775 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6776 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6777 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6778 6779 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6780 6781 SDValue ExponentBits = DAG.getNode( 6782 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6783 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6784 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6785 6786 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6787 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6788 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6789 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6790 6791 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6792 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6793 DAG.getConstant(0x00800000, dl, IntVT)); 6794 6795 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6796 6797 R = DAG.getSelectCC( 6798 dl, Exponent, ExponentLoBit, 6799 DAG.getNode(ISD::SHL, dl, DstVT, R, 6800 DAG.getZExtOrTrunc( 6801 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6802 dl, IntShVT)), 6803 DAG.getNode(ISD::SRL, dl, DstVT, R, 6804 DAG.getZExtOrTrunc( 6805 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6806 dl, IntShVT)), 6807 ISD::SETGT); 6808 6809 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6810 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6811 6812 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6813 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6814 return true; 6815 } 6816 6817 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6818 SDValue &Chain, 6819 SelectionDAG &DAG) const { 6820 SDLoc dl(SDValue(Node, 0)); 6821 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6822 SDValue Src = Node->getOperand(OpNo); 6823 6824 EVT SrcVT = Src.getValueType(); 6825 EVT DstVT = Node->getValueType(0); 6826 EVT SetCCVT = 6827 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6828 EVT DstSetCCVT = 6829 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6830 6831 // Only expand vector types if we have the appropriate vector bit operations. 6832 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6833 ISD::FP_TO_SINT; 6834 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6835 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6836 return false; 6837 6838 // If the maximum float value is smaller then the signed integer range, 6839 // the destination signmask can't be represented by the float, so we can 6840 // just use FP_TO_SINT directly. 6841 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6842 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6843 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6844 if (APFloat::opOverflow & 6845 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6846 if (Node->isStrictFPOpcode()) { 6847 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6848 { Node->getOperand(0), Src }); 6849 Chain = Result.getValue(1); 6850 } else 6851 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6852 return true; 6853 } 6854 6855 // Don't expand it if there isn't cheap fsub instruction. 6856 if (!isOperationLegalOrCustom( 6857 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6858 return false; 6859 6860 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6861 SDValue Sel; 6862 6863 if (Node->isStrictFPOpcode()) { 6864 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6865 Node->getOperand(0), /*IsSignaling*/ true); 6866 Chain = Sel.getValue(1); 6867 } else { 6868 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6869 } 6870 6871 bool Strict = Node->isStrictFPOpcode() || 6872 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6873 6874 if (Strict) { 6875 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6876 // signmask then offset (the result of which should be fully representable). 6877 // Sel = Src < 0x8000000000000000 6878 // FltOfs = select Sel, 0, 0x8000000000000000 6879 // IntOfs = select Sel, 0, 0x8000000000000000 6880 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6881 6882 // TODO: Should any fast-math-flags be set for the FSUB? 6883 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6884 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6885 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6886 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6887 DAG.getConstant(0, dl, DstVT), 6888 DAG.getConstant(SignMask, dl, DstVT)); 6889 SDValue SInt; 6890 if (Node->isStrictFPOpcode()) { 6891 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6892 { Chain, Src, FltOfs }); 6893 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6894 { Val.getValue(1), Val }); 6895 Chain = SInt.getValue(1); 6896 } else { 6897 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6898 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6899 } 6900 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6901 } else { 6902 // Expand based on maximum range of FP_TO_SINT: 6903 // True = fp_to_sint(Src) 6904 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6905 // Result = select (Src < 0x8000000000000000), True, False 6906 6907 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6908 // TODO: Should any fast-math-flags be set for the FSUB? 6909 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6910 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6911 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6912 DAG.getConstant(SignMask, dl, DstVT)); 6913 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6914 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6915 } 6916 return true; 6917 } 6918 6919 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6920 SDValue &Chain, 6921 SelectionDAG &DAG) const { 6922 // This transform is not correct for converting 0 when rounding mode is set 6923 // to round toward negative infinity which will produce -0.0. So disable under 6924 // strictfp. 6925 if (Node->isStrictFPOpcode()) 6926 return false; 6927 6928 SDValue Src = Node->getOperand(0); 6929 EVT SrcVT = Src.getValueType(); 6930 EVT DstVT = Node->getValueType(0); 6931 6932 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6933 return false; 6934 6935 // Only expand vector types if we have the appropriate vector bit operations. 6936 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6937 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6938 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6939 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6940 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6941 return false; 6942 6943 SDLoc dl(SDValue(Node, 0)); 6944 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6945 6946 // Implementation of unsigned i64 to f64 following the algorithm in 6947 // __floatundidf in compiler_rt. This implementation performs rounding 6948 // correctly in all rounding modes with the exception of converting 0 6949 // when rounding toward negative infinity. In that case the fsub will produce 6950 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6951 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6952 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6953 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6954 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6955 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6956 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6957 6958 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6959 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6960 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6961 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6962 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6963 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6964 SDValue HiSub = 6965 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6966 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6967 return true; 6968 } 6969 6970 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6971 SelectionDAG &DAG) const { 6972 SDLoc dl(Node); 6973 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6974 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6975 EVT VT = Node->getValueType(0); 6976 6977 if (VT.isScalableVector()) 6978 report_fatal_error( 6979 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6980 6981 if (isOperationLegalOrCustom(NewOp, VT)) { 6982 SDValue Quiet0 = Node->getOperand(0); 6983 SDValue Quiet1 = Node->getOperand(1); 6984 6985 if (!Node->getFlags().hasNoNaNs()) { 6986 // Insert canonicalizes if it's possible we need to quiet to get correct 6987 // sNaN behavior. 6988 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6989 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6990 Node->getFlags()); 6991 } 6992 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6993 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6994 Node->getFlags()); 6995 } 6996 } 6997 6998 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6999 } 7000 7001 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7002 // instead if there are no NaNs. 7003 if (Node->getFlags().hasNoNaNs()) { 7004 unsigned IEEE2018Op = 7005 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7006 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7007 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7008 Node->getOperand(1), Node->getFlags()); 7009 } 7010 } 7011 7012 // If none of the above worked, but there are no NaNs, then expand to 7013 // a compare/select sequence. This is required for correctness since 7014 // InstCombine might have canonicalized a fcmp+select sequence to a 7015 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7016 // expansion to libcall, we might introduce a link-time dependency 7017 // on libm into a file that originally did not have one. 7018 if (Node->getFlags().hasNoNaNs()) { 7019 ISD::CondCode Pred = 7020 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7021 SDValue Op1 = Node->getOperand(0); 7022 SDValue Op2 = Node->getOperand(1); 7023 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7024 // Copy FMF flags, but always set the no-signed-zeros flag 7025 // as this is implied by the FMINNUM/FMAXNUM semantics. 7026 SDNodeFlags Flags = Node->getFlags(); 7027 Flags.setNoSignedZeros(true); 7028 SelCC->setFlags(Flags); 7029 return SelCC; 7030 } 7031 7032 return SDValue(); 7033 } 7034 7035 // Only expand vector types if we have the appropriate vector bit operations. 7036 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7037 assert(VT.isVector() && "Expected vector type"); 7038 unsigned Len = VT.getScalarSizeInBits(); 7039 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7040 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7041 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7042 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7043 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7044 } 7045 7046 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7047 SDLoc dl(Node); 7048 EVT VT = Node->getValueType(0); 7049 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7050 SDValue Op = Node->getOperand(0); 7051 unsigned Len = VT.getScalarSizeInBits(); 7052 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7053 7054 // TODO: Add support for irregular type lengths. 7055 if (!(Len <= 128 && Len % 8 == 0)) 7056 return SDValue(); 7057 7058 // Only expand vector types if we have the appropriate vector bit operations. 7059 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7060 return SDValue(); 7061 7062 // This is the "best" algorithm from 7063 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7064 SDValue Mask55 = 7065 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7066 SDValue Mask33 = 7067 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7068 SDValue Mask0F = 7069 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7070 SDValue Mask01 = 7071 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7072 7073 // v = v - ((v >> 1) & 0x55555555...) 7074 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7075 DAG.getNode(ISD::AND, dl, VT, 7076 DAG.getNode(ISD::SRL, dl, VT, Op, 7077 DAG.getConstant(1, dl, ShVT)), 7078 Mask55)); 7079 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7080 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7081 DAG.getNode(ISD::AND, dl, VT, 7082 DAG.getNode(ISD::SRL, dl, VT, Op, 7083 DAG.getConstant(2, dl, ShVT)), 7084 Mask33)); 7085 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7086 Op = DAG.getNode(ISD::AND, dl, VT, 7087 DAG.getNode(ISD::ADD, dl, VT, Op, 7088 DAG.getNode(ISD::SRL, dl, VT, Op, 7089 DAG.getConstant(4, dl, ShVT))), 7090 Mask0F); 7091 // v = (v * 0x01010101...) >> (Len - 8) 7092 if (Len > 8) 7093 Op = 7094 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7095 DAG.getConstant(Len - 8, dl, ShVT)); 7096 7097 return Op; 7098 } 7099 7100 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7101 SDLoc dl(Node); 7102 EVT VT = Node->getValueType(0); 7103 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7104 SDValue Op = Node->getOperand(0); 7105 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7106 7107 // If the non-ZERO_UNDEF version is supported we can use that instead. 7108 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7109 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7110 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7111 7112 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7113 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7114 EVT SetCCVT = 7115 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7116 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7117 SDValue Zero = DAG.getConstant(0, dl, VT); 7118 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7119 return DAG.getSelect(dl, VT, SrcIsZero, 7120 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7121 } 7122 7123 // Only expand vector types if we have the appropriate vector bit operations. 7124 // This includes the operations needed to expand CTPOP if it isn't supported. 7125 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7126 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7127 !canExpandVectorCTPOP(*this, VT)) || 7128 !isOperationLegalOrCustom(ISD::SRL, VT) || 7129 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7130 return SDValue(); 7131 7132 // for now, we do this: 7133 // x = x | (x >> 1); 7134 // x = x | (x >> 2); 7135 // ... 7136 // x = x | (x >>16); 7137 // x = x | (x >>32); // for 64-bit input 7138 // return popcount(~x); 7139 // 7140 // Ref: "Hacker's Delight" by Henry Warren 7141 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7142 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7143 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7144 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7145 } 7146 Op = DAG.getNOT(dl, Op, VT); 7147 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7148 } 7149 7150 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7151 SDLoc dl(Node); 7152 EVT VT = Node->getValueType(0); 7153 SDValue Op = Node->getOperand(0); 7154 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7155 7156 // If the non-ZERO_UNDEF version is supported we can use that instead. 7157 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7158 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7159 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7160 7161 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7162 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7163 EVT SetCCVT = 7164 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7165 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7166 SDValue Zero = DAG.getConstant(0, dl, VT); 7167 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7168 return DAG.getSelect(dl, VT, SrcIsZero, 7169 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7170 } 7171 7172 // Only expand vector types if we have the appropriate vector bit operations. 7173 // This includes the operations needed to expand CTPOP if it isn't supported. 7174 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7175 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7176 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7177 !canExpandVectorCTPOP(*this, VT)) || 7178 !isOperationLegalOrCustom(ISD::SUB, VT) || 7179 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7180 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7181 return SDValue(); 7182 7183 // for now, we use: { return popcount(~x & (x - 1)); } 7184 // unless the target has ctlz but not ctpop, in which case we use: 7185 // { return 32 - nlz(~x & (x-1)); } 7186 // Ref: "Hacker's Delight" by Henry Warren 7187 SDValue Tmp = DAG.getNode( 7188 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7189 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7190 7191 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7192 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7193 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7194 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7195 } 7196 7197 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7198 } 7199 7200 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7201 bool IsNegative) const { 7202 SDLoc dl(N); 7203 EVT VT = N->getValueType(0); 7204 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7205 SDValue Op = N->getOperand(0); 7206 7207 // abs(x) -> smax(x,sub(0,x)) 7208 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7209 isOperationLegal(ISD::SMAX, VT)) { 7210 SDValue Zero = DAG.getConstant(0, dl, VT); 7211 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7212 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7213 } 7214 7215 // abs(x) -> umin(x,sub(0,x)) 7216 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7217 isOperationLegal(ISD::UMIN, VT)) { 7218 SDValue Zero = DAG.getConstant(0, dl, VT); 7219 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7220 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7221 } 7222 7223 // 0 - abs(x) -> smin(x, sub(0,x)) 7224 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7225 isOperationLegal(ISD::SMIN, VT)) { 7226 SDValue Zero = DAG.getConstant(0, dl, VT); 7227 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7228 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7229 } 7230 7231 // Only expand vector types if we have the appropriate vector operations. 7232 if (VT.isVector() && 7233 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7234 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7235 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7236 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7237 return SDValue(); 7238 7239 SDValue Shift = 7240 DAG.getNode(ISD::SRA, dl, VT, Op, 7241 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7242 if (!IsNegative) { 7243 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7244 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7245 } 7246 7247 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7248 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7249 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7250 } 7251 7252 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7253 SDLoc dl(N); 7254 EVT VT = N->getValueType(0); 7255 SDValue Op = N->getOperand(0); 7256 7257 if (!VT.isSimple()) 7258 return SDValue(); 7259 7260 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7261 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7262 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7263 default: 7264 return SDValue(); 7265 case MVT::i16: 7266 // Use a rotate by 8. This can be further expanded if necessary. 7267 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7268 case MVT::i32: 7269 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7270 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7271 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7272 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7273 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7274 DAG.getConstant(0xFF0000, dl, VT)); 7275 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7276 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7277 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7278 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7279 case MVT::i64: 7280 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7281 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7282 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7283 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7284 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7285 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7286 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7287 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7288 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7289 DAG.getConstant(255ULL<<48, dl, VT)); 7290 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7291 DAG.getConstant(255ULL<<40, dl, VT)); 7292 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7293 DAG.getConstant(255ULL<<32, dl, VT)); 7294 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7295 DAG.getConstant(255ULL<<24, dl, VT)); 7296 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7297 DAG.getConstant(255ULL<<16, dl, VT)); 7298 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7299 DAG.getConstant(255ULL<<8 , dl, VT)); 7300 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7301 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7302 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7303 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7304 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7305 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7306 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7307 } 7308 } 7309 7310 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7311 SDLoc dl(N); 7312 EVT VT = N->getValueType(0); 7313 SDValue Op = N->getOperand(0); 7314 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7315 unsigned Sz = VT.getScalarSizeInBits(); 7316 7317 SDValue Tmp, Tmp2, Tmp3; 7318 7319 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7320 // and finally the i1 pairs. 7321 // TODO: We can easily support i4/i2 legal types if any target ever does. 7322 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7323 // Create the masks - repeating the pattern every byte. 7324 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7325 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7326 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7327 7328 // BSWAP if the type is wider than a single byte. 7329 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7330 7331 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7332 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7333 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7334 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7335 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7336 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7337 7338 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7339 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7340 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7341 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7342 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7343 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7344 7345 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7346 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7347 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7348 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7349 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7350 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7351 return Tmp; 7352 } 7353 7354 Tmp = DAG.getConstant(0, dl, VT); 7355 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7356 if (I < J) 7357 Tmp2 = 7358 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7359 else 7360 Tmp2 = 7361 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7362 7363 APInt Shift(Sz, 1); 7364 Shift <<= J; 7365 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7366 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7367 } 7368 7369 return Tmp; 7370 } 7371 7372 std::pair<SDValue, SDValue> 7373 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7374 SelectionDAG &DAG) const { 7375 SDLoc SL(LD); 7376 SDValue Chain = LD->getChain(); 7377 SDValue BasePTR = LD->getBasePtr(); 7378 EVT SrcVT = LD->getMemoryVT(); 7379 EVT DstVT = LD->getValueType(0); 7380 ISD::LoadExtType ExtType = LD->getExtensionType(); 7381 7382 if (SrcVT.isScalableVector()) 7383 report_fatal_error("Cannot scalarize scalable vector loads"); 7384 7385 unsigned NumElem = SrcVT.getVectorNumElements(); 7386 7387 EVT SrcEltVT = SrcVT.getScalarType(); 7388 EVT DstEltVT = DstVT.getScalarType(); 7389 7390 // A vector must always be stored in memory as-is, i.e. without any padding 7391 // between the elements, since various code depend on it, e.g. in the 7392 // handling of a bitcast of a vector type to int, which may be done with a 7393 // vector store followed by an integer load. A vector that does not have 7394 // elements that are byte-sized must therefore be stored as an integer 7395 // built out of the extracted vector elements. 7396 if (!SrcEltVT.isByteSized()) { 7397 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7398 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7399 7400 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7401 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7402 7403 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7404 SDValue SrcEltBitMask = DAG.getConstant( 7405 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7406 7407 // Load the whole vector and avoid masking off the top bits as it makes 7408 // the codegen worse. 7409 SDValue Load = 7410 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7411 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7412 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7413 7414 SmallVector<SDValue, 8> Vals; 7415 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7416 unsigned ShiftIntoIdx = 7417 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7418 SDValue ShiftAmount = 7419 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7420 LoadVT, SL, /*LegalTypes=*/false); 7421 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7422 SDValue Elt = 7423 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7424 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7425 7426 if (ExtType != ISD::NON_EXTLOAD) { 7427 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7428 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7429 } 7430 7431 Vals.push_back(Scalar); 7432 } 7433 7434 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7435 return std::make_pair(Value, Load.getValue(1)); 7436 } 7437 7438 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7439 assert(SrcEltVT.isByteSized()); 7440 7441 SmallVector<SDValue, 8> Vals; 7442 SmallVector<SDValue, 8> LoadChains; 7443 7444 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7445 SDValue ScalarLoad = 7446 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7447 LD->getPointerInfo().getWithOffset(Idx * Stride), 7448 SrcEltVT, LD->getOriginalAlign(), 7449 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7450 7451 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7452 7453 Vals.push_back(ScalarLoad.getValue(0)); 7454 LoadChains.push_back(ScalarLoad.getValue(1)); 7455 } 7456 7457 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7458 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7459 7460 return std::make_pair(Value, NewChain); 7461 } 7462 7463 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7464 SelectionDAG &DAG) const { 7465 SDLoc SL(ST); 7466 7467 SDValue Chain = ST->getChain(); 7468 SDValue BasePtr = ST->getBasePtr(); 7469 SDValue Value = ST->getValue(); 7470 EVT StVT = ST->getMemoryVT(); 7471 7472 if (StVT.isScalableVector()) 7473 report_fatal_error("Cannot scalarize scalable vector stores"); 7474 7475 // The type of the data we want to save 7476 EVT RegVT = Value.getValueType(); 7477 EVT RegSclVT = RegVT.getScalarType(); 7478 7479 // The type of data as saved in memory. 7480 EVT MemSclVT = StVT.getScalarType(); 7481 7482 unsigned NumElem = StVT.getVectorNumElements(); 7483 7484 // A vector must always be stored in memory as-is, i.e. without any padding 7485 // between the elements, since various code depend on it, e.g. in the 7486 // handling of a bitcast of a vector type to int, which may be done with a 7487 // vector store followed by an integer load. A vector that does not have 7488 // elements that are byte-sized must therefore be stored as an integer 7489 // built out of the extracted vector elements. 7490 if (!MemSclVT.isByteSized()) { 7491 unsigned NumBits = StVT.getSizeInBits(); 7492 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7493 7494 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7495 7496 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7497 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7498 DAG.getVectorIdxConstant(Idx, SL)); 7499 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7500 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7501 unsigned ShiftIntoIdx = 7502 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7503 SDValue ShiftAmount = 7504 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7505 SDValue ShiftedElt = 7506 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7507 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7508 } 7509 7510 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7511 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7512 ST->getAAInfo()); 7513 } 7514 7515 // Store Stride in bytes 7516 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7517 assert(Stride && "Zero stride!"); 7518 // Extract each of the elements from the original vector and save them into 7519 // memory individually. 7520 SmallVector<SDValue, 8> Stores; 7521 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7522 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7523 DAG.getVectorIdxConstant(Idx, SL)); 7524 7525 SDValue Ptr = 7526 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7527 7528 // This scalar TruncStore may be illegal, but we legalize it later. 7529 SDValue Store = DAG.getTruncStore( 7530 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7531 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7532 ST->getAAInfo()); 7533 7534 Stores.push_back(Store); 7535 } 7536 7537 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7538 } 7539 7540 std::pair<SDValue, SDValue> 7541 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7542 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7543 "unaligned indexed loads not implemented!"); 7544 SDValue Chain = LD->getChain(); 7545 SDValue Ptr = LD->getBasePtr(); 7546 EVT VT = LD->getValueType(0); 7547 EVT LoadedVT = LD->getMemoryVT(); 7548 SDLoc dl(LD); 7549 auto &MF = DAG.getMachineFunction(); 7550 7551 if (VT.isFloatingPoint() || VT.isVector()) { 7552 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7553 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7554 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7555 LoadedVT.isVector()) { 7556 // Scalarize the load and let the individual components be handled. 7557 return scalarizeVectorLoad(LD, DAG); 7558 } 7559 7560 // Expand to a (misaligned) integer load of the same size, 7561 // then bitconvert to floating point or vector. 7562 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7563 LD->getMemOperand()); 7564 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7565 if (LoadedVT != VT) 7566 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7567 ISD::ANY_EXTEND, dl, VT, Result); 7568 7569 return std::make_pair(Result, newLoad.getValue(1)); 7570 } 7571 7572 // Copy the value to a (aligned) stack slot using (unaligned) integer 7573 // loads and stores, then do a (aligned) load from the stack slot. 7574 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7575 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7576 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7577 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7578 7579 // Make sure the stack slot is also aligned for the register type. 7580 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7581 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7582 SmallVector<SDValue, 8> Stores; 7583 SDValue StackPtr = StackBase; 7584 unsigned Offset = 0; 7585 7586 EVT PtrVT = Ptr.getValueType(); 7587 EVT StackPtrVT = StackPtr.getValueType(); 7588 7589 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7590 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7591 7592 // Do all but one copies using the full register width. 7593 for (unsigned i = 1; i < NumRegs; i++) { 7594 // Load one integer register's worth from the original location. 7595 SDValue Load = DAG.getLoad( 7596 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7597 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7598 LD->getAAInfo()); 7599 // Follow the load with a store to the stack slot. Remember the store. 7600 Stores.push_back(DAG.getStore( 7601 Load.getValue(1), dl, Load, StackPtr, 7602 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7603 // Increment the pointers. 7604 Offset += RegBytes; 7605 7606 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7607 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7608 } 7609 7610 // The last copy may be partial. Do an extending load. 7611 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7612 8 * (LoadedBytes - Offset)); 7613 SDValue Load = 7614 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7615 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7616 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7617 LD->getAAInfo()); 7618 // Follow the load with a store to the stack slot. Remember the store. 7619 // On big-endian machines this requires a truncating store to ensure 7620 // that the bits end up in the right place. 7621 Stores.push_back(DAG.getTruncStore( 7622 Load.getValue(1), dl, Load, StackPtr, 7623 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7624 7625 // The order of the stores doesn't matter - say it with a TokenFactor. 7626 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7627 7628 // Finally, perform the original load only redirected to the stack slot. 7629 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7630 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7631 LoadedVT); 7632 7633 // Callers expect a MERGE_VALUES node. 7634 return std::make_pair(Load, TF); 7635 } 7636 7637 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7638 "Unaligned load of unsupported type."); 7639 7640 // Compute the new VT that is half the size of the old one. This is an 7641 // integer MVT. 7642 unsigned NumBits = LoadedVT.getSizeInBits(); 7643 EVT NewLoadedVT; 7644 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7645 NumBits >>= 1; 7646 7647 Align Alignment = LD->getOriginalAlign(); 7648 unsigned IncrementSize = NumBits / 8; 7649 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7650 7651 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7652 if (HiExtType == ISD::NON_EXTLOAD) 7653 HiExtType = ISD::ZEXTLOAD; 7654 7655 // Load the value in two parts 7656 SDValue Lo, Hi; 7657 if (DAG.getDataLayout().isLittleEndian()) { 7658 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7659 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7660 LD->getAAInfo()); 7661 7662 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7663 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7664 LD->getPointerInfo().getWithOffset(IncrementSize), 7665 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7666 LD->getAAInfo()); 7667 } else { 7668 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7669 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7670 LD->getAAInfo()); 7671 7672 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7673 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7674 LD->getPointerInfo().getWithOffset(IncrementSize), 7675 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7676 LD->getAAInfo()); 7677 } 7678 7679 // aggregate the two parts 7680 SDValue ShiftAmount = 7681 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7682 DAG.getDataLayout())); 7683 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7684 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7685 7686 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7687 Hi.getValue(1)); 7688 7689 return std::make_pair(Result, TF); 7690 } 7691 7692 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7693 SelectionDAG &DAG) const { 7694 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7695 "unaligned indexed stores not implemented!"); 7696 SDValue Chain = ST->getChain(); 7697 SDValue Ptr = ST->getBasePtr(); 7698 SDValue Val = ST->getValue(); 7699 EVT VT = Val.getValueType(); 7700 Align Alignment = ST->getOriginalAlign(); 7701 auto &MF = DAG.getMachineFunction(); 7702 EVT StoreMemVT = ST->getMemoryVT(); 7703 7704 SDLoc dl(ST); 7705 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7706 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7707 if (isTypeLegal(intVT)) { 7708 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7709 StoreMemVT.isVector()) { 7710 // Scalarize the store and let the individual components be handled. 7711 SDValue Result = scalarizeVectorStore(ST, DAG); 7712 return Result; 7713 } 7714 // Expand to a bitconvert of the value to the integer type of the 7715 // same size, then a (misaligned) int store. 7716 // FIXME: Does not handle truncating floating point stores! 7717 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7718 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7719 Alignment, ST->getMemOperand()->getFlags()); 7720 return Result; 7721 } 7722 // Do a (aligned) store to a stack slot, then copy from the stack slot 7723 // to the final destination using (unaligned) integer loads and stores. 7724 MVT RegVT = getRegisterType( 7725 *DAG.getContext(), 7726 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7727 EVT PtrVT = Ptr.getValueType(); 7728 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7729 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7730 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7731 7732 // Make sure the stack slot is also aligned for the register type. 7733 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7734 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7735 7736 // Perform the original store, only redirected to the stack slot. 7737 SDValue Store = DAG.getTruncStore( 7738 Chain, dl, Val, StackPtr, 7739 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7740 7741 EVT StackPtrVT = StackPtr.getValueType(); 7742 7743 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7744 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7745 SmallVector<SDValue, 8> Stores; 7746 unsigned Offset = 0; 7747 7748 // Do all but one copies using the full register width. 7749 for (unsigned i = 1; i < NumRegs; i++) { 7750 // Load one integer register's worth from the stack slot. 7751 SDValue Load = DAG.getLoad( 7752 RegVT, dl, Store, StackPtr, 7753 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7754 // Store it to the final location. Remember the store. 7755 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7756 ST->getPointerInfo().getWithOffset(Offset), 7757 ST->getOriginalAlign(), 7758 ST->getMemOperand()->getFlags())); 7759 // Increment the pointers. 7760 Offset += RegBytes; 7761 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7762 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7763 } 7764 7765 // The last store may be partial. Do a truncating store. On big-endian 7766 // machines this requires an extending load from the stack slot to ensure 7767 // that the bits are in the right place. 7768 EVT LoadMemVT = 7769 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7770 7771 // Load from the stack slot. 7772 SDValue Load = DAG.getExtLoad( 7773 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7774 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7775 7776 Stores.push_back( 7777 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7778 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7779 ST->getOriginalAlign(), 7780 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7781 // The order of the stores doesn't matter - say it with a TokenFactor. 7782 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7783 return Result; 7784 } 7785 7786 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7787 "Unaligned store of unknown type."); 7788 // Get the half-size VT 7789 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7790 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7791 unsigned IncrementSize = NumBits / 8; 7792 7793 // Divide the stored value in two parts. 7794 SDValue ShiftAmount = DAG.getConstant( 7795 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7796 SDValue Lo = Val; 7797 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7798 7799 // Store the two parts 7800 SDValue Store1, Store2; 7801 Store1 = DAG.getTruncStore(Chain, dl, 7802 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7803 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7804 ST->getMemOperand()->getFlags()); 7805 7806 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7807 Store2 = DAG.getTruncStore( 7808 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7809 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7810 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7811 7812 SDValue Result = 7813 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7814 return Result; 7815 } 7816 7817 SDValue 7818 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7819 const SDLoc &DL, EVT DataVT, 7820 SelectionDAG &DAG, 7821 bool IsCompressedMemory) const { 7822 SDValue Increment; 7823 EVT AddrVT = Addr.getValueType(); 7824 EVT MaskVT = Mask.getValueType(); 7825 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7826 "Incompatible types of Data and Mask"); 7827 if (IsCompressedMemory) { 7828 if (DataVT.isScalableVector()) 7829 report_fatal_error( 7830 "Cannot currently handle compressed memory with scalable vectors"); 7831 // Incrementing the pointer according to number of '1's in the mask. 7832 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7833 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7834 if (MaskIntVT.getSizeInBits() < 32) { 7835 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7836 MaskIntVT = MVT::i32; 7837 } 7838 7839 // Count '1's with POPCNT. 7840 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7841 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7842 // Scale is an element size in bytes. 7843 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7844 AddrVT); 7845 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7846 } else if (DataVT.isScalableVector()) { 7847 Increment = DAG.getVScale(DL, AddrVT, 7848 APInt(AddrVT.getFixedSizeInBits(), 7849 DataVT.getStoreSize().getKnownMinSize())); 7850 } else 7851 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7852 7853 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7854 } 7855 7856 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7857 EVT VecVT, const SDLoc &dl, 7858 ElementCount SubEC) { 7859 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7860 "Cannot index a scalable vector within a fixed-width vector"); 7861 7862 unsigned NElts = VecVT.getVectorMinNumElements(); 7863 unsigned NumSubElts = SubEC.getKnownMinValue(); 7864 EVT IdxVT = Idx.getValueType(); 7865 7866 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7867 // If this is a constant index and we know the value plus the number of the 7868 // elements in the subvector minus one is less than the minimum number of 7869 // elements then it's safe to return Idx. 7870 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7871 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7872 return Idx; 7873 SDValue VS = 7874 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7875 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7876 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7877 DAG.getConstant(NumSubElts, dl, IdxVT)); 7878 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7879 } 7880 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7881 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7882 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7883 DAG.getConstant(Imm, dl, IdxVT)); 7884 } 7885 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7886 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7887 DAG.getConstant(MaxIndex, dl, IdxVT)); 7888 } 7889 7890 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7891 SDValue VecPtr, EVT VecVT, 7892 SDValue Index) const { 7893 return getVectorSubVecPointer( 7894 DAG, VecPtr, VecVT, 7895 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7896 Index); 7897 } 7898 7899 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7900 SDValue VecPtr, EVT VecVT, 7901 EVT SubVecVT, 7902 SDValue Index) const { 7903 SDLoc dl(Index); 7904 // Make sure the index type is big enough to compute in. 7905 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7906 7907 EVT EltVT = VecVT.getVectorElementType(); 7908 7909 // Calculate the element offset and add it to the pointer. 7910 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7911 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7912 "Converting bits to bytes lost precision"); 7913 assert(SubVecVT.getVectorElementType() == EltVT && 7914 "Sub-vector must be a vector with matching element type"); 7915 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7916 SubVecVT.getVectorElementCount()); 7917 7918 EVT IdxVT = Index.getValueType(); 7919 if (SubVecVT.isScalableVector()) 7920 Index = 7921 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7922 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7923 7924 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7925 DAG.getConstant(EltSize, dl, IdxVT)); 7926 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7927 } 7928 7929 //===----------------------------------------------------------------------===// 7930 // Implementation of Emulated TLS Model 7931 //===----------------------------------------------------------------------===// 7932 7933 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7934 SelectionDAG &DAG) const { 7935 // Access to address of TLS varialbe xyz is lowered to a function call: 7936 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7937 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7938 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7939 SDLoc dl(GA); 7940 7941 ArgListTy Args; 7942 ArgListEntry Entry; 7943 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7944 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7945 StringRef EmuTlsVarName(NameString); 7946 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7947 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7948 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7949 Entry.Ty = VoidPtrType; 7950 Args.push_back(Entry); 7951 7952 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7953 7954 TargetLowering::CallLoweringInfo CLI(DAG); 7955 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7956 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7957 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7958 7959 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7960 // At last for X86 targets, maybe good for other targets too? 7961 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7962 MFI.setAdjustsStack(true); // Is this only for X86 target? 7963 MFI.setHasCalls(true); 7964 7965 assert((GA->getOffset() == 0) && 7966 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7967 return CallResult.first; 7968 } 7969 7970 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7971 SelectionDAG &DAG) const { 7972 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7973 if (!isCtlzFast()) 7974 return SDValue(); 7975 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7976 SDLoc dl(Op); 7977 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7978 if (C->isZero() && CC == ISD::SETEQ) { 7979 EVT VT = Op.getOperand(0).getValueType(); 7980 SDValue Zext = Op.getOperand(0); 7981 if (VT.bitsLT(MVT::i32)) { 7982 VT = MVT::i32; 7983 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7984 } 7985 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7986 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7987 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7988 DAG.getConstant(Log2b, dl, MVT::i32)); 7989 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7990 } 7991 } 7992 return SDValue(); 7993 } 7994 7995 // Convert redundant addressing modes (e.g. scaling is redundant 7996 // when accessing bytes). 7997 ISD::MemIndexType 7998 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7999 SDValue Offsets) const { 8000 bool IsScaledIndex = 8001 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8002 bool IsSignedIndex = 8003 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8004 8005 // Scaling is unimportant for bytes, canonicalize to unscaled. 8006 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8007 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8008 8009 return IndexType; 8010 } 8011 8012 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8013 SDValue Op0 = Node->getOperand(0); 8014 SDValue Op1 = Node->getOperand(1); 8015 EVT VT = Op0.getValueType(); 8016 unsigned Opcode = Node->getOpcode(); 8017 SDLoc DL(Node); 8018 8019 // umin(x,y) -> sub(x,usubsat(x,y)) 8020 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8021 isOperationLegal(ISD::USUBSAT, VT)) { 8022 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8023 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8024 } 8025 8026 // umax(x,y) -> add(x,usubsat(y,x)) 8027 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8028 isOperationLegal(ISD::USUBSAT, VT)) { 8029 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8030 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8031 } 8032 8033 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8034 ISD::CondCode CC; 8035 switch (Opcode) { 8036 default: llvm_unreachable("How did we get here?"); 8037 case ISD::SMAX: CC = ISD::SETGT; break; 8038 case ISD::SMIN: CC = ISD::SETLT; break; 8039 case ISD::UMAX: CC = ISD::SETUGT; break; 8040 case ISD::UMIN: CC = ISD::SETULT; break; 8041 } 8042 8043 // FIXME: Should really try to split the vector in case it's legal on a 8044 // subvector. 8045 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8046 return DAG.UnrollVectorOp(Node); 8047 8048 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8049 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8050 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8051 } 8052 8053 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8054 unsigned Opcode = Node->getOpcode(); 8055 SDValue LHS = Node->getOperand(0); 8056 SDValue RHS = Node->getOperand(1); 8057 EVT VT = LHS.getValueType(); 8058 SDLoc dl(Node); 8059 8060 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8061 assert(VT.isInteger() && "Expected operands to be integers"); 8062 8063 // usub.sat(a, b) -> umax(a, b) - b 8064 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8065 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8066 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8067 } 8068 8069 // uadd.sat(a, b) -> umin(a, ~b) + b 8070 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8071 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8072 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8073 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8074 } 8075 8076 unsigned OverflowOp; 8077 switch (Opcode) { 8078 case ISD::SADDSAT: 8079 OverflowOp = ISD::SADDO; 8080 break; 8081 case ISD::UADDSAT: 8082 OverflowOp = ISD::UADDO; 8083 break; 8084 case ISD::SSUBSAT: 8085 OverflowOp = ISD::SSUBO; 8086 break; 8087 case ISD::USUBSAT: 8088 OverflowOp = ISD::USUBO; 8089 break; 8090 default: 8091 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8092 "addition or subtraction node."); 8093 } 8094 8095 // FIXME: Should really try to split the vector in case it's legal on a 8096 // subvector. 8097 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8098 return DAG.UnrollVectorOp(Node); 8099 8100 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8101 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8102 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8103 SDValue SumDiff = Result.getValue(0); 8104 SDValue Overflow = Result.getValue(1); 8105 SDValue Zero = DAG.getConstant(0, dl, VT); 8106 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8107 8108 if (Opcode == ISD::UADDSAT) { 8109 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8110 // (LHS + RHS) | OverflowMask 8111 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8112 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8113 } 8114 // Overflow ? 0xffff.... : (LHS + RHS) 8115 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8116 } 8117 8118 if (Opcode == ISD::USUBSAT) { 8119 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8120 // (LHS - RHS) & ~OverflowMask 8121 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8122 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8123 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8124 } 8125 // Overflow ? 0 : (LHS - RHS) 8126 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8127 } 8128 8129 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8130 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8131 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8132 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8133 DAG.getConstant(BitWidth - 1, dl, VT)); 8134 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8135 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8136 } 8137 8138 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8139 unsigned Opcode = Node->getOpcode(); 8140 bool IsSigned = Opcode == ISD::SSHLSAT; 8141 SDValue LHS = Node->getOperand(0); 8142 SDValue RHS = Node->getOperand(1); 8143 EVT VT = LHS.getValueType(); 8144 SDLoc dl(Node); 8145 8146 assert((Node->getOpcode() == ISD::SSHLSAT || 8147 Node->getOpcode() == ISD::USHLSAT) && 8148 "Expected a SHLSAT opcode"); 8149 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8150 assert(VT.isInteger() && "Expected operands to be integers"); 8151 8152 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8153 8154 unsigned BW = VT.getScalarSizeInBits(); 8155 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8156 SDValue Orig = 8157 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8158 8159 SDValue SatVal; 8160 if (IsSigned) { 8161 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8162 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8163 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8164 SatMin, SatMax, ISD::SETLT); 8165 } else { 8166 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8167 } 8168 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8169 8170 return Result; 8171 } 8172 8173 SDValue 8174 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8175 assert((Node->getOpcode() == ISD::SMULFIX || 8176 Node->getOpcode() == ISD::UMULFIX || 8177 Node->getOpcode() == ISD::SMULFIXSAT || 8178 Node->getOpcode() == ISD::UMULFIXSAT) && 8179 "Expected a fixed point multiplication opcode"); 8180 8181 SDLoc dl(Node); 8182 SDValue LHS = Node->getOperand(0); 8183 SDValue RHS = Node->getOperand(1); 8184 EVT VT = LHS.getValueType(); 8185 unsigned Scale = Node->getConstantOperandVal(2); 8186 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8187 Node->getOpcode() == ISD::UMULFIXSAT); 8188 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8189 Node->getOpcode() == ISD::SMULFIXSAT); 8190 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8191 unsigned VTSize = VT.getScalarSizeInBits(); 8192 8193 if (!Scale) { 8194 // [us]mul.fix(a, b, 0) -> mul(a, b) 8195 if (!Saturating) { 8196 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8197 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8198 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8199 SDValue Result = 8200 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8201 SDValue Product = Result.getValue(0); 8202 SDValue Overflow = Result.getValue(1); 8203 SDValue Zero = DAG.getConstant(0, dl, VT); 8204 8205 APInt MinVal = APInt::getSignedMinValue(VTSize); 8206 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8207 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8208 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8209 // Xor the inputs, if resulting sign bit is 0 the product will be 8210 // positive, else negative. 8211 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8212 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8213 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8214 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8215 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8216 SDValue Result = 8217 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8218 SDValue Product = Result.getValue(0); 8219 SDValue Overflow = Result.getValue(1); 8220 8221 APInt MaxVal = APInt::getMaxValue(VTSize); 8222 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8223 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8224 } 8225 } 8226 8227 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8228 "Expected scale to be less than the number of bits if signed or at " 8229 "most the number of bits if unsigned."); 8230 assert(LHS.getValueType() == RHS.getValueType() && 8231 "Expected both operands to be the same type"); 8232 8233 // Get the upper and lower bits of the result. 8234 SDValue Lo, Hi; 8235 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8236 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8237 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8238 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8239 Lo = Result.getValue(0); 8240 Hi = Result.getValue(1); 8241 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8242 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8243 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8244 } else if (VT.isVector()) { 8245 return SDValue(); 8246 } else { 8247 report_fatal_error("Unable to expand fixed point multiplication."); 8248 } 8249 8250 if (Scale == VTSize) 8251 // Result is just the top half since we'd be shifting by the width of the 8252 // operand. Overflow impossible so this works for both UMULFIX and 8253 // UMULFIXSAT. 8254 return Hi; 8255 8256 // The result will need to be shifted right by the scale since both operands 8257 // are scaled. The result is given to us in 2 halves, so we only want part of 8258 // both in the result. 8259 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8260 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8261 DAG.getConstant(Scale, dl, ShiftTy)); 8262 if (!Saturating) 8263 return Result; 8264 8265 if (!Signed) { 8266 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8267 // widened multiplication) aren't all zeroes. 8268 8269 // Saturate to max if ((Hi >> Scale) != 0), 8270 // which is the same as if (Hi > ((1 << Scale) - 1)) 8271 APInt MaxVal = APInt::getMaxValue(VTSize); 8272 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8273 dl, VT); 8274 Result = DAG.getSelectCC(dl, Hi, LowMask, 8275 DAG.getConstant(MaxVal, dl, VT), Result, 8276 ISD::SETUGT); 8277 8278 return Result; 8279 } 8280 8281 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8282 // widened multiplication) aren't all ones or all zeroes. 8283 8284 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8285 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8286 8287 if (Scale == 0) { 8288 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8289 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8290 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8291 // Saturated to SatMin if wide product is negative, and SatMax if wide 8292 // product is positive ... 8293 SDValue Zero = DAG.getConstant(0, dl, VT); 8294 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8295 ISD::SETLT); 8296 // ... but only if we overflowed. 8297 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8298 } 8299 8300 // We handled Scale==0 above so all the bits to examine is in Hi. 8301 8302 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8303 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8304 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8305 dl, VT); 8306 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8307 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8308 // which is the same as if (HI < (-1 << (Scale - 1)) 8309 SDValue HighMask = 8310 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8311 dl, VT); 8312 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8313 return Result; 8314 } 8315 8316 SDValue 8317 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8318 SDValue LHS, SDValue RHS, 8319 unsigned Scale, SelectionDAG &DAG) const { 8320 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8321 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8322 "Expected a fixed point division opcode"); 8323 8324 EVT VT = LHS.getValueType(); 8325 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8326 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8327 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8328 8329 // If there is enough room in the type to upscale the LHS or downscale the 8330 // RHS before the division, we can perform it in this type without having to 8331 // resize. For signed operations, the LHS headroom is the number of 8332 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8333 // The headroom for the RHS is the number of trailing zeroes. 8334 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8335 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8336 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8337 8338 // For signed saturating operations, we need to be able to detect true integer 8339 // division overflow; that is, when you have MIN / -EPS. However, this 8340 // is undefined behavior and if we emit divisions that could take such 8341 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8342 // example). 8343 // Avoid this by requiring an extra bit so that we never get this case. 8344 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8345 // signed saturating division, we need to emit a whopping 32-bit division. 8346 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8347 return SDValue(); 8348 8349 unsigned LHSShift = std::min(LHSLead, Scale); 8350 unsigned RHSShift = Scale - LHSShift; 8351 8352 // At this point, we know that if we shift the LHS up by LHSShift and the 8353 // RHS down by RHSShift, we can emit a regular division with a final scaling 8354 // factor of Scale. 8355 8356 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8357 if (LHSShift) 8358 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8359 DAG.getConstant(LHSShift, dl, ShiftTy)); 8360 if (RHSShift) 8361 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8362 DAG.getConstant(RHSShift, dl, ShiftTy)); 8363 8364 SDValue Quot; 8365 if (Signed) { 8366 // For signed operations, if the resulting quotient is negative and the 8367 // remainder is nonzero, subtract 1 from the quotient to round towards 8368 // negative infinity. 8369 SDValue Rem; 8370 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8371 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8372 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8373 if (isTypeLegal(VT) && 8374 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8375 Quot = DAG.getNode(ISD::SDIVREM, dl, 8376 DAG.getVTList(VT, VT), 8377 LHS, RHS); 8378 Rem = Quot.getValue(1); 8379 Quot = Quot.getValue(0); 8380 } else { 8381 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8382 LHS, RHS); 8383 Rem = DAG.getNode(ISD::SREM, dl, VT, 8384 LHS, RHS); 8385 } 8386 SDValue Zero = DAG.getConstant(0, dl, VT); 8387 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8388 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8389 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8390 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8391 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8392 DAG.getConstant(1, dl, VT)); 8393 Quot = DAG.getSelect(dl, VT, 8394 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8395 Sub1, Quot); 8396 } else 8397 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8398 LHS, RHS); 8399 8400 return Quot; 8401 } 8402 8403 void TargetLowering::expandUADDSUBO( 8404 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8405 SDLoc dl(Node); 8406 SDValue LHS = Node->getOperand(0); 8407 SDValue RHS = Node->getOperand(1); 8408 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8409 8410 // If ADD/SUBCARRY is legal, use that instead. 8411 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8412 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8413 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8414 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8415 { LHS, RHS, CarryIn }); 8416 Result = SDValue(NodeCarry.getNode(), 0); 8417 Overflow = SDValue(NodeCarry.getNode(), 1); 8418 return; 8419 } 8420 8421 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8422 LHS.getValueType(), LHS, RHS); 8423 8424 EVT ResultType = Node->getValueType(1); 8425 EVT SetCCType = getSetCCResultType( 8426 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8427 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8428 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8429 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8430 } 8431 8432 void TargetLowering::expandSADDSUBO( 8433 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8434 SDLoc dl(Node); 8435 SDValue LHS = Node->getOperand(0); 8436 SDValue RHS = Node->getOperand(1); 8437 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8438 8439 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8440 LHS.getValueType(), LHS, RHS); 8441 8442 EVT ResultType = Node->getValueType(1); 8443 EVT OType = getSetCCResultType( 8444 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8445 8446 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8447 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8448 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8449 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8450 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8451 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8452 return; 8453 } 8454 8455 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8456 8457 // For an addition, the result should be less than one of the operands (LHS) 8458 // if and only if the other operand (RHS) is negative, otherwise there will 8459 // be overflow. 8460 // For a subtraction, the result should be less than one of the operands 8461 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8462 // otherwise there will be overflow. 8463 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8464 SDValue ConditionRHS = 8465 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8466 8467 Overflow = DAG.getBoolExtOrTrunc( 8468 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8469 ResultType, ResultType); 8470 } 8471 8472 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8473 SDValue &Overflow, SelectionDAG &DAG) const { 8474 SDLoc dl(Node); 8475 EVT VT = Node->getValueType(0); 8476 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8477 SDValue LHS = Node->getOperand(0); 8478 SDValue RHS = Node->getOperand(1); 8479 bool isSigned = Node->getOpcode() == ISD::SMULO; 8480 8481 // For power-of-two multiplications we can use a simpler shift expansion. 8482 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8483 const APInt &C = RHSC->getAPIntValue(); 8484 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8485 if (C.isPowerOf2()) { 8486 // smulo(x, signed_min) is same as umulo(x, signed_min). 8487 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8488 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8489 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8490 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8491 Overflow = DAG.getSetCC(dl, SetCCVT, 8492 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8493 dl, VT, Result, ShiftAmt), 8494 LHS, ISD::SETNE); 8495 return true; 8496 } 8497 } 8498 8499 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8500 if (VT.isVector()) 8501 WideVT = 8502 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8503 8504 SDValue BottomHalf; 8505 SDValue TopHalf; 8506 static const unsigned Ops[2][3] = 8507 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8508 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8509 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8510 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8511 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8512 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8513 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8514 RHS); 8515 TopHalf = BottomHalf.getValue(1); 8516 } else if (isTypeLegal(WideVT)) { 8517 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8518 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8519 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8520 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8521 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8522 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8523 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8524 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8525 } else { 8526 if (VT.isVector()) 8527 return false; 8528 8529 // We can fall back to a libcall with an illegal type for the MUL if we 8530 // have a libcall big enough. 8531 // Also, we can fall back to a division in some cases, but that's a big 8532 // performance hit in the general case. 8533 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8534 if (WideVT == MVT::i16) 8535 LC = RTLIB::MUL_I16; 8536 else if (WideVT == MVT::i32) 8537 LC = RTLIB::MUL_I32; 8538 else if (WideVT == MVT::i64) 8539 LC = RTLIB::MUL_I64; 8540 else if (WideVT == MVT::i128) 8541 LC = RTLIB::MUL_I128; 8542 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8543 8544 SDValue HiLHS; 8545 SDValue HiRHS; 8546 if (isSigned) { 8547 // The high part is obtained by SRA'ing all but one of the bits of low 8548 // part. 8549 unsigned LoSize = VT.getFixedSizeInBits(); 8550 HiLHS = 8551 DAG.getNode(ISD::SRA, dl, VT, LHS, 8552 DAG.getConstant(LoSize - 1, dl, 8553 getPointerTy(DAG.getDataLayout()))); 8554 HiRHS = 8555 DAG.getNode(ISD::SRA, dl, VT, RHS, 8556 DAG.getConstant(LoSize - 1, dl, 8557 getPointerTy(DAG.getDataLayout()))); 8558 } else { 8559 HiLHS = DAG.getConstant(0, dl, VT); 8560 HiRHS = DAG.getConstant(0, dl, VT); 8561 } 8562 8563 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8564 // pre-lowered to the correct types. This all depends upon WideVT not 8565 // being a legal type for the architecture and thus has to be split to 8566 // two arguments. 8567 SDValue Ret; 8568 TargetLowering::MakeLibCallOptions CallOptions; 8569 CallOptions.setSExt(isSigned); 8570 CallOptions.setIsPostTypeLegalization(true); 8571 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8572 // Halves of WideVT are packed into registers in different order 8573 // depending on platform endianness. This is usually handled by 8574 // the C calling convention, but we can't defer to it in 8575 // the legalizer. 8576 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8577 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8578 } else { 8579 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8580 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8581 } 8582 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8583 "Ret value is a collection of constituent nodes holding result."); 8584 if (DAG.getDataLayout().isLittleEndian()) { 8585 // Same as above. 8586 BottomHalf = Ret.getOperand(0); 8587 TopHalf = Ret.getOperand(1); 8588 } else { 8589 BottomHalf = Ret.getOperand(1); 8590 TopHalf = Ret.getOperand(0); 8591 } 8592 } 8593 8594 Result = BottomHalf; 8595 if (isSigned) { 8596 SDValue ShiftAmt = DAG.getConstant( 8597 VT.getScalarSizeInBits() - 1, dl, 8598 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8599 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8600 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8601 } else { 8602 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8603 DAG.getConstant(0, dl, VT), ISD::SETNE); 8604 } 8605 8606 // Truncate the result if SetCC returns a larger type than needed. 8607 EVT RType = Node->getValueType(1); 8608 if (RType.bitsLT(Overflow.getValueType())) 8609 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8610 8611 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8612 "Unexpected result type for S/UMULO legalization"); 8613 return true; 8614 } 8615 8616 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8617 SDLoc dl(Node); 8618 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8619 SDValue Op = Node->getOperand(0); 8620 EVT VT = Op.getValueType(); 8621 8622 if (VT.isScalableVector()) 8623 report_fatal_error( 8624 "Expanding reductions for scalable vectors is undefined."); 8625 8626 // Try to use a shuffle reduction for power of two vectors. 8627 if (VT.isPow2VectorType()) { 8628 while (VT.getVectorNumElements() > 1) { 8629 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8630 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8631 break; 8632 8633 SDValue Lo, Hi; 8634 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8635 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8636 VT = HalfVT; 8637 } 8638 } 8639 8640 EVT EltVT = VT.getVectorElementType(); 8641 unsigned NumElts = VT.getVectorNumElements(); 8642 8643 SmallVector<SDValue, 8> Ops; 8644 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8645 8646 SDValue Res = Ops[0]; 8647 for (unsigned i = 1; i < NumElts; i++) 8648 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8649 8650 // Result type may be wider than element type. 8651 if (EltVT != Node->getValueType(0)) 8652 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8653 return Res; 8654 } 8655 8656 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8657 SDLoc dl(Node); 8658 SDValue AccOp = Node->getOperand(0); 8659 SDValue VecOp = Node->getOperand(1); 8660 SDNodeFlags Flags = Node->getFlags(); 8661 8662 EVT VT = VecOp.getValueType(); 8663 EVT EltVT = VT.getVectorElementType(); 8664 8665 if (VT.isScalableVector()) 8666 report_fatal_error( 8667 "Expanding reductions for scalable vectors is undefined."); 8668 8669 unsigned NumElts = VT.getVectorNumElements(); 8670 8671 SmallVector<SDValue, 8> Ops; 8672 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8673 8674 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8675 8676 SDValue Res = AccOp; 8677 for (unsigned i = 0; i < NumElts; i++) 8678 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8679 8680 return Res; 8681 } 8682 8683 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8684 SelectionDAG &DAG) const { 8685 EVT VT = Node->getValueType(0); 8686 SDLoc dl(Node); 8687 bool isSigned = Node->getOpcode() == ISD::SREM; 8688 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8689 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8690 SDValue Dividend = Node->getOperand(0); 8691 SDValue Divisor = Node->getOperand(1); 8692 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8693 SDVTList VTs = DAG.getVTList(VT, VT); 8694 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8695 return true; 8696 } 8697 if (isOperationLegalOrCustom(DivOpc, VT)) { 8698 // X % Y -> X-X/Y*Y 8699 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8700 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8701 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8702 return true; 8703 } 8704 return false; 8705 } 8706 8707 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8708 SelectionDAG &DAG) const { 8709 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8710 SDLoc dl(SDValue(Node, 0)); 8711 SDValue Src = Node->getOperand(0); 8712 8713 // DstVT is the result type, while SatVT is the size to which we saturate 8714 EVT SrcVT = Src.getValueType(); 8715 EVT DstVT = Node->getValueType(0); 8716 8717 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8718 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8719 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8720 assert(SatWidth <= DstWidth && 8721 "Expected saturation width smaller than result width"); 8722 8723 // Determine minimum and maximum integer values and their corresponding 8724 // floating-point values. 8725 APInt MinInt, MaxInt; 8726 if (IsSigned) { 8727 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8728 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8729 } else { 8730 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8731 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8732 } 8733 8734 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8735 // libcall emission cannot handle this. Large result types will fail. 8736 if (SrcVT == MVT::f16) { 8737 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8738 SrcVT = Src.getValueType(); 8739 } 8740 8741 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8742 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8743 8744 APFloat::opStatus MinStatus = 8745 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8746 APFloat::opStatus MaxStatus = 8747 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8748 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8749 !(MaxStatus & APFloat::opStatus::opInexact); 8750 8751 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8752 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8753 8754 // If the integer bounds are exactly representable as floats and min/max are 8755 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8756 // of comparisons and selects. 8757 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8758 isOperationLegal(ISD::FMAXNUM, SrcVT); 8759 if (AreExactFloatBounds && MinMaxLegal) { 8760 SDValue Clamped = Src; 8761 8762 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8763 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8764 // Clamp by MaxFloat from above. NaN cannot occur. 8765 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8766 // Convert clamped value to integer. 8767 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8768 dl, DstVT, Clamped); 8769 8770 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8771 // which will cast to zero. 8772 if (!IsSigned) 8773 return FpToInt; 8774 8775 // Otherwise, select 0 if Src is NaN. 8776 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8777 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8778 ISD::CondCode::SETUO); 8779 } 8780 8781 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8782 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8783 8784 // Result of direct conversion. The assumption here is that the operation is 8785 // non-trapping and it's fine to apply it to an out-of-range value if we 8786 // select it away later. 8787 SDValue FpToInt = 8788 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8789 8790 SDValue Select = FpToInt; 8791 8792 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8793 // MinInt if Src is NaN. 8794 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8795 ISD::CondCode::SETULT); 8796 // If Src OGT MaxFloat, select MaxInt. 8797 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8798 ISD::CondCode::SETOGT); 8799 8800 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8801 // is already zero. 8802 if (!IsSigned) 8803 return Select; 8804 8805 // Otherwise, select 0 if Src is NaN. 8806 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8807 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8808 } 8809 8810 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8811 SelectionDAG &DAG) const { 8812 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8813 assert(Node->getValueType(0).isScalableVector() && 8814 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8815 8816 EVT VT = Node->getValueType(0); 8817 SDValue V1 = Node->getOperand(0); 8818 SDValue V2 = Node->getOperand(1); 8819 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8820 SDLoc DL(Node); 8821 8822 // Expand through memory thusly: 8823 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8824 // Store V1, Ptr 8825 // Store V2, Ptr + sizeof(V1) 8826 // If (Imm < 0) 8827 // TrailingElts = -Imm 8828 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8829 // else 8830 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8831 // Res = Load Ptr 8832 8833 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8834 8835 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8836 VT.getVectorElementCount() * 2); 8837 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8838 EVT PtrVT = StackPtr.getValueType(); 8839 auto &MF = DAG.getMachineFunction(); 8840 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8841 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8842 8843 // Store the lo part of CONCAT_VECTORS(V1, V2) 8844 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8845 // Store the hi part of CONCAT_VECTORS(V1, V2) 8846 SDValue OffsetToV2 = DAG.getVScale( 8847 DL, PtrVT, 8848 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8849 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8850 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8851 8852 if (Imm >= 0) { 8853 // Load back the required element. getVectorElementPointer takes care of 8854 // clamping the index if it's out-of-bounds. 8855 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8856 // Load the spliced result 8857 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8858 MachinePointerInfo::getUnknownStack(MF)); 8859 } 8860 8861 uint64_t TrailingElts = -Imm; 8862 8863 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8864 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8865 SDValue TrailingBytes = 8866 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8867 8868 if (TrailingElts > VT.getVectorMinNumElements()) { 8869 SDValue VLBytes = DAG.getVScale( 8870 DL, PtrVT, 8871 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8872 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8873 } 8874 8875 // Calculate the start address of the spliced result. 8876 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8877 8878 // Load the spliced result 8879 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8880 MachinePointerInfo::getUnknownStack(MF)); 8881 } 8882 8883 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8884 SDValue &LHS, SDValue &RHS, 8885 SDValue &CC, bool &NeedInvert, 8886 const SDLoc &dl, SDValue &Chain, 8887 bool IsSignaling) const { 8888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8889 MVT OpVT = LHS.getSimpleValueType(); 8890 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8891 NeedInvert = false; 8892 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8893 default: 8894 llvm_unreachable("Unknown condition code action!"); 8895 case TargetLowering::Legal: 8896 // Nothing to do. 8897 break; 8898 case TargetLowering::Expand: { 8899 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8900 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8901 std::swap(LHS, RHS); 8902 CC = DAG.getCondCode(InvCC); 8903 return true; 8904 } 8905 // Swapping operands didn't work. Try inverting the condition. 8906 bool NeedSwap = false; 8907 InvCC = getSetCCInverse(CCCode, OpVT); 8908 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8909 // If inverting the condition is not enough, try swapping operands 8910 // on top of it. 8911 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8912 NeedSwap = true; 8913 } 8914 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8915 CC = DAG.getCondCode(InvCC); 8916 NeedInvert = true; 8917 if (NeedSwap) 8918 std::swap(LHS, RHS); 8919 return true; 8920 } 8921 8922 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8923 unsigned Opc = 0; 8924 switch (CCCode) { 8925 default: 8926 llvm_unreachable("Don't know how to expand this condition!"); 8927 case ISD::SETUO: 8928 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8929 CC1 = ISD::SETUNE; 8930 CC2 = ISD::SETUNE; 8931 Opc = ISD::OR; 8932 break; 8933 } 8934 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8935 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8936 NeedInvert = true; 8937 LLVM_FALLTHROUGH; 8938 case ISD::SETO: 8939 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8940 "If SETO is expanded, SETOEQ must be legal!"); 8941 CC1 = ISD::SETOEQ; 8942 CC2 = ISD::SETOEQ; 8943 Opc = ISD::AND; 8944 break; 8945 case ISD::SETONE: 8946 case ISD::SETUEQ: 8947 // If the SETUO or SETO CC isn't legal, we might be able to use 8948 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8949 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8950 // the operands. 8951 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8952 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8953 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8954 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8955 CC1 = ISD::SETOGT; 8956 CC2 = ISD::SETOLT; 8957 Opc = ISD::OR; 8958 NeedInvert = ((unsigned)CCCode & 0x8U); 8959 break; 8960 } 8961 LLVM_FALLTHROUGH; 8962 case ISD::SETOEQ: 8963 case ISD::SETOGT: 8964 case ISD::SETOGE: 8965 case ISD::SETOLT: 8966 case ISD::SETOLE: 8967 case ISD::SETUNE: 8968 case ISD::SETUGT: 8969 case ISD::SETUGE: 8970 case ISD::SETULT: 8971 case ISD::SETULE: 8972 // If we are floating point, assign and break, otherwise fall through. 8973 if (!OpVT.isInteger()) { 8974 // We can use the 4th bit to tell if we are the unordered 8975 // or ordered version of the opcode. 8976 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8977 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8978 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8979 break; 8980 } 8981 // Fallthrough if we are unsigned integer. 8982 LLVM_FALLTHROUGH; 8983 case ISD::SETLE: 8984 case ISD::SETGT: 8985 case ISD::SETGE: 8986 case ISD::SETLT: 8987 case ISD::SETNE: 8988 case ISD::SETEQ: 8989 // If all combinations of inverting the condition and swapping operands 8990 // didn't work then we have no means to expand the condition. 8991 llvm_unreachable("Don't know how to expand this condition!"); 8992 } 8993 8994 SDValue SetCC1, SetCC2; 8995 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8996 // If we aren't the ordered or unorder operation, 8997 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8998 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8999 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9000 } else { 9001 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9002 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9003 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9004 } 9005 if (Chain) 9006 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9007 SetCC2.getValue(1)); 9008 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9009 RHS = SDValue(); 9010 CC = SDValue(); 9011 return true; 9012 } 9013 } 9014 return false; 9015 } 9016