1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1366 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1367 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && 1368 (Op0.getOperand(0).isUndef() || 1369 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1370 Op0->hasOneUse()) { 1371 unsigned NumSubElts = 1372 Op0.getOperand(1).getValueType().getVectorNumElements(); 1373 unsigned SubIdx = Op0.getConstantOperandVal(2); 1374 APInt DemandedSub = 1375 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1376 KnownBits KnownSubMask = 1377 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1378 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1379 SDValue NewAnd = 1380 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1381 SDValue NewInsert = 1382 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1383 Op0.getOperand(1), Op0.getOperand(2)); 1384 return TLO.CombineTo(Op, NewInsert); 1385 } 1386 } 1387 1388 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1389 Depth + 1)) 1390 return true; 1391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1392 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1393 Known2, TLO, Depth + 1)) 1394 return true; 1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1396 1397 // If all of the demanded bits are known one on one side, return the other. 1398 // These bits cannot contribute to the result of the 'and'. 1399 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1400 return TLO.CombineTo(Op, Op0); 1401 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1402 return TLO.CombineTo(Op, Op1); 1403 // If all of the demanded bits in the inputs are known zeros, return zero. 1404 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1405 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1406 // If the RHS is a constant, see if we can simplify it. 1407 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1408 TLO)) 1409 return true; 1410 // If the operation can be done in a smaller type, do so. 1411 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1412 return true; 1413 1414 // Attempt to avoid multi-use ops if we don't need anything from them. 1415 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1416 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1417 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1418 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1419 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1420 if (DemandedOp0 || DemandedOp1) { 1421 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1422 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1423 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1424 return TLO.CombineTo(Op, NewOp); 1425 } 1426 } 1427 1428 Known &= Known2; 1429 break; 1430 } 1431 case ISD::OR: { 1432 SDValue Op0 = Op.getOperand(0); 1433 SDValue Op1 = Op.getOperand(1); 1434 1435 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1436 Depth + 1)) 1437 return true; 1438 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1439 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1440 Known2, TLO, Depth + 1)) 1441 return true; 1442 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1443 1444 // If all of the demanded bits are known zero on one side, return the other. 1445 // These bits cannot contribute to the result of the 'or'. 1446 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1447 return TLO.CombineTo(Op, Op0); 1448 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1449 return TLO.CombineTo(Op, Op1); 1450 // If the RHS is a constant, see if we can simplify it. 1451 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1452 return true; 1453 // If the operation can be done in a smaller type, do so. 1454 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1455 return true; 1456 1457 // Attempt to avoid multi-use ops if we don't need anything from them. 1458 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1459 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1460 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1461 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1462 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1463 if (DemandedOp0 || DemandedOp1) { 1464 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1465 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1466 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1467 return TLO.CombineTo(Op, NewOp); 1468 } 1469 } 1470 1471 Known |= Known2; 1472 break; 1473 } 1474 case ISD::XOR: { 1475 SDValue Op0 = Op.getOperand(0); 1476 SDValue Op1 = Op.getOperand(1); 1477 1478 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1479 Depth + 1)) 1480 return true; 1481 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1482 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1483 Depth + 1)) 1484 return true; 1485 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1486 1487 // If all of the demanded bits are known zero on one side, return the other. 1488 // These bits cannot contribute to the result of the 'xor'. 1489 if (DemandedBits.isSubsetOf(Known.Zero)) 1490 return TLO.CombineTo(Op, Op0); 1491 if (DemandedBits.isSubsetOf(Known2.Zero)) 1492 return TLO.CombineTo(Op, Op1); 1493 // If the operation can be done in a smaller type, do so. 1494 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1495 return true; 1496 1497 // If all of the unknown bits are known to be zero on one side or the other 1498 // turn this into an *inclusive* or. 1499 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1500 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1501 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1502 1503 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1504 if (C) { 1505 // If one side is a constant, and all of the set bits in the constant are 1506 // also known set on the other side, turn this into an AND, as we know 1507 // the bits will be cleared. 1508 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1509 // NB: it is okay if more bits are known than are requested 1510 if (C->getAPIntValue() == Known2.One) { 1511 SDValue ANDC = 1512 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1513 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1514 } 1515 1516 // If the RHS is a constant, see if we can change it. Don't alter a -1 1517 // constant because that's a 'not' op, and that is better for combining 1518 // and codegen. 1519 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1520 // We're flipping all demanded bits. Flip the undemanded bits too. 1521 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1522 return TLO.CombineTo(Op, New); 1523 } 1524 } 1525 1526 // If we can't turn this into a 'not', try to shrink the constant. 1527 if (!C || !C->isAllOnes()) 1528 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1529 return true; 1530 1531 // Attempt to avoid multi-use ops if we don't need anything from them. 1532 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1533 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1534 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1535 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1536 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1537 if (DemandedOp0 || DemandedOp1) { 1538 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1539 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1540 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1541 return TLO.CombineTo(Op, NewOp); 1542 } 1543 } 1544 1545 Known ^= Known2; 1546 break; 1547 } 1548 case ISD::SELECT: 1549 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1550 Depth + 1)) 1551 return true; 1552 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1553 Depth + 1)) 1554 return true; 1555 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1556 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1557 1558 // If the operands are constants, see if we can simplify them. 1559 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1560 return true; 1561 1562 // Only known if known in both the LHS and RHS. 1563 Known = KnownBits::commonBits(Known, Known2); 1564 break; 1565 case ISD::VSELECT: 1566 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1567 Known, TLO, Depth + 1)) 1568 return true; 1569 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1570 Known2, TLO, Depth + 1)) 1571 return true; 1572 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1573 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1574 1575 // Only known if known in both the LHS and RHS. 1576 Known = KnownBits::commonBits(Known, Known2); 1577 break; 1578 case ISD::SELECT_CC: 1579 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1580 Depth + 1)) 1581 return true; 1582 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1583 Depth + 1)) 1584 return true; 1585 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1586 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1587 1588 // If the operands are constants, see if we can simplify them. 1589 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1590 return true; 1591 1592 // Only known if known in both the LHS and RHS. 1593 Known = KnownBits::commonBits(Known, Known2); 1594 break; 1595 case ISD::SETCC: { 1596 SDValue Op0 = Op.getOperand(0); 1597 SDValue Op1 = Op.getOperand(1); 1598 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1599 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1600 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1601 // -1, we may be able to bypass the setcc. 1602 if (DemandedBits.isSignMask() && 1603 Op0.getScalarValueSizeInBits() == BitWidth && 1604 getBooleanContents(Op0.getValueType()) == 1605 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1606 // If we're testing X < 0, then this compare isn't needed - just use X! 1607 // FIXME: We're limiting to integer types here, but this should also work 1608 // if we don't care about FP signed-zero. The use of SETLT with FP means 1609 // that we don't care about NaNs. 1610 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1611 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 // TODO: Should we check for other forms of sign-bit comparisons? 1615 // Examples: X <= -1, X >= 0 1616 } 1617 if (getBooleanContents(Op0.getValueType()) == 1618 TargetLowering::ZeroOrOneBooleanContent && 1619 BitWidth > 1) 1620 Known.Zero.setBitsFrom(1); 1621 break; 1622 } 1623 case ISD::SHL: { 1624 SDValue Op0 = Op.getOperand(0); 1625 SDValue Op1 = Op.getOperand(1); 1626 EVT ShiftVT = Op1.getValueType(); 1627 1628 if (const APInt *SA = 1629 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1630 unsigned ShAmt = SA->getZExtValue(); 1631 if (ShAmt == 0) 1632 return TLO.CombineTo(Op, Op0); 1633 1634 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1635 // single shift. We can do this if the bottom bits (which are shifted 1636 // out) are never demanded. 1637 // TODO - support non-uniform vector amounts. 1638 if (Op0.getOpcode() == ISD::SRL) { 1639 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1640 if (const APInt *SA2 = 1641 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1642 unsigned C1 = SA2->getZExtValue(); 1643 unsigned Opc = ISD::SHL; 1644 int Diff = ShAmt - C1; 1645 if (Diff < 0) { 1646 Diff = -Diff; 1647 Opc = ISD::SRL; 1648 } 1649 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1652 } 1653 } 1654 } 1655 1656 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1657 // are not demanded. This will likely allow the anyext to be folded away. 1658 // TODO - support non-uniform vector amounts. 1659 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1660 SDValue InnerOp = Op0.getOperand(0); 1661 EVT InnerVT = InnerOp.getValueType(); 1662 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1663 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1664 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1665 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1666 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1667 ShTy = InnerVT; 1668 SDValue NarrowShl = 1669 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1670 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1671 return TLO.CombineTo( 1672 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1673 } 1674 1675 // Repeat the SHL optimization above in cases where an extension 1676 // intervenes: (shl (anyext (shr x, c1)), c2) to 1677 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1678 // aren't demanded (as above) and that the shifted upper c1 bits of 1679 // x aren't demanded. 1680 // TODO - support non-uniform vector amounts. 1681 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1682 InnerOp.hasOneUse()) { 1683 if (const APInt *SA2 = 1684 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1685 unsigned InnerShAmt = SA2->getZExtValue(); 1686 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1687 DemandedBits.getActiveBits() <= 1688 (InnerBits - InnerShAmt + ShAmt) && 1689 DemandedBits.countTrailingZeros() >= ShAmt) { 1690 SDValue NewSA = 1691 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1692 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1693 InnerOp.getOperand(0)); 1694 return TLO.CombineTo( 1695 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1696 } 1697 } 1698 } 1699 } 1700 1701 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1702 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1703 Depth + 1)) 1704 return true; 1705 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1706 Known.Zero <<= ShAmt; 1707 Known.One <<= ShAmt; 1708 // low bits known zero. 1709 Known.Zero.setLowBits(ShAmt); 1710 1711 // Attempt to avoid multi-use ops if we don't need anything from them. 1712 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1713 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1714 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1715 if (DemandedOp0) { 1716 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1717 return TLO.CombineTo(Op, NewOp); 1718 } 1719 } 1720 1721 // Try shrinking the operation as long as the shift amount will still be 1722 // in range. 1723 if ((ShAmt < DemandedBits.getActiveBits()) && 1724 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1725 return true; 1726 } 1727 1728 // If we are only demanding sign bits then we can use the shift source 1729 // directly. 1730 if (const APInt *MaxSA = 1731 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1732 unsigned ShAmt = MaxSA->getZExtValue(); 1733 unsigned NumSignBits = 1734 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1735 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1736 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1737 return TLO.CombineTo(Op, Op0); 1738 } 1739 break; 1740 } 1741 case ISD::SRL: { 1742 SDValue Op0 = Op.getOperand(0); 1743 SDValue Op1 = Op.getOperand(1); 1744 EVT ShiftVT = Op1.getValueType(); 1745 1746 // Try to match AVG patterns. 1747 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1748 DemandedElts, Depth + 1)) 1749 return TLO.CombineTo(Op, AVG); 1750 1751 if (const APInt *SA = 1752 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1753 unsigned ShAmt = SA->getZExtValue(); 1754 if (ShAmt == 0) 1755 return TLO.CombineTo(Op, Op0); 1756 1757 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1758 // single shift. We can do this if the top bits (which are shifted out) 1759 // are never demanded. 1760 // TODO - support non-uniform vector amounts. 1761 if (Op0.getOpcode() == ISD::SHL) { 1762 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1763 if (const APInt *SA2 = 1764 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1765 unsigned C1 = SA2->getZExtValue(); 1766 unsigned Opc = ISD::SRL; 1767 int Diff = ShAmt - C1; 1768 if (Diff < 0) { 1769 Diff = -Diff; 1770 Opc = ISD::SHL; 1771 } 1772 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1773 return TLO.CombineTo( 1774 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1775 } 1776 } 1777 } 1778 1779 APInt InDemandedMask = (DemandedBits << ShAmt); 1780 1781 // If the shift is exact, then it does demand the low bits (and knows that 1782 // they are zero). 1783 if (Op->getFlags().hasExact()) 1784 InDemandedMask.setLowBits(ShAmt); 1785 1786 // Compute the new bits that are at the top now. 1787 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1788 Depth + 1)) 1789 return true; 1790 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1791 Known.Zero.lshrInPlace(ShAmt); 1792 Known.One.lshrInPlace(ShAmt); 1793 // High bits known zero. 1794 Known.Zero.setHighBits(ShAmt); 1795 } 1796 break; 1797 } 1798 case ISD::SRA: { 1799 SDValue Op0 = Op.getOperand(0); 1800 SDValue Op1 = Op.getOperand(1); 1801 EVT ShiftVT = Op1.getValueType(); 1802 1803 // If we only want bits that already match the signbit then we don't need 1804 // to shift. 1805 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1806 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1807 NumHiDemandedBits) 1808 return TLO.CombineTo(Op, Op0); 1809 1810 // If this is an arithmetic shift right and only the low-bit is set, we can 1811 // always convert this into a logical shr, even if the shift amount is 1812 // variable. The low bit of the shift cannot be an input sign bit unless 1813 // the shift amount is >= the size of the datatype, which is undefined. 1814 if (DemandedBits.isOne()) 1815 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1816 1817 // Try to match AVG patterns. 1818 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1819 DemandedElts, Depth + 1)) 1820 return TLO.CombineTo(Op, AVG); 1821 1822 if (const APInt *SA = 1823 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1824 unsigned ShAmt = SA->getZExtValue(); 1825 if (ShAmt == 0) 1826 return TLO.CombineTo(Op, Op0); 1827 1828 APInt InDemandedMask = (DemandedBits << ShAmt); 1829 1830 // If the shift is exact, then it does demand the low bits (and knows that 1831 // they are zero). 1832 if (Op->getFlags().hasExact()) 1833 InDemandedMask.setLowBits(ShAmt); 1834 1835 // If any of the demanded bits are produced by the sign extension, we also 1836 // demand the input sign bit. 1837 if (DemandedBits.countLeadingZeros() < ShAmt) 1838 InDemandedMask.setSignBit(); 1839 1840 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1841 Depth + 1)) 1842 return true; 1843 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1844 Known.Zero.lshrInPlace(ShAmt); 1845 Known.One.lshrInPlace(ShAmt); 1846 1847 // If the input sign bit is known to be zero, or if none of the top bits 1848 // are demanded, turn this into an unsigned shift right. 1849 if (Known.Zero[BitWidth - ShAmt - 1] || 1850 DemandedBits.countLeadingZeros() >= ShAmt) { 1851 SDNodeFlags Flags; 1852 Flags.setExact(Op->getFlags().hasExact()); 1853 return TLO.CombineTo( 1854 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1855 } 1856 1857 int Log2 = DemandedBits.exactLogBase2(); 1858 if (Log2 >= 0) { 1859 // The bit must come from the sign. 1860 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1861 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1862 } 1863 1864 if (Known.One[BitWidth - ShAmt - 1]) 1865 // New bits are known one. 1866 Known.One.setHighBits(ShAmt); 1867 1868 // Attempt to avoid multi-use ops if we don't need anything from them. 1869 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1870 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1871 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1872 if (DemandedOp0) { 1873 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1874 return TLO.CombineTo(Op, NewOp); 1875 } 1876 } 1877 } 1878 break; 1879 } 1880 case ISD::FSHL: 1881 case ISD::FSHR: { 1882 SDValue Op0 = Op.getOperand(0); 1883 SDValue Op1 = Op.getOperand(1); 1884 SDValue Op2 = Op.getOperand(2); 1885 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1886 1887 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1888 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1889 1890 // For fshl, 0-shift returns the 1st arg. 1891 // For fshr, 0-shift returns the 2nd arg. 1892 if (Amt == 0) { 1893 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1894 Known, TLO, Depth + 1)) 1895 return true; 1896 break; 1897 } 1898 1899 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1900 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1901 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1902 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1903 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1904 Depth + 1)) 1905 return true; 1906 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1907 Depth + 1)) 1908 return true; 1909 1910 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1911 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1912 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1913 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1914 Known.One |= Known2.One; 1915 Known.Zero |= Known2.Zero; 1916 1917 // Attempt to avoid multi-use ops if we don't need anything from them. 1918 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1919 !DemandedElts.isAllOnes()) { 1920 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1921 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1922 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1923 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1924 if (DemandedOp0 || DemandedOp1) { 1925 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1926 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1927 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1928 DemandedOp1, Op2); 1929 return TLO.CombineTo(Op, NewOp); 1930 } 1931 } 1932 } 1933 1934 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1935 if (isPowerOf2_32(BitWidth)) { 1936 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1937 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1938 Known2, TLO, Depth + 1)) 1939 return true; 1940 } 1941 break; 1942 } 1943 case ISD::ROTL: 1944 case ISD::ROTR: { 1945 SDValue Op0 = Op.getOperand(0); 1946 SDValue Op1 = Op.getOperand(1); 1947 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1948 1949 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1950 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1951 return TLO.CombineTo(Op, Op0); 1952 1953 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1954 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1955 unsigned RevAmt = BitWidth - Amt; 1956 1957 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1958 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1959 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1960 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1961 Depth + 1)) 1962 return true; 1963 1964 // rot*(x, 0) --> x 1965 if (Amt == 0) 1966 return TLO.CombineTo(Op, Op0); 1967 1968 // See if we don't demand either half of the rotated bits. 1969 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1970 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1971 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1972 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1973 } 1974 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1975 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1976 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1977 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1978 } 1979 } 1980 1981 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1982 if (isPowerOf2_32(BitWidth)) { 1983 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1984 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1985 Depth + 1)) 1986 return true; 1987 } 1988 break; 1989 } 1990 case ISD::UMIN: { 1991 // Check if one arg is always less than (or equal) to the other arg. 1992 SDValue Op0 = Op.getOperand(0); 1993 SDValue Op1 = Op.getOperand(1); 1994 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1995 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1996 Known = KnownBits::umin(Known0, Known1); 1997 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1998 return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1); 1999 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2000 return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1); 2001 break; 2002 } 2003 case ISD::UMAX: { 2004 // Check if one arg is always greater than (or equal) to the other arg. 2005 SDValue Op0 = Op.getOperand(0); 2006 SDValue Op1 = Op.getOperand(1); 2007 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2008 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2009 Known = KnownBits::umax(Known0, Known1); 2010 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2011 return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1); 2012 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2013 return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1); 2014 break; 2015 } 2016 case ISD::BITREVERSE: { 2017 SDValue Src = Op.getOperand(0); 2018 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2019 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2020 Depth + 1)) 2021 return true; 2022 Known.One = Known2.One.reverseBits(); 2023 Known.Zero = Known2.Zero.reverseBits(); 2024 break; 2025 } 2026 case ISD::BSWAP: { 2027 SDValue Src = Op.getOperand(0); 2028 2029 // If the only bits demanded come from one byte of the bswap result, 2030 // just shift the input byte into position to eliminate the bswap. 2031 unsigned NLZ = DemandedBits.countLeadingZeros(); 2032 unsigned NTZ = DemandedBits.countTrailingZeros(); 2033 2034 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2035 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2036 // have 14 leading zeros, round to 8. 2037 NLZ = alignDown(NLZ, 8); 2038 NTZ = alignDown(NTZ, 8); 2039 // If we need exactly one byte, we can do this transformation. 2040 if (BitWidth - NLZ - NTZ == 8) { 2041 // Replace this with either a left or right shift to get the byte into 2042 // the right place. 2043 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2044 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2045 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2046 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2047 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2048 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2049 return TLO.CombineTo(Op, NewOp); 2050 } 2051 } 2052 2053 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2054 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2055 Depth + 1)) 2056 return true; 2057 Known.One = Known2.One.byteSwap(); 2058 Known.Zero = Known2.Zero.byteSwap(); 2059 break; 2060 } 2061 case ISD::CTPOP: { 2062 // If only 1 bit is demanded, replace with PARITY as long as we're before 2063 // op legalization. 2064 // FIXME: Limit to scalars for now. 2065 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2066 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2067 Op.getOperand(0))); 2068 2069 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2070 break; 2071 } 2072 case ISD::SIGN_EXTEND_INREG: { 2073 SDValue Op0 = Op.getOperand(0); 2074 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2075 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2076 2077 // If we only care about the highest bit, don't bother shifting right. 2078 if (DemandedBits.isSignMask()) { 2079 unsigned MinSignedBits = 2080 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2081 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2082 // However if the input is already sign extended we expect the sign 2083 // extension to be dropped altogether later and do not simplify. 2084 if (!AlreadySignExtended) { 2085 // Compute the correct shift amount type, which must be getShiftAmountTy 2086 // for scalar types after legalization. 2087 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2088 getShiftAmountTy(VT, DL)); 2089 return TLO.CombineTo(Op, 2090 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2091 } 2092 } 2093 2094 // If none of the extended bits are demanded, eliminate the sextinreg. 2095 if (DemandedBits.getActiveBits() <= ExVTBits) 2096 return TLO.CombineTo(Op, Op0); 2097 2098 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2099 2100 // Since the sign extended bits are demanded, we know that the sign 2101 // bit is demanded. 2102 InputDemandedBits.setBit(ExVTBits - 1); 2103 2104 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2105 Depth + 1)) 2106 return true; 2107 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2108 2109 // If the sign bit of the input is known set or clear, then we know the 2110 // top bits of the result. 2111 2112 // If the input sign bit is known zero, convert this into a zero extension. 2113 if (Known.Zero[ExVTBits - 1]) 2114 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2115 2116 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2117 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2118 Known.One.setBitsFrom(ExVTBits); 2119 Known.Zero &= Mask; 2120 } else { // Input sign bit unknown 2121 Known.Zero &= Mask; 2122 Known.One &= Mask; 2123 } 2124 break; 2125 } 2126 case ISD::BUILD_PAIR: { 2127 EVT HalfVT = Op.getOperand(0).getValueType(); 2128 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2129 2130 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2131 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2132 2133 KnownBits KnownLo, KnownHi; 2134 2135 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2136 return true; 2137 2138 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2139 return true; 2140 2141 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2142 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2143 2144 Known.One = KnownLo.One.zext(BitWidth) | 2145 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2146 break; 2147 } 2148 case ISD::ZERO_EXTEND: 2149 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2150 SDValue Src = Op.getOperand(0); 2151 EVT SrcVT = Src.getValueType(); 2152 unsigned InBits = SrcVT.getScalarSizeInBits(); 2153 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2154 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2155 2156 // If none of the top bits are demanded, convert this into an any_extend. 2157 if (DemandedBits.getActiveBits() <= InBits) { 2158 // If we only need the non-extended bits of the bottom element 2159 // then we can just bitcast to the result. 2160 if (IsLE && IsVecInReg && DemandedElts == 1 && 2161 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2162 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2163 2164 unsigned Opc = 2165 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2166 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2168 } 2169 2170 APInt InDemandedBits = DemandedBits.trunc(InBits); 2171 APInt InDemandedElts = DemandedElts.zext(InElts); 2172 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2173 Depth + 1)) 2174 return true; 2175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2176 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2177 Known = Known.zext(BitWidth); 2178 2179 // Attempt to avoid multi-use ops if we don't need anything from them. 2180 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2181 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2182 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2183 break; 2184 } 2185 case ISD::SIGN_EXTEND: 2186 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2187 SDValue Src = Op.getOperand(0); 2188 EVT SrcVT = Src.getValueType(); 2189 unsigned InBits = SrcVT.getScalarSizeInBits(); 2190 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2191 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2192 2193 // If none of the top bits are demanded, convert this into an any_extend. 2194 if (DemandedBits.getActiveBits() <= InBits) { 2195 // If we only need the non-extended bits of the bottom element 2196 // then we can just bitcast to the result. 2197 if (IsLE && IsVecInReg && DemandedElts == 1 && 2198 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2199 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2200 2201 unsigned Opc = 2202 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2203 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2204 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2205 } 2206 2207 APInt InDemandedBits = DemandedBits.trunc(InBits); 2208 APInt InDemandedElts = DemandedElts.zext(InElts); 2209 2210 // Since some of the sign extended bits are demanded, we know that the sign 2211 // bit is demanded. 2212 InDemandedBits.setBit(InBits - 1); 2213 2214 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2215 Depth + 1)) 2216 return true; 2217 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2218 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2219 2220 // If the sign bit is known one, the top bits match. 2221 Known = Known.sext(BitWidth); 2222 2223 // If the sign bit is known zero, convert this to a zero extend. 2224 if (Known.isNonNegative()) { 2225 unsigned Opc = 2226 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2227 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2228 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2229 } 2230 2231 // Attempt to avoid multi-use ops if we don't need anything from them. 2232 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2233 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2234 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2235 break; 2236 } 2237 case ISD::ANY_EXTEND: 2238 case ISD::ANY_EXTEND_VECTOR_INREG: { 2239 SDValue Src = Op.getOperand(0); 2240 EVT SrcVT = Src.getValueType(); 2241 unsigned InBits = SrcVT.getScalarSizeInBits(); 2242 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2243 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2244 2245 // If we only need the bottom element then we can just bitcast. 2246 // TODO: Handle ANY_EXTEND? 2247 if (IsLE && IsVecInReg && DemandedElts == 1 && 2248 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2249 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2250 2251 APInt InDemandedBits = DemandedBits.trunc(InBits); 2252 APInt InDemandedElts = DemandedElts.zext(InElts); 2253 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2254 Depth + 1)) 2255 return true; 2256 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2257 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2258 Known = Known.anyext(BitWidth); 2259 2260 // Attempt to avoid multi-use ops if we don't need anything from them. 2261 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2262 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2263 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2264 break; 2265 } 2266 case ISD::TRUNCATE: { 2267 SDValue Src = Op.getOperand(0); 2268 2269 // Simplify the input, using demanded bit information, and compute the known 2270 // zero/one bits live out. 2271 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2272 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2273 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2274 Depth + 1)) 2275 return true; 2276 Known = Known.trunc(BitWidth); 2277 2278 // Attempt to avoid multi-use ops if we don't need anything from them. 2279 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2280 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2281 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2282 2283 // If the input is only used by this truncate, see if we can shrink it based 2284 // on the known demanded bits. 2285 if (Src.getNode()->hasOneUse()) { 2286 switch (Src.getOpcode()) { 2287 default: 2288 break; 2289 case ISD::SRL: 2290 // Shrink SRL by a constant if none of the high bits shifted in are 2291 // demanded. 2292 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2293 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2294 // undesirable. 2295 break; 2296 2297 const APInt *ShAmtC = 2298 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2299 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2300 break; 2301 uint64_t ShVal = ShAmtC->getZExtValue(); 2302 2303 APInt HighBits = 2304 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2305 HighBits.lshrInPlace(ShVal); 2306 HighBits = HighBits.trunc(BitWidth); 2307 2308 if (!(HighBits & DemandedBits)) { 2309 // None of the shifted in bits are needed. Add a truncate of the 2310 // shift input, then shift it. 2311 SDValue NewShAmt = TLO.DAG.getConstant( 2312 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2313 SDValue NewTrunc = 2314 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2315 return TLO.CombineTo( 2316 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2317 } 2318 break; 2319 } 2320 } 2321 2322 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2323 break; 2324 } 2325 case ISD::AssertZext: { 2326 // AssertZext demands all of the high bits, plus any of the low bits 2327 // demanded by its users. 2328 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2329 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2330 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2331 TLO, Depth + 1)) 2332 return true; 2333 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2334 2335 Known.Zero |= ~InMask; 2336 break; 2337 } 2338 case ISD::EXTRACT_VECTOR_ELT: { 2339 SDValue Src = Op.getOperand(0); 2340 SDValue Idx = Op.getOperand(1); 2341 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2342 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2343 2344 if (SrcEltCnt.isScalable()) 2345 return false; 2346 2347 // Demand the bits from every vector element without a constant index. 2348 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2349 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2350 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2351 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2352 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2353 2354 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2355 // anything about the extended bits. 2356 APInt DemandedSrcBits = DemandedBits; 2357 if (BitWidth > EltBitWidth) 2358 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2359 2360 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2361 Depth + 1)) 2362 return true; 2363 2364 // Attempt to avoid multi-use ops if we don't need anything from them. 2365 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2366 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2367 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2368 SDValue NewOp = 2369 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2370 return TLO.CombineTo(Op, NewOp); 2371 } 2372 } 2373 2374 Known = Known2; 2375 if (BitWidth > EltBitWidth) 2376 Known = Known.anyext(BitWidth); 2377 break; 2378 } 2379 case ISD::BITCAST: { 2380 SDValue Src = Op.getOperand(0); 2381 EVT SrcVT = Src.getValueType(); 2382 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2383 2384 // If this is an FP->Int bitcast and if the sign bit is the only 2385 // thing demanded, turn this into a FGETSIGN. 2386 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2387 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2388 SrcVT.isFloatingPoint()) { 2389 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2390 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2391 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2392 SrcVT != MVT::f128) { 2393 // Cannot eliminate/lower SHL for f128 yet. 2394 EVT Ty = OpVTLegal ? VT : MVT::i32; 2395 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2396 // place. We expect the SHL to be eliminated by other optimizations. 2397 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2398 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2399 if (!OpVTLegal && OpVTSizeInBits > 32) 2400 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2401 unsigned ShVal = Op.getValueSizeInBits() - 1; 2402 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2403 return TLO.CombineTo(Op, 2404 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2405 } 2406 } 2407 2408 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2409 // Demand the elt/bit if any of the original elts/bits are demanded. 2410 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2411 unsigned Scale = BitWidth / NumSrcEltBits; 2412 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2413 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2414 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2415 for (unsigned i = 0; i != Scale; ++i) { 2416 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2417 unsigned BitOffset = EltOffset * NumSrcEltBits; 2418 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2419 if (!Sub.isZero()) { 2420 DemandedSrcBits |= Sub; 2421 for (unsigned j = 0; j != NumElts; ++j) 2422 if (DemandedElts[j]) 2423 DemandedSrcElts.setBit((j * Scale) + i); 2424 } 2425 } 2426 2427 APInt KnownSrcUndef, KnownSrcZero; 2428 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2429 KnownSrcZero, TLO, Depth + 1)) 2430 return true; 2431 2432 KnownBits KnownSrcBits; 2433 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2434 KnownSrcBits, TLO, Depth + 1)) 2435 return true; 2436 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2437 // TODO - bigendian once we have test coverage. 2438 unsigned Scale = NumSrcEltBits / BitWidth; 2439 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2440 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2441 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2442 for (unsigned i = 0; i != NumElts; ++i) 2443 if (DemandedElts[i]) { 2444 unsigned Offset = (i % Scale) * BitWidth; 2445 DemandedSrcBits.insertBits(DemandedBits, Offset); 2446 DemandedSrcElts.setBit(i / Scale); 2447 } 2448 2449 if (SrcVT.isVector()) { 2450 APInt KnownSrcUndef, KnownSrcZero; 2451 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2452 KnownSrcZero, TLO, Depth + 1)) 2453 return true; 2454 } 2455 2456 KnownBits KnownSrcBits; 2457 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2458 KnownSrcBits, TLO, Depth + 1)) 2459 return true; 2460 } 2461 2462 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2463 // recursive call where Known may be useful to the caller. 2464 if (Depth > 0) { 2465 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2466 return false; 2467 } 2468 break; 2469 } 2470 case ISD::MUL: 2471 if (DemandedBits.isPowerOf2()) { 2472 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2473 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2474 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2475 unsigned CTZ = DemandedBits.countTrailingZeros(); 2476 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2477 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2478 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2479 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2480 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2481 return TLO.CombineTo(Op, Shl); 2482 } 2483 } 2484 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2485 // X * X is odd iff X is odd. 2486 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2487 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2488 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2489 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2490 return TLO.CombineTo(Op, And1); 2491 } 2492 LLVM_FALLTHROUGH; 2493 case ISD::ADD: 2494 case ISD::SUB: { 2495 // Add, Sub, and Mul don't demand any bits in positions beyond that 2496 // of the highest bit demanded of them. 2497 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2498 SDNodeFlags Flags = Op.getNode()->getFlags(); 2499 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2500 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2501 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2502 Depth + 1) || 2503 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2504 Depth + 1) || 2505 // See if the operation should be performed at a smaller bit width. 2506 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2507 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2508 // Disable the nsw and nuw flags. We can no longer guarantee that we 2509 // won't wrap after simplification. 2510 Flags.setNoSignedWrap(false); 2511 Flags.setNoUnsignedWrap(false); 2512 Op->setFlags(Flags); 2513 } 2514 return true; 2515 } 2516 2517 // Attempt to avoid multi-use ops if we don't need anything from them. 2518 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2519 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2520 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2521 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2522 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2523 if (DemandedOp0 || DemandedOp1) { 2524 Flags.setNoSignedWrap(false); 2525 Flags.setNoUnsignedWrap(false); 2526 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2527 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2528 SDValue NewOp = 2529 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2530 return TLO.CombineTo(Op, NewOp); 2531 } 2532 } 2533 2534 // If we have a constant operand, we may be able to turn it into -1 if we 2535 // do not demand the high bits. This can make the constant smaller to 2536 // encode, allow more general folding, or match specialized instruction 2537 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2538 // is probably not useful (and could be detrimental). 2539 ConstantSDNode *C = isConstOrConstSplat(Op1); 2540 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2541 if (C && !C->isAllOnes() && !C->isOne() && 2542 (C->getAPIntValue() | HighMask).isAllOnes()) { 2543 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2544 // Disable the nsw and nuw flags. We can no longer guarantee that we 2545 // won't wrap after simplification. 2546 Flags.setNoSignedWrap(false); 2547 Flags.setNoUnsignedWrap(false); 2548 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2549 return TLO.CombineTo(Op, NewOp); 2550 } 2551 2552 // Match a multiply with a disguised negated-power-of-2 and convert to a 2553 // an equivalent shift-left amount. 2554 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2555 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2556 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2557 return 0; 2558 2559 // Don't touch opaque constants. Also, ignore zero and power-of-2 2560 // multiplies. Those will get folded later. 2561 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2562 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2563 !MulC->getAPIntValue().isPowerOf2()) { 2564 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2565 if (UnmaskedC.isNegatedPowerOf2()) 2566 return (-UnmaskedC).logBase2(); 2567 } 2568 return 0; 2569 }; 2570 2571 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2572 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2573 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2574 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2575 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2576 return TLO.CombineTo(Op, Res); 2577 }; 2578 2579 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2580 if (Op.getOpcode() == ISD::ADD) { 2581 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2582 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2583 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2584 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2585 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2586 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2587 } 2588 if (Op.getOpcode() == ISD::SUB) { 2589 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2590 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2591 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2592 } 2593 } 2594 2595 LLVM_FALLTHROUGH; 2596 } 2597 default: 2598 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2599 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2600 Known, TLO, Depth)) 2601 return true; 2602 break; 2603 } 2604 2605 // Just use computeKnownBits to compute output bits. 2606 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2607 break; 2608 } 2609 2610 // If we know the value of all of the demanded bits, return this as a 2611 // constant. 2612 if (!isTargetCanonicalConstantNode(Op) && 2613 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2614 // Avoid folding to a constant if any OpaqueConstant is involved. 2615 const SDNode *N = Op.getNode(); 2616 for (SDNode *Op : 2617 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2618 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2619 if (C->isOpaque()) 2620 return false; 2621 } 2622 if (VT.isInteger()) 2623 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2624 if (VT.isFloatingPoint()) 2625 return TLO.CombineTo( 2626 Op, 2627 TLO.DAG.getConstantFP( 2628 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2629 } 2630 2631 return false; 2632 } 2633 2634 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2635 const APInt &DemandedElts, 2636 DAGCombinerInfo &DCI) const { 2637 SelectionDAG &DAG = DCI.DAG; 2638 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2639 !DCI.isBeforeLegalizeOps()); 2640 2641 APInt KnownUndef, KnownZero; 2642 bool Simplified = 2643 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2644 if (Simplified) { 2645 DCI.AddToWorklist(Op.getNode()); 2646 DCI.CommitTargetLoweringOpt(TLO); 2647 } 2648 2649 return Simplified; 2650 } 2651 2652 /// Given a vector binary operation and known undefined elements for each input 2653 /// operand, compute whether each element of the output is undefined. 2654 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2655 const APInt &UndefOp0, 2656 const APInt &UndefOp1) { 2657 EVT VT = BO.getValueType(); 2658 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2659 "Vector binop only"); 2660 2661 EVT EltVT = VT.getVectorElementType(); 2662 unsigned NumElts = VT.getVectorNumElements(); 2663 assert(UndefOp0.getBitWidth() == NumElts && 2664 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2665 2666 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2667 const APInt &UndefVals) { 2668 if (UndefVals[Index]) 2669 return DAG.getUNDEF(EltVT); 2670 2671 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2672 // Try hard to make sure that the getNode() call is not creating temporary 2673 // nodes. Ignore opaque integers because they do not constant fold. 2674 SDValue Elt = BV->getOperand(Index); 2675 auto *C = dyn_cast<ConstantSDNode>(Elt); 2676 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2677 return Elt; 2678 } 2679 2680 return SDValue(); 2681 }; 2682 2683 APInt KnownUndef = APInt::getZero(NumElts); 2684 for (unsigned i = 0; i != NumElts; ++i) { 2685 // If both inputs for this element are either constant or undef and match 2686 // the element type, compute the constant/undef result for this element of 2687 // the vector. 2688 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2689 // not handle FP constants. The code within getNode() should be refactored 2690 // to avoid the danger of creating a bogus temporary node here. 2691 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2692 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2693 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2694 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2695 KnownUndef.setBit(i); 2696 } 2697 return KnownUndef; 2698 } 2699 2700 bool TargetLowering::SimplifyDemandedVectorElts( 2701 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2702 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2703 bool AssumeSingleUse) const { 2704 EVT VT = Op.getValueType(); 2705 unsigned Opcode = Op.getOpcode(); 2706 APInt DemandedElts = OriginalDemandedElts; 2707 unsigned NumElts = DemandedElts.getBitWidth(); 2708 assert(VT.isVector() && "Expected vector op"); 2709 2710 KnownUndef = KnownZero = APInt::getZero(NumElts); 2711 2712 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2713 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2714 return false; 2715 2716 // TODO: For now we assume we know nothing about scalable vectors. 2717 if (VT.isScalableVector()) 2718 return false; 2719 2720 assert(VT.getVectorNumElements() == NumElts && 2721 "Mask size mismatches value type element count!"); 2722 2723 // Undef operand. 2724 if (Op.isUndef()) { 2725 KnownUndef.setAllBits(); 2726 return false; 2727 } 2728 2729 // If Op has other users, assume that all elements are needed. 2730 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2731 DemandedElts.setAllBits(); 2732 2733 // Not demanding any elements from Op. 2734 if (DemandedElts == 0) { 2735 KnownUndef.setAllBits(); 2736 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2737 } 2738 2739 // Limit search depth. 2740 if (Depth >= SelectionDAG::MaxRecursionDepth) 2741 return false; 2742 2743 SDLoc DL(Op); 2744 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2745 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2746 2747 // Helper for demanding the specified elements and all the bits of both binary 2748 // operands. 2749 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2750 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2751 TLO.DAG, Depth + 1); 2752 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2753 TLO.DAG, Depth + 1); 2754 if (NewOp0 || NewOp1) { 2755 SDValue NewOp = TLO.DAG.getNode( 2756 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2757 return TLO.CombineTo(Op, NewOp); 2758 } 2759 return false; 2760 }; 2761 2762 switch (Opcode) { 2763 case ISD::SCALAR_TO_VECTOR: { 2764 if (!DemandedElts[0]) { 2765 KnownUndef.setAllBits(); 2766 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2767 } 2768 SDValue ScalarSrc = Op.getOperand(0); 2769 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2770 SDValue Src = ScalarSrc.getOperand(0); 2771 SDValue Idx = ScalarSrc.getOperand(1); 2772 EVT SrcVT = Src.getValueType(); 2773 2774 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2775 2776 if (SrcEltCnt.isScalable()) 2777 return false; 2778 2779 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2780 if (isNullConstant(Idx)) { 2781 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2782 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2783 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2784 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2785 TLO, Depth + 1)) 2786 return true; 2787 } 2788 } 2789 KnownUndef.setHighBits(NumElts - 1); 2790 break; 2791 } 2792 case ISD::BITCAST: { 2793 SDValue Src = Op.getOperand(0); 2794 EVT SrcVT = Src.getValueType(); 2795 2796 // We only handle vectors here. 2797 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2798 if (!SrcVT.isVector()) 2799 break; 2800 2801 // Fast handling of 'identity' bitcasts. 2802 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2803 if (NumSrcElts == NumElts) 2804 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2805 KnownZero, TLO, Depth + 1); 2806 2807 APInt SrcDemandedElts, SrcZero, SrcUndef; 2808 2809 // Bitcast from 'large element' src vector to 'small element' vector, we 2810 // must demand a source element if any DemandedElt maps to it. 2811 if ((NumElts % NumSrcElts) == 0) { 2812 unsigned Scale = NumElts / NumSrcElts; 2813 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2814 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2815 TLO, Depth + 1)) 2816 return true; 2817 2818 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2819 // of the large element. 2820 // TODO - bigendian once we have test coverage. 2821 if (IsLE) { 2822 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2823 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2824 for (unsigned i = 0; i != NumElts; ++i) 2825 if (DemandedElts[i]) { 2826 unsigned Ofs = (i % Scale) * EltSizeInBits; 2827 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2828 } 2829 2830 KnownBits Known; 2831 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2832 TLO, Depth + 1)) 2833 return true; 2834 2835 // The bitcast has split each wide element into a number of 2836 // narrow subelements. We have just computed the Known bits 2837 // for wide elements. See if element splitting results in 2838 // some subelements being zero. Only for demanded elements! 2839 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2840 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2841 .isAllOnes()) 2842 continue; 2843 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2844 unsigned Elt = Scale * SrcElt + SubElt; 2845 if (DemandedElts[Elt]) 2846 KnownZero.setBit(Elt); 2847 } 2848 } 2849 } 2850 2851 // If the src element is zero/undef then all the output elements will be - 2852 // only demanded elements are guaranteed to be correct. 2853 for (unsigned i = 0; i != NumSrcElts; ++i) { 2854 if (SrcDemandedElts[i]) { 2855 if (SrcZero[i]) 2856 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2857 if (SrcUndef[i]) 2858 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2859 } 2860 } 2861 } 2862 2863 // Bitcast from 'small element' src vector to 'large element' vector, we 2864 // demand all smaller source elements covered by the larger demanded element 2865 // of this vector. 2866 if ((NumSrcElts % NumElts) == 0) { 2867 unsigned Scale = NumSrcElts / NumElts; 2868 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2869 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2870 TLO, Depth + 1)) 2871 return true; 2872 2873 // If all the src elements covering an output element are zero/undef, then 2874 // the output element will be as well, assuming it was demanded. 2875 for (unsigned i = 0; i != NumElts; ++i) { 2876 if (DemandedElts[i]) { 2877 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2878 KnownZero.setBit(i); 2879 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2880 KnownUndef.setBit(i); 2881 } 2882 } 2883 } 2884 break; 2885 } 2886 case ISD::BUILD_VECTOR: { 2887 // Check all elements and simplify any unused elements with UNDEF. 2888 if (!DemandedElts.isAllOnes()) { 2889 // Don't simplify BROADCASTS. 2890 if (llvm::any_of(Op->op_values(), 2891 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2892 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2893 bool Updated = false; 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2896 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2897 KnownUndef.setBit(i); 2898 Updated = true; 2899 } 2900 } 2901 if (Updated) 2902 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2903 } 2904 } 2905 for (unsigned i = 0; i != NumElts; ++i) { 2906 SDValue SrcOp = Op.getOperand(i); 2907 if (SrcOp.isUndef()) { 2908 KnownUndef.setBit(i); 2909 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2910 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2911 KnownZero.setBit(i); 2912 } 2913 } 2914 break; 2915 } 2916 case ISD::CONCAT_VECTORS: { 2917 EVT SubVT = Op.getOperand(0).getValueType(); 2918 unsigned NumSubVecs = Op.getNumOperands(); 2919 unsigned NumSubElts = SubVT.getVectorNumElements(); 2920 for (unsigned i = 0; i != NumSubVecs; ++i) { 2921 SDValue SubOp = Op.getOperand(i); 2922 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2923 APInt SubUndef, SubZero; 2924 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2925 Depth + 1)) 2926 return true; 2927 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2928 KnownZero.insertBits(SubZero, i * NumSubElts); 2929 } 2930 2931 // Attempt to avoid multi-use ops if we don't need anything from them. 2932 if (!DemandedElts.isAllOnes()) { 2933 bool FoundNewSub = false; 2934 SmallVector<SDValue, 2> DemandedSubOps; 2935 for (unsigned i = 0; i != NumSubVecs; ++i) { 2936 SDValue SubOp = Op.getOperand(i); 2937 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2938 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2939 SubOp, SubElts, TLO.DAG, Depth + 1); 2940 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2941 FoundNewSub = NewSubOp ? true : FoundNewSub; 2942 } 2943 if (FoundNewSub) { 2944 SDValue NewOp = 2945 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2946 return TLO.CombineTo(Op, NewOp); 2947 } 2948 } 2949 break; 2950 } 2951 case ISD::INSERT_SUBVECTOR: { 2952 // Demand any elements from the subvector and the remainder from the src its 2953 // inserted into. 2954 SDValue Src = Op.getOperand(0); 2955 SDValue Sub = Op.getOperand(1); 2956 uint64_t Idx = Op.getConstantOperandVal(2); 2957 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2958 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2959 APInt DemandedSrcElts = DemandedElts; 2960 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2961 2962 APInt SubUndef, SubZero; 2963 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2964 Depth + 1)) 2965 return true; 2966 2967 // If none of the src operand elements are demanded, replace it with undef. 2968 if (!DemandedSrcElts && !Src.isUndef()) 2969 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2970 TLO.DAG.getUNDEF(VT), Sub, 2971 Op.getOperand(2))); 2972 2973 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2974 TLO, Depth + 1)) 2975 return true; 2976 KnownUndef.insertBits(SubUndef, Idx); 2977 KnownZero.insertBits(SubZero, Idx); 2978 2979 // Attempt to avoid multi-use ops if we don't need anything from them. 2980 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2981 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2982 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2983 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2984 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2985 if (NewSrc || NewSub) { 2986 NewSrc = NewSrc ? NewSrc : Src; 2987 NewSub = NewSub ? NewSub : Sub; 2988 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2989 NewSub, Op.getOperand(2)); 2990 return TLO.CombineTo(Op, NewOp); 2991 } 2992 } 2993 break; 2994 } 2995 case ISD::EXTRACT_SUBVECTOR: { 2996 // Offset the demanded elts by the subvector index. 2997 SDValue Src = Op.getOperand(0); 2998 if (Src.getValueType().isScalableVector()) 2999 break; 3000 uint64_t Idx = Op.getConstantOperandVal(1); 3001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3002 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3003 3004 APInt SrcUndef, SrcZero; 3005 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3006 Depth + 1)) 3007 return true; 3008 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3009 KnownZero = SrcZero.extractBits(NumElts, Idx); 3010 3011 // Attempt to avoid multi-use ops if we don't need anything from them. 3012 if (!DemandedElts.isAllOnes()) { 3013 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3014 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3015 if (NewSrc) { 3016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3017 Op.getOperand(1)); 3018 return TLO.CombineTo(Op, NewOp); 3019 } 3020 } 3021 break; 3022 } 3023 case ISD::INSERT_VECTOR_ELT: { 3024 SDValue Vec = Op.getOperand(0); 3025 SDValue Scl = Op.getOperand(1); 3026 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3027 3028 // For a legal, constant insertion index, if we don't need this insertion 3029 // then strip it, else remove it from the demanded elts. 3030 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3031 unsigned Idx = CIdx->getZExtValue(); 3032 if (!DemandedElts[Idx]) 3033 return TLO.CombineTo(Op, Vec); 3034 3035 APInt DemandedVecElts(DemandedElts); 3036 DemandedVecElts.clearBit(Idx); 3037 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3038 KnownZero, TLO, Depth + 1)) 3039 return true; 3040 3041 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3042 3043 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3044 break; 3045 } 3046 3047 APInt VecUndef, VecZero; 3048 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3049 Depth + 1)) 3050 return true; 3051 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3052 break; 3053 } 3054 case ISD::VSELECT: { 3055 SDValue Sel = Op.getOperand(0); 3056 SDValue LHS = Op.getOperand(1); 3057 SDValue RHS = Op.getOperand(2); 3058 3059 // Try to transform the select condition based on the current demanded 3060 // elements. 3061 APInt UndefSel, UndefZero; 3062 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3063 Depth + 1)) 3064 return true; 3065 3066 // See if we can simplify either vselect operand. 3067 APInt DemandedLHS(DemandedElts); 3068 APInt DemandedRHS(DemandedElts); 3069 APInt UndefLHS, ZeroLHS; 3070 APInt UndefRHS, ZeroRHS; 3071 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3072 Depth + 1)) 3073 return true; 3074 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3075 Depth + 1)) 3076 return true; 3077 3078 KnownUndef = UndefLHS & UndefRHS; 3079 KnownZero = ZeroLHS & ZeroRHS; 3080 3081 // If we know that the selected element is always zero, we don't need the 3082 // select value element. 3083 APInt DemandedSel = DemandedElts & ~KnownZero; 3084 if (DemandedSel != DemandedElts) 3085 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3086 Depth + 1)) 3087 return true; 3088 3089 break; 3090 } 3091 case ISD::VECTOR_SHUFFLE: { 3092 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3093 3094 // Collect demanded elements from shuffle operands.. 3095 APInt DemandedLHS(NumElts, 0); 3096 APInt DemandedRHS(NumElts, 0); 3097 for (unsigned i = 0; i != NumElts; ++i) { 3098 int M = ShuffleMask[i]; 3099 if (M < 0 || !DemandedElts[i]) 3100 continue; 3101 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3102 if (M < (int)NumElts) 3103 DemandedLHS.setBit(M); 3104 else 3105 DemandedRHS.setBit(M - NumElts); 3106 } 3107 3108 // See if we can simplify either shuffle operand. 3109 APInt UndefLHS, ZeroLHS; 3110 APInt UndefRHS, ZeroRHS; 3111 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3112 ZeroLHS, TLO, Depth + 1)) 3113 return true; 3114 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3115 ZeroRHS, TLO, Depth + 1)) 3116 return true; 3117 3118 // Simplify mask using undef elements from LHS/RHS. 3119 bool Updated = false; 3120 bool IdentityLHS = true, IdentityRHS = true; 3121 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3122 for (unsigned i = 0; i != NumElts; ++i) { 3123 int &M = NewMask[i]; 3124 if (M < 0) 3125 continue; 3126 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3127 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3128 Updated = true; 3129 M = -1; 3130 } 3131 IdentityLHS &= (M < 0) || (M == (int)i); 3132 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3133 } 3134 3135 // Update legal shuffle masks based on demanded elements if it won't reduce 3136 // to Identity which can cause premature removal of the shuffle mask. 3137 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3138 SDValue LegalShuffle = 3139 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3140 NewMask, TLO.DAG); 3141 if (LegalShuffle) 3142 return TLO.CombineTo(Op, LegalShuffle); 3143 } 3144 3145 // Propagate undef/zero elements from LHS/RHS. 3146 for (unsigned i = 0; i != NumElts; ++i) { 3147 int M = ShuffleMask[i]; 3148 if (M < 0) { 3149 KnownUndef.setBit(i); 3150 } else if (M < (int)NumElts) { 3151 if (UndefLHS[M]) 3152 KnownUndef.setBit(i); 3153 if (ZeroLHS[M]) 3154 KnownZero.setBit(i); 3155 } else { 3156 if (UndefRHS[M - NumElts]) 3157 KnownUndef.setBit(i); 3158 if (ZeroRHS[M - NumElts]) 3159 KnownZero.setBit(i); 3160 } 3161 } 3162 break; 3163 } 3164 case ISD::ANY_EXTEND_VECTOR_INREG: 3165 case ISD::SIGN_EXTEND_VECTOR_INREG: 3166 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3167 APInt SrcUndef, SrcZero; 3168 SDValue Src = Op.getOperand(0); 3169 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3170 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3171 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3172 Depth + 1)) 3173 return true; 3174 KnownZero = SrcZero.zextOrTrunc(NumElts); 3175 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3176 3177 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3178 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3179 DemandedSrcElts == 1) { 3180 // aext - if we just need the bottom element then we can bitcast. 3181 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3182 } 3183 3184 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3185 // zext(undef) upper bits are guaranteed to be zero. 3186 if (DemandedElts.isSubsetOf(KnownUndef)) 3187 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3188 KnownUndef.clearAllBits(); 3189 3190 // zext - if we just need the bottom element then we can mask: 3191 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3192 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3193 Op->isOnlyUserOf(Src.getNode()) && 3194 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3195 SDLoc DL(Op); 3196 EVT SrcVT = Src.getValueType(); 3197 EVT SrcSVT = SrcVT.getScalarType(); 3198 SmallVector<SDValue> MaskElts; 3199 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3200 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3201 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3202 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3203 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3204 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3205 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3206 } 3207 } 3208 } 3209 break; 3210 } 3211 3212 // TODO: There are more binop opcodes that could be handled here - MIN, 3213 // MAX, saturated math, etc. 3214 case ISD::ADD: { 3215 SDValue Op0 = Op.getOperand(0); 3216 SDValue Op1 = Op.getOperand(1); 3217 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3218 APInt UndefLHS, ZeroLHS; 3219 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3220 Depth + 1, /*AssumeSingleUse*/ true)) 3221 return true; 3222 } 3223 LLVM_FALLTHROUGH; 3224 } 3225 case ISD::OR: 3226 case ISD::XOR: 3227 case ISD::SUB: 3228 case ISD::FADD: 3229 case ISD::FSUB: 3230 case ISD::FMUL: 3231 case ISD::FDIV: 3232 case ISD::FREM: { 3233 SDValue Op0 = Op.getOperand(0); 3234 SDValue Op1 = Op.getOperand(1); 3235 3236 APInt UndefRHS, ZeroRHS; 3237 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3238 Depth + 1)) 3239 return true; 3240 APInt UndefLHS, ZeroLHS; 3241 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3242 Depth + 1)) 3243 return true; 3244 3245 KnownZero = ZeroLHS & ZeroRHS; 3246 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3247 3248 // Attempt to avoid multi-use ops if we don't need anything from them. 3249 // TODO - use KnownUndef to relax the demandedelts? 3250 if (!DemandedElts.isAllOnes()) 3251 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3252 return true; 3253 break; 3254 } 3255 case ISD::SHL: 3256 case ISD::SRL: 3257 case ISD::SRA: 3258 case ISD::ROTL: 3259 case ISD::ROTR: { 3260 SDValue Op0 = Op.getOperand(0); 3261 SDValue Op1 = Op.getOperand(1); 3262 3263 APInt UndefRHS, ZeroRHS; 3264 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3265 Depth + 1)) 3266 return true; 3267 APInt UndefLHS, ZeroLHS; 3268 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3269 Depth + 1)) 3270 return true; 3271 3272 KnownZero = ZeroLHS; 3273 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3274 3275 // Attempt to avoid multi-use ops if we don't need anything from them. 3276 // TODO - use KnownUndef to relax the demandedelts? 3277 if (!DemandedElts.isAllOnes()) 3278 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3279 return true; 3280 break; 3281 } 3282 case ISD::MUL: 3283 case ISD::AND: { 3284 SDValue Op0 = Op.getOperand(0); 3285 SDValue Op1 = Op.getOperand(1); 3286 3287 APInt SrcUndef, SrcZero; 3288 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3289 Depth + 1)) 3290 return true; 3291 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3292 TLO, Depth + 1)) 3293 return true; 3294 3295 // If either side has a zero element, then the result element is zero, even 3296 // if the other is an UNDEF. 3297 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3298 // and then handle 'and' nodes with the rest of the binop opcodes. 3299 KnownZero |= SrcZero; 3300 KnownUndef &= SrcUndef; 3301 KnownUndef &= ~KnownZero; 3302 3303 // Attempt to avoid multi-use ops if we don't need anything from them. 3304 // TODO - use KnownUndef to relax the demandedelts? 3305 if (!DemandedElts.isAllOnes()) 3306 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3307 return true; 3308 break; 3309 } 3310 case ISD::TRUNCATE: 3311 case ISD::SIGN_EXTEND: 3312 case ISD::ZERO_EXTEND: 3313 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3314 KnownZero, TLO, Depth + 1)) 3315 return true; 3316 3317 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3318 // zext(undef) upper bits are guaranteed to be zero. 3319 if (DemandedElts.isSubsetOf(KnownUndef)) 3320 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3321 KnownUndef.clearAllBits(); 3322 } 3323 break; 3324 default: { 3325 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3326 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3327 KnownZero, TLO, Depth)) 3328 return true; 3329 } else { 3330 KnownBits Known; 3331 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3332 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3333 TLO, Depth, AssumeSingleUse)) 3334 return true; 3335 } 3336 break; 3337 } 3338 } 3339 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3340 3341 // Constant fold all undef cases. 3342 // TODO: Handle zero cases as well. 3343 if (DemandedElts.isSubsetOf(KnownUndef)) 3344 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3345 3346 return false; 3347 } 3348 3349 /// Determine which of the bits specified in Mask are known to be either zero or 3350 /// one and return them in the Known. 3351 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3352 KnownBits &Known, 3353 const APInt &DemandedElts, 3354 const SelectionDAG &DAG, 3355 unsigned Depth) const { 3356 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3357 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3358 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3359 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3360 "Should use MaskedValueIsZero if you don't know whether Op" 3361 " is a target node!"); 3362 Known.resetAll(); 3363 } 3364 3365 void TargetLowering::computeKnownBitsForTargetInstr( 3366 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3367 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3368 unsigned Depth) const { 3369 Known.resetAll(); 3370 } 3371 3372 void TargetLowering::computeKnownBitsForFrameIndex( 3373 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3374 // The low bits are known zero if the pointer is aligned. 3375 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3376 } 3377 3378 Align TargetLowering::computeKnownAlignForTargetInstr( 3379 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3380 unsigned Depth) const { 3381 return Align(1); 3382 } 3383 3384 /// This method can be implemented by targets that want to expose additional 3385 /// information about sign bits to the DAG Combiner. 3386 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3387 const APInt &, 3388 const SelectionDAG &, 3389 unsigned Depth) const { 3390 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3391 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3392 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3393 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3394 "Should use ComputeNumSignBits if you don't know whether Op" 3395 " is a target node!"); 3396 return 1; 3397 } 3398 3399 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3400 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3401 const MachineRegisterInfo &MRI, unsigned Depth) const { 3402 return 1; 3403 } 3404 3405 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3406 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3407 TargetLoweringOpt &TLO, unsigned Depth) const { 3408 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3409 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3410 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3411 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3412 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3413 " is a target node!"); 3414 return false; 3415 } 3416 3417 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3418 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3419 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3420 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3421 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3422 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3423 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3424 "Should use SimplifyDemandedBits if you don't know whether Op" 3425 " is a target node!"); 3426 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3427 return false; 3428 } 3429 3430 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3431 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3432 SelectionDAG &DAG, unsigned Depth) const { 3433 assert( 3434 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3435 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3436 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3437 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3438 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3439 " is a target node!"); 3440 return SDValue(); 3441 } 3442 3443 SDValue 3444 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3445 SDValue N1, MutableArrayRef<int> Mask, 3446 SelectionDAG &DAG) const { 3447 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3448 if (!LegalMask) { 3449 std::swap(N0, N1); 3450 ShuffleVectorSDNode::commuteMask(Mask); 3451 LegalMask = isShuffleMaskLegal(Mask, VT); 3452 } 3453 3454 if (!LegalMask) 3455 return SDValue(); 3456 3457 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3458 } 3459 3460 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3461 return nullptr; 3462 } 3463 3464 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3465 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3466 bool PoisonOnly, unsigned Depth) const { 3467 assert( 3468 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3469 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3470 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3471 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3472 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3473 " is a target node!"); 3474 return false; 3475 } 3476 3477 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3478 const SelectionDAG &DAG, 3479 bool SNaN, 3480 unsigned Depth) const { 3481 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3482 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3483 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3484 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3485 "Should use isKnownNeverNaN if you don't know whether Op" 3486 " is a target node!"); 3487 return false; 3488 } 3489 3490 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3491 const APInt &DemandedElts, 3492 APInt &UndefElts, 3493 unsigned Depth) const { 3494 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3495 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3496 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3497 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3498 "Should use isSplatValue if you don't know whether Op" 3499 " is a target node!"); 3500 return false; 3501 } 3502 3503 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3504 // work with truncating build vectors and vectors with elements of less than 3505 // 8 bits. 3506 bool TargetLowering::isConstTrueVal(SDValue N) const { 3507 if (!N) 3508 return false; 3509 3510 unsigned EltWidth; 3511 APInt CVal; 3512 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3513 /*AllowTruncation=*/true)) { 3514 CVal = CN->getAPIntValue(); 3515 EltWidth = N.getValueType().getScalarSizeInBits(); 3516 } else 3517 return false; 3518 3519 // If this is a truncating splat, truncate the splat value. 3520 // Otherwise, we may fail to match the expected values below. 3521 if (EltWidth < CVal.getBitWidth()) 3522 CVal = CVal.trunc(EltWidth); 3523 3524 switch (getBooleanContents(N.getValueType())) { 3525 case UndefinedBooleanContent: 3526 return CVal[0]; 3527 case ZeroOrOneBooleanContent: 3528 return CVal.isOne(); 3529 case ZeroOrNegativeOneBooleanContent: 3530 return CVal.isAllOnes(); 3531 } 3532 3533 llvm_unreachable("Invalid boolean contents"); 3534 } 3535 3536 bool TargetLowering::isConstFalseVal(SDValue N) const { 3537 if (!N) 3538 return false; 3539 3540 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3541 if (!CN) { 3542 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3543 if (!BV) 3544 return false; 3545 3546 // Only interested in constant splats, we don't care about undef 3547 // elements in identifying boolean constants and getConstantSplatNode 3548 // returns NULL if all ops are undef; 3549 CN = BV->getConstantSplatNode(); 3550 if (!CN) 3551 return false; 3552 } 3553 3554 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3555 return !CN->getAPIntValue()[0]; 3556 3557 return CN->isZero(); 3558 } 3559 3560 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3561 bool SExt) const { 3562 if (VT == MVT::i1) 3563 return N->isOne(); 3564 3565 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3566 switch (Cnt) { 3567 case TargetLowering::ZeroOrOneBooleanContent: 3568 // An extended value of 1 is always true, unless its original type is i1, 3569 // in which case it will be sign extended to -1. 3570 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3571 case TargetLowering::UndefinedBooleanContent: 3572 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3573 return N->isAllOnes() && SExt; 3574 } 3575 llvm_unreachable("Unexpected enumeration."); 3576 } 3577 3578 /// This helper function of SimplifySetCC tries to optimize the comparison when 3579 /// either operand of the SetCC node is a bitwise-and instruction. 3580 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3581 ISD::CondCode Cond, const SDLoc &DL, 3582 DAGCombinerInfo &DCI) const { 3583 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3584 std::swap(N0, N1); 3585 3586 SelectionDAG &DAG = DCI.DAG; 3587 EVT OpVT = N0.getValueType(); 3588 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3589 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3590 return SDValue(); 3591 3592 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3593 // iff everything but LSB is known zero: 3594 if (Cond == ISD::SETNE && isNullConstant(N1) && 3595 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3596 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3597 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3598 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3599 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3600 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3601 } 3602 3603 // Match these patterns in any of their permutations: 3604 // (X & Y) == Y 3605 // (X & Y) != Y 3606 SDValue X, Y; 3607 if (N0.getOperand(0) == N1) { 3608 X = N0.getOperand(1); 3609 Y = N0.getOperand(0); 3610 } else if (N0.getOperand(1) == N1) { 3611 X = N0.getOperand(0); 3612 Y = N0.getOperand(1); 3613 } else { 3614 return SDValue(); 3615 } 3616 3617 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3618 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3619 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3620 // Note that where Y is variable and is known to have at most one bit set 3621 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3622 // equivalent when Y == 0. 3623 assert(OpVT.isInteger()); 3624 Cond = ISD::getSetCCInverse(Cond, OpVT); 3625 if (DCI.isBeforeLegalizeOps() || 3626 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3627 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3628 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3629 // If the target supports an 'and-not' or 'and-complement' logic operation, 3630 // try to use that to make a comparison operation more efficient. 3631 // But don't do this transform if the mask is a single bit because there are 3632 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3633 // 'rlwinm' on PPC). 3634 3635 // Bail out if the compare operand that we want to turn into a zero is 3636 // already a zero (otherwise, infinite loop). 3637 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3638 if (YConst && YConst->isZero()) 3639 return SDValue(); 3640 3641 // Transform this into: ~X & Y == 0. 3642 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3643 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3644 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3645 } 3646 3647 return SDValue(); 3648 } 3649 3650 /// There are multiple IR patterns that could be checking whether certain 3651 /// truncation of a signed number would be lossy or not. The pattern which is 3652 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3653 /// We are looking for the following pattern: (KeptBits is a constant) 3654 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3655 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3656 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3657 /// We will unfold it into the natural trunc+sext pattern: 3658 /// ((%x << C) a>> C) dstcond %x 3659 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3660 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3661 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3662 const SDLoc &DL) const { 3663 // We must be comparing with a constant. 3664 ConstantSDNode *C1; 3665 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3666 return SDValue(); 3667 3668 // N0 should be: add %x, (1 << (KeptBits-1)) 3669 if (N0->getOpcode() != ISD::ADD) 3670 return SDValue(); 3671 3672 // And we must be 'add'ing a constant. 3673 ConstantSDNode *C01; 3674 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3675 return SDValue(); 3676 3677 SDValue X = N0->getOperand(0); 3678 EVT XVT = X.getValueType(); 3679 3680 // Validate constants ... 3681 3682 APInt I1 = C1->getAPIntValue(); 3683 3684 ISD::CondCode NewCond; 3685 if (Cond == ISD::CondCode::SETULT) { 3686 NewCond = ISD::CondCode::SETEQ; 3687 } else if (Cond == ISD::CondCode::SETULE) { 3688 NewCond = ISD::CondCode::SETEQ; 3689 // But need to 'canonicalize' the constant. 3690 I1 += 1; 3691 } else if (Cond == ISD::CondCode::SETUGT) { 3692 NewCond = ISD::CondCode::SETNE; 3693 // But need to 'canonicalize' the constant. 3694 I1 += 1; 3695 } else if (Cond == ISD::CondCode::SETUGE) { 3696 NewCond = ISD::CondCode::SETNE; 3697 } else 3698 return SDValue(); 3699 3700 APInt I01 = C01->getAPIntValue(); 3701 3702 auto checkConstants = [&I1, &I01]() -> bool { 3703 // Both of them must be power-of-two, and the constant from setcc is bigger. 3704 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3705 }; 3706 3707 if (checkConstants()) { 3708 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3709 } else { 3710 // What if we invert constants? (and the target predicate) 3711 I1.negate(); 3712 I01.negate(); 3713 assert(XVT.isInteger()); 3714 NewCond = getSetCCInverse(NewCond, XVT); 3715 if (!checkConstants()) 3716 return SDValue(); 3717 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3718 } 3719 3720 // They are power-of-two, so which bit is set? 3721 const unsigned KeptBits = I1.logBase2(); 3722 const unsigned KeptBitsMinusOne = I01.logBase2(); 3723 3724 // Magic! 3725 if (KeptBits != (KeptBitsMinusOne + 1)) 3726 return SDValue(); 3727 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3728 3729 // We don't want to do this in every single case. 3730 SelectionDAG &DAG = DCI.DAG; 3731 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3732 XVT, KeptBits)) 3733 return SDValue(); 3734 3735 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3736 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3737 3738 // Unfold into: ((%x << C) a>> C) cond %x 3739 // Where 'cond' will be either 'eq' or 'ne'. 3740 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3741 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3742 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3743 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3744 3745 return T2; 3746 } 3747 3748 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3749 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3750 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3751 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3752 assert(isConstOrConstSplat(N1C) && 3753 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3754 "Should be a comparison with 0."); 3755 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3756 "Valid only for [in]equality comparisons."); 3757 3758 unsigned NewShiftOpcode; 3759 SDValue X, C, Y; 3760 3761 SelectionDAG &DAG = DCI.DAG; 3762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3763 3764 // Look for '(C l>>/<< Y)'. 3765 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3766 // The shift should be one-use. 3767 if (!V.hasOneUse()) 3768 return false; 3769 unsigned OldShiftOpcode = V.getOpcode(); 3770 switch (OldShiftOpcode) { 3771 case ISD::SHL: 3772 NewShiftOpcode = ISD::SRL; 3773 break; 3774 case ISD::SRL: 3775 NewShiftOpcode = ISD::SHL; 3776 break; 3777 default: 3778 return false; // must be a logical shift. 3779 } 3780 // We should be shifting a constant. 3781 // FIXME: best to use isConstantOrConstantVector(). 3782 C = V.getOperand(0); 3783 ConstantSDNode *CC = 3784 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3785 if (!CC) 3786 return false; 3787 Y = V.getOperand(1); 3788 3789 ConstantSDNode *XC = 3790 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3791 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3792 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3793 }; 3794 3795 // LHS of comparison should be an one-use 'and'. 3796 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3797 return SDValue(); 3798 3799 X = N0.getOperand(0); 3800 SDValue Mask = N0.getOperand(1); 3801 3802 // 'and' is commutative! 3803 if (!Match(Mask)) { 3804 std::swap(X, Mask); 3805 if (!Match(Mask)) 3806 return SDValue(); 3807 } 3808 3809 EVT VT = X.getValueType(); 3810 3811 // Produce: 3812 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3813 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3814 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3815 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3816 return T2; 3817 } 3818 3819 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3820 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3821 /// handle the commuted versions of these patterns. 3822 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3823 ISD::CondCode Cond, const SDLoc &DL, 3824 DAGCombinerInfo &DCI) const { 3825 unsigned BOpcode = N0.getOpcode(); 3826 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3827 "Unexpected binop"); 3828 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3829 3830 // (X + Y) == X --> Y == 0 3831 // (X - Y) == X --> Y == 0 3832 // (X ^ Y) == X --> Y == 0 3833 SelectionDAG &DAG = DCI.DAG; 3834 EVT OpVT = N0.getValueType(); 3835 SDValue X = N0.getOperand(0); 3836 SDValue Y = N0.getOperand(1); 3837 if (X == N1) 3838 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3839 3840 if (Y != N1) 3841 return SDValue(); 3842 3843 // (X + Y) == Y --> X == 0 3844 // (X ^ Y) == Y --> X == 0 3845 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3846 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3847 3848 // The shift would not be valid if the operands are boolean (i1). 3849 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3850 return SDValue(); 3851 3852 // (X - Y) == Y --> X == Y << 1 3853 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3854 !DCI.isBeforeLegalize()); 3855 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3856 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3857 if (!DCI.isCalledByLegalizer()) 3858 DCI.AddToWorklist(YShl1.getNode()); 3859 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3860 } 3861 3862 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3863 SDValue N0, const APInt &C1, 3864 ISD::CondCode Cond, const SDLoc &dl, 3865 SelectionDAG &DAG) { 3866 // Look through truncs that don't change the value of a ctpop. 3867 // FIXME: Add vector support? Need to be careful with setcc result type below. 3868 SDValue CTPOP = N0; 3869 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3870 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3871 CTPOP = N0.getOperand(0); 3872 3873 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3874 return SDValue(); 3875 3876 EVT CTVT = CTPOP.getValueType(); 3877 SDValue CTOp = CTPOP.getOperand(0); 3878 3879 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3880 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3881 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3882 return SDValue(); 3883 3884 // (ctpop x) u< 2 -> (x & x-1) == 0 3885 // (ctpop x) u> 1 -> (x & x-1) != 0 3886 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3887 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3888 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3889 return SDValue(); 3890 if (C1 == 0 && (Cond == ISD::SETULT)) 3891 return SDValue(); // This is handled elsewhere. 3892 3893 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3894 3895 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3896 SDValue Result = CTOp; 3897 for (unsigned i = 0; i < Passes; i++) { 3898 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3899 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3900 } 3901 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3902 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3903 } 3904 3905 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3906 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3907 // For scalars, keep CTPOP if it is legal or custom. 3908 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3909 return SDValue(); 3910 // This is based on X86's custom lowering for CTPOP which produces more 3911 // instructions than the expansion here. 3912 3913 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3914 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3915 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3916 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3917 assert(CTVT.isInteger()); 3918 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3919 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3920 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3921 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3922 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3923 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3924 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3925 } 3926 3927 return SDValue(); 3928 } 3929 3930 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3931 ISD::CondCode Cond, const SDLoc &dl, 3932 SelectionDAG &DAG) { 3933 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3934 return SDValue(); 3935 3936 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3937 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3938 return SDValue(); 3939 3940 auto getRotateSource = [](SDValue X) { 3941 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3942 return X.getOperand(0); 3943 return SDValue(); 3944 }; 3945 3946 // Peek through a rotated value compared against 0 or -1: 3947 // (rot X, Y) == 0/-1 --> X == 0/-1 3948 // (rot X, Y) != 0/-1 --> X != 0/-1 3949 if (SDValue R = getRotateSource(N0)) 3950 return DAG.getSetCC(dl, VT, R, N1, Cond); 3951 3952 // Peek through an 'or' of a rotated value compared against 0: 3953 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3954 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3955 // 3956 // TODO: Add the 'and' with -1 sibling. 3957 // TODO: Recurse through a series of 'or' ops to find the rotate. 3958 EVT OpVT = N0.getValueType(); 3959 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3960 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3961 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3962 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3963 } 3964 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3965 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3966 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3967 } 3968 } 3969 3970 return SDValue(); 3971 } 3972 3973 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3974 ISD::CondCode Cond, const SDLoc &dl, 3975 SelectionDAG &DAG) { 3976 // If we are testing for all-bits-clear, we might be able to do that with 3977 // less shifting since bit-order does not matter. 3978 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3979 return SDValue(); 3980 3981 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3982 if (!C1 || !C1->isZero()) 3983 return SDValue(); 3984 3985 if (!N0.hasOneUse() || 3986 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3987 return SDValue(); 3988 3989 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3990 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3991 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3992 return SDValue(); 3993 3994 // Canonicalize fshr as fshl to reduce pattern-matching. 3995 unsigned ShAmt = ShAmtC->getZExtValue(); 3996 if (N0.getOpcode() == ISD::FSHR) 3997 ShAmt = BitWidth - ShAmt; 3998 3999 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4000 SDValue X, Y; 4001 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4002 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4003 return false; 4004 if (Or.getOperand(0) == Other) { 4005 X = Or.getOperand(0); 4006 Y = Or.getOperand(1); 4007 return true; 4008 } 4009 if (Or.getOperand(1) == Other) { 4010 X = Or.getOperand(1); 4011 Y = Or.getOperand(0); 4012 return true; 4013 } 4014 return false; 4015 }; 4016 4017 EVT OpVT = N0.getValueType(); 4018 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4019 SDValue F0 = N0.getOperand(0); 4020 SDValue F1 = N0.getOperand(1); 4021 if (matchOr(F0, F1)) { 4022 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4023 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4024 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4025 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4026 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4027 } 4028 if (matchOr(F1, F0)) { 4029 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4030 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4031 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4032 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4033 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4034 } 4035 4036 return SDValue(); 4037 } 4038 4039 /// Try to simplify a setcc built with the specified operands and cc. If it is 4040 /// unable to simplify it, return a null SDValue. 4041 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4042 ISD::CondCode Cond, bool foldBooleans, 4043 DAGCombinerInfo &DCI, 4044 const SDLoc &dl) const { 4045 SelectionDAG &DAG = DCI.DAG; 4046 const DataLayout &Layout = DAG.getDataLayout(); 4047 EVT OpVT = N0.getValueType(); 4048 4049 // Constant fold or commute setcc. 4050 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4051 return Fold; 4052 4053 bool N0ConstOrSplat = 4054 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4055 bool N1ConstOrSplat = 4056 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4057 4058 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4059 // TODO: Handle non-splat vector constants. All undef causes trouble. 4060 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4061 // infinite loop here when we encounter one. 4062 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4063 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4064 (DCI.isBeforeLegalizeOps() || 4065 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4066 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4067 4068 // If we have a subtract with the same 2 non-constant operands as this setcc 4069 // -- but in reverse order -- then try to commute the operands of this setcc 4070 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4071 // instruction on some targets. 4072 if (!N0ConstOrSplat && !N1ConstOrSplat && 4073 (DCI.isBeforeLegalizeOps() || 4074 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4075 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4076 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4077 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4078 4079 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4080 return V; 4081 4082 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4083 return V; 4084 4085 if (auto *N1C = isConstOrConstSplat(N1)) { 4086 const APInt &C1 = N1C->getAPIntValue(); 4087 4088 // Optimize some CTPOP cases. 4089 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4090 return V; 4091 4092 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4093 // equality comparison, then we're just comparing whether X itself is 4094 // zero. 4095 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4096 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4097 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4098 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4099 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4100 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4101 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4102 // (srl (ctlz x), 5) == 0 -> X != 0 4103 // (srl (ctlz x), 5) != 1 -> X != 0 4104 Cond = ISD::SETNE; 4105 } else { 4106 // (srl (ctlz x), 5) != 0 -> X == 0 4107 // (srl (ctlz x), 5) == 1 -> X == 0 4108 Cond = ISD::SETEQ; 4109 } 4110 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4111 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4112 Cond); 4113 } 4114 } 4115 } 4116 } 4117 4118 // FIXME: Support vectors. 4119 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4120 const APInt &C1 = N1C->getAPIntValue(); 4121 4122 // (zext x) == C --> x == (trunc C) 4123 // (sext x) == C --> x == (trunc C) 4124 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4125 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4126 unsigned MinBits = N0.getValueSizeInBits(); 4127 SDValue PreExt; 4128 bool Signed = false; 4129 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4130 // ZExt 4131 MinBits = N0->getOperand(0).getValueSizeInBits(); 4132 PreExt = N0->getOperand(0); 4133 } else if (N0->getOpcode() == ISD::AND) { 4134 // DAGCombine turns costly ZExts into ANDs 4135 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4136 if ((C->getAPIntValue()+1).isPowerOf2()) { 4137 MinBits = C->getAPIntValue().countTrailingOnes(); 4138 PreExt = N0->getOperand(0); 4139 } 4140 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4141 // SExt 4142 MinBits = N0->getOperand(0).getValueSizeInBits(); 4143 PreExt = N0->getOperand(0); 4144 Signed = true; 4145 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4146 // ZEXTLOAD / SEXTLOAD 4147 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4148 MinBits = LN0->getMemoryVT().getSizeInBits(); 4149 PreExt = N0; 4150 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4151 Signed = true; 4152 MinBits = LN0->getMemoryVT().getSizeInBits(); 4153 PreExt = N0; 4154 } 4155 } 4156 4157 // Figure out how many bits we need to preserve this constant. 4158 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4159 4160 // Make sure we're not losing bits from the constant. 4161 if (MinBits > 0 && 4162 MinBits < C1.getBitWidth() && 4163 MinBits >= ReqdBits) { 4164 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4165 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4166 // Will get folded away. 4167 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4168 if (MinBits == 1 && C1 == 1) 4169 // Invert the condition. 4170 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4171 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4172 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4173 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4174 } 4175 4176 // If truncating the setcc operands is not desirable, we can still 4177 // simplify the expression in some cases: 4178 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4179 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4180 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4181 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4182 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4183 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4184 SDValue TopSetCC = N0->getOperand(0); 4185 unsigned N0Opc = N0->getOpcode(); 4186 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4187 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4188 TopSetCC.getOpcode() == ISD::SETCC && 4189 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4190 (isConstFalseVal(N1) || 4191 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4192 4193 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4194 (!N1C->isZero() && Cond == ISD::SETNE); 4195 4196 if (!Inverse) 4197 return TopSetCC; 4198 4199 ISD::CondCode InvCond = ISD::getSetCCInverse( 4200 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4201 TopSetCC.getOperand(0).getValueType()); 4202 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4203 TopSetCC.getOperand(1), 4204 InvCond); 4205 } 4206 } 4207 } 4208 4209 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4210 // equality or unsigned, and all 1 bits of the const are in the same 4211 // partial word, see if we can shorten the load. 4212 if (DCI.isBeforeLegalize() && 4213 !ISD::isSignedIntSetCC(Cond) && 4214 N0.getOpcode() == ISD::AND && C1 == 0 && 4215 N0.getNode()->hasOneUse() && 4216 isa<LoadSDNode>(N0.getOperand(0)) && 4217 N0.getOperand(0).getNode()->hasOneUse() && 4218 isa<ConstantSDNode>(N0.getOperand(1))) { 4219 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4220 APInt bestMask; 4221 unsigned bestWidth = 0, bestOffset = 0; 4222 if (Lod->isSimple() && Lod->isUnindexed()) { 4223 unsigned origWidth = N0.getValueSizeInBits(); 4224 unsigned maskWidth = origWidth; 4225 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4226 // 8 bits, but have to be careful... 4227 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4228 origWidth = Lod->getMemoryVT().getSizeInBits(); 4229 const APInt &Mask = N0.getConstantOperandAPInt(1); 4230 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4231 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4232 for (unsigned offset=0; offset<origWidth/width; offset++) { 4233 if (Mask.isSubsetOf(newMask)) { 4234 if (Layout.isLittleEndian()) 4235 bestOffset = (uint64_t)offset * (width/8); 4236 else 4237 bestOffset = (origWidth/width - offset - 1) * (width/8); 4238 bestMask = Mask.lshr(offset * (width/8) * 8); 4239 bestWidth = width; 4240 break; 4241 } 4242 newMask <<= width; 4243 } 4244 } 4245 } 4246 if (bestWidth) { 4247 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4248 if (newVT.isRound() && 4249 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4250 SDValue Ptr = Lod->getBasePtr(); 4251 if (bestOffset != 0) 4252 Ptr = 4253 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4254 SDValue NewLoad = 4255 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4256 Lod->getPointerInfo().getWithOffset(bestOffset), 4257 Lod->getOriginalAlign()); 4258 return DAG.getSetCC(dl, VT, 4259 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4260 DAG.getConstant(bestMask.trunc(bestWidth), 4261 dl, newVT)), 4262 DAG.getConstant(0LL, dl, newVT), Cond); 4263 } 4264 } 4265 } 4266 4267 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4268 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4269 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4270 4271 // If the comparison constant has bits in the upper part, the 4272 // zero-extended value could never match. 4273 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4274 C1.getBitWidth() - InSize))) { 4275 switch (Cond) { 4276 case ISD::SETUGT: 4277 case ISD::SETUGE: 4278 case ISD::SETEQ: 4279 return DAG.getConstant(0, dl, VT); 4280 case ISD::SETULT: 4281 case ISD::SETULE: 4282 case ISD::SETNE: 4283 return DAG.getConstant(1, dl, VT); 4284 case ISD::SETGT: 4285 case ISD::SETGE: 4286 // True if the sign bit of C1 is set. 4287 return DAG.getConstant(C1.isNegative(), dl, VT); 4288 case ISD::SETLT: 4289 case ISD::SETLE: 4290 // True if the sign bit of C1 isn't set. 4291 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4292 default: 4293 break; 4294 } 4295 } 4296 4297 // Otherwise, we can perform the comparison with the low bits. 4298 switch (Cond) { 4299 case ISD::SETEQ: 4300 case ISD::SETNE: 4301 case ISD::SETUGT: 4302 case ISD::SETUGE: 4303 case ISD::SETULT: 4304 case ISD::SETULE: { 4305 EVT newVT = N0.getOperand(0).getValueType(); 4306 if (DCI.isBeforeLegalizeOps() || 4307 (isOperationLegal(ISD::SETCC, newVT) && 4308 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4309 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4310 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4311 4312 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4313 NewConst, Cond); 4314 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4315 } 4316 break; 4317 } 4318 default: 4319 break; // todo, be more careful with signed comparisons 4320 } 4321 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4322 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4323 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4324 OpVT)) { 4325 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4326 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4327 EVT ExtDstTy = N0.getValueType(); 4328 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4329 4330 // If the constant doesn't fit into the number of bits for the source of 4331 // the sign extension, it is impossible for both sides to be equal. 4332 if (C1.getMinSignedBits() > ExtSrcTyBits) 4333 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4334 4335 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4336 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4337 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4338 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4339 DAG.getConstant(Imm, dl, ExtDstTy)); 4340 if (!DCI.isCalledByLegalizer()) 4341 DCI.AddToWorklist(ZextOp.getNode()); 4342 // Otherwise, make this a use of a zext. 4343 return DAG.getSetCC(dl, VT, ZextOp, 4344 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4345 } else if ((N1C->isZero() || N1C->isOne()) && 4346 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4347 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4348 if (N0.getOpcode() == ISD::SETCC && 4349 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4350 (N0.getValueType() == MVT::i1 || 4351 getBooleanContents(N0.getOperand(0).getValueType()) == 4352 ZeroOrOneBooleanContent)) { 4353 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4354 if (TrueWhenTrue) 4355 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4356 // Invert the condition. 4357 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4358 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4359 if (DCI.isBeforeLegalizeOps() || 4360 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4361 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4362 } 4363 4364 if ((N0.getOpcode() == ISD::XOR || 4365 (N0.getOpcode() == ISD::AND && 4366 N0.getOperand(0).getOpcode() == ISD::XOR && 4367 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4368 isOneConstant(N0.getOperand(1))) { 4369 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4370 // can only do this if the top bits are known zero. 4371 unsigned BitWidth = N0.getValueSizeInBits(); 4372 if (DAG.MaskedValueIsZero(N0, 4373 APInt::getHighBitsSet(BitWidth, 4374 BitWidth-1))) { 4375 // Okay, get the un-inverted input value. 4376 SDValue Val; 4377 if (N0.getOpcode() == ISD::XOR) { 4378 Val = N0.getOperand(0); 4379 } else { 4380 assert(N0.getOpcode() == ISD::AND && 4381 N0.getOperand(0).getOpcode() == ISD::XOR); 4382 // ((X^1)&1)^1 -> X & 1 4383 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4384 N0.getOperand(0).getOperand(0), 4385 N0.getOperand(1)); 4386 } 4387 4388 return DAG.getSetCC(dl, VT, Val, N1, 4389 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4390 } 4391 } else if (N1C->isOne()) { 4392 SDValue Op0 = N0; 4393 if (Op0.getOpcode() == ISD::TRUNCATE) 4394 Op0 = Op0.getOperand(0); 4395 4396 if ((Op0.getOpcode() == ISD::XOR) && 4397 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4398 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4399 SDValue XorLHS = Op0.getOperand(0); 4400 SDValue XorRHS = Op0.getOperand(1); 4401 // Ensure that the input setccs return an i1 type or 0/1 value. 4402 if (Op0.getValueType() == MVT::i1 || 4403 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4404 ZeroOrOneBooleanContent && 4405 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4406 ZeroOrOneBooleanContent)) { 4407 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4408 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4409 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4410 } 4411 } 4412 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4413 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4414 if (Op0.getValueType().bitsGT(VT)) 4415 Op0 = DAG.getNode(ISD::AND, dl, VT, 4416 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4417 DAG.getConstant(1, dl, VT)); 4418 else if (Op0.getValueType().bitsLT(VT)) 4419 Op0 = DAG.getNode(ISD::AND, dl, VT, 4420 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4421 DAG.getConstant(1, dl, VT)); 4422 4423 return DAG.getSetCC(dl, VT, Op0, 4424 DAG.getConstant(0, dl, Op0.getValueType()), 4425 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4426 } 4427 if (Op0.getOpcode() == ISD::AssertZext && 4428 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4429 return DAG.getSetCC(dl, VT, Op0, 4430 DAG.getConstant(0, dl, Op0.getValueType()), 4431 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4432 } 4433 } 4434 4435 // Given: 4436 // icmp eq/ne (urem %x, %y), 0 4437 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4438 // icmp eq/ne %x, 0 4439 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4440 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4441 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4442 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4443 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4444 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4445 } 4446 4447 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4448 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4449 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4450 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4451 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4452 N1C && N1C->isAllOnes()) { 4453 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4454 DAG.getConstant(0, dl, OpVT), 4455 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4456 } 4457 4458 if (SDValue V = 4459 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4460 return V; 4461 } 4462 4463 // These simplifications apply to splat vectors as well. 4464 // TODO: Handle more splat vector cases. 4465 if (auto *N1C = isConstOrConstSplat(N1)) { 4466 const APInt &C1 = N1C->getAPIntValue(); 4467 4468 APInt MinVal, MaxVal; 4469 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4470 if (ISD::isSignedIntSetCC(Cond)) { 4471 MinVal = APInt::getSignedMinValue(OperandBitSize); 4472 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4473 } else { 4474 MinVal = APInt::getMinValue(OperandBitSize); 4475 MaxVal = APInt::getMaxValue(OperandBitSize); 4476 } 4477 4478 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4479 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4480 // X >= MIN --> true 4481 if (C1 == MinVal) 4482 return DAG.getBoolConstant(true, dl, VT, OpVT); 4483 4484 if (!VT.isVector()) { // TODO: Support this for vectors. 4485 // X >= C0 --> X > (C0 - 1) 4486 APInt C = C1 - 1; 4487 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4488 if ((DCI.isBeforeLegalizeOps() || 4489 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4490 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4491 isLegalICmpImmediate(C.getSExtValue())))) { 4492 return DAG.getSetCC(dl, VT, N0, 4493 DAG.getConstant(C, dl, N1.getValueType()), 4494 NewCC); 4495 } 4496 } 4497 } 4498 4499 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4500 // X <= MAX --> true 4501 if (C1 == MaxVal) 4502 return DAG.getBoolConstant(true, dl, VT, OpVT); 4503 4504 // X <= C0 --> X < (C0 + 1) 4505 if (!VT.isVector()) { // TODO: Support this for vectors. 4506 APInt C = C1 + 1; 4507 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4508 if ((DCI.isBeforeLegalizeOps() || 4509 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4510 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4511 isLegalICmpImmediate(C.getSExtValue())))) { 4512 return DAG.getSetCC(dl, VT, N0, 4513 DAG.getConstant(C, dl, N1.getValueType()), 4514 NewCC); 4515 } 4516 } 4517 } 4518 4519 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4520 if (C1 == MinVal) 4521 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4522 4523 // TODO: Support this for vectors after legalize ops. 4524 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4525 // Canonicalize setlt X, Max --> setne X, Max 4526 if (C1 == MaxVal) 4527 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4528 4529 // If we have setult X, 1, turn it into seteq X, 0 4530 if (C1 == MinVal+1) 4531 return DAG.getSetCC(dl, VT, N0, 4532 DAG.getConstant(MinVal, dl, N0.getValueType()), 4533 ISD::SETEQ); 4534 } 4535 } 4536 4537 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4538 if (C1 == MaxVal) 4539 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4540 4541 // TODO: Support this for vectors after legalize ops. 4542 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4543 // Canonicalize setgt X, Min --> setne X, Min 4544 if (C1 == MinVal) 4545 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4546 4547 // If we have setugt X, Max-1, turn it into seteq X, Max 4548 if (C1 == MaxVal-1) 4549 return DAG.getSetCC(dl, VT, N0, 4550 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4551 ISD::SETEQ); 4552 } 4553 } 4554 4555 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4556 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4557 if (C1.isZero()) 4558 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4559 VT, N0, N1, Cond, DCI, dl)) 4560 return CC; 4561 4562 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4563 // For example, when high 32-bits of i64 X are known clear: 4564 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4565 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4566 bool CmpZero = N1C->getAPIntValue().isZero(); 4567 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4568 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4569 // Match or(lo,shl(hi,bw/2)) pattern. 4570 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4571 unsigned EltBits = V.getScalarValueSizeInBits(); 4572 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4573 return false; 4574 SDValue LHS = V.getOperand(0); 4575 SDValue RHS = V.getOperand(1); 4576 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4577 // Unshifted element must have zero upperbits. 4578 if (RHS.getOpcode() == ISD::SHL && 4579 isa<ConstantSDNode>(RHS.getOperand(1)) && 4580 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4581 DAG.MaskedValueIsZero(LHS, HiBits)) { 4582 Lo = LHS; 4583 Hi = RHS.getOperand(0); 4584 return true; 4585 } 4586 if (LHS.getOpcode() == ISD::SHL && 4587 isa<ConstantSDNode>(LHS.getOperand(1)) && 4588 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4589 DAG.MaskedValueIsZero(RHS, HiBits)) { 4590 Lo = RHS; 4591 Hi = LHS.getOperand(0); 4592 return true; 4593 } 4594 return false; 4595 }; 4596 4597 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4598 unsigned EltBits = N0.getScalarValueSizeInBits(); 4599 unsigned HalfBits = EltBits / 2; 4600 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4601 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4602 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4603 SDValue NewN0 = 4604 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4605 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4606 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4607 }; 4608 4609 SDValue Lo, Hi; 4610 if (IsConcat(N0, Lo, Hi)) 4611 return MergeConcat(Lo, Hi); 4612 4613 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4614 SDValue Lo0, Lo1, Hi0, Hi1; 4615 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4616 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4617 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4618 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4619 } 4620 } 4621 } 4622 } 4623 4624 // If we have "setcc X, C0", check to see if we can shrink the immediate 4625 // by changing cc. 4626 // TODO: Support this for vectors after legalize ops. 4627 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4628 // SETUGT X, SINTMAX -> SETLT X, 0 4629 // SETUGE X, SINTMIN -> SETLT X, 0 4630 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4631 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4632 return DAG.getSetCC(dl, VT, N0, 4633 DAG.getConstant(0, dl, N1.getValueType()), 4634 ISD::SETLT); 4635 4636 // SETULT X, SINTMIN -> SETGT X, -1 4637 // SETULE X, SINTMAX -> SETGT X, -1 4638 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4639 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4640 return DAG.getSetCC(dl, VT, N0, 4641 DAG.getAllOnesConstant(dl, N1.getValueType()), 4642 ISD::SETGT); 4643 } 4644 } 4645 4646 // Back to non-vector simplifications. 4647 // TODO: Can we do these for vector splats? 4648 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4650 const APInt &C1 = N1C->getAPIntValue(); 4651 EVT ShValTy = N0.getValueType(); 4652 4653 // Fold bit comparisons when we can. This will result in an 4654 // incorrect value when boolean false is negative one, unless 4655 // the bitsize is 1 in which case the false value is the same 4656 // in practice regardless of the representation. 4657 if ((VT.getSizeInBits() == 1 || 4658 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4659 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4660 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4661 N0.getOpcode() == ISD::AND) { 4662 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4663 EVT ShiftTy = 4664 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4665 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4666 // Perform the xform if the AND RHS is a single bit. 4667 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4668 if (AndRHS->getAPIntValue().isPowerOf2() && 4669 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4670 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4671 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4672 DAG.getConstant(ShCt, dl, ShiftTy))); 4673 } 4674 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4675 // (X & 8) == 8 --> (X & 8) >> 3 4676 // Perform the xform if C1 is a single bit. 4677 unsigned ShCt = C1.logBase2(); 4678 if (C1.isPowerOf2() && 4679 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4680 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4681 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4682 DAG.getConstant(ShCt, dl, ShiftTy))); 4683 } 4684 } 4685 } 4686 } 4687 4688 if (C1.getMinSignedBits() <= 64 && 4689 !isLegalICmpImmediate(C1.getSExtValue())) { 4690 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4691 // (X & -256) == 256 -> (X >> 8) == 1 4692 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4693 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4694 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4695 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4696 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4697 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4698 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4699 SDValue Shift = 4700 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4701 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4702 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4703 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4704 } 4705 } 4706 } 4707 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4708 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4709 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4710 // X < 0x100000000 -> (X >> 32) < 1 4711 // X >= 0x100000000 -> (X >> 32) >= 1 4712 // X <= 0x0ffffffff -> (X >> 32) < 1 4713 // X > 0x0ffffffff -> (X >> 32) >= 1 4714 unsigned ShiftBits; 4715 APInt NewC = C1; 4716 ISD::CondCode NewCond = Cond; 4717 if (AdjOne) { 4718 ShiftBits = C1.countTrailingOnes(); 4719 NewC = NewC + 1; 4720 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4721 } else { 4722 ShiftBits = C1.countTrailingZeros(); 4723 } 4724 NewC.lshrInPlace(ShiftBits); 4725 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4726 isLegalICmpImmediate(NewC.getSExtValue()) && 4727 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4728 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4729 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4730 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4731 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4732 } 4733 } 4734 } 4735 } 4736 4737 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4738 auto *CFP = cast<ConstantFPSDNode>(N1); 4739 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4740 4741 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4742 // constant if knowing that the operand is non-nan is enough. We prefer to 4743 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4744 // materialize 0.0. 4745 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4746 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4747 4748 // setcc (fneg x), C -> setcc swap(pred) x, -C 4749 if (N0.getOpcode() == ISD::FNEG) { 4750 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4751 if (DCI.isBeforeLegalizeOps() || 4752 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4753 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4754 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4755 } 4756 } 4757 4758 // If the condition is not legal, see if we can find an equivalent one 4759 // which is legal. 4760 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4761 // If the comparison was an awkward floating-point == or != and one of 4762 // the comparison operands is infinity or negative infinity, convert the 4763 // condition to a less-awkward <= or >=. 4764 if (CFP->getValueAPF().isInfinity()) { 4765 bool IsNegInf = CFP->getValueAPF().isNegative(); 4766 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4767 switch (Cond) { 4768 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4769 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4770 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4771 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4772 default: break; 4773 } 4774 if (NewCond != ISD::SETCC_INVALID && 4775 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4776 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4777 } 4778 } 4779 } 4780 4781 if (N0 == N1) { 4782 // The sext(setcc()) => setcc() optimization relies on the appropriate 4783 // constant being emitted. 4784 assert(!N0.getValueType().isInteger() && 4785 "Integer types should be handled by FoldSetCC"); 4786 4787 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4788 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4789 if (UOF == 2) // FP operators that are undefined on NaNs. 4790 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4791 if (UOF == unsigned(EqTrue)) 4792 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4793 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4794 // if it is not already. 4795 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4796 if (NewCond != Cond && 4797 (DCI.isBeforeLegalizeOps() || 4798 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4799 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4800 } 4801 4802 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4803 N0.getValueType().isInteger()) { 4804 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4805 N0.getOpcode() == ISD::XOR) { 4806 // Simplify (X+Y) == (X+Z) --> Y == Z 4807 if (N0.getOpcode() == N1.getOpcode()) { 4808 if (N0.getOperand(0) == N1.getOperand(0)) 4809 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4810 if (N0.getOperand(1) == N1.getOperand(1)) 4811 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4812 if (isCommutativeBinOp(N0.getOpcode())) { 4813 // If X op Y == Y op X, try other combinations. 4814 if (N0.getOperand(0) == N1.getOperand(1)) 4815 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4816 Cond); 4817 if (N0.getOperand(1) == N1.getOperand(0)) 4818 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4819 Cond); 4820 } 4821 } 4822 4823 // If RHS is a legal immediate value for a compare instruction, we need 4824 // to be careful about increasing register pressure needlessly. 4825 bool LegalRHSImm = false; 4826 4827 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4828 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4829 // Turn (X+C1) == C2 --> X == C2-C1 4830 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4831 return DAG.getSetCC( 4832 dl, VT, N0.getOperand(0), 4833 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4834 dl, N0.getValueType()), 4835 Cond); 4836 4837 // Turn (X^C1) == C2 --> X == C1^C2 4838 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4839 return DAG.getSetCC( 4840 dl, VT, N0.getOperand(0), 4841 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4842 dl, N0.getValueType()), 4843 Cond); 4844 } 4845 4846 // Turn (C1-X) == C2 --> X == C1-C2 4847 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4848 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4849 return DAG.getSetCC( 4850 dl, VT, N0.getOperand(1), 4851 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4852 dl, N0.getValueType()), 4853 Cond); 4854 4855 // Could RHSC fold directly into a compare? 4856 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4857 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4858 } 4859 4860 // (X+Y) == X --> Y == 0 and similar folds. 4861 // Don't do this if X is an immediate that can fold into a cmp 4862 // instruction and X+Y has other uses. It could be an induction variable 4863 // chain, and the transform would increase register pressure. 4864 if (!LegalRHSImm || N0.hasOneUse()) 4865 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4866 return V; 4867 } 4868 4869 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4870 N1.getOpcode() == ISD::XOR) 4871 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4872 return V; 4873 4874 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4875 return V; 4876 } 4877 4878 // Fold remainder of division by a constant. 4879 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4880 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4881 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4882 4883 // When division is cheap or optimizing for minimum size, 4884 // fall through to DIVREM creation by skipping this fold. 4885 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4886 if (N0.getOpcode() == ISD::UREM) { 4887 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4888 return Folded; 4889 } else if (N0.getOpcode() == ISD::SREM) { 4890 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4891 return Folded; 4892 } 4893 } 4894 } 4895 4896 // Fold away ALL boolean setcc's. 4897 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4898 SDValue Temp; 4899 switch (Cond) { 4900 default: llvm_unreachable("Unknown integer setcc!"); 4901 case ISD::SETEQ: // X == Y -> ~(X^Y) 4902 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4903 N0 = DAG.getNOT(dl, Temp, OpVT); 4904 if (!DCI.isCalledByLegalizer()) 4905 DCI.AddToWorklist(Temp.getNode()); 4906 break; 4907 case ISD::SETNE: // X != Y --> (X^Y) 4908 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4909 break; 4910 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4911 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4912 Temp = DAG.getNOT(dl, N0, OpVT); 4913 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4914 if (!DCI.isCalledByLegalizer()) 4915 DCI.AddToWorklist(Temp.getNode()); 4916 break; 4917 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4918 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4919 Temp = DAG.getNOT(dl, N1, OpVT); 4920 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4921 if (!DCI.isCalledByLegalizer()) 4922 DCI.AddToWorklist(Temp.getNode()); 4923 break; 4924 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4925 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4926 Temp = DAG.getNOT(dl, N0, OpVT); 4927 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4928 if (!DCI.isCalledByLegalizer()) 4929 DCI.AddToWorklist(Temp.getNode()); 4930 break; 4931 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4932 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4933 Temp = DAG.getNOT(dl, N1, OpVT); 4934 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4935 break; 4936 } 4937 if (VT.getScalarType() != MVT::i1) { 4938 if (!DCI.isCalledByLegalizer()) 4939 DCI.AddToWorklist(N0.getNode()); 4940 // FIXME: If running after legalize, we probably can't do this. 4941 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4942 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4943 } 4944 return N0; 4945 } 4946 4947 // Could not fold it. 4948 return SDValue(); 4949 } 4950 4951 /// Returns true (and the GlobalValue and the offset) if the node is a 4952 /// GlobalAddress + offset. 4953 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4954 int64_t &Offset) const { 4955 4956 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4957 4958 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4959 GA = GASD->getGlobal(); 4960 Offset += GASD->getOffset(); 4961 return true; 4962 } 4963 4964 if (N->getOpcode() == ISD::ADD) { 4965 SDValue N1 = N->getOperand(0); 4966 SDValue N2 = N->getOperand(1); 4967 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4968 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4969 Offset += V->getSExtValue(); 4970 return true; 4971 } 4972 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4973 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4974 Offset += V->getSExtValue(); 4975 return true; 4976 } 4977 } 4978 } 4979 4980 return false; 4981 } 4982 4983 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4984 DAGCombinerInfo &DCI) const { 4985 // Default implementation: no optimization. 4986 return SDValue(); 4987 } 4988 4989 //===----------------------------------------------------------------------===// 4990 // Inline Assembler Implementation Methods 4991 //===----------------------------------------------------------------------===// 4992 4993 TargetLowering::ConstraintType 4994 TargetLowering::getConstraintType(StringRef Constraint) const { 4995 unsigned S = Constraint.size(); 4996 4997 if (S == 1) { 4998 switch (Constraint[0]) { 4999 default: break; 5000 case 'r': 5001 return C_RegisterClass; 5002 case 'm': // memory 5003 case 'o': // offsetable 5004 case 'V': // not offsetable 5005 return C_Memory; 5006 case 'p': // Address. 5007 return C_Address; 5008 case 'n': // Simple Integer 5009 case 'E': // Floating Point Constant 5010 case 'F': // Floating Point Constant 5011 return C_Immediate; 5012 case 'i': // Simple Integer or Relocatable Constant 5013 case 's': // Relocatable Constant 5014 case 'X': // Allow ANY value. 5015 case 'I': // Target registers. 5016 case 'J': 5017 case 'K': 5018 case 'L': 5019 case 'M': 5020 case 'N': 5021 case 'O': 5022 case 'P': 5023 case '<': 5024 case '>': 5025 return C_Other; 5026 } 5027 } 5028 5029 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5030 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5031 return C_Memory; 5032 return C_Register; 5033 } 5034 return C_Unknown; 5035 } 5036 5037 /// Try to replace an X constraint, which matches anything, with another that 5038 /// has more specific requirements based on the type of the corresponding 5039 /// operand. 5040 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5041 if (ConstraintVT.isInteger()) 5042 return "r"; 5043 if (ConstraintVT.isFloatingPoint()) 5044 return "f"; // works for many targets 5045 return nullptr; 5046 } 5047 5048 SDValue TargetLowering::LowerAsmOutputForConstraint( 5049 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5050 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5051 return SDValue(); 5052 } 5053 5054 /// Lower the specified operand into the Ops vector. 5055 /// If it is invalid, don't add anything to Ops. 5056 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5057 std::string &Constraint, 5058 std::vector<SDValue> &Ops, 5059 SelectionDAG &DAG) const { 5060 5061 if (Constraint.length() > 1) return; 5062 5063 char ConstraintLetter = Constraint[0]; 5064 switch (ConstraintLetter) { 5065 default: break; 5066 case 'X': // Allows any operand 5067 case 'i': // Simple Integer or Relocatable Constant 5068 case 'n': // Simple Integer 5069 case 's': { // Relocatable Constant 5070 5071 ConstantSDNode *C; 5072 uint64_t Offset = 0; 5073 5074 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5075 // etc., since getelementpointer is variadic. We can't use 5076 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5077 // while in this case the GA may be furthest from the root node which is 5078 // likely an ISD::ADD. 5079 while (true) { 5080 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5081 // gcc prints these as sign extended. Sign extend value to 64 bits 5082 // now; without this it would get ZExt'd later in 5083 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5084 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5085 BooleanContent BCont = getBooleanContents(MVT::i64); 5086 ISD::NodeType ExtOpc = 5087 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5088 int64_t ExtVal = 5089 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5090 Ops.push_back( 5091 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5092 return; 5093 } 5094 if (ConstraintLetter != 'n') { 5095 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5096 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5097 GA->getValueType(0), 5098 Offset + GA->getOffset())); 5099 return; 5100 } 5101 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5102 Ops.push_back(DAG.getTargetBlockAddress( 5103 BA->getBlockAddress(), BA->getValueType(0), 5104 Offset + BA->getOffset(), BA->getTargetFlags())); 5105 return; 5106 } 5107 if (isa<BasicBlockSDNode>(Op)) { 5108 Ops.push_back(Op); 5109 return; 5110 } 5111 } 5112 const unsigned OpCode = Op.getOpcode(); 5113 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5114 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5115 Op = Op.getOperand(1); 5116 // Subtraction is not commutative. 5117 else if (OpCode == ISD::ADD && 5118 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5119 Op = Op.getOperand(0); 5120 else 5121 return; 5122 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5123 continue; 5124 } 5125 return; 5126 } 5127 break; 5128 } 5129 } 5130 } 5131 5132 std::pair<unsigned, const TargetRegisterClass *> 5133 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5134 StringRef Constraint, 5135 MVT VT) const { 5136 if (Constraint.empty() || Constraint[0] != '{') 5137 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5138 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5139 5140 // Remove the braces from around the name. 5141 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5142 5143 std::pair<unsigned, const TargetRegisterClass *> R = 5144 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5145 5146 // Figure out which register class contains this reg. 5147 for (const TargetRegisterClass *RC : RI->regclasses()) { 5148 // If none of the value types for this register class are valid, we 5149 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5150 if (!isLegalRC(*RI, *RC)) 5151 continue; 5152 5153 for (const MCPhysReg &PR : *RC) { 5154 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5155 std::pair<unsigned, const TargetRegisterClass *> S = 5156 std::make_pair(PR, RC); 5157 5158 // If this register class has the requested value type, return it, 5159 // otherwise keep searching and return the first class found 5160 // if no other is found which explicitly has the requested type. 5161 if (RI->isTypeLegalForClass(*RC, VT)) 5162 return S; 5163 if (!R.second) 5164 R = S; 5165 } 5166 } 5167 } 5168 5169 return R; 5170 } 5171 5172 //===----------------------------------------------------------------------===// 5173 // Constraint Selection. 5174 5175 /// Return true of this is an input operand that is a matching constraint like 5176 /// "4". 5177 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5178 assert(!ConstraintCode.empty() && "No known constraint!"); 5179 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5180 } 5181 5182 /// If this is an input matching constraint, this method returns the output 5183 /// operand it matches. 5184 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5185 assert(!ConstraintCode.empty() && "No known constraint!"); 5186 return atoi(ConstraintCode.c_str()); 5187 } 5188 5189 /// Split up the constraint string from the inline assembly value into the 5190 /// specific constraints and their prefixes, and also tie in the associated 5191 /// operand values. 5192 /// If this returns an empty vector, and if the constraint string itself 5193 /// isn't empty, there was an error parsing. 5194 TargetLowering::AsmOperandInfoVector 5195 TargetLowering::ParseConstraints(const DataLayout &DL, 5196 const TargetRegisterInfo *TRI, 5197 const CallBase &Call) const { 5198 /// Information about all of the constraints. 5199 AsmOperandInfoVector ConstraintOperands; 5200 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5201 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5202 5203 // Do a prepass over the constraints, canonicalizing them, and building up the 5204 // ConstraintOperands list. 5205 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5206 unsigned ResNo = 0; // ResNo - The result number of the next output. 5207 5208 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5209 ConstraintOperands.emplace_back(std::move(CI)); 5210 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5211 5212 // Update multiple alternative constraint count. 5213 if (OpInfo.multipleAlternatives.size() > maCount) 5214 maCount = OpInfo.multipleAlternatives.size(); 5215 5216 OpInfo.ConstraintVT = MVT::Other; 5217 5218 // Compute the value type for each operand. 5219 switch (OpInfo.Type) { 5220 case InlineAsm::isOutput: 5221 // Indirect outputs just consume an argument. 5222 if (OpInfo.isIndirect) { 5223 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5224 break; 5225 } 5226 5227 // The return value of the call is this value. As such, there is no 5228 // corresponding argument. 5229 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5230 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5231 OpInfo.ConstraintVT = 5232 getSimpleValueType(DL, STy->getElementType(ResNo)); 5233 } else { 5234 assert(ResNo == 0 && "Asm only has one result!"); 5235 OpInfo.ConstraintVT = 5236 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5237 } 5238 ++ResNo; 5239 break; 5240 case InlineAsm::isInput: 5241 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5242 break; 5243 case InlineAsm::isClobber: 5244 // Nothing to do. 5245 break; 5246 } 5247 5248 if (OpInfo.CallOperandVal) { 5249 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5250 if (OpInfo.isIndirect) { 5251 OpTy = Call.getParamElementType(ArgNo); 5252 assert(OpTy && "Indirect operand must have elementtype attribute"); 5253 } 5254 5255 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5256 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5257 if (STy->getNumElements() == 1) 5258 OpTy = STy->getElementType(0); 5259 5260 // If OpTy is not a single value, it may be a struct/union that we 5261 // can tile with integers. 5262 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5263 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5264 switch (BitSize) { 5265 default: break; 5266 case 1: 5267 case 8: 5268 case 16: 5269 case 32: 5270 case 64: 5271 case 128: 5272 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5273 break; 5274 } 5275 } 5276 5277 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5278 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5279 ArgNo++; 5280 } 5281 } 5282 5283 // If we have multiple alternative constraints, select the best alternative. 5284 if (!ConstraintOperands.empty()) { 5285 if (maCount) { 5286 unsigned bestMAIndex = 0; 5287 int bestWeight = -1; 5288 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5289 int weight = -1; 5290 unsigned maIndex; 5291 // Compute the sums of the weights for each alternative, keeping track 5292 // of the best (highest weight) one so far. 5293 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5294 int weightSum = 0; 5295 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5296 cIndex != eIndex; ++cIndex) { 5297 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5298 if (OpInfo.Type == InlineAsm::isClobber) 5299 continue; 5300 5301 // If this is an output operand with a matching input operand, 5302 // look up the matching input. If their types mismatch, e.g. one 5303 // is an integer, the other is floating point, or their sizes are 5304 // different, flag it as an maCantMatch. 5305 if (OpInfo.hasMatchingInput()) { 5306 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5307 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5308 if ((OpInfo.ConstraintVT.isInteger() != 5309 Input.ConstraintVT.isInteger()) || 5310 (OpInfo.ConstraintVT.getSizeInBits() != 5311 Input.ConstraintVT.getSizeInBits())) { 5312 weightSum = -1; // Can't match. 5313 break; 5314 } 5315 } 5316 } 5317 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5318 if (weight == -1) { 5319 weightSum = -1; 5320 break; 5321 } 5322 weightSum += weight; 5323 } 5324 // Update best. 5325 if (weightSum > bestWeight) { 5326 bestWeight = weightSum; 5327 bestMAIndex = maIndex; 5328 } 5329 } 5330 5331 // Now select chosen alternative in each constraint. 5332 for (AsmOperandInfo &cInfo : ConstraintOperands) 5333 if (cInfo.Type != InlineAsm::isClobber) 5334 cInfo.selectAlternative(bestMAIndex); 5335 } 5336 } 5337 5338 // Check and hook up tied operands, choose constraint code to use. 5339 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5340 cIndex != eIndex; ++cIndex) { 5341 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5342 5343 // If this is an output operand with a matching input operand, look up the 5344 // matching input. If their types mismatch, e.g. one is an integer, the 5345 // other is floating point, or their sizes are different, flag it as an 5346 // error. 5347 if (OpInfo.hasMatchingInput()) { 5348 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5349 5350 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5351 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5352 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5353 OpInfo.ConstraintVT); 5354 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5355 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5356 Input.ConstraintVT); 5357 if ((OpInfo.ConstraintVT.isInteger() != 5358 Input.ConstraintVT.isInteger()) || 5359 (MatchRC.second != InputRC.second)) { 5360 report_fatal_error("Unsupported asm: input constraint" 5361 " with a matching output constraint of" 5362 " incompatible type!"); 5363 } 5364 } 5365 } 5366 } 5367 5368 return ConstraintOperands; 5369 } 5370 5371 /// Return an integer indicating how general CT is. 5372 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5373 switch (CT) { 5374 case TargetLowering::C_Immediate: 5375 case TargetLowering::C_Other: 5376 case TargetLowering::C_Unknown: 5377 return 0; 5378 case TargetLowering::C_Register: 5379 return 1; 5380 case TargetLowering::C_RegisterClass: 5381 return 2; 5382 case TargetLowering::C_Memory: 5383 case TargetLowering::C_Address: 5384 return 3; 5385 } 5386 llvm_unreachable("Invalid constraint type"); 5387 } 5388 5389 /// Examine constraint type and operand type and determine a weight value. 5390 /// This object must already have been set up with the operand type 5391 /// and the current alternative constraint selected. 5392 TargetLowering::ConstraintWeight 5393 TargetLowering::getMultipleConstraintMatchWeight( 5394 AsmOperandInfo &info, int maIndex) const { 5395 InlineAsm::ConstraintCodeVector *rCodes; 5396 if (maIndex >= (int)info.multipleAlternatives.size()) 5397 rCodes = &info.Codes; 5398 else 5399 rCodes = &info.multipleAlternatives[maIndex].Codes; 5400 ConstraintWeight BestWeight = CW_Invalid; 5401 5402 // Loop over the options, keeping track of the most general one. 5403 for (const std::string &rCode : *rCodes) { 5404 ConstraintWeight weight = 5405 getSingleConstraintMatchWeight(info, rCode.c_str()); 5406 if (weight > BestWeight) 5407 BestWeight = weight; 5408 } 5409 5410 return BestWeight; 5411 } 5412 5413 /// Examine constraint type and operand type and determine a weight value. 5414 /// This object must already have been set up with the operand type 5415 /// and the current alternative constraint selected. 5416 TargetLowering::ConstraintWeight 5417 TargetLowering::getSingleConstraintMatchWeight( 5418 AsmOperandInfo &info, const char *constraint) const { 5419 ConstraintWeight weight = CW_Invalid; 5420 Value *CallOperandVal = info.CallOperandVal; 5421 // If we don't have a value, we can't do a match, 5422 // but allow it at the lowest weight. 5423 if (!CallOperandVal) 5424 return CW_Default; 5425 // Look at the constraint type. 5426 switch (*constraint) { 5427 case 'i': // immediate integer. 5428 case 'n': // immediate integer with a known value. 5429 if (isa<ConstantInt>(CallOperandVal)) 5430 weight = CW_Constant; 5431 break; 5432 case 's': // non-explicit intregal immediate. 5433 if (isa<GlobalValue>(CallOperandVal)) 5434 weight = CW_Constant; 5435 break; 5436 case 'E': // immediate float if host format. 5437 case 'F': // immediate float. 5438 if (isa<ConstantFP>(CallOperandVal)) 5439 weight = CW_Constant; 5440 break; 5441 case '<': // memory operand with autodecrement. 5442 case '>': // memory operand with autoincrement. 5443 case 'm': // memory operand. 5444 case 'o': // offsettable memory operand 5445 case 'V': // non-offsettable memory operand 5446 weight = CW_Memory; 5447 break; 5448 case 'r': // general register. 5449 case 'g': // general register, memory operand or immediate integer. 5450 // note: Clang converts "g" to "imr". 5451 if (CallOperandVal->getType()->isIntegerTy()) 5452 weight = CW_Register; 5453 break; 5454 case 'X': // any operand. 5455 default: 5456 weight = CW_Default; 5457 break; 5458 } 5459 return weight; 5460 } 5461 5462 /// If there are multiple different constraints that we could pick for this 5463 /// operand (e.g. "imr") try to pick the 'best' one. 5464 /// This is somewhat tricky: constraints fall into four classes: 5465 /// Other -> immediates and magic values 5466 /// Register -> one specific register 5467 /// RegisterClass -> a group of regs 5468 /// Memory -> memory 5469 /// Ideally, we would pick the most specific constraint possible: if we have 5470 /// something that fits into a register, we would pick it. The problem here 5471 /// is that if we have something that could either be in a register or in 5472 /// memory that use of the register could cause selection of *other* 5473 /// operands to fail: they might only succeed if we pick memory. Because of 5474 /// this the heuristic we use is: 5475 /// 5476 /// 1) If there is an 'other' constraint, and if the operand is valid for 5477 /// that constraint, use it. This makes us take advantage of 'i' 5478 /// constraints when available. 5479 /// 2) Otherwise, pick the most general constraint present. This prefers 5480 /// 'm' over 'r', for example. 5481 /// 5482 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5483 const TargetLowering &TLI, 5484 SDValue Op, SelectionDAG *DAG) { 5485 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5486 unsigned BestIdx = 0; 5487 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5488 int BestGenerality = -1; 5489 5490 // Loop over the options, keeping track of the most general one. 5491 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5492 TargetLowering::ConstraintType CType = 5493 TLI.getConstraintType(OpInfo.Codes[i]); 5494 5495 // Indirect 'other' or 'immediate' constraints are not allowed. 5496 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5497 CType == TargetLowering::C_Register || 5498 CType == TargetLowering::C_RegisterClass)) 5499 continue; 5500 5501 // If this is an 'other' or 'immediate' constraint, see if the operand is 5502 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5503 // the operand is an integer in the range [0..31] we want to use I (saving a 5504 // load of a register), otherwise we must use 'r'. 5505 if ((CType == TargetLowering::C_Other || 5506 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5507 assert(OpInfo.Codes[i].size() == 1 && 5508 "Unhandled multi-letter 'other' constraint"); 5509 std::vector<SDValue> ResultOps; 5510 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5511 ResultOps, *DAG); 5512 if (!ResultOps.empty()) { 5513 BestType = CType; 5514 BestIdx = i; 5515 break; 5516 } 5517 } 5518 5519 // Things with matching constraints can only be registers, per gcc 5520 // documentation. This mainly affects "g" constraints. 5521 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5522 continue; 5523 5524 // This constraint letter is more general than the previous one, use it. 5525 int Generality = getConstraintGenerality(CType); 5526 if (Generality > BestGenerality) { 5527 BestType = CType; 5528 BestIdx = i; 5529 BestGenerality = Generality; 5530 } 5531 } 5532 5533 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5534 OpInfo.ConstraintType = BestType; 5535 } 5536 5537 /// Determines the constraint code and constraint type to use for the specific 5538 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5539 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5540 SDValue Op, 5541 SelectionDAG *DAG) const { 5542 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5543 5544 // Single-letter constraints ('r') are very common. 5545 if (OpInfo.Codes.size() == 1) { 5546 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5547 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5548 } else { 5549 ChooseConstraint(OpInfo, *this, Op, DAG); 5550 } 5551 5552 // 'X' matches anything. 5553 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5554 // Constants are handled elsewhere. For Functions, the type here is the 5555 // type of the result, which is not what we want to look at; leave them 5556 // alone. 5557 Value *v = OpInfo.CallOperandVal; 5558 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5559 return; 5560 } 5561 5562 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5563 OpInfo.ConstraintCode = "i"; 5564 return; 5565 } 5566 5567 // Otherwise, try to resolve it to something we know about by looking at 5568 // the actual operand type. 5569 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5570 OpInfo.ConstraintCode = Repl; 5571 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5572 } 5573 } 5574 } 5575 5576 /// Given an exact SDIV by a constant, create a multiplication 5577 /// with the multiplicative inverse of the constant. 5578 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5579 const SDLoc &dl, SelectionDAG &DAG, 5580 SmallVectorImpl<SDNode *> &Created) { 5581 SDValue Op0 = N->getOperand(0); 5582 SDValue Op1 = N->getOperand(1); 5583 EVT VT = N->getValueType(0); 5584 EVT SVT = VT.getScalarType(); 5585 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5586 EVT ShSVT = ShVT.getScalarType(); 5587 5588 bool UseSRA = false; 5589 SmallVector<SDValue, 16> Shifts, Factors; 5590 5591 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5592 if (C->isZero()) 5593 return false; 5594 APInt Divisor = C->getAPIntValue(); 5595 unsigned Shift = Divisor.countTrailingZeros(); 5596 if (Shift) { 5597 Divisor.ashrInPlace(Shift); 5598 UseSRA = true; 5599 } 5600 // Calculate the multiplicative inverse, using Newton's method. 5601 APInt t; 5602 APInt Factor = Divisor; 5603 while ((t = Divisor * Factor) != 1) 5604 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5605 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5606 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5607 return true; 5608 }; 5609 5610 // Collect all magic values from the build vector. 5611 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5612 return SDValue(); 5613 5614 SDValue Shift, Factor; 5615 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5616 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5617 Factor = DAG.getBuildVector(VT, dl, Factors); 5618 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5619 assert(Shifts.size() == 1 && Factors.size() == 1 && 5620 "Expected matchUnaryPredicate to return one element for scalable " 5621 "vectors"); 5622 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5623 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5624 } else { 5625 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5626 Shift = Shifts[0]; 5627 Factor = Factors[0]; 5628 } 5629 5630 SDValue Res = Op0; 5631 5632 // Shift the value upfront if it is even, so the LSB is one. 5633 if (UseSRA) { 5634 // TODO: For UDIV use SRL instead of SRA. 5635 SDNodeFlags Flags; 5636 Flags.setExact(true); 5637 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5638 Created.push_back(Res.getNode()); 5639 } 5640 5641 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5642 } 5643 5644 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5645 SelectionDAG &DAG, 5646 SmallVectorImpl<SDNode *> &Created) const { 5647 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5649 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5650 return SDValue(N, 0); // Lower SDIV as SDIV 5651 return SDValue(); 5652 } 5653 5654 SDValue 5655 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5656 SelectionDAG &DAG, 5657 SmallVectorImpl<SDNode *> &Created) const { 5658 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5660 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5661 return SDValue(N, 0); // Lower SREM as SREM 5662 return SDValue(); 5663 } 5664 5665 /// Given an ISD::SDIV node expressing a divide by constant, 5666 /// return a DAG expression to select that will generate the same value by 5667 /// multiplying by a magic number. 5668 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5669 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5670 bool IsAfterLegalization, 5671 SmallVectorImpl<SDNode *> &Created) const { 5672 SDLoc dl(N); 5673 EVT VT = N->getValueType(0); 5674 EVT SVT = VT.getScalarType(); 5675 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5676 EVT ShSVT = ShVT.getScalarType(); 5677 unsigned EltBits = VT.getScalarSizeInBits(); 5678 EVT MulVT; 5679 5680 // Check to see if we can do this. 5681 // FIXME: We should be more aggressive here. 5682 if (!isTypeLegal(VT)) { 5683 // Limit this to simple scalars for now. 5684 if (VT.isVector() || !VT.isSimple()) 5685 return SDValue(); 5686 5687 // If this type will be promoted to a large enough type with a legal 5688 // multiply operation, we can go ahead and do this transform. 5689 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5690 return SDValue(); 5691 5692 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5693 if (MulVT.getSizeInBits() < (2 * EltBits) || 5694 !isOperationLegal(ISD::MUL, MulVT)) 5695 return SDValue(); 5696 } 5697 5698 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5699 if (N->getFlags().hasExact()) 5700 return BuildExactSDIV(*this, N, dl, DAG, Created); 5701 5702 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5703 5704 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5705 if (C->isZero()) 5706 return false; 5707 5708 const APInt &Divisor = C->getAPIntValue(); 5709 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5710 int NumeratorFactor = 0; 5711 int ShiftMask = -1; 5712 5713 if (Divisor.isOne() || Divisor.isAllOnes()) { 5714 // If d is +1/-1, we just multiply the numerator by +1/-1. 5715 NumeratorFactor = Divisor.getSExtValue(); 5716 magics.Magic = 0; 5717 magics.ShiftAmount = 0; 5718 ShiftMask = 0; 5719 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5720 // If d > 0 and m < 0, add the numerator. 5721 NumeratorFactor = 1; 5722 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5723 // If d < 0 and m > 0, subtract the numerator. 5724 NumeratorFactor = -1; 5725 } 5726 5727 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5728 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5729 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5730 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5731 return true; 5732 }; 5733 5734 SDValue N0 = N->getOperand(0); 5735 SDValue N1 = N->getOperand(1); 5736 5737 // Collect the shifts / magic values from each element. 5738 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5739 return SDValue(); 5740 5741 SDValue MagicFactor, Factor, Shift, ShiftMask; 5742 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5743 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5744 Factor = DAG.getBuildVector(VT, dl, Factors); 5745 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5746 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5747 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5748 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5749 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5750 "Expected matchUnaryPredicate to return one element for scalable " 5751 "vectors"); 5752 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5753 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5754 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5755 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5756 } else { 5757 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5758 MagicFactor = MagicFactors[0]; 5759 Factor = Factors[0]; 5760 Shift = Shifts[0]; 5761 ShiftMask = ShiftMasks[0]; 5762 } 5763 5764 // Multiply the numerator (operand 0) by the magic value. 5765 // FIXME: We should support doing a MUL in a wider type. 5766 auto GetMULHS = [&](SDValue X, SDValue Y) { 5767 // If the type isn't legal, use a wider mul of the the type calculated 5768 // earlier. 5769 if (!isTypeLegal(VT)) { 5770 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5771 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5772 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5773 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5774 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5775 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5776 } 5777 5778 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5779 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5780 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5781 SDValue LoHi = 5782 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5783 return SDValue(LoHi.getNode(), 1); 5784 } 5785 return SDValue(); 5786 }; 5787 5788 SDValue Q = GetMULHS(N0, MagicFactor); 5789 if (!Q) 5790 return SDValue(); 5791 5792 Created.push_back(Q.getNode()); 5793 5794 // (Optionally) Add/subtract the numerator using Factor. 5795 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5796 Created.push_back(Factor.getNode()); 5797 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5798 Created.push_back(Q.getNode()); 5799 5800 // Shift right algebraic by shift value. 5801 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5802 Created.push_back(Q.getNode()); 5803 5804 // Extract the sign bit, mask it and add it to the quotient. 5805 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5806 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5807 Created.push_back(T.getNode()); 5808 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5809 Created.push_back(T.getNode()); 5810 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5811 } 5812 5813 /// Given an ISD::UDIV node expressing a divide by constant, 5814 /// return a DAG expression to select that will generate the same value by 5815 /// multiplying by a magic number. 5816 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5817 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5818 bool IsAfterLegalization, 5819 SmallVectorImpl<SDNode *> &Created) const { 5820 SDLoc dl(N); 5821 EVT VT = N->getValueType(0); 5822 EVT SVT = VT.getScalarType(); 5823 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5824 EVT ShSVT = ShVT.getScalarType(); 5825 unsigned EltBits = VT.getScalarSizeInBits(); 5826 EVT MulVT; 5827 5828 // Check to see if we can do this. 5829 // FIXME: We should be more aggressive here. 5830 if (!isTypeLegal(VT)) { 5831 // Limit this to simple scalars for now. 5832 if (VT.isVector() || !VT.isSimple()) 5833 return SDValue(); 5834 5835 // If this type will be promoted to a large enough type with a legal 5836 // multiply operation, we can go ahead and do this transform. 5837 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5838 return SDValue(); 5839 5840 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5841 if (MulVT.getSizeInBits() < (2 * EltBits) || 5842 !isOperationLegal(ISD::MUL, MulVT)) 5843 return SDValue(); 5844 } 5845 5846 bool UseNPQ = false; 5847 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5848 5849 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5850 if (C->isZero()) 5851 return false; 5852 // FIXME: We should use a narrower constant when the upper 5853 // bits are known to be zero. 5854 const APInt& Divisor = C->getAPIntValue(); 5855 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5856 unsigned PreShift = 0, PostShift = 0; 5857 5858 // If the divisor is even, we can avoid using the expensive fixup by 5859 // shifting the divided value upfront. 5860 if (magics.IsAdd != 0 && !Divisor[0]) { 5861 PreShift = Divisor.countTrailingZeros(); 5862 // Get magic number for the shifted divisor. 5863 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5864 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5865 } 5866 5867 APInt Magic = magics.Magic; 5868 5869 unsigned SelNPQ; 5870 if (magics.IsAdd == 0 || Divisor.isOne()) { 5871 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5872 "We shouldn't generate an undefined shift!"); 5873 PostShift = magics.ShiftAmount; 5874 SelNPQ = false; 5875 } else { 5876 PostShift = magics.ShiftAmount - 1; 5877 SelNPQ = true; 5878 } 5879 5880 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5881 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5882 NPQFactors.push_back( 5883 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5884 : APInt::getZero(EltBits), 5885 dl, SVT)); 5886 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5887 UseNPQ |= SelNPQ; 5888 return true; 5889 }; 5890 5891 SDValue N0 = N->getOperand(0); 5892 SDValue N1 = N->getOperand(1); 5893 5894 // Collect the shifts/magic values from each element. 5895 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5896 return SDValue(); 5897 5898 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5899 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5900 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5901 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5902 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5903 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5904 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5905 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5906 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5907 "Expected matchUnaryPredicate to return one for scalable vectors"); 5908 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5909 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5910 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5911 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5912 } else { 5913 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5914 PreShift = PreShifts[0]; 5915 MagicFactor = MagicFactors[0]; 5916 PostShift = PostShifts[0]; 5917 } 5918 5919 SDValue Q = N0; 5920 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5921 Created.push_back(Q.getNode()); 5922 5923 // FIXME: We should support doing a MUL in a wider type. 5924 auto GetMULHU = [&](SDValue X, SDValue Y) { 5925 // If the type isn't legal, use a wider mul of the the type calculated 5926 // earlier. 5927 if (!isTypeLegal(VT)) { 5928 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5929 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5930 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5931 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5932 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5933 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5934 } 5935 5936 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5937 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5938 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5939 SDValue LoHi = 5940 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5941 return SDValue(LoHi.getNode(), 1); 5942 } 5943 return SDValue(); // No mulhu or equivalent 5944 }; 5945 5946 // Multiply the numerator (operand 0) by the magic value. 5947 Q = GetMULHU(Q, MagicFactor); 5948 if (!Q) 5949 return SDValue(); 5950 5951 Created.push_back(Q.getNode()); 5952 5953 if (UseNPQ) { 5954 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5955 Created.push_back(NPQ.getNode()); 5956 5957 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5958 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5959 if (VT.isVector()) 5960 NPQ = GetMULHU(NPQ, NPQFactor); 5961 else 5962 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5963 5964 Created.push_back(NPQ.getNode()); 5965 5966 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5967 Created.push_back(Q.getNode()); 5968 } 5969 5970 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5971 Created.push_back(Q.getNode()); 5972 5973 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5974 5975 SDValue One = DAG.getConstant(1, dl, VT); 5976 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5977 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5978 } 5979 5980 /// If all values in Values that *don't* match the predicate are same 'splat' 5981 /// value, then replace all values with that splat value. 5982 /// Else, if AlternativeReplacement was provided, then replace all values that 5983 /// do match predicate with AlternativeReplacement value. 5984 static void 5985 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5986 std::function<bool(SDValue)> Predicate, 5987 SDValue AlternativeReplacement = SDValue()) { 5988 SDValue Replacement; 5989 // Is there a value for which the Predicate does *NOT* match? What is it? 5990 auto SplatValue = llvm::find_if_not(Values, Predicate); 5991 if (SplatValue != Values.end()) { 5992 // Does Values consist only of SplatValue's and values matching Predicate? 5993 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5994 return Value == *SplatValue || Predicate(Value); 5995 })) // Then we shall replace values matching predicate with SplatValue. 5996 Replacement = *SplatValue; 5997 } 5998 if (!Replacement) { 5999 // Oops, we did not find the "baseline" splat value. 6000 if (!AlternativeReplacement) 6001 return; // Nothing to do. 6002 // Let's replace with provided value then. 6003 Replacement = AlternativeReplacement; 6004 } 6005 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6006 } 6007 6008 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6009 /// where the divisor is constant and the comparison target is zero, 6010 /// return a DAG expression that will generate the same comparison result 6011 /// using only multiplications, additions and shifts/rotations. 6012 /// Ref: "Hacker's Delight" 10-17. 6013 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6014 SDValue CompTargetNode, 6015 ISD::CondCode Cond, 6016 DAGCombinerInfo &DCI, 6017 const SDLoc &DL) const { 6018 SmallVector<SDNode *, 5> Built; 6019 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6020 DCI, DL, Built)) { 6021 for (SDNode *N : Built) 6022 DCI.AddToWorklist(N); 6023 return Folded; 6024 } 6025 6026 return SDValue(); 6027 } 6028 6029 SDValue 6030 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6031 SDValue CompTargetNode, ISD::CondCode Cond, 6032 DAGCombinerInfo &DCI, const SDLoc &DL, 6033 SmallVectorImpl<SDNode *> &Created) const { 6034 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6035 // - D must be constant, with D = D0 * 2^K where D0 is odd 6036 // - P is the multiplicative inverse of D0 modulo 2^W 6037 // - Q = floor(((2^W) - 1) / D) 6038 // where W is the width of the common type of N and D. 6039 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6040 "Only applicable for (in)equality comparisons."); 6041 6042 SelectionDAG &DAG = DCI.DAG; 6043 6044 EVT VT = REMNode.getValueType(); 6045 EVT SVT = VT.getScalarType(); 6046 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6047 EVT ShSVT = ShVT.getScalarType(); 6048 6049 // If MUL is unavailable, we cannot proceed in any case. 6050 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6051 return SDValue(); 6052 6053 bool ComparingWithAllZeros = true; 6054 bool AllComparisonsWithNonZerosAreTautological = true; 6055 bool HadTautologicalLanes = false; 6056 bool AllLanesAreTautological = true; 6057 bool HadEvenDivisor = false; 6058 bool AllDivisorsArePowerOfTwo = true; 6059 bool HadTautologicalInvertedLanes = false; 6060 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6061 6062 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6063 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6064 if (CDiv->isZero()) 6065 return false; 6066 6067 const APInt &D = CDiv->getAPIntValue(); 6068 const APInt &Cmp = CCmp->getAPIntValue(); 6069 6070 ComparingWithAllZeros &= Cmp.isZero(); 6071 6072 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6073 // if C2 is not less than C1, the comparison is always false. 6074 // But we will only be able to produce the comparison that will give the 6075 // opposive tautological answer. So this lane would need to be fixed up. 6076 bool TautologicalInvertedLane = D.ule(Cmp); 6077 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6078 6079 // If all lanes are tautological (either all divisors are ones, or divisor 6080 // is not greater than the constant we are comparing with), 6081 // we will prefer to avoid the fold. 6082 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6083 HadTautologicalLanes |= TautologicalLane; 6084 AllLanesAreTautological &= TautologicalLane; 6085 6086 // If we are comparing with non-zero, we need'll need to subtract said 6087 // comparison value from the LHS. But there is no point in doing that if 6088 // every lane where we are comparing with non-zero is tautological.. 6089 if (!Cmp.isZero()) 6090 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6091 6092 // Decompose D into D0 * 2^K 6093 unsigned K = D.countTrailingZeros(); 6094 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6095 APInt D0 = D.lshr(K); 6096 6097 // D is even if it has trailing zeros. 6098 HadEvenDivisor |= (K != 0); 6099 // D is a power-of-two if D0 is one. 6100 // If all divisors are power-of-two, we will prefer to avoid the fold. 6101 AllDivisorsArePowerOfTwo &= D0.isOne(); 6102 6103 // P = inv(D0, 2^W) 6104 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6105 unsigned W = D.getBitWidth(); 6106 APInt P = D0.zext(W + 1) 6107 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6108 .trunc(W); 6109 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6110 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6111 6112 // Q = floor((2^W - 1) u/ D) 6113 // R = ((2^W - 1) u% D) 6114 APInt Q, R; 6115 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6116 6117 // If we are comparing with zero, then that comparison constant is okay, 6118 // else it may need to be one less than that. 6119 if (Cmp.ugt(R)) 6120 Q -= 1; 6121 6122 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6123 "We are expecting that K is always less than all-ones for ShSVT"); 6124 6125 // If the lane is tautological the result can be constant-folded. 6126 if (TautologicalLane) { 6127 // Set P and K amount to a bogus values so we can try to splat them. 6128 P = 0; 6129 K = -1; 6130 // And ensure that comparison constant is tautological, 6131 // it will always compare true/false. 6132 Q = -1; 6133 } 6134 6135 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6136 KAmts.push_back( 6137 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6138 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6139 return true; 6140 }; 6141 6142 SDValue N = REMNode.getOperand(0); 6143 SDValue D = REMNode.getOperand(1); 6144 6145 // Collect the values from each element. 6146 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6147 return SDValue(); 6148 6149 // If all lanes are tautological, the result can be constant-folded. 6150 if (AllLanesAreTautological) 6151 return SDValue(); 6152 6153 // If this is a urem by a powers-of-two, avoid the fold since it can be 6154 // best implemented as a bit test. 6155 if (AllDivisorsArePowerOfTwo) 6156 return SDValue(); 6157 6158 SDValue PVal, KVal, QVal; 6159 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6160 if (HadTautologicalLanes) { 6161 // Try to turn PAmts into a splat, since we don't care about the values 6162 // that are currently '0'. If we can't, just keep '0'`s. 6163 turnVectorIntoSplatVector(PAmts, isNullConstant); 6164 // Try to turn KAmts into a splat, since we don't care about the values 6165 // that are currently '-1'. If we can't, change them to '0'`s. 6166 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6167 DAG.getConstant(0, DL, ShSVT)); 6168 } 6169 6170 PVal = DAG.getBuildVector(VT, DL, PAmts); 6171 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6172 QVal = DAG.getBuildVector(VT, DL, QAmts); 6173 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6174 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6175 "Expected matchBinaryPredicate to return one element for " 6176 "SPLAT_VECTORs"); 6177 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6178 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6179 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6180 } else { 6181 PVal = PAmts[0]; 6182 KVal = KAmts[0]; 6183 QVal = QAmts[0]; 6184 } 6185 6186 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6187 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6188 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6189 assert(CompTargetNode.getValueType() == N.getValueType() && 6190 "Expecting that the types on LHS and RHS of comparisons match."); 6191 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6192 } 6193 6194 // (mul N, P) 6195 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6196 Created.push_back(Op0.getNode()); 6197 6198 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6199 // divisors as a performance improvement, since rotating by 0 is a no-op. 6200 if (HadEvenDivisor) { 6201 // We need ROTR to do this. 6202 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6203 return SDValue(); 6204 // UREM: (rotr (mul N, P), K) 6205 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6206 Created.push_back(Op0.getNode()); 6207 } 6208 6209 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6210 SDValue NewCC = 6211 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6212 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6213 if (!HadTautologicalInvertedLanes) 6214 return NewCC; 6215 6216 // If any lanes previously compared always-false, the NewCC will give 6217 // always-true result for them, so we need to fixup those lanes. 6218 // Or the other way around for inequality predicate. 6219 assert(VT.isVector() && "Can/should only get here for vectors."); 6220 Created.push_back(NewCC.getNode()); 6221 6222 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6223 // if C2 is not less than C1, the comparison is always false. 6224 // But we have produced the comparison that will give the 6225 // opposive tautological answer. So these lanes would need to be fixed up. 6226 SDValue TautologicalInvertedChannels = 6227 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6228 Created.push_back(TautologicalInvertedChannels.getNode()); 6229 6230 // NOTE: we avoid letting illegal types through even if we're before legalize 6231 // ops – legalization has a hard time producing good code for this. 6232 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6233 // If we have a vector select, let's replace the comparison results in the 6234 // affected lanes with the correct tautological result. 6235 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6236 DL, SETCCVT, SETCCVT); 6237 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6238 Replacement, NewCC); 6239 } 6240 6241 // Else, we can just invert the comparison result in the appropriate lanes. 6242 // 6243 // NOTE: see the note above VSELECT above. 6244 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6245 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6246 TautologicalInvertedChannels); 6247 6248 return SDValue(); // Don't know how to lower. 6249 } 6250 6251 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6252 /// where the divisor is constant and the comparison target is zero, 6253 /// return a DAG expression that will generate the same comparison result 6254 /// using only multiplications, additions and shifts/rotations. 6255 /// Ref: "Hacker's Delight" 10-17. 6256 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6257 SDValue CompTargetNode, 6258 ISD::CondCode Cond, 6259 DAGCombinerInfo &DCI, 6260 const SDLoc &DL) const { 6261 SmallVector<SDNode *, 7> Built; 6262 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6263 DCI, DL, Built)) { 6264 assert(Built.size() <= 7 && "Max size prediction failed."); 6265 for (SDNode *N : Built) 6266 DCI.AddToWorklist(N); 6267 return Folded; 6268 } 6269 6270 return SDValue(); 6271 } 6272 6273 SDValue 6274 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6275 SDValue CompTargetNode, ISD::CondCode Cond, 6276 DAGCombinerInfo &DCI, const SDLoc &DL, 6277 SmallVectorImpl<SDNode *> &Created) const { 6278 // Fold: 6279 // (seteq/ne (srem N, D), 0) 6280 // To: 6281 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6282 // 6283 // - D must be constant, with D = D0 * 2^K where D0 is odd 6284 // - P is the multiplicative inverse of D0 modulo 2^W 6285 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6286 // - Q = floor((2 * A) / (2^K)) 6287 // where W is the width of the common type of N and D. 6288 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6289 "Only applicable for (in)equality comparisons."); 6290 6291 SelectionDAG &DAG = DCI.DAG; 6292 6293 EVT VT = REMNode.getValueType(); 6294 EVT SVT = VT.getScalarType(); 6295 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6296 EVT ShSVT = ShVT.getScalarType(); 6297 6298 // If we are after ops legalization, and MUL is unavailable, we can not 6299 // proceed. 6300 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6301 return SDValue(); 6302 6303 // TODO: Could support comparing with non-zero too. 6304 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6305 if (!CompTarget || !CompTarget->isZero()) 6306 return SDValue(); 6307 6308 bool HadIntMinDivisor = false; 6309 bool HadOneDivisor = false; 6310 bool AllDivisorsAreOnes = true; 6311 bool HadEvenDivisor = false; 6312 bool NeedToApplyOffset = false; 6313 bool AllDivisorsArePowerOfTwo = true; 6314 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6315 6316 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6317 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6318 if (C->isZero()) 6319 return false; 6320 6321 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6322 6323 // WARNING: this fold is only valid for positive divisors! 6324 APInt D = C->getAPIntValue(); 6325 if (D.isNegative()) 6326 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6327 6328 HadIntMinDivisor |= D.isMinSignedValue(); 6329 6330 // If all divisors are ones, we will prefer to avoid the fold. 6331 HadOneDivisor |= D.isOne(); 6332 AllDivisorsAreOnes &= D.isOne(); 6333 6334 // Decompose D into D0 * 2^K 6335 unsigned K = D.countTrailingZeros(); 6336 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6337 APInt D0 = D.lshr(K); 6338 6339 if (!D.isMinSignedValue()) { 6340 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6341 // we don't care about this lane in this fold, we'll special-handle it. 6342 HadEvenDivisor |= (K != 0); 6343 } 6344 6345 // D is a power-of-two if D0 is one. This includes INT_MIN. 6346 // If all divisors are power-of-two, we will prefer to avoid the fold. 6347 AllDivisorsArePowerOfTwo &= D0.isOne(); 6348 6349 // P = inv(D0, 2^W) 6350 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6351 unsigned W = D.getBitWidth(); 6352 APInt P = D0.zext(W + 1) 6353 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6354 .trunc(W); 6355 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6356 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6357 6358 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6359 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6360 A.clearLowBits(K); 6361 6362 if (!D.isMinSignedValue()) { 6363 // If divisor INT_MIN, then we don't care about this lane in this fold, 6364 // we'll special-handle it. 6365 NeedToApplyOffset |= A != 0; 6366 } 6367 6368 // Q = floor((2 * A) / (2^K)) 6369 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6370 6371 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6372 "We are expecting that A is always less than all-ones for SVT"); 6373 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6374 "We are expecting that K is always less than all-ones for ShSVT"); 6375 6376 // If the divisor is 1 the result can be constant-folded. Likewise, we 6377 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6378 if (D.isOne()) { 6379 // Set P, A and K to a bogus values so we can try to splat them. 6380 P = 0; 6381 A = -1; 6382 K = -1; 6383 6384 // x ?% 1 == 0 <--> true <--> x u<= -1 6385 Q = -1; 6386 } 6387 6388 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6389 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6390 KAmts.push_back( 6391 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6392 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6393 return true; 6394 }; 6395 6396 SDValue N = REMNode.getOperand(0); 6397 SDValue D = REMNode.getOperand(1); 6398 6399 // Collect the values from each element. 6400 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6401 return SDValue(); 6402 6403 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6404 if (AllDivisorsAreOnes) 6405 return SDValue(); 6406 6407 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6408 // since it can be best implemented as a bit test. 6409 if (AllDivisorsArePowerOfTwo) 6410 return SDValue(); 6411 6412 SDValue PVal, AVal, KVal, QVal; 6413 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6414 if (HadOneDivisor) { 6415 // Try to turn PAmts into a splat, since we don't care about the values 6416 // that are currently '0'. If we can't, just keep '0'`s. 6417 turnVectorIntoSplatVector(PAmts, isNullConstant); 6418 // Try to turn AAmts into a splat, since we don't care about the 6419 // values that are currently '-1'. If we can't, change them to '0'`s. 6420 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6421 DAG.getConstant(0, DL, SVT)); 6422 // Try to turn KAmts into a splat, since we don't care about the values 6423 // that are currently '-1'. If we can't, change them to '0'`s. 6424 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6425 DAG.getConstant(0, DL, ShSVT)); 6426 } 6427 6428 PVal = DAG.getBuildVector(VT, DL, PAmts); 6429 AVal = DAG.getBuildVector(VT, DL, AAmts); 6430 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6431 QVal = DAG.getBuildVector(VT, DL, QAmts); 6432 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6433 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6434 QAmts.size() == 1 && 6435 "Expected matchUnaryPredicate to return one element for scalable " 6436 "vectors"); 6437 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6438 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6439 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6440 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6441 } else { 6442 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6443 PVal = PAmts[0]; 6444 AVal = AAmts[0]; 6445 KVal = KAmts[0]; 6446 QVal = QAmts[0]; 6447 } 6448 6449 // (mul N, P) 6450 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6451 Created.push_back(Op0.getNode()); 6452 6453 if (NeedToApplyOffset) { 6454 // We need ADD to do this. 6455 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6456 return SDValue(); 6457 6458 // (add (mul N, P), A) 6459 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6460 Created.push_back(Op0.getNode()); 6461 } 6462 6463 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6464 // divisors as a performance improvement, since rotating by 0 is a no-op. 6465 if (HadEvenDivisor) { 6466 // We need ROTR to do this. 6467 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6468 return SDValue(); 6469 // SREM: (rotr (add (mul N, P), A), K) 6470 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6471 Created.push_back(Op0.getNode()); 6472 } 6473 6474 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6475 SDValue Fold = 6476 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6477 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6478 6479 // If we didn't have lanes with INT_MIN divisor, then we're done. 6480 if (!HadIntMinDivisor) 6481 return Fold; 6482 6483 // That fold is only valid for positive divisors. Which effectively means, 6484 // it is invalid for INT_MIN divisors. So if we have such a lane, 6485 // we must fix-up results for said lanes. 6486 assert(VT.isVector() && "Can/should only get here for vectors."); 6487 6488 // NOTE: we avoid letting illegal types through even if we're before legalize 6489 // ops – legalization has a hard time producing good code for the code that 6490 // follows. 6491 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6492 !isOperationLegalOrCustom(ISD::AND, VT) || 6493 !isOperationLegalOrCustom(Cond, VT) || 6494 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6495 return SDValue(); 6496 6497 Created.push_back(Fold.getNode()); 6498 6499 SDValue IntMin = DAG.getConstant( 6500 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6501 SDValue IntMax = DAG.getConstant( 6502 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6503 SDValue Zero = 6504 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6505 6506 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6507 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6508 Created.push_back(DivisorIsIntMin.getNode()); 6509 6510 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6511 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6512 Created.push_back(Masked.getNode()); 6513 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6514 Created.push_back(MaskedIsZero.getNode()); 6515 6516 // To produce final result we need to blend 2 vectors: 'SetCC' and 6517 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6518 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6519 // constant-folded, select can get lowered to a shuffle with constant mask. 6520 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6521 MaskedIsZero, Fold); 6522 6523 return Blended; 6524 } 6525 6526 bool TargetLowering:: 6527 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6528 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6529 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6530 "be a constant integer"); 6531 return true; 6532 } 6533 6534 return false; 6535 } 6536 6537 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6538 const DenormalMode &Mode) const { 6539 SDLoc DL(Op); 6540 EVT VT = Op.getValueType(); 6541 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6542 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6543 // Testing it with denormal inputs to avoid wrong estimate. 6544 if (Mode.Input == DenormalMode::IEEE) { 6545 // This is specifically a check for the handling of denormal inputs, 6546 // not the result. 6547 6548 // Test = fabs(X) < SmallestNormal 6549 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6550 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6551 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6552 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6553 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6554 } 6555 // Test = X == 0.0 6556 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6557 } 6558 6559 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6560 bool LegalOps, bool OptForSize, 6561 NegatibleCost &Cost, 6562 unsigned Depth) const { 6563 // fneg is removable even if it has multiple uses. 6564 if (Op.getOpcode() == ISD::FNEG) { 6565 Cost = NegatibleCost::Cheaper; 6566 return Op.getOperand(0); 6567 } 6568 6569 // Don't recurse exponentially. 6570 if (Depth > SelectionDAG::MaxRecursionDepth) 6571 return SDValue(); 6572 6573 // Pre-increment recursion depth for use in recursive calls. 6574 ++Depth; 6575 const SDNodeFlags Flags = Op->getFlags(); 6576 const TargetOptions &Options = DAG.getTarget().Options; 6577 EVT VT = Op.getValueType(); 6578 unsigned Opcode = Op.getOpcode(); 6579 6580 // Don't allow anything with multiple uses unless we know it is free. 6581 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6582 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6583 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6584 if (!IsFreeExtend) 6585 return SDValue(); 6586 } 6587 6588 auto RemoveDeadNode = [&](SDValue N) { 6589 if (N && N.getNode()->use_empty()) 6590 DAG.RemoveDeadNode(N.getNode()); 6591 }; 6592 6593 SDLoc DL(Op); 6594 6595 // Because getNegatedExpression can delete nodes we need a handle to keep 6596 // temporary nodes alive in case the recursion manages to create an identical 6597 // node. 6598 std::list<HandleSDNode> Handles; 6599 6600 switch (Opcode) { 6601 case ISD::ConstantFP: { 6602 // Don't invert constant FP values after legalization unless the target says 6603 // the negated constant is legal. 6604 bool IsOpLegal = 6605 isOperationLegal(ISD::ConstantFP, VT) || 6606 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6607 OptForSize); 6608 6609 if (LegalOps && !IsOpLegal) 6610 break; 6611 6612 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6613 V.changeSign(); 6614 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6615 6616 // If we already have the use of the negated floating constant, it is free 6617 // to negate it even it has multiple uses. 6618 if (!Op.hasOneUse() && CFP.use_empty()) 6619 break; 6620 Cost = NegatibleCost::Neutral; 6621 return CFP; 6622 } 6623 case ISD::BUILD_VECTOR: { 6624 // Only permit BUILD_VECTOR of constants. 6625 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6626 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6627 })) 6628 break; 6629 6630 bool IsOpLegal = 6631 (isOperationLegal(ISD::ConstantFP, VT) && 6632 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6633 llvm::all_of(Op->op_values(), [&](SDValue N) { 6634 return N.isUndef() || 6635 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6636 OptForSize); 6637 }); 6638 6639 if (LegalOps && !IsOpLegal) 6640 break; 6641 6642 SmallVector<SDValue, 4> Ops; 6643 for (SDValue C : Op->op_values()) { 6644 if (C.isUndef()) { 6645 Ops.push_back(C); 6646 continue; 6647 } 6648 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6649 V.changeSign(); 6650 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6651 } 6652 Cost = NegatibleCost::Neutral; 6653 return DAG.getBuildVector(VT, DL, Ops); 6654 } 6655 case ISD::FADD: { 6656 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6657 break; 6658 6659 // After operation legalization, it might not be legal to create new FSUBs. 6660 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6661 break; 6662 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6663 6664 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6665 NegatibleCost CostX = NegatibleCost::Expensive; 6666 SDValue NegX = 6667 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6668 // Prevent this node from being deleted by the next call. 6669 if (NegX) 6670 Handles.emplace_back(NegX); 6671 6672 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6673 NegatibleCost CostY = NegatibleCost::Expensive; 6674 SDValue NegY = 6675 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6676 6677 // We're done with the handles. 6678 Handles.clear(); 6679 6680 // Negate the X if its cost is less or equal than Y. 6681 if (NegX && (CostX <= CostY)) { 6682 Cost = CostX; 6683 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6684 if (NegY != N) 6685 RemoveDeadNode(NegY); 6686 return N; 6687 } 6688 6689 // Negate the Y if it is not expensive. 6690 if (NegY) { 6691 Cost = CostY; 6692 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6693 if (NegX != N) 6694 RemoveDeadNode(NegX); 6695 return N; 6696 } 6697 break; 6698 } 6699 case ISD::FSUB: { 6700 // We can't turn -(A-B) into B-A when we honor signed zeros. 6701 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6702 break; 6703 6704 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6705 // fold (fneg (fsub 0, Y)) -> Y 6706 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6707 if (C->isZero()) { 6708 Cost = NegatibleCost::Cheaper; 6709 return Y; 6710 } 6711 6712 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6713 Cost = NegatibleCost::Neutral; 6714 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6715 } 6716 case ISD::FMUL: 6717 case ISD::FDIV: { 6718 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6719 6720 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6721 NegatibleCost CostX = NegatibleCost::Expensive; 6722 SDValue NegX = 6723 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6724 // Prevent this node from being deleted by the next call. 6725 if (NegX) 6726 Handles.emplace_back(NegX); 6727 6728 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6729 NegatibleCost CostY = NegatibleCost::Expensive; 6730 SDValue NegY = 6731 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6732 6733 // We're done with the handles. 6734 Handles.clear(); 6735 6736 // Negate the X if its cost is less or equal than Y. 6737 if (NegX && (CostX <= CostY)) { 6738 Cost = CostX; 6739 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6740 if (NegY != N) 6741 RemoveDeadNode(NegY); 6742 return N; 6743 } 6744 6745 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6746 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6747 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6748 break; 6749 6750 // Negate the Y if it is not expensive. 6751 if (NegY) { 6752 Cost = CostY; 6753 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6754 if (NegX != N) 6755 RemoveDeadNode(NegX); 6756 return N; 6757 } 6758 break; 6759 } 6760 case ISD::FMA: 6761 case ISD::FMAD: { 6762 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6763 break; 6764 6765 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6766 NegatibleCost CostZ = NegatibleCost::Expensive; 6767 SDValue NegZ = 6768 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6769 // Give up if fail to negate the Z. 6770 if (!NegZ) 6771 break; 6772 6773 // Prevent this node from being deleted by the next two calls. 6774 Handles.emplace_back(NegZ); 6775 6776 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6777 NegatibleCost CostX = NegatibleCost::Expensive; 6778 SDValue NegX = 6779 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6780 // Prevent this node from being deleted by the next call. 6781 if (NegX) 6782 Handles.emplace_back(NegX); 6783 6784 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6785 NegatibleCost CostY = NegatibleCost::Expensive; 6786 SDValue NegY = 6787 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6788 6789 // We're done with the handles. 6790 Handles.clear(); 6791 6792 // Negate the X if its cost is less or equal than Y. 6793 if (NegX && (CostX <= CostY)) { 6794 Cost = std::min(CostX, CostZ); 6795 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6796 if (NegY != N) 6797 RemoveDeadNode(NegY); 6798 return N; 6799 } 6800 6801 // Negate the Y if it is not expensive. 6802 if (NegY) { 6803 Cost = std::min(CostY, CostZ); 6804 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6805 if (NegX != N) 6806 RemoveDeadNode(NegX); 6807 return N; 6808 } 6809 break; 6810 } 6811 6812 case ISD::FP_EXTEND: 6813 case ISD::FSIN: 6814 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6815 OptForSize, Cost, Depth)) 6816 return DAG.getNode(Opcode, DL, VT, NegV); 6817 break; 6818 case ISD::FP_ROUND: 6819 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6820 OptForSize, Cost, Depth)) 6821 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6822 break; 6823 } 6824 6825 return SDValue(); 6826 } 6827 6828 //===----------------------------------------------------------------------===// 6829 // Legalization Utilities 6830 //===----------------------------------------------------------------------===// 6831 6832 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6833 SDValue LHS, SDValue RHS, 6834 SmallVectorImpl<SDValue> &Result, 6835 EVT HiLoVT, SelectionDAG &DAG, 6836 MulExpansionKind Kind, SDValue LL, 6837 SDValue LH, SDValue RL, SDValue RH) const { 6838 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6839 Opcode == ISD::SMUL_LOHI); 6840 6841 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6842 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6843 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6844 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6845 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6846 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6847 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6848 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6849 6850 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6851 return false; 6852 6853 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6854 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6855 6856 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6857 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6858 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6859 6860 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6861 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6862 bool Signed) -> bool { 6863 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6864 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6865 Hi = SDValue(Lo.getNode(), 1); 6866 return true; 6867 } 6868 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6869 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6870 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6871 return true; 6872 } 6873 return false; 6874 }; 6875 6876 SDValue Lo, Hi; 6877 6878 if (!LL.getNode() && !RL.getNode() && 6879 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6880 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6881 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6882 } 6883 6884 if (!LL.getNode()) 6885 return false; 6886 6887 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6888 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6889 DAG.MaskedValueIsZero(RHS, HighMask)) { 6890 // The inputs are both zero-extended. 6891 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6892 Result.push_back(Lo); 6893 Result.push_back(Hi); 6894 if (Opcode != ISD::MUL) { 6895 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6896 Result.push_back(Zero); 6897 Result.push_back(Zero); 6898 } 6899 return true; 6900 } 6901 } 6902 6903 if (!VT.isVector() && Opcode == ISD::MUL && 6904 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6905 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6906 // The input values are both sign-extended. 6907 // TODO non-MUL case? 6908 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6909 Result.push_back(Lo); 6910 Result.push_back(Hi); 6911 return true; 6912 } 6913 } 6914 6915 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6916 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6917 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6918 6919 if (!LH.getNode() && !RH.getNode() && 6920 isOperationLegalOrCustom(ISD::SRL, VT) && 6921 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6922 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6923 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6924 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6925 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6926 } 6927 6928 if (!LH.getNode()) 6929 return false; 6930 6931 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6932 return false; 6933 6934 Result.push_back(Lo); 6935 6936 if (Opcode == ISD::MUL) { 6937 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6938 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6939 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6940 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6941 Result.push_back(Hi); 6942 return true; 6943 } 6944 6945 // Compute the full width result. 6946 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6947 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6948 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6949 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6950 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6951 }; 6952 6953 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6954 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6955 return false; 6956 6957 // This is effectively the add part of a multiply-add of half-sized operands, 6958 // so it cannot overflow. 6959 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6960 6961 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6962 return false; 6963 6964 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6965 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6966 6967 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6968 isOperationLegalOrCustom(ISD::ADDE, VT)); 6969 if (UseGlue) 6970 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6971 Merge(Lo, Hi)); 6972 else 6973 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6974 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6975 6976 SDValue Carry = Next.getValue(1); 6977 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6978 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6979 6980 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6981 return false; 6982 6983 if (UseGlue) 6984 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6985 Carry); 6986 else 6987 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6988 Zero, Carry); 6989 6990 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6991 6992 if (Opcode == ISD::SMUL_LOHI) { 6993 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6994 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6995 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6996 6997 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6998 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6999 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7000 } 7001 7002 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7003 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7004 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7005 return true; 7006 } 7007 7008 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7009 SelectionDAG &DAG, MulExpansionKind Kind, 7010 SDValue LL, SDValue LH, SDValue RL, 7011 SDValue RH) const { 7012 SmallVector<SDValue, 2> Result; 7013 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7014 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7015 DAG, Kind, LL, LH, RL, RH); 7016 if (Ok) { 7017 assert(Result.size() == 2); 7018 Lo = Result[0]; 7019 Hi = Result[1]; 7020 } 7021 return Ok; 7022 } 7023 7024 // Check that (every element of) Z is undef or not an exact multiple of BW. 7025 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7026 return ISD::matchUnaryPredicate( 7027 Z, 7028 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7029 true); 7030 } 7031 7032 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7033 SelectionDAG &DAG) const { 7034 EVT VT = Node->getValueType(0); 7035 7036 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7037 !isOperationLegalOrCustom(ISD::SRL, VT) || 7038 !isOperationLegalOrCustom(ISD::SUB, VT) || 7039 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7040 return SDValue(); 7041 7042 SDValue X = Node->getOperand(0); 7043 SDValue Y = Node->getOperand(1); 7044 SDValue Z = Node->getOperand(2); 7045 7046 unsigned BW = VT.getScalarSizeInBits(); 7047 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7048 SDLoc DL(SDValue(Node, 0)); 7049 7050 EVT ShVT = Z.getValueType(); 7051 7052 // If a funnel shift in the other direction is more supported, use it. 7053 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7054 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7055 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7056 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7057 // fshl X, Y, Z -> fshr X, Y, -Z 7058 // fshr X, Y, Z -> fshl X, Y, -Z 7059 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7060 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7061 } else { 7062 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7063 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7064 SDValue One = DAG.getConstant(1, DL, ShVT); 7065 if (IsFSHL) { 7066 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7067 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7068 } else { 7069 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7070 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7071 } 7072 Z = DAG.getNOT(DL, Z, ShVT); 7073 } 7074 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7075 } 7076 7077 SDValue ShX, ShY; 7078 SDValue ShAmt, InvShAmt; 7079 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7080 // fshl: X << C | Y >> (BW - C) 7081 // fshr: X << (BW - C) | Y >> C 7082 // where C = Z % BW is not zero 7083 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7084 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7085 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7086 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7087 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7088 } else { 7089 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7090 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7091 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7092 if (isPowerOf2_32(BW)) { 7093 // Z % BW -> Z & (BW - 1) 7094 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7095 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7096 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7097 } else { 7098 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7099 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7100 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7101 } 7102 7103 SDValue One = DAG.getConstant(1, DL, ShVT); 7104 if (IsFSHL) { 7105 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7106 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7107 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7108 } else { 7109 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7110 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7111 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7112 } 7113 } 7114 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7115 } 7116 7117 // TODO: Merge with expandFunnelShift. 7118 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7119 SelectionDAG &DAG) const { 7120 EVT VT = Node->getValueType(0); 7121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7122 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7123 SDValue Op0 = Node->getOperand(0); 7124 SDValue Op1 = Node->getOperand(1); 7125 SDLoc DL(SDValue(Node, 0)); 7126 7127 EVT ShVT = Op1.getValueType(); 7128 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7129 7130 // If a rotate in the other direction is more supported, use it. 7131 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7132 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7133 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7134 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7135 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7136 } 7137 7138 if (!AllowVectorOps && VT.isVector() && 7139 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7140 !isOperationLegalOrCustom(ISD::SRL, VT) || 7141 !isOperationLegalOrCustom(ISD::SUB, VT) || 7142 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7143 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7144 return SDValue(); 7145 7146 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7147 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7148 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7149 SDValue ShVal; 7150 SDValue HsVal; 7151 if (isPowerOf2_32(EltSizeInBits)) { 7152 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7153 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7154 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7155 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7156 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7157 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7158 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7159 } else { 7160 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7161 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7162 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7163 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7164 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7165 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7166 SDValue One = DAG.getConstant(1, DL, ShVT); 7167 HsVal = 7168 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7169 } 7170 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7171 } 7172 7173 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7174 SelectionDAG &DAG) const { 7175 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7176 EVT VT = Node->getValueType(0); 7177 unsigned VTBits = VT.getScalarSizeInBits(); 7178 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7179 7180 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7181 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7182 SDValue ShOpLo = Node->getOperand(0); 7183 SDValue ShOpHi = Node->getOperand(1); 7184 SDValue ShAmt = Node->getOperand(2); 7185 EVT ShAmtVT = ShAmt.getValueType(); 7186 EVT ShAmtCCVT = 7187 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7188 SDLoc dl(Node); 7189 7190 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7191 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7192 // away during isel. 7193 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7194 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7195 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7196 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7197 : DAG.getConstant(0, dl, VT); 7198 7199 SDValue Tmp2, Tmp3; 7200 if (IsSHL) { 7201 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7202 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7203 } else { 7204 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7205 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7206 } 7207 7208 // If the shift amount is larger or equal than the width of a part we don't 7209 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7210 // values for large shift amounts. 7211 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7212 DAG.getConstant(VTBits, dl, ShAmtVT)); 7213 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7214 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7215 7216 if (IsSHL) { 7217 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7218 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7219 } else { 7220 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7221 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7222 } 7223 } 7224 7225 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7226 SelectionDAG &DAG) const { 7227 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7228 SDValue Src = Node->getOperand(OpNo); 7229 EVT SrcVT = Src.getValueType(); 7230 EVT DstVT = Node->getValueType(0); 7231 SDLoc dl(SDValue(Node, 0)); 7232 7233 // FIXME: Only f32 to i64 conversions are supported. 7234 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7235 return false; 7236 7237 if (Node->isStrictFPOpcode()) 7238 // When a NaN is converted to an integer a trap is allowed. We can't 7239 // use this expansion here because it would eliminate that trap. Other 7240 // traps are also allowed and cannot be eliminated. See 7241 // IEEE 754-2008 sec 5.8. 7242 return false; 7243 7244 // Expand f32 -> i64 conversion 7245 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7246 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7247 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7248 EVT IntVT = SrcVT.changeTypeToInteger(); 7249 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7250 7251 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7252 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7253 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7254 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7255 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7256 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7257 7258 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7259 7260 SDValue ExponentBits = DAG.getNode( 7261 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7262 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7263 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7264 7265 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7266 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7267 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7268 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7269 7270 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7271 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7272 DAG.getConstant(0x00800000, dl, IntVT)); 7273 7274 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7275 7276 R = DAG.getSelectCC( 7277 dl, Exponent, ExponentLoBit, 7278 DAG.getNode(ISD::SHL, dl, DstVT, R, 7279 DAG.getZExtOrTrunc( 7280 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7281 dl, IntShVT)), 7282 DAG.getNode(ISD::SRL, dl, DstVT, R, 7283 DAG.getZExtOrTrunc( 7284 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7285 dl, IntShVT)), 7286 ISD::SETGT); 7287 7288 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7289 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7290 7291 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7292 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7293 return true; 7294 } 7295 7296 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7297 SDValue &Chain, 7298 SelectionDAG &DAG) const { 7299 SDLoc dl(SDValue(Node, 0)); 7300 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7301 SDValue Src = Node->getOperand(OpNo); 7302 7303 EVT SrcVT = Src.getValueType(); 7304 EVT DstVT = Node->getValueType(0); 7305 EVT SetCCVT = 7306 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7307 EVT DstSetCCVT = 7308 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7309 7310 // Only expand vector types if we have the appropriate vector bit operations. 7311 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7312 ISD::FP_TO_SINT; 7313 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7314 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7315 return false; 7316 7317 // If the maximum float value is smaller then the signed integer range, 7318 // the destination signmask can't be represented by the float, so we can 7319 // just use FP_TO_SINT directly. 7320 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7321 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7322 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7323 if (APFloat::opOverflow & 7324 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7325 if (Node->isStrictFPOpcode()) { 7326 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7327 { Node->getOperand(0), Src }); 7328 Chain = Result.getValue(1); 7329 } else 7330 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7331 return true; 7332 } 7333 7334 // Don't expand it if there isn't cheap fsub instruction. 7335 if (!isOperationLegalOrCustom( 7336 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7337 return false; 7338 7339 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7340 SDValue Sel; 7341 7342 if (Node->isStrictFPOpcode()) { 7343 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7344 Node->getOperand(0), /*IsSignaling*/ true); 7345 Chain = Sel.getValue(1); 7346 } else { 7347 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7348 } 7349 7350 bool Strict = Node->isStrictFPOpcode() || 7351 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7352 7353 if (Strict) { 7354 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7355 // signmask then offset (the result of which should be fully representable). 7356 // Sel = Src < 0x8000000000000000 7357 // FltOfs = select Sel, 0, 0x8000000000000000 7358 // IntOfs = select Sel, 0, 0x8000000000000000 7359 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7360 7361 // TODO: Should any fast-math-flags be set for the FSUB? 7362 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7363 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7364 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7365 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7366 DAG.getConstant(0, dl, DstVT), 7367 DAG.getConstant(SignMask, dl, DstVT)); 7368 SDValue SInt; 7369 if (Node->isStrictFPOpcode()) { 7370 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7371 { Chain, Src, FltOfs }); 7372 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7373 { Val.getValue(1), Val }); 7374 Chain = SInt.getValue(1); 7375 } else { 7376 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7377 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7378 } 7379 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7380 } else { 7381 // Expand based on maximum range of FP_TO_SINT: 7382 // True = fp_to_sint(Src) 7383 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7384 // Result = select (Src < 0x8000000000000000), True, False 7385 7386 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7387 // TODO: Should any fast-math-flags be set for the FSUB? 7388 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7389 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7390 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7391 DAG.getConstant(SignMask, dl, DstVT)); 7392 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7393 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7394 } 7395 return true; 7396 } 7397 7398 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7399 SDValue &Chain, 7400 SelectionDAG &DAG) const { 7401 // This transform is not correct for converting 0 when rounding mode is set 7402 // to round toward negative infinity which will produce -0.0. So disable under 7403 // strictfp. 7404 if (Node->isStrictFPOpcode()) 7405 return false; 7406 7407 SDValue Src = Node->getOperand(0); 7408 EVT SrcVT = Src.getValueType(); 7409 EVT DstVT = Node->getValueType(0); 7410 7411 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7412 return false; 7413 7414 // Only expand vector types if we have the appropriate vector bit operations. 7415 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7416 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7417 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7418 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7419 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7420 return false; 7421 7422 SDLoc dl(SDValue(Node, 0)); 7423 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7424 7425 // Implementation of unsigned i64 to f64 following the algorithm in 7426 // __floatundidf in compiler_rt. This implementation performs rounding 7427 // correctly in all rounding modes with the exception of converting 0 7428 // when rounding toward negative infinity. In that case the fsub will produce 7429 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7430 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7431 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7432 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7433 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7434 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7435 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7436 7437 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7438 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7439 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7440 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7441 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7442 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7443 SDValue HiSub = 7444 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7445 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7446 return true; 7447 } 7448 7449 SDValue 7450 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7451 SelectionDAG &DAG) const { 7452 unsigned Opcode = Node->getOpcode(); 7453 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7454 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7455 "Wrong opcode"); 7456 7457 if (Node->getFlags().hasNoNaNs()) { 7458 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7459 SDValue Op1 = Node->getOperand(0); 7460 SDValue Op2 = Node->getOperand(1); 7461 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7462 // Copy FMF flags, but always set the no-signed-zeros flag 7463 // as this is implied by the FMINNUM/FMAXNUM semantics. 7464 SDNodeFlags Flags = Node->getFlags(); 7465 Flags.setNoSignedZeros(true); 7466 SelCC->setFlags(Flags); 7467 return SelCC; 7468 } 7469 7470 return SDValue(); 7471 } 7472 7473 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7474 SelectionDAG &DAG) const { 7475 SDLoc dl(Node); 7476 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7477 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7478 EVT VT = Node->getValueType(0); 7479 7480 if (VT.isScalableVector()) 7481 report_fatal_error( 7482 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7483 7484 if (isOperationLegalOrCustom(NewOp, VT)) { 7485 SDValue Quiet0 = Node->getOperand(0); 7486 SDValue Quiet1 = Node->getOperand(1); 7487 7488 if (!Node->getFlags().hasNoNaNs()) { 7489 // Insert canonicalizes if it's possible we need to quiet to get correct 7490 // sNaN behavior. 7491 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7492 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7493 Node->getFlags()); 7494 } 7495 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7496 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7497 Node->getFlags()); 7498 } 7499 } 7500 7501 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7502 } 7503 7504 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7505 // instead if there are no NaNs. 7506 if (Node->getFlags().hasNoNaNs()) { 7507 unsigned IEEE2018Op = 7508 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7509 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7510 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7511 Node->getOperand(1), Node->getFlags()); 7512 } 7513 } 7514 7515 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7516 return SelCC; 7517 7518 return SDValue(); 7519 } 7520 7521 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7522 unsigned Test, SDNodeFlags Flags, 7523 const SDLoc &DL, 7524 SelectionDAG &DAG) const { 7525 EVT OperandVT = Op.getValueType(); 7526 assert(OperandVT.isFloatingPoint()); 7527 7528 // Degenerated cases. 7529 if (Test == 0) 7530 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7531 if ((Test & fcAllFlags) == fcAllFlags) 7532 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7533 7534 // PPC double double is a pair of doubles, of which the higher part determines 7535 // the value class. 7536 if (OperandVT == MVT::ppcf128) { 7537 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7538 DAG.getConstant(1, DL, MVT::i32)); 7539 OperandVT = MVT::f64; 7540 } 7541 7542 // Some checks may be represented as inversion of simpler check, for example 7543 // "inf|normal|subnormal|zero" => !"nan". 7544 bool IsInverted = false; 7545 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7546 IsInverted = true; 7547 Test = InvertedCheck; 7548 } 7549 7550 // Floating-point type properties. 7551 EVT ScalarFloatVT = OperandVT.getScalarType(); 7552 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7553 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7554 bool IsF80 = (ScalarFloatVT == MVT::f80); 7555 7556 // Some checks can be implemented using float comparisons, if floating point 7557 // exceptions are ignored. 7558 if (Flags.hasNoFPExcept() && 7559 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7560 if (Test == fcZero) 7561 return DAG.getSetCC(DL, ResultVT, Op, 7562 DAG.getConstantFP(0.0, DL, OperandVT), 7563 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7564 if (Test == fcNan) 7565 return DAG.getSetCC(DL, ResultVT, Op, Op, 7566 IsInverted ? ISD::SETO : ISD::SETUO); 7567 } 7568 7569 // In the general case use integer operations. 7570 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7571 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7572 if (OperandVT.isVector()) 7573 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7574 OperandVT.getVectorElementCount()); 7575 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7576 7577 // Various masks. 7578 APInt SignBit = APInt::getSignMask(BitSize); 7579 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7580 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7581 const unsigned ExplicitIntBitInF80 = 63; 7582 APInt ExpMask = Inf; 7583 if (IsF80) 7584 ExpMask.clearBit(ExplicitIntBitInF80); 7585 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7586 APInt QNaNBitMask = 7587 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7588 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7589 7590 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7591 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7592 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7593 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7594 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7595 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7596 7597 SDValue Res; 7598 const auto appendResult = [&](SDValue PartialRes) { 7599 if (PartialRes) { 7600 if (Res) 7601 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7602 else 7603 Res = PartialRes; 7604 } 7605 }; 7606 7607 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7608 const auto getIntBitIsSet = [&]() -> SDValue { 7609 if (!IntBitIsSetV) { 7610 APInt IntBitMask(BitSize, 0); 7611 IntBitMask.setBit(ExplicitIntBitInF80); 7612 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7613 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7614 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7615 } 7616 return IntBitIsSetV; 7617 }; 7618 7619 // Split the value into sign bit and absolute value. 7620 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7621 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7622 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7623 7624 // Tests that involve more than one class should be processed first. 7625 SDValue PartialRes; 7626 7627 if (IsF80) 7628 ; // Detect finite numbers of f80 by checking individual classes because 7629 // they have different settings of the explicit integer bit. 7630 else if ((Test & fcFinite) == fcFinite) { 7631 // finite(V) ==> abs(V) < exp_mask 7632 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7633 Test &= ~fcFinite; 7634 } else if ((Test & fcFinite) == fcPosFinite) { 7635 // finite(V) && V > 0 ==> V < exp_mask 7636 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7637 Test &= ~fcPosFinite; 7638 } else if ((Test & fcFinite) == fcNegFinite) { 7639 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7640 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7641 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7642 Test &= ~fcNegFinite; 7643 } 7644 appendResult(PartialRes); 7645 7646 // Check for individual classes. 7647 7648 if (unsigned PartialCheck = Test & fcZero) { 7649 if (PartialCheck == fcPosZero) 7650 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7651 else if (PartialCheck == fcZero) 7652 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7653 else // ISD::fcNegZero 7654 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7655 appendResult(PartialRes); 7656 } 7657 7658 if (unsigned PartialCheck = Test & fcInf) { 7659 if (PartialCheck == fcPosInf) 7660 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7661 else if (PartialCheck == fcInf) 7662 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7663 else { // ISD::fcNegInf 7664 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7665 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7666 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7667 } 7668 appendResult(PartialRes); 7669 } 7670 7671 if (unsigned PartialCheck = Test & fcNan) { 7672 APInt InfWithQnanBit = Inf | QNaNBitMask; 7673 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7674 if (PartialCheck == fcNan) { 7675 // isnan(V) ==> abs(V) > int(inf) 7676 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7677 if (IsF80) { 7678 // Recognize unsupported values as NaNs for compatibility with glibc. 7679 // In them (exp(V)==0) == int_bit. 7680 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7681 SDValue ExpIsZero = 7682 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7683 SDValue IsPseudo = 7684 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7685 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7686 } 7687 } else if (PartialCheck == fcQNan) { 7688 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7689 PartialRes = 7690 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7691 } else { // ISD::fcSNan 7692 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7693 // abs(V) < (unsigned(Inf) | quiet_bit) 7694 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7695 SDValue IsNotQnan = 7696 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7697 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7698 } 7699 appendResult(PartialRes); 7700 } 7701 7702 if (unsigned PartialCheck = Test & fcSubnormal) { 7703 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7704 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7705 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7706 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7707 SDValue VMinusOneV = 7708 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7709 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7710 if (PartialCheck == fcNegSubnormal) 7711 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7712 appendResult(PartialRes); 7713 } 7714 7715 if (unsigned PartialCheck = Test & fcNormal) { 7716 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7717 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7718 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7719 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7720 APInt ExpLimit = ExpMask - ExpLSB; 7721 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7722 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7723 if (PartialCheck == fcNegNormal) 7724 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7725 else if (PartialCheck == fcPosNormal) { 7726 SDValue PosSignV = 7727 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7728 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7729 } 7730 if (IsF80) 7731 PartialRes = 7732 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7733 appendResult(PartialRes); 7734 } 7735 7736 if (!Res) 7737 return DAG.getConstant(IsInverted, DL, ResultVT); 7738 if (IsInverted) 7739 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7740 return Res; 7741 } 7742 7743 // Only expand vector types if we have the appropriate vector bit operations. 7744 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7745 assert(VT.isVector() && "Expected vector type"); 7746 unsigned Len = VT.getScalarSizeInBits(); 7747 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7748 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7749 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7750 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7751 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7752 } 7753 7754 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7755 SDLoc dl(Node); 7756 EVT VT = Node->getValueType(0); 7757 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7758 SDValue Op = Node->getOperand(0); 7759 unsigned Len = VT.getScalarSizeInBits(); 7760 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7761 7762 // TODO: Add support for irregular type lengths. 7763 if (!(Len <= 128 && Len % 8 == 0)) 7764 return SDValue(); 7765 7766 // Only expand vector types if we have the appropriate vector bit operations. 7767 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7768 return SDValue(); 7769 7770 // This is the "best" algorithm from 7771 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7772 SDValue Mask55 = 7773 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7774 SDValue Mask33 = 7775 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7776 SDValue Mask0F = 7777 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7778 7779 // v = v - ((v >> 1) & 0x55555555...) 7780 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7781 DAG.getNode(ISD::AND, dl, VT, 7782 DAG.getNode(ISD::SRL, dl, VT, Op, 7783 DAG.getConstant(1, dl, ShVT)), 7784 Mask55)); 7785 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7786 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7787 DAG.getNode(ISD::AND, dl, VT, 7788 DAG.getNode(ISD::SRL, dl, VT, Op, 7789 DAG.getConstant(2, dl, ShVT)), 7790 Mask33)); 7791 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7792 Op = DAG.getNode(ISD::AND, dl, VT, 7793 DAG.getNode(ISD::ADD, dl, VT, Op, 7794 DAG.getNode(ISD::SRL, dl, VT, Op, 7795 DAG.getConstant(4, dl, ShVT))), 7796 Mask0F); 7797 7798 if (Len <= 8) 7799 return Op; 7800 7801 // Avoid the multiply if we only have 2 bytes to add. 7802 // TODO: Only doing this for scalars because vectors weren't as obviously 7803 // improved. 7804 if (Len == 16 && !VT.isVector()) { 7805 // v = (v + (v >> 8)) & 0x00FF; 7806 return DAG.getNode(ISD::AND, dl, VT, 7807 DAG.getNode(ISD::ADD, dl, VT, Op, 7808 DAG.getNode(ISD::SRL, dl, VT, Op, 7809 DAG.getConstant(8, dl, ShVT))), 7810 DAG.getConstant(0xFF, dl, VT)); 7811 } 7812 7813 // v = (v * 0x01010101...) >> (Len - 8) 7814 SDValue Mask01 = 7815 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7816 return DAG.getNode(ISD::SRL, dl, VT, 7817 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7818 DAG.getConstant(Len - 8, dl, ShVT)); 7819 } 7820 7821 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7822 SDLoc dl(Node); 7823 EVT VT = Node->getValueType(0); 7824 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7825 SDValue Op = Node->getOperand(0); 7826 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7827 7828 // If the non-ZERO_UNDEF version is supported we can use that instead. 7829 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7830 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7831 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7832 7833 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7834 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7835 EVT SetCCVT = 7836 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7837 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7838 SDValue Zero = DAG.getConstant(0, dl, VT); 7839 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7840 return DAG.getSelect(dl, VT, SrcIsZero, 7841 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7842 } 7843 7844 // Only expand vector types if we have the appropriate vector bit operations. 7845 // This includes the operations needed to expand CTPOP if it isn't supported. 7846 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7847 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7848 !canExpandVectorCTPOP(*this, VT)) || 7849 !isOperationLegalOrCustom(ISD::SRL, VT) || 7850 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7851 return SDValue(); 7852 7853 // for now, we do this: 7854 // x = x | (x >> 1); 7855 // x = x | (x >> 2); 7856 // ... 7857 // x = x | (x >>16); 7858 // x = x | (x >>32); // for 64-bit input 7859 // return popcount(~x); 7860 // 7861 // Ref: "Hacker's Delight" by Henry Warren 7862 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 7863 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7864 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7865 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7866 } 7867 Op = DAG.getNOT(dl, Op, VT); 7868 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7869 } 7870 7871 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7872 SDLoc dl(Node); 7873 EVT VT = Node->getValueType(0); 7874 SDValue Op = Node->getOperand(0); 7875 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7876 7877 // If the non-ZERO_UNDEF version is supported we can use that instead. 7878 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7879 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7880 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7881 7882 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7883 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7884 EVT SetCCVT = 7885 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7886 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7887 SDValue Zero = DAG.getConstant(0, dl, VT); 7888 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7889 return DAG.getSelect(dl, VT, SrcIsZero, 7890 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7891 } 7892 7893 // Only expand vector types if we have the appropriate vector bit operations. 7894 // This includes the operations needed to expand CTPOP if it isn't supported. 7895 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7896 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7897 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7898 !canExpandVectorCTPOP(*this, VT)) || 7899 !isOperationLegalOrCustom(ISD::SUB, VT) || 7900 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7901 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7902 return SDValue(); 7903 7904 // for now, we use: { return popcount(~x & (x - 1)); } 7905 // unless the target has ctlz but not ctpop, in which case we use: 7906 // { return 32 - nlz(~x & (x-1)); } 7907 // Ref: "Hacker's Delight" by Henry Warren 7908 SDValue Tmp = DAG.getNode( 7909 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7910 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7911 7912 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7913 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7914 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7915 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7916 } 7917 7918 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7919 } 7920 7921 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7922 bool IsNegative) const { 7923 SDLoc dl(N); 7924 EVT VT = N->getValueType(0); 7925 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7926 SDValue Op = N->getOperand(0); 7927 7928 // abs(x) -> smax(x,sub(0,x)) 7929 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7930 isOperationLegal(ISD::SMAX, VT)) { 7931 SDValue Zero = DAG.getConstant(0, dl, VT); 7932 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7933 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7934 } 7935 7936 // abs(x) -> umin(x,sub(0,x)) 7937 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7938 isOperationLegal(ISD::UMIN, VT)) { 7939 SDValue Zero = DAG.getConstant(0, dl, VT); 7940 Op = DAG.getFreeze(Op); 7941 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7942 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7943 } 7944 7945 // 0 - abs(x) -> smin(x, sub(0,x)) 7946 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7947 isOperationLegal(ISD::SMIN, VT)) { 7948 Op = DAG.getFreeze(Op); 7949 SDValue Zero = DAG.getConstant(0, dl, VT); 7950 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7951 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7952 } 7953 7954 // Only expand vector types if we have the appropriate vector operations. 7955 if (VT.isVector() && 7956 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7957 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7958 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7959 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7960 return SDValue(); 7961 7962 Op = DAG.getFreeze(Op); 7963 SDValue Shift = 7964 DAG.getNode(ISD::SRA, dl, VT, Op, 7965 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7966 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7967 7968 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7969 if (!IsNegative) 7970 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7971 7972 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7973 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7974 } 7975 7976 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7977 SDLoc dl(N); 7978 EVT VT = N->getValueType(0); 7979 SDValue Op = N->getOperand(0); 7980 7981 if (!VT.isSimple()) 7982 return SDValue(); 7983 7984 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7985 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7986 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7987 default: 7988 return SDValue(); 7989 case MVT::i16: 7990 // Use a rotate by 8. This can be further expanded if necessary. 7991 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7992 case MVT::i32: 7993 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7994 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7995 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7996 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7997 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7998 DAG.getConstant(0xFF0000, dl, VT)); 7999 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 8000 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8001 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8002 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8003 case MVT::i64: 8004 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8005 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8006 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8007 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8008 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8009 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8010 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8011 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8012 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 8013 DAG.getConstant(255ULL<<48, dl, VT)); 8014 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 8015 DAG.getConstant(255ULL<<40, dl, VT)); 8016 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 8017 DAG.getConstant(255ULL<<32, dl, VT)); 8018 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8019 DAG.getConstant(255ULL<<24, dl, VT)); 8020 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8021 DAG.getConstant(255ULL<<16, dl, VT)); 8022 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8023 DAG.getConstant(255ULL<<8 , dl, VT)); 8024 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8025 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8026 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8027 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8028 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8029 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8030 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8031 } 8032 } 8033 8034 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8035 SDLoc dl(N); 8036 EVT VT = N->getValueType(0); 8037 SDValue Op = N->getOperand(0); 8038 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8039 unsigned Sz = VT.getScalarSizeInBits(); 8040 8041 SDValue Tmp, Tmp2, Tmp3; 8042 8043 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8044 // and finally the i1 pairs. 8045 // TODO: We can easily support i4/i2 legal types if any target ever does. 8046 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8047 // Create the masks - repeating the pattern every byte. 8048 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8049 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8050 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8051 8052 // BSWAP if the type is wider than a single byte. 8053 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8054 8055 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8056 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8057 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8058 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8059 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8060 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8061 8062 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8063 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8064 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8065 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8066 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8067 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8068 8069 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8070 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8071 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8072 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8073 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8074 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8075 return Tmp; 8076 } 8077 8078 Tmp = DAG.getConstant(0, dl, VT); 8079 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8080 if (I < J) 8081 Tmp2 = 8082 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8083 else 8084 Tmp2 = 8085 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8086 8087 APInt Shift(Sz, 1); 8088 Shift <<= J; 8089 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8090 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8091 } 8092 8093 return Tmp; 8094 } 8095 8096 std::pair<SDValue, SDValue> 8097 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8098 SelectionDAG &DAG) const { 8099 SDLoc SL(LD); 8100 SDValue Chain = LD->getChain(); 8101 SDValue BasePTR = LD->getBasePtr(); 8102 EVT SrcVT = LD->getMemoryVT(); 8103 EVT DstVT = LD->getValueType(0); 8104 ISD::LoadExtType ExtType = LD->getExtensionType(); 8105 8106 if (SrcVT.isScalableVector()) 8107 report_fatal_error("Cannot scalarize scalable vector loads"); 8108 8109 unsigned NumElem = SrcVT.getVectorNumElements(); 8110 8111 EVT SrcEltVT = SrcVT.getScalarType(); 8112 EVT DstEltVT = DstVT.getScalarType(); 8113 8114 // A vector must always be stored in memory as-is, i.e. without any padding 8115 // between the elements, since various code depend on it, e.g. in the 8116 // handling of a bitcast of a vector type to int, which may be done with a 8117 // vector store followed by an integer load. A vector that does not have 8118 // elements that are byte-sized must therefore be stored as an integer 8119 // built out of the extracted vector elements. 8120 if (!SrcEltVT.isByteSized()) { 8121 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8122 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8123 8124 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8125 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8126 8127 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8128 SDValue SrcEltBitMask = DAG.getConstant( 8129 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8130 8131 // Load the whole vector and avoid masking off the top bits as it makes 8132 // the codegen worse. 8133 SDValue Load = 8134 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8135 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8136 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8137 8138 SmallVector<SDValue, 8> Vals; 8139 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8140 unsigned ShiftIntoIdx = 8141 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8142 SDValue ShiftAmount = 8143 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8144 LoadVT, SL, /*LegalTypes=*/false); 8145 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8146 SDValue Elt = 8147 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8148 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8149 8150 if (ExtType != ISD::NON_EXTLOAD) { 8151 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8152 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8153 } 8154 8155 Vals.push_back(Scalar); 8156 } 8157 8158 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8159 return std::make_pair(Value, Load.getValue(1)); 8160 } 8161 8162 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8163 assert(SrcEltVT.isByteSized()); 8164 8165 SmallVector<SDValue, 8> Vals; 8166 SmallVector<SDValue, 8> LoadChains; 8167 8168 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8169 SDValue ScalarLoad = 8170 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8171 LD->getPointerInfo().getWithOffset(Idx * Stride), 8172 SrcEltVT, LD->getOriginalAlign(), 8173 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8174 8175 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8176 8177 Vals.push_back(ScalarLoad.getValue(0)); 8178 LoadChains.push_back(ScalarLoad.getValue(1)); 8179 } 8180 8181 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8182 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8183 8184 return std::make_pair(Value, NewChain); 8185 } 8186 8187 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8188 SelectionDAG &DAG) const { 8189 SDLoc SL(ST); 8190 8191 SDValue Chain = ST->getChain(); 8192 SDValue BasePtr = ST->getBasePtr(); 8193 SDValue Value = ST->getValue(); 8194 EVT StVT = ST->getMemoryVT(); 8195 8196 if (StVT.isScalableVector()) 8197 report_fatal_error("Cannot scalarize scalable vector stores"); 8198 8199 // The type of the data we want to save 8200 EVT RegVT = Value.getValueType(); 8201 EVT RegSclVT = RegVT.getScalarType(); 8202 8203 // The type of data as saved in memory. 8204 EVT MemSclVT = StVT.getScalarType(); 8205 8206 unsigned NumElem = StVT.getVectorNumElements(); 8207 8208 // A vector must always be stored in memory as-is, i.e. without any padding 8209 // between the elements, since various code depend on it, e.g. in the 8210 // handling of a bitcast of a vector type to int, which may be done with a 8211 // vector store followed by an integer load. A vector that does not have 8212 // elements that are byte-sized must therefore be stored as an integer 8213 // built out of the extracted vector elements. 8214 if (!MemSclVT.isByteSized()) { 8215 unsigned NumBits = StVT.getSizeInBits(); 8216 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8217 8218 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8219 8220 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8221 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8222 DAG.getVectorIdxConstant(Idx, SL)); 8223 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8224 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8225 unsigned ShiftIntoIdx = 8226 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8227 SDValue ShiftAmount = 8228 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8229 SDValue ShiftedElt = 8230 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8231 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8232 } 8233 8234 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8235 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8236 ST->getAAInfo()); 8237 } 8238 8239 // Store Stride in bytes 8240 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8241 assert(Stride && "Zero stride!"); 8242 // Extract each of the elements from the original vector and save them into 8243 // memory individually. 8244 SmallVector<SDValue, 8> Stores; 8245 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8246 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8247 DAG.getVectorIdxConstant(Idx, SL)); 8248 8249 SDValue Ptr = 8250 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8251 8252 // This scalar TruncStore may be illegal, but we legalize it later. 8253 SDValue Store = DAG.getTruncStore( 8254 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8255 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8256 ST->getAAInfo()); 8257 8258 Stores.push_back(Store); 8259 } 8260 8261 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8262 } 8263 8264 std::pair<SDValue, SDValue> 8265 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8266 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8267 "unaligned indexed loads not implemented!"); 8268 SDValue Chain = LD->getChain(); 8269 SDValue Ptr = LD->getBasePtr(); 8270 EVT VT = LD->getValueType(0); 8271 EVT LoadedVT = LD->getMemoryVT(); 8272 SDLoc dl(LD); 8273 auto &MF = DAG.getMachineFunction(); 8274 8275 if (VT.isFloatingPoint() || VT.isVector()) { 8276 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8277 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8278 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8279 LoadedVT.isVector()) { 8280 // Scalarize the load and let the individual components be handled. 8281 return scalarizeVectorLoad(LD, DAG); 8282 } 8283 8284 // Expand to a (misaligned) integer load of the same size, 8285 // then bitconvert to floating point or vector. 8286 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8287 LD->getMemOperand()); 8288 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8289 if (LoadedVT != VT) 8290 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8291 ISD::ANY_EXTEND, dl, VT, Result); 8292 8293 return std::make_pair(Result, newLoad.getValue(1)); 8294 } 8295 8296 // Copy the value to a (aligned) stack slot using (unaligned) integer 8297 // loads and stores, then do a (aligned) load from the stack slot. 8298 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8299 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8300 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8301 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8302 8303 // Make sure the stack slot is also aligned for the register type. 8304 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8305 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8306 SmallVector<SDValue, 8> Stores; 8307 SDValue StackPtr = StackBase; 8308 unsigned Offset = 0; 8309 8310 EVT PtrVT = Ptr.getValueType(); 8311 EVT StackPtrVT = StackPtr.getValueType(); 8312 8313 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8314 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8315 8316 // Do all but one copies using the full register width. 8317 for (unsigned i = 1; i < NumRegs; i++) { 8318 // Load one integer register's worth from the original location. 8319 SDValue Load = DAG.getLoad( 8320 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8321 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8322 LD->getAAInfo()); 8323 // Follow the load with a store to the stack slot. Remember the store. 8324 Stores.push_back(DAG.getStore( 8325 Load.getValue(1), dl, Load, StackPtr, 8326 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8327 // Increment the pointers. 8328 Offset += RegBytes; 8329 8330 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8331 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8332 } 8333 8334 // The last copy may be partial. Do an extending load. 8335 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8336 8 * (LoadedBytes - Offset)); 8337 SDValue Load = 8338 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8339 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8340 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8341 LD->getAAInfo()); 8342 // Follow the load with a store to the stack slot. Remember the store. 8343 // On big-endian machines this requires a truncating store to ensure 8344 // that the bits end up in the right place. 8345 Stores.push_back(DAG.getTruncStore( 8346 Load.getValue(1), dl, Load, StackPtr, 8347 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8348 8349 // The order of the stores doesn't matter - say it with a TokenFactor. 8350 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8351 8352 // Finally, perform the original load only redirected to the stack slot. 8353 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8354 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8355 LoadedVT); 8356 8357 // Callers expect a MERGE_VALUES node. 8358 return std::make_pair(Load, TF); 8359 } 8360 8361 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8362 "Unaligned load of unsupported type."); 8363 8364 // Compute the new VT that is half the size of the old one. This is an 8365 // integer MVT. 8366 unsigned NumBits = LoadedVT.getSizeInBits(); 8367 EVT NewLoadedVT; 8368 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8369 NumBits >>= 1; 8370 8371 Align Alignment = LD->getOriginalAlign(); 8372 unsigned IncrementSize = NumBits / 8; 8373 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8374 8375 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8376 if (HiExtType == ISD::NON_EXTLOAD) 8377 HiExtType = ISD::ZEXTLOAD; 8378 8379 // Load the value in two parts 8380 SDValue Lo, Hi; 8381 if (DAG.getDataLayout().isLittleEndian()) { 8382 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8383 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8384 LD->getAAInfo()); 8385 8386 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8387 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8388 LD->getPointerInfo().getWithOffset(IncrementSize), 8389 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8390 LD->getAAInfo()); 8391 } else { 8392 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8393 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8394 LD->getAAInfo()); 8395 8396 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8397 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8398 LD->getPointerInfo().getWithOffset(IncrementSize), 8399 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8400 LD->getAAInfo()); 8401 } 8402 8403 // aggregate the two parts 8404 SDValue ShiftAmount = 8405 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8406 DAG.getDataLayout())); 8407 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8408 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8409 8410 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8411 Hi.getValue(1)); 8412 8413 return std::make_pair(Result, TF); 8414 } 8415 8416 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8417 SelectionDAG &DAG) const { 8418 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8419 "unaligned indexed stores not implemented!"); 8420 SDValue Chain = ST->getChain(); 8421 SDValue Ptr = ST->getBasePtr(); 8422 SDValue Val = ST->getValue(); 8423 EVT VT = Val.getValueType(); 8424 Align Alignment = ST->getOriginalAlign(); 8425 auto &MF = DAG.getMachineFunction(); 8426 EVT StoreMemVT = ST->getMemoryVT(); 8427 8428 SDLoc dl(ST); 8429 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8430 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8431 if (isTypeLegal(intVT)) { 8432 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8433 StoreMemVT.isVector()) { 8434 // Scalarize the store and let the individual components be handled. 8435 SDValue Result = scalarizeVectorStore(ST, DAG); 8436 return Result; 8437 } 8438 // Expand to a bitconvert of the value to the integer type of the 8439 // same size, then a (misaligned) int store. 8440 // FIXME: Does not handle truncating floating point stores! 8441 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8442 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8443 Alignment, ST->getMemOperand()->getFlags()); 8444 return Result; 8445 } 8446 // Do a (aligned) store to a stack slot, then copy from the stack slot 8447 // to the final destination using (unaligned) integer loads and stores. 8448 MVT RegVT = getRegisterType( 8449 *DAG.getContext(), 8450 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8451 EVT PtrVT = Ptr.getValueType(); 8452 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8453 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8454 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8455 8456 // Make sure the stack slot is also aligned for the register type. 8457 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8458 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8459 8460 // Perform the original store, only redirected to the stack slot. 8461 SDValue Store = DAG.getTruncStore( 8462 Chain, dl, Val, StackPtr, 8463 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8464 8465 EVT StackPtrVT = StackPtr.getValueType(); 8466 8467 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8468 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8469 SmallVector<SDValue, 8> Stores; 8470 unsigned Offset = 0; 8471 8472 // Do all but one copies using the full register width. 8473 for (unsigned i = 1; i < NumRegs; i++) { 8474 // Load one integer register's worth from the stack slot. 8475 SDValue Load = DAG.getLoad( 8476 RegVT, dl, Store, StackPtr, 8477 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8478 // Store it to the final location. Remember the store. 8479 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8480 ST->getPointerInfo().getWithOffset(Offset), 8481 ST->getOriginalAlign(), 8482 ST->getMemOperand()->getFlags())); 8483 // Increment the pointers. 8484 Offset += RegBytes; 8485 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8486 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8487 } 8488 8489 // The last store may be partial. Do a truncating store. On big-endian 8490 // machines this requires an extending load from the stack slot to ensure 8491 // that the bits are in the right place. 8492 EVT LoadMemVT = 8493 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8494 8495 // Load from the stack slot. 8496 SDValue Load = DAG.getExtLoad( 8497 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8498 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8499 8500 Stores.push_back( 8501 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8502 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8503 ST->getOriginalAlign(), 8504 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8505 // The order of the stores doesn't matter - say it with a TokenFactor. 8506 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8507 return Result; 8508 } 8509 8510 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8511 "Unaligned store of unknown type."); 8512 // Get the half-size VT 8513 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8514 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8515 unsigned IncrementSize = NumBits / 8; 8516 8517 // Divide the stored value in two parts. 8518 SDValue ShiftAmount = DAG.getConstant( 8519 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8520 SDValue Lo = Val; 8521 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8522 8523 // Store the two parts 8524 SDValue Store1, Store2; 8525 Store1 = DAG.getTruncStore(Chain, dl, 8526 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8527 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8528 ST->getMemOperand()->getFlags()); 8529 8530 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8531 Store2 = DAG.getTruncStore( 8532 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8533 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8534 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8535 8536 SDValue Result = 8537 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8538 return Result; 8539 } 8540 8541 SDValue 8542 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8543 const SDLoc &DL, EVT DataVT, 8544 SelectionDAG &DAG, 8545 bool IsCompressedMemory) const { 8546 SDValue Increment; 8547 EVT AddrVT = Addr.getValueType(); 8548 EVT MaskVT = Mask.getValueType(); 8549 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8550 "Incompatible types of Data and Mask"); 8551 if (IsCompressedMemory) { 8552 if (DataVT.isScalableVector()) 8553 report_fatal_error( 8554 "Cannot currently handle compressed memory with scalable vectors"); 8555 // Incrementing the pointer according to number of '1's in the mask. 8556 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8557 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8558 if (MaskIntVT.getSizeInBits() < 32) { 8559 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8560 MaskIntVT = MVT::i32; 8561 } 8562 8563 // Count '1's with POPCNT. 8564 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8565 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8566 // Scale is an element size in bytes. 8567 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8568 AddrVT); 8569 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8570 } else if (DataVT.isScalableVector()) { 8571 Increment = DAG.getVScale(DL, AddrVT, 8572 APInt(AddrVT.getFixedSizeInBits(), 8573 DataVT.getStoreSize().getKnownMinSize())); 8574 } else 8575 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8576 8577 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8578 } 8579 8580 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8581 EVT VecVT, const SDLoc &dl, 8582 ElementCount SubEC) { 8583 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8584 "Cannot index a scalable vector within a fixed-width vector"); 8585 8586 unsigned NElts = VecVT.getVectorMinNumElements(); 8587 unsigned NumSubElts = SubEC.getKnownMinValue(); 8588 EVT IdxVT = Idx.getValueType(); 8589 8590 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8591 // If this is a constant index and we know the value plus the number of the 8592 // elements in the subvector minus one is less than the minimum number of 8593 // elements then it's safe to return Idx. 8594 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8595 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8596 return Idx; 8597 SDValue VS = 8598 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8599 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8600 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8601 DAG.getConstant(NumSubElts, dl, IdxVT)); 8602 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8603 } 8604 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8605 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8606 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8607 DAG.getConstant(Imm, dl, IdxVT)); 8608 } 8609 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8610 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8611 DAG.getConstant(MaxIndex, dl, IdxVT)); 8612 } 8613 8614 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8615 SDValue VecPtr, EVT VecVT, 8616 SDValue Index) const { 8617 return getVectorSubVecPointer( 8618 DAG, VecPtr, VecVT, 8619 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8620 Index); 8621 } 8622 8623 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8624 SDValue VecPtr, EVT VecVT, 8625 EVT SubVecVT, 8626 SDValue Index) const { 8627 SDLoc dl(Index); 8628 // Make sure the index type is big enough to compute in. 8629 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8630 8631 EVT EltVT = VecVT.getVectorElementType(); 8632 8633 // Calculate the element offset and add it to the pointer. 8634 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8635 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8636 "Converting bits to bytes lost precision"); 8637 assert(SubVecVT.getVectorElementType() == EltVT && 8638 "Sub-vector must be a vector with matching element type"); 8639 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8640 SubVecVT.getVectorElementCount()); 8641 8642 EVT IdxVT = Index.getValueType(); 8643 if (SubVecVT.isScalableVector()) 8644 Index = 8645 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8646 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8647 8648 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8649 DAG.getConstant(EltSize, dl, IdxVT)); 8650 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8651 } 8652 8653 //===----------------------------------------------------------------------===// 8654 // Implementation of Emulated TLS Model 8655 //===----------------------------------------------------------------------===// 8656 8657 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8658 SelectionDAG &DAG) const { 8659 // Access to address of TLS varialbe xyz is lowered to a function call: 8660 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8661 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8662 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8663 SDLoc dl(GA); 8664 8665 ArgListTy Args; 8666 ArgListEntry Entry; 8667 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8668 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8669 StringRef EmuTlsVarName(NameString); 8670 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8671 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8672 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8673 Entry.Ty = VoidPtrType; 8674 Args.push_back(Entry); 8675 8676 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8677 8678 TargetLowering::CallLoweringInfo CLI(DAG); 8679 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8680 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8681 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8682 8683 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8684 // At last for X86 targets, maybe good for other targets too? 8685 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8686 MFI.setAdjustsStack(true); // Is this only for X86 target? 8687 MFI.setHasCalls(true); 8688 8689 assert((GA->getOffset() == 0) && 8690 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8691 return CallResult.first; 8692 } 8693 8694 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8695 SelectionDAG &DAG) const { 8696 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8697 if (!isCtlzFast()) 8698 return SDValue(); 8699 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8700 SDLoc dl(Op); 8701 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8702 if (C->isZero() && CC == ISD::SETEQ) { 8703 EVT VT = Op.getOperand(0).getValueType(); 8704 SDValue Zext = Op.getOperand(0); 8705 if (VT.bitsLT(MVT::i32)) { 8706 VT = MVT::i32; 8707 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8708 } 8709 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8710 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8711 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8712 DAG.getConstant(Log2b, dl, MVT::i32)); 8713 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8714 } 8715 } 8716 return SDValue(); 8717 } 8718 8719 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8720 SDValue Op0 = Node->getOperand(0); 8721 SDValue Op1 = Node->getOperand(1); 8722 EVT VT = Op0.getValueType(); 8723 unsigned Opcode = Node->getOpcode(); 8724 SDLoc DL(Node); 8725 8726 // umin(x,y) -> sub(x,usubsat(x,y)) 8727 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8728 isOperationLegal(ISD::USUBSAT, VT)) { 8729 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8730 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8731 } 8732 8733 // umax(x,y) -> add(x,usubsat(y,x)) 8734 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8735 isOperationLegal(ISD::USUBSAT, VT)) { 8736 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8737 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8738 } 8739 8740 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8741 ISD::CondCode CC; 8742 switch (Opcode) { 8743 default: llvm_unreachable("How did we get here?"); 8744 case ISD::SMAX: CC = ISD::SETGT; break; 8745 case ISD::SMIN: CC = ISD::SETLT; break; 8746 case ISD::UMAX: CC = ISD::SETUGT; break; 8747 case ISD::UMIN: CC = ISD::SETULT; break; 8748 } 8749 8750 // FIXME: Should really try to split the vector in case it's legal on a 8751 // subvector. 8752 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8753 return DAG.UnrollVectorOp(Node); 8754 8755 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8756 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8757 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8758 } 8759 8760 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8761 unsigned Opcode = Node->getOpcode(); 8762 SDValue LHS = Node->getOperand(0); 8763 SDValue RHS = Node->getOperand(1); 8764 EVT VT = LHS.getValueType(); 8765 SDLoc dl(Node); 8766 8767 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8768 assert(VT.isInteger() && "Expected operands to be integers"); 8769 8770 // usub.sat(a, b) -> umax(a, b) - b 8771 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8772 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8773 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8774 } 8775 8776 // uadd.sat(a, b) -> umin(a, ~b) + b 8777 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8778 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8779 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8780 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8781 } 8782 8783 unsigned OverflowOp; 8784 switch (Opcode) { 8785 case ISD::SADDSAT: 8786 OverflowOp = ISD::SADDO; 8787 break; 8788 case ISD::UADDSAT: 8789 OverflowOp = ISD::UADDO; 8790 break; 8791 case ISD::SSUBSAT: 8792 OverflowOp = ISD::SSUBO; 8793 break; 8794 case ISD::USUBSAT: 8795 OverflowOp = ISD::USUBO; 8796 break; 8797 default: 8798 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8799 "addition or subtraction node."); 8800 } 8801 8802 // FIXME: Should really try to split the vector in case it's legal on a 8803 // subvector. 8804 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8805 return DAG.UnrollVectorOp(Node); 8806 8807 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8808 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8809 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8810 SDValue SumDiff = Result.getValue(0); 8811 SDValue Overflow = Result.getValue(1); 8812 SDValue Zero = DAG.getConstant(0, dl, VT); 8813 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8814 8815 if (Opcode == ISD::UADDSAT) { 8816 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8817 // (LHS + RHS) | OverflowMask 8818 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8819 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8820 } 8821 // Overflow ? 0xffff.... : (LHS + RHS) 8822 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8823 } 8824 8825 if (Opcode == ISD::USUBSAT) { 8826 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8827 // (LHS - RHS) & ~OverflowMask 8828 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8829 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8830 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8831 } 8832 // Overflow ? 0 : (LHS - RHS) 8833 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8834 } 8835 8836 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8837 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8838 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8839 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8840 DAG.getConstant(BitWidth - 1, dl, VT)); 8841 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8842 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8843 } 8844 8845 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8846 unsigned Opcode = Node->getOpcode(); 8847 bool IsSigned = Opcode == ISD::SSHLSAT; 8848 SDValue LHS = Node->getOperand(0); 8849 SDValue RHS = Node->getOperand(1); 8850 EVT VT = LHS.getValueType(); 8851 SDLoc dl(Node); 8852 8853 assert((Node->getOpcode() == ISD::SSHLSAT || 8854 Node->getOpcode() == ISD::USHLSAT) && 8855 "Expected a SHLSAT opcode"); 8856 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8857 assert(VT.isInteger() && "Expected operands to be integers"); 8858 8859 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8860 8861 unsigned BW = VT.getScalarSizeInBits(); 8862 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8863 SDValue Orig = 8864 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8865 8866 SDValue SatVal; 8867 if (IsSigned) { 8868 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8869 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8870 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8871 SatMin, SatMax, ISD::SETLT); 8872 } else { 8873 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8874 } 8875 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8876 8877 return Result; 8878 } 8879 8880 SDValue 8881 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8882 assert((Node->getOpcode() == ISD::SMULFIX || 8883 Node->getOpcode() == ISD::UMULFIX || 8884 Node->getOpcode() == ISD::SMULFIXSAT || 8885 Node->getOpcode() == ISD::UMULFIXSAT) && 8886 "Expected a fixed point multiplication opcode"); 8887 8888 SDLoc dl(Node); 8889 SDValue LHS = Node->getOperand(0); 8890 SDValue RHS = Node->getOperand(1); 8891 EVT VT = LHS.getValueType(); 8892 unsigned Scale = Node->getConstantOperandVal(2); 8893 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8894 Node->getOpcode() == ISD::UMULFIXSAT); 8895 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8896 Node->getOpcode() == ISD::SMULFIXSAT); 8897 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8898 unsigned VTSize = VT.getScalarSizeInBits(); 8899 8900 if (!Scale) { 8901 // [us]mul.fix(a, b, 0) -> mul(a, b) 8902 if (!Saturating) { 8903 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8904 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8905 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8906 SDValue Result = 8907 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8908 SDValue Product = Result.getValue(0); 8909 SDValue Overflow = Result.getValue(1); 8910 SDValue Zero = DAG.getConstant(0, dl, VT); 8911 8912 APInt MinVal = APInt::getSignedMinValue(VTSize); 8913 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8914 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8915 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8916 // Xor the inputs, if resulting sign bit is 0 the product will be 8917 // positive, else negative. 8918 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8919 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8920 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8921 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8922 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8923 SDValue Result = 8924 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8925 SDValue Product = Result.getValue(0); 8926 SDValue Overflow = Result.getValue(1); 8927 8928 APInt MaxVal = APInt::getMaxValue(VTSize); 8929 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8930 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8931 } 8932 } 8933 8934 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8935 "Expected scale to be less than the number of bits if signed or at " 8936 "most the number of bits if unsigned."); 8937 assert(LHS.getValueType() == RHS.getValueType() && 8938 "Expected both operands to be the same type"); 8939 8940 // Get the upper and lower bits of the result. 8941 SDValue Lo, Hi; 8942 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8943 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8944 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8945 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8946 Lo = Result.getValue(0); 8947 Hi = Result.getValue(1); 8948 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8949 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8950 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8951 } else if (VT.isVector()) { 8952 return SDValue(); 8953 } else { 8954 report_fatal_error("Unable to expand fixed point multiplication."); 8955 } 8956 8957 if (Scale == VTSize) 8958 // Result is just the top half since we'd be shifting by the width of the 8959 // operand. Overflow impossible so this works for both UMULFIX and 8960 // UMULFIXSAT. 8961 return Hi; 8962 8963 // The result will need to be shifted right by the scale since both operands 8964 // are scaled. The result is given to us in 2 halves, so we only want part of 8965 // both in the result. 8966 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8967 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8968 DAG.getConstant(Scale, dl, ShiftTy)); 8969 if (!Saturating) 8970 return Result; 8971 8972 if (!Signed) { 8973 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8974 // widened multiplication) aren't all zeroes. 8975 8976 // Saturate to max if ((Hi >> Scale) != 0), 8977 // which is the same as if (Hi > ((1 << Scale) - 1)) 8978 APInt MaxVal = APInt::getMaxValue(VTSize); 8979 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8980 dl, VT); 8981 Result = DAG.getSelectCC(dl, Hi, LowMask, 8982 DAG.getConstant(MaxVal, dl, VT), Result, 8983 ISD::SETUGT); 8984 8985 return Result; 8986 } 8987 8988 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8989 // widened multiplication) aren't all ones or all zeroes. 8990 8991 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8992 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8993 8994 if (Scale == 0) { 8995 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8996 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8997 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8998 // Saturated to SatMin if wide product is negative, and SatMax if wide 8999 // product is positive ... 9000 SDValue Zero = DAG.getConstant(0, dl, VT); 9001 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 9002 ISD::SETLT); 9003 // ... but only if we overflowed. 9004 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9005 } 9006 9007 // We handled Scale==0 above so all the bits to examine is in Hi. 9008 9009 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9010 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9011 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9012 dl, VT); 9013 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9014 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9015 // which is the same as if (HI < (-1 << (Scale - 1)) 9016 SDValue HighMask = 9017 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9018 dl, VT); 9019 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9020 return Result; 9021 } 9022 9023 SDValue 9024 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9025 SDValue LHS, SDValue RHS, 9026 unsigned Scale, SelectionDAG &DAG) const { 9027 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9028 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9029 "Expected a fixed point division opcode"); 9030 9031 EVT VT = LHS.getValueType(); 9032 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9033 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9034 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9035 9036 // If there is enough room in the type to upscale the LHS or downscale the 9037 // RHS before the division, we can perform it in this type without having to 9038 // resize. For signed operations, the LHS headroom is the number of 9039 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9040 // The headroom for the RHS is the number of trailing zeroes. 9041 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9042 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9043 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9044 9045 // For signed saturating operations, we need to be able to detect true integer 9046 // division overflow; that is, when you have MIN / -EPS. However, this 9047 // is undefined behavior and if we emit divisions that could take such 9048 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9049 // example). 9050 // Avoid this by requiring an extra bit so that we never get this case. 9051 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9052 // signed saturating division, we need to emit a whopping 32-bit division. 9053 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9054 return SDValue(); 9055 9056 unsigned LHSShift = std::min(LHSLead, Scale); 9057 unsigned RHSShift = Scale - LHSShift; 9058 9059 // At this point, we know that if we shift the LHS up by LHSShift and the 9060 // RHS down by RHSShift, we can emit a regular division with a final scaling 9061 // factor of Scale. 9062 9063 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9064 if (LHSShift) 9065 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9066 DAG.getConstant(LHSShift, dl, ShiftTy)); 9067 if (RHSShift) 9068 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9069 DAG.getConstant(RHSShift, dl, ShiftTy)); 9070 9071 SDValue Quot; 9072 if (Signed) { 9073 // For signed operations, if the resulting quotient is negative and the 9074 // remainder is nonzero, subtract 1 from the quotient to round towards 9075 // negative infinity. 9076 SDValue Rem; 9077 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9078 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9079 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9080 if (isTypeLegal(VT) && 9081 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9082 Quot = DAG.getNode(ISD::SDIVREM, dl, 9083 DAG.getVTList(VT, VT), 9084 LHS, RHS); 9085 Rem = Quot.getValue(1); 9086 Quot = Quot.getValue(0); 9087 } else { 9088 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9089 LHS, RHS); 9090 Rem = DAG.getNode(ISD::SREM, dl, VT, 9091 LHS, RHS); 9092 } 9093 SDValue Zero = DAG.getConstant(0, dl, VT); 9094 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9095 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9096 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9097 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9098 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9099 DAG.getConstant(1, dl, VT)); 9100 Quot = DAG.getSelect(dl, VT, 9101 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9102 Sub1, Quot); 9103 } else 9104 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9105 LHS, RHS); 9106 9107 return Quot; 9108 } 9109 9110 void TargetLowering::expandUADDSUBO( 9111 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9112 SDLoc dl(Node); 9113 SDValue LHS = Node->getOperand(0); 9114 SDValue RHS = Node->getOperand(1); 9115 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9116 9117 // If ADD/SUBCARRY is legal, use that instead. 9118 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9119 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9120 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9121 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9122 { LHS, RHS, CarryIn }); 9123 Result = SDValue(NodeCarry.getNode(), 0); 9124 Overflow = SDValue(NodeCarry.getNode(), 1); 9125 return; 9126 } 9127 9128 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9129 LHS.getValueType(), LHS, RHS); 9130 9131 EVT ResultType = Node->getValueType(1); 9132 EVT SetCCType = getSetCCResultType( 9133 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9134 SDValue SetCC; 9135 if (IsAdd && isOneConstant(RHS)) { 9136 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9137 // the live range of X. We assume comparing with 0 is cheap. 9138 // The general case (X + C) < C is not necessarily beneficial. Although we 9139 // reduce the live range of X, we may introduce the materialization of 9140 // constant C. 9141 SetCC = 9142 DAG.getSetCC(dl, SetCCType, Result, 9143 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9144 } else { 9145 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9146 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9147 } 9148 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9149 } 9150 9151 void TargetLowering::expandSADDSUBO( 9152 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9153 SDLoc dl(Node); 9154 SDValue LHS = Node->getOperand(0); 9155 SDValue RHS = Node->getOperand(1); 9156 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9157 9158 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9159 LHS.getValueType(), LHS, RHS); 9160 9161 EVT ResultType = Node->getValueType(1); 9162 EVT OType = getSetCCResultType( 9163 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9164 9165 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9166 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9167 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9168 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9169 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9170 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9171 return; 9172 } 9173 9174 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9175 9176 // For an addition, the result should be less than one of the operands (LHS) 9177 // if and only if the other operand (RHS) is negative, otherwise there will 9178 // be overflow. 9179 // For a subtraction, the result should be less than one of the operands 9180 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9181 // otherwise there will be overflow. 9182 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9183 SDValue ConditionRHS = 9184 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9185 9186 Overflow = DAG.getBoolExtOrTrunc( 9187 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9188 ResultType, ResultType); 9189 } 9190 9191 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9192 SDValue &Overflow, SelectionDAG &DAG) const { 9193 SDLoc dl(Node); 9194 EVT VT = Node->getValueType(0); 9195 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9196 SDValue LHS = Node->getOperand(0); 9197 SDValue RHS = Node->getOperand(1); 9198 bool isSigned = Node->getOpcode() == ISD::SMULO; 9199 9200 // For power-of-two multiplications we can use a simpler shift expansion. 9201 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9202 const APInt &C = RHSC->getAPIntValue(); 9203 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9204 if (C.isPowerOf2()) { 9205 // smulo(x, signed_min) is same as umulo(x, signed_min). 9206 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9207 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9208 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9209 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9210 Overflow = DAG.getSetCC(dl, SetCCVT, 9211 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9212 dl, VT, Result, ShiftAmt), 9213 LHS, ISD::SETNE); 9214 return true; 9215 } 9216 } 9217 9218 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9219 if (VT.isVector()) 9220 WideVT = 9221 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9222 9223 SDValue BottomHalf; 9224 SDValue TopHalf; 9225 static const unsigned Ops[2][3] = 9226 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9227 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9228 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9229 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9230 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9231 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9232 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9233 RHS); 9234 TopHalf = BottomHalf.getValue(1); 9235 } else if (isTypeLegal(WideVT)) { 9236 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9237 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9238 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9239 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9240 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9241 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9242 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9243 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9244 } else { 9245 if (VT.isVector()) 9246 return false; 9247 9248 // We can fall back to a libcall with an illegal type for the MUL if we 9249 // have a libcall big enough. 9250 // Also, we can fall back to a division in some cases, but that's a big 9251 // performance hit in the general case. 9252 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9253 if (WideVT == MVT::i16) 9254 LC = RTLIB::MUL_I16; 9255 else if (WideVT == MVT::i32) 9256 LC = RTLIB::MUL_I32; 9257 else if (WideVT == MVT::i64) 9258 LC = RTLIB::MUL_I64; 9259 else if (WideVT == MVT::i128) 9260 LC = RTLIB::MUL_I128; 9261 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9262 9263 SDValue HiLHS; 9264 SDValue HiRHS; 9265 if (isSigned) { 9266 // The high part is obtained by SRA'ing all but one of the bits of low 9267 // part. 9268 unsigned LoSize = VT.getFixedSizeInBits(); 9269 HiLHS = 9270 DAG.getNode(ISD::SRA, dl, VT, LHS, 9271 DAG.getConstant(LoSize - 1, dl, 9272 getPointerTy(DAG.getDataLayout()))); 9273 HiRHS = 9274 DAG.getNode(ISD::SRA, dl, VT, RHS, 9275 DAG.getConstant(LoSize - 1, dl, 9276 getPointerTy(DAG.getDataLayout()))); 9277 } else { 9278 HiLHS = DAG.getConstant(0, dl, VT); 9279 HiRHS = DAG.getConstant(0, dl, VT); 9280 } 9281 9282 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9283 // pre-lowered to the correct types. This all depends upon WideVT not 9284 // being a legal type for the architecture and thus has to be split to 9285 // two arguments. 9286 SDValue Ret; 9287 TargetLowering::MakeLibCallOptions CallOptions; 9288 CallOptions.setSExt(isSigned); 9289 CallOptions.setIsPostTypeLegalization(true); 9290 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9291 // Halves of WideVT are packed into registers in different order 9292 // depending on platform endianness. This is usually handled by 9293 // the C calling convention, but we can't defer to it in 9294 // the legalizer. 9295 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9296 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9297 } else { 9298 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9299 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9300 } 9301 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9302 "Ret value is a collection of constituent nodes holding result."); 9303 if (DAG.getDataLayout().isLittleEndian()) { 9304 // Same as above. 9305 BottomHalf = Ret.getOperand(0); 9306 TopHalf = Ret.getOperand(1); 9307 } else { 9308 BottomHalf = Ret.getOperand(1); 9309 TopHalf = Ret.getOperand(0); 9310 } 9311 } 9312 9313 Result = BottomHalf; 9314 if (isSigned) { 9315 SDValue ShiftAmt = DAG.getConstant( 9316 VT.getScalarSizeInBits() - 1, dl, 9317 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9318 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9319 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9320 } else { 9321 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9322 DAG.getConstant(0, dl, VT), ISD::SETNE); 9323 } 9324 9325 // Truncate the result if SetCC returns a larger type than needed. 9326 EVT RType = Node->getValueType(1); 9327 if (RType.bitsLT(Overflow.getValueType())) 9328 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9329 9330 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9331 "Unexpected result type for S/UMULO legalization"); 9332 return true; 9333 } 9334 9335 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9336 SDLoc dl(Node); 9337 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9338 SDValue Op = Node->getOperand(0); 9339 EVT VT = Op.getValueType(); 9340 9341 if (VT.isScalableVector()) 9342 report_fatal_error( 9343 "Expanding reductions for scalable vectors is undefined."); 9344 9345 // Try to use a shuffle reduction for power of two vectors. 9346 if (VT.isPow2VectorType()) { 9347 while (VT.getVectorNumElements() > 1) { 9348 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9349 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9350 break; 9351 9352 SDValue Lo, Hi; 9353 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9354 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9355 VT = HalfVT; 9356 } 9357 } 9358 9359 EVT EltVT = VT.getVectorElementType(); 9360 unsigned NumElts = VT.getVectorNumElements(); 9361 9362 SmallVector<SDValue, 8> Ops; 9363 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9364 9365 SDValue Res = Ops[0]; 9366 for (unsigned i = 1; i < NumElts; i++) 9367 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9368 9369 // Result type may be wider than element type. 9370 if (EltVT != Node->getValueType(0)) 9371 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9372 return Res; 9373 } 9374 9375 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9376 SDLoc dl(Node); 9377 SDValue AccOp = Node->getOperand(0); 9378 SDValue VecOp = Node->getOperand(1); 9379 SDNodeFlags Flags = Node->getFlags(); 9380 9381 EVT VT = VecOp.getValueType(); 9382 EVT EltVT = VT.getVectorElementType(); 9383 9384 if (VT.isScalableVector()) 9385 report_fatal_error( 9386 "Expanding reductions for scalable vectors is undefined."); 9387 9388 unsigned NumElts = VT.getVectorNumElements(); 9389 9390 SmallVector<SDValue, 8> Ops; 9391 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9392 9393 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9394 9395 SDValue Res = AccOp; 9396 for (unsigned i = 0; i < NumElts; i++) 9397 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9398 9399 return Res; 9400 } 9401 9402 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9403 SelectionDAG &DAG) const { 9404 EVT VT = Node->getValueType(0); 9405 SDLoc dl(Node); 9406 bool isSigned = Node->getOpcode() == ISD::SREM; 9407 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9408 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9409 SDValue Dividend = Node->getOperand(0); 9410 SDValue Divisor = Node->getOperand(1); 9411 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9412 SDVTList VTs = DAG.getVTList(VT, VT); 9413 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9414 return true; 9415 } 9416 if (isOperationLegalOrCustom(DivOpc, VT)) { 9417 // X % Y -> X-X/Y*Y 9418 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9419 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9420 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9421 return true; 9422 } 9423 return false; 9424 } 9425 9426 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9427 SelectionDAG &DAG) const { 9428 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9429 SDLoc dl(SDValue(Node, 0)); 9430 SDValue Src = Node->getOperand(0); 9431 9432 // DstVT is the result type, while SatVT is the size to which we saturate 9433 EVT SrcVT = Src.getValueType(); 9434 EVT DstVT = Node->getValueType(0); 9435 9436 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9437 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9438 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9439 assert(SatWidth <= DstWidth && 9440 "Expected saturation width smaller than result width"); 9441 9442 // Determine minimum and maximum integer values and their corresponding 9443 // floating-point values. 9444 APInt MinInt, MaxInt; 9445 if (IsSigned) { 9446 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9447 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9448 } else { 9449 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9450 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9451 } 9452 9453 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9454 // libcall emission cannot handle this. Large result types will fail. 9455 if (SrcVT == MVT::f16) { 9456 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9457 SrcVT = Src.getValueType(); 9458 } 9459 9460 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9461 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9462 9463 APFloat::opStatus MinStatus = 9464 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9465 APFloat::opStatus MaxStatus = 9466 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9467 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9468 !(MaxStatus & APFloat::opStatus::opInexact); 9469 9470 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9471 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9472 9473 // If the integer bounds are exactly representable as floats and min/max are 9474 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9475 // of comparisons and selects. 9476 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9477 isOperationLegal(ISD::FMAXNUM, SrcVT); 9478 if (AreExactFloatBounds && MinMaxLegal) { 9479 SDValue Clamped = Src; 9480 9481 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9482 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9483 // Clamp by MaxFloat from above. NaN cannot occur. 9484 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9485 // Convert clamped value to integer. 9486 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9487 dl, DstVT, Clamped); 9488 9489 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9490 // which will cast to zero. 9491 if (!IsSigned) 9492 return FpToInt; 9493 9494 // Otherwise, select 0 if Src is NaN. 9495 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9496 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9497 ISD::CondCode::SETUO); 9498 } 9499 9500 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9501 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9502 9503 // Result of direct conversion. The assumption here is that the operation is 9504 // non-trapping and it's fine to apply it to an out-of-range value if we 9505 // select it away later. 9506 SDValue FpToInt = 9507 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9508 9509 SDValue Select = FpToInt; 9510 9511 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9512 // MinInt if Src is NaN. 9513 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9514 ISD::CondCode::SETULT); 9515 // If Src OGT MaxFloat, select MaxInt. 9516 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9517 ISD::CondCode::SETOGT); 9518 9519 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9520 // is already zero. 9521 if (!IsSigned) 9522 return Select; 9523 9524 // Otherwise, select 0 if Src is NaN. 9525 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9526 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9527 } 9528 9529 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9530 SelectionDAG &DAG) const { 9531 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9532 assert(Node->getValueType(0).isScalableVector() && 9533 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9534 9535 EVT VT = Node->getValueType(0); 9536 SDValue V1 = Node->getOperand(0); 9537 SDValue V2 = Node->getOperand(1); 9538 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9539 SDLoc DL(Node); 9540 9541 // Expand through memory thusly: 9542 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9543 // Store V1, Ptr 9544 // Store V2, Ptr + sizeof(V1) 9545 // If (Imm < 0) 9546 // TrailingElts = -Imm 9547 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9548 // else 9549 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9550 // Res = Load Ptr 9551 9552 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9553 9554 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9555 VT.getVectorElementCount() * 2); 9556 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9557 EVT PtrVT = StackPtr.getValueType(); 9558 auto &MF = DAG.getMachineFunction(); 9559 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9560 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9561 9562 // Store the lo part of CONCAT_VECTORS(V1, V2) 9563 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9564 // Store the hi part of CONCAT_VECTORS(V1, V2) 9565 SDValue OffsetToV2 = DAG.getVScale( 9566 DL, PtrVT, 9567 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9568 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9569 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9570 9571 if (Imm >= 0) { 9572 // Load back the required element. getVectorElementPointer takes care of 9573 // clamping the index if it's out-of-bounds. 9574 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9575 // Load the spliced result 9576 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9577 MachinePointerInfo::getUnknownStack(MF)); 9578 } 9579 9580 uint64_t TrailingElts = -Imm; 9581 9582 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9583 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9584 SDValue TrailingBytes = 9585 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9586 9587 if (TrailingElts > VT.getVectorMinNumElements()) { 9588 SDValue VLBytes = DAG.getVScale( 9589 DL, PtrVT, 9590 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9591 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9592 } 9593 9594 // Calculate the start address of the spliced result. 9595 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9596 9597 // Load the spliced result 9598 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9599 MachinePointerInfo::getUnknownStack(MF)); 9600 } 9601 9602 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9603 SDValue &LHS, SDValue &RHS, 9604 SDValue &CC, SDValue Mask, 9605 SDValue EVL, bool &NeedInvert, 9606 const SDLoc &dl, SDValue &Chain, 9607 bool IsSignaling) const { 9608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9609 MVT OpVT = LHS.getSimpleValueType(); 9610 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9611 NeedInvert = false; 9612 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9613 bool IsNonVP = !EVL; 9614 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9615 default: 9616 llvm_unreachable("Unknown condition code action!"); 9617 case TargetLowering::Legal: 9618 // Nothing to do. 9619 break; 9620 case TargetLowering::Expand: { 9621 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9622 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9623 std::swap(LHS, RHS); 9624 CC = DAG.getCondCode(InvCC); 9625 return true; 9626 } 9627 // Swapping operands didn't work. Try inverting the condition. 9628 bool NeedSwap = false; 9629 InvCC = getSetCCInverse(CCCode, OpVT); 9630 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9631 // If inverting the condition is not enough, try swapping operands 9632 // on top of it. 9633 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9634 NeedSwap = true; 9635 } 9636 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9637 CC = DAG.getCondCode(InvCC); 9638 NeedInvert = true; 9639 if (NeedSwap) 9640 std::swap(LHS, RHS); 9641 return true; 9642 } 9643 9644 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9645 unsigned Opc = 0; 9646 switch (CCCode) { 9647 default: 9648 llvm_unreachable("Don't know how to expand this condition!"); 9649 case ISD::SETUO: 9650 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9651 CC1 = ISD::SETUNE; 9652 CC2 = ISD::SETUNE; 9653 Opc = ISD::OR; 9654 break; 9655 } 9656 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9657 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9658 NeedInvert = true; 9659 LLVM_FALLTHROUGH; 9660 case ISD::SETO: 9661 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9662 "If SETO is expanded, SETOEQ must be legal!"); 9663 CC1 = ISD::SETOEQ; 9664 CC2 = ISD::SETOEQ; 9665 Opc = ISD::AND; 9666 break; 9667 case ISD::SETONE: 9668 case ISD::SETUEQ: 9669 // If the SETUO or SETO CC isn't legal, we might be able to use 9670 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9671 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9672 // the operands. 9673 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9674 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9675 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9676 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9677 CC1 = ISD::SETOGT; 9678 CC2 = ISD::SETOLT; 9679 Opc = ISD::OR; 9680 NeedInvert = ((unsigned)CCCode & 0x8U); 9681 break; 9682 } 9683 LLVM_FALLTHROUGH; 9684 case ISD::SETOEQ: 9685 case ISD::SETOGT: 9686 case ISD::SETOGE: 9687 case ISD::SETOLT: 9688 case ISD::SETOLE: 9689 case ISD::SETUNE: 9690 case ISD::SETUGT: 9691 case ISD::SETUGE: 9692 case ISD::SETULT: 9693 case ISD::SETULE: 9694 // If we are floating point, assign and break, otherwise fall through. 9695 if (!OpVT.isInteger()) { 9696 // We can use the 4th bit to tell if we are the unordered 9697 // or ordered version of the opcode. 9698 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9699 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9700 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9701 break; 9702 } 9703 // Fallthrough if we are unsigned integer. 9704 LLVM_FALLTHROUGH; 9705 case ISD::SETLE: 9706 case ISD::SETGT: 9707 case ISD::SETGE: 9708 case ISD::SETLT: 9709 case ISD::SETNE: 9710 case ISD::SETEQ: 9711 // If all combinations of inverting the condition and swapping operands 9712 // didn't work then we have no means to expand the condition. 9713 llvm_unreachable("Don't know how to expand this condition!"); 9714 } 9715 9716 SDValue SetCC1, SetCC2; 9717 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9718 // If we aren't the ordered or unorder operation, 9719 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9720 if (IsNonVP) { 9721 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9722 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9723 } else { 9724 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9725 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9726 } 9727 } else { 9728 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9729 if (IsNonVP) { 9730 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9731 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9732 } else { 9733 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9734 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9735 } 9736 } 9737 if (Chain) 9738 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9739 SetCC2.getValue(1)); 9740 if (IsNonVP) 9741 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9742 else { 9743 // Transform the binary opcode to the VP equivalent. 9744 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9745 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9746 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9747 } 9748 RHS = SDValue(); 9749 CC = SDValue(); 9750 return true; 9751 } 9752 } 9753 return false; 9754 } 9755