1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 EVT VT = Op.getValueType(); 1060 if (VT.isScalableVector()) 1061 return false; 1062 1063 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1064 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1065 assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1092 if (Depth != 0) { 1093 // If not at the root, Just compute the Known bits to 1094 // simplify things downstream. 1095 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1096 return false; 1097 } 1098 // If this is the root being simplified, allow it to have multiple uses, 1099 // just set the DemandedBits/Elts to all bits. 1100 DemandedBits = APInt::getAllOnes(BitWidth); 1101 DemandedElts = APInt::getAllOnes(NumElts); 1102 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1103 // Not demanding any bits/elts from Op. 1104 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1105 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1106 // Limit search depth. 1107 return false; 1108 } 1109 1110 KnownBits Known2; 1111 switch (Op.getOpcode()) { 1112 case ISD::TargetConstant: 1113 llvm_unreachable("Can't simplify this node"); 1114 case ISD::SCALAR_TO_VECTOR: { 1115 if (!DemandedElts[0]) 1116 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1117 1118 KnownBits SrcKnown; 1119 SDValue Src = Op.getOperand(0); 1120 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1121 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1122 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1123 return true; 1124 1125 // Upper elements are undef, so only get the knownbits if we just demand 1126 // the bottom element. 1127 if (DemandedElts == 1) 1128 Known = SrcKnown.anyextOrTrunc(BitWidth); 1129 break; 1130 } 1131 case ISD::BUILD_VECTOR: 1132 // Collect the known bits that are shared by every demanded element. 1133 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1134 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1135 return false; // Don't fall through, will infinitely loop. 1136 case ISD::LOAD: { 1137 auto *LD = cast<LoadSDNode>(Op); 1138 if (getTargetConstantFromLoad(LD)) { 1139 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1140 return false; // Don't fall through, will infinitely loop. 1141 } 1142 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1143 // If this is a ZEXTLoad and we are looking at the loaded value. 1144 EVT MemVT = LD->getMemoryVT(); 1145 unsigned MemBits = MemVT.getScalarSizeInBits(); 1146 Known.Zero.setBitsFrom(MemBits); 1147 return false; // Don't fall through, will infinitely loop. 1148 } 1149 break; 1150 } 1151 case ISD::INSERT_VECTOR_ELT: { 1152 SDValue Vec = Op.getOperand(0); 1153 SDValue Scl = Op.getOperand(1); 1154 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1155 EVT VecVT = Vec.getValueType(); 1156 1157 // If index isn't constant, assume we need all vector elements AND the 1158 // inserted element. 1159 APInt DemandedVecElts(DemandedElts); 1160 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1161 unsigned Idx = CIdx->getZExtValue(); 1162 DemandedVecElts.clearBit(Idx); 1163 1164 // Inserted element is not required. 1165 if (!DemandedElts[Idx]) 1166 return TLO.CombineTo(Op, Vec); 1167 } 1168 1169 KnownBits KnownScl; 1170 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1171 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1172 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1173 return true; 1174 1175 Known = KnownScl.anyextOrTrunc(BitWidth); 1176 1177 KnownBits KnownVec; 1178 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1179 Depth + 1)) 1180 return true; 1181 1182 if (!!DemandedVecElts) 1183 Known = KnownBits::commonBits(Known, KnownVec); 1184 1185 return false; 1186 } 1187 case ISD::INSERT_SUBVECTOR: { 1188 // Demand any elements from the subvector and the remainder from the src its 1189 // inserted into. 1190 SDValue Src = Op.getOperand(0); 1191 SDValue Sub = Op.getOperand(1); 1192 uint64_t Idx = Op.getConstantOperandVal(2); 1193 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1194 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1195 APInt DemandedSrcElts = DemandedElts; 1196 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1197 1198 KnownBits KnownSub, KnownSrc; 1199 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1200 Depth + 1)) 1201 return true; 1202 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1203 Depth + 1)) 1204 return true; 1205 1206 Known.Zero.setAllBits(); 1207 Known.One.setAllBits(); 1208 if (!!DemandedSubElts) 1209 Known = KnownBits::commonBits(Known, KnownSub); 1210 if (!!DemandedSrcElts) 1211 Known = KnownBits::commonBits(Known, KnownSrc); 1212 1213 // Attempt to avoid multi-use src if we don't need anything from it. 1214 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1215 !DemandedSrcElts.isAllOnes()) { 1216 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1217 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1218 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1219 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1220 if (NewSub || NewSrc) { 1221 NewSub = NewSub ? NewSub : Sub; 1222 NewSrc = NewSrc ? NewSrc : Src; 1223 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1224 Op.getOperand(2)); 1225 return TLO.CombineTo(Op, NewOp); 1226 } 1227 } 1228 break; 1229 } 1230 case ISD::EXTRACT_SUBVECTOR: { 1231 // Offset the demanded elts by the subvector index. 1232 SDValue Src = Op.getOperand(0); 1233 if (Src.getValueType().isScalableVector()) 1234 break; 1235 uint64_t Idx = Op.getConstantOperandVal(1); 1236 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1237 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1238 1239 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1240 Depth + 1)) 1241 return true; 1242 1243 // Attempt to avoid multi-use src if we don't need anything from it. 1244 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1245 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1246 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1247 if (DemandedSrc) { 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1249 Op.getOperand(1)); 1250 return TLO.CombineTo(Op, NewOp); 1251 } 1252 } 1253 break; 1254 } 1255 case ISD::CONCAT_VECTORS: { 1256 Known.Zero.setAllBits(); 1257 Known.One.setAllBits(); 1258 EVT SubVT = Op.getOperand(0).getValueType(); 1259 unsigned NumSubVecs = Op.getNumOperands(); 1260 unsigned NumSubElts = SubVT.getVectorNumElements(); 1261 for (unsigned i = 0; i != NumSubVecs; ++i) { 1262 APInt DemandedSubElts = 1263 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1264 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1265 Known2, TLO, Depth + 1)) 1266 return true; 1267 // Known bits are shared by every demanded subvector element. 1268 if (!!DemandedSubElts) 1269 Known = KnownBits::commonBits(Known, Known2); 1270 } 1271 break; 1272 } 1273 case ISD::VECTOR_SHUFFLE: { 1274 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1275 1276 // Collect demanded elements from shuffle operands.. 1277 APInt DemandedLHS(NumElts, 0); 1278 APInt DemandedRHS(NumElts, 0); 1279 for (unsigned i = 0; i != NumElts; ++i) { 1280 if (!DemandedElts[i]) 1281 continue; 1282 int M = ShuffleMask[i]; 1283 if (M < 0) { 1284 // For UNDEF elements, we don't know anything about the common state of 1285 // the shuffle result. 1286 DemandedLHS.clearAllBits(); 1287 DemandedRHS.clearAllBits(); 1288 break; 1289 } 1290 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1291 if (M < (int)NumElts) 1292 DemandedLHS.setBit(M); 1293 else 1294 DemandedRHS.setBit(M - NumElts); 1295 } 1296 1297 if (!!DemandedLHS || !!DemandedRHS) { 1298 SDValue Op0 = Op.getOperand(0); 1299 SDValue Op1 = Op.getOperand(1); 1300 1301 Known.Zero.setAllBits(); 1302 Known.One.setAllBits(); 1303 if (!!DemandedLHS) { 1304 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1305 Depth + 1)) 1306 return true; 1307 Known = KnownBits::commonBits(Known, Known2); 1308 } 1309 if (!!DemandedRHS) { 1310 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1311 Depth + 1)) 1312 return true; 1313 Known = KnownBits::commonBits(Known, Known2); 1314 } 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1318 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1319 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1320 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1321 if (DemandedOp0 || DemandedOp1) { 1322 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1323 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1324 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1325 return TLO.CombineTo(Op, NewOp); 1326 } 1327 } 1328 break; 1329 } 1330 case ISD::AND: { 1331 SDValue Op0 = Op.getOperand(0); 1332 SDValue Op1 = Op.getOperand(1); 1333 1334 // If the RHS is a constant, check to see if the LHS would be zero without 1335 // using the bits from the RHS. Below, we use knowledge about the RHS to 1336 // simplify the LHS, here we're using information from the LHS to simplify 1337 // the RHS. 1338 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1339 // Do not increment Depth here; that can cause an infinite loop. 1340 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1341 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1342 if ((LHSKnown.Zero & DemandedBits) == 1343 (~RHSC->getAPIntValue() & DemandedBits)) 1344 return TLO.CombineTo(Op, Op0); 1345 1346 // If any of the set bits in the RHS are known zero on the LHS, shrink 1347 // the constant. 1348 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1349 DemandedElts, TLO)) 1350 return true; 1351 1352 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1353 // constant, but if this 'and' is only clearing bits that were just set by 1354 // the xor, then this 'and' can be eliminated by shrinking the mask of 1355 // the xor. For example, for a 32-bit X: 1356 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1357 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1358 LHSKnown.One == ~RHSC->getAPIntValue()) { 1359 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1360 return TLO.CombineTo(Op, Xor); 1361 } 1362 } 1363 1364 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1365 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1366 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && 1367 (Op0.getOperand(0).isUndef() || 1368 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1369 Op0->hasOneUse()) { 1370 unsigned NumSubElts = 1371 Op0.getOperand(1).getValueType().getVectorNumElements(); 1372 unsigned SubIdx = Op0.getConstantOperandVal(2); 1373 APInt DemandedSub = 1374 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1375 KnownBits KnownSubMask = 1376 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1377 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1378 SDValue NewAnd = 1379 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1380 SDValue NewInsert = 1381 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1382 Op0.getOperand(1), Op0.getOperand(2)); 1383 return TLO.CombineTo(Op, NewInsert); 1384 } 1385 } 1386 1387 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1392 Known2, TLO, Depth + 1)) 1393 return true; 1394 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1395 1396 // If all of the demanded bits are known one on one side, return the other. 1397 // These bits cannot contribute to the result of the 'and'. 1398 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1399 return TLO.CombineTo(Op, Op0); 1400 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1401 return TLO.CombineTo(Op, Op1); 1402 // If all of the demanded bits in the inputs are known zeros, return zero. 1403 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1404 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1405 // If the RHS is a constant, see if we can simplify it. 1406 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1407 TLO)) 1408 return true; 1409 // If the operation can be done in a smaller type, do so. 1410 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1411 return true; 1412 1413 // Attempt to avoid multi-use ops if we don't need anything from them. 1414 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1415 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1416 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1417 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1418 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1419 if (DemandedOp0 || DemandedOp1) { 1420 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1421 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1422 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1423 return TLO.CombineTo(Op, NewOp); 1424 } 1425 } 1426 1427 Known &= Known2; 1428 break; 1429 } 1430 case ISD::OR: { 1431 SDValue Op0 = Op.getOperand(0); 1432 SDValue Op1 = Op.getOperand(1); 1433 1434 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1435 Depth + 1)) 1436 return true; 1437 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1438 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1439 Known2, TLO, Depth + 1)) 1440 return true; 1441 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1442 1443 // If all of the demanded bits are known zero on one side, return the other. 1444 // These bits cannot contribute to the result of the 'or'. 1445 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1446 return TLO.CombineTo(Op, Op0); 1447 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1448 return TLO.CombineTo(Op, Op1); 1449 // If the RHS is a constant, see if we can simplify it. 1450 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1451 return true; 1452 // If the operation can be done in a smaller type, do so. 1453 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1454 return true; 1455 1456 // Attempt to avoid multi-use ops if we don't need anything from them. 1457 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1458 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1459 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1460 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1461 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1462 if (DemandedOp0 || DemandedOp1) { 1463 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1464 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1465 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1466 return TLO.CombineTo(Op, NewOp); 1467 } 1468 } 1469 1470 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1471 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1472 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1473 Op0->hasOneUse() && Op1->hasOneUse()) { 1474 // Attempt to match all commutations - m_c_Or would've been useful! 1475 for (int I = 0; I != 2; ++I) { 1476 SDValue X = Op.getOperand(I).getOperand(0); 1477 SDValue C1 = Op.getOperand(I).getOperand(1); 1478 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1479 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1480 if (Alt.getOpcode() == ISD::OR) { 1481 for (int J = 0; J != 2; ++J) { 1482 if (X == Alt.getOperand(J)) { 1483 SDValue Y = Alt.getOperand(1 - J); 1484 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1485 {C1, C2})) { 1486 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1487 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1490 } 1491 } 1492 } 1493 } 1494 } 1495 } 1496 1497 Known |= Known2; 1498 break; 1499 } 1500 case ISD::XOR: { 1501 SDValue Op0 = Op.getOperand(0); 1502 SDValue Op1 = Op.getOperand(1); 1503 1504 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1505 Depth + 1)) 1506 return true; 1507 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1508 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1512 1513 // If all of the demanded bits are known zero on one side, return the other. 1514 // These bits cannot contribute to the result of the 'xor'. 1515 if (DemandedBits.isSubsetOf(Known.Zero)) 1516 return TLO.CombineTo(Op, Op0); 1517 if (DemandedBits.isSubsetOf(Known2.Zero)) 1518 return TLO.CombineTo(Op, Op1); 1519 // If the operation can be done in a smaller type, do so. 1520 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1521 return true; 1522 1523 // If all of the unknown bits are known to be zero on one side or the other 1524 // turn this into an *inclusive* or. 1525 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1526 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1527 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1528 1529 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1530 if (C) { 1531 // If one side is a constant, and all of the set bits in the constant are 1532 // also known set on the other side, turn this into an AND, as we know 1533 // the bits will be cleared. 1534 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1535 // NB: it is okay if more bits are known than are requested 1536 if (C->getAPIntValue() == Known2.One) { 1537 SDValue ANDC = 1538 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1539 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1540 } 1541 1542 // If the RHS is a constant, see if we can change it. Don't alter a -1 1543 // constant because that's a 'not' op, and that is better for combining 1544 // and codegen. 1545 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1546 // We're flipping all demanded bits. Flip the undemanded bits too. 1547 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1548 return TLO.CombineTo(Op, New); 1549 } 1550 1551 unsigned Op0Opcode = Op0.getOpcode(); 1552 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1553 if (ConstantSDNode *ShiftC = 1554 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1555 // Don't crash on an oversized shift. We can not guarantee that a 1556 // bogus shift has been simplified to undef. 1557 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1558 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1559 APInt Ones = APInt::getAllOnes(BitWidth); 1560 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1561 : Ones.lshr(ShiftAmt); 1562 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1563 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1564 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1565 // If the xor constant is a demanded mask, do a 'not' before the 1566 // shift: 1567 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1568 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1569 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1570 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1571 Op0.getOperand(1))); 1572 } 1573 } 1574 } 1575 } 1576 } 1577 1578 // If we can't turn this into a 'not', try to shrink the constant. 1579 if (!C || !C->isAllOnes()) 1580 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1581 return true; 1582 1583 // Attempt to avoid multi-use ops if we don't need anything from them. 1584 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1585 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1586 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1587 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1588 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1589 if (DemandedOp0 || DemandedOp1) { 1590 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1591 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1592 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1593 return TLO.CombineTo(Op, NewOp); 1594 } 1595 } 1596 1597 Known ^= Known2; 1598 break; 1599 } 1600 case ISD::SELECT: 1601 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1602 Depth + 1)) 1603 return true; 1604 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1605 Depth + 1)) 1606 return true; 1607 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1608 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1609 1610 // If the operands are constants, see if we can simplify them. 1611 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1612 return true; 1613 1614 // Only known if known in both the LHS and RHS. 1615 Known = KnownBits::commonBits(Known, Known2); 1616 break; 1617 case ISD::VSELECT: 1618 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1619 Known, TLO, Depth + 1)) 1620 return true; 1621 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1622 Known2, TLO, Depth + 1)) 1623 return true; 1624 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1625 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1626 1627 // Only known if known in both the LHS and RHS. 1628 Known = KnownBits::commonBits(Known, Known2); 1629 break; 1630 case ISD::SELECT_CC: 1631 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1632 Depth + 1)) 1633 return true; 1634 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1635 Depth + 1)) 1636 return true; 1637 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1638 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1639 1640 // If the operands are constants, see if we can simplify them. 1641 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1642 return true; 1643 1644 // Only known if known in both the LHS and RHS. 1645 Known = KnownBits::commonBits(Known, Known2); 1646 break; 1647 case ISD::SETCC: { 1648 SDValue Op0 = Op.getOperand(0); 1649 SDValue Op1 = Op.getOperand(1); 1650 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1651 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1652 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1653 // -1, we may be able to bypass the setcc. 1654 if (DemandedBits.isSignMask() && 1655 Op0.getScalarValueSizeInBits() == BitWidth && 1656 getBooleanContents(Op0.getValueType()) == 1657 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1658 // If we're testing X < 0, then this compare isn't needed - just use X! 1659 // FIXME: We're limiting to integer types here, but this should also work 1660 // if we don't care about FP signed-zero. The use of SETLT with FP means 1661 // that we don't care about NaNs. 1662 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1663 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1664 return TLO.CombineTo(Op, Op0); 1665 1666 // TODO: Should we check for other forms of sign-bit comparisons? 1667 // Examples: X <= -1, X >= 0 1668 } 1669 if (getBooleanContents(Op0.getValueType()) == 1670 TargetLowering::ZeroOrOneBooleanContent && 1671 BitWidth > 1) 1672 Known.Zero.setBitsFrom(1); 1673 break; 1674 } 1675 case ISD::SHL: { 1676 SDValue Op0 = Op.getOperand(0); 1677 SDValue Op1 = Op.getOperand(1); 1678 EVT ShiftVT = Op1.getValueType(); 1679 1680 if (const APInt *SA = 1681 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1682 unsigned ShAmt = SA->getZExtValue(); 1683 if (ShAmt == 0) 1684 return TLO.CombineTo(Op, Op0); 1685 1686 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1687 // single shift. We can do this if the bottom bits (which are shifted 1688 // out) are never demanded. 1689 // TODO - support non-uniform vector amounts. 1690 if (Op0.getOpcode() == ISD::SRL) { 1691 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1692 if (const APInt *SA2 = 1693 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1694 unsigned C1 = SA2->getZExtValue(); 1695 unsigned Opc = ISD::SHL; 1696 int Diff = ShAmt - C1; 1697 if (Diff < 0) { 1698 Diff = -Diff; 1699 Opc = ISD::SRL; 1700 } 1701 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1702 return TLO.CombineTo( 1703 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1704 } 1705 } 1706 } 1707 1708 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1709 // are not demanded. This will likely allow the anyext to be folded away. 1710 // TODO - support non-uniform vector amounts. 1711 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1712 SDValue InnerOp = Op0.getOperand(0); 1713 EVT InnerVT = InnerOp.getValueType(); 1714 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1715 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1716 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1717 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1718 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1719 ShTy = InnerVT; 1720 SDValue NarrowShl = 1721 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1722 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1723 return TLO.CombineTo( 1724 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1725 } 1726 1727 // Repeat the SHL optimization above in cases where an extension 1728 // intervenes: (shl (anyext (shr x, c1)), c2) to 1729 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1730 // aren't demanded (as above) and that the shifted upper c1 bits of 1731 // x aren't demanded. 1732 // TODO - support non-uniform vector amounts. 1733 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1734 InnerOp.hasOneUse()) { 1735 if (const APInt *SA2 = 1736 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1737 unsigned InnerShAmt = SA2->getZExtValue(); 1738 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1739 DemandedBits.getActiveBits() <= 1740 (InnerBits - InnerShAmt + ShAmt) && 1741 DemandedBits.countTrailingZeros() >= ShAmt) { 1742 SDValue NewSA = 1743 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1744 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1745 InnerOp.getOperand(0)); 1746 return TLO.CombineTo( 1747 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1748 } 1749 } 1750 } 1751 } 1752 1753 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1754 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1755 Depth + 1)) 1756 return true; 1757 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1758 Known.Zero <<= ShAmt; 1759 Known.One <<= ShAmt; 1760 // low bits known zero. 1761 Known.Zero.setLowBits(ShAmt); 1762 1763 // Attempt to avoid multi-use ops if we don't need anything from them. 1764 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1765 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1766 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1767 if (DemandedOp0) { 1768 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1769 return TLO.CombineTo(Op, NewOp); 1770 } 1771 } 1772 1773 // Try shrinking the operation as long as the shift amount will still be 1774 // in range. 1775 if ((ShAmt < DemandedBits.getActiveBits()) && 1776 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1777 return true; 1778 } else { 1779 // This is a variable shift, so we can't shift the demand mask by a known 1780 // amount. But if we are not demanding high bits, then we are not 1781 // demanding those bits from the pre-shifted operand either. 1782 if (unsigned CTLZ = DemandedBits.countLeadingZeros()) { 1783 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1784 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1785 Depth + 1)) { 1786 SDNodeFlags Flags = Op.getNode()->getFlags(); 1787 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1788 // Disable the nsw and nuw flags. We can no longer guarantee that we 1789 // won't wrap after simplification. 1790 Flags.setNoSignedWrap(false); 1791 Flags.setNoUnsignedWrap(false); 1792 Op->setFlags(Flags); 1793 } 1794 return true; 1795 } 1796 Known.resetAll(); 1797 } 1798 } 1799 1800 // If we are only demanding sign bits then we can use the shift source 1801 // directly. 1802 if (const APInt *MaxSA = 1803 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1804 unsigned ShAmt = MaxSA->getZExtValue(); 1805 unsigned NumSignBits = 1806 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1807 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1808 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1809 return TLO.CombineTo(Op, Op0); 1810 } 1811 break; 1812 } 1813 case ISD::SRL: { 1814 SDValue Op0 = Op.getOperand(0); 1815 SDValue Op1 = Op.getOperand(1); 1816 EVT ShiftVT = Op1.getValueType(); 1817 1818 // Try to match AVG patterns. 1819 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1820 DemandedElts, Depth + 1)) 1821 return TLO.CombineTo(Op, AVG); 1822 1823 if (const APInt *SA = 1824 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1825 unsigned ShAmt = SA->getZExtValue(); 1826 if (ShAmt == 0) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1830 // single shift. We can do this if the top bits (which are shifted out) 1831 // are never demanded. 1832 // TODO - support non-uniform vector amounts. 1833 if (Op0.getOpcode() == ISD::SHL) { 1834 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1835 if (const APInt *SA2 = 1836 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1837 unsigned C1 = SA2->getZExtValue(); 1838 unsigned Opc = ISD::SRL; 1839 int Diff = ShAmt - C1; 1840 if (Diff < 0) { 1841 Diff = -Diff; 1842 Opc = ISD::SHL; 1843 } 1844 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1845 return TLO.CombineTo( 1846 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1847 } 1848 } 1849 } 1850 1851 APInt InDemandedMask = (DemandedBits << ShAmt); 1852 1853 // If the shift is exact, then it does demand the low bits (and knows that 1854 // they are zero). 1855 if (Op->getFlags().hasExact()) 1856 InDemandedMask.setLowBits(ShAmt); 1857 1858 // Compute the new bits that are at the top now. 1859 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1860 Depth + 1)) 1861 return true; 1862 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1863 Known.Zero.lshrInPlace(ShAmt); 1864 Known.One.lshrInPlace(ShAmt); 1865 // High bits known zero. 1866 Known.Zero.setHighBits(ShAmt); 1867 } 1868 break; 1869 } 1870 case ISD::SRA: { 1871 SDValue Op0 = Op.getOperand(0); 1872 SDValue Op1 = Op.getOperand(1); 1873 EVT ShiftVT = Op1.getValueType(); 1874 1875 // If we only want bits that already match the signbit then we don't need 1876 // to shift. 1877 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1878 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1879 NumHiDemandedBits) 1880 return TLO.CombineTo(Op, Op0); 1881 1882 // If this is an arithmetic shift right and only the low-bit is set, we can 1883 // always convert this into a logical shr, even if the shift amount is 1884 // variable. The low bit of the shift cannot be an input sign bit unless 1885 // the shift amount is >= the size of the datatype, which is undefined. 1886 if (DemandedBits.isOne()) 1887 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1888 1889 // Try to match AVG patterns. 1890 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1891 DemandedElts, Depth + 1)) 1892 return TLO.CombineTo(Op, AVG); 1893 1894 if (const APInt *SA = 1895 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1896 unsigned ShAmt = SA->getZExtValue(); 1897 if (ShAmt == 0) 1898 return TLO.CombineTo(Op, Op0); 1899 1900 APInt InDemandedMask = (DemandedBits << ShAmt); 1901 1902 // If the shift is exact, then it does demand the low bits (and knows that 1903 // they are zero). 1904 if (Op->getFlags().hasExact()) 1905 InDemandedMask.setLowBits(ShAmt); 1906 1907 // If any of the demanded bits are produced by the sign extension, we also 1908 // demand the input sign bit. 1909 if (DemandedBits.countLeadingZeros() < ShAmt) 1910 InDemandedMask.setSignBit(); 1911 1912 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1913 Depth + 1)) 1914 return true; 1915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1916 Known.Zero.lshrInPlace(ShAmt); 1917 Known.One.lshrInPlace(ShAmt); 1918 1919 // If the input sign bit is known to be zero, or if none of the top bits 1920 // are demanded, turn this into an unsigned shift right. 1921 if (Known.Zero[BitWidth - ShAmt - 1] || 1922 DemandedBits.countLeadingZeros() >= ShAmt) { 1923 SDNodeFlags Flags; 1924 Flags.setExact(Op->getFlags().hasExact()); 1925 return TLO.CombineTo( 1926 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1927 } 1928 1929 int Log2 = DemandedBits.exactLogBase2(); 1930 if (Log2 >= 0) { 1931 // The bit must come from the sign. 1932 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1933 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1934 } 1935 1936 if (Known.One[BitWidth - ShAmt - 1]) 1937 // New bits are known one. 1938 Known.One.setHighBits(ShAmt); 1939 1940 // Attempt to avoid multi-use ops if we don't need anything from them. 1941 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1942 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1943 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1944 if (DemandedOp0) { 1945 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1946 return TLO.CombineTo(Op, NewOp); 1947 } 1948 } 1949 } 1950 break; 1951 } 1952 case ISD::FSHL: 1953 case ISD::FSHR: { 1954 SDValue Op0 = Op.getOperand(0); 1955 SDValue Op1 = Op.getOperand(1); 1956 SDValue Op2 = Op.getOperand(2); 1957 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1958 1959 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1960 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1961 1962 // For fshl, 0-shift returns the 1st arg. 1963 // For fshr, 0-shift returns the 2nd arg. 1964 if (Amt == 0) { 1965 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1966 Known, TLO, Depth + 1)) 1967 return true; 1968 break; 1969 } 1970 1971 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1972 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1973 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1974 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1975 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1976 Depth + 1)) 1977 return true; 1978 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1979 Depth + 1)) 1980 return true; 1981 1982 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1983 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1984 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1985 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1986 Known.One |= Known2.One; 1987 Known.Zero |= Known2.Zero; 1988 1989 // Attempt to avoid multi-use ops if we don't need anything from them. 1990 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1991 !DemandedElts.isAllOnes()) { 1992 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1993 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1994 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1995 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1996 if (DemandedOp0 || DemandedOp1) { 1997 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1998 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1999 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2000 DemandedOp1, Op2); 2001 return TLO.CombineTo(Op, NewOp); 2002 } 2003 } 2004 } 2005 2006 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2007 if (isPowerOf2_32(BitWidth)) { 2008 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2009 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2010 Known2, TLO, Depth + 1)) 2011 return true; 2012 } 2013 break; 2014 } 2015 case ISD::ROTL: 2016 case ISD::ROTR: { 2017 SDValue Op0 = Op.getOperand(0); 2018 SDValue Op1 = Op.getOperand(1); 2019 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2020 2021 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2022 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2023 return TLO.CombineTo(Op, Op0); 2024 2025 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2026 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2027 unsigned RevAmt = BitWidth - Amt; 2028 2029 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2030 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2031 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2032 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2033 Depth + 1)) 2034 return true; 2035 2036 // rot*(x, 0) --> x 2037 if (Amt == 0) 2038 return TLO.CombineTo(Op, Op0); 2039 2040 // See if we don't demand either half of the rotated bits. 2041 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2042 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 2043 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2044 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2045 } 2046 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2047 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 2048 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2049 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2050 } 2051 } 2052 2053 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2054 if (isPowerOf2_32(BitWidth)) { 2055 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2056 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2057 Depth + 1)) 2058 return true; 2059 } 2060 break; 2061 } 2062 case ISD::UMIN: { 2063 // Check if one arg is always less than (or equal) to the other arg. 2064 SDValue Op0 = Op.getOperand(0); 2065 SDValue Op1 = Op.getOperand(1); 2066 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2067 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2068 Known = KnownBits::umin(Known0, Known1); 2069 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2070 return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1); 2071 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2072 return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1); 2073 break; 2074 } 2075 case ISD::UMAX: { 2076 // Check if one arg is always greater than (or equal) to the other arg. 2077 SDValue Op0 = Op.getOperand(0); 2078 SDValue Op1 = Op.getOperand(1); 2079 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2080 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2081 Known = KnownBits::umax(Known0, Known1); 2082 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2083 return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1); 2084 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2085 return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1); 2086 break; 2087 } 2088 case ISD::BITREVERSE: { 2089 SDValue Src = Op.getOperand(0); 2090 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2091 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2092 Depth + 1)) 2093 return true; 2094 Known.One = Known2.One.reverseBits(); 2095 Known.Zero = Known2.Zero.reverseBits(); 2096 break; 2097 } 2098 case ISD::BSWAP: { 2099 SDValue Src = Op.getOperand(0); 2100 2101 // If the only bits demanded come from one byte of the bswap result, 2102 // just shift the input byte into position to eliminate the bswap. 2103 unsigned NLZ = DemandedBits.countLeadingZeros(); 2104 unsigned NTZ = DemandedBits.countTrailingZeros(); 2105 2106 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2107 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2108 // have 14 leading zeros, round to 8. 2109 NLZ = alignDown(NLZ, 8); 2110 NTZ = alignDown(NTZ, 8); 2111 // If we need exactly one byte, we can do this transformation. 2112 if (BitWidth - NLZ - NTZ == 8) { 2113 // Replace this with either a left or right shift to get the byte into 2114 // the right place. 2115 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2116 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2117 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2118 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2119 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2120 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2121 return TLO.CombineTo(Op, NewOp); 2122 } 2123 } 2124 2125 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2126 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2127 Depth + 1)) 2128 return true; 2129 Known.One = Known2.One.byteSwap(); 2130 Known.Zero = Known2.Zero.byteSwap(); 2131 break; 2132 } 2133 case ISD::CTPOP: { 2134 // If only 1 bit is demanded, replace with PARITY as long as we're before 2135 // op legalization. 2136 // FIXME: Limit to scalars for now. 2137 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2138 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2139 Op.getOperand(0))); 2140 2141 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2142 break; 2143 } 2144 case ISD::SIGN_EXTEND_INREG: { 2145 SDValue Op0 = Op.getOperand(0); 2146 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2147 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2148 2149 // If we only care about the highest bit, don't bother shifting right. 2150 if (DemandedBits.isSignMask()) { 2151 unsigned MinSignedBits = 2152 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2153 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2154 // However if the input is already sign extended we expect the sign 2155 // extension to be dropped altogether later and do not simplify. 2156 if (!AlreadySignExtended) { 2157 // Compute the correct shift amount type, which must be getShiftAmountTy 2158 // for scalar types after legalization. 2159 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2160 getShiftAmountTy(VT, DL)); 2161 return TLO.CombineTo(Op, 2162 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2163 } 2164 } 2165 2166 // If none of the extended bits are demanded, eliminate the sextinreg. 2167 if (DemandedBits.getActiveBits() <= ExVTBits) 2168 return TLO.CombineTo(Op, Op0); 2169 2170 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2171 2172 // Since the sign extended bits are demanded, we know that the sign 2173 // bit is demanded. 2174 InputDemandedBits.setBit(ExVTBits - 1); 2175 2176 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2177 Depth + 1)) 2178 return true; 2179 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2180 2181 // If the sign bit of the input is known set or clear, then we know the 2182 // top bits of the result. 2183 2184 // If the input sign bit is known zero, convert this into a zero extension. 2185 if (Known.Zero[ExVTBits - 1]) 2186 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2187 2188 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2189 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2190 Known.One.setBitsFrom(ExVTBits); 2191 Known.Zero &= Mask; 2192 } else { // Input sign bit unknown 2193 Known.Zero &= Mask; 2194 Known.One &= Mask; 2195 } 2196 break; 2197 } 2198 case ISD::BUILD_PAIR: { 2199 EVT HalfVT = Op.getOperand(0).getValueType(); 2200 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2201 2202 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2203 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2204 2205 KnownBits KnownLo, KnownHi; 2206 2207 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2208 return true; 2209 2210 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2211 return true; 2212 2213 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2214 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2215 2216 Known.One = KnownLo.One.zext(BitWidth) | 2217 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2218 break; 2219 } 2220 case ISD::ZERO_EXTEND: 2221 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2222 SDValue Src = Op.getOperand(0); 2223 EVT SrcVT = Src.getValueType(); 2224 unsigned InBits = SrcVT.getScalarSizeInBits(); 2225 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2226 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2227 2228 // If none of the top bits are demanded, convert this into an any_extend. 2229 if (DemandedBits.getActiveBits() <= InBits) { 2230 // If we only need the non-extended bits of the bottom element 2231 // then we can just bitcast to the result. 2232 if (IsLE && IsVecInReg && DemandedElts == 1 && 2233 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2234 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2235 2236 unsigned Opc = 2237 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2238 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2239 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2240 } 2241 2242 APInt InDemandedBits = DemandedBits.trunc(InBits); 2243 APInt InDemandedElts = DemandedElts.zext(InElts); 2244 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2245 Depth + 1)) 2246 return true; 2247 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2248 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2249 Known = Known.zext(BitWidth); 2250 2251 // Attempt to avoid multi-use ops if we don't need anything from them. 2252 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2253 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2254 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2255 break; 2256 } 2257 case ISD::SIGN_EXTEND: 2258 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2259 SDValue Src = Op.getOperand(0); 2260 EVT SrcVT = Src.getValueType(); 2261 unsigned InBits = SrcVT.getScalarSizeInBits(); 2262 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2263 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2264 2265 // If none of the top bits are demanded, convert this into an any_extend. 2266 if (DemandedBits.getActiveBits() <= InBits) { 2267 // If we only need the non-extended bits of the bottom element 2268 // then we can just bitcast to the result. 2269 if (IsLE && IsVecInReg && DemandedElts == 1 && 2270 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2271 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2272 2273 unsigned Opc = 2274 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2275 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2276 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2277 } 2278 2279 APInt InDemandedBits = DemandedBits.trunc(InBits); 2280 APInt InDemandedElts = DemandedElts.zext(InElts); 2281 2282 // Since some of the sign extended bits are demanded, we know that the sign 2283 // bit is demanded. 2284 InDemandedBits.setBit(InBits - 1); 2285 2286 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2287 Depth + 1)) 2288 return true; 2289 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2290 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2291 2292 // If the sign bit is known one, the top bits match. 2293 Known = Known.sext(BitWidth); 2294 2295 // If the sign bit is known zero, convert this to a zero extend. 2296 if (Known.isNonNegative()) { 2297 unsigned Opc = 2298 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2299 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2300 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2301 } 2302 2303 // Attempt to avoid multi-use ops if we don't need anything from them. 2304 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2305 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2306 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2307 break; 2308 } 2309 case ISD::ANY_EXTEND: 2310 case ISD::ANY_EXTEND_VECTOR_INREG: { 2311 SDValue Src = Op.getOperand(0); 2312 EVT SrcVT = Src.getValueType(); 2313 unsigned InBits = SrcVT.getScalarSizeInBits(); 2314 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2315 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2316 2317 // If we only need the bottom element then we can just bitcast. 2318 // TODO: Handle ANY_EXTEND? 2319 if (IsLE && IsVecInReg && DemandedElts == 1 && 2320 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2321 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2322 2323 APInt InDemandedBits = DemandedBits.trunc(InBits); 2324 APInt InDemandedElts = DemandedElts.zext(InElts); 2325 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2326 Depth + 1)) 2327 return true; 2328 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2329 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2330 Known = Known.anyext(BitWidth); 2331 2332 // Attempt to avoid multi-use ops if we don't need anything from them. 2333 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2334 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2335 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2336 break; 2337 } 2338 case ISD::TRUNCATE: { 2339 SDValue Src = Op.getOperand(0); 2340 2341 // Simplify the input, using demanded bit information, and compute the known 2342 // zero/one bits live out. 2343 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2344 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2345 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2346 Depth + 1)) 2347 return true; 2348 Known = Known.trunc(BitWidth); 2349 2350 // Attempt to avoid multi-use ops if we don't need anything from them. 2351 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2352 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2353 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2354 2355 // If the input is only used by this truncate, see if we can shrink it based 2356 // on the known demanded bits. 2357 if (Src.getNode()->hasOneUse()) { 2358 switch (Src.getOpcode()) { 2359 default: 2360 break; 2361 case ISD::SRL: 2362 // Shrink SRL by a constant if none of the high bits shifted in are 2363 // demanded. 2364 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2365 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2366 // undesirable. 2367 break; 2368 2369 const APInt *ShAmtC = 2370 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2371 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2372 break; 2373 uint64_t ShVal = ShAmtC->getZExtValue(); 2374 2375 APInt HighBits = 2376 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2377 HighBits.lshrInPlace(ShVal); 2378 HighBits = HighBits.trunc(BitWidth); 2379 2380 if (!(HighBits & DemandedBits)) { 2381 // None of the shifted in bits are needed. Add a truncate of the 2382 // shift input, then shift it. 2383 SDValue NewShAmt = TLO.DAG.getConstant( 2384 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2385 SDValue NewTrunc = 2386 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2387 return TLO.CombineTo( 2388 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2389 } 2390 break; 2391 } 2392 } 2393 2394 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2395 break; 2396 } 2397 case ISD::AssertZext: { 2398 // AssertZext demands all of the high bits, plus any of the low bits 2399 // demanded by its users. 2400 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2401 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2402 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2403 TLO, Depth + 1)) 2404 return true; 2405 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2406 2407 Known.Zero |= ~InMask; 2408 break; 2409 } 2410 case ISD::EXTRACT_VECTOR_ELT: { 2411 SDValue Src = Op.getOperand(0); 2412 SDValue Idx = Op.getOperand(1); 2413 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2414 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2415 2416 if (SrcEltCnt.isScalable()) 2417 return false; 2418 2419 // Demand the bits from every vector element without a constant index. 2420 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2421 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2422 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2423 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2424 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2425 2426 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2427 // anything about the extended bits. 2428 APInt DemandedSrcBits = DemandedBits; 2429 if (BitWidth > EltBitWidth) 2430 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2431 2432 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2433 Depth + 1)) 2434 return true; 2435 2436 // Attempt to avoid multi-use ops if we don't need anything from them. 2437 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2438 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2439 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2440 SDValue NewOp = 2441 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2442 return TLO.CombineTo(Op, NewOp); 2443 } 2444 } 2445 2446 Known = Known2; 2447 if (BitWidth > EltBitWidth) 2448 Known = Known.anyext(BitWidth); 2449 break; 2450 } 2451 case ISD::BITCAST: { 2452 SDValue Src = Op.getOperand(0); 2453 EVT SrcVT = Src.getValueType(); 2454 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2455 2456 // If this is an FP->Int bitcast and if the sign bit is the only 2457 // thing demanded, turn this into a FGETSIGN. 2458 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2459 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2460 SrcVT.isFloatingPoint()) { 2461 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2462 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2463 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2464 SrcVT != MVT::f128) { 2465 // Cannot eliminate/lower SHL for f128 yet. 2466 EVT Ty = OpVTLegal ? VT : MVT::i32; 2467 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2468 // place. We expect the SHL to be eliminated by other optimizations. 2469 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2470 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2471 if (!OpVTLegal && OpVTSizeInBits > 32) 2472 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2473 unsigned ShVal = Op.getValueSizeInBits() - 1; 2474 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2475 return TLO.CombineTo(Op, 2476 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2477 } 2478 } 2479 2480 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2481 // Demand the elt/bit if any of the original elts/bits are demanded. 2482 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2483 unsigned Scale = BitWidth / NumSrcEltBits; 2484 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2485 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2486 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2487 for (unsigned i = 0; i != Scale; ++i) { 2488 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2489 unsigned BitOffset = EltOffset * NumSrcEltBits; 2490 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2491 if (!Sub.isZero()) { 2492 DemandedSrcBits |= Sub; 2493 for (unsigned j = 0; j != NumElts; ++j) 2494 if (DemandedElts[j]) 2495 DemandedSrcElts.setBit((j * Scale) + i); 2496 } 2497 } 2498 2499 APInt KnownSrcUndef, KnownSrcZero; 2500 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2501 KnownSrcZero, TLO, Depth + 1)) 2502 return true; 2503 2504 KnownBits KnownSrcBits; 2505 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2506 KnownSrcBits, TLO, Depth + 1)) 2507 return true; 2508 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2509 // TODO - bigendian once we have test coverage. 2510 unsigned Scale = NumSrcEltBits / BitWidth; 2511 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2512 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2513 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2514 for (unsigned i = 0; i != NumElts; ++i) 2515 if (DemandedElts[i]) { 2516 unsigned Offset = (i % Scale) * BitWidth; 2517 DemandedSrcBits.insertBits(DemandedBits, Offset); 2518 DemandedSrcElts.setBit(i / Scale); 2519 } 2520 2521 if (SrcVT.isVector()) { 2522 APInt KnownSrcUndef, KnownSrcZero; 2523 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2524 KnownSrcZero, TLO, Depth + 1)) 2525 return true; 2526 } 2527 2528 KnownBits KnownSrcBits; 2529 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2530 KnownSrcBits, TLO, Depth + 1)) 2531 return true; 2532 } 2533 2534 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2535 // recursive call where Known may be useful to the caller. 2536 if (Depth > 0) { 2537 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2538 return false; 2539 } 2540 break; 2541 } 2542 case ISD::MUL: 2543 if (DemandedBits.isPowerOf2()) { 2544 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2545 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2546 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2547 unsigned CTZ = DemandedBits.countTrailingZeros(); 2548 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2549 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2550 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2551 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2552 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2553 return TLO.CombineTo(Op, Shl); 2554 } 2555 } 2556 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2557 // X * X is odd iff X is odd. 2558 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2559 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2560 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2561 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2562 return TLO.CombineTo(Op, And1); 2563 } 2564 LLVM_FALLTHROUGH; 2565 case ISD::ADD: 2566 case ISD::SUB: { 2567 // Add, Sub, and Mul don't demand any bits in positions beyond that 2568 // of the highest bit demanded of them. 2569 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2570 SDNodeFlags Flags = Op.getNode()->getFlags(); 2571 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2572 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2573 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2574 Depth + 1) || 2575 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2576 Depth + 1) || 2577 // See if the operation should be performed at a smaller bit width. 2578 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2579 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2580 // Disable the nsw and nuw flags. We can no longer guarantee that we 2581 // won't wrap after simplification. 2582 Flags.setNoSignedWrap(false); 2583 Flags.setNoUnsignedWrap(false); 2584 Op->setFlags(Flags); 2585 } 2586 return true; 2587 } 2588 2589 // Attempt to avoid multi-use ops if we don't need anything from them. 2590 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2591 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2592 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2593 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2594 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2595 if (DemandedOp0 || DemandedOp1) { 2596 Flags.setNoSignedWrap(false); 2597 Flags.setNoUnsignedWrap(false); 2598 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2599 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2600 SDValue NewOp = 2601 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2602 return TLO.CombineTo(Op, NewOp); 2603 } 2604 } 2605 2606 // If we have a constant operand, we may be able to turn it into -1 if we 2607 // do not demand the high bits. This can make the constant smaller to 2608 // encode, allow more general folding, or match specialized instruction 2609 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2610 // is probably not useful (and could be detrimental). 2611 ConstantSDNode *C = isConstOrConstSplat(Op1); 2612 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2613 if (C && !C->isAllOnes() && !C->isOne() && 2614 (C->getAPIntValue() | HighMask).isAllOnes()) { 2615 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2616 // Disable the nsw and nuw flags. We can no longer guarantee that we 2617 // won't wrap after simplification. 2618 Flags.setNoSignedWrap(false); 2619 Flags.setNoUnsignedWrap(false); 2620 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2621 return TLO.CombineTo(Op, NewOp); 2622 } 2623 2624 // Match a multiply with a disguised negated-power-of-2 and convert to a 2625 // an equivalent shift-left amount. 2626 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2627 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2628 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2629 return 0; 2630 2631 // Don't touch opaque constants. Also, ignore zero and power-of-2 2632 // multiplies. Those will get folded later. 2633 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2634 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2635 !MulC->getAPIntValue().isPowerOf2()) { 2636 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2637 if (UnmaskedC.isNegatedPowerOf2()) 2638 return (-UnmaskedC).logBase2(); 2639 } 2640 return 0; 2641 }; 2642 2643 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2644 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2645 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2646 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2647 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2648 return TLO.CombineTo(Op, Res); 2649 }; 2650 2651 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2652 if (Op.getOpcode() == ISD::ADD) { 2653 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2654 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2655 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2656 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2657 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2658 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2659 } 2660 if (Op.getOpcode() == ISD::SUB) { 2661 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2662 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2663 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2664 } 2665 } 2666 2667 LLVM_FALLTHROUGH; 2668 } 2669 default: 2670 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2671 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2672 Known, TLO, Depth)) 2673 return true; 2674 break; 2675 } 2676 2677 // Just use computeKnownBits to compute output bits. 2678 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2679 break; 2680 } 2681 2682 // If we know the value of all of the demanded bits, return this as a 2683 // constant. 2684 if (!isTargetCanonicalConstantNode(Op) && 2685 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2686 // Avoid folding to a constant if any OpaqueConstant is involved. 2687 const SDNode *N = Op.getNode(); 2688 for (SDNode *Op : 2689 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2690 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2691 if (C->isOpaque()) 2692 return false; 2693 } 2694 if (VT.isInteger()) 2695 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2696 if (VT.isFloatingPoint()) 2697 return TLO.CombineTo( 2698 Op, 2699 TLO.DAG.getConstantFP( 2700 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2701 } 2702 2703 return false; 2704 } 2705 2706 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2707 const APInt &DemandedElts, 2708 DAGCombinerInfo &DCI) const { 2709 SelectionDAG &DAG = DCI.DAG; 2710 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2711 !DCI.isBeforeLegalizeOps()); 2712 2713 APInt KnownUndef, KnownZero; 2714 bool Simplified = 2715 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2716 if (Simplified) { 2717 DCI.AddToWorklist(Op.getNode()); 2718 DCI.CommitTargetLoweringOpt(TLO); 2719 } 2720 2721 return Simplified; 2722 } 2723 2724 /// Given a vector binary operation and known undefined elements for each input 2725 /// operand, compute whether each element of the output is undefined. 2726 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2727 const APInt &UndefOp0, 2728 const APInt &UndefOp1) { 2729 EVT VT = BO.getValueType(); 2730 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2731 "Vector binop only"); 2732 2733 EVT EltVT = VT.getVectorElementType(); 2734 unsigned NumElts = VT.getVectorNumElements(); 2735 assert(UndefOp0.getBitWidth() == NumElts && 2736 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2737 2738 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2739 const APInt &UndefVals) { 2740 if (UndefVals[Index]) 2741 return DAG.getUNDEF(EltVT); 2742 2743 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2744 // Try hard to make sure that the getNode() call is not creating temporary 2745 // nodes. Ignore opaque integers because they do not constant fold. 2746 SDValue Elt = BV->getOperand(Index); 2747 auto *C = dyn_cast<ConstantSDNode>(Elt); 2748 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2749 return Elt; 2750 } 2751 2752 return SDValue(); 2753 }; 2754 2755 APInt KnownUndef = APInt::getZero(NumElts); 2756 for (unsigned i = 0; i != NumElts; ++i) { 2757 // If both inputs for this element are either constant or undef and match 2758 // the element type, compute the constant/undef result for this element of 2759 // the vector. 2760 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2761 // not handle FP constants. The code within getNode() should be refactored 2762 // to avoid the danger of creating a bogus temporary node here. 2763 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2764 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2765 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2766 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2767 KnownUndef.setBit(i); 2768 } 2769 return KnownUndef; 2770 } 2771 2772 bool TargetLowering::SimplifyDemandedVectorElts( 2773 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2774 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2775 bool AssumeSingleUse) const { 2776 EVT VT = Op.getValueType(); 2777 unsigned Opcode = Op.getOpcode(); 2778 APInt DemandedElts = OriginalDemandedElts; 2779 unsigned NumElts = DemandedElts.getBitWidth(); 2780 assert(VT.isVector() && "Expected vector op"); 2781 2782 KnownUndef = KnownZero = APInt::getZero(NumElts); 2783 2784 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2785 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2786 return false; 2787 2788 // TODO: For now we assume we know nothing about scalable vectors. 2789 if (VT.isScalableVector()) 2790 return false; 2791 2792 assert(VT.getVectorNumElements() == NumElts && 2793 "Mask size mismatches value type element count!"); 2794 2795 // Undef operand. 2796 if (Op.isUndef()) { 2797 KnownUndef.setAllBits(); 2798 return false; 2799 } 2800 2801 // If Op has other users, assume that all elements are needed. 2802 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2803 DemandedElts.setAllBits(); 2804 2805 // Not demanding any elements from Op. 2806 if (DemandedElts == 0) { 2807 KnownUndef.setAllBits(); 2808 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2809 } 2810 2811 // Limit search depth. 2812 if (Depth >= SelectionDAG::MaxRecursionDepth) 2813 return false; 2814 2815 SDLoc DL(Op); 2816 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2817 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2818 2819 // Helper for demanding the specified elements and all the bits of both binary 2820 // operands. 2821 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2822 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2823 TLO.DAG, Depth + 1); 2824 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2825 TLO.DAG, Depth + 1); 2826 if (NewOp0 || NewOp1) { 2827 SDValue NewOp = TLO.DAG.getNode( 2828 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2829 return TLO.CombineTo(Op, NewOp); 2830 } 2831 return false; 2832 }; 2833 2834 switch (Opcode) { 2835 case ISD::SCALAR_TO_VECTOR: { 2836 if (!DemandedElts[0]) { 2837 KnownUndef.setAllBits(); 2838 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2839 } 2840 SDValue ScalarSrc = Op.getOperand(0); 2841 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2842 SDValue Src = ScalarSrc.getOperand(0); 2843 SDValue Idx = ScalarSrc.getOperand(1); 2844 EVT SrcVT = Src.getValueType(); 2845 2846 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2847 2848 if (SrcEltCnt.isScalable()) 2849 return false; 2850 2851 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2852 if (isNullConstant(Idx)) { 2853 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2854 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2855 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2856 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2857 TLO, Depth + 1)) 2858 return true; 2859 } 2860 } 2861 KnownUndef.setHighBits(NumElts - 1); 2862 break; 2863 } 2864 case ISD::BITCAST: { 2865 SDValue Src = Op.getOperand(0); 2866 EVT SrcVT = Src.getValueType(); 2867 2868 // We only handle vectors here. 2869 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2870 if (!SrcVT.isVector()) 2871 break; 2872 2873 // Fast handling of 'identity' bitcasts. 2874 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2875 if (NumSrcElts == NumElts) 2876 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2877 KnownZero, TLO, Depth + 1); 2878 2879 APInt SrcDemandedElts, SrcZero, SrcUndef; 2880 2881 // Bitcast from 'large element' src vector to 'small element' vector, we 2882 // must demand a source element if any DemandedElt maps to it. 2883 if ((NumElts % NumSrcElts) == 0) { 2884 unsigned Scale = NumElts / NumSrcElts; 2885 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2886 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2887 TLO, Depth + 1)) 2888 return true; 2889 2890 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2891 // of the large element. 2892 // TODO - bigendian once we have test coverage. 2893 if (IsLE) { 2894 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2895 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2896 for (unsigned i = 0; i != NumElts; ++i) 2897 if (DemandedElts[i]) { 2898 unsigned Ofs = (i % Scale) * EltSizeInBits; 2899 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2900 } 2901 2902 KnownBits Known; 2903 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2904 TLO, Depth + 1)) 2905 return true; 2906 2907 // The bitcast has split each wide element into a number of 2908 // narrow subelements. We have just computed the Known bits 2909 // for wide elements. See if element splitting results in 2910 // some subelements being zero. Only for demanded elements! 2911 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2912 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2913 .isAllOnes()) 2914 continue; 2915 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2916 unsigned Elt = Scale * SrcElt + SubElt; 2917 if (DemandedElts[Elt]) 2918 KnownZero.setBit(Elt); 2919 } 2920 } 2921 } 2922 2923 // If the src element is zero/undef then all the output elements will be - 2924 // only demanded elements are guaranteed to be correct. 2925 for (unsigned i = 0; i != NumSrcElts; ++i) { 2926 if (SrcDemandedElts[i]) { 2927 if (SrcZero[i]) 2928 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2929 if (SrcUndef[i]) 2930 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2931 } 2932 } 2933 } 2934 2935 // Bitcast from 'small element' src vector to 'large element' vector, we 2936 // demand all smaller source elements covered by the larger demanded element 2937 // of this vector. 2938 if ((NumSrcElts % NumElts) == 0) { 2939 unsigned Scale = NumSrcElts / NumElts; 2940 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2941 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2942 TLO, Depth + 1)) 2943 return true; 2944 2945 // If all the src elements covering an output element are zero/undef, then 2946 // the output element will be as well, assuming it was demanded. 2947 for (unsigned i = 0; i != NumElts; ++i) { 2948 if (DemandedElts[i]) { 2949 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2950 KnownZero.setBit(i); 2951 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2952 KnownUndef.setBit(i); 2953 } 2954 } 2955 } 2956 break; 2957 } 2958 case ISD::BUILD_VECTOR: { 2959 // Check all elements and simplify any unused elements with UNDEF. 2960 if (!DemandedElts.isAllOnes()) { 2961 // Don't simplify BROADCASTS. 2962 if (llvm::any_of(Op->op_values(), 2963 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2964 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2965 bool Updated = false; 2966 for (unsigned i = 0; i != NumElts; ++i) { 2967 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2968 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2969 KnownUndef.setBit(i); 2970 Updated = true; 2971 } 2972 } 2973 if (Updated) 2974 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2975 } 2976 } 2977 for (unsigned i = 0; i != NumElts; ++i) { 2978 SDValue SrcOp = Op.getOperand(i); 2979 if (SrcOp.isUndef()) { 2980 KnownUndef.setBit(i); 2981 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2982 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2983 KnownZero.setBit(i); 2984 } 2985 } 2986 break; 2987 } 2988 case ISD::CONCAT_VECTORS: { 2989 EVT SubVT = Op.getOperand(0).getValueType(); 2990 unsigned NumSubVecs = Op.getNumOperands(); 2991 unsigned NumSubElts = SubVT.getVectorNumElements(); 2992 for (unsigned i = 0; i != NumSubVecs; ++i) { 2993 SDValue SubOp = Op.getOperand(i); 2994 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2995 APInt SubUndef, SubZero; 2996 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2997 Depth + 1)) 2998 return true; 2999 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3000 KnownZero.insertBits(SubZero, i * NumSubElts); 3001 } 3002 3003 // Attempt to avoid multi-use ops if we don't need anything from them. 3004 if (!DemandedElts.isAllOnes()) { 3005 bool FoundNewSub = false; 3006 SmallVector<SDValue, 2> DemandedSubOps; 3007 for (unsigned i = 0; i != NumSubVecs; ++i) { 3008 SDValue SubOp = Op.getOperand(i); 3009 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3010 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3011 SubOp, SubElts, TLO.DAG, Depth + 1); 3012 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3013 FoundNewSub = NewSubOp ? true : FoundNewSub; 3014 } 3015 if (FoundNewSub) { 3016 SDValue NewOp = 3017 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3018 return TLO.CombineTo(Op, NewOp); 3019 } 3020 } 3021 break; 3022 } 3023 case ISD::INSERT_SUBVECTOR: { 3024 // Demand any elements from the subvector and the remainder from the src its 3025 // inserted into. 3026 SDValue Src = Op.getOperand(0); 3027 SDValue Sub = Op.getOperand(1); 3028 uint64_t Idx = Op.getConstantOperandVal(2); 3029 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3030 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3031 APInt DemandedSrcElts = DemandedElts; 3032 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3033 3034 APInt SubUndef, SubZero; 3035 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3036 Depth + 1)) 3037 return true; 3038 3039 // If none of the src operand elements are demanded, replace it with undef. 3040 if (!DemandedSrcElts && !Src.isUndef()) 3041 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3042 TLO.DAG.getUNDEF(VT), Sub, 3043 Op.getOperand(2))); 3044 3045 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3046 TLO, Depth + 1)) 3047 return true; 3048 KnownUndef.insertBits(SubUndef, Idx); 3049 KnownZero.insertBits(SubZero, Idx); 3050 3051 // Attempt to avoid multi-use ops if we don't need anything from them. 3052 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3053 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3054 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3055 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3056 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3057 if (NewSrc || NewSub) { 3058 NewSrc = NewSrc ? NewSrc : Src; 3059 NewSub = NewSub ? NewSub : Sub; 3060 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3061 NewSub, Op.getOperand(2)); 3062 return TLO.CombineTo(Op, NewOp); 3063 } 3064 } 3065 break; 3066 } 3067 case ISD::EXTRACT_SUBVECTOR: { 3068 // Offset the demanded elts by the subvector index. 3069 SDValue Src = Op.getOperand(0); 3070 if (Src.getValueType().isScalableVector()) 3071 break; 3072 uint64_t Idx = Op.getConstantOperandVal(1); 3073 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3074 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3075 3076 APInt SrcUndef, SrcZero; 3077 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3078 Depth + 1)) 3079 return true; 3080 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3081 KnownZero = SrcZero.extractBits(NumElts, Idx); 3082 3083 // Attempt to avoid multi-use ops if we don't need anything from them. 3084 if (!DemandedElts.isAllOnes()) { 3085 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3086 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3087 if (NewSrc) { 3088 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3089 Op.getOperand(1)); 3090 return TLO.CombineTo(Op, NewOp); 3091 } 3092 } 3093 break; 3094 } 3095 case ISD::INSERT_VECTOR_ELT: { 3096 SDValue Vec = Op.getOperand(0); 3097 SDValue Scl = Op.getOperand(1); 3098 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3099 3100 // For a legal, constant insertion index, if we don't need this insertion 3101 // then strip it, else remove it from the demanded elts. 3102 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3103 unsigned Idx = CIdx->getZExtValue(); 3104 if (!DemandedElts[Idx]) 3105 return TLO.CombineTo(Op, Vec); 3106 3107 APInt DemandedVecElts(DemandedElts); 3108 DemandedVecElts.clearBit(Idx); 3109 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3110 KnownZero, TLO, Depth + 1)) 3111 return true; 3112 3113 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3114 3115 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3116 break; 3117 } 3118 3119 APInt VecUndef, VecZero; 3120 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3121 Depth + 1)) 3122 return true; 3123 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3124 break; 3125 } 3126 case ISD::VSELECT: { 3127 SDValue Sel = Op.getOperand(0); 3128 SDValue LHS = Op.getOperand(1); 3129 SDValue RHS = Op.getOperand(2); 3130 3131 // Try to transform the select condition based on the current demanded 3132 // elements. 3133 APInt UndefSel, UndefZero; 3134 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3135 Depth + 1)) 3136 return true; 3137 3138 // See if we can simplify either vselect operand. 3139 APInt DemandedLHS(DemandedElts); 3140 APInt DemandedRHS(DemandedElts); 3141 APInt UndefLHS, ZeroLHS; 3142 APInt UndefRHS, ZeroRHS; 3143 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3144 Depth + 1)) 3145 return true; 3146 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3147 Depth + 1)) 3148 return true; 3149 3150 KnownUndef = UndefLHS & UndefRHS; 3151 KnownZero = ZeroLHS & ZeroRHS; 3152 3153 // If we know that the selected element is always zero, we don't need the 3154 // select value element. 3155 APInt DemandedSel = DemandedElts & ~KnownZero; 3156 if (DemandedSel != DemandedElts) 3157 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3158 Depth + 1)) 3159 return true; 3160 3161 break; 3162 } 3163 case ISD::VECTOR_SHUFFLE: { 3164 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3165 3166 // Collect demanded elements from shuffle operands.. 3167 APInt DemandedLHS(NumElts, 0); 3168 APInt DemandedRHS(NumElts, 0); 3169 for (unsigned i = 0; i != NumElts; ++i) { 3170 int M = ShuffleMask[i]; 3171 if (M < 0 || !DemandedElts[i]) 3172 continue; 3173 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3174 if (M < (int)NumElts) 3175 DemandedLHS.setBit(M); 3176 else 3177 DemandedRHS.setBit(M - NumElts); 3178 } 3179 3180 // See if we can simplify either shuffle operand. 3181 APInt UndefLHS, ZeroLHS; 3182 APInt UndefRHS, ZeroRHS; 3183 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3184 ZeroLHS, TLO, Depth + 1)) 3185 return true; 3186 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3187 ZeroRHS, TLO, Depth + 1)) 3188 return true; 3189 3190 // Simplify mask using undef elements from LHS/RHS. 3191 bool Updated = false; 3192 bool IdentityLHS = true, IdentityRHS = true; 3193 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3194 for (unsigned i = 0; i != NumElts; ++i) { 3195 int &M = NewMask[i]; 3196 if (M < 0) 3197 continue; 3198 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3199 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3200 Updated = true; 3201 M = -1; 3202 } 3203 IdentityLHS &= (M < 0) || (M == (int)i); 3204 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3205 } 3206 3207 // Update legal shuffle masks based on demanded elements if it won't reduce 3208 // to Identity which can cause premature removal of the shuffle mask. 3209 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3210 SDValue LegalShuffle = 3211 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3212 NewMask, TLO.DAG); 3213 if (LegalShuffle) 3214 return TLO.CombineTo(Op, LegalShuffle); 3215 } 3216 3217 // Propagate undef/zero elements from LHS/RHS. 3218 for (unsigned i = 0; i != NumElts; ++i) { 3219 int M = ShuffleMask[i]; 3220 if (M < 0) { 3221 KnownUndef.setBit(i); 3222 } else if (M < (int)NumElts) { 3223 if (UndefLHS[M]) 3224 KnownUndef.setBit(i); 3225 if (ZeroLHS[M]) 3226 KnownZero.setBit(i); 3227 } else { 3228 if (UndefRHS[M - NumElts]) 3229 KnownUndef.setBit(i); 3230 if (ZeroRHS[M - NumElts]) 3231 KnownZero.setBit(i); 3232 } 3233 } 3234 break; 3235 } 3236 case ISD::ANY_EXTEND_VECTOR_INREG: 3237 case ISD::SIGN_EXTEND_VECTOR_INREG: 3238 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3239 APInt SrcUndef, SrcZero; 3240 SDValue Src = Op.getOperand(0); 3241 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3242 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3243 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3244 Depth + 1)) 3245 return true; 3246 KnownZero = SrcZero.zextOrTrunc(NumElts); 3247 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3248 3249 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3250 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3251 DemandedSrcElts == 1) { 3252 // aext - if we just need the bottom element then we can bitcast. 3253 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3254 } 3255 3256 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3257 // zext(undef) upper bits are guaranteed to be zero. 3258 if (DemandedElts.isSubsetOf(KnownUndef)) 3259 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3260 KnownUndef.clearAllBits(); 3261 3262 // zext - if we just need the bottom element then we can mask: 3263 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3264 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3265 Op->isOnlyUserOf(Src.getNode()) && 3266 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3267 SDLoc DL(Op); 3268 EVT SrcVT = Src.getValueType(); 3269 EVT SrcSVT = SrcVT.getScalarType(); 3270 SmallVector<SDValue> MaskElts; 3271 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3272 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3273 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3274 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3275 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3276 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3277 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3278 } 3279 } 3280 } 3281 break; 3282 } 3283 3284 // TODO: There are more binop opcodes that could be handled here - MIN, 3285 // MAX, saturated math, etc. 3286 case ISD::ADD: { 3287 SDValue Op0 = Op.getOperand(0); 3288 SDValue Op1 = Op.getOperand(1); 3289 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3290 APInt UndefLHS, ZeroLHS; 3291 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3292 Depth + 1, /*AssumeSingleUse*/ true)) 3293 return true; 3294 } 3295 LLVM_FALLTHROUGH; 3296 } 3297 case ISD::OR: 3298 case ISD::XOR: 3299 case ISD::SUB: 3300 case ISD::FADD: 3301 case ISD::FSUB: 3302 case ISD::FMUL: 3303 case ISD::FDIV: 3304 case ISD::FREM: { 3305 SDValue Op0 = Op.getOperand(0); 3306 SDValue Op1 = Op.getOperand(1); 3307 3308 APInt UndefRHS, ZeroRHS; 3309 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3310 Depth + 1)) 3311 return true; 3312 APInt UndefLHS, ZeroLHS; 3313 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3314 Depth + 1)) 3315 return true; 3316 3317 KnownZero = ZeroLHS & ZeroRHS; 3318 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3319 3320 // Attempt to avoid multi-use ops if we don't need anything from them. 3321 // TODO - use KnownUndef to relax the demandedelts? 3322 if (!DemandedElts.isAllOnes()) 3323 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3324 return true; 3325 break; 3326 } 3327 case ISD::SHL: 3328 case ISD::SRL: 3329 case ISD::SRA: 3330 case ISD::ROTL: 3331 case ISD::ROTR: { 3332 SDValue Op0 = Op.getOperand(0); 3333 SDValue Op1 = Op.getOperand(1); 3334 3335 APInt UndefRHS, ZeroRHS; 3336 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3337 Depth + 1)) 3338 return true; 3339 APInt UndefLHS, ZeroLHS; 3340 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3341 Depth + 1)) 3342 return true; 3343 3344 KnownZero = ZeroLHS; 3345 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3346 3347 // Attempt to avoid multi-use ops if we don't need anything from them. 3348 // TODO - use KnownUndef to relax the demandedelts? 3349 if (!DemandedElts.isAllOnes()) 3350 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3351 return true; 3352 break; 3353 } 3354 case ISD::MUL: 3355 case ISD::AND: { 3356 SDValue Op0 = Op.getOperand(0); 3357 SDValue Op1 = Op.getOperand(1); 3358 3359 APInt SrcUndef, SrcZero; 3360 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3361 Depth + 1)) 3362 return true; 3363 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3364 TLO, Depth + 1)) 3365 return true; 3366 3367 // If either side has a zero element, then the result element is zero, even 3368 // if the other is an UNDEF. 3369 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3370 // and then handle 'and' nodes with the rest of the binop opcodes. 3371 KnownZero |= SrcZero; 3372 KnownUndef &= SrcUndef; 3373 KnownUndef &= ~KnownZero; 3374 3375 // Attempt to avoid multi-use ops if we don't need anything from them. 3376 // TODO - use KnownUndef to relax the demandedelts? 3377 if (!DemandedElts.isAllOnes()) 3378 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3379 return true; 3380 break; 3381 } 3382 case ISD::TRUNCATE: 3383 case ISD::SIGN_EXTEND: 3384 case ISD::ZERO_EXTEND: 3385 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3386 KnownZero, TLO, Depth + 1)) 3387 return true; 3388 3389 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3390 // zext(undef) upper bits are guaranteed to be zero. 3391 if (DemandedElts.isSubsetOf(KnownUndef)) 3392 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3393 KnownUndef.clearAllBits(); 3394 } 3395 break; 3396 default: { 3397 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3398 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3399 KnownZero, TLO, Depth)) 3400 return true; 3401 } else { 3402 KnownBits Known; 3403 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3404 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3405 TLO, Depth, AssumeSingleUse)) 3406 return true; 3407 } 3408 break; 3409 } 3410 } 3411 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3412 3413 // Constant fold all undef cases. 3414 // TODO: Handle zero cases as well. 3415 if (DemandedElts.isSubsetOf(KnownUndef)) 3416 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3417 3418 return false; 3419 } 3420 3421 /// Determine which of the bits specified in Mask are known to be either zero or 3422 /// one and return them in the Known. 3423 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3424 KnownBits &Known, 3425 const APInt &DemandedElts, 3426 const SelectionDAG &DAG, 3427 unsigned Depth) const { 3428 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3429 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3430 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3431 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3432 "Should use MaskedValueIsZero if you don't know whether Op" 3433 " is a target node!"); 3434 Known.resetAll(); 3435 } 3436 3437 void TargetLowering::computeKnownBitsForTargetInstr( 3438 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3439 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3440 unsigned Depth) const { 3441 Known.resetAll(); 3442 } 3443 3444 void TargetLowering::computeKnownBitsForFrameIndex( 3445 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3446 // The low bits are known zero if the pointer is aligned. 3447 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3448 } 3449 3450 Align TargetLowering::computeKnownAlignForTargetInstr( 3451 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3452 unsigned Depth) const { 3453 return Align(1); 3454 } 3455 3456 /// This method can be implemented by targets that want to expose additional 3457 /// information about sign bits to the DAG Combiner. 3458 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3459 const APInt &, 3460 const SelectionDAG &, 3461 unsigned Depth) const { 3462 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3463 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3464 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3465 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3466 "Should use ComputeNumSignBits if you don't know whether Op" 3467 " is a target node!"); 3468 return 1; 3469 } 3470 3471 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3472 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3473 const MachineRegisterInfo &MRI, unsigned Depth) const { 3474 return 1; 3475 } 3476 3477 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3478 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3479 TargetLoweringOpt &TLO, unsigned Depth) const { 3480 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3481 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3482 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3483 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3484 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3485 " is a target node!"); 3486 return false; 3487 } 3488 3489 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3490 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3491 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3492 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3493 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3494 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3495 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3496 "Should use SimplifyDemandedBits if you don't know whether Op" 3497 " is a target node!"); 3498 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3499 return false; 3500 } 3501 3502 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3503 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3504 SelectionDAG &DAG, unsigned Depth) const { 3505 assert( 3506 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3507 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3508 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3509 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3510 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3511 " is a target node!"); 3512 return SDValue(); 3513 } 3514 3515 SDValue 3516 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3517 SDValue N1, MutableArrayRef<int> Mask, 3518 SelectionDAG &DAG) const { 3519 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3520 if (!LegalMask) { 3521 std::swap(N0, N1); 3522 ShuffleVectorSDNode::commuteMask(Mask); 3523 LegalMask = isShuffleMaskLegal(Mask, VT); 3524 } 3525 3526 if (!LegalMask) 3527 return SDValue(); 3528 3529 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3530 } 3531 3532 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3533 return nullptr; 3534 } 3535 3536 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3537 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3538 bool PoisonOnly, unsigned Depth) const { 3539 assert( 3540 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3541 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3542 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3543 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3544 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3545 " is a target node!"); 3546 return false; 3547 } 3548 3549 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3550 const SelectionDAG &DAG, 3551 bool SNaN, 3552 unsigned Depth) const { 3553 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3554 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3555 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3556 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3557 "Should use isKnownNeverNaN if you don't know whether Op" 3558 " is a target node!"); 3559 return false; 3560 } 3561 3562 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3563 const APInt &DemandedElts, 3564 APInt &UndefElts, 3565 unsigned Depth) const { 3566 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3567 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3568 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3569 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3570 "Should use isSplatValue if you don't know whether Op" 3571 " is a target node!"); 3572 return false; 3573 } 3574 3575 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3576 // work with truncating build vectors and vectors with elements of less than 3577 // 8 bits. 3578 bool TargetLowering::isConstTrueVal(SDValue N) const { 3579 if (!N) 3580 return false; 3581 3582 unsigned EltWidth; 3583 APInt CVal; 3584 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3585 /*AllowTruncation=*/true)) { 3586 CVal = CN->getAPIntValue(); 3587 EltWidth = N.getValueType().getScalarSizeInBits(); 3588 } else 3589 return false; 3590 3591 // If this is a truncating splat, truncate the splat value. 3592 // Otherwise, we may fail to match the expected values below. 3593 if (EltWidth < CVal.getBitWidth()) 3594 CVal = CVal.trunc(EltWidth); 3595 3596 switch (getBooleanContents(N.getValueType())) { 3597 case UndefinedBooleanContent: 3598 return CVal[0]; 3599 case ZeroOrOneBooleanContent: 3600 return CVal.isOne(); 3601 case ZeroOrNegativeOneBooleanContent: 3602 return CVal.isAllOnes(); 3603 } 3604 3605 llvm_unreachable("Invalid boolean contents"); 3606 } 3607 3608 bool TargetLowering::isConstFalseVal(SDValue N) const { 3609 if (!N) 3610 return false; 3611 3612 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3613 if (!CN) { 3614 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3615 if (!BV) 3616 return false; 3617 3618 // Only interested in constant splats, we don't care about undef 3619 // elements in identifying boolean constants and getConstantSplatNode 3620 // returns NULL if all ops are undef; 3621 CN = BV->getConstantSplatNode(); 3622 if (!CN) 3623 return false; 3624 } 3625 3626 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3627 return !CN->getAPIntValue()[0]; 3628 3629 return CN->isZero(); 3630 } 3631 3632 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3633 bool SExt) const { 3634 if (VT == MVT::i1) 3635 return N->isOne(); 3636 3637 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3638 switch (Cnt) { 3639 case TargetLowering::ZeroOrOneBooleanContent: 3640 // An extended value of 1 is always true, unless its original type is i1, 3641 // in which case it will be sign extended to -1. 3642 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3643 case TargetLowering::UndefinedBooleanContent: 3644 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3645 return N->isAllOnes() && SExt; 3646 } 3647 llvm_unreachable("Unexpected enumeration."); 3648 } 3649 3650 /// This helper function of SimplifySetCC tries to optimize the comparison when 3651 /// either operand of the SetCC node is a bitwise-and instruction. 3652 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3653 ISD::CondCode Cond, const SDLoc &DL, 3654 DAGCombinerInfo &DCI) const { 3655 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3656 std::swap(N0, N1); 3657 3658 SelectionDAG &DAG = DCI.DAG; 3659 EVT OpVT = N0.getValueType(); 3660 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3661 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3662 return SDValue(); 3663 3664 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3665 // iff everything but LSB is known zero: 3666 if (Cond == ISD::SETNE && isNullConstant(N1) && 3667 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3668 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3669 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3670 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3671 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3672 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3673 } 3674 3675 // Match these patterns in any of their permutations: 3676 // (X & Y) == Y 3677 // (X & Y) != Y 3678 SDValue X, Y; 3679 if (N0.getOperand(0) == N1) { 3680 X = N0.getOperand(1); 3681 Y = N0.getOperand(0); 3682 } else if (N0.getOperand(1) == N1) { 3683 X = N0.getOperand(0); 3684 Y = N0.getOperand(1); 3685 } else { 3686 return SDValue(); 3687 } 3688 3689 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3690 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3691 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3692 // Note that where Y is variable and is known to have at most one bit set 3693 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3694 // equivalent when Y == 0. 3695 assert(OpVT.isInteger()); 3696 Cond = ISD::getSetCCInverse(Cond, OpVT); 3697 if (DCI.isBeforeLegalizeOps() || 3698 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3699 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3700 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3701 // If the target supports an 'and-not' or 'and-complement' logic operation, 3702 // try to use that to make a comparison operation more efficient. 3703 // But don't do this transform if the mask is a single bit because there are 3704 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3705 // 'rlwinm' on PPC). 3706 3707 // Bail out if the compare operand that we want to turn into a zero is 3708 // already a zero (otherwise, infinite loop). 3709 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3710 if (YConst && YConst->isZero()) 3711 return SDValue(); 3712 3713 // Transform this into: ~X & Y == 0. 3714 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3715 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3716 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3717 } 3718 3719 return SDValue(); 3720 } 3721 3722 /// There are multiple IR patterns that could be checking whether certain 3723 /// truncation of a signed number would be lossy or not. The pattern which is 3724 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3725 /// We are looking for the following pattern: (KeptBits is a constant) 3726 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3727 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3728 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3729 /// We will unfold it into the natural trunc+sext pattern: 3730 /// ((%x << C) a>> C) dstcond %x 3731 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3732 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3733 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3734 const SDLoc &DL) const { 3735 // We must be comparing with a constant. 3736 ConstantSDNode *C1; 3737 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3738 return SDValue(); 3739 3740 // N0 should be: add %x, (1 << (KeptBits-1)) 3741 if (N0->getOpcode() != ISD::ADD) 3742 return SDValue(); 3743 3744 // And we must be 'add'ing a constant. 3745 ConstantSDNode *C01; 3746 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3747 return SDValue(); 3748 3749 SDValue X = N0->getOperand(0); 3750 EVT XVT = X.getValueType(); 3751 3752 // Validate constants ... 3753 3754 APInt I1 = C1->getAPIntValue(); 3755 3756 ISD::CondCode NewCond; 3757 if (Cond == ISD::CondCode::SETULT) { 3758 NewCond = ISD::CondCode::SETEQ; 3759 } else if (Cond == ISD::CondCode::SETULE) { 3760 NewCond = ISD::CondCode::SETEQ; 3761 // But need to 'canonicalize' the constant. 3762 I1 += 1; 3763 } else if (Cond == ISD::CondCode::SETUGT) { 3764 NewCond = ISD::CondCode::SETNE; 3765 // But need to 'canonicalize' the constant. 3766 I1 += 1; 3767 } else if (Cond == ISD::CondCode::SETUGE) { 3768 NewCond = ISD::CondCode::SETNE; 3769 } else 3770 return SDValue(); 3771 3772 APInt I01 = C01->getAPIntValue(); 3773 3774 auto checkConstants = [&I1, &I01]() -> bool { 3775 // Both of them must be power-of-two, and the constant from setcc is bigger. 3776 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3777 }; 3778 3779 if (checkConstants()) { 3780 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3781 } else { 3782 // What if we invert constants? (and the target predicate) 3783 I1.negate(); 3784 I01.negate(); 3785 assert(XVT.isInteger()); 3786 NewCond = getSetCCInverse(NewCond, XVT); 3787 if (!checkConstants()) 3788 return SDValue(); 3789 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3790 } 3791 3792 // They are power-of-two, so which bit is set? 3793 const unsigned KeptBits = I1.logBase2(); 3794 const unsigned KeptBitsMinusOne = I01.logBase2(); 3795 3796 // Magic! 3797 if (KeptBits != (KeptBitsMinusOne + 1)) 3798 return SDValue(); 3799 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3800 3801 // We don't want to do this in every single case. 3802 SelectionDAG &DAG = DCI.DAG; 3803 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3804 XVT, KeptBits)) 3805 return SDValue(); 3806 3807 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3808 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3809 3810 // Unfold into: ((%x << C) a>> C) cond %x 3811 // Where 'cond' will be either 'eq' or 'ne'. 3812 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3813 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3814 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3815 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3816 3817 return T2; 3818 } 3819 3820 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3821 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3822 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3823 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3824 assert(isConstOrConstSplat(N1C) && 3825 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3826 "Should be a comparison with 0."); 3827 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3828 "Valid only for [in]equality comparisons."); 3829 3830 unsigned NewShiftOpcode; 3831 SDValue X, C, Y; 3832 3833 SelectionDAG &DAG = DCI.DAG; 3834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3835 3836 // Look for '(C l>>/<< Y)'. 3837 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3838 // The shift should be one-use. 3839 if (!V.hasOneUse()) 3840 return false; 3841 unsigned OldShiftOpcode = V.getOpcode(); 3842 switch (OldShiftOpcode) { 3843 case ISD::SHL: 3844 NewShiftOpcode = ISD::SRL; 3845 break; 3846 case ISD::SRL: 3847 NewShiftOpcode = ISD::SHL; 3848 break; 3849 default: 3850 return false; // must be a logical shift. 3851 } 3852 // We should be shifting a constant. 3853 // FIXME: best to use isConstantOrConstantVector(). 3854 C = V.getOperand(0); 3855 ConstantSDNode *CC = 3856 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3857 if (!CC) 3858 return false; 3859 Y = V.getOperand(1); 3860 3861 ConstantSDNode *XC = 3862 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3863 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3864 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3865 }; 3866 3867 // LHS of comparison should be an one-use 'and'. 3868 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3869 return SDValue(); 3870 3871 X = N0.getOperand(0); 3872 SDValue Mask = N0.getOperand(1); 3873 3874 // 'and' is commutative! 3875 if (!Match(Mask)) { 3876 std::swap(X, Mask); 3877 if (!Match(Mask)) 3878 return SDValue(); 3879 } 3880 3881 EVT VT = X.getValueType(); 3882 3883 // Produce: 3884 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3885 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3886 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3887 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3888 return T2; 3889 } 3890 3891 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3892 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3893 /// handle the commuted versions of these patterns. 3894 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3895 ISD::CondCode Cond, const SDLoc &DL, 3896 DAGCombinerInfo &DCI) const { 3897 unsigned BOpcode = N0.getOpcode(); 3898 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3899 "Unexpected binop"); 3900 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3901 3902 // (X + Y) == X --> Y == 0 3903 // (X - Y) == X --> Y == 0 3904 // (X ^ Y) == X --> Y == 0 3905 SelectionDAG &DAG = DCI.DAG; 3906 EVT OpVT = N0.getValueType(); 3907 SDValue X = N0.getOperand(0); 3908 SDValue Y = N0.getOperand(1); 3909 if (X == N1) 3910 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3911 3912 if (Y != N1) 3913 return SDValue(); 3914 3915 // (X + Y) == Y --> X == 0 3916 // (X ^ Y) == Y --> X == 0 3917 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3918 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3919 3920 // The shift would not be valid if the operands are boolean (i1). 3921 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3922 return SDValue(); 3923 3924 // (X - Y) == Y --> X == Y << 1 3925 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3926 !DCI.isBeforeLegalize()); 3927 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3928 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3929 if (!DCI.isCalledByLegalizer()) 3930 DCI.AddToWorklist(YShl1.getNode()); 3931 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3932 } 3933 3934 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3935 SDValue N0, const APInt &C1, 3936 ISD::CondCode Cond, const SDLoc &dl, 3937 SelectionDAG &DAG) { 3938 // Look through truncs that don't change the value of a ctpop. 3939 // FIXME: Add vector support? Need to be careful with setcc result type below. 3940 SDValue CTPOP = N0; 3941 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3942 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3943 CTPOP = N0.getOperand(0); 3944 3945 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3946 return SDValue(); 3947 3948 EVT CTVT = CTPOP.getValueType(); 3949 SDValue CTOp = CTPOP.getOperand(0); 3950 3951 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3952 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3953 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3954 return SDValue(); 3955 3956 // (ctpop x) u< 2 -> (x & x-1) == 0 3957 // (ctpop x) u> 1 -> (x & x-1) != 0 3958 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3959 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3960 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3961 return SDValue(); 3962 if (C1 == 0 && (Cond == ISD::SETULT)) 3963 return SDValue(); // This is handled elsewhere. 3964 3965 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3966 3967 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3968 SDValue Result = CTOp; 3969 for (unsigned i = 0; i < Passes; i++) { 3970 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3971 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3972 } 3973 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3974 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3975 } 3976 3977 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3978 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3979 // For scalars, keep CTPOP if it is legal or custom. 3980 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3981 return SDValue(); 3982 // This is based on X86's custom lowering for CTPOP which produces more 3983 // instructions than the expansion here. 3984 3985 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3986 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3987 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3988 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3989 assert(CTVT.isInteger()); 3990 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3991 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3992 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3993 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3994 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3995 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3996 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3997 } 3998 3999 return SDValue(); 4000 } 4001 4002 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4003 ISD::CondCode Cond, const SDLoc &dl, 4004 SelectionDAG &DAG) { 4005 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4006 return SDValue(); 4007 4008 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4009 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4010 return SDValue(); 4011 4012 auto getRotateSource = [](SDValue X) { 4013 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4014 return X.getOperand(0); 4015 return SDValue(); 4016 }; 4017 4018 // Peek through a rotated value compared against 0 or -1: 4019 // (rot X, Y) == 0/-1 --> X == 0/-1 4020 // (rot X, Y) != 0/-1 --> X != 0/-1 4021 if (SDValue R = getRotateSource(N0)) 4022 return DAG.getSetCC(dl, VT, R, N1, Cond); 4023 4024 // Peek through an 'or' of a rotated value compared against 0: 4025 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4026 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4027 // 4028 // TODO: Add the 'and' with -1 sibling. 4029 // TODO: Recurse through a series of 'or' ops to find the rotate. 4030 EVT OpVT = N0.getValueType(); 4031 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4032 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4033 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4034 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4035 } 4036 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4037 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4038 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4039 } 4040 } 4041 4042 return SDValue(); 4043 } 4044 4045 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4046 ISD::CondCode Cond, const SDLoc &dl, 4047 SelectionDAG &DAG) { 4048 // If we are testing for all-bits-clear, we might be able to do that with 4049 // less shifting since bit-order does not matter. 4050 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4051 return SDValue(); 4052 4053 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4054 if (!C1 || !C1->isZero()) 4055 return SDValue(); 4056 4057 if (!N0.hasOneUse() || 4058 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4059 return SDValue(); 4060 4061 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4062 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4063 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4064 return SDValue(); 4065 4066 // Canonicalize fshr as fshl to reduce pattern-matching. 4067 unsigned ShAmt = ShAmtC->getZExtValue(); 4068 if (N0.getOpcode() == ISD::FSHR) 4069 ShAmt = BitWidth - ShAmt; 4070 4071 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4072 SDValue X, Y; 4073 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4074 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4075 return false; 4076 if (Or.getOperand(0) == Other) { 4077 X = Or.getOperand(0); 4078 Y = Or.getOperand(1); 4079 return true; 4080 } 4081 if (Or.getOperand(1) == Other) { 4082 X = Or.getOperand(1); 4083 Y = Or.getOperand(0); 4084 return true; 4085 } 4086 return false; 4087 }; 4088 4089 EVT OpVT = N0.getValueType(); 4090 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4091 SDValue F0 = N0.getOperand(0); 4092 SDValue F1 = N0.getOperand(1); 4093 if (matchOr(F0, F1)) { 4094 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4095 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4096 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4097 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4098 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4099 } 4100 if (matchOr(F1, F0)) { 4101 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4102 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4103 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4104 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4105 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4106 } 4107 4108 return SDValue(); 4109 } 4110 4111 /// Try to simplify a setcc built with the specified operands and cc. If it is 4112 /// unable to simplify it, return a null SDValue. 4113 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4114 ISD::CondCode Cond, bool foldBooleans, 4115 DAGCombinerInfo &DCI, 4116 const SDLoc &dl) const { 4117 SelectionDAG &DAG = DCI.DAG; 4118 const DataLayout &Layout = DAG.getDataLayout(); 4119 EVT OpVT = N0.getValueType(); 4120 4121 // Constant fold or commute setcc. 4122 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4123 return Fold; 4124 4125 bool N0ConstOrSplat = 4126 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4127 bool N1ConstOrSplat = 4128 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4129 4130 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4131 // TODO: Handle non-splat vector constants. All undef causes trouble. 4132 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4133 // infinite loop here when we encounter one. 4134 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4135 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4136 (DCI.isBeforeLegalizeOps() || 4137 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4138 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4139 4140 // If we have a subtract with the same 2 non-constant operands as this setcc 4141 // -- but in reverse order -- then try to commute the operands of this setcc 4142 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4143 // instruction on some targets. 4144 if (!N0ConstOrSplat && !N1ConstOrSplat && 4145 (DCI.isBeforeLegalizeOps() || 4146 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4147 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4148 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4149 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4150 4151 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4152 return V; 4153 4154 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4155 return V; 4156 4157 if (auto *N1C = isConstOrConstSplat(N1)) { 4158 const APInt &C1 = N1C->getAPIntValue(); 4159 4160 // Optimize some CTPOP cases. 4161 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4162 return V; 4163 4164 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4165 // equality comparison, then we're just comparing whether X itself is 4166 // zero. 4167 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4168 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4169 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4170 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4171 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4172 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4173 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4174 // (srl (ctlz x), 5) == 0 -> X != 0 4175 // (srl (ctlz x), 5) != 1 -> X != 0 4176 Cond = ISD::SETNE; 4177 } else { 4178 // (srl (ctlz x), 5) != 0 -> X == 0 4179 // (srl (ctlz x), 5) == 1 -> X == 0 4180 Cond = ISD::SETEQ; 4181 } 4182 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4183 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4184 Cond); 4185 } 4186 } 4187 } 4188 } 4189 4190 // FIXME: Support vectors. 4191 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4192 const APInt &C1 = N1C->getAPIntValue(); 4193 4194 // (zext x) == C --> x == (trunc C) 4195 // (sext x) == C --> x == (trunc C) 4196 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4197 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4198 unsigned MinBits = N0.getValueSizeInBits(); 4199 SDValue PreExt; 4200 bool Signed = false; 4201 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4202 // ZExt 4203 MinBits = N0->getOperand(0).getValueSizeInBits(); 4204 PreExt = N0->getOperand(0); 4205 } else if (N0->getOpcode() == ISD::AND) { 4206 // DAGCombine turns costly ZExts into ANDs 4207 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4208 if ((C->getAPIntValue()+1).isPowerOf2()) { 4209 MinBits = C->getAPIntValue().countTrailingOnes(); 4210 PreExt = N0->getOperand(0); 4211 } 4212 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4213 // SExt 4214 MinBits = N0->getOperand(0).getValueSizeInBits(); 4215 PreExt = N0->getOperand(0); 4216 Signed = true; 4217 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4218 // ZEXTLOAD / SEXTLOAD 4219 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4220 MinBits = LN0->getMemoryVT().getSizeInBits(); 4221 PreExt = N0; 4222 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4223 Signed = true; 4224 MinBits = LN0->getMemoryVT().getSizeInBits(); 4225 PreExt = N0; 4226 } 4227 } 4228 4229 // Figure out how many bits we need to preserve this constant. 4230 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4231 4232 // Make sure we're not losing bits from the constant. 4233 if (MinBits > 0 && 4234 MinBits < C1.getBitWidth() && 4235 MinBits >= ReqdBits) { 4236 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4237 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4238 // Will get folded away. 4239 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4240 if (MinBits == 1 && C1 == 1) 4241 // Invert the condition. 4242 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4243 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4244 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4245 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4246 } 4247 4248 // If truncating the setcc operands is not desirable, we can still 4249 // simplify the expression in some cases: 4250 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4251 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4252 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4253 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4254 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4255 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4256 SDValue TopSetCC = N0->getOperand(0); 4257 unsigned N0Opc = N0->getOpcode(); 4258 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4259 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4260 TopSetCC.getOpcode() == ISD::SETCC && 4261 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4262 (isConstFalseVal(N1) || 4263 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4264 4265 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4266 (!N1C->isZero() && Cond == ISD::SETNE); 4267 4268 if (!Inverse) 4269 return TopSetCC; 4270 4271 ISD::CondCode InvCond = ISD::getSetCCInverse( 4272 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4273 TopSetCC.getOperand(0).getValueType()); 4274 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4275 TopSetCC.getOperand(1), 4276 InvCond); 4277 } 4278 } 4279 } 4280 4281 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4282 // equality or unsigned, and all 1 bits of the const are in the same 4283 // partial word, see if we can shorten the load. 4284 if (DCI.isBeforeLegalize() && 4285 !ISD::isSignedIntSetCC(Cond) && 4286 N0.getOpcode() == ISD::AND && C1 == 0 && 4287 N0.getNode()->hasOneUse() && 4288 isa<LoadSDNode>(N0.getOperand(0)) && 4289 N0.getOperand(0).getNode()->hasOneUse() && 4290 isa<ConstantSDNode>(N0.getOperand(1))) { 4291 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4292 APInt bestMask; 4293 unsigned bestWidth = 0, bestOffset = 0; 4294 if (Lod->isSimple() && Lod->isUnindexed()) { 4295 unsigned origWidth = N0.getValueSizeInBits(); 4296 unsigned maskWidth = origWidth; 4297 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4298 // 8 bits, but have to be careful... 4299 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4300 origWidth = Lod->getMemoryVT().getSizeInBits(); 4301 const APInt &Mask = N0.getConstantOperandAPInt(1); 4302 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4303 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4304 for (unsigned offset=0; offset<origWidth/width; offset++) { 4305 if (Mask.isSubsetOf(newMask)) { 4306 if (Layout.isLittleEndian()) 4307 bestOffset = (uint64_t)offset * (width/8); 4308 else 4309 bestOffset = (origWidth/width - offset - 1) * (width/8); 4310 bestMask = Mask.lshr(offset * (width/8) * 8); 4311 bestWidth = width; 4312 break; 4313 } 4314 newMask <<= width; 4315 } 4316 } 4317 } 4318 if (bestWidth) { 4319 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4320 if (newVT.isRound() && 4321 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4322 SDValue Ptr = Lod->getBasePtr(); 4323 if (bestOffset != 0) 4324 Ptr = 4325 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4326 SDValue NewLoad = 4327 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4328 Lod->getPointerInfo().getWithOffset(bestOffset), 4329 Lod->getOriginalAlign()); 4330 return DAG.getSetCC(dl, VT, 4331 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4332 DAG.getConstant(bestMask.trunc(bestWidth), 4333 dl, newVT)), 4334 DAG.getConstant(0LL, dl, newVT), Cond); 4335 } 4336 } 4337 } 4338 4339 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4340 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4341 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4342 4343 // If the comparison constant has bits in the upper part, the 4344 // zero-extended value could never match. 4345 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4346 C1.getBitWidth() - InSize))) { 4347 switch (Cond) { 4348 case ISD::SETUGT: 4349 case ISD::SETUGE: 4350 case ISD::SETEQ: 4351 return DAG.getConstant(0, dl, VT); 4352 case ISD::SETULT: 4353 case ISD::SETULE: 4354 case ISD::SETNE: 4355 return DAG.getConstant(1, dl, VT); 4356 case ISD::SETGT: 4357 case ISD::SETGE: 4358 // True if the sign bit of C1 is set. 4359 return DAG.getConstant(C1.isNegative(), dl, VT); 4360 case ISD::SETLT: 4361 case ISD::SETLE: 4362 // True if the sign bit of C1 isn't set. 4363 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4364 default: 4365 break; 4366 } 4367 } 4368 4369 // Otherwise, we can perform the comparison with the low bits. 4370 switch (Cond) { 4371 case ISD::SETEQ: 4372 case ISD::SETNE: 4373 case ISD::SETUGT: 4374 case ISD::SETUGE: 4375 case ISD::SETULT: 4376 case ISD::SETULE: { 4377 EVT newVT = N0.getOperand(0).getValueType(); 4378 if (DCI.isBeforeLegalizeOps() || 4379 (isOperationLegal(ISD::SETCC, newVT) && 4380 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4381 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4382 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4383 4384 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4385 NewConst, Cond); 4386 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4387 } 4388 break; 4389 } 4390 default: 4391 break; // todo, be more careful with signed comparisons 4392 } 4393 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4394 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4395 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4396 OpVT)) { 4397 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4398 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4399 EVT ExtDstTy = N0.getValueType(); 4400 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4401 4402 // If the constant doesn't fit into the number of bits for the source of 4403 // the sign extension, it is impossible for both sides to be equal. 4404 if (C1.getMinSignedBits() > ExtSrcTyBits) 4405 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4406 4407 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4408 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4409 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4410 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4411 DAG.getConstant(Imm, dl, ExtDstTy)); 4412 if (!DCI.isCalledByLegalizer()) 4413 DCI.AddToWorklist(ZextOp.getNode()); 4414 // Otherwise, make this a use of a zext. 4415 return DAG.getSetCC(dl, VT, ZextOp, 4416 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4417 } else if ((N1C->isZero() || N1C->isOne()) && 4418 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4419 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4420 if (N0.getOpcode() == ISD::SETCC && 4421 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4422 (N0.getValueType() == MVT::i1 || 4423 getBooleanContents(N0.getOperand(0).getValueType()) == 4424 ZeroOrOneBooleanContent)) { 4425 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4426 if (TrueWhenTrue) 4427 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4428 // Invert the condition. 4429 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4430 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4431 if (DCI.isBeforeLegalizeOps() || 4432 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4433 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4434 } 4435 4436 if ((N0.getOpcode() == ISD::XOR || 4437 (N0.getOpcode() == ISD::AND && 4438 N0.getOperand(0).getOpcode() == ISD::XOR && 4439 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4440 isOneConstant(N0.getOperand(1))) { 4441 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4442 // can only do this if the top bits are known zero. 4443 unsigned BitWidth = N0.getValueSizeInBits(); 4444 if (DAG.MaskedValueIsZero(N0, 4445 APInt::getHighBitsSet(BitWidth, 4446 BitWidth-1))) { 4447 // Okay, get the un-inverted input value. 4448 SDValue Val; 4449 if (N0.getOpcode() == ISD::XOR) { 4450 Val = N0.getOperand(0); 4451 } else { 4452 assert(N0.getOpcode() == ISD::AND && 4453 N0.getOperand(0).getOpcode() == ISD::XOR); 4454 // ((X^1)&1)^1 -> X & 1 4455 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4456 N0.getOperand(0).getOperand(0), 4457 N0.getOperand(1)); 4458 } 4459 4460 return DAG.getSetCC(dl, VT, Val, N1, 4461 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4462 } 4463 } else if (N1C->isOne()) { 4464 SDValue Op0 = N0; 4465 if (Op0.getOpcode() == ISD::TRUNCATE) 4466 Op0 = Op0.getOperand(0); 4467 4468 if ((Op0.getOpcode() == ISD::XOR) && 4469 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4470 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4471 SDValue XorLHS = Op0.getOperand(0); 4472 SDValue XorRHS = Op0.getOperand(1); 4473 // Ensure that the input setccs return an i1 type or 0/1 value. 4474 if (Op0.getValueType() == MVT::i1 || 4475 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4476 ZeroOrOneBooleanContent && 4477 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4478 ZeroOrOneBooleanContent)) { 4479 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4480 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4481 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4482 } 4483 } 4484 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4485 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4486 if (Op0.getValueType().bitsGT(VT)) 4487 Op0 = DAG.getNode(ISD::AND, dl, VT, 4488 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4489 DAG.getConstant(1, dl, VT)); 4490 else if (Op0.getValueType().bitsLT(VT)) 4491 Op0 = DAG.getNode(ISD::AND, dl, VT, 4492 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4493 DAG.getConstant(1, dl, VT)); 4494 4495 return DAG.getSetCC(dl, VT, Op0, 4496 DAG.getConstant(0, dl, Op0.getValueType()), 4497 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4498 } 4499 if (Op0.getOpcode() == ISD::AssertZext && 4500 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4501 return DAG.getSetCC(dl, VT, Op0, 4502 DAG.getConstant(0, dl, Op0.getValueType()), 4503 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4504 } 4505 } 4506 4507 // Given: 4508 // icmp eq/ne (urem %x, %y), 0 4509 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4510 // icmp eq/ne %x, 0 4511 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4512 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4513 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4514 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4515 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4516 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4517 } 4518 4519 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4520 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4521 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4522 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4523 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4524 N1C && N1C->isAllOnes()) { 4525 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4526 DAG.getConstant(0, dl, OpVT), 4527 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4528 } 4529 4530 if (SDValue V = 4531 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4532 return V; 4533 } 4534 4535 // These simplifications apply to splat vectors as well. 4536 // TODO: Handle more splat vector cases. 4537 if (auto *N1C = isConstOrConstSplat(N1)) { 4538 const APInt &C1 = N1C->getAPIntValue(); 4539 4540 APInt MinVal, MaxVal; 4541 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4542 if (ISD::isSignedIntSetCC(Cond)) { 4543 MinVal = APInt::getSignedMinValue(OperandBitSize); 4544 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4545 } else { 4546 MinVal = APInt::getMinValue(OperandBitSize); 4547 MaxVal = APInt::getMaxValue(OperandBitSize); 4548 } 4549 4550 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4551 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4552 // X >= MIN --> true 4553 if (C1 == MinVal) 4554 return DAG.getBoolConstant(true, dl, VT, OpVT); 4555 4556 if (!VT.isVector()) { // TODO: Support this for vectors. 4557 // X >= C0 --> X > (C0 - 1) 4558 APInt C = C1 - 1; 4559 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4560 if ((DCI.isBeforeLegalizeOps() || 4561 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4562 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4563 isLegalICmpImmediate(C.getSExtValue())))) { 4564 return DAG.getSetCC(dl, VT, N0, 4565 DAG.getConstant(C, dl, N1.getValueType()), 4566 NewCC); 4567 } 4568 } 4569 } 4570 4571 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4572 // X <= MAX --> true 4573 if (C1 == MaxVal) 4574 return DAG.getBoolConstant(true, dl, VT, OpVT); 4575 4576 // X <= C0 --> X < (C0 + 1) 4577 if (!VT.isVector()) { // TODO: Support this for vectors. 4578 APInt C = C1 + 1; 4579 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4580 if ((DCI.isBeforeLegalizeOps() || 4581 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4582 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4583 isLegalICmpImmediate(C.getSExtValue())))) { 4584 return DAG.getSetCC(dl, VT, N0, 4585 DAG.getConstant(C, dl, N1.getValueType()), 4586 NewCC); 4587 } 4588 } 4589 } 4590 4591 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4592 if (C1 == MinVal) 4593 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4594 4595 // TODO: Support this for vectors after legalize ops. 4596 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4597 // Canonicalize setlt X, Max --> setne X, Max 4598 if (C1 == MaxVal) 4599 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4600 4601 // If we have setult X, 1, turn it into seteq X, 0 4602 if (C1 == MinVal+1) 4603 return DAG.getSetCC(dl, VT, N0, 4604 DAG.getConstant(MinVal, dl, N0.getValueType()), 4605 ISD::SETEQ); 4606 } 4607 } 4608 4609 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4610 if (C1 == MaxVal) 4611 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4612 4613 // TODO: Support this for vectors after legalize ops. 4614 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4615 // Canonicalize setgt X, Min --> setne X, Min 4616 if (C1 == MinVal) 4617 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4618 4619 // If we have setugt X, Max-1, turn it into seteq X, Max 4620 if (C1 == MaxVal-1) 4621 return DAG.getSetCC(dl, VT, N0, 4622 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4623 ISD::SETEQ); 4624 } 4625 } 4626 4627 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4628 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4629 if (C1.isZero()) 4630 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4631 VT, N0, N1, Cond, DCI, dl)) 4632 return CC; 4633 4634 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4635 // For example, when high 32-bits of i64 X are known clear: 4636 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4637 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4638 bool CmpZero = N1C->getAPIntValue().isZero(); 4639 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4640 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4641 // Match or(lo,shl(hi,bw/2)) pattern. 4642 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4643 unsigned EltBits = V.getScalarValueSizeInBits(); 4644 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4645 return false; 4646 SDValue LHS = V.getOperand(0); 4647 SDValue RHS = V.getOperand(1); 4648 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4649 // Unshifted element must have zero upperbits. 4650 if (RHS.getOpcode() == ISD::SHL && 4651 isa<ConstantSDNode>(RHS.getOperand(1)) && 4652 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4653 DAG.MaskedValueIsZero(LHS, HiBits)) { 4654 Lo = LHS; 4655 Hi = RHS.getOperand(0); 4656 return true; 4657 } 4658 if (LHS.getOpcode() == ISD::SHL && 4659 isa<ConstantSDNode>(LHS.getOperand(1)) && 4660 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4661 DAG.MaskedValueIsZero(RHS, HiBits)) { 4662 Lo = RHS; 4663 Hi = LHS.getOperand(0); 4664 return true; 4665 } 4666 return false; 4667 }; 4668 4669 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4670 unsigned EltBits = N0.getScalarValueSizeInBits(); 4671 unsigned HalfBits = EltBits / 2; 4672 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4673 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4674 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4675 SDValue NewN0 = 4676 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4677 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4678 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4679 }; 4680 4681 SDValue Lo, Hi; 4682 if (IsConcat(N0, Lo, Hi)) 4683 return MergeConcat(Lo, Hi); 4684 4685 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4686 SDValue Lo0, Lo1, Hi0, Hi1; 4687 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4688 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4689 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4690 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4691 } 4692 } 4693 } 4694 } 4695 4696 // If we have "setcc X, C0", check to see if we can shrink the immediate 4697 // by changing cc. 4698 // TODO: Support this for vectors after legalize ops. 4699 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4700 // SETUGT X, SINTMAX -> SETLT X, 0 4701 // SETUGE X, SINTMIN -> SETLT X, 0 4702 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4703 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4704 return DAG.getSetCC(dl, VT, N0, 4705 DAG.getConstant(0, dl, N1.getValueType()), 4706 ISD::SETLT); 4707 4708 // SETULT X, SINTMIN -> SETGT X, -1 4709 // SETULE X, SINTMAX -> SETGT X, -1 4710 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4711 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4712 return DAG.getSetCC(dl, VT, N0, 4713 DAG.getAllOnesConstant(dl, N1.getValueType()), 4714 ISD::SETGT); 4715 } 4716 } 4717 4718 // Back to non-vector simplifications. 4719 // TODO: Can we do these for vector splats? 4720 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 const APInt &C1 = N1C->getAPIntValue(); 4723 EVT ShValTy = N0.getValueType(); 4724 4725 // Fold bit comparisons when we can. This will result in an 4726 // incorrect value when boolean false is negative one, unless 4727 // the bitsize is 1 in which case the false value is the same 4728 // in practice regardless of the representation. 4729 if ((VT.getSizeInBits() == 1 || 4730 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4731 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4732 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4733 N0.getOpcode() == ISD::AND) { 4734 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4735 EVT ShiftTy = 4736 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4737 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4738 // Perform the xform if the AND RHS is a single bit. 4739 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4740 if (AndRHS->getAPIntValue().isPowerOf2() && 4741 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4742 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4743 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4744 DAG.getConstant(ShCt, dl, ShiftTy))); 4745 } 4746 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4747 // (X & 8) == 8 --> (X & 8) >> 3 4748 // Perform the xform if C1 is a single bit. 4749 unsigned ShCt = C1.logBase2(); 4750 if (C1.isPowerOf2() && 4751 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4752 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4753 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4754 DAG.getConstant(ShCt, dl, ShiftTy))); 4755 } 4756 } 4757 } 4758 } 4759 4760 if (C1.getMinSignedBits() <= 64 && 4761 !isLegalICmpImmediate(C1.getSExtValue())) { 4762 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4763 // (X & -256) == 256 -> (X >> 8) == 1 4764 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4765 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4766 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4767 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4768 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4769 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4770 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4771 SDValue Shift = 4772 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4773 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4774 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4775 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4776 } 4777 } 4778 } 4779 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4780 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4781 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4782 // X < 0x100000000 -> (X >> 32) < 1 4783 // X >= 0x100000000 -> (X >> 32) >= 1 4784 // X <= 0x0ffffffff -> (X >> 32) < 1 4785 // X > 0x0ffffffff -> (X >> 32) >= 1 4786 unsigned ShiftBits; 4787 APInt NewC = C1; 4788 ISD::CondCode NewCond = Cond; 4789 if (AdjOne) { 4790 ShiftBits = C1.countTrailingOnes(); 4791 NewC = NewC + 1; 4792 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4793 } else { 4794 ShiftBits = C1.countTrailingZeros(); 4795 } 4796 NewC.lshrInPlace(ShiftBits); 4797 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4798 isLegalICmpImmediate(NewC.getSExtValue()) && 4799 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4800 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4801 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4802 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4803 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4804 } 4805 } 4806 } 4807 } 4808 4809 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4810 auto *CFP = cast<ConstantFPSDNode>(N1); 4811 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4812 4813 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4814 // constant if knowing that the operand is non-nan is enough. We prefer to 4815 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4816 // materialize 0.0. 4817 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4818 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4819 4820 // setcc (fneg x), C -> setcc swap(pred) x, -C 4821 if (N0.getOpcode() == ISD::FNEG) { 4822 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4823 if (DCI.isBeforeLegalizeOps() || 4824 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4825 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4826 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4827 } 4828 } 4829 4830 // If the condition is not legal, see if we can find an equivalent one 4831 // which is legal. 4832 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4833 // If the comparison was an awkward floating-point == or != and one of 4834 // the comparison operands is infinity or negative infinity, convert the 4835 // condition to a less-awkward <= or >=. 4836 if (CFP->getValueAPF().isInfinity()) { 4837 bool IsNegInf = CFP->getValueAPF().isNegative(); 4838 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4839 switch (Cond) { 4840 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4841 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4842 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4843 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4844 default: break; 4845 } 4846 if (NewCond != ISD::SETCC_INVALID && 4847 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4848 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4849 } 4850 } 4851 } 4852 4853 if (N0 == N1) { 4854 // The sext(setcc()) => setcc() optimization relies on the appropriate 4855 // constant being emitted. 4856 assert(!N0.getValueType().isInteger() && 4857 "Integer types should be handled by FoldSetCC"); 4858 4859 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4860 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4861 if (UOF == 2) // FP operators that are undefined on NaNs. 4862 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4863 if (UOF == unsigned(EqTrue)) 4864 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4865 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4866 // if it is not already. 4867 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4868 if (NewCond != Cond && 4869 (DCI.isBeforeLegalizeOps() || 4870 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4871 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4872 } 4873 4874 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4875 N0.getValueType().isInteger()) { 4876 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4877 N0.getOpcode() == ISD::XOR) { 4878 // Simplify (X+Y) == (X+Z) --> Y == Z 4879 if (N0.getOpcode() == N1.getOpcode()) { 4880 if (N0.getOperand(0) == N1.getOperand(0)) 4881 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4882 if (N0.getOperand(1) == N1.getOperand(1)) 4883 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4884 if (isCommutativeBinOp(N0.getOpcode())) { 4885 // If X op Y == Y op X, try other combinations. 4886 if (N0.getOperand(0) == N1.getOperand(1)) 4887 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4888 Cond); 4889 if (N0.getOperand(1) == N1.getOperand(0)) 4890 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4891 Cond); 4892 } 4893 } 4894 4895 // If RHS is a legal immediate value for a compare instruction, we need 4896 // to be careful about increasing register pressure needlessly. 4897 bool LegalRHSImm = false; 4898 4899 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4900 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4901 // Turn (X+C1) == C2 --> X == C2-C1 4902 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4903 return DAG.getSetCC( 4904 dl, VT, N0.getOperand(0), 4905 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4906 dl, N0.getValueType()), 4907 Cond); 4908 4909 // Turn (X^C1) == C2 --> X == C1^C2 4910 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4911 return DAG.getSetCC( 4912 dl, VT, N0.getOperand(0), 4913 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4914 dl, N0.getValueType()), 4915 Cond); 4916 } 4917 4918 // Turn (C1-X) == C2 --> X == C1-C2 4919 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4920 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4921 return DAG.getSetCC( 4922 dl, VT, N0.getOperand(1), 4923 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4924 dl, N0.getValueType()), 4925 Cond); 4926 4927 // Could RHSC fold directly into a compare? 4928 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4929 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4930 } 4931 4932 // (X+Y) == X --> Y == 0 and similar folds. 4933 // Don't do this if X is an immediate that can fold into a cmp 4934 // instruction and X+Y has other uses. It could be an induction variable 4935 // chain, and the transform would increase register pressure. 4936 if (!LegalRHSImm || N0.hasOneUse()) 4937 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4938 return V; 4939 } 4940 4941 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4942 N1.getOpcode() == ISD::XOR) 4943 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4944 return V; 4945 4946 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4947 return V; 4948 } 4949 4950 // Fold remainder of division by a constant. 4951 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4952 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4953 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4954 4955 // When division is cheap or optimizing for minimum size, 4956 // fall through to DIVREM creation by skipping this fold. 4957 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4958 if (N0.getOpcode() == ISD::UREM) { 4959 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4960 return Folded; 4961 } else if (N0.getOpcode() == ISD::SREM) { 4962 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4963 return Folded; 4964 } 4965 } 4966 } 4967 4968 // Fold away ALL boolean setcc's. 4969 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4970 SDValue Temp; 4971 switch (Cond) { 4972 default: llvm_unreachable("Unknown integer setcc!"); 4973 case ISD::SETEQ: // X == Y -> ~(X^Y) 4974 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4975 N0 = DAG.getNOT(dl, Temp, OpVT); 4976 if (!DCI.isCalledByLegalizer()) 4977 DCI.AddToWorklist(Temp.getNode()); 4978 break; 4979 case ISD::SETNE: // X != Y --> (X^Y) 4980 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4981 break; 4982 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4983 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4984 Temp = DAG.getNOT(dl, N0, OpVT); 4985 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4986 if (!DCI.isCalledByLegalizer()) 4987 DCI.AddToWorklist(Temp.getNode()); 4988 break; 4989 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4990 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4991 Temp = DAG.getNOT(dl, N1, OpVT); 4992 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4993 if (!DCI.isCalledByLegalizer()) 4994 DCI.AddToWorklist(Temp.getNode()); 4995 break; 4996 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4997 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4998 Temp = DAG.getNOT(dl, N0, OpVT); 4999 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5000 if (!DCI.isCalledByLegalizer()) 5001 DCI.AddToWorklist(Temp.getNode()); 5002 break; 5003 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5004 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5005 Temp = DAG.getNOT(dl, N1, OpVT); 5006 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5007 break; 5008 } 5009 if (VT.getScalarType() != MVT::i1) { 5010 if (!DCI.isCalledByLegalizer()) 5011 DCI.AddToWorklist(N0.getNode()); 5012 // FIXME: If running after legalize, we probably can't do this. 5013 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5014 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5015 } 5016 return N0; 5017 } 5018 5019 // Could not fold it. 5020 return SDValue(); 5021 } 5022 5023 /// Returns true (and the GlobalValue and the offset) if the node is a 5024 /// GlobalAddress + offset. 5025 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5026 int64_t &Offset) const { 5027 5028 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5029 5030 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5031 GA = GASD->getGlobal(); 5032 Offset += GASD->getOffset(); 5033 return true; 5034 } 5035 5036 if (N->getOpcode() == ISD::ADD) { 5037 SDValue N1 = N->getOperand(0); 5038 SDValue N2 = N->getOperand(1); 5039 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5040 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5041 Offset += V->getSExtValue(); 5042 return true; 5043 } 5044 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5045 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5046 Offset += V->getSExtValue(); 5047 return true; 5048 } 5049 } 5050 } 5051 5052 return false; 5053 } 5054 5055 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5056 DAGCombinerInfo &DCI) const { 5057 // Default implementation: no optimization. 5058 return SDValue(); 5059 } 5060 5061 //===----------------------------------------------------------------------===// 5062 // Inline Assembler Implementation Methods 5063 //===----------------------------------------------------------------------===// 5064 5065 TargetLowering::ConstraintType 5066 TargetLowering::getConstraintType(StringRef Constraint) const { 5067 unsigned S = Constraint.size(); 5068 5069 if (S == 1) { 5070 switch (Constraint[0]) { 5071 default: break; 5072 case 'r': 5073 return C_RegisterClass; 5074 case 'm': // memory 5075 case 'o': // offsetable 5076 case 'V': // not offsetable 5077 return C_Memory; 5078 case 'p': // Address. 5079 return C_Address; 5080 case 'n': // Simple Integer 5081 case 'E': // Floating Point Constant 5082 case 'F': // Floating Point Constant 5083 return C_Immediate; 5084 case 'i': // Simple Integer or Relocatable Constant 5085 case 's': // Relocatable Constant 5086 case 'X': // Allow ANY value. 5087 case 'I': // Target registers. 5088 case 'J': 5089 case 'K': 5090 case 'L': 5091 case 'M': 5092 case 'N': 5093 case 'O': 5094 case 'P': 5095 case '<': 5096 case '>': 5097 return C_Other; 5098 } 5099 } 5100 5101 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5102 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5103 return C_Memory; 5104 return C_Register; 5105 } 5106 return C_Unknown; 5107 } 5108 5109 /// Try to replace an X constraint, which matches anything, with another that 5110 /// has more specific requirements based on the type of the corresponding 5111 /// operand. 5112 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5113 if (ConstraintVT.isInteger()) 5114 return "r"; 5115 if (ConstraintVT.isFloatingPoint()) 5116 return "f"; // works for many targets 5117 return nullptr; 5118 } 5119 5120 SDValue TargetLowering::LowerAsmOutputForConstraint( 5121 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5122 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5123 return SDValue(); 5124 } 5125 5126 /// Lower the specified operand into the Ops vector. 5127 /// If it is invalid, don't add anything to Ops. 5128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5129 std::string &Constraint, 5130 std::vector<SDValue> &Ops, 5131 SelectionDAG &DAG) const { 5132 5133 if (Constraint.length() > 1) return; 5134 5135 char ConstraintLetter = Constraint[0]; 5136 switch (ConstraintLetter) { 5137 default: break; 5138 case 'X': // Allows any operand 5139 case 'i': // Simple Integer or Relocatable Constant 5140 case 'n': // Simple Integer 5141 case 's': { // Relocatable Constant 5142 5143 ConstantSDNode *C; 5144 uint64_t Offset = 0; 5145 5146 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5147 // etc., since getelementpointer is variadic. We can't use 5148 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5149 // while in this case the GA may be furthest from the root node which is 5150 // likely an ISD::ADD. 5151 while (true) { 5152 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5153 // gcc prints these as sign extended. Sign extend value to 64 bits 5154 // now; without this it would get ZExt'd later in 5155 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5156 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5157 BooleanContent BCont = getBooleanContents(MVT::i64); 5158 ISD::NodeType ExtOpc = 5159 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5160 int64_t ExtVal = 5161 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5162 Ops.push_back( 5163 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5164 return; 5165 } 5166 if (ConstraintLetter != 'n') { 5167 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5168 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5169 GA->getValueType(0), 5170 Offset + GA->getOffset())); 5171 return; 5172 } 5173 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5174 Ops.push_back(DAG.getTargetBlockAddress( 5175 BA->getBlockAddress(), BA->getValueType(0), 5176 Offset + BA->getOffset(), BA->getTargetFlags())); 5177 return; 5178 } 5179 if (isa<BasicBlockSDNode>(Op)) { 5180 Ops.push_back(Op); 5181 return; 5182 } 5183 } 5184 const unsigned OpCode = Op.getOpcode(); 5185 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5186 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5187 Op = Op.getOperand(1); 5188 // Subtraction is not commutative. 5189 else if (OpCode == ISD::ADD && 5190 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5191 Op = Op.getOperand(0); 5192 else 5193 return; 5194 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5195 continue; 5196 } 5197 return; 5198 } 5199 break; 5200 } 5201 } 5202 } 5203 5204 std::pair<unsigned, const TargetRegisterClass *> 5205 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5206 StringRef Constraint, 5207 MVT VT) const { 5208 if (Constraint.empty() || Constraint[0] != '{') 5209 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5210 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5211 5212 // Remove the braces from around the name. 5213 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5214 5215 std::pair<unsigned, const TargetRegisterClass *> R = 5216 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5217 5218 // Figure out which register class contains this reg. 5219 for (const TargetRegisterClass *RC : RI->regclasses()) { 5220 // If none of the value types for this register class are valid, we 5221 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5222 if (!isLegalRC(*RI, *RC)) 5223 continue; 5224 5225 for (const MCPhysReg &PR : *RC) { 5226 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5227 std::pair<unsigned, const TargetRegisterClass *> S = 5228 std::make_pair(PR, RC); 5229 5230 // If this register class has the requested value type, return it, 5231 // otherwise keep searching and return the first class found 5232 // if no other is found which explicitly has the requested type. 5233 if (RI->isTypeLegalForClass(*RC, VT)) 5234 return S; 5235 if (!R.second) 5236 R = S; 5237 } 5238 } 5239 } 5240 5241 return R; 5242 } 5243 5244 //===----------------------------------------------------------------------===// 5245 // Constraint Selection. 5246 5247 /// Return true of this is an input operand that is a matching constraint like 5248 /// "4". 5249 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5250 assert(!ConstraintCode.empty() && "No known constraint!"); 5251 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5252 } 5253 5254 /// If this is an input matching constraint, this method returns the output 5255 /// operand it matches. 5256 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5257 assert(!ConstraintCode.empty() && "No known constraint!"); 5258 return atoi(ConstraintCode.c_str()); 5259 } 5260 5261 /// Split up the constraint string from the inline assembly value into the 5262 /// specific constraints and their prefixes, and also tie in the associated 5263 /// operand values. 5264 /// If this returns an empty vector, and if the constraint string itself 5265 /// isn't empty, there was an error parsing. 5266 TargetLowering::AsmOperandInfoVector 5267 TargetLowering::ParseConstraints(const DataLayout &DL, 5268 const TargetRegisterInfo *TRI, 5269 const CallBase &Call) const { 5270 /// Information about all of the constraints. 5271 AsmOperandInfoVector ConstraintOperands; 5272 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5273 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5274 5275 // Do a prepass over the constraints, canonicalizing them, and building up the 5276 // ConstraintOperands list. 5277 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5278 unsigned ResNo = 0; // ResNo - The result number of the next output. 5279 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5280 5281 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5282 ConstraintOperands.emplace_back(std::move(CI)); 5283 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5284 5285 // Update multiple alternative constraint count. 5286 if (OpInfo.multipleAlternatives.size() > maCount) 5287 maCount = OpInfo.multipleAlternatives.size(); 5288 5289 OpInfo.ConstraintVT = MVT::Other; 5290 5291 // Compute the value type for each operand. 5292 switch (OpInfo.Type) { 5293 case InlineAsm::isOutput: 5294 // Indirect outputs just consume an argument. 5295 if (OpInfo.isIndirect) { 5296 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5297 break; 5298 } 5299 5300 // The return value of the call is this value. As such, there is no 5301 // corresponding argument. 5302 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5303 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5304 OpInfo.ConstraintVT = 5305 getSimpleValueType(DL, STy->getElementType(ResNo)); 5306 } else { 5307 assert(ResNo == 0 && "Asm only has one result!"); 5308 OpInfo.ConstraintVT = 5309 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5310 } 5311 ++ResNo; 5312 break; 5313 case InlineAsm::isInput: 5314 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5315 break; 5316 case InlineAsm::isLabel: 5317 OpInfo.CallOperandVal = 5318 cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo); 5319 OpInfo.ConstraintVT = 5320 getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType()) 5321 .getSimpleVT(); 5322 ++LabelNo; 5323 continue; 5324 case InlineAsm::isClobber: 5325 // Nothing to do. 5326 break; 5327 } 5328 5329 if (OpInfo.CallOperandVal) { 5330 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5331 if (OpInfo.isIndirect) { 5332 OpTy = Call.getParamElementType(ArgNo); 5333 assert(OpTy && "Indirect operand must have elementtype attribute"); 5334 } 5335 5336 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5337 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5338 if (STy->getNumElements() == 1) 5339 OpTy = STy->getElementType(0); 5340 5341 // If OpTy is not a single value, it may be a struct/union that we 5342 // can tile with integers. 5343 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5344 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5345 switch (BitSize) { 5346 default: break; 5347 case 1: 5348 case 8: 5349 case 16: 5350 case 32: 5351 case 64: 5352 case 128: 5353 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5354 break; 5355 } 5356 } 5357 5358 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5359 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5360 ArgNo++; 5361 } 5362 } 5363 5364 // If we have multiple alternative constraints, select the best alternative. 5365 if (!ConstraintOperands.empty()) { 5366 if (maCount) { 5367 unsigned bestMAIndex = 0; 5368 int bestWeight = -1; 5369 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5370 int weight = -1; 5371 unsigned maIndex; 5372 // Compute the sums of the weights for each alternative, keeping track 5373 // of the best (highest weight) one so far. 5374 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5375 int weightSum = 0; 5376 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5377 cIndex != eIndex; ++cIndex) { 5378 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5379 if (OpInfo.Type == InlineAsm::isClobber) 5380 continue; 5381 5382 // If this is an output operand with a matching input operand, 5383 // look up the matching input. If their types mismatch, e.g. one 5384 // is an integer, the other is floating point, or their sizes are 5385 // different, flag it as an maCantMatch. 5386 if (OpInfo.hasMatchingInput()) { 5387 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5388 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5389 if ((OpInfo.ConstraintVT.isInteger() != 5390 Input.ConstraintVT.isInteger()) || 5391 (OpInfo.ConstraintVT.getSizeInBits() != 5392 Input.ConstraintVT.getSizeInBits())) { 5393 weightSum = -1; // Can't match. 5394 break; 5395 } 5396 } 5397 } 5398 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5399 if (weight == -1) { 5400 weightSum = -1; 5401 break; 5402 } 5403 weightSum += weight; 5404 } 5405 // Update best. 5406 if (weightSum > bestWeight) { 5407 bestWeight = weightSum; 5408 bestMAIndex = maIndex; 5409 } 5410 } 5411 5412 // Now select chosen alternative in each constraint. 5413 for (AsmOperandInfo &cInfo : ConstraintOperands) 5414 if (cInfo.Type != InlineAsm::isClobber) 5415 cInfo.selectAlternative(bestMAIndex); 5416 } 5417 } 5418 5419 // Check and hook up tied operands, choose constraint code to use. 5420 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5421 cIndex != eIndex; ++cIndex) { 5422 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5423 5424 // If this is an output operand with a matching input operand, look up the 5425 // matching input. If their types mismatch, e.g. one is an integer, the 5426 // other is floating point, or their sizes are different, flag it as an 5427 // error. 5428 if (OpInfo.hasMatchingInput()) { 5429 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5430 5431 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5432 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5433 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5434 OpInfo.ConstraintVT); 5435 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5436 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5437 Input.ConstraintVT); 5438 if ((OpInfo.ConstraintVT.isInteger() != 5439 Input.ConstraintVT.isInteger()) || 5440 (MatchRC.second != InputRC.second)) { 5441 report_fatal_error("Unsupported asm: input constraint" 5442 " with a matching output constraint of" 5443 " incompatible type!"); 5444 } 5445 } 5446 } 5447 } 5448 5449 return ConstraintOperands; 5450 } 5451 5452 /// Return an integer indicating how general CT is. 5453 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5454 switch (CT) { 5455 case TargetLowering::C_Immediate: 5456 case TargetLowering::C_Other: 5457 case TargetLowering::C_Unknown: 5458 return 0; 5459 case TargetLowering::C_Register: 5460 return 1; 5461 case TargetLowering::C_RegisterClass: 5462 return 2; 5463 case TargetLowering::C_Memory: 5464 case TargetLowering::C_Address: 5465 return 3; 5466 } 5467 llvm_unreachable("Invalid constraint type"); 5468 } 5469 5470 /// Examine constraint type and operand type and determine a weight value. 5471 /// This object must already have been set up with the operand type 5472 /// and the current alternative constraint selected. 5473 TargetLowering::ConstraintWeight 5474 TargetLowering::getMultipleConstraintMatchWeight( 5475 AsmOperandInfo &info, int maIndex) const { 5476 InlineAsm::ConstraintCodeVector *rCodes; 5477 if (maIndex >= (int)info.multipleAlternatives.size()) 5478 rCodes = &info.Codes; 5479 else 5480 rCodes = &info.multipleAlternatives[maIndex].Codes; 5481 ConstraintWeight BestWeight = CW_Invalid; 5482 5483 // Loop over the options, keeping track of the most general one. 5484 for (const std::string &rCode : *rCodes) { 5485 ConstraintWeight weight = 5486 getSingleConstraintMatchWeight(info, rCode.c_str()); 5487 if (weight > BestWeight) 5488 BestWeight = weight; 5489 } 5490 5491 return BestWeight; 5492 } 5493 5494 /// Examine constraint type and operand type and determine a weight value. 5495 /// This object must already have been set up with the operand type 5496 /// and the current alternative constraint selected. 5497 TargetLowering::ConstraintWeight 5498 TargetLowering::getSingleConstraintMatchWeight( 5499 AsmOperandInfo &info, const char *constraint) const { 5500 ConstraintWeight weight = CW_Invalid; 5501 Value *CallOperandVal = info.CallOperandVal; 5502 // If we don't have a value, we can't do a match, 5503 // but allow it at the lowest weight. 5504 if (!CallOperandVal) 5505 return CW_Default; 5506 // Look at the constraint type. 5507 switch (*constraint) { 5508 case 'i': // immediate integer. 5509 case 'n': // immediate integer with a known value. 5510 if (isa<ConstantInt>(CallOperandVal)) 5511 weight = CW_Constant; 5512 break; 5513 case 's': // non-explicit intregal immediate. 5514 if (isa<GlobalValue>(CallOperandVal)) 5515 weight = CW_Constant; 5516 break; 5517 case 'E': // immediate float if host format. 5518 case 'F': // immediate float. 5519 if (isa<ConstantFP>(CallOperandVal)) 5520 weight = CW_Constant; 5521 break; 5522 case '<': // memory operand with autodecrement. 5523 case '>': // memory operand with autoincrement. 5524 case 'm': // memory operand. 5525 case 'o': // offsettable memory operand 5526 case 'V': // non-offsettable memory operand 5527 weight = CW_Memory; 5528 break; 5529 case 'r': // general register. 5530 case 'g': // general register, memory operand or immediate integer. 5531 // note: Clang converts "g" to "imr". 5532 if (CallOperandVal->getType()->isIntegerTy()) 5533 weight = CW_Register; 5534 break; 5535 case 'X': // any operand. 5536 default: 5537 weight = CW_Default; 5538 break; 5539 } 5540 return weight; 5541 } 5542 5543 /// If there are multiple different constraints that we could pick for this 5544 /// operand (e.g. "imr") try to pick the 'best' one. 5545 /// This is somewhat tricky: constraints fall into four classes: 5546 /// Other -> immediates and magic values 5547 /// Register -> one specific register 5548 /// RegisterClass -> a group of regs 5549 /// Memory -> memory 5550 /// Ideally, we would pick the most specific constraint possible: if we have 5551 /// something that fits into a register, we would pick it. The problem here 5552 /// is that if we have something that could either be in a register or in 5553 /// memory that use of the register could cause selection of *other* 5554 /// operands to fail: they might only succeed if we pick memory. Because of 5555 /// this the heuristic we use is: 5556 /// 5557 /// 1) If there is an 'other' constraint, and if the operand is valid for 5558 /// that constraint, use it. This makes us take advantage of 'i' 5559 /// constraints when available. 5560 /// 2) Otherwise, pick the most general constraint present. This prefers 5561 /// 'm' over 'r', for example. 5562 /// 5563 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5564 const TargetLowering &TLI, 5565 SDValue Op, SelectionDAG *DAG) { 5566 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5567 unsigned BestIdx = 0; 5568 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5569 int BestGenerality = -1; 5570 5571 // Loop over the options, keeping track of the most general one. 5572 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5573 TargetLowering::ConstraintType CType = 5574 TLI.getConstraintType(OpInfo.Codes[i]); 5575 5576 // Indirect 'other' or 'immediate' constraints are not allowed. 5577 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5578 CType == TargetLowering::C_Register || 5579 CType == TargetLowering::C_RegisterClass)) 5580 continue; 5581 5582 // If this is an 'other' or 'immediate' constraint, see if the operand is 5583 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5584 // the operand is an integer in the range [0..31] we want to use I (saving a 5585 // load of a register), otherwise we must use 'r'. 5586 if ((CType == TargetLowering::C_Other || 5587 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5588 assert(OpInfo.Codes[i].size() == 1 && 5589 "Unhandled multi-letter 'other' constraint"); 5590 std::vector<SDValue> ResultOps; 5591 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5592 ResultOps, *DAG); 5593 if (!ResultOps.empty()) { 5594 BestType = CType; 5595 BestIdx = i; 5596 break; 5597 } 5598 } 5599 5600 // Things with matching constraints can only be registers, per gcc 5601 // documentation. This mainly affects "g" constraints. 5602 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5603 continue; 5604 5605 // This constraint letter is more general than the previous one, use it. 5606 int Generality = getConstraintGenerality(CType); 5607 if (Generality > BestGenerality) { 5608 BestType = CType; 5609 BestIdx = i; 5610 BestGenerality = Generality; 5611 } 5612 } 5613 5614 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5615 OpInfo.ConstraintType = BestType; 5616 } 5617 5618 /// Determines the constraint code and constraint type to use for the specific 5619 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5620 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5621 SDValue Op, 5622 SelectionDAG *DAG) const { 5623 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5624 5625 // Single-letter constraints ('r') are very common. 5626 if (OpInfo.Codes.size() == 1) { 5627 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5628 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5629 } else { 5630 ChooseConstraint(OpInfo, *this, Op, DAG); 5631 } 5632 5633 // 'X' matches anything. 5634 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5635 // Constants are handled elsewhere. For Functions, the type here is the 5636 // type of the result, which is not what we want to look at; leave them 5637 // alone. 5638 Value *v = OpInfo.CallOperandVal; 5639 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5640 return; 5641 } 5642 5643 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5644 OpInfo.ConstraintCode = "i"; 5645 return; 5646 } 5647 5648 // Otherwise, try to resolve it to something we know about by looking at 5649 // the actual operand type. 5650 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5651 OpInfo.ConstraintCode = Repl; 5652 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5653 } 5654 } 5655 } 5656 5657 /// Given an exact SDIV by a constant, create a multiplication 5658 /// with the multiplicative inverse of the constant. 5659 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5660 const SDLoc &dl, SelectionDAG &DAG, 5661 SmallVectorImpl<SDNode *> &Created) { 5662 SDValue Op0 = N->getOperand(0); 5663 SDValue Op1 = N->getOperand(1); 5664 EVT VT = N->getValueType(0); 5665 EVT SVT = VT.getScalarType(); 5666 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5667 EVT ShSVT = ShVT.getScalarType(); 5668 5669 bool UseSRA = false; 5670 SmallVector<SDValue, 16> Shifts, Factors; 5671 5672 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5673 if (C->isZero()) 5674 return false; 5675 APInt Divisor = C->getAPIntValue(); 5676 unsigned Shift = Divisor.countTrailingZeros(); 5677 if (Shift) { 5678 Divisor.ashrInPlace(Shift); 5679 UseSRA = true; 5680 } 5681 // Calculate the multiplicative inverse, using Newton's method. 5682 APInt t; 5683 APInt Factor = Divisor; 5684 while ((t = Divisor * Factor) != 1) 5685 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5686 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5687 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5688 return true; 5689 }; 5690 5691 // Collect all magic values from the build vector. 5692 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5693 return SDValue(); 5694 5695 SDValue Shift, Factor; 5696 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5697 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5698 Factor = DAG.getBuildVector(VT, dl, Factors); 5699 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5700 assert(Shifts.size() == 1 && Factors.size() == 1 && 5701 "Expected matchUnaryPredicate to return one element for scalable " 5702 "vectors"); 5703 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5704 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5705 } else { 5706 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5707 Shift = Shifts[0]; 5708 Factor = Factors[0]; 5709 } 5710 5711 SDValue Res = Op0; 5712 5713 // Shift the value upfront if it is even, so the LSB is one. 5714 if (UseSRA) { 5715 // TODO: For UDIV use SRL instead of SRA. 5716 SDNodeFlags Flags; 5717 Flags.setExact(true); 5718 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5719 Created.push_back(Res.getNode()); 5720 } 5721 5722 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5723 } 5724 5725 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5726 SelectionDAG &DAG, 5727 SmallVectorImpl<SDNode *> &Created) const { 5728 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5730 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5731 return SDValue(N, 0); // Lower SDIV as SDIV 5732 return SDValue(); 5733 } 5734 5735 SDValue 5736 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5737 SelectionDAG &DAG, 5738 SmallVectorImpl<SDNode *> &Created) const { 5739 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5741 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5742 return SDValue(N, 0); // Lower SREM as SREM 5743 return SDValue(); 5744 } 5745 5746 /// Given an ISD::SDIV node expressing a divide by constant, 5747 /// return a DAG expression to select that will generate the same value by 5748 /// multiplying by a magic number. 5749 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5750 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5751 bool IsAfterLegalization, 5752 SmallVectorImpl<SDNode *> &Created) const { 5753 SDLoc dl(N); 5754 EVT VT = N->getValueType(0); 5755 EVT SVT = VT.getScalarType(); 5756 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5757 EVT ShSVT = ShVT.getScalarType(); 5758 unsigned EltBits = VT.getScalarSizeInBits(); 5759 EVT MulVT; 5760 5761 // Check to see if we can do this. 5762 // FIXME: We should be more aggressive here. 5763 if (!isTypeLegal(VT)) { 5764 // Limit this to simple scalars for now. 5765 if (VT.isVector() || !VT.isSimple()) 5766 return SDValue(); 5767 5768 // If this type will be promoted to a large enough type with a legal 5769 // multiply operation, we can go ahead and do this transform. 5770 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5771 return SDValue(); 5772 5773 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5774 if (MulVT.getSizeInBits() < (2 * EltBits) || 5775 !isOperationLegal(ISD::MUL, MulVT)) 5776 return SDValue(); 5777 } 5778 5779 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5780 if (N->getFlags().hasExact()) 5781 return BuildExactSDIV(*this, N, dl, DAG, Created); 5782 5783 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5784 5785 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5786 if (C->isZero()) 5787 return false; 5788 5789 const APInt &Divisor = C->getAPIntValue(); 5790 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5791 int NumeratorFactor = 0; 5792 int ShiftMask = -1; 5793 5794 if (Divisor.isOne() || Divisor.isAllOnes()) { 5795 // If d is +1/-1, we just multiply the numerator by +1/-1. 5796 NumeratorFactor = Divisor.getSExtValue(); 5797 magics.Magic = 0; 5798 magics.ShiftAmount = 0; 5799 ShiftMask = 0; 5800 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5801 // If d > 0 and m < 0, add the numerator. 5802 NumeratorFactor = 1; 5803 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5804 // If d < 0 and m > 0, subtract the numerator. 5805 NumeratorFactor = -1; 5806 } 5807 5808 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5809 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5810 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5811 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5812 return true; 5813 }; 5814 5815 SDValue N0 = N->getOperand(0); 5816 SDValue N1 = N->getOperand(1); 5817 5818 // Collect the shifts / magic values from each element. 5819 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5820 return SDValue(); 5821 5822 SDValue MagicFactor, Factor, Shift, ShiftMask; 5823 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5824 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5825 Factor = DAG.getBuildVector(VT, dl, Factors); 5826 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5827 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5828 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5829 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5830 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5831 "Expected matchUnaryPredicate to return one element for scalable " 5832 "vectors"); 5833 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5834 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5835 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5836 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5837 } else { 5838 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5839 MagicFactor = MagicFactors[0]; 5840 Factor = Factors[0]; 5841 Shift = Shifts[0]; 5842 ShiftMask = ShiftMasks[0]; 5843 } 5844 5845 // Multiply the numerator (operand 0) by the magic value. 5846 // FIXME: We should support doing a MUL in a wider type. 5847 auto GetMULHS = [&](SDValue X, SDValue Y) { 5848 // If the type isn't legal, use a wider mul of the the type calculated 5849 // earlier. 5850 if (!isTypeLegal(VT)) { 5851 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5852 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5853 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5854 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5855 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5856 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5857 } 5858 5859 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5860 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5861 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5862 SDValue LoHi = 5863 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5864 return SDValue(LoHi.getNode(), 1); 5865 } 5866 return SDValue(); 5867 }; 5868 5869 SDValue Q = GetMULHS(N0, MagicFactor); 5870 if (!Q) 5871 return SDValue(); 5872 5873 Created.push_back(Q.getNode()); 5874 5875 // (Optionally) Add/subtract the numerator using Factor. 5876 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5877 Created.push_back(Factor.getNode()); 5878 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5879 Created.push_back(Q.getNode()); 5880 5881 // Shift right algebraic by shift value. 5882 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5883 Created.push_back(Q.getNode()); 5884 5885 // Extract the sign bit, mask it and add it to the quotient. 5886 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5887 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5888 Created.push_back(T.getNode()); 5889 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5890 Created.push_back(T.getNode()); 5891 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5892 } 5893 5894 /// Given an ISD::UDIV node expressing a divide by constant, 5895 /// return a DAG expression to select that will generate the same value by 5896 /// multiplying by a magic number. 5897 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5898 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5899 bool IsAfterLegalization, 5900 SmallVectorImpl<SDNode *> &Created) const { 5901 SDLoc dl(N); 5902 EVT VT = N->getValueType(0); 5903 EVT SVT = VT.getScalarType(); 5904 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5905 EVT ShSVT = ShVT.getScalarType(); 5906 unsigned EltBits = VT.getScalarSizeInBits(); 5907 EVT MulVT; 5908 5909 // Check to see if we can do this. 5910 // FIXME: We should be more aggressive here. 5911 if (!isTypeLegal(VT)) { 5912 // Limit this to simple scalars for now. 5913 if (VT.isVector() || !VT.isSimple()) 5914 return SDValue(); 5915 5916 // If this type will be promoted to a large enough type with a legal 5917 // multiply operation, we can go ahead and do this transform. 5918 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5919 return SDValue(); 5920 5921 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5922 if (MulVT.getSizeInBits() < (2 * EltBits) || 5923 !isOperationLegal(ISD::MUL, MulVT)) 5924 return SDValue(); 5925 } 5926 5927 bool UseNPQ = false; 5928 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5929 5930 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5931 if (C->isZero()) 5932 return false; 5933 // FIXME: We should use a narrower constant when the upper 5934 // bits are known to be zero. 5935 const APInt& Divisor = C->getAPIntValue(); 5936 UnsignedDivisionByConstantInfo magics = 5937 UnsignedDivisionByConstantInfo::get(Divisor); 5938 unsigned PreShift = 0, PostShift = 0; 5939 5940 // If the divisor is even, we can avoid using the expensive fixup by 5941 // shifting the divided value upfront. 5942 if (magics.IsAdd && !Divisor[0]) { 5943 PreShift = Divisor.countTrailingZeros(); 5944 // Get magic number for the shifted divisor. 5945 magics = 5946 UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5947 assert(!magics.IsAdd && "Should use cheap fixup now"); 5948 } 5949 5950 unsigned SelNPQ; 5951 if (!magics.IsAdd || Divisor.isOne()) { 5952 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5953 "We shouldn't generate an undefined shift!"); 5954 PostShift = magics.ShiftAmount; 5955 SelNPQ = false; 5956 } else { 5957 PostShift = magics.ShiftAmount - 1; 5958 SelNPQ = true; 5959 } 5960 5961 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5962 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5963 NPQFactors.push_back( 5964 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5965 : APInt::getZero(EltBits), 5966 dl, SVT)); 5967 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5968 UseNPQ |= SelNPQ; 5969 return true; 5970 }; 5971 5972 SDValue N0 = N->getOperand(0); 5973 SDValue N1 = N->getOperand(1); 5974 5975 // Collect the shifts/magic values from each element. 5976 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5977 return SDValue(); 5978 5979 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5980 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5981 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5982 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5983 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5984 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5985 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5986 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5987 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5988 "Expected matchUnaryPredicate to return one for scalable vectors"); 5989 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5990 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5991 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5992 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5993 } else { 5994 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5995 PreShift = PreShifts[0]; 5996 MagicFactor = MagicFactors[0]; 5997 PostShift = PostShifts[0]; 5998 } 5999 6000 SDValue Q = N0; 6001 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6002 Created.push_back(Q.getNode()); 6003 6004 // FIXME: We should support doing a MUL in a wider type. 6005 auto GetMULHU = [&](SDValue X, SDValue Y) { 6006 // If the type isn't legal, use a wider mul of the the type calculated 6007 // earlier. 6008 if (!isTypeLegal(VT)) { 6009 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6010 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6011 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6012 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6013 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6014 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6015 } 6016 6017 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6018 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6019 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6020 SDValue LoHi = 6021 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6022 return SDValue(LoHi.getNode(), 1); 6023 } 6024 return SDValue(); // No mulhu or equivalent 6025 }; 6026 6027 // Multiply the numerator (operand 0) by the magic value. 6028 Q = GetMULHU(Q, MagicFactor); 6029 if (!Q) 6030 return SDValue(); 6031 6032 Created.push_back(Q.getNode()); 6033 6034 if (UseNPQ) { 6035 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6036 Created.push_back(NPQ.getNode()); 6037 6038 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6039 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6040 if (VT.isVector()) 6041 NPQ = GetMULHU(NPQ, NPQFactor); 6042 else 6043 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6044 6045 Created.push_back(NPQ.getNode()); 6046 6047 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6048 Created.push_back(Q.getNode()); 6049 } 6050 6051 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6052 Created.push_back(Q.getNode()); 6053 6054 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6055 6056 SDValue One = DAG.getConstant(1, dl, VT); 6057 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6058 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6059 } 6060 6061 /// If all values in Values that *don't* match the predicate are same 'splat' 6062 /// value, then replace all values with that splat value. 6063 /// Else, if AlternativeReplacement was provided, then replace all values that 6064 /// do match predicate with AlternativeReplacement value. 6065 static void 6066 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6067 std::function<bool(SDValue)> Predicate, 6068 SDValue AlternativeReplacement = SDValue()) { 6069 SDValue Replacement; 6070 // Is there a value for which the Predicate does *NOT* match? What is it? 6071 auto SplatValue = llvm::find_if_not(Values, Predicate); 6072 if (SplatValue != Values.end()) { 6073 // Does Values consist only of SplatValue's and values matching Predicate? 6074 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6075 return Value == *SplatValue || Predicate(Value); 6076 })) // Then we shall replace values matching predicate with SplatValue. 6077 Replacement = *SplatValue; 6078 } 6079 if (!Replacement) { 6080 // Oops, we did not find the "baseline" splat value. 6081 if (!AlternativeReplacement) 6082 return; // Nothing to do. 6083 // Let's replace with provided value then. 6084 Replacement = AlternativeReplacement; 6085 } 6086 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6087 } 6088 6089 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6090 /// where the divisor is constant and the comparison target is zero, 6091 /// return a DAG expression that will generate the same comparison result 6092 /// using only multiplications, additions and shifts/rotations. 6093 /// Ref: "Hacker's Delight" 10-17. 6094 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6095 SDValue CompTargetNode, 6096 ISD::CondCode Cond, 6097 DAGCombinerInfo &DCI, 6098 const SDLoc &DL) const { 6099 SmallVector<SDNode *, 5> Built; 6100 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6101 DCI, DL, Built)) { 6102 for (SDNode *N : Built) 6103 DCI.AddToWorklist(N); 6104 return Folded; 6105 } 6106 6107 return SDValue(); 6108 } 6109 6110 SDValue 6111 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6112 SDValue CompTargetNode, ISD::CondCode Cond, 6113 DAGCombinerInfo &DCI, const SDLoc &DL, 6114 SmallVectorImpl<SDNode *> &Created) const { 6115 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6116 // - D must be constant, with D = D0 * 2^K where D0 is odd 6117 // - P is the multiplicative inverse of D0 modulo 2^W 6118 // - Q = floor(((2^W) - 1) / D) 6119 // where W is the width of the common type of N and D. 6120 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6121 "Only applicable for (in)equality comparisons."); 6122 6123 SelectionDAG &DAG = DCI.DAG; 6124 6125 EVT VT = REMNode.getValueType(); 6126 EVT SVT = VT.getScalarType(); 6127 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6128 EVT ShSVT = ShVT.getScalarType(); 6129 6130 // If MUL is unavailable, we cannot proceed in any case. 6131 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6132 return SDValue(); 6133 6134 bool ComparingWithAllZeros = true; 6135 bool AllComparisonsWithNonZerosAreTautological = true; 6136 bool HadTautologicalLanes = false; 6137 bool AllLanesAreTautological = true; 6138 bool HadEvenDivisor = false; 6139 bool AllDivisorsArePowerOfTwo = true; 6140 bool HadTautologicalInvertedLanes = false; 6141 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6142 6143 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6144 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6145 if (CDiv->isZero()) 6146 return false; 6147 6148 const APInt &D = CDiv->getAPIntValue(); 6149 const APInt &Cmp = CCmp->getAPIntValue(); 6150 6151 ComparingWithAllZeros &= Cmp.isZero(); 6152 6153 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6154 // if C2 is not less than C1, the comparison is always false. 6155 // But we will only be able to produce the comparison that will give the 6156 // opposive tautological answer. So this lane would need to be fixed up. 6157 bool TautologicalInvertedLane = D.ule(Cmp); 6158 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6159 6160 // If all lanes are tautological (either all divisors are ones, or divisor 6161 // is not greater than the constant we are comparing with), 6162 // we will prefer to avoid the fold. 6163 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6164 HadTautologicalLanes |= TautologicalLane; 6165 AllLanesAreTautological &= TautologicalLane; 6166 6167 // If we are comparing with non-zero, we need'll need to subtract said 6168 // comparison value from the LHS. But there is no point in doing that if 6169 // every lane where we are comparing with non-zero is tautological.. 6170 if (!Cmp.isZero()) 6171 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6172 6173 // Decompose D into D0 * 2^K 6174 unsigned K = D.countTrailingZeros(); 6175 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6176 APInt D0 = D.lshr(K); 6177 6178 // D is even if it has trailing zeros. 6179 HadEvenDivisor |= (K != 0); 6180 // D is a power-of-two if D0 is one. 6181 // If all divisors are power-of-two, we will prefer to avoid the fold. 6182 AllDivisorsArePowerOfTwo &= D0.isOne(); 6183 6184 // P = inv(D0, 2^W) 6185 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6186 unsigned W = D.getBitWidth(); 6187 APInt P = D0.zext(W + 1) 6188 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6189 .trunc(W); 6190 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6191 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6192 6193 // Q = floor((2^W - 1) u/ D) 6194 // R = ((2^W - 1) u% D) 6195 APInt Q, R; 6196 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6197 6198 // If we are comparing with zero, then that comparison constant is okay, 6199 // else it may need to be one less than that. 6200 if (Cmp.ugt(R)) 6201 Q -= 1; 6202 6203 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6204 "We are expecting that K is always less than all-ones for ShSVT"); 6205 6206 // If the lane is tautological the result can be constant-folded. 6207 if (TautologicalLane) { 6208 // Set P and K amount to a bogus values so we can try to splat them. 6209 P = 0; 6210 K = -1; 6211 // And ensure that comparison constant is tautological, 6212 // it will always compare true/false. 6213 Q = -1; 6214 } 6215 6216 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6217 KAmts.push_back( 6218 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6219 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6220 return true; 6221 }; 6222 6223 SDValue N = REMNode.getOperand(0); 6224 SDValue D = REMNode.getOperand(1); 6225 6226 // Collect the values from each element. 6227 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6228 return SDValue(); 6229 6230 // If all lanes are tautological, the result can be constant-folded. 6231 if (AllLanesAreTautological) 6232 return SDValue(); 6233 6234 // If this is a urem by a powers-of-two, avoid the fold since it can be 6235 // best implemented as a bit test. 6236 if (AllDivisorsArePowerOfTwo) 6237 return SDValue(); 6238 6239 SDValue PVal, KVal, QVal; 6240 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6241 if (HadTautologicalLanes) { 6242 // Try to turn PAmts into a splat, since we don't care about the values 6243 // that are currently '0'. If we can't, just keep '0'`s. 6244 turnVectorIntoSplatVector(PAmts, isNullConstant); 6245 // Try to turn KAmts into a splat, since we don't care about the values 6246 // that are currently '-1'. If we can't, change them to '0'`s. 6247 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6248 DAG.getConstant(0, DL, ShSVT)); 6249 } 6250 6251 PVal = DAG.getBuildVector(VT, DL, PAmts); 6252 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6253 QVal = DAG.getBuildVector(VT, DL, QAmts); 6254 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6255 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6256 "Expected matchBinaryPredicate to return one element for " 6257 "SPLAT_VECTORs"); 6258 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6259 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6260 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6261 } else { 6262 PVal = PAmts[0]; 6263 KVal = KAmts[0]; 6264 QVal = QAmts[0]; 6265 } 6266 6267 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6268 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6269 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6270 assert(CompTargetNode.getValueType() == N.getValueType() && 6271 "Expecting that the types on LHS and RHS of comparisons match."); 6272 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6273 } 6274 6275 // (mul N, P) 6276 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6277 Created.push_back(Op0.getNode()); 6278 6279 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6280 // divisors as a performance improvement, since rotating by 0 is a no-op. 6281 if (HadEvenDivisor) { 6282 // We need ROTR to do this. 6283 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6284 return SDValue(); 6285 // UREM: (rotr (mul N, P), K) 6286 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6287 Created.push_back(Op0.getNode()); 6288 } 6289 6290 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6291 SDValue NewCC = 6292 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6293 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6294 if (!HadTautologicalInvertedLanes) 6295 return NewCC; 6296 6297 // If any lanes previously compared always-false, the NewCC will give 6298 // always-true result for them, so we need to fixup those lanes. 6299 // Or the other way around for inequality predicate. 6300 assert(VT.isVector() && "Can/should only get here for vectors."); 6301 Created.push_back(NewCC.getNode()); 6302 6303 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6304 // if C2 is not less than C1, the comparison is always false. 6305 // But we have produced the comparison that will give the 6306 // opposive tautological answer. So these lanes would need to be fixed up. 6307 SDValue TautologicalInvertedChannels = 6308 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6309 Created.push_back(TautologicalInvertedChannels.getNode()); 6310 6311 // NOTE: we avoid letting illegal types through even if we're before legalize 6312 // ops – legalization has a hard time producing good code for this. 6313 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6314 // If we have a vector select, let's replace the comparison results in the 6315 // affected lanes with the correct tautological result. 6316 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6317 DL, SETCCVT, SETCCVT); 6318 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6319 Replacement, NewCC); 6320 } 6321 6322 // Else, we can just invert the comparison result in the appropriate lanes. 6323 // 6324 // NOTE: see the note above VSELECT above. 6325 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6326 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6327 TautologicalInvertedChannels); 6328 6329 return SDValue(); // Don't know how to lower. 6330 } 6331 6332 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6333 /// where the divisor is constant and the comparison target is zero, 6334 /// return a DAG expression that will generate the same comparison result 6335 /// using only multiplications, additions and shifts/rotations. 6336 /// Ref: "Hacker's Delight" 10-17. 6337 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6338 SDValue CompTargetNode, 6339 ISD::CondCode Cond, 6340 DAGCombinerInfo &DCI, 6341 const SDLoc &DL) const { 6342 SmallVector<SDNode *, 7> Built; 6343 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6344 DCI, DL, Built)) { 6345 assert(Built.size() <= 7 && "Max size prediction failed."); 6346 for (SDNode *N : Built) 6347 DCI.AddToWorklist(N); 6348 return Folded; 6349 } 6350 6351 return SDValue(); 6352 } 6353 6354 SDValue 6355 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6356 SDValue CompTargetNode, ISD::CondCode Cond, 6357 DAGCombinerInfo &DCI, const SDLoc &DL, 6358 SmallVectorImpl<SDNode *> &Created) const { 6359 // Fold: 6360 // (seteq/ne (srem N, D), 0) 6361 // To: 6362 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6363 // 6364 // - D must be constant, with D = D0 * 2^K where D0 is odd 6365 // - P is the multiplicative inverse of D0 modulo 2^W 6366 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6367 // - Q = floor((2 * A) / (2^K)) 6368 // where W is the width of the common type of N and D. 6369 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6370 "Only applicable for (in)equality comparisons."); 6371 6372 SelectionDAG &DAG = DCI.DAG; 6373 6374 EVT VT = REMNode.getValueType(); 6375 EVT SVT = VT.getScalarType(); 6376 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6377 EVT ShSVT = ShVT.getScalarType(); 6378 6379 // If we are after ops legalization, and MUL is unavailable, we can not 6380 // proceed. 6381 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6382 return SDValue(); 6383 6384 // TODO: Could support comparing with non-zero too. 6385 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6386 if (!CompTarget || !CompTarget->isZero()) 6387 return SDValue(); 6388 6389 bool HadIntMinDivisor = false; 6390 bool HadOneDivisor = false; 6391 bool AllDivisorsAreOnes = true; 6392 bool HadEvenDivisor = false; 6393 bool NeedToApplyOffset = false; 6394 bool AllDivisorsArePowerOfTwo = true; 6395 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6396 6397 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6398 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6399 if (C->isZero()) 6400 return false; 6401 6402 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6403 6404 // WARNING: this fold is only valid for positive divisors! 6405 APInt D = C->getAPIntValue(); 6406 if (D.isNegative()) 6407 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6408 6409 HadIntMinDivisor |= D.isMinSignedValue(); 6410 6411 // If all divisors are ones, we will prefer to avoid the fold. 6412 HadOneDivisor |= D.isOne(); 6413 AllDivisorsAreOnes &= D.isOne(); 6414 6415 // Decompose D into D0 * 2^K 6416 unsigned K = D.countTrailingZeros(); 6417 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6418 APInt D0 = D.lshr(K); 6419 6420 if (!D.isMinSignedValue()) { 6421 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6422 // we don't care about this lane in this fold, we'll special-handle it. 6423 HadEvenDivisor |= (K != 0); 6424 } 6425 6426 // D is a power-of-two if D0 is one. This includes INT_MIN. 6427 // If all divisors are power-of-two, we will prefer to avoid the fold. 6428 AllDivisorsArePowerOfTwo &= D0.isOne(); 6429 6430 // P = inv(D0, 2^W) 6431 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6432 unsigned W = D.getBitWidth(); 6433 APInt P = D0.zext(W + 1) 6434 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6435 .trunc(W); 6436 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6437 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6438 6439 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6440 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6441 A.clearLowBits(K); 6442 6443 if (!D.isMinSignedValue()) { 6444 // If divisor INT_MIN, then we don't care about this lane in this fold, 6445 // we'll special-handle it. 6446 NeedToApplyOffset |= A != 0; 6447 } 6448 6449 // Q = floor((2 * A) / (2^K)) 6450 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6451 6452 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6453 "We are expecting that A is always less than all-ones for SVT"); 6454 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6455 "We are expecting that K is always less than all-ones for ShSVT"); 6456 6457 // If the divisor is 1 the result can be constant-folded. Likewise, we 6458 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6459 if (D.isOne()) { 6460 // Set P, A and K to a bogus values so we can try to splat them. 6461 P = 0; 6462 A = -1; 6463 K = -1; 6464 6465 // x ?% 1 == 0 <--> true <--> x u<= -1 6466 Q = -1; 6467 } 6468 6469 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6470 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6471 KAmts.push_back( 6472 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6473 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6474 return true; 6475 }; 6476 6477 SDValue N = REMNode.getOperand(0); 6478 SDValue D = REMNode.getOperand(1); 6479 6480 // Collect the values from each element. 6481 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6482 return SDValue(); 6483 6484 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6485 if (AllDivisorsAreOnes) 6486 return SDValue(); 6487 6488 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6489 // since it can be best implemented as a bit test. 6490 if (AllDivisorsArePowerOfTwo) 6491 return SDValue(); 6492 6493 SDValue PVal, AVal, KVal, QVal; 6494 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6495 if (HadOneDivisor) { 6496 // Try to turn PAmts into a splat, since we don't care about the values 6497 // that are currently '0'. If we can't, just keep '0'`s. 6498 turnVectorIntoSplatVector(PAmts, isNullConstant); 6499 // Try to turn AAmts into a splat, since we don't care about the 6500 // values that are currently '-1'. If we can't, change them to '0'`s. 6501 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6502 DAG.getConstant(0, DL, SVT)); 6503 // Try to turn KAmts into a splat, since we don't care about the values 6504 // that are currently '-1'. If we can't, change them to '0'`s. 6505 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6506 DAG.getConstant(0, DL, ShSVT)); 6507 } 6508 6509 PVal = DAG.getBuildVector(VT, DL, PAmts); 6510 AVal = DAG.getBuildVector(VT, DL, AAmts); 6511 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6512 QVal = DAG.getBuildVector(VT, DL, QAmts); 6513 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6514 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6515 QAmts.size() == 1 && 6516 "Expected matchUnaryPredicate to return one element for scalable " 6517 "vectors"); 6518 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6519 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6520 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6521 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6522 } else { 6523 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6524 PVal = PAmts[0]; 6525 AVal = AAmts[0]; 6526 KVal = KAmts[0]; 6527 QVal = QAmts[0]; 6528 } 6529 6530 // (mul N, P) 6531 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6532 Created.push_back(Op0.getNode()); 6533 6534 if (NeedToApplyOffset) { 6535 // We need ADD to do this. 6536 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6537 return SDValue(); 6538 6539 // (add (mul N, P), A) 6540 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6541 Created.push_back(Op0.getNode()); 6542 } 6543 6544 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6545 // divisors as a performance improvement, since rotating by 0 is a no-op. 6546 if (HadEvenDivisor) { 6547 // We need ROTR to do this. 6548 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6549 return SDValue(); 6550 // SREM: (rotr (add (mul N, P), A), K) 6551 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6552 Created.push_back(Op0.getNode()); 6553 } 6554 6555 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6556 SDValue Fold = 6557 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6558 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6559 6560 // If we didn't have lanes with INT_MIN divisor, then we're done. 6561 if (!HadIntMinDivisor) 6562 return Fold; 6563 6564 // That fold is only valid for positive divisors. Which effectively means, 6565 // it is invalid for INT_MIN divisors. So if we have such a lane, 6566 // we must fix-up results for said lanes. 6567 assert(VT.isVector() && "Can/should only get here for vectors."); 6568 6569 // NOTE: we avoid letting illegal types through even if we're before legalize 6570 // ops – legalization has a hard time producing good code for the code that 6571 // follows. 6572 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6573 !isOperationLegalOrCustom(ISD::AND, VT) || 6574 !isOperationLegalOrCustom(Cond, VT) || 6575 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6576 return SDValue(); 6577 6578 Created.push_back(Fold.getNode()); 6579 6580 SDValue IntMin = DAG.getConstant( 6581 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6582 SDValue IntMax = DAG.getConstant( 6583 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6584 SDValue Zero = 6585 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6586 6587 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6588 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6589 Created.push_back(DivisorIsIntMin.getNode()); 6590 6591 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6592 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6593 Created.push_back(Masked.getNode()); 6594 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6595 Created.push_back(MaskedIsZero.getNode()); 6596 6597 // To produce final result we need to blend 2 vectors: 'SetCC' and 6598 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6599 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6600 // constant-folded, select can get lowered to a shuffle with constant mask. 6601 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6602 MaskedIsZero, Fold); 6603 6604 return Blended; 6605 } 6606 6607 bool TargetLowering:: 6608 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6609 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6610 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6611 "be a constant integer"); 6612 return true; 6613 } 6614 6615 return false; 6616 } 6617 6618 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6619 const DenormalMode &Mode) const { 6620 SDLoc DL(Op); 6621 EVT VT = Op.getValueType(); 6622 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6623 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6624 // Testing it with denormal inputs to avoid wrong estimate. 6625 if (Mode.Input == DenormalMode::IEEE) { 6626 // This is specifically a check for the handling of denormal inputs, 6627 // not the result. 6628 6629 // Test = fabs(X) < SmallestNormal 6630 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6631 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6632 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6633 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6634 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6635 } 6636 // Test = X == 0.0 6637 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6638 } 6639 6640 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6641 bool LegalOps, bool OptForSize, 6642 NegatibleCost &Cost, 6643 unsigned Depth) const { 6644 // fneg is removable even if it has multiple uses. 6645 if (Op.getOpcode() == ISD::FNEG) { 6646 Cost = NegatibleCost::Cheaper; 6647 return Op.getOperand(0); 6648 } 6649 6650 // Don't recurse exponentially. 6651 if (Depth > SelectionDAG::MaxRecursionDepth) 6652 return SDValue(); 6653 6654 // Pre-increment recursion depth for use in recursive calls. 6655 ++Depth; 6656 const SDNodeFlags Flags = Op->getFlags(); 6657 const TargetOptions &Options = DAG.getTarget().Options; 6658 EVT VT = Op.getValueType(); 6659 unsigned Opcode = Op.getOpcode(); 6660 6661 // Don't allow anything with multiple uses unless we know it is free. 6662 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6663 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6664 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6665 if (!IsFreeExtend) 6666 return SDValue(); 6667 } 6668 6669 auto RemoveDeadNode = [&](SDValue N) { 6670 if (N && N.getNode()->use_empty()) 6671 DAG.RemoveDeadNode(N.getNode()); 6672 }; 6673 6674 SDLoc DL(Op); 6675 6676 // Because getNegatedExpression can delete nodes we need a handle to keep 6677 // temporary nodes alive in case the recursion manages to create an identical 6678 // node. 6679 std::list<HandleSDNode> Handles; 6680 6681 switch (Opcode) { 6682 case ISD::ConstantFP: { 6683 // Don't invert constant FP values after legalization unless the target says 6684 // the negated constant is legal. 6685 bool IsOpLegal = 6686 isOperationLegal(ISD::ConstantFP, VT) || 6687 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6688 OptForSize); 6689 6690 if (LegalOps && !IsOpLegal) 6691 break; 6692 6693 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6694 V.changeSign(); 6695 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6696 6697 // If we already have the use of the negated floating constant, it is free 6698 // to negate it even it has multiple uses. 6699 if (!Op.hasOneUse() && CFP.use_empty()) 6700 break; 6701 Cost = NegatibleCost::Neutral; 6702 return CFP; 6703 } 6704 case ISD::BUILD_VECTOR: { 6705 // Only permit BUILD_VECTOR of constants. 6706 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6707 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6708 })) 6709 break; 6710 6711 bool IsOpLegal = 6712 (isOperationLegal(ISD::ConstantFP, VT) && 6713 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6714 llvm::all_of(Op->op_values(), [&](SDValue N) { 6715 return N.isUndef() || 6716 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6717 OptForSize); 6718 }); 6719 6720 if (LegalOps && !IsOpLegal) 6721 break; 6722 6723 SmallVector<SDValue, 4> Ops; 6724 for (SDValue C : Op->op_values()) { 6725 if (C.isUndef()) { 6726 Ops.push_back(C); 6727 continue; 6728 } 6729 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6730 V.changeSign(); 6731 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6732 } 6733 Cost = NegatibleCost::Neutral; 6734 return DAG.getBuildVector(VT, DL, Ops); 6735 } 6736 case ISD::FADD: { 6737 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6738 break; 6739 6740 // After operation legalization, it might not be legal to create new FSUBs. 6741 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6742 break; 6743 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6744 6745 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6746 NegatibleCost CostX = NegatibleCost::Expensive; 6747 SDValue NegX = 6748 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6749 // Prevent this node from being deleted by the next call. 6750 if (NegX) 6751 Handles.emplace_back(NegX); 6752 6753 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6754 NegatibleCost CostY = NegatibleCost::Expensive; 6755 SDValue NegY = 6756 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6757 6758 // We're done with the handles. 6759 Handles.clear(); 6760 6761 // Negate the X if its cost is less or equal than Y. 6762 if (NegX && (CostX <= CostY)) { 6763 Cost = CostX; 6764 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6765 if (NegY != N) 6766 RemoveDeadNode(NegY); 6767 return N; 6768 } 6769 6770 // Negate the Y if it is not expensive. 6771 if (NegY) { 6772 Cost = CostY; 6773 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6774 if (NegX != N) 6775 RemoveDeadNode(NegX); 6776 return N; 6777 } 6778 break; 6779 } 6780 case ISD::FSUB: { 6781 // We can't turn -(A-B) into B-A when we honor signed zeros. 6782 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6783 break; 6784 6785 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6786 // fold (fneg (fsub 0, Y)) -> Y 6787 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6788 if (C->isZero()) { 6789 Cost = NegatibleCost::Cheaper; 6790 return Y; 6791 } 6792 6793 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6794 Cost = NegatibleCost::Neutral; 6795 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6796 } 6797 case ISD::FMUL: 6798 case ISD::FDIV: { 6799 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6800 6801 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6802 NegatibleCost CostX = NegatibleCost::Expensive; 6803 SDValue NegX = 6804 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6805 // Prevent this node from being deleted by the next call. 6806 if (NegX) 6807 Handles.emplace_back(NegX); 6808 6809 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6810 NegatibleCost CostY = NegatibleCost::Expensive; 6811 SDValue NegY = 6812 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6813 6814 // We're done with the handles. 6815 Handles.clear(); 6816 6817 // Negate the X if its cost is less or equal than Y. 6818 if (NegX && (CostX <= CostY)) { 6819 Cost = CostX; 6820 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6821 if (NegY != N) 6822 RemoveDeadNode(NegY); 6823 return N; 6824 } 6825 6826 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6827 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6828 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6829 break; 6830 6831 // Negate the Y if it is not expensive. 6832 if (NegY) { 6833 Cost = CostY; 6834 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6835 if (NegX != N) 6836 RemoveDeadNode(NegX); 6837 return N; 6838 } 6839 break; 6840 } 6841 case ISD::FMA: 6842 case ISD::FMAD: { 6843 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6844 break; 6845 6846 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6847 NegatibleCost CostZ = NegatibleCost::Expensive; 6848 SDValue NegZ = 6849 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6850 // Give up if fail to negate the Z. 6851 if (!NegZ) 6852 break; 6853 6854 // Prevent this node from being deleted by the next two calls. 6855 Handles.emplace_back(NegZ); 6856 6857 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6858 NegatibleCost CostX = NegatibleCost::Expensive; 6859 SDValue NegX = 6860 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6861 // Prevent this node from being deleted by the next call. 6862 if (NegX) 6863 Handles.emplace_back(NegX); 6864 6865 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6866 NegatibleCost CostY = NegatibleCost::Expensive; 6867 SDValue NegY = 6868 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6869 6870 // We're done with the handles. 6871 Handles.clear(); 6872 6873 // Negate the X if its cost is less or equal than Y. 6874 if (NegX && (CostX <= CostY)) { 6875 Cost = std::min(CostX, CostZ); 6876 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6877 if (NegY != N) 6878 RemoveDeadNode(NegY); 6879 return N; 6880 } 6881 6882 // Negate the Y if it is not expensive. 6883 if (NegY) { 6884 Cost = std::min(CostY, CostZ); 6885 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6886 if (NegX != N) 6887 RemoveDeadNode(NegX); 6888 return N; 6889 } 6890 break; 6891 } 6892 6893 case ISD::FP_EXTEND: 6894 case ISD::FSIN: 6895 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6896 OptForSize, Cost, Depth)) 6897 return DAG.getNode(Opcode, DL, VT, NegV); 6898 break; 6899 case ISD::FP_ROUND: 6900 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6901 OptForSize, Cost, Depth)) 6902 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6903 break; 6904 } 6905 6906 return SDValue(); 6907 } 6908 6909 //===----------------------------------------------------------------------===// 6910 // Legalization Utilities 6911 //===----------------------------------------------------------------------===// 6912 6913 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6914 SDValue LHS, SDValue RHS, 6915 SmallVectorImpl<SDValue> &Result, 6916 EVT HiLoVT, SelectionDAG &DAG, 6917 MulExpansionKind Kind, SDValue LL, 6918 SDValue LH, SDValue RL, SDValue RH) const { 6919 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6920 Opcode == ISD::SMUL_LOHI); 6921 6922 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6923 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6924 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6925 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6926 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6927 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6928 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6929 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6930 6931 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6932 return false; 6933 6934 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6935 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6936 6937 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6938 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6939 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6940 6941 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6942 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6943 bool Signed) -> bool { 6944 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6945 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6946 Hi = SDValue(Lo.getNode(), 1); 6947 return true; 6948 } 6949 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6950 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6951 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6952 return true; 6953 } 6954 return false; 6955 }; 6956 6957 SDValue Lo, Hi; 6958 6959 if (!LL.getNode() && !RL.getNode() && 6960 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6961 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6962 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6963 } 6964 6965 if (!LL.getNode()) 6966 return false; 6967 6968 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6969 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6970 DAG.MaskedValueIsZero(RHS, HighMask)) { 6971 // The inputs are both zero-extended. 6972 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6973 Result.push_back(Lo); 6974 Result.push_back(Hi); 6975 if (Opcode != ISD::MUL) { 6976 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6977 Result.push_back(Zero); 6978 Result.push_back(Zero); 6979 } 6980 return true; 6981 } 6982 } 6983 6984 if (!VT.isVector() && Opcode == ISD::MUL && 6985 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6986 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6987 // The input values are both sign-extended. 6988 // TODO non-MUL case? 6989 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6990 Result.push_back(Lo); 6991 Result.push_back(Hi); 6992 return true; 6993 } 6994 } 6995 6996 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6997 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6998 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6999 7000 if (!LH.getNode() && !RH.getNode() && 7001 isOperationLegalOrCustom(ISD::SRL, VT) && 7002 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7003 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7004 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7005 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7006 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7007 } 7008 7009 if (!LH.getNode()) 7010 return false; 7011 7012 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7013 return false; 7014 7015 Result.push_back(Lo); 7016 7017 if (Opcode == ISD::MUL) { 7018 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7019 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7020 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7021 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7022 Result.push_back(Hi); 7023 return true; 7024 } 7025 7026 // Compute the full width result. 7027 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7028 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7029 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7030 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7031 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7032 }; 7033 7034 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7035 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7036 return false; 7037 7038 // This is effectively the add part of a multiply-add of half-sized operands, 7039 // so it cannot overflow. 7040 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7041 7042 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7043 return false; 7044 7045 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7046 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7047 7048 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7049 isOperationLegalOrCustom(ISD::ADDE, VT)); 7050 if (UseGlue) 7051 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7052 Merge(Lo, Hi)); 7053 else 7054 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 7055 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7056 7057 SDValue Carry = Next.getValue(1); 7058 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7059 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7060 7061 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7062 return false; 7063 7064 if (UseGlue) 7065 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7066 Carry); 7067 else 7068 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7069 Zero, Carry); 7070 7071 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7072 7073 if (Opcode == ISD::SMUL_LOHI) { 7074 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7075 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7076 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7077 7078 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7079 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7080 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7081 } 7082 7083 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7084 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7085 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7086 return true; 7087 } 7088 7089 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7090 SelectionDAG &DAG, MulExpansionKind Kind, 7091 SDValue LL, SDValue LH, SDValue RL, 7092 SDValue RH) const { 7093 SmallVector<SDValue, 2> Result; 7094 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7095 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7096 DAG, Kind, LL, LH, RL, RH); 7097 if (Ok) { 7098 assert(Result.size() == 2); 7099 Lo = Result[0]; 7100 Hi = Result[1]; 7101 } 7102 return Ok; 7103 } 7104 7105 // Check that (every element of) Z is undef or not an exact multiple of BW. 7106 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7107 return ISD::matchUnaryPredicate( 7108 Z, 7109 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7110 true); 7111 } 7112 7113 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7114 SelectionDAG &DAG) const { 7115 EVT VT = Node->getValueType(0); 7116 7117 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7118 !isOperationLegalOrCustom(ISD::SRL, VT) || 7119 !isOperationLegalOrCustom(ISD::SUB, VT) || 7120 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7121 return SDValue(); 7122 7123 SDValue X = Node->getOperand(0); 7124 SDValue Y = Node->getOperand(1); 7125 SDValue Z = Node->getOperand(2); 7126 7127 unsigned BW = VT.getScalarSizeInBits(); 7128 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7129 SDLoc DL(SDValue(Node, 0)); 7130 7131 EVT ShVT = Z.getValueType(); 7132 7133 // If a funnel shift in the other direction is more supported, use it. 7134 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7135 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7136 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7137 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7138 // fshl X, Y, Z -> fshr X, Y, -Z 7139 // fshr X, Y, Z -> fshl X, Y, -Z 7140 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7141 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7142 } else { 7143 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7144 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7145 SDValue One = DAG.getConstant(1, DL, ShVT); 7146 if (IsFSHL) { 7147 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7148 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7149 } else { 7150 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7151 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7152 } 7153 Z = DAG.getNOT(DL, Z, ShVT); 7154 } 7155 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7156 } 7157 7158 SDValue ShX, ShY; 7159 SDValue ShAmt, InvShAmt; 7160 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7161 // fshl: X << C | Y >> (BW - C) 7162 // fshr: X << (BW - C) | Y >> C 7163 // where C = Z % BW is not zero 7164 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7165 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7166 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7167 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7168 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7169 } else { 7170 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7171 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7172 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7173 if (isPowerOf2_32(BW)) { 7174 // Z % BW -> Z & (BW - 1) 7175 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7176 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7177 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7178 } else { 7179 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7180 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7181 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7182 } 7183 7184 SDValue One = DAG.getConstant(1, DL, ShVT); 7185 if (IsFSHL) { 7186 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7187 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7188 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7189 } else { 7190 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7191 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7192 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7193 } 7194 } 7195 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7196 } 7197 7198 // TODO: Merge with expandFunnelShift. 7199 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7200 SelectionDAG &DAG) const { 7201 EVT VT = Node->getValueType(0); 7202 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7203 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7204 SDValue Op0 = Node->getOperand(0); 7205 SDValue Op1 = Node->getOperand(1); 7206 SDLoc DL(SDValue(Node, 0)); 7207 7208 EVT ShVT = Op1.getValueType(); 7209 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7210 7211 // If a rotate in the other direction is more supported, use it. 7212 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7213 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7214 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7215 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7216 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7217 } 7218 7219 if (!AllowVectorOps && VT.isVector() && 7220 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7221 !isOperationLegalOrCustom(ISD::SRL, VT) || 7222 !isOperationLegalOrCustom(ISD::SUB, VT) || 7223 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7224 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7225 return SDValue(); 7226 7227 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7228 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7229 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7230 SDValue ShVal; 7231 SDValue HsVal; 7232 if (isPowerOf2_32(EltSizeInBits)) { 7233 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7234 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7235 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7236 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7237 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7238 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7239 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7240 } else { 7241 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7242 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7243 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7244 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7245 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7246 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7247 SDValue One = DAG.getConstant(1, DL, ShVT); 7248 HsVal = 7249 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7250 } 7251 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7252 } 7253 7254 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7255 SelectionDAG &DAG) const { 7256 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7257 EVT VT = Node->getValueType(0); 7258 unsigned VTBits = VT.getScalarSizeInBits(); 7259 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7260 7261 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7262 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7263 SDValue ShOpLo = Node->getOperand(0); 7264 SDValue ShOpHi = Node->getOperand(1); 7265 SDValue ShAmt = Node->getOperand(2); 7266 EVT ShAmtVT = ShAmt.getValueType(); 7267 EVT ShAmtCCVT = 7268 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7269 SDLoc dl(Node); 7270 7271 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7272 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7273 // away during isel. 7274 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7275 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7276 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7277 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7278 : DAG.getConstant(0, dl, VT); 7279 7280 SDValue Tmp2, Tmp3; 7281 if (IsSHL) { 7282 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7283 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7284 } else { 7285 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7286 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7287 } 7288 7289 // If the shift amount is larger or equal than the width of a part we don't 7290 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7291 // values for large shift amounts. 7292 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7293 DAG.getConstant(VTBits, dl, ShAmtVT)); 7294 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7295 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7296 7297 if (IsSHL) { 7298 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7299 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7300 } else { 7301 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7302 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7303 } 7304 } 7305 7306 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7307 SelectionDAG &DAG) const { 7308 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7309 SDValue Src = Node->getOperand(OpNo); 7310 EVT SrcVT = Src.getValueType(); 7311 EVT DstVT = Node->getValueType(0); 7312 SDLoc dl(SDValue(Node, 0)); 7313 7314 // FIXME: Only f32 to i64 conversions are supported. 7315 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7316 return false; 7317 7318 if (Node->isStrictFPOpcode()) 7319 // When a NaN is converted to an integer a trap is allowed. We can't 7320 // use this expansion here because it would eliminate that trap. Other 7321 // traps are also allowed and cannot be eliminated. See 7322 // IEEE 754-2008 sec 5.8. 7323 return false; 7324 7325 // Expand f32 -> i64 conversion 7326 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7327 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7328 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7329 EVT IntVT = SrcVT.changeTypeToInteger(); 7330 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7331 7332 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7333 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7334 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7335 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7336 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7337 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7338 7339 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7340 7341 SDValue ExponentBits = DAG.getNode( 7342 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7343 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7344 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7345 7346 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7347 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7348 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7349 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7350 7351 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7352 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7353 DAG.getConstant(0x00800000, dl, IntVT)); 7354 7355 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7356 7357 R = DAG.getSelectCC( 7358 dl, Exponent, ExponentLoBit, 7359 DAG.getNode(ISD::SHL, dl, DstVT, R, 7360 DAG.getZExtOrTrunc( 7361 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7362 dl, IntShVT)), 7363 DAG.getNode(ISD::SRL, dl, DstVT, R, 7364 DAG.getZExtOrTrunc( 7365 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7366 dl, IntShVT)), 7367 ISD::SETGT); 7368 7369 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7370 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7371 7372 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7373 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7374 return true; 7375 } 7376 7377 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7378 SDValue &Chain, 7379 SelectionDAG &DAG) const { 7380 SDLoc dl(SDValue(Node, 0)); 7381 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7382 SDValue Src = Node->getOperand(OpNo); 7383 7384 EVT SrcVT = Src.getValueType(); 7385 EVT DstVT = Node->getValueType(0); 7386 EVT SetCCVT = 7387 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7388 EVT DstSetCCVT = 7389 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7390 7391 // Only expand vector types if we have the appropriate vector bit operations. 7392 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7393 ISD::FP_TO_SINT; 7394 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7395 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7396 return false; 7397 7398 // If the maximum float value is smaller then the signed integer range, 7399 // the destination signmask can't be represented by the float, so we can 7400 // just use FP_TO_SINT directly. 7401 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7402 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7403 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7404 if (APFloat::opOverflow & 7405 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7406 if (Node->isStrictFPOpcode()) { 7407 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7408 { Node->getOperand(0), Src }); 7409 Chain = Result.getValue(1); 7410 } else 7411 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7412 return true; 7413 } 7414 7415 // Don't expand it if there isn't cheap fsub instruction. 7416 if (!isOperationLegalOrCustom( 7417 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7418 return false; 7419 7420 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7421 SDValue Sel; 7422 7423 if (Node->isStrictFPOpcode()) { 7424 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7425 Node->getOperand(0), /*IsSignaling*/ true); 7426 Chain = Sel.getValue(1); 7427 } else { 7428 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7429 } 7430 7431 bool Strict = Node->isStrictFPOpcode() || 7432 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7433 7434 if (Strict) { 7435 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7436 // signmask then offset (the result of which should be fully representable). 7437 // Sel = Src < 0x8000000000000000 7438 // FltOfs = select Sel, 0, 0x8000000000000000 7439 // IntOfs = select Sel, 0, 0x8000000000000000 7440 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7441 7442 // TODO: Should any fast-math-flags be set for the FSUB? 7443 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7444 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7445 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7446 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7447 DAG.getConstant(0, dl, DstVT), 7448 DAG.getConstant(SignMask, dl, DstVT)); 7449 SDValue SInt; 7450 if (Node->isStrictFPOpcode()) { 7451 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7452 { Chain, Src, FltOfs }); 7453 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7454 { Val.getValue(1), Val }); 7455 Chain = SInt.getValue(1); 7456 } else { 7457 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7458 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7459 } 7460 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7461 } else { 7462 // Expand based on maximum range of FP_TO_SINT: 7463 // True = fp_to_sint(Src) 7464 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7465 // Result = select (Src < 0x8000000000000000), True, False 7466 7467 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7468 // TODO: Should any fast-math-flags be set for the FSUB? 7469 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7470 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7471 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7472 DAG.getConstant(SignMask, dl, DstVT)); 7473 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7474 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7475 } 7476 return true; 7477 } 7478 7479 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7480 SDValue &Chain, 7481 SelectionDAG &DAG) const { 7482 // This transform is not correct for converting 0 when rounding mode is set 7483 // to round toward negative infinity which will produce -0.0. So disable under 7484 // strictfp. 7485 if (Node->isStrictFPOpcode()) 7486 return false; 7487 7488 SDValue Src = Node->getOperand(0); 7489 EVT SrcVT = Src.getValueType(); 7490 EVT DstVT = Node->getValueType(0); 7491 7492 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7493 return false; 7494 7495 // Only expand vector types if we have the appropriate vector bit operations. 7496 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7497 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7498 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7499 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7500 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7501 return false; 7502 7503 SDLoc dl(SDValue(Node, 0)); 7504 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7505 7506 // Implementation of unsigned i64 to f64 following the algorithm in 7507 // __floatundidf in compiler_rt. This implementation performs rounding 7508 // correctly in all rounding modes with the exception of converting 0 7509 // when rounding toward negative infinity. In that case the fsub will produce 7510 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7511 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7512 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7513 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7514 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7515 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7516 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7517 7518 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7519 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7520 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7521 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7522 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7523 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7524 SDValue HiSub = 7525 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7526 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7527 return true; 7528 } 7529 7530 SDValue 7531 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7532 SelectionDAG &DAG) const { 7533 unsigned Opcode = Node->getOpcode(); 7534 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7535 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7536 "Wrong opcode"); 7537 7538 if (Node->getFlags().hasNoNaNs()) { 7539 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7540 SDValue Op1 = Node->getOperand(0); 7541 SDValue Op2 = Node->getOperand(1); 7542 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7543 // Copy FMF flags, but always set the no-signed-zeros flag 7544 // as this is implied by the FMINNUM/FMAXNUM semantics. 7545 SDNodeFlags Flags = Node->getFlags(); 7546 Flags.setNoSignedZeros(true); 7547 SelCC->setFlags(Flags); 7548 return SelCC; 7549 } 7550 7551 return SDValue(); 7552 } 7553 7554 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7555 SelectionDAG &DAG) const { 7556 SDLoc dl(Node); 7557 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7558 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7559 EVT VT = Node->getValueType(0); 7560 7561 if (VT.isScalableVector()) 7562 report_fatal_error( 7563 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7564 7565 if (isOperationLegalOrCustom(NewOp, VT)) { 7566 SDValue Quiet0 = Node->getOperand(0); 7567 SDValue Quiet1 = Node->getOperand(1); 7568 7569 if (!Node->getFlags().hasNoNaNs()) { 7570 // Insert canonicalizes if it's possible we need to quiet to get correct 7571 // sNaN behavior. 7572 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7573 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7574 Node->getFlags()); 7575 } 7576 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7577 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7578 Node->getFlags()); 7579 } 7580 } 7581 7582 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7583 } 7584 7585 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7586 // instead if there are no NaNs. 7587 if (Node->getFlags().hasNoNaNs()) { 7588 unsigned IEEE2018Op = 7589 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7590 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7591 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7592 Node->getOperand(1), Node->getFlags()); 7593 } 7594 } 7595 7596 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7597 return SelCC; 7598 7599 return SDValue(); 7600 } 7601 7602 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7603 unsigned Test, SDNodeFlags Flags, 7604 const SDLoc &DL, 7605 SelectionDAG &DAG) const { 7606 EVT OperandVT = Op.getValueType(); 7607 assert(OperandVT.isFloatingPoint()); 7608 7609 // Degenerated cases. 7610 if (Test == 0) 7611 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7612 if ((Test & fcAllFlags) == fcAllFlags) 7613 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7614 7615 // PPC double double is a pair of doubles, of which the higher part determines 7616 // the value class. 7617 if (OperandVT == MVT::ppcf128) { 7618 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7619 DAG.getConstant(1, DL, MVT::i32)); 7620 OperandVT = MVT::f64; 7621 } 7622 7623 // Some checks may be represented as inversion of simpler check, for example 7624 // "inf|normal|subnormal|zero" => !"nan". 7625 bool IsInverted = false; 7626 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7627 IsInverted = true; 7628 Test = InvertedCheck; 7629 } 7630 7631 // Floating-point type properties. 7632 EVT ScalarFloatVT = OperandVT.getScalarType(); 7633 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7634 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7635 bool IsF80 = (ScalarFloatVT == MVT::f80); 7636 7637 // Some checks can be implemented using float comparisons, if floating point 7638 // exceptions are ignored. 7639 if (Flags.hasNoFPExcept() && 7640 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7641 if (Test == fcZero) 7642 return DAG.getSetCC(DL, ResultVT, Op, 7643 DAG.getConstantFP(0.0, DL, OperandVT), 7644 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7645 if (Test == fcNan) 7646 return DAG.getSetCC(DL, ResultVT, Op, Op, 7647 IsInverted ? ISD::SETO : ISD::SETUO); 7648 } 7649 7650 // In the general case use integer operations. 7651 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7652 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7653 if (OperandVT.isVector()) 7654 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7655 OperandVT.getVectorElementCount()); 7656 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7657 7658 // Various masks. 7659 APInt SignBit = APInt::getSignMask(BitSize); 7660 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7661 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7662 const unsigned ExplicitIntBitInF80 = 63; 7663 APInt ExpMask = Inf; 7664 if (IsF80) 7665 ExpMask.clearBit(ExplicitIntBitInF80); 7666 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7667 APInt QNaNBitMask = 7668 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7669 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7670 7671 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7672 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7673 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7674 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7675 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7676 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7677 7678 SDValue Res; 7679 const auto appendResult = [&](SDValue PartialRes) { 7680 if (PartialRes) { 7681 if (Res) 7682 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7683 else 7684 Res = PartialRes; 7685 } 7686 }; 7687 7688 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7689 const auto getIntBitIsSet = [&]() -> SDValue { 7690 if (!IntBitIsSetV) { 7691 APInt IntBitMask(BitSize, 0); 7692 IntBitMask.setBit(ExplicitIntBitInF80); 7693 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7694 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7695 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7696 } 7697 return IntBitIsSetV; 7698 }; 7699 7700 // Split the value into sign bit and absolute value. 7701 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7702 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7703 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7704 7705 // Tests that involve more than one class should be processed first. 7706 SDValue PartialRes; 7707 7708 if (IsF80) 7709 ; // Detect finite numbers of f80 by checking individual classes because 7710 // they have different settings of the explicit integer bit. 7711 else if ((Test & fcFinite) == fcFinite) { 7712 // finite(V) ==> abs(V) < exp_mask 7713 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7714 Test &= ~fcFinite; 7715 } else if ((Test & fcFinite) == fcPosFinite) { 7716 // finite(V) && V > 0 ==> V < exp_mask 7717 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7718 Test &= ~fcPosFinite; 7719 } else if ((Test & fcFinite) == fcNegFinite) { 7720 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7721 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7722 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7723 Test &= ~fcNegFinite; 7724 } 7725 appendResult(PartialRes); 7726 7727 // Check for individual classes. 7728 7729 if (unsigned PartialCheck = Test & fcZero) { 7730 if (PartialCheck == fcPosZero) 7731 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7732 else if (PartialCheck == fcZero) 7733 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7734 else // ISD::fcNegZero 7735 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7736 appendResult(PartialRes); 7737 } 7738 7739 if (unsigned PartialCheck = Test & fcInf) { 7740 if (PartialCheck == fcPosInf) 7741 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7742 else if (PartialCheck == fcInf) 7743 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7744 else { // ISD::fcNegInf 7745 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7746 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7747 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7748 } 7749 appendResult(PartialRes); 7750 } 7751 7752 if (unsigned PartialCheck = Test & fcNan) { 7753 APInt InfWithQnanBit = Inf | QNaNBitMask; 7754 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7755 if (PartialCheck == fcNan) { 7756 // isnan(V) ==> abs(V) > int(inf) 7757 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7758 if (IsF80) { 7759 // Recognize unsupported values as NaNs for compatibility with glibc. 7760 // In them (exp(V)==0) == int_bit. 7761 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7762 SDValue ExpIsZero = 7763 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7764 SDValue IsPseudo = 7765 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7766 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7767 } 7768 } else if (PartialCheck == fcQNan) { 7769 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7770 PartialRes = 7771 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7772 } else { // ISD::fcSNan 7773 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7774 // abs(V) < (unsigned(Inf) | quiet_bit) 7775 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7776 SDValue IsNotQnan = 7777 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7778 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7779 } 7780 appendResult(PartialRes); 7781 } 7782 7783 if (unsigned PartialCheck = Test & fcSubnormal) { 7784 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7785 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7786 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7787 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7788 SDValue VMinusOneV = 7789 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7790 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7791 if (PartialCheck == fcNegSubnormal) 7792 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7793 appendResult(PartialRes); 7794 } 7795 7796 if (unsigned PartialCheck = Test & fcNormal) { 7797 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7798 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7799 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7800 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7801 APInt ExpLimit = ExpMask - ExpLSB; 7802 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7803 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7804 if (PartialCheck == fcNegNormal) 7805 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7806 else if (PartialCheck == fcPosNormal) { 7807 SDValue PosSignV = 7808 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7809 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7810 } 7811 if (IsF80) 7812 PartialRes = 7813 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7814 appendResult(PartialRes); 7815 } 7816 7817 if (!Res) 7818 return DAG.getConstant(IsInverted, DL, ResultVT); 7819 if (IsInverted) 7820 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7821 return Res; 7822 } 7823 7824 // Only expand vector types if we have the appropriate vector bit operations. 7825 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7826 assert(VT.isVector() && "Expected vector type"); 7827 unsigned Len = VT.getScalarSizeInBits(); 7828 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7829 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7830 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7831 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7832 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7833 } 7834 7835 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7836 SDLoc dl(Node); 7837 EVT VT = Node->getValueType(0); 7838 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7839 SDValue Op = Node->getOperand(0); 7840 unsigned Len = VT.getScalarSizeInBits(); 7841 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7842 7843 // TODO: Add support for irregular type lengths. 7844 if (!(Len <= 128 && Len % 8 == 0)) 7845 return SDValue(); 7846 7847 // Only expand vector types if we have the appropriate vector bit operations. 7848 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7849 return SDValue(); 7850 7851 // This is the "best" algorithm from 7852 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7853 SDValue Mask55 = 7854 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7855 SDValue Mask33 = 7856 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7857 SDValue Mask0F = 7858 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7859 7860 // v = v - ((v >> 1) & 0x55555555...) 7861 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7862 DAG.getNode(ISD::AND, dl, VT, 7863 DAG.getNode(ISD::SRL, dl, VT, Op, 7864 DAG.getConstant(1, dl, ShVT)), 7865 Mask55)); 7866 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7867 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7868 DAG.getNode(ISD::AND, dl, VT, 7869 DAG.getNode(ISD::SRL, dl, VT, Op, 7870 DAG.getConstant(2, dl, ShVT)), 7871 Mask33)); 7872 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7873 Op = DAG.getNode(ISD::AND, dl, VT, 7874 DAG.getNode(ISD::ADD, dl, VT, Op, 7875 DAG.getNode(ISD::SRL, dl, VT, Op, 7876 DAG.getConstant(4, dl, ShVT))), 7877 Mask0F); 7878 7879 if (Len <= 8) 7880 return Op; 7881 7882 // Avoid the multiply if we only have 2 bytes to add. 7883 // TODO: Only doing this for scalars because vectors weren't as obviously 7884 // improved. 7885 if (Len == 16 && !VT.isVector()) { 7886 // v = (v + (v >> 8)) & 0x00FF; 7887 return DAG.getNode(ISD::AND, dl, VT, 7888 DAG.getNode(ISD::ADD, dl, VT, Op, 7889 DAG.getNode(ISD::SRL, dl, VT, Op, 7890 DAG.getConstant(8, dl, ShVT))), 7891 DAG.getConstant(0xFF, dl, VT)); 7892 } 7893 7894 // v = (v * 0x01010101...) >> (Len - 8) 7895 SDValue Mask01 = 7896 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7897 return DAG.getNode(ISD::SRL, dl, VT, 7898 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7899 DAG.getConstant(Len - 8, dl, ShVT)); 7900 } 7901 7902 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7903 SDLoc dl(Node); 7904 EVT VT = Node->getValueType(0); 7905 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7906 SDValue Op = Node->getOperand(0); 7907 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7908 7909 // If the non-ZERO_UNDEF version is supported we can use that instead. 7910 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7911 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7912 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7913 7914 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7915 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7916 EVT SetCCVT = 7917 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7918 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7919 SDValue Zero = DAG.getConstant(0, dl, VT); 7920 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7921 return DAG.getSelect(dl, VT, SrcIsZero, 7922 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7923 } 7924 7925 // Only expand vector types if we have the appropriate vector bit operations. 7926 // This includes the operations needed to expand CTPOP if it isn't supported. 7927 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7928 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7929 !canExpandVectorCTPOP(*this, VT)) || 7930 !isOperationLegalOrCustom(ISD::SRL, VT) || 7931 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7932 return SDValue(); 7933 7934 // for now, we do this: 7935 // x = x | (x >> 1); 7936 // x = x | (x >> 2); 7937 // ... 7938 // x = x | (x >>16); 7939 // x = x | (x >>32); // for 64-bit input 7940 // return popcount(~x); 7941 // 7942 // Ref: "Hacker's Delight" by Henry Warren 7943 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 7944 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7945 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7946 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7947 } 7948 Op = DAG.getNOT(dl, Op, VT); 7949 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7950 } 7951 7952 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7953 SDLoc dl(Node); 7954 EVT VT = Node->getValueType(0); 7955 SDValue Op = Node->getOperand(0); 7956 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7957 7958 // If the non-ZERO_UNDEF version is supported we can use that instead. 7959 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7960 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7961 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7962 7963 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7964 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7965 EVT SetCCVT = 7966 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7967 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7968 SDValue Zero = DAG.getConstant(0, dl, VT); 7969 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7970 return DAG.getSelect(dl, VT, SrcIsZero, 7971 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7972 } 7973 7974 // Only expand vector types if we have the appropriate vector bit operations. 7975 // This includes the operations needed to expand CTPOP if it isn't supported. 7976 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7977 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7978 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7979 !canExpandVectorCTPOP(*this, VT)) || 7980 !isOperationLegalOrCustom(ISD::SUB, VT) || 7981 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7982 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7983 return SDValue(); 7984 7985 // for now, we use: { return popcount(~x & (x - 1)); } 7986 // unless the target has ctlz but not ctpop, in which case we use: 7987 // { return 32 - nlz(~x & (x-1)); } 7988 // Ref: "Hacker's Delight" by Henry Warren 7989 SDValue Tmp = DAG.getNode( 7990 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7991 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7992 7993 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7994 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7995 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7996 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7997 } 7998 7999 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 8000 } 8001 8002 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 8003 bool IsNegative) const { 8004 SDLoc dl(N); 8005 EVT VT = N->getValueType(0); 8006 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8007 SDValue Op = N->getOperand(0); 8008 8009 // abs(x) -> smax(x,sub(0,x)) 8010 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8011 isOperationLegal(ISD::SMAX, VT)) { 8012 SDValue Zero = DAG.getConstant(0, dl, VT); 8013 return DAG.getNode(ISD::SMAX, dl, VT, Op, 8014 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8015 } 8016 8017 // abs(x) -> umin(x,sub(0,x)) 8018 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8019 isOperationLegal(ISD::UMIN, VT)) { 8020 SDValue Zero = DAG.getConstant(0, dl, VT); 8021 Op = DAG.getFreeze(Op); 8022 return DAG.getNode(ISD::UMIN, dl, VT, Op, 8023 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8024 } 8025 8026 // 0 - abs(x) -> smin(x, sub(0,x)) 8027 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8028 isOperationLegal(ISD::SMIN, VT)) { 8029 Op = DAG.getFreeze(Op); 8030 SDValue Zero = DAG.getConstant(0, dl, VT); 8031 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8032 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8033 } 8034 8035 // Only expand vector types if we have the appropriate vector operations. 8036 if (VT.isVector() && 8037 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8038 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8039 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8040 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8041 return SDValue(); 8042 8043 Op = DAG.getFreeze(Op); 8044 SDValue Shift = 8045 DAG.getNode(ISD::SRA, dl, VT, Op, 8046 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8047 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8048 8049 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8050 if (!IsNegative) 8051 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8052 8053 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8054 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8055 } 8056 8057 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 8058 SDLoc dl(N); 8059 EVT VT = N->getValueType(0); 8060 SDValue Op = N->getOperand(0); 8061 8062 if (!VT.isSimple()) 8063 return SDValue(); 8064 8065 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8066 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8067 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8068 default: 8069 return SDValue(); 8070 case MVT::i16: 8071 // Use a rotate by 8. This can be further expanded if necessary. 8072 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8073 case MVT::i32: 8074 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8075 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8076 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8077 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8078 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8079 DAG.getConstant(0xFF0000, dl, VT)); 8080 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 8081 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8082 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8083 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8084 case MVT::i64: 8085 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8086 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8087 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8088 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8089 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8090 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8091 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8092 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8093 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 8094 DAG.getConstant(255ULL<<48, dl, VT)); 8095 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 8096 DAG.getConstant(255ULL<<40, dl, VT)); 8097 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 8098 DAG.getConstant(255ULL<<32, dl, VT)); 8099 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8100 DAG.getConstant(255ULL<<24, dl, VT)); 8101 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8102 DAG.getConstant(255ULL<<16, dl, VT)); 8103 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8104 DAG.getConstant(255ULL<<8 , dl, VT)); 8105 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8106 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8107 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8108 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8109 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8110 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8111 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8112 } 8113 } 8114 8115 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8116 SDLoc dl(N); 8117 EVT VT = N->getValueType(0); 8118 SDValue Op = N->getOperand(0); 8119 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8120 unsigned Sz = VT.getScalarSizeInBits(); 8121 8122 SDValue Tmp, Tmp2, Tmp3; 8123 8124 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8125 // and finally the i1 pairs. 8126 // TODO: We can easily support i4/i2 legal types if any target ever does. 8127 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8128 // Create the masks - repeating the pattern every byte. 8129 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8130 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8131 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8132 8133 // BSWAP if the type is wider than a single byte. 8134 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8135 8136 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8137 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8138 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8139 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8140 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8141 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8142 8143 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8144 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8145 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8146 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8147 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8148 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8149 8150 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8151 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8152 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8153 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8154 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8155 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8156 return Tmp; 8157 } 8158 8159 Tmp = DAG.getConstant(0, dl, VT); 8160 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8161 if (I < J) 8162 Tmp2 = 8163 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8164 else 8165 Tmp2 = 8166 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8167 8168 APInt Shift(Sz, 1); 8169 Shift <<= J; 8170 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8171 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8172 } 8173 8174 return Tmp; 8175 } 8176 8177 std::pair<SDValue, SDValue> 8178 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8179 SelectionDAG &DAG) const { 8180 SDLoc SL(LD); 8181 SDValue Chain = LD->getChain(); 8182 SDValue BasePTR = LD->getBasePtr(); 8183 EVT SrcVT = LD->getMemoryVT(); 8184 EVT DstVT = LD->getValueType(0); 8185 ISD::LoadExtType ExtType = LD->getExtensionType(); 8186 8187 if (SrcVT.isScalableVector()) 8188 report_fatal_error("Cannot scalarize scalable vector loads"); 8189 8190 unsigned NumElem = SrcVT.getVectorNumElements(); 8191 8192 EVT SrcEltVT = SrcVT.getScalarType(); 8193 EVT DstEltVT = DstVT.getScalarType(); 8194 8195 // A vector must always be stored in memory as-is, i.e. without any padding 8196 // between the elements, since various code depend on it, e.g. in the 8197 // handling of a bitcast of a vector type to int, which may be done with a 8198 // vector store followed by an integer load. A vector that does not have 8199 // elements that are byte-sized must therefore be stored as an integer 8200 // built out of the extracted vector elements. 8201 if (!SrcEltVT.isByteSized()) { 8202 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8203 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8204 8205 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8206 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8207 8208 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8209 SDValue SrcEltBitMask = DAG.getConstant( 8210 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8211 8212 // Load the whole vector and avoid masking off the top bits as it makes 8213 // the codegen worse. 8214 SDValue Load = 8215 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8216 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8217 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8218 8219 SmallVector<SDValue, 8> Vals; 8220 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8221 unsigned ShiftIntoIdx = 8222 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8223 SDValue ShiftAmount = 8224 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8225 LoadVT, SL, /*LegalTypes=*/false); 8226 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8227 SDValue Elt = 8228 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8229 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8230 8231 if (ExtType != ISD::NON_EXTLOAD) { 8232 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8233 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8234 } 8235 8236 Vals.push_back(Scalar); 8237 } 8238 8239 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8240 return std::make_pair(Value, Load.getValue(1)); 8241 } 8242 8243 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8244 assert(SrcEltVT.isByteSized()); 8245 8246 SmallVector<SDValue, 8> Vals; 8247 SmallVector<SDValue, 8> LoadChains; 8248 8249 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8250 SDValue ScalarLoad = 8251 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8252 LD->getPointerInfo().getWithOffset(Idx * Stride), 8253 SrcEltVT, LD->getOriginalAlign(), 8254 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8255 8256 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8257 8258 Vals.push_back(ScalarLoad.getValue(0)); 8259 LoadChains.push_back(ScalarLoad.getValue(1)); 8260 } 8261 8262 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8263 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8264 8265 return std::make_pair(Value, NewChain); 8266 } 8267 8268 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8269 SelectionDAG &DAG) const { 8270 SDLoc SL(ST); 8271 8272 SDValue Chain = ST->getChain(); 8273 SDValue BasePtr = ST->getBasePtr(); 8274 SDValue Value = ST->getValue(); 8275 EVT StVT = ST->getMemoryVT(); 8276 8277 if (StVT.isScalableVector()) 8278 report_fatal_error("Cannot scalarize scalable vector stores"); 8279 8280 // The type of the data we want to save 8281 EVT RegVT = Value.getValueType(); 8282 EVT RegSclVT = RegVT.getScalarType(); 8283 8284 // The type of data as saved in memory. 8285 EVT MemSclVT = StVT.getScalarType(); 8286 8287 unsigned NumElem = StVT.getVectorNumElements(); 8288 8289 // A vector must always be stored in memory as-is, i.e. without any padding 8290 // between the elements, since various code depend on it, e.g. in the 8291 // handling of a bitcast of a vector type to int, which may be done with a 8292 // vector store followed by an integer load. A vector that does not have 8293 // elements that are byte-sized must therefore be stored as an integer 8294 // built out of the extracted vector elements. 8295 if (!MemSclVT.isByteSized()) { 8296 unsigned NumBits = StVT.getSizeInBits(); 8297 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8298 8299 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8300 8301 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8302 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8303 DAG.getVectorIdxConstant(Idx, SL)); 8304 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8305 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8306 unsigned ShiftIntoIdx = 8307 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8308 SDValue ShiftAmount = 8309 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8310 SDValue ShiftedElt = 8311 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8312 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8313 } 8314 8315 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8316 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8317 ST->getAAInfo()); 8318 } 8319 8320 // Store Stride in bytes 8321 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8322 assert(Stride && "Zero stride!"); 8323 // Extract each of the elements from the original vector and save them into 8324 // memory individually. 8325 SmallVector<SDValue, 8> Stores; 8326 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8327 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8328 DAG.getVectorIdxConstant(Idx, SL)); 8329 8330 SDValue Ptr = 8331 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8332 8333 // This scalar TruncStore may be illegal, but we legalize it later. 8334 SDValue Store = DAG.getTruncStore( 8335 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8336 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8337 ST->getAAInfo()); 8338 8339 Stores.push_back(Store); 8340 } 8341 8342 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8343 } 8344 8345 std::pair<SDValue, SDValue> 8346 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8347 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8348 "unaligned indexed loads not implemented!"); 8349 SDValue Chain = LD->getChain(); 8350 SDValue Ptr = LD->getBasePtr(); 8351 EVT VT = LD->getValueType(0); 8352 EVT LoadedVT = LD->getMemoryVT(); 8353 SDLoc dl(LD); 8354 auto &MF = DAG.getMachineFunction(); 8355 8356 if (VT.isFloatingPoint() || VT.isVector()) { 8357 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8358 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8359 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8360 LoadedVT.isVector()) { 8361 // Scalarize the load and let the individual components be handled. 8362 return scalarizeVectorLoad(LD, DAG); 8363 } 8364 8365 // Expand to a (misaligned) integer load of the same size, 8366 // then bitconvert to floating point or vector. 8367 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8368 LD->getMemOperand()); 8369 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8370 if (LoadedVT != VT) 8371 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8372 ISD::ANY_EXTEND, dl, VT, Result); 8373 8374 return std::make_pair(Result, newLoad.getValue(1)); 8375 } 8376 8377 // Copy the value to a (aligned) stack slot using (unaligned) integer 8378 // loads and stores, then do a (aligned) load from the stack slot. 8379 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8380 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8381 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8382 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8383 8384 // Make sure the stack slot is also aligned for the register type. 8385 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8386 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8387 SmallVector<SDValue, 8> Stores; 8388 SDValue StackPtr = StackBase; 8389 unsigned Offset = 0; 8390 8391 EVT PtrVT = Ptr.getValueType(); 8392 EVT StackPtrVT = StackPtr.getValueType(); 8393 8394 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8395 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8396 8397 // Do all but one copies using the full register width. 8398 for (unsigned i = 1; i < NumRegs; i++) { 8399 // Load one integer register's worth from the original location. 8400 SDValue Load = DAG.getLoad( 8401 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8402 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8403 LD->getAAInfo()); 8404 // Follow the load with a store to the stack slot. Remember the store. 8405 Stores.push_back(DAG.getStore( 8406 Load.getValue(1), dl, Load, StackPtr, 8407 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8408 // Increment the pointers. 8409 Offset += RegBytes; 8410 8411 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8412 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8413 } 8414 8415 // The last copy may be partial. Do an extending load. 8416 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8417 8 * (LoadedBytes - Offset)); 8418 SDValue Load = 8419 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8420 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8421 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8422 LD->getAAInfo()); 8423 // Follow the load with a store to the stack slot. Remember the store. 8424 // On big-endian machines this requires a truncating store to ensure 8425 // that the bits end up in the right place. 8426 Stores.push_back(DAG.getTruncStore( 8427 Load.getValue(1), dl, Load, StackPtr, 8428 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8429 8430 // The order of the stores doesn't matter - say it with a TokenFactor. 8431 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8432 8433 // Finally, perform the original load only redirected to the stack slot. 8434 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8435 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8436 LoadedVT); 8437 8438 // Callers expect a MERGE_VALUES node. 8439 return std::make_pair(Load, TF); 8440 } 8441 8442 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8443 "Unaligned load of unsupported type."); 8444 8445 // Compute the new VT that is half the size of the old one. This is an 8446 // integer MVT. 8447 unsigned NumBits = LoadedVT.getSizeInBits(); 8448 EVT NewLoadedVT; 8449 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8450 NumBits >>= 1; 8451 8452 Align Alignment = LD->getOriginalAlign(); 8453 unsigned IncrementSize = NumBits / 8; 8454 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8455 8456 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8457 if (HiExtType == ISD::NON_EXTLOAD) 8458 HiExtType = ISD::ZEXTLOAD; 8459 8460 // Load the value in two parts 8461 SDValue Lo, Hi; 8462 if (DAG.getDataLayout().isLittleEndian()) { 8463 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8464 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8465 LD->getAAInfo()); 8466 8467 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8468 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8469 LD->getPointerInfo().getWithOffset(IncrementSize), 8470 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8471 LD->getAAInfo()); 8472 } else { 8473 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8474 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8475 LD->getAAInfo()); 8476 8477 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8478 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8479 LD->getPointerInfo().getWithOffset(IncrementSize), 8480 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8481 LD->getAAInfo()); 8482 } 8483 8484 // aggregate the two parts 8485 SDValue ShiftAmount = 8486 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8487 DAG.getDataLayout())); 8488 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8489 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8490 8491 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8492 Hi.getValue(1)); 8493 8494 return std::make_pair(Result, TF); 8495 } 8496 8497 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8498 SelectionDAG &DAG) const { 8499 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8500 "unaligned indexed stores not implemented!"); 8501 SDValue Chain = ST->getChain(); 8502 SDValue Ptr = ST->getBasePtr(); 8503 SDValue Val = ST->getValue(); 8504 EVT VT = Val.getValueType(); 8505 Align Alignment = ST->getOriginalAlign(); 8506 auto &MF = DAG.getMachineFunction(); 8507 EVT StoreMemVT = ST->getMemoryVT(); 8508 8509 SDLoc dl(ST); 8510 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8511 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8512 if (isTypeLegal(intVT)) { 8513 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8514 StoreMemVT.isVector()) { 8515 // Scalarize the store and let the individual components be handled. 8516 SDValue Result = scalarizeVectorStore(ST, DAG); 8517 return Result; 8518 } 8519 // Expand to a bitconvert of the value to the integer type of the 8520 // same size, then a (misaligned) int store. 8521 // FIXME: Does not handle truncating floating point stores! 8522 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8523 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8524 Alignment, ST->getMemOperand()->getFlags()); 8525 return Result; 8526 } 8527 // Do a (aligned) store to a stack slot, then copy from the stack slot 8528 // to the final destination using (unaligned) integer loads and stores. 8529 MVT RegVT = getRegisterType( 8530 *DAG.getContext(), 8531 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8532 EVT PtrVT = Ptr.getValueType(); 8533 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8534 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8535 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8536 8537 // Make sure the stack slot is also aligned for the register type. 8538 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8539 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8540 8541 // Perform the original store, only redirected to the stack slot. 8542 SDValue Store = DAG.getTruncStore( 8543 Chain, dl, Val, StackPtr, 8544 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8545 8546 EVT StackPtrVT = StackPtr.getValueType(); 8547 8548 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8549 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8550 SmallVector<SDValue, 8> Stores; 8551 unsigned Offset = 0; 8552 8553 // Do all but one copies using the full register width. 8554 for (unsigned i = 1; i < NumRegs; i++) { 8555 // Load one integer register's worth from the stack slot. 8556 SDValue Load = DAG.getLoad( 8557 RegVT, dl, Store, StackPtr, 8558 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8559 // Store it to the final location. Remember the store. 8560 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8561 ST->getPointerInfo().getWithOffset(Offset), 8562 ST->getOriginalAlign(), 8563 ST->getMemOperand()->getFlags())); 8564 // Increment the pointers. 8565 Offset += RegBytes; 8566 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8567 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8568 } 8569 8570 // The last store may be partial. Do a truncating store. On big-endian 8571 // machines this requires an extending load from the stack slot to ensure 8572 // that the bits are in the right place. 8573 EVT LoadMemVT = 8574 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8575 8576 // Load from the stack slot. 8577 SDValue Load = DAG.getExtLoad( 8578 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8579 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8580 8581 Stores.push_back( 8582 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8583 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8584 ST->getOriginalAlign(), 8585 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8586 // The order of the stores doesn't matter - say it with a TokenFactor. 8587 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8588 return Result; 8589 } 8590 8591 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8592 "Unaligned store of unknown type."); 8593 // Get the half-size VT 8594 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8595 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8596 unsigned IncrementSize = NumBits / 8; 8597 8598 // Divide the stored value in two parts. 8599 SDValue ShiftAmount = DAG.getConstant( 8600 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8601 SDValue Lo = Val; 8602 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8603 8604 // Store the two parts 8605 SDValue Store1, Store2; 8606 Store1 = DAG.getTruncStore(Chain, dl, 8607 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8608 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8609 ST->getMemOperand()->getFlags()); 8610 8611 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8612 Store2 = DAG.getTruncStore( 8613 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8614 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8615 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8616 8617 SDValue Result = 8618 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8619 return Result; 8620 } 8621 8622 SDValue 8623 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8624 const SDLoc &DL, EVT DataVT, 8625 SelectionDAG &DAG, 8626 bool IsCompressedMemory) const { 8627 SDValue Increment; 8628 EVT AddrVT = Addr.getValueType(); 8629 EVT MaskVT = Mask.getValueType(); 8630 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8631 "Incompatible types of Data and Mask"); 8632 if (IsCompressedMemory) { 8633 if (DataVT.isScalableVector()) 8634 report_fatal_error( 8635 "Cannot currently handle compressed memory with scalable vectors"); 8636 // Incrementing the pointer according to number of '1's in the mask. 8637 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8638 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8639 if (MaskIntVT.getSizeInBits() < 32) { 8640 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8641 MaskIntVT = MVT::i32; 8642 } 8643 8644 // Count '1's with POPCNT. 8645 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8646 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8647 // Scale is an element size in bytes. 8648 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8649 AddrVT); 8650 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8651 } else if (DataVT.isScalableVector()) { 8652 Increment = DAG.getVScale(DL, AddrVT, 8653 APInt(AddrVT.getFixedSizeInBits(), 8654 DataVT.getStoreSize().getKnownMinSize())); 8655 } else 8656 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8657 8658 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8659 } 8660 8661 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8662 EVT VecVT, const SDLoc &dl, 8663 ElementCount SubEC) { 8664 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8665 "Cannot index a scalable vector within a fixed-width vector"); 8666 8667 unsigned NElts = VecVT.getVectorMinNumElements(); 8668 unsigned NumSubElts = SubEC.getKnownMinValue(); 8669 EVT IdxVT = Idx.getValueType(); 8670 8671 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8672 // If this is a constant index and we know the value plus the number of the 8673 // elements in the subvector minus one is less than the minimum number of 8674 // elements then it's safe to return Idx. 8675 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8676 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8677 return Idx; 8678 SDValue VS = 8679 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8680 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8681 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8682 DAG.getConstant(NumSubElts, dl, IdxVT)); 8683 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8684 } 8685 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8686 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8687 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8688 DAG.getConstant(Imm, dl, IdxVT)); 8689 } 8690 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8691 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8692 DAG.getConstant(MaxIndex, dl, IdxVT)); 8693 } 8694 8695 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8696 SDValue VecPtr, EVT VecVT, 8697 SDValue Index) const { 8698 return getVectorSubVecPointer( 8699 DAG, VecPtr, VecVT, 8700 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8701 Index); 8702 } 8703 8704 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8705 SDValue VecPtr, EVT VecVT, 8706 EVT SubVecVT, 8707 SDValue Index) const { 8708 SDLoc dl(Index); 8709 // Make sure the index type is big enough to compute in. 8710 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8711 8712 EVT EltVT = VecVT.getVectorElementType(); 8713 8714 // Calculate the element offset and add it to the pointer. 8715 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8716 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8717 "Converting bits to bytes lost precision"); 8718 assert(SubVecVT.getVectorElementType() == EltVT && 8719 "Sub-vector must be a vector with matching element type"); 8720 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8721 SubVecVT.getVectorElementCount()); 8722 8723 EVT IdxVT = Index.getValueType(); 8724 if (SubVecVT.isScalableVector()) 8725 Index = 8726 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8727 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8728 8729 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8730 DAG.getConstant(EltSize, dl, IdxVT)); 8731 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8732 } 8733 8734 //===----------------------------------------------------------------------===// 8735 // Implementation of Emulated TLS Model 8736 //===----------------------------------------------------------------------===// 8737 8738 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8739 SelectionDAG &DAG) const { 8740 // Access to address of TLS varialbe xyz is lowered to a function call: 8741 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8742 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8743 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8744 SDLoc dl(GA); 8745 8746 ArgListTy Args; 8747 ArgListEntry Entry; 8748 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8749 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8750 StringRef EmuTlsVarName(NameString); 8751 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8752 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8753 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8754 Entry.Ty = VoidPtrType; 8755 Args.push_back(Entry); 8756 8757 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8758 8759 TargetLowering::CallLoweringInfo CLI(DAG); 8760 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8761 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8762 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8763 8764 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8765 // At last for X86 targets, maybe good for other targets too? 8766 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8767 MFI.setAdjustsStack(true); // Is this only for X86 target? 8768 MFI.setHasCalls(true); 8769 8770 assert((GA->getOffset() == 0) && 8771 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8772 return CallResult.first; 8773 } 8774 8775 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8776 SelectionDAG &DAG) const { 8777 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8778 if (!isCtlzFast()) 8779 return SDValue(); 8780 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8781 SDLoc dl(Op); 8782 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8783 if (C->isZero() && CC == ISD::SETEQ) { 8784 EVT VT = Op.getOperand(0).getValueType(); 8785 SDValue Zext = Op.getOperand(0); 8786 if (VT.bitsLT(MVT::i32)) { 8787 VT = MVT::i32; 8788 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8789 } 8790 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8791 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8792 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8793 DAG.getConstant(Log2b, dl, MVT::i32)); 8794 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8795 } 8796 } 8797 return SDValue(); 8798 } 8799 8800 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8801 SDValue Op0 = Node->getOperand(0); 8802 SDValue Op1 = Node->getOperand(1); 8803 EVT VT = Op0.getValueType(); 8804 unsigned Opcode = Node->getOpcode(); 8805 SDLoc DL(Node); 8806 8807 // umin(x,y) -> sub(x,usubsat(x,y)) 8808 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8809 isOperationLegal(ISD::USUBSAT, VT)) { 8810 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8811 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8812 } 8813 8814 // umax(x,y) -> add(x,usubsat(y,x)) 8815 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8816 isOperationLegal(ISD::USUBSAT, VT)) { 8817 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8818 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8819 } 8820 8821 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8822 ISD::CondCode CC; 8823 switch (Opcode) { 8824 default: llvm_unreachable("How did we get here?"); 8825 case ISD::SMAX: CC = ISD::SETGT; break; 8826 case ISD::SMIN: CC = ISD::SETLT; break; 8827 case ISD::UMAX: CC = ISD::SETUGT; break; 8828 case ISD::UMIN: CC = ISD::SETULT; break; 8829 } 8830 8831 // FIXME: Should really try to split the vector in case it's legal on a 8832 // subvector. 8833 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8834 return DAG.UnrollVectorOp(Node); 8835 8836 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8837 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8838 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8839 } 8840 8841 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8842 unsigned Opcode = Node->getOpcode(); 8843 SDValue LHS = Node->getOperand(0); 8844 SDValue RHS = Node->getOperand(1); 8845 EVT VT = LHS.getValueType(); 8846 SDLoc dl(Node); 8847 8848 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8849 assert(VT.isInteger() && "Expected operands to be integers"); 8850 8851 // usub.sat(a, b) -> umax(a, b) - b 8852 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8853 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8854 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8855 } 8856 8857 // uadd.sat(a, b) -> umin(a, ~b) + b 8858 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8859 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8860 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8861 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8862 } 8863 8864 unsigned OverflowOp; 8865 switch (Opcode) { 8866 case ISD::SADDSAT: 8867 OverflowOp = ISD::SADDO; 8868 break; 8869 case ISD::UADDSAT: 8870 OverflowOp = ISD::UADDO; 8871 break; 8872 case ISD::SSUBSAT: 8873 OverflowOp = ISD::SSUBO; 8874 break; 8875 case ISD::USUBSAT: 8876 OverflowOp = ISD::USUBO; 8877 break; 8878 default: 8879 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8880 "addition or subtraction node."); 8881 } 8882 8883 // FIXME: Should really try to split the vector in case it's legal on a 8884 // subvector. 8885 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8886 return DAG.UnrollVectorOp(Node); 8887 8888 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8889 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8890 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8891 SDValue SumDiff = Result.getValue(0); 8892 SDValue Overflow = Result.getValue(1); 8893 SDValue Zero = DAG.getConstant(0, dl, VT); 8894 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8895 8896 if (Opcode == ISD::UADDSAT) { 8897 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8898 // (LHS + RHS) | OverflowMask 8899 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8900 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8901 } 8902 // Overflow ? 0xffff.... : (LHS + RHS) 8903 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8904 } 8905 8906 if (Opcode == ISD::USUBSAT) { 8907 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8908 // (LHS - RHS) & ~OverflowMask 8909 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8910 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8911 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8912 } 8913 // Overflow ? 0 : (LHS - RHS) 8914 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8915 } 8916 8917 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8918 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8919 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8920 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8921 DAG.getConstant(BitWidth - 1, dl, VT)); 8922 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8923 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8924 } 8925 8926 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8927 unsigned Opcode = Node->getOpcode(); 8928 bool IsSigned = Opcode == ISD::SSHLSAT; 8929 SDValue LHS = Node->getOperand(0); 8930 SDValue RHS = Node->getOperand(1); 8931 EVT VT = LHS.getValueType(); 8932 SDLoc dl(Node); 8933 8934 assert((Node->getOpcode() == ISD::SSHLSAT || 8935 Node->getOpcode() == ISD::USHLSAT) && 8936 "Expected a SHLSAT opcode"); 8937 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8938 assert(VT.isInteger() && "Expected operands to be integers"); 8939 8940 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8941 8942 unsigned BW = VT.getScalarSizeInBits(); 8943 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8944 SDValue Orig = 8945 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8946 8947 SDValue SatVal; 8948 if (IsSigned) { 8949 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8950 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8951 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8952 SatMin, SatMax, ISD::SETLT); 8953 } else { 8954 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8955 } 8956 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8957 8958 return Result; 8959 } 8960 8961 SDValue 8962 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8963 assert((Node->getOpcode() == ISD::SMULFIX || 8964 Node->getOpcode() == ISD::UMULFIX || 8965 Node->getOpcode() == ISD::SMULFIXSAT || 8966 Node->getOpcode() == ISD::UMULFIXSAT) && 8967 "Expected a fixed point multiplication opcode"); 8968 8969 SDLoc dl(Node); 8970 SDValue LHS = Node->getOperand(0); 8971 SDValue RHS = Node->getOperand(1); 8972 EVT VT = LHS.getValueType(); 8973 unsigned Scale = Node->getConstantOperandVal(2); 8974 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8975 Node->getOpcode() == ISD::UMULFIXSAT); 8976 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8977 Node->getOpcode() == ISD::SMULFIXSAT); 8978 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8979 unsigned VTSize = VT.getScalarSizeInBits(); 8980 8981 if (!Scale) { 8982 // [us]mul.fix(a, b, 0) -> mul(a, b) 8983 if (!Saturating) { 8984 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8985 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8986 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8987 SDValue Result = 8988 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8989 SDValue Product = Result.getValue(0); 8990 SDValue Overflow = Result.getValue(1); 8991 SDValue Zero = DAG.getConstant(0, dl, VT); 8992 8993 APInt MinVal = APInt::getSignedMinValue(VTSize); 8994 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8995 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8996 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8997 // Xor the inputs, if resulting sign bit is 0 the product will be 8998 // positive, else negative. 8999 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9000 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 9001 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 9002 return DAG.getSelect(dl, VT, Overflow, Result, Product); 9003 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 9004 SDValue Result = 9005 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9006 SDValue Product = Result.getValue(0); 9007 SDValue Overflow = Result.getValue(1); 9008 9009 APInt MaxVal = APInt::getMaxValue(VTSize); 9010 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 9011 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 9012 } 9013 } 9014 9015 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 9016 "Expected scale to be less than the number of bits if signed or at " 9017 "most the number of bits if unsigned."); 9018 assert(LHS.getValueType() == RHS.getValueType() && 9019 "Expected both operands to be the same type"); 9020 9021 // Get the upper and lower bits of the result. 9022 SDValue Lo, Hi; 9023 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 9024 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 9025 if (isOperationLegalOrCustom(LoHiOp, VT)) { 9026 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 9027 Lo = Result.getValue(0); 9028 Hi = Result.getValue(1); 9029 } else if (isOperationLegalOrCustom(HiOp, VT)) { 9030 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9031 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 9032 } else if (VT.isVector()) { 9033 return SDValue(); 9034 } else { 9035 report_fatal_error("Unable to expand fixed point multiplication."); 9036 } 9037 9038 if (Scale == VTSize) 9039 // Result is just the top half since we'd be shifting by the width of the 9040 // operand. Overflow impossible so this works for both UMULFIX and 9041 // UMULFIXSAT. 9042 return Hi; 9043 9044 // The result will need to be shifted right by the scale since both operands 9045 // are scaled. The result is given to us in 2 halves, so we only want part of 9046 // both in the result. 9047 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9048 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 9049 DAG.getConstant(Scale, dl, ShiftTy)); 9050 if (!Saturating) 9051 return Result; 9052 9053 if (!Signed) { 9054 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 9055 // widened multiplication) aren't all zeroes. 9056 9057 // Saturate to max if ((Hi >> Scale) != 0), 9058 // which is the same as if (Hi > ((1 << Scale) - 1)) 9059 APInt MaxVal = APInt::getMaxValue(VTSize); 9060 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 9061 dl, VT); 9062 Result = DAG.getSelectCC(dl, Hi, LowMask, 9063 DAG.getConstant(MaxVal, dl, VT), Result, 9064 ISD::SETUGT); 9065 9066 return Result; 9067 } 9068 9069 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 9070 // widened multiplication) aren't all ones or all zeroes. 9071 9072 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 9073 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 9074 9075 if (Scale == 0) { 9076 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 9077 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 9078 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 9079 // Saturated to SatMin if wide product is negative, and SatMax if wide 9080 // product is positive ... 9081 SDValue Zero = DAG.getConstant(0, dl, VT); 9082 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 9083 ISD::SETLT); 9084 // ... but only if we overflowed. 9085 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9086 } 9087 9088 // We handled Scale==0 above so all the bits to examine is in Hi. 9089 9090 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9091 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9092 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9093 dl, VT); 9094 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9095 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9096 // which is the same as if (HI < (-1 << (Scale - 1)) 9097 SDValue HighMask = 9098 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9099 dl, VT); 9100 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9101 return Result; 9102 } 9103 9104 SDValue 9105 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9106 SDValue LHS, SDValue RHS, 9107 unsigned Scale, SelectionDAG &DAG) const { 9108 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9109 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9110 "Expected a fixed point division opcode"); 9111 9112 EVT VT = LHS.getValueType(); 9113 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9114 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9115 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9116 9117 // If there is enough room in the type to upscale the LHS or downscale the 9118 // RHS before the division, we can perform it in this type without having to 9119 // resize. For signed operations, the LHS headroom is the number of 9120 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9121 // The headroom for the RHS is the number of trailing zeroes. 9122 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9123 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9124 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9125 9126 // For signed saturating operations, we need to be able to detect true integer 9127 // division overflow; that is, when you have MIN / -EPS. However, this 9128 // is undefined behavior and if we emit divisions that could take such 9129 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9130 // example). 9131 // Avoid this by requiring an extra bit so that we never get this case. 9132 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9133 // signed saturating division, we need to emit a whopping 32-bit division. 9134 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9135 return SDValue(); 9136 9137 unsigned LHSShift = std::min(LHSLead, Scale); 9138 unsigned RHSShift = Scale - LHSShift; 9139 9140 // At this point, we know that if we shift the LHS up by LHSShift and the 9141 // RHS down by RHSShift, we can emit a regular division with a final scaling 9142 // factor of Scale. 9143 9144 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9145 if (LHSShift) 9146 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9147 DAG.getConstant(LHSShift, dl, ShiftTy)); 9148 if (RHSShift) 9149 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9150 DAG.getConstant(RHSShift, dl, ShiftTy)); 9151 9152 SDValue Quot; 9153 if (Signed) { 9154 // For signed operations, if the resulting quotient is negative and the 9155 // remainder is nonzero, subtract 1 from the quotient to round towards 9156 // negative infinity. 9157 SDValue Rem; 9158 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9159 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9160 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9161 if (isTypeLegal(VT) && 9162 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9163 Quot = DAG.getNode(ISD::SDIVREM, dl, 9164 DAG.getVTList(VT, VT), 9165 LHS, RHS); 9166 Rem = Quot.getValue(1); 9167 Quot = Quot.getValue(0); 9168 } else { 9169 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9170 LHS, RHS); 9171 Rem = DAG.getNode(ISD::SREM, dl, VT, 9172 LHS, RHS); 9173 } 9174 SDValue Zero = DAG.getConstant(0, dl, VT); 9175 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9176 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9177 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9178 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9179 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9180 DAG.getConstant(1, dl, VT)); 9181 Quot = DAG.getSelect(dl, VT, 9182 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9183 Sub1, Quot); 9184 } else 9185 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9186 LHS, RHS); 9187 9188 return Quot; 9189 } 9190 9191 void TargetLowering::expandUADDSUBO( 9192 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9193 SDLoc dl(Node); 9194 SDValue LHS = Node->getOperand(0); 9195 SDValue RHS = Node->getOperand(1); 9196 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9197 9198 // If ADD/SUBCARRY is legal, use that instead. 9199 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9200 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9201 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9202 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9203 { LHS, RHS, CarryIn }); 9204 Result = SDValue(NodeCarry.getNode(), 0); 9205 Overflow = SDValue(NodeCarry.getNode(), 1); 9206 return; 9207 } 9208 9209 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9210 LHS.getValueType(), LHS, RHS); 9211 9212 EVT ResultType = Node->getValueType(1); 9213 EVT SetCCType = getSetCCResultType( 9214 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9215 SDValue SetCC; 9216 if (IsAdd && isOneConstant(RHS)) { 9217 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9218 // the live range of X. We assume comparing with 0 is cheap. 9219 // The general case (X + C) < C is not necessarily beneficial. Although we 9220 // reduce the live range of X, we may introduce the materialization of 9221 // constant C. 9222 SetCC = 9223 DAG.getSetCC(dl, SetCCType, Result, 9224 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9225 } else { 9226 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9227 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9228 } 9229 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9230 } 9231 9232 void TargetLowering::expandSADDSUBO( 9233 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9234 SDLoc dl(Node); 9235 SDValue LHS = Node->getOperand(0); 9236 SDValue RHS = Node->getOperand(1); 9237 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9238 9239 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9240 LHS.getValueType(), LHS, RHS); 9241 9242 EVT ResultType = Node->getValueType(1); 9243 EVT OType = getSetCCResultType( 9244 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9245 9246 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9247 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9248 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9249 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9250 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9251 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9252 return; 9253 } 9254 9255 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9256 9257 // For an addition, the result should be less than one of the operands (LHS) 9258 // if and only if the other operand (RHS) is negative, otherwise there will 9259 // be overflow. 9260 // For a subtraction, the result should be less than one of the operands 9261 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9262 // otherwise there will be overflow. 9263 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9264 SDValue ConditionRHS = 9265 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9266 9267 Overflow = DAG.getBoolExtOrTrunc( 9268 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9269 ResultType, ResultType); 9270 } 9271 9272 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9273 SDValue &Overflow, SelectionDAG &DAG) const { 9274 SDLoc dl(Node); 9275 EVT VT = Node->getValueType(0); 9276 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9277 SDValue LHS = Node->getOperand(0); 9278 SDValue RHS = Node->getOperand(1); 9279 bool isSigned = Node->getOpcode() == ISD::SMULO; 9280 9281 // For power-of-two multiplications we can use a simpler shift expansion. 9282 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9283 const APInt &C = RHSC->getAPIntValue(); 9284 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9285 if (C.isPowerOf2()) { 9286 // smulo(x, signed_min) is same as umulo(x, signed_min). 9287 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9288 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9289 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9290 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9291 Overflow = DAG.getSetCC(dl, SetCCVT, 9292 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9293 dl, VT, Result, ShiftAmt), 9294 LHS, ISD::SETNE); 9295 return true; 9296 } 9297 } 9298 9299 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9300 if (VT.isVector()) 9301 WideVT = 9302 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9303 9304 SDValue BottomHalf; 9305 SDValue TopHalf; 9306 static const unsigned Ops[2][3] = 9307 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9308 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9309 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9310 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9311 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9312 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9313 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9314 RHS); 9315 TopHalf = BottomHalf.getValue(1); 9316 } else if (isTypeLegal(WideVT)) { 9317 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9318 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9319 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9320 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9321 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9322 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9323 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9324 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9325 } else { 9326 if (VT.isVector()) 9327 return false; 9328 9329 // We can fall back to a libcall with an illegal type for the MUL if we 9330 // have a libcall big enough. 9331 // Also, we can fall back to a division in some cases, but that's a big 9332 // performance hit in the general case. 9333 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9334 if (WideVT == MVT::i16) 9335 LC = RTLIB::MUL_I16; 9336 else if (WideVT == MVT::i32) 9337 LC = RTLIB::MUL_I32; 9338 else if (WideVT == MVT::i64) 9339 LC = RTLIB::MUL_I64; 9340 else if (WideVT == MVT::i128) 9341 LC = RTLIB::MUL_I128; 9342 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9343 9344 SDValue HiLHS; 9345 SDValue HiRHS; 9346 if (isSigned) { 9347 // The high part is obtained by SRA'ing all but one of the bits of low 9348 // part. 9349 unsigned LoSize = VT.getFixedSizeInBits(); 9350 HiLHS = 9351 DAG.getNode(ISD::SRA, dl, VT, LHS, 9352 DAG.getConstant(LoSize - 1, dl, 9353 getPointerTy(DAG.getDataLayout()))); 9354 HiRHS = 9355 DAG.getNode(ISD::SRA, dl, VT, RHS, 9356 DAG.getConstant(LoSize - 1, dl, 9357 getPointerTy(DAG.getDataLayout()))); 9358 } else { 9359 HiLHS = DAG.getConstant(0, dl, VT); 9360 HiRHS = DAG.getConstant(0, dl, VT); 9361 } 9362 9363 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9364 // pre-lowered to the correct types. This all depends upon WideVT not 9365 // being a legal type for the architecture and thus has to be split to 9366 // two arguments. 9367 SDValue Ret; 9368 TargetLowering::MakeLibCallOptions CallOptions; 9369 CallOptions.setSExt(isSigned); 9370 CallOptions.setIsPostTypeLegalization(true); 9371 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9372 // Halves of WideVT are packed into registers in different order 9373 // depending on platform endianness. This is usually handled by 9374 // the C calling convention, but we can't defer to it in 9375 // the legalizer. 9376 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9377 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9378 } else { 9379 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9380 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9381 } 9382 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9383 "Ret value is a collection of constituent nodes holding result."); 9384 if (DAG.getDataLayout().isLittleEndian()) { 9385 // Same as above. 9386 BottomHalf = Ret.getOperand(0); 9387 TopHalf = Ret.getOperand(1); 9388 } else { 9389 BottomHalf = Ret.getOperand(1); 9390 TopHalf = Ret.getOperand(0); 9391 } 9392 } 9393 9394 Result = BottomHalf; 9395 if (isSigned) { 9396 SDValue ShiftAmt = DAG.getConstant( 9397 VT.getScalarSizeInBits() - 1, dl, 9398 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9399 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9400 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9401 } else { 9402 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9403 DAG.getConstant(0, dl, VT), ISD::SETNE); 9404 } 9405 9406 // Truncate the result if SetCC returns a larger type than needed. 9407 EVT RType = Node->getValueType(1); 9408 if (RType.bitsLT(Overflow.getValueType())) 9409 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9410 9411 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9412 "Unexpected result type for S/UMULO legalization"); 9413 return true; 9414 } 9415 9416 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9417 SDLoc dl(Node); 9418 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9419 SDValue Op = Node->getOperand(0); 9420 EVT VT = Op.getValueType(); 9421 9422 if (VT.isScalableVector()) 9423 report_fatal_error( 9424 "Expanding reductions for scalable vectors is undefined."); 9425 9426 // Try to use a shuffle reduction for power of two vectors. 9427 if (VT.isPow2VectorType()) { 9428 while (VT.getVectorNumElements() > 1) { 9429 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9430 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9431 break; 9432 9433 SDValue Lo, Hi; 9434 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9435 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9436 VT = HalfVT; 9437 } 9438 } 9439 9440 EVT EltVT = VT.getVectorElementType(); 9441 unsigned NumElts = VT.getVectorNumElements(); 9442 9443 SmallVector<SDValue, 8> Ops; 9444 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9445 9446 SDValue Res = Ops[0]; 9447 for (unsigned i = 1; i < NumElts; i++) 9448 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9449 9450 // Result type may be wider than element type. 9451 if (EltVT != Node->getValueType(0)) 9452 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9453 return Res; 9454 } 9455 9456 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9457 SDLoc dl(Node); 9458 SDValue AccOp = Node->getOperand(0); 9459 SDValue VecOp = Node->getOperand(1); 9460 SDNodeFlags Flags = Node->getFlags(); 9461 9462 EVT VT = VecOp.getValueType(); 9463 EVT EltVT = VT.getVectorElementType(); 9464 9465 if (VT.isScalableVector()) 9466 report_fatal_error( 9467 "Expanding reductions for scalable vectors is undefined."); 9468 9469 unsigned NumElts = VT.getVectorNumElements(); 9470 9471 SmallVector<SDValue, 8> Ops; 9472 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9473 9474 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9475 9476 SDValue Res = AccOp; 9477 for (unsigned i = 0; i < NumElts; i++) 9478 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9479 9480 return Res; 9481 } 9482 9483 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9484 SelectionDAG &DAG) const { 9485 EVT VT = Node->getValueType(0); 9486 SDLoc dl(Node); 9487 bool isSigned = Node->getOpcode() == ISD::SREM; 9488 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9489 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9490 SDValue Dividend = Node->getOperand(0); 9491 SDValue Divisor = Node->getOperand(1); 9492 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9493 SDVTList VTs = DAG.getVTList(VT, VT); 9494 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9495 return true; 9496 } 9497 if (isOperationLegalOrCustom(DivOpc, VT)) { 9498 // X % Y -> X-X/Y*Y 9499 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9500 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9501 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9502 return true; 9503 } 9504 return false; 9505 } 9506 9507 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9508 SelectionDAG &DAG) const { 9509 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9510 SDLoc dl(SDValue(Node, 0)); 9511 SDValue Src = Node->getOperand(0); 9512 9513 // DstVT is the result type, while SatVT is the size to which we saturate 9514 EVT SrcVT = Src.getValueType(); 9515 EVT DstVT = Node->getValueType(0); 9516 9517 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9518 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9519 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9520 assert(SatWidth <= DstWidth && 9521 "Expected saturation width smaller than result width"); 9522 9523 // Determine minimum and maximum integer values and their corresponding 9524 // floating-point values. 9525 APInt MinInt, MaxInt; 9526 if (IsSigned) { 9527 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9528 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9529 } else { 9530 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9531 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9532 } 9533 9534 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9535 // libcall emission cannot handle this. Large result types will fail. 9536 if (SrcVT == MVT::f16) { 9537 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9538 SrcVT = Src.getValueType(); 9539 } 9540 9541 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9542 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9543 9544 APFloat::opStatus MinStatus = 9545 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9546 APFloat::opStatus MaxStatus = 9547 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9548 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9549 !(MaxStatus & APFloat::opStatus::opInexact); 9550 9551 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9552 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9553 9554 // If the integer bounds are exactly representable as floats and min/max are 9555 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9556 // of comparisons and selects. 9557 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9558 isOperationLegal(ISD::FMAXNUM, SrcVT); 9559 if (AreExactFloatBounds && MinMaxLegal) { 9560 SDValue Clamped = Src; 9561 9562 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9563 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9564 // Clamp by MaxFloat from above. NaN cannot occur. 9565 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9566 // Convert clamped value to integer. 9567 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9568 dl, DstVT, Clamped); 9569 9570 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9571 // which will cast to zero. 9572 if (!IsSigned) 9573 return FpToInt; 9574 9575 // Otherwise, select 0 if Src is NaN. 9576 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9577 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9578 ISD::CondCode::SETUO); 9579 } 9580 9581 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9582 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9583 9584 // Result of direct conversion. The assumption here is that the operation is 9585 // non-trapping and it's fine to apply it to an out-of-range value if we 9586 // select it away later. 9587 SDValue FpToInt = 9588 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9589 9590 SDValue Select = FpToInt; 9591 9592 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9593 // MinInt if Src is NaN. 9594 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9595 ISD::CondCode::SETULT); 9596 // If Src OGT MaxFloat, select MaxInt. 9597 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9598 ISD::CondCode::SETOGT); 9599 9600 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9601 // is already zero. 9602 if (!IsSigned) 9603 return Select; 9604 9605 // Otherwise, select 0 if Src is NaN. 9606 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9607 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9608 } 9609 9610 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9611 SelectionDAG &DAG) const { 9612 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9613 assert(Node->getValueType(0).isScalableVector() && 9614 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9615 9616 EVT VT = Node->getValueType(0); 9617 SDValue V1 = Node->getOperand(0); 9618 SDValue V2 = Node->getOperand(1); 9619 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9620 SDLoc DL(Node); 9621 9622 // Expand through memory thusly: 9623 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9624 // Store V1, Ptr 9625 // Store V2, Ptr + sizeof(V1) 9626 // If (Imm < 0) 9627 // TrailingElts = -Imm 9628 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9629 // else 9630 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9631 // Res = Load Ptr 9632 9633 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9634 9635 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9636 VT.getVectorElementCount() * 2); 9637 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9638 EVT PtrVT = StackPtr.getValueType(); 9639 auto &MF = DAG.getMachineFunction(); 9640 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9641 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9642 9643 // Store the lo part of CONCAT_VECTORS(V1, V2) 9644 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9645 // Store the hi part of CONCAT_VECTORS(V1, V2) 9646 SDValue OffsetToV2 = DAG.getVScale( 9647 DL, PtrVT, 9648 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9649 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9650 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9651 9652 if (Imm >= 0) { 9653 // Load back the required element. getVectorElementPointer takes care of 9654 // clamping the index if it's out-of-bounds. 9655 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9656 // Load the spliced result 9657 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9658 MachinePointerInfo::getUnknownStack(MF)); 9659 } 9660 9661 uint64_t TrailingElts = -Imm; 9662 9663 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9664 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9665 SDValue TrailingBytes = 9666 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9667 9668 if (TrailingElts > VT.getVectorMinNumElements()) { 9669 SDValue VLBytes = DAG.getVScale( 9670 DL, PtrVT, 9671 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9672 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9673 } 9674 9675 // Calculate the start address of the spliced result. 9676 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9677 9678 // Load the spliced result 9679 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9680 MachinePointerInfo::getUnknownStack(MF)); 9681 } 9682 9683 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9684 SDValue &LHS, SDValue &RHS, 9685 SDValue &CC, SDValue Mask, 9686 SDValue EVL, bool &NeedInvert, 9687 const SDLoc &dl, SDValue &Chain, 9688 bool IsSignaling) const { 9689 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9690 MVT OpVT = LHS.getSimpleValueType(); 9691 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9692 NeedInvert = false; 9693 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9694 bool IsNonVP = !EVL; 9695 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9696 default: 9697 llvm_unreachable("Unknown condition code action!"); 9698 case TargetLowering::Legal: 9699 // Nothing to do. 9700 break; 9701 case TargetLowering::Expand: { 9702 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9703 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9704 std::swap(LHS, RHS); 9705 CC = DAG.getCondCode(InvCC); 9706 return true; 9707 } 9708 // Swapping operands didn't work. Try inverting the condition. 9709 bool NeedSwap = false; 9710 InvCC = getSetCCInverse(CCCode, OpVT); 9711 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9712 // If inverting the condition is not enough, try swapping operands 9713 // on top of it. 9714 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9715 NeedSwap = true; 9716 } 9717 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9718 CC = DAG.getCondCode(InvCC); 9719 NeedInvert = true; 9720 if (NeedSwap) 9721 std::swap(LHS, RHS); 9722 return true; 9723 } 9724 9725 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9726 unsigned Opc = 0; 9727 switch (CCCode) { 9728 default: 9729 llvm_unreachable("Don't know how to expand this condition!"); 9730 case ISD::SETUO: 9731 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9732 CC1 = ISD::SETUNE; 9733 CC2 = ISD::SETUNE; 9734 Opc = ISD::OR; 9735 break; 9736 } 9737 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9738 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9739 NeedInvert = true; 9740 LLVM_FALLTHROUGH; 9741 case ISD::SETO: 9742 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9743 "If SETO is expanded, SETOEQ must be legal!"); 9744 CC1 = ISD::SETOEQ; 9745 CC2 = ISD::SETOEQ; 9746 Opc = ISD::AND; 9747 break; 9748 case ISD::SETONE: 9749 case ISD::SETUEQ: 9750 // If the SETUO or SETO CC isn't legal, we might be able to use 9751 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9752 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9753 // the operands. 9754 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9755 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9756 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9757 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9758 CC1 = ISD::SETOGT; 9759 CC2 = ISD::SETOLT; 9760 Opc = ISD::OR; 9761 NeedInvert = ((unsigned)CCCode & 0x8U); 9762 break; 9763 } 9764 LLVM_FALLTHROUGH; 9765 case ISD::SETOEQ: 9766 case ISD::SETOGT: 9767 case ISD::SETOGE: 9768 case ISD::SETOLT: 9769 case ISD::SETOLE: 9770 case ISD::SETUNE: 9771 case ISD::SETUGT: 9772 case ISD::SETUGE: 9773 case ISD::SETULT: 9774 case ISD::SETULE: 9775 // If we are floating point, assign and break, otherwise fall through. 9776 if (!OpVT.isInteger()) { 9777 // We can use the 4th bit to tell if we are the unordered 9778 // or ordered version of the opcode. 9779 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9780 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9781 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9782 break; 9783 } 9784 // Fallthrough if we are unsigned integer. 9785 LLVM_FALLTHROUGH; 9786 case ISD::SETLE: 9787 case ISD::SETGT: 9788 case ISD::SETGE: 9789 case ISD::SETLT: 9790 case ISD::SETNE: 9791 case ISD::SETEQ: 9792 // If all combinations of inverting the condition and swapping operands 9793 // didn't work then we have no means to expand the condition. 9794 llvm_unreachable("Don't know how to expand this condition!"); 9795 } 9796 9797 SDValue SetCC1, SetCC2; 9798 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9799 // If we aren't the ordered or unorder operation, 9800 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9801 if (IsNonVP) { 9802 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9803 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9804 } else { 9805 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9806 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9807 } 9808 } else { 9809 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9810 if (IsNonVP) { 9811 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9812 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9813 } else { 9814 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9815 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9816 } 9817 } 9818 if (Chain) 9819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9820 SetCC2.getValue(1)); 9821 if (IsNonVP) 9822 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9823 else { 9824 // Transform the binary opcode to the VP equivalent. 9825 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9826 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9827 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9828 } 9829 RHS = SDValue(); 9830 CC = SDValue(); 9831 return true; 9832 } 9833 } 9834 return false; 9835 } 9836