1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   EVT VT = Op.getValueType();
1060   if (VT.isScalableVector())
1061     return false;
1062 
1063   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1064   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1065   assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1092     if (Depth != 0) {
1093       // If not at the root, Just compute the Known bits to
1094       // simplify things downstream.
1095       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1096       return false;
1097     }
1098     // If this is the root being simplified, allow it to have multiple uses,
1099     // just set the DemandedBits/Elts to all bits.
1100     DemandedBits = APInt::getAllOnes(BitWidth);
1101     DemandedElts = APInt::getAllOnes(NumElts);
1102   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1103     // Not demanding any bits/elts from Op.
1104     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1105   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1106     // Limit search depth.
1107     return false;
1108   }
1109 
1110   KnownBits Known2;
1111   switch (Op.getOpcode()) {
1112   case ISD::TargetConstant:
1113     llvm_unreachable("Can't simplify this node");
1114   case ISD::SCALAR_TO_VECTOR: {
1115     if (!DemandedElts[0])
1116       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1117 
1118     KnownBits SrcKnown;
1119     SDValue Src = Op.getOperand(0);
1120     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1121     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1122     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1123       return true;
1124 
1125     // Upper elements are undef, so only get the knownbits if we just demand
1126     // the bottom element.
1127     if (DemandedElts == 1)
1128       Known = SrcKnown.anyextOrTrunc(BitWidth);
1129     break;
1130   }
1131   case ISD::BUILD_VECTOR:
1132     // Collect the known bits that are shared by every demanded element.
1133     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1134     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1135     return false; // Don't fall through, will infinitely loop.
1136   case ISD::LOAD: {
1137     auto *LD = cast<LoadSDNode>(Op);
1138     if (getTargetConstantFromLoad(LD)) {
1139       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1140       return false; // Don't fall through, will infinitely loop.
1141     }
1142     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1143       // If this is a ZEXTLoad and we are looking at the loaded value.
1144       EVT MemVT = LD->getMemoryVT();
1145       unsigned MemBits = MemVT.getScalarSizeInBits();
1146       Known.Zero.setBitsFrom(MemBits);
1147       return false; // Don't fall through, will infinitely loop.
1148     }
1149     break;
1150   }
1151   case ISD::INSERT_VECTOR_ELT: {
1152     SDValue Vec = Op.getOperand(0);
1153     SDValue Scl = Op.getOperand(1);
1154     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1155     EVT VecVT = Vec.getValueType();
1156 
1157     // If index isn't constant, assume we need all vector elements AND the
1158     // inserted element.
1159     APInt DemandedVecElts(DemandedElts);
1160     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1161       unsigned Idx = CIdx->getZExtValue();
1162       DemandedVecElts.clearBit(Idx);
1163 
1164       // Inserted element is not required.
1165       if (!DemandedElts[Idx])
1166         return TLO.CombineTo(Op, Vec);
1167     }
1168 
1169     KnownBits KnownScl;
1170     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1171     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1172     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1173       return true;
1174 
1175     Known = KnownScl.anyextOrTrunc(BitWidth);
1176 
1177     KnownBits KnownVec;
1178     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1179                              Depth + 1))
1180       return true;
1181 
1182     if (!!DemandedVecElts)
1183       Known = KnownBits::commonBits(Known, KnownVec);
1184 
1185     return false;
1186   }
1187   case ISD::INSERT_SUBVECTOR: {
1188     // Demand any elements from the subvector and the remainder from the src its
1189     // inserted into.
1190     SDValue Src = Op.getOperand(0);
1191     SDValue Sub = Op.getOperand(1);
1192     uint64_t Idx = Op.getConstantOperandVal(2);
1193     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1194     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1195     APInt DemandedSrcElts = DemandedElts;
1196     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1197 
1198     KnownBits KnownSub, KnownSrc;
1199     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1200                              Depth + 1))
1201       return true;
1202     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1203                              Depth + 1))
1204       return true;
1205 
1206     Known.Zero.setAllBits();
1207     Known.One.setAllBits();
1208     if (!!DemandedSubElts)
1209       Known = KnownBits::commonBits(Known, KnownSub);
1210     if (!!DemandedSrcElts)
1211       Known = KnownBits::commonBits(Known, KnownSrc);
1212 
1213     // Attempt to avoid multi-use src if we don't need anything from it.
1214     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1215         !DemandedSrcElts.isAllOnes()) {
1216       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1217           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1218       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1219           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1220       if (NewSub || NewSrc) {
1221         NewSub = NewSub ? NewSub : Sub;
1222         NewSrc = NewSrc ? NewSrc : Src;
1223         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1224                                         Op.getOperand(2));
1225         return TLO.CombineTo(Op, NewOp);
1226       }
1227     }
1228     break;
1229   }
1230   case ISD::EXTRACT_SUBVECTOR: {
1231     // Offset the demanded elts by the subvector index.
1232     SDValue Src = Op.getOperand(0);
1233     if (Src.getValueType().isScalableVector())
1234       break;
1235     uint64_t Idx = Op.getConstantOperandVal(1);
1236     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1237     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1238 
1239     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1240                              Depth + 1))
1241       return true;
1242 
1243     // Attempt to avoid multi-use src if we don't need anything from it.
1244     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1245       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1246           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1247       if (DemandedSrc) {
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1249                                         Op.getOperand(1));
1250         return TLO.CombineTo(Op, NewOp);
1251       }
1252     }
1253     break;
1254   }
1255   case ISD::CONCAT_VECTORS: {
1256     Known.Zero.setAllBits();
1257     Known.One.setAllBits();
1258     EVT SubVT = Op.getOperand(0).getValueType();
1259     unsigned NumSubVecs = Op.getNumOperands();
1260     unsigned NumSubElts = SubVT.getVectorNumElements();
1261     for (unsigned i = 0; i != NumSubVecs; ++i) {
1262       APInt DemandedSubElts =
1263           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1264       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1265                                Known2, TLO, Depth + 1))
1266         return true;
1267       // Known bits are shared by every demanded subvector element.
1268       if (!!DemandedSubElts)
1269         Known = KnownBits::commonBits(Known, Known2);
1270     }
1271     break;
1272   }
1273   case ISD::VECTOR_SHUFFLE: {
1274     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1275 
1276     // Collect demanded elements from shuffle operands..
1277     APInt DemandedLHS(NumElts, 0);
1278     APInt DemandedRHS(NumElts, 0);
1279     for (unsigned i = 0; i != NumElts; ++i) {
1280       if (!DemandedElts[i])
1281         continue;
1282       int M = ShuffleMask[i];
1283       if (M < 0) {
1284         // For UNDEF elements, we don't know anything about the common state of
1285         // the shuffle result.
1286         DemandedLHS.clearAllBits();
1287         DemandedRHS.clearAllBits();
1288         break;
1289       }
1290       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1291       if (M < (int)NumElts)
1292         DemandedLHS.setBit(M);
1293       else
1294         DemandedRHS.setBit(M - NumElts);
1295     }
1296 
1297     if (!!DemandedLHS || !!DemandedRHS) {
1298       SDValue Op0 = Op.getOperand(0);
1299       SDValue Op1 = Op.getOperand(1);
1300 
1301       Known.Zero.setAllBits();
1302       Known.One.setAllBits();
1303       if (!!DemandedLHS) {
1304         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1305                                  Depth + 1))
1306           return true;
1307         Known = KnownBits::commonBits(Known, Known2);
1308       }
1309       if (!!DemandedRHS) {
1310         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1311                                  Depth + 1))
1312           return true;
1313         Known = KnownBits::commonBits(Known, Known2);
1314       }
1315 
1316       // Attempt to avoid multi-use ops if we don't need anything from them.
1317       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1318           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1319       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1320           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1321       if (DemandedOp0 || DemandedOp1) {
1322         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1323         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1324         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::AND: {
1331     SDValue Op0 = Op.getOperand(0);
1332     SDValue Op1 = Op.getOperand(1);
1333 
1334     // If the RHS is a constant, check to see if the LHS would be zero without
1335     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1336     // simplify the LHS, here we're using information from the LHS to simplify
1337     // the RHS.
1338     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1339       // Do not increment Depth here; that can cause an infinite loop.
1340       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1341       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1342       if ((LHSKnown.Zero & DemandedBits) ==
1343           (~RHSC->getAPIntValue() & DemandedBits))
1344         return TLO.CombineTo(Op, Op0);
1345 
1346       // If any of the set bits in the RHS are known zero on the LHS, shrink
1347       // the constant.
1348       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1349                                  DemandedElts, TLO))
1350         return true;
1351 
1352       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1353       // constant, but if this 'and' is only clearing bits that were just set by
1354       // the xor, then this 'and' can be eliminated by shrinking the mask of
1355       // the xor. For example, for a 32-bit X:
1356       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1357       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1358           LHSKnown.One == ~RHSC->getAPIntValue()) {
1359         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1360         return TLO.CombineTo(Op, Xor);
1361       }
1362     }
1363 
1364     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1365     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1366     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1367         (Op0.getOperand(0).isUndef() ||
1368          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1369         Op0->hasOneUse()) {
1370       unsigned NumSubElts =
1371           Op0.getOperand(1).getValueType().getVectorNumElements();
1372       unsigned SubIdx = Op0.getConstantOperandVal(2);
1373       APInt DemandedSub =
1374           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1375       KnownBits KnownSubMask =
1376           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1377       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1378         SDValue NewAnd =
1379             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1380         SDValue NewInsert =
1381             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1382                             Op0.getOperand(1), Op0.getOperand(2));
1383         return TLO.CombineTo(Op, NewInsert);
1384       }
1385     }
1386 
1387     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1388                              Depth + 1))
1389       return true;
1390     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1391     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1392                              Known2, TLO, Depth + 1))
1393       return true;
1394     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1395 
1396     // If all of the demanded bits are known one on one side, return the other.
1397     // These bits cannot contribute to the result of the 'and'.
1398     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1399       return TLO.CombineTo(Op, Op0);
1400     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1401       return TLO.CombineTo(Op, Op1);
1402     // If all of the demanded bits in the inputs are known zeros, return zero.
1403     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1404       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1405     // If the RHS is a constant, see if we can simplify it.
1406     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1407                                TLO))
1408       return true;
1409     // If the operation can be done in a smaller type, do so.
1410     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1411       return true;
1412 
1413     // Attempt to avoid multi-use ops if we don't need anything from them.
1414     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1415       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1416           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1417       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1418           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1419       if (DemandedOp0 || DemandedOp1) {
1420         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1421         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1422         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1423         return TLO.CombineTo(Op, NewOp);
1424       }
1425     }
1426 
1427     Known &= Known2;
1428     break;
1429   }
1430   case ISD::OR: {
1431     SDValue Op0 = Op.getOperand(0);
1432     SDValue Op1 = Op.getOperand(1);
1433 
1434     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1435                              Depth + 1))
1436       return true;
1437     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1438     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1439                              Known2, TLO, Depth + 1))
1440       return true;
1441     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1442 
1443     // If all of the demanded bits are known zero on one side, return the other.
1444     // These bits cannot contribute to the result of the 'or'.
1445     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1446       return TLO.CombineTo(Op, Op0);
1447     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1448       return TLO.CombineTo(Op, Op1);
1449     // If the RHS is a constant, see if we can simplify it.
1450     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1451       return true;
1452     // If the operation can be done in a smaller type, do so.
1453     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1454       return true;
1455 
1456     // Attempt to avoid multi-use ops if we don't need anything from them.
1457     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1458       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1459           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1460       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1461           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1462       if (DemandedOp0 || DemandedOp1) {
1463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1465         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1466         return TLO.CombineTo(Op, NewOp);
1467       }
1468     }
1469 
1470     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1471     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1472     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1473         Op0->hasOneUse() && Op1->hasOneUse()) {
1474       // Attempt to match all commutations - m_c_Or would've been useful!
1475       for (int I = 0; I != 2; ++I) {
1476         SDValue X = Op.getOperand(I).getOperand(0);
1477         SDValue C1 = Op.getOperand(I).getOperand(1);
1478         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1479         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1480         if (Alt.getOpcode() == ISD::OR) {
1481           for (int J = 0; J != 2; ++J) {
1482             if (X == Alt.getOperand(J)) {
1483               SDValue Y = Alt.getOperand(1 - J);
1484               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1485                                                                {C1, C2})) {
1486                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1487                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1488                 return TLO.CombineTo(
1489                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1490               }
1491             }
1492           }
1493         }
1494       }
1495     }
1496 
1497     Known |= Known2;
1498     break;
1499   }
1500   case ISD::XOR: {
1501     SDValue Op0 = Op.getOperand(0);
1502     SDValue Op1 = Op.getOperand(1);
1503 
1504     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1505                              Depth + 1))
1506       return true;
1507     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1508     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1509                              Depth + 1))
1510       return true;
1511     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1512 
1513     // If all of the demanded bits are known zero on one side, return the other.
1514     // These bits cannot contribute to the result of the 'xor'.
1515     if (DemandedBits.isSubsetOf(Known.Zero))
1516       return TLO.CombineTo(Op, Op0);
1517     if (DemandedBits.isSubsetOf(Known2.Zero))
1518       return TLO.CombineTo(Op, Op1);
1519     // If the operation can be done in a smaller type, do so.
1520     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1521       return true;
1522 
1523     // If all of the unknown bits are known to be zero on one side or the other
1524     // turn this into an *inclusive* or.
1525     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1526     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1527       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1528 
1529     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1530     if (C) {
1531       // If one side is a constant, and all of the set bits in the constant are
1532       // also known set on the other side, turn this into an AND, as we know
1533       // the bits will be cleared.
1534       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1535       // NB: it is okay if more bits are known than are requested
1536       if (C->getAPIntValue() == Known2.One) {
1537         SDValue ANDC =
1538             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1539         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1540       }
1541 
1542       // If the RHS is a constant, see if we can change it. Don't alter a -1
1543       // constant because that's a 'not' op, and that is better for combining
1544       // and codegen.
1545       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1546         // We're flipping all demanded bits. Flip the undemanded bits too.
1547         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1548         return TLO.CombineTo(Op, New);
1549       }
1550 
1551       unsigned Op0Opcode = Op0.getOpcode();
1552       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1553         if (ConstantSDNode *ShiftC =
1554                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1555           // Don't crash on an oversized shift. We can not guarantee that a
1556           // bogus shift has been simplified to undef.
1557           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1558             uint64_t ShiftAmt = ShiftC->getZExtValue();
1559             APInt Ones = APInt::getAllOnes(BitWidth);
1560             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1561                                          : Ones.lshr(ShiftAmt);
1562             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1563             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1564                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1565               // If the xor constant is a demanded mask, do a 'not' before the
1566               // shift:
1567               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1568               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1569               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1570               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1571                                                        Op0.getOperand(1)));
1572             }
1573           }
1574         }
1575       }
1576     }
1577 
1578     // If we can't turn this into a 'not', try to shrink the constant.
1579     if (!C || !C->isAllOnes())
1580       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1581         return true;
1582 
1583     // Attempt to avoid multi-use ops if we don't need anything from them.
1584     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1585       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1586           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1587       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1588           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1589       if (DemandedOp0 || DemandedOp1) {
1590         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1591         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1592         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1593         return TLO.CombineTo(Op, NewOp);
1594       }
1595     }
1596 
1597     Known ^= Known2;
1598     break;
1599   }
1600   case ISD::SELECT:
1601     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1602                              Depth + 1))
1603       return true;
1604     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1605                              Depth + 1))
1606       return true;
1607     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1608     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1609 
1610     // If the operands are constants, see if we can simplify them.
1611     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1612       return true;
1613 
1614     // Only known if known in both the LHS and RHS.
1615     Known = KnownBits::commonBits(Known, Known2);
1616     break;
1617   case ISD::VSELECT:
1618     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1619                              Known, TLO, Depth + 1))
1620       return true;
1621     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1622                              Known2, TLO, Depth + 1))
1623       return true;
1624     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1625     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1626 
1627     // Only known if known in both the LHS and RHS.
1628     Known = KnownBits::commonBits(Known, Known2);
1629     break;
1630   case ISD::SELECT_CC:
1631     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1632                              Depth + 1))
1633       return true;
1634     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1635                              Depth + 1))
1636       return true;
1637     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1638     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1639 
1640     // If the operands are constants, see if we can simplify them.
1641     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1642       return true;
1643 
1644     // Only known if known in both the LHS and RHS.
1645     Known = KnownBits::commonBits(Known, Known2);
1646     break;
1647   case ISD::SETCC: {
1648     SDValue Op0 = Op.getOperand(0);
1649     SDValue Op1 = Op.getOperand(1);
1650     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1651     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1652     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1653     // -1, we may be able to bypass the setcc.
1654     if (DemandedBits.isSignMask() &&
1655         Op0.getScalarValueSizeInBits() == BitWidth &&
1656         getBooleanContents(Op0.getValueType()) ==
1657             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1658       // If we're testing X < 0, then this compare isn't needed - just use X!
1659       // FIXME: We're limiting to integer types here, but this should also work
1660       // if we don't care about FP signed-zero. The use of SETLT with FP means
1661       // that we don't care about NaNs.
1662       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1663           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1664         return TLO.CombineTo(Op, Op0);
1665 
1666       // TODO: Should we check for other forms of sign-bit comparisons?
1667       // Examples: X <= -1, X >= 0
1668     }
1669     if (getBooleanContents(Op0.getValueType()) ==
1670             TargetLowering::ZeroOrOneBooleanContent &&
1671         BitWidth > 1)
1672       Known.Zero.setBitsFrom(1);
1673     break;
1674   }
1675   case ISD::SHL: {
1676     SDValue Op0 = Op.getOperand(0);
1677     SDValue Op1 = Op.getOperand(1);
1678     EVT ShiftVT = Op1.getValueType();
1679 
1680     if (const APInt *SA =
1681             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1682       unsigned ShAmt = SA->getZExtValue();
1683       if (ShAmt == 0)
1684         return TLO.CombineTo(Op, Op0);
1685 
1686       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1687       // single shift.  We can do this if the bottom bits (which are shifted
1688       // out) are never demanded.
1689       // TODO - support non-uniform vector amounts.
1690       if (Op0.getOpcode() == ISD::SRL) {
1691         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1692           if (const APInt *SA2 =
1693                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1694             unsigned C1 = SA2->getZExtValue();
1695             unsigned Opc = ISD::SHL;
1696             int Diff = ShAmt - C1;
1697             if (Diff < 0) {
1698               Diff = -Diff;
1699               Opc = ISD::SRL;
1700             }
1701             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1702             return TLO.CombineTo(
1703                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1704           }
1705         }
1706       }
1707 
1708       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1709       // are not demanded. This will likely allow the anyext to be folded away.
1710       // TODO - support non-uniform vector amounts.
1711       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1712         SDValue InnerOp = Op0.getOperand(0);
1713         EVT InnerVT = InnerOp.getValueType();
1714         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1715         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1716             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1717           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1718           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1719             ShTy = InnerVT;
1720           SDValue NarrowShl =
1721               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1722                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1723           return TLO.CombineTo(
1724               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1725         }
1726 
1727         // Repeat the SHL optimization above in cases where an extension
1728         // intervenes: (shl (anyext (shr x, c1)), c2) to
1729         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1730         // aren't demanded (as above) and that the shifted upper c1 bits of
1731         // x aren't demanded.
1732         // TODO - support non-uniform vector amounts.
1733         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1734             InnerOp.hasOneUse()) {
1735           if (const APInt *SA2 =
1736                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1737             unsigned InnerShAmt = SA2->getZExtValue();
1738             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1739                 DemandedBits.getActiveBits() <=
1740                     (InnerBits - InnerShAmt + ShAmt) &&
1741                 DemandedBits.countTrailingZeros() >= ShAmt) {
1742               SDValue NewSA =
1743                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1744               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1745                                                InnerOp.getOperand(0));
1746               return TLO.CombineTo(
1747                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1748             }
1749           }
1750         }
1751       }
1752 
1753       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1754       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1755                                Depth + 1))
1756         return true;
1757       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1758       Known.Zero <<= ShAmt;
1759       Known.One <<= ShAmt;
1760       // low bits known zero.
1761       Known.Zero.setLowBits(ShAmt);
1762 
1763       // Attempt to avoid multi-use ops if we don't need anything from them.
1764       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1765         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1766             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1767         if (DemandedOp0) {
1768           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1769           return TLO.CombineTo(Op, NewOp);
1770         }
1771       }
1772 
1773       // Try shrinking the operation as long as the shift amount will still be
1774       // in range.
1775       if ((ShAmt < DemandedBits.getActiveBits()) &&
1776           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1777         return true;
1778     } else {
1779       // This is a variable shift, so we can't shift the demand mask by a known
1780       // amount. But if we are not demanding high bits, then we are not
1781       // demanding those bits from the pre-shifted operand either.
1782       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1783         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1784         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1785                                  Depth + 1)) {
1786           SDNodeFlags Flags = Op.getNode()->getFlags();
1787           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1788             // Disable the nsw and nuw flags. We can no longer guarantee that we
1789             // won't wrap after simplification.
1790             Flags.setNoSignedWrap(false);
1791             Flags.setNoUnsignedWrap(false);
1792             Op->setFlags(Flags);
1793           }
1794           return true;
1795         }
1796         Known.resetAll();
1797       }
1798     }
1799 
1800     // If we are only demanding sign bits then we can use the shift source
1801     // directly.
1802     if (const APInt *MaxSA =
1803             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1804       unsigned ShAmt = MaxSA->getZExtValue();
1805       unsigned NumSignBits =
1806           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1807       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1808       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1809         return TLO.CombineTo(Op, Op0);
1810     }
1811     break;
1812   }
1813   case ISD::SRL: {
1814     SDValue Op0 = Op.getOperand(0);
1815     SDValue Op1 = Op.getOperand(1);
1816     EVT ShiftVT = Op1.getValueType();
1817 
1818     // Try to match AVG patterns.
1819     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1820                                         DemandedElts, Depth + 1))
1821       return TLO.CombineTo(Op, AVG);
1822 
1823     if (const APInt *SA =
1824             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1825       unsigned ShAmt = SA->getZExtValue();
1826       if (ShAmt == 0)
1827         return TLO.CombineTo(Op, Op0);
1828 
1829       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1830       // single shift.  We can do this if the top bits (which are shifted out)
1831       // are never demanded.
1832       // TODO - support non-uniform vector amounts.
1833       if (Op0.getOpcode() == ISD::SHL) {
1834         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1835           if (const APInt *SA2 =
1836                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1837             unsigned C1 = SA2->getZExtValue();
1838             unsigned Opc = ISD::SRL;
1839             int Diff = ShAmt - C1;
1840             if (Diff < 0) {
1841               Diff = -Diff;
1842               Opc = ISD::SHL;
1843             }
1844             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1845             return TLO.CombineTo(
1846                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1847           }
1848         }
1849       }
1850 
1851       APInt InDemandedMask = (DemandedBits << ShAmt);
1852 
1853       // If the shift is exact, then it does demand the low bits (and knows that
1854       // they are zero).
1855       if (Op->getFlags().hasExact())
1856         InDemandedMask.setLowBits(ShAmt);
1857 
1858       // Compute the new bits that are at the top now.
1859       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1860                                Depth + 1))
1861         return true;
1862       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1863       Known.Zero.lshrInPlace(ShAmt);
1864       Known.One.lshrInPlace(ShAmt);
1865       // High bits known zero.
1866       Known.Zero.setHighBits(ShAmt);
1867     }
1868     break;
1869   }
1870   case ISD::SRA: {
1871     SDValue Op0 = Op.getOperand(0);
1872     SDValue Op1 = Op.getOperand(1);
1873     EVT ShiftVT = Op1.getValueType();
1874 
1875     // If we only want bits that already match the signbit then we don't need
1876     // to shift.
1877     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1878     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1879         NumHiDemandedBits)
1880       return TLO.CombineTo(Op, Op0);
1881 
1882     // If this is an arithmetic shift right and only the low-bit is set, we can
1883     // always convert this into a logical shr, even if the shift amount is
1884     // variable.  The low bit of the shift cannot be an input sign bit unless
1885     // the shift amount is >= the size of the datatype, which is undefined.
1886     if (DemandedBits.isOne())
1887       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1888 
1889     // Try to match AVG patterns.
1890     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1891                                         DemandedElts, Depth + 1))
1892       return TLO.CombineTo(Op, AVG);
1893 
1894     if (const APInt *SA =
1895             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1896       unsigned ShAmt = SA->getZExtValue();
1897       if (ShAmt == 0)
1898         return TLO.CombineTo(Op, Op0);
1899 
1900       APInt InDemandedMask = (DemandedBits << ShAmt);
1901 
1902       // If the shift is exact, then it does demand the low bits (and knows that
1903       // they are zero).
1904       if (Op->getFlags().hasExact())
1905         InDemandedMask.setLowBits(ShAmt);
1906 
1907       // If any of the demanded bits are produced by the sign extension, we also
1908       // demand the input sign bit.
1909       if (DemandedBits.countLeadingZeros() < ShAmt)
1910         InDemandedMask.setSignBit();
1911 
1912       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1913                                Depth + 1))
1914         return true;
1915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1916       Known.Zero.lshrInPlace(ShAmt);
1917       Known.One.lshrInPlace(ShAmt);
1918 
1919       // If the input sign bit is known to be zero, or if none of the top bits
1920       // are demanded, turn this into an unsigned shift right.
1921       if (Known.Zero[BitWidth - ShAmt - 1] ||
1922           DemandedBits.countLeadingZeros() >= ShAmt) {
1923         SDNodeFlags Flags;
1924         Flags.setExact(Op->getFlags().hasExact());
1925         return TLO.CombineTo(
1926             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1927       }
1928 
1929       int Log2 = DemandedBits.exactLogBase2();
1930       if (Log2 >= 0) {
1931         // The bit must come from the sign.
1932         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1933         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1934       }
1935 
1936       if (Known.One[BitWidth - ShAmt - 1])
1937         // New bits are known one.
1938         Known.One.setHighBits(ShAmt);
1939 
1940       // Attempt to avoid multi-use ops if we don't need anything from them.
1941       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1942         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1943             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1944         if (DemandedOp0) {
1945           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1946           return TLO.CombineTo(Op, NewOp);
1947         }
1948       }
1949     }
1950     break;
1951   }
1952   case ISD::FSHL:
1953   case ISD::FSHR: {
1954     SDValue Op0 = Op.getOperand(0);
1955     SDValue Op1 = Op.getOperand(1);
1956     SDValue Op2 = Op.getOperand(2);
1957     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1958 
1959     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1960       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1961 
1962       // For fshl, 0-shift returns the 1st arg.
1963       // For fshr, 0-shift returns the 2nd arg.
1964       if (Amt == 0) {
1965         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1966                                  Known, TLO, Depth + 1))
1967           return true;
1968         break;
1969       }
1970 
1971       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1972       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1973       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1974       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1975       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1976                                Depth + 1))
1977         return true;
1978       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1979                                Depth + 1))
1980         return true;
1981 
1982       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1983       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1984       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1985       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1986       Known.One |= Known2.One;
1987       Known.Zero |= Known2.Zero;
1988 
1989       // Attempt to avoid multi-use ops if we don't need anything from them.
1990       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1991           !DemandedElts.isAllOnes()) {
1992         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1993             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1994         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1995             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1996         if (DemandedOp0 || DemandedOp1) {
1997           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1998           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1999           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2000                                           DemandedOp1, Op2);
2001           return TLO.CombineTo(Op, NewOp);
2002         }
2003       }
2004     }
2005 
2006     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2007     if (isPowerOf2_32(BitWidth)) {
2008       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2009       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2010                                Known2, TLO, Depth + 1))
2011         return true;
2012     }
2013     break;
2014   }
2015   case ISD::ROTL:
2016   case ISD::ROTR: {
2017     SDValue Op0 = Op.getOperand(0);
2018     SDValue Op1 = Op.getOperand(1);
2019     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2020 
2021     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2022     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2023       return TLO.CombineTo(Op, Op0);
2024 
2025     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2026       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2027       unsigned RevAmt = BitWidth - Amt;
2028 
2029       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2030       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2031       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2032       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2033                                Depth + 1))
2034         return true;
2035 
2036       // rot*(x, 0) --> x
2037       if (Amt == 0)
2038         return TLO.CombineTo(Op, Op0);
2039 
2040       // See if we don't demand either half of the rotated bits.
2041       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2042           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2043         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2044         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2045       }
2046       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2047           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2048         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2049         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2050       }
2051     }
2052 
2053     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2054     if (isPowerOf2_32(BitWidth)) {
2055       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2056       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2057                                Depth + 1))
2058         return true;
2059     }
2060     break;
2061   }
2062   case ISD::UMIN: {
2063     // Check if one arg is always less than (or equal) to the other arg.
2064     SDValue Op0 = Op.getOperand(0);
2065     SDValue Op1 = Op.getOperand(1);
2066     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2067     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2068     Known = KnownBits::umin(Known0, Known1);
2069     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2070       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2071     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2072       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2073     break;
2074   }
2075   case ISD::UMAX: {
2076     // Check if one arg is always greater than (or equal) to the other arg.
2077     SDValue Op0 = Op.getOperand(0);
2078     SDValue Op1 = Op.getOperand(1);
2079     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2080     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2081     Known = KnownBits::umax(Known0, Known1);
2082     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2083       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2084     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2085       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2086     break;
2087   }
2088   case ISD::BITREVERSE: {
2089     SDValue Src = Op.getOperand(0);
2090     APInt DemandedSrcBits = DemandedBits.reverseBits();
2091     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2092                              Depth + 1))
2093       return true;
2094     Known.One = Known2.One.reverseBits();
2095     Known.Zero = Known2.Zero.reverseBits();
2096     break;
2097   }
2098   case ISD::BSWAP: {
2099     SDValue Src = Op.getOperand(0);
2100 
2101     // If the only bits demanded come from one byte of the bswap result,
2102     // just shift the input byte into position to eliminate the bswap.
2103     unsigned NLZ = DemandedBits.countLeadingZeros();
2104     unsigned NTZ = DemandedBits.countTrailingZeros();
2105 
2106     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2107     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2108     // have 14 leading zeros, round to 8.
2109     NLZ = alignDown(NLZ, 8);
2110     NTZ = alignDown(NTZ, 8);
2111     // If we need exactly one byte, we can do this transformation.
2112     if (BitWidth - NLZ - NTZ == 8) {
2113       // Replace this with either a left or right shift to get the byte into
2114       // the right place.
2115       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2116       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2117         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2118         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2119         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2120         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2121         return TLO.CombineTo(Op, NewOp);
2122       }
2123     }
2124 
2125     APInt DemandedSrcBits = DemandedBits.byteSwap();
2126     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2127                              Depth + 1))
2128       return true;
2129     Known.One = Known2.One.byteSwap();
2130     Known.Zero = Known2.Zero.byteSwap();
2131     break;
2132   }
2133   case ISD::CTPOP: {
2134     // If only 1 bit is demanded, replace with PARITY as long as we're before
2135     // op legalization.
2136     // FIXME: Limit to scalars for now.
2137     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2138       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2139                                                Op.getOperand(0)));
2140 
2141     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2142     break;
2143   }
2144   case ISD::SIGN_EXTEND_INREG: {
2145     SDValue Op0 = Op.getOperand(0);
2146     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2147     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2148 
2149     // If we only care about the highest bit, don't bother shifting right.
2150     if (DemandedBits.isSignMask()) {
2151       unsigned MinSignedBits =
2152           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2153       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2154       // However if the input is already sign extended we expect the sign
2155       // extension to be dropped altogether later and do not simplify.
2156       if (!AlreadySignExtended) {
2157         // Compute the correct shift amount type, which must be getShiftAmountTy
2158         // for scalar types after legalization.
2159         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2160                                                getShiftAmountTy(VT, DL));
2161         return TLO.CombineTo(Op,
2162                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2163       }
2164     }
2165 
2166     // If none of the extended bits are demanded, eliminate the sextinreg.
2167     if (DemandedBits.getActiveBits() <= ExVTBits)
2168       return TLO.CombineTo(Op, Op0);
2169 
2170     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2171 
2172     // Since the sign extended bits are demanded, we know that the sign
2173     // bit is demanded.
2174     InputDemandedBits.setBit(ExVTBits - 1);
2175 
2176     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2177                              Depth + 1))
2178       return true;
2179     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2180 
2181     // If the sign bit of the input is known set or clear, then we know the
2182     // top bits of the result.
2183 
2184     // If the input sign bit is known zero, convert this into a zero extension.
2185     if (Known.Zero[ExVTBits - 1])
2186       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2187 
2188     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2189     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2190       Known.One.setBitsFrom(ExVTBits);
2191       Known.Zero &= Mask;
2192     } else { // Input sign bit unknown
2193       Known.Zero &= Mask;
2194       Known.One &= Mask;
2195     }
2196     break;
2197   }
2198   case ISD::BUILD_PAIR: {
2199     EVT HalfVT = Op.getOperand(0).getValueType();
2200     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2201 
2202     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2203     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2204 
2205     KnownBits KnownLo, KnownHi;
2206 
2207     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2208       return true;
2209 
2210     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2211       return true;
2212 
2213     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2214                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2215 
2216     Known.One = KnownLo.One.zext(BitWidth) |
2217                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2218     break;
2219   }
2220   case ISD::ZERO_EXTEND:
2221   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2222     SDValue Src = Op.getOperand(0);
2223     EVT SrcVT = Src.getValueType();
2224     unsigned InBits = SrcVT.getScalarSizeInBits();
2225     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2226     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2227 
2228     // If none of the top bits are demanded, convert this into an any_extend.
2229     if (DemandedBits.getActiveBits() <= InBits) {
2230       // If we only need the non-extended bits of the bottom element
2231       // then we can just bitcast to the result.
2232       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2233           VT.getSizeInBits() == SrcVT.getSizeInBits())
2234         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2235 
2236       unsigned Opc =
2237           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2238       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2239         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2240     }
2241 
2242     APInt InDemandedBits = DemandedBits.trunc(InBits);
2243     APInt InDemandedElts = DemandedElts.zext(InElts);
2244     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2245                              Depth + 1))
2246       return true;
2247     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2248     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2249     Known = Known.zext(BitWidth);
2250 
2251     // Attempt to avoid multi-use ops if we don't need anything from them.
2252     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2253             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2254       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2255     break;
2256   }
2257   case ISD::SIGN_EXTEND:
2258   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2259     SDValue Src = Op.getOperand(0);
2260     EVT SrcVT = Src.getValueType();
2261     unsigned InBits = SrcVT.getScalarSizeInBits();
2262     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2263     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2264 
2265     // If none of the top bits are demanded, convert this into an any_extend.
2266     if (DemandedBits.getActiveBits() <= InBits) {
2267       // If we only need the non-extended bits of the bottom element
2268       // then we can just bitcast to the result.
2269       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2270           VT.getSizeInBits() == SrcVT.getSizeInBits())
2271         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2272 
2273       unsigned Opc =
2274           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2275       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2276         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2277     }
2278 
2279     APInt InDemandedBits = DemandedBits.trunc(InBits);
2280     APInt InDemandedElts = DemandedElts.zext(InElts);
2281 
2282     // Since some of the sign extended bits are demanded, we know that the sign
2283     // bit is demanded.
2284     InDemandedBits.setBit(InBits - 1);
2285 
2286     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2287                              Depth + 1))
2288       return true;
2289     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2290     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2291 
2292     // If the sign bit is known one, the top bits match.
2293     Known = Known.sext(BitWidth);
2294 
2295     // If the sign bit is known zero, convert this to a zero extend.
2296     if (Known.isNonNegative()) {
2297       unsigned Opc =
2298           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2299       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2300         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2301     }
2302 
2303     // Attempt to avoid multi-use ops if we don't need anything from them.
2304     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2305             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2306       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2307     break;
2308   }
2309   case ISD::ANY_EXTEND:
2310   case ISD::ANY_EXTEND_VECTOR_INREG: {
2311     SDValue Src = Op.getOperand(0);
2312     EVT SrcVT = Src.getValueType();
2313     unsigned InBits = SrcVT.getScalarSizeInBits();
2314     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2315     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2316 
2317     // If we only need the bottom element then we can just bitcast.
2318     // TODO: Handle ANY_EXTEND?
2319     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2320         VT.getSizeInBits() == SrcVT.getSizeInBits())
2321       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2322 
2323     APInt InDemandedBits = DemandedBits.trunc(InBits);
2324     APInt InDemandedElts = DemandedElts.zext(InElts);
2325     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2326                              Depth + 1))
2327       return true;
2328     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2329     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2330     Known = Known.anyext(BitWidth);
2331 
2332     // Attempt to avoid multi-use ops if we don't need anything from them.
2333     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2334             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2335       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2336     break;
2337   }
2338   case ISD::TRUNCATE: {
2339     SDValue Src = Op.getOperand(0);
2340 
2341     // Simplify the input, using demanded bit information, and compute the known
2342     // zero/one bits live out.
2343     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2344     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2345     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2346                              Depth + 1))
2347       return true;
2348     Known = Known.trunc(BitWidth);
2349 
2350     // Attempt to avoid multi-use ops if we don't need anything from them.
2351     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2352             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2353       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2354 
2355     // If the input is only used by this truncate, see if we can shrink it based
2356     // on the known demanded bits.
2357     if (Src.getNode()->hasOneUse()) {
2358       switch (Src.getOpcode()) {
2359       default:
2360         break;
2361       case ISD::SRL:
2362         // Shrink SRL by a constant if none of the high bits shifted in are
2363         // demanded.
2364         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2365           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2366           // undesirable.
2367           break;
2368 
2369         const APInt *ShAmtC =
2370             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2371         if (!ShAmtC || ShAmtC->uge(BitWidth))
2372           break;
2373         uint64_t ShVal = ShAmtC->getZExtValue();
2374 
2375         APInt HighBits =
2376             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2377         HighBits.lshrInPlace(ShVal);
2378         HighBits = HighBits.trunc(BitWidth);
2379 
2380         if (!(HighBits & DemandedBits)) {
2381           // None of the shifted in bits are needed.  Add a truncate of the
2382           // shift input, then shift it.
2383           SDValue NewShAmt = TLO.DAG.getConstant(
2384               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2385           SDValue NewTrunc =
2386               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2387           return TLO.CombineTo(
2388               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2389         }
2390         break;
2391       }
2392     }
2393 
2394     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2395     break;
2396   }
2397   case ISD::AssertZext: {
2398     // AssertZext demands all of the high bits, plus any of the low bits
2399     // demanded by its users.
2400     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2401     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2402     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2403                              TLO, Depth + 1))
2404       return true;
2405     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2406 
2407     Known.Zero |= ~InMask;
2408     break;
2409   }
2410   case ISD::EXTRACT_VECTOR_ELT: {
2411     SDValue Src = Op.getOperand(0);
2412     SDValue Idx = Op.getOperand(1);
2413     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2414     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2415 
2416     if (SrcEltCnt.isScalable())
2417       return false;
2418 
2419     // Demand the bits from every vector element without a constant index.
2420     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2421     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2422     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2423       if (CIdx->getAPIntValue().ult(NumSrcElts))
2424         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2425 
2426     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2427     // anything about the extended bits.
2428     APInt DemandedSrcBits = DemandedBits;
2429     if (BitWidth > EltBitWidth)
2430       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2431 
2432     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2433                              Depth + 1))
2434       return true;
2435 
2436     // Attempt to avoid multi-use ops if we don't need anything from them.
2437     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2438       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2439               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2440         SDValue NewOp =
2441             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2442         return TLO.CombineTo(Op, NewOp);
2443       }
2444     }
2445 
2446     Known = Known2;
2447     if (BitWidth > EltBitWidth)
2448       Known = Known.anyext(BitWidth);
2449     break;
2450   }
2451   case ISD::BITCAST: {
2452     SDValue Src = Op.getOperand(0);
2453     EVT SrcVT = Src.getValueType();
2454     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2455 
2456     // If this is an FP->Int bitcast and if the sign bit is the only
2457     // thing demanded, turn this into a FGETSIGN.
2458     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2459         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2460         SrcVT.isFloatingPoint()) {
2461       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2462       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2463       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2464           SrcVT != MVT::f128) {
2465         // Cannot eliminate/lower SHL for f128 yet.
2466         EVT Ty = OpVTLegal ? VT : MVT::i32;
2467         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2468         // place.  We expect the SHL to be eliminated by other optimizations.
2469         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2470         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2471         if (!OpVTLegal && OpVTSizeInBits > 32)
2472           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2473         unsigned ShVal = Op.getValueSizeInBits() - 1;
2474         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2475         return TLO.CombineTo(Op,
2476                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2477       }
2478     }
2479 
2480     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2481     // Demand the elt/bit if any of the original elts/bits are demanded.
2482     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2483       unsigned Scale = BitWidth / NumSrcEltBits;
2484       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2485       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2486       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2487       for (unsigned i = 0; i != Scale; ++i) {
2488         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2489         unsigned BitOffset = EltOffset * NumSrcEltBits;
2490         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2491         if (!Sub.isZero()) {
2492           DemandedSrcBits |= Sub;
2493           for (unsigned j = 0; j != NumElts; ++j)
2494             if (DemandedElts[j])
2495               DemandedSrcElts.setBit((j * Scale) + i);
2496         }
2497       }
2498 
2499       APInt KnownSrcUndef, KnownSrcZero;
2500       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2501                                      KnownSrcZero, TLO, Depth + 1))
2502         return true;
2503 
2504       KnownBits KnownSrcBits;
2505       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2506                                KnownSrcBits, TLO, Depth + 1))
2507         return true;
2508     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2509       // TODO - bigendian once we have test coverage.
2510       unsigned Scale = NumSrcEltBits / BitWidth;
2511       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2512       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2513       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2514       for (unsigned i = 0; i != NumElts; ++i)
2515         if (DemandedElts[i]) {
2516           unsigned Offset = (i % Scale) * BitWidth;
2517           DemandedSrcBits.insertBits(DemandedBits, Offset);
2518           DemandedSrcElts.setBit(i / Scale);
2519         }
2520 
2521       if (SrcVT.isVector()) {
2522         APInt KnownSrcUndef, KnownSrcZero;
2523         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2524                                        KnownSrcZero, TLO, Depth + 1))
2525           return true;
2526       }
2527 
2528       KnownBits KnownSrcBits;
2529       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2530                                KnownSrcBits, TLO, Depth + 1))
2531         return true;
2532     }
2533 
2534     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2535     // recursive call where Known may be useful to the caller.
2536     if (Depth > 0) {
2537       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2538       return false;
2539     }
2540     break;
2541   }
2542   case ISD::MUL:
2543     if (DemandedBits.isPowerOf2()) {
2544       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2545       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2546       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2547       unsigned CTZ = DemandedBits.countTrailingZeros();
2548       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2549       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2550         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2551         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2552         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2553         return TLO.CombineTo(Op, Shl);
2554       }
2555     }
2556     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2557     // X * X is odd iff X is odd.
2558     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2559     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2560       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2561       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2562       return TLO.CombineTo(Op, And1);
2563     }
2564     LLVM_FALLTHROUGH;
2565   case ISD::ADD:
2566   case ISD::SUB: {
2567     // Add, Sub, and Mul don't demand any bits in positions beyond that
2568     // of the highest bit demanded of them.
2569     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2570     SDNodeFlags Flags = Op.getNode()->getFlags();
2571     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2572     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2573     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2574                              Depth + 1) ||
2575         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2576                              Depth + 1) ||
2577         // See if the operation should be performed at a smaller bit width.
2578         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2579       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2580         // Disable the nsw and nuw flags. We can no longer guarantee that we
2581         // won't wrap after simplification.
2582         Flags.setNoSignedWrap(false);
2583         Flags.setNoUnsignedWrap(false);
2584         Op->setFlags(Flags);
2585       }
2586       return true;
2587     }
2588 
2589     // Attempt to avoid multi-use ops if we don't need anything from them.
2590     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2591       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2592           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2593       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2594           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2595       if (DemandedOp0 || DemandedOp1) {
2596         Flags.setNoSignedWrap(false);
2597         Flags.setNoUnsignedWrap(false);
2598         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2599         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2600         SDValue NewOp =
2601             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2602         return TLO.CombineTo(Op, NewOp);
2603       }
2604     }
2605 
2606     // If we have a constant operand, we may be able to turn it into -1 if we
2607     // do not demand the high bits. This can make the constant smaller to
2608     // encode, allow more general folding, or match specialized instruction
2609     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2610     // is probably not useful (and could be detrimental).
2611     ConstantSDNode *C = isConstOrConstSplat(Op1);
2612     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2613     if (C && !C->isAllOnes() && !C->isOne() &&
2614         (C->getAPIntValue() | HighMask).isAllOnes()) {
2615       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2616       // Disable the nsw and nuw flags. We can no longer guarantee that we
2617       // won't wrap after simplification.
2618       Flags.setNoSignedWrap(false);
2619       Flags.setNoUnsignedWrap(false);
2620       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2621       return TLO.CombineTo(Op, NewOp);
2622     }
2623 
2624     // Match a multiply with a disguised negated-power-of-2 and convert to a
2625     // an equivalent shift-left amount.
2626     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2627     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2628       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2629         return 0;
2630 
2631       // Don't touch opaque constants. Also, ignore zero and power-of-2
2632       // multiplies. Those will get folded later.
2633       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2634       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2635           !MulC->getAPIntValue().isPowerOf2()) {
2636         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2637         if (UnmaskedC.isNegatedPowerOf2())
2638           return (-UnmaskedC).logBase2();
2639       }
2640       return 0;
2641     };
2642 
2643     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2644       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2645       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2646       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2647       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2648       return TLO.CombineTo(Op, Res);
2649     };
2650 
2651     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2652       if (Op.getOpcode() == ISD::ADD) {
2653         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2654         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2655           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2656         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2657         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2658           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2659       }
2660       if (Op.getOpcode() == ISD::SUB) {
2661         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2662         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2663           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2664       }
2665     }
2666 
2667     LLVM_FALLTHROUGH;
2668   }
2669   default:
2670     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2671       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2672                                             Known, TLO, Depth))
2673         return true;
2674       break;
2675     }
2676 
2677     // Just use computeKnownBits to compute output bits.
2678     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2679     break;
2680   }
2681 
2682   // If we know the value of all of the demanded bits, return this as a
2683   // constant.
2684   if (!isTargetCanonicalConstantNode(Op) &&
2685       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2686     // Avoid folding to a constant if any OpaqueConstant is involved.
2687     const SDNode *N = Op.getNode();
2688     for (SDNode *Op :
2689          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2690       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2691         if (C->isOpaque())
2692           return false;
2693     }
2694     if (VT.isInteger())
2695       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2696     if (VT.isFloatingPoint())
2697       return TLO.CombineTo(
2698           Op,
2699           TLO.DAG.getConstantFP(
2700               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2701   }
2702 
2703   return false;
2704 }
2705 
2706 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2707                                                 const APInt &DemandedElts,
2708                                                 DAGCombinerInfo &DCI) const {
2709   SelectionDAG &DAG = DCI.DAG;
2710   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2711                         !DCI.isBeforeLegalizeOps());
2712 
2713   APInt KnownUndef, KnownZero;
2714   bool Simplified =
2715       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2716   if (Simplified) {
2717     DCI.AddToWorklist(Op.getNode());
2718     DCI.CommitTargetLoweringOpt(TLO);
2719   }
2720 
2721   return Simplified;
2722 }
2723 
2724 /// Given a vector binary operation and known undefined elements for each input
2725 /// operand, compute whether each element of the output is undefined.
2726 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2727                                          const APInt &UndefOp0,
2728                                          const APInt &UndefOp1) {
2729   EVT VT = BO.getValueType();
2730   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2731          "Vector binop only");
2732 
2733   EVT EltVT = VT.getVectorElementType();
2734   unsigned NumElts = VT.getVectorNumElements();
2735   assert(UndefOp0.getBitWidth() == NumElts &&
2736          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2737 
2738   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2739                                    const APInt &UndefVals) {
2740     if (UndefVals[Index])
2741       return DAG.getUNDEF(EltVT);
2742 
2743     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2744       // Try hard to make sure that the getNode() call is not creating temporary
2745       // nodes. Ignore opaque integers because they do not constant fold.
2746       SDValue Elt = BV->getOperand(Index);
2747       auto *C = dyn_cast<ConstantSDNode>(Elt);
2748       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2749         return Elt;
2750     }
2751 
2752     return SDValue();
2753   };
2754 
2755   APInt KnownUndef = APInt::getZero(NumElts);
2756   for (unsigned i = 0; i != NumElts; ++i) {
2757     // If both inputs for this element are either constant or undef and match
2758     // the element type, compute the constant/undef result for this element of
2759     // the vector.
2760     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2761     // not handle FP constants. The code within getNode() should be refactored
2762     // to avoid the danger of creating a bogus temporary node here.
2763     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2764     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2765     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2766       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2767         KnownUndef.setBit(i);
2768   }
2769   return KnownUndef;
2770 }
2771 
2772 bool TargetLowering::SimplifyDemandedVectorElts(
2773     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2774     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2775     bool AssumeSingleUse) const {
2776   EVT VT = Op.getValueType();
2777   unsigned Opcode = Op.getOpcode();
2778   APInt DemandedElts = OriginalDemandedElts;
2779   unsigned NumElts = DemandedElts.getBitWidth();
2780   assert(VT.isVector() && "Expected vector op");
2781 
2782   KnownUndef = KnownZero = APInt::getZero(NumElts);
2783 
2784   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2785   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2786     return false;
2787 
2788   // TODO: For now we assume we know nothing about scalable vectors.
2789   if (VT.isScalableVector())
2790     return false;
2791 
2792   assert(VT.getVectorNumElements() == NumElts &&
2793          "Mask size mismatches value type element count!");
2794 
2795   // Undef operand.
2796   if (Op.isUndef()) {
2797     KnownUndef.setAllBits();
2798     return false;
2799   }
2800 
2801   // If Op has other users, assume that all elements are needed.
2802   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2803     DemandedElts.setAllBits();
2804 
2805   // Not demanding any elements from Op.
2806   if (DemandedElts == 0) {
2807     KnownUndef.setAllBits();
2808     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2809   }
2810 
2811   // Limit search depth.
2812   if (Depth >= SelectionDAG::MaxRecursionDepth)
2813     return false;
2814 
2815   SDLoc DL(Op);
2816   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2817   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2818 
2819   // Helper for demanding the specified elements and all the bits of both binary
2820   // operands.
2821   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2822     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2823                                                            TLO.DAG, Depth + 1);
2824     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2825                                                            TLO.DAG, Depth + 1);
2826     if (NewOp0 || NewOp1) {
2827       SDValue NewOp = TLO.DAG.getNode(
2828           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2829       return TLO.CombineTo(Op, NewOp);
2830     }
2831     return false;
2832   };
2833 
2834   switch (Opcode) {
2835   case ISD::SCALAR_TO_VECTOR: {
2836     if (!DemandedElts[0]) {
2837       KnownUndef.setAllBits();
2838       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2839     }
2840     SDValue ScalarSrc = Op.getOperand(0);
2841     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2842       SDValue Src = ScalarSrc.getOperand(0);
2843       SDValue Idx = ScalarSrc.getOperand(1);
2844       EVT SrcVT = Src.getValueType();
2845 
2846       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2847 
2848       if (SrcEltCnt.isScalable())
2849         return false;
2850 
2851       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2852       if (isNullConstant(Idx)) {
2853         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2854         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2855         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2856         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2857                                        TLO, Depth + 1))
2858           return true;
2859       }
2860     }
2861     KnownUndef.setHighBits(NumElts - 1);
2862     break;
2863   }
2864   case ISD::BITCAST: {
2865     SDValue Src = Op.getOperand(0);
2866     EVT SrcVT = Src.getValueType();
2867 
2868     // We only handle vectors here.
2869     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2870     if (!SrcVT.isVector())
2871       break;
2872 
2873     // Fast handling of 'identity' bitcasts.
2874     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2875     if (NumSrcElts == NumElts)
2876       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2877                                         KnownZero, TLO, Depth + 1);
2878 
2879     APInt SrcDemandedElts, SrcZero, SrcUndef;
2880 
2881     // Bitcast from 'large element' src vector to 'small element' vector, we
2882     // must demand a source element if any DemandedElt maps to it.
2883     if ((NumElts % NumSrcElts) == 0) {
2884       unsigned Scale = NumElts / NumSrcElts;
2885       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2886       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2887                                      TLO, Depth + 1))
2888         return true;
2889 
2890       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2891       // of the large element.
2892       // TODO - bigendian once we have test coverage.
2893       if (IsLE) {
2894         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2895         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2896         for (unsigned i = 0; i != NumElts; ++i)
2897           if (DemandedElts[i]) {
2898             unsigned Ofs = (i % Scale) * EltSizeInBits;
2899             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2900           }
2901 
2902         KnownBits Known;
2903         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2904                                  TLO, Depth + 1))
2905           return true;
2906 
2907         // The bitcast has split each wide element into a number of
2908         // narrow subelements. We have just computed the Known bits
2909         // for wide elements. See if element splitting results in
2910         // some subelements being zero. Only for demanded elements!
2911         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2912           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2913                    .isAllOnes())
2914             continue;
2915           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2916             unsigned Elt = Scale * SrcElt + SubElt;
2917             if (DemandedElts[Elt])
2918               KnownZero.setBit(Elt);
2919           }
2920         }
2921       }
2922 
2923       // If the src element is zero/undef then all the output elements will be -
2924       // only demanded elements are guaranteed to be correct.
2925       for (unsigned i = 0; i != NumSrcElts; ++i) {
2926         if (SrcDemandedElts[i]) {
2927           if (SrcZero[i])
2928             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2929           if (SrcUndef[i])
2930             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2931         }
2932       }
2933     }
2934 
2935     // Bitcast from 'small element' src vector to 'large element' vector, we
2936     // demand all smaller source elements covered by the larger demanded element
2937     // of this vector.
2938     if ((NumSrcElts % NumElts) == 0) {
2939       unsigned Scale = NumSrcElts / NumElts;
2940       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2941       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2942                                      TLO, Depth + 1))
2943         return true;
2944 
2945       // If all the src elements covering an output element are zero/undef, then
2946       // the output element will be as well, assuming it was demanded.
2947       for (unsigned i = 0; i != NumElts; ++i) {
2948         if (DemandedElts[i]) {
2949           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2950             KnownZero.setBit(i);
2951           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2952             KnownUndef.setBit(i);
2953         }
2954       }
2955     }
2956     break;
2957   }
2958   case ISD::BUILD_VECTOR: {
2959     // Check all elements and simplify any unused elements with UNDEF.
2960     if (!DemandedElts.isAllOnes()) {
2961       // Don't simplify BROADCASTS.
2962       if (llvm::any_of(Op->op_values(),
2963                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2964         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2965         bool Updated = false;
2966         for (unsigned i = 0; i != NumElts; ++i) {
2967           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2968             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2969             KnownUndef.setBit(i);
2970             Updated = true;
2971           }
2972         }
2973         if (Updated)
2974           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2975       }
2976     }
2977     for (unsigned i = 0; i != NumElts; ++i) {
2978       SDValue SrcOp = Op.getOperand(i);
2979       if (SrcOp.isUndef()) {
2980         KnownUndef.setBit(i);
2981       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2982                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2983         KnownZero.setBit(i);
2984       }
2985     }
2986     break;
2987   }
2988   case ISD::CONCAT_VECTORS: {
2989     EVT SubVT = Op.getOperand(0).getValueType();
2990     unsigned NumSubVecs = Op.getNumOperands();
2991     unsigned NumSubElts = SubVT.getVectorNumElements();
2992     for (unsigned i = 0; i != NumSubVecs; ++i) {
2993       SDValue SubOp = Op.getOperand(i);
2994       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2995       APInt SubUndef, SubZero;
2996       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2997                                      Depth + 1))
2998         return true;
2999       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3000       KnownZero.insertBits(SubZero, i * NumSubElts);
3001     }
3002 
3003     // Attempt to avoid multi-use ops if we don't need anything from them.
3004     if (!DemandedElts.isAllOnes()) {
3005       bool FoundNewSub = false;
3006       SmallVector<SDValue, 2> DemandedSubOps;
3007       for (unsigned i = 0; i != NumSubVecs; ++i) {
3008         SDValue SubOp = Op.getOperand(i);
3009         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3010         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3011             SubOp, SubElts, TLO.DAG, Depth + 1);
3012         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3013         FoundNewSub = NewSubOp ? true : FoundNewSub;
3014       }
3015       if (FoundNewSub) {
3016         SDValue NewOp =
3017             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3018         return TLO.CombineTo(Op, NewOp);
3019       }
3020     }
3021     break;
3022   }
3023   case ISD::INSERT_SUBVECTOR: {
3024     // Demand any elements from the subvector and the remainder from the src its
3025     // inserted into.
3026     SDValue Src = Op.getOperand(0);
3027     SDValue Sub = Op.getOperand(1);
3028     uint64_t Idx = Op.getConstantOperandVal(2);
3029     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3030     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3031     APInt DemandedSrcElts = DemandedElts;
3032     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3033 
3034     APInt SubUndef, SubZero;
3035     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3036                                    Depth + 1))
3037       return true;
3038 
3039     // If none of the src operand elements are demanded, replace it with undef.
3040     if (!DemandedSrcElts && !Src.isUndef())
3041       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3042                                                TLO.DAG.getUNDEF(VT), Sub,
3043                                                Op.getOperand(2)));
3044 
3045     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3046                                    TLO, Depth + 1))
3047       return true;
3048     KnownUndef.insertBits(SubUndef, Idx);
3049     KnownZero.insertBits(SubZero, Idx);
3050 
3051     // Attempt to avoid multi-use ops if we don't need anything from them.
3052     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3053       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3054           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3055       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3056           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3057       if (NewSrc || NewSub) {
3058         NewSrc = NewSrc ? NewSrc : Src;
3059         NewSub = NewSub ? NewSub : Sub;
3060         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3061                                         NewSub, Op.getOperand(2));
3062         return TLO.CombineTo(Op, NewOp);
3063       }
3064     }
3065     break;
3066   }
3067   case ISD::EXTRACT_SUBVECTOR: {
3068     // Offset the demanded elts by the subvector index.
3069     SDValue Src = Op.getOperand(0);
3070     if (Src.getValueType().isScalableVector())
3071       break;
3072     uint64_t Idx = Op.getConstantOperandVal(1);
3073     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3074     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3075 
3076     APInt SrcUndef, SrcZero;
3077     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3078                                    Depth + 1))
3079       return true;
3080     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3081     KnownZero = SrcZero.extractBits(NumElts, Idx);
3082 
3083     // Attempt to avoid multi-use ops if we don't need anything from them.
3084     if (!DemandedElts.isAllOnes()) {
3085       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3086           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3087       if (NewSrc) {
3088         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3089                                         Op.getOperand(1));
3090         return TLO.CombineTo(Op, NewOp);
3091       }
3092     }
3093     break;
3094   }
3095   case ISD::INSERT_VECTOR_ELT: {
3096     SDValue Vec = Op.getOperand(0);
3097     SDValue Scl = Op.getOperand(1);
3098     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3099 
3100     // For a legal, constant insertion index, if we don't need this insertion
3101     // then strip it, else remove it from the demanded elts.
3102     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3103       unsigned Idx = CIdx->getZExtValue();
3104       if (!DemandedElts[Idx])
3105         return TLO.CombineTo(Op, Vec);
3106 
3107       APInt DemandedVecElts(DemandedElts);
3108       DemandedVecElts.clearBit(Idx);
3109       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3110                                      KnownZero, TLO, Depth + 1))
3111         return true;
3112 
3113       KnownUndef.setBitVal(Idx, Scl.isUndef());
3114 
3115       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3116       break;
3117     }
3118 
3119     APInt VecUndef, VecZero;
3120     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3121                                    Depth + 1))
3122       return true;
3123     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3124     break;
3125   }
3126   case ISD::VSELECT: {
3127     SDValue Sel = Op.getOperand(0);
3128     SDValue LHS = Op.getOperand(1);
3129     SDValue RHS = Op.getOperand(2);
3130 
3131     // Try to transform the select condition based on the current demanded
3132     // elements.
3133     APInt UndefSel, UndefZero;
3134     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3135                                    Depth + 1))
3136       return true;
3137 
3138     // See if we can simplify either vselect operand.
3139     APInt DemandedLHS(DemandedElts);
3140     APInt DemandedRHS(DemandedElts);
3141     APInt UndefLHS, ZeroLHS;
3142     APInt UndefRHS, ZeroRHS;
3143     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3144                                    Depth + 1))
3145       return true;
3146     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3147                                    Depth + 1))
3148       return true;
3149 
3150     KnownUndef = UndefLHS & UndefRHS;
3151     KnownZero = ZeroLHS & ZeroRHS;
3152 
3153     // If we know that the selected element is always zero, we don't need the
3154     // select value element.
3155     APInt DemandedSel = DemandedElts & ~KnownZero;
3156     if (DemandedSel != DemandedElts)
3157       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3158                                      Depth + 1))
3159         return true;
3160 
3161     break;
3162   }
3163   case ISD::VECTOR_SHUFFLE: {
3164     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3165 
3166     // Collect demanded elements from shuffle operands..
3167     APInt DemandedLHS(NumElts, 0);
3168     APInt DemandedRHS(NumElts, 0);
3169     for (unsigned i = 0; i != NumElts; ++i) {
3170       int M = ShuffleMask[i];
3171       if (M < 0 || !DemandedElts[i])
3172         continue;
3173       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3174       if (M < (int)NumElts)
3175         DemandedLHS.setBit(M);
3176       else
3177         DemandedRHS.setBit(M - NumElts);
3178     }
3179 
3180     // See if we can simplify either shuffle operand.
3181     APInt UndefLHS, ZeroLHS;
3182     APInt UndefRHS, ZeroRHS;
3183     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3184                                    ZeroLHS, TLO, Depth + 1))
3185       return true;
3186     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3187                                    ZeroRHS, TLO, Depth + 1))
3188       return true;
3189 
3190     // Simplify mask using undef elements from LHS/RHS.
3191     bool Updated = false;
3192     bool IdentityLHS = true, IdentityRHS = true;
3193     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3194     for (unsigned i = 0; i != NumElts; ++i) {
3195       int &M = NewMask[i];
3196       if (M < 0)
3197         continue;
3198       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3199           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3200         Updated = true;
3201         M = -1;
3202       }
3203       IdentityLHS &= (M < 0) || (M == (int)i);
3204       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3205     }
3206 
3207     // Update legal shuffle masks based on demanded elements if it won't reduce
3208     // to Identity which can cause premature removal of the shuffle mask.
3209     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3210       SDValue LegalShuffle =
3211           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3212                                   NewMask, TLO.DAG);
3213       if (LegalShuffle)
3214         return TLO.CombineTo(Op, LegalShuffle);
3215     }
3216 
3217     // Propagate undef/zero elements from LHS/RHS.
3218     for (unsigned i = 0; i != NumElts; ++i) {
3219       int M = ShuffleMask[i];
3220       if (M < 0) {
3221         KnownUndef.setBit(i);
3222       } else if (M < (int)NumElts) {
3223         if (UndefLHS[M])
3224           KnownUndef.setBit(i);
3225         if (ZeroLHS[M])
3226           KnownZero.setBit(i);
3227       } else {
3228         if (UndefRHS[M - NumElts])
3229           KnownUndef.setBit(i);
3230         if (ZeroRHS[M - NumElts])
3231           KnownZero.setBit(i);
3232       }
3233     }
3234     break;
3235   }
3236   case ISD::ANY_EXTEND_VECTOR_INREG:
3237   case ISD::SIGN_EXTEND_VECTOR_INREG:
3238   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3239     APInt SrcUndef, SrcZero;
3240     SDValue Src = Op.getOperand(0);
3241     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3242     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3243     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3244                                    Depth + 1))
3245       return true;
3246     KnownZero = SrcZero.zextOrTrunc(NumElts);
3247     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3248 
3249     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3250         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3251         DemandedSrcElts == 1) {
3252       // aext - if we just need the bottom element then we can bitcast.
3253       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3254     }
3255 
3256     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3257       // zext(undef) upper bits are guaranteed to be zero.
3258       if (DemandedElts.isSubsetOf(KnownUndef))
3259         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3260       KnownUndef.clearAllBits();
3261 
3262       // zext - if we just need the bottom element then we can mask:
3263       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3264       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3265           Op->isOnlyUserOf(Src.getNode()) &&
3266           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3267         SDLoc DL(Op);
3268         EVT SrcVT = Src.getValueType();
3269         EVT SrcSVT = SrcVT.getScalarType();
3270         SmallVector<SDValue> MaskElts;
3271         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3272         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3273         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3274         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3275                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3276           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3277           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3278         }
3279       }
3280     }
3281     break;
3282   }
3283 
3284   // TODO: There are more binop opcodes that could be handled here - MIN,
3285   // MAX, saturated math, etc.
3286   case ISD::ADD: {
3287     SDValue Op0 = Op.getOperand(0);
3288     SDValue Op1 = Op.getOperand(1);
3289     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3290       APInt UndefLHS, ZeroLHS;
3291       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3292                                      Depth + 1, /*AssumeSingleUse*/ true))
3293         return true;
3294     }
3295     LLVM_FALLTHROUGH;
3296   }
3297   case ISD::OR:
3298   case ISD::XOR:
3299   case ISD::SUB:
3300   case ISD::FADD:
3301   case ISD::FSUB:
3302   case ISD::FMUL:
3303   case ISD::FDIV:
3304   case ISD::FREM: {
3305     SDValue Op0 = Op.getOperand(0);
3306     SDValue Op1 = Op.getOperand(1);
3307 
3308     APInt UndefRHS, ZeroRHS;
3309     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3310                                    Depth + 1))
3311       return true;
3312     APInt UndefLHS, ZeroLHS;
3313     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3314                                    Depth + 1))
3315       return true;
3316 
3317     KnownZero = ZeroLHS & ZeroRHS;
3318     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3319 
3320     // Attempt to avoid multi-use ops if we don't need anything from them.
3321     // TODO - use KnownUndef to relax the demandedelts?
3322     if (!DemandedElts.isAllOnes())
3323       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3324         return true;
3325     break;
3326   }
3327   case ISD::SHL:
3328   case ISD::SRL:
3329   case ISD::SRA:
3330   case ISD::ROTL:
3331   case ISD::ROTR: {
3332     SDValue Op0 = Op.getOperand(0);
3333     SDValue Op1 = Op.getOperand(1);
3334 
3335     APInt UndefRHS, ZeroRHS;
3336     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3337                                    Depth + 1))
3338       return true;
3339     APInt UndefLHS, ZeroLHS;
3340     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3341                                    Depth + 1))
3342       return true;
3343 
3344     KnownZero = ZeroLHS;
3345     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3346 
3347     // Attempt to avoid multi-use ops if we don't need anything from them.
3348     // TODO - use KnownUndef to relax the demandedelts?
3349     if (!DemandedElts.isAllOnes())
3350       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3351         return true;
3352     break;
3353   }
3354   case ISD::MUL:
3355   case ISD::AND: {
3356     SDValue Op0 = Op.getOperand(0);
3357     SDValue Op1 = Op.getOperand(1);
3358 
3359     APInt SrcUndef, SrcZero;
3360     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3361                                    Depth + 1))
3362       return true;
3363     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3364                                    TLO, Depth + 1))
3365       return true;
3366 
3367     // If either side has a zero element, then the result element is zero, even
3368     // if the other is an UNDEF.
3369     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3370     // and then handle 'and' nodes with the rest of the binop opcodes.
3371     KnownZero |= SrcZero;
3372     KnownUndef &= SrcUndef;
3373     KnownUndef &= ~KnownZero;
3374 
3375     // Attempt to avoid multi-use ops if we don't need anything from them.
3376     // TODO - use KnownUndef to relax the demandedelts?
3377     if (!DemandedElts.isAllOnes())
3378       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3379         return true;
3380     break;
3381   }
3382   case ISD::TRUNCATE:
3383   case ISD::SIGN_EXTEND:
3384   case ISD::ZERO_EXTEND:
3385     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3386                                    KnownZero, TLO, Depth + 1))
3387       return true;
3388 
3389     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3390       // zext(undef) upper bits are guaranteed to be zero.
3391       if (DemandedElts.isSubsetOf(KnownUndef))
3392         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3393       KnownUndef.clearAllBits();
3394     }
3395     break;
3396   default: {
3397     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3398       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3399                                                   KnownZero, TLO, Depth))
3400         return true;
3401     } else {
3402       KnownBits Known;
3403       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3404       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3405                                TLO, Depth, AssumeSingleUse))
3406         return true;
3407     }
3408     break;
3409   }
3410   }
3411   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3412 
3413   // Constant fold all undef cases.
3414   // TODO: Handle zero cases as well.
3415   if (DemandedElts.isSubsetOf(KnownUndef))
3416     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3417 
3418   return false;
3419 }
3420 
3421 /// Determine which of the bits specified in Mask are known to be either zero or
3422 /// one and return them in the Known.
3423 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3424                                                    KnownBits &Known,
3425                                                    const APInt &DemandedElts,
3426                                                    const SelectionDAG &DAG,
3427                                                    unsigned Depth) const {
3428   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3429           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3430           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3431           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3432          "Should use MaskedValueIsZero if you don't know whether Op"
3433          " is a target node!");
3434   Known.resetAll();
3435 }
3436 
3437 void TargetLowering::computeKnownBitsForTargetInstr(
3438     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3439     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3440     unsigned Depth) const {
3441   Known.resetAll();
3442 }
3443 
3444 void TargetLowering::computeKnownBitsForFrameIndex(
3445   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3446   // The low bits are known zero if the pointer is aligned.
3447   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3448 }
3449 
3450 Align TargetLowering::computeKnownAlignForTargetInstr(
3451   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3452   unsigned Depth) const {
3453   return Align(1);
3454 }
3455 
3456 /// This method can be implemented by targets that want to expose additional
3457 /// information about sign bits to the DAG Combiner.
3458 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3459                                                          const APInt &,
3460                                                          const SelectionDAG &,
3461                                                          unsigned Depth) const {
3462   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3463           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3464           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3465           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3466          "Should use ComputeNumSignBits if you don't know whether Op"
3467          " is a target node!");
3468   return 1;
3469 }
3470 
3471 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3472   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3473   const MachineRegisterInfo &MRI, unsigned Depth) const {
3474   return 1;
3475 }
3476 
3477 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3478     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3479     TargetLoweringOpt &TLO, unsigned Depth) const {
3480   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3481           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3482           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3483           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3484          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3485          " is a target node!");
3486   return false;
3487 }
3488 
3489 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3490     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3491     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3492   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3493           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3494           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3495           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3496          "Should use SimplifyDemandedBits if you don't know whether Op"
3497          " is a target node!");
3498   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3499   return false;
3500 }
3501 
3502 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3503     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3504     SelectionDAG &DAG, unsigned Depth) const {
3505   assert(
3506       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3507        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3508        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3509        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3510       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3511       " is a target node!");
3512   return SDValue();
3513 }
3514 
3515 SDValue
3516 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3517                                         SDValue N1, MutableArrayRef<int> Mask,
3518                                         SelectionDAG &DAG) const {
3519   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3520   if (!LegalMask) {
3521     std::swap(N0, N1);
3522     ShuffleVectorSDNode::commuteMask(Mask);
3523     LegalMask = isShuffleMaskLegal(Mask, VT);
3524   }
3525 
3526   if (!LegalMask)
3527     return SDValue();
3528 
3529   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3530 }
3531 
3532 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3533   return nullptr;
3534 }
3535 
3536 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3537     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3538     bool PoisonOnly, unsigned Depth) const {
3539   assert(
3540       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3541        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3542        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3543        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3544       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3545       " is a target node!");
3546   return false;
3547 }
3548 
3549 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3550                                                   const SelectionDAG &DAG,
3551                                                   bool SNaN,
3552                                                   unsigned Depth) const {
3553   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3554           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3555           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3556           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3557          "Should use isKnownNeverNaN if you don't know whether Op"
3558          " is a target node!");
3559   return false;
3560 }
3561 
3562 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3563                                                const APInt &DemandedElts,
3564                                                APInt &UndefElts,
3565                                                unsigned Depth) const {
3566   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3567           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3568           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3569           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3570          "Should use isSplatValue if you don't know whether Op"
3571          " is a target node!");
3572   return false;
3573 }
3574 
3575 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3576 // work with truncating build vectors and vectors with elements of less than
3577 // 8 bits.
3578 bool TargetLowering::isConstTrueVal(SDValue N) const {
3579   if (!N)
3580     return false;
3581 
3582   unsigned EltWidth;
3583   APInt CVal;
3584   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3585                                                /*AllowTruncation=*/true)) {
3586     CVal = CN->getAPIntValue();
3587     EltWidth = N.getValueType().getScalarSizeInBits();
3588   } else
3589     return false;
3590 
3591   // If this is a truncating splat, truncate the splat value.
3592   // Otherwise, we may fail to match the expected values below.
3593   if (EltWidth < CVal.getBitWidth())
3594     CVal = CVal.trunc(EltWidth);
3595 
3596   switch (getBooleanContents(N.getValueType())) {
3597   case UndefinedBooleanContent:
3598     return CVal[0];
3599   case ZeroOrOneBooleanContent:
3600     return CVal.isOne();
3601   case ZeroOrNegativeOneBooleanContent:
3602     return CVal.isAllOnes();
3603   }
3604 
3605   llvm_unreachable("Invalid boolean contents");
3606 }
3607 
3608 bool TargetLowering::isConstFalseVal(SDValue N) const {
3609   if (!N)
3610     return false;
3611 
3612   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3613   if (!CN) {
3614     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3615     if (!BV)
3616       return false;
3617 
3618     // Only interested in constant splats, we don't care about undef
3619     // elements in identifying boolean constants and getConstantSplatNode
3620     // returns NULL if all ops are undef;
3621     CN = BV->getConstantSplatNode();
3622     if (!CN)
3623       return false;
3624   }
3625 
3626   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3627     return !CN->getAPIntValue()[0];
3628 
3629   return CN->isZero();
3630 }
3631 
3632 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3633                                        bool SExt) const {
3634   if (VT == MVT::i1)
3635     return N->isOne();
3636 
3637   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3638   switch (Cnt) {
3639   case TargetLowering::ZeroOrOneBooleanContent:
3640     // An extended value of 1 is always true, unless its original type is i1,
3641     // in which case it will be sign extended to -1.
3642     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3643   case TargetLowering::UndefinedBooleanContent:
3644   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3645     return N->isAllOnes() && SExt;
3646   }
3647   llvm_unreachable("Unexpected enumeration.");
3648 }
3649 
3650 /// This helper function of SimplifySetCC tries to optimize the comparison when
3651 /// either operand of the SetCC node is a bitwise-and instruction.
3652 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3653                                          ISD::CondCode Cond, const SDLoc &DL,
3654                                          DAGCombinerInfo &DCI) const {
3655   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3656     std::swap(N0, N1);
3657 
3658   SelectionDAG &DAG = DCI.DAG;
3659   EVT OpVT = N0.getValueType();
3660   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3661       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3662     return SDValue();
3663 
3664   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3665   // iff everything but LSB is known zero:
3666   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3667       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3668        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3669     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3670     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3671     if (DAG.MaskedValueIsZero(N0, UpperBits))
3672       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3673   }
3674 
3675   // Match these patterns in any of their permutations:
3676   // (X & Y) == Y
3677   // (X & Y) != Y
3678   SDValue X, Y;
3679   if (N0.getOperand(0) == N1) {
3680     X = N0.getOperand(1);
3681     Y = N0.getOperand(0);
3682   } else if (N0.getOperand(1) == N1) {
3683     X = N0.getOperand(0);
3684     Y = N0.getOperand(1);
3685   } else {
3686     return SDValue();
3687   }
3688 
3689   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3690   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3691     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3692     // Note that where Y is variable and is known to have at most one bit set
3693     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3694     // equivalent when Y == 0.
3695     assert(OpVT.isInteger());
3696     Cond = ISD::getSetCCInverse(Cond, OpVT);
3697     if (DCI.isBeforeLegalizeOps() ||
3698         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3699       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3700   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3701     // If the target supports an 'and-not' or 'and-complement' logic operation,
3702     // try to use that to make a comparison operation more efficient.
3703     // But don't do this transform if the mask is a single bit because there are
3704     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3705     // 'rlwinm' on PPC).
3706 
3707     // Bail out if the compare operand that we want to turn into a zero is
3708     // already a zero (otherwise, infinite loop).
3709     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3710     if (YConst && YConst->isZero())
3711       return SDValue();
3712 
3713     // Transform this into: ~X & Y == 0.
3714     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3715     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3716     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3717   }
3718 
3719   return SDValue();
3720 }
3721 
3722 /// There are multiple IR patterns that could be checking whether certain
3723 /// truncation of a signed number would be lossy or not. The pattern which is
3724 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3725 /// We are looking for the following pattern: (KeptBits is a constant)
3726 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3727 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3728 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3729 /// We will unfold it into the natural trunc+sext pattern:
3730 ///   ((%x << C) a>> C) dstcond %x
3731 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3732 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3733     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3734     const SDLoc &DL) const {
3735   // We must be comparing with a constant.
3736   ConstantSDNode *C1;
3737   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3738     return SDValue();
3739 
3740   // N0 should be:  add %x, (1 << (KeptBits-1))
3741   if (N0->getOpcode() != ISD::ADD)
3742     return SDValue();
3743 
3744   // And we must be 'add'ing a constant.
3745   ConstantSDNode *C01;
3746   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3747     return SDValue();
3748 
3749   SDValue X = N0->getOperand(0);
3750   EVT XVT = X.getValueType();
3751 
3752   // Validate constants ...
3753 
3754   APInt I1 = C1->getAPIntValue();
3755 
3756   ISD::CondCode NewCond;
3757   if (Cond == ISD::CondCode::SETULT) {
3758     NewCond = ISD::CondCode::SETEQ;
3759   } else if (Cond == ISD::CondCode::SETULE) {
3760     NewCond = ISD::CondCode::SETEQ;
3761     // But need to 'canonicalize' the constant.
3762     I1 += 1;
3763   } else if (Cond == ISD::CondCode::SETUGT) {
3764     NewCond = ISD::CondCode::SETNE;
3765     // But need to 'canonicalize' the constant.
3766     I1 += 1;
3767   } else if (Cond == ISD::CondCode::SETUGE) {
3768     NewCond = ISD::CondCode::SETNE;
3769   } else
3770     return SDValue();
3771 
3772   APInt I01 = C01->getAPIntValue();
3773 
3774   auto checkConstants = [&I1, &I01]() -> bool {
3775     // Both of them must be power-of-two, and the constant from setcc is bigger.
3776     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3777   };
3778 
3779   if (checkConstants()) {
3780     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3781   } else {
3782     // What if we invert constants? (and the target predicate)
3783     I1.negate();
3784     I01.negate();
3785     assert(XVT.isInteger());
3786     NewCond = getSetCCInverse(NewCond, XVT);
3787     if (!checkConstants())
3788       return SDValue();
3789     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3790   }
3791 
3792   // They are power-of-two, so which bit is set?
3793   const unsigned KeptBits = I1.logBase2();
3794   const unsigned KeptBitsMinusOne = I01.logBase2();
3795 
3796   // Magic!
3797   if (KeptBits != (KeptBitsMinusOne + 1))
3798     return SDValue();
3799   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3800 
3801   // We don't want to do this in every single case.
3802   SelectionDAG &DAG = DCI.DAG;
3803   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3804           XVT, KeptBits))
3805     return SDValue();
3806 
3807   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3808   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3809 
3810   // Unfold into:  ((%x << C) a>> C) cond %x
3811   // Where 'cond' will be either 'eq' or 'ne'.
3812   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3813   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3814   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3815   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3816 
3817   return T2;
3818 }
3819 
3820 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3821 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3822     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3823     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3824   assert(isConstOrConstSplat(N1C) &&
3825          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3826          "Should be a comparison with 0.");
3827   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3828          "Valid only for [in]equality comparisons.");
3829 
3830   unsigned NewShiftOpcode;
3831   SDValue X, C, Y;
3832 
3833   SelectionDAG &DAG = DCI.DAG;
3834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3835 
3836   // Look for '(C l>>/<< Y)'.
3837   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3838     // The shift should be one-use.
3839     if (!V.hasOneUse())
3840       return false;
3841     unsigned OldShiftOpcode = V.getOpcode();
3842     switch (OldShiftOpcode) {
3843     case ISD::SHL:
3844       NewShiftOpcode = ISD::SRL;
3845       break;
3846     case ISD::SRL:
3847       NewShiftOpcode = ISD::SHL;
3848       break;
3849     default:
3850       return false; // must be a logical shift.
3851     }
3852     // We should be shifting a constant.
3853     // FIXME: best to use isConstantOrConstantVector().
3854     C = V.getOperand(0);
3855     ConstantSDNode *CC =
3856         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3857     if (!CC)
3858       return false;
3859     Y = V.getOperand(1);
3860 
3861     ConstantSDNode *XC =
3862         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3863     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3864         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3865   };
3866 
3867   // LHS of comparison should be an one-use 'and'.
3868   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3869     return SDValue();
3870 
3871   X = N0.getOperand(0);
3872   SDValue Mask = N0.getOperand(1);
3873 
3874   // 'and' is commutative!
3875   if (!Match(Mask)) {
3876     std::swap(X, Mask);
3877     if (!Match(Mask))
3878       return SDValue();
3879   }
3880 
3881   EVT VT = X.getValueType();
3882 
3883   // Produce:
3884   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3885   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3886   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3887   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3888   return T2;
3889 }
3890 
3891 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3892 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3893 /// handle the commuted versions of these patterns.
3894 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3895                                            ISD::CondCode Cond, const SDLoc &DL,
3896                                            DAGCombinerInfo &DCI) const {
3897   unsigned BOpcode = N0.getOpcode();
3898   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3899          "Unexpected binop");
3900   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3901 
3902   // (X + Y) == X --> Y == 0
3903   // (X - Y) == X --> Y == 0
3904   // (X ^ Y) == X --> Y == 0
3905   SelectionDAG &DAG = DCI.DAG;
3906   EVT OpVT = N0.getValueType();
3907   SDValue X = N0.getOperand(0);
3908   SDValue Y = N0.getOperand(1);
3909   if (X == N1)
3910     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3911 
3912   if (Y != N1)
3913     return SDValue();
3914 
3915   // (X + Y) == Y --> X == 0
3916   // (X ^ Y) == Y --> X == 0
3917   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3918     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3919 
3920   // The shift would not be valid if the operands are boolean (i1).
3921   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3922     return SDValue();
3923 
3924   // (X - Y) == Y --> X == Y << 1
3925   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3926                                  !DCI.isBeforeLegalize());
3927   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3928   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3929   if (!DCI.isCalledByLegalizer())
3930     DCI.AddToWorklist(YShl1.getNode());
3931   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3932 }
3933 
3934 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3935                                       SDValue N0, const APInt &C1,
3936                                       ISD::CondCode Cond, const SDLoc &dl,
3937                                       SelectionDAG &DAG) {
3938   // Look through truncs that don't change the value of a ctpop.
3939   // FIXME: Add vector support? Need to be careful with setcc result type below.
3940   SDValue CTPOP = N0;
3941   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3942       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3943     CTPOP = N0.getOperand(0);
3944 
3945   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3946     return SDValue();
3947 
3948   EVT CTVT = CTPOP.getValueType();
3949   SDValue CTOp = CTPOP.getOperand(0);
3950 
3951   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3952   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3953   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3954     return SDValue();
3955 
3956   // (ctpop x) u< 2 -> (x & x-1) == 0
3957   // (ctpop x) u> 1 -> (x & x-1) != 0
3958   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3959     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3960     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3961       return SDValue();
3962     if (C1 == 0 && (Cond == ISD::SETULT))
3963       return SDValue(); // This is handled elsewhere.
3964 
3965     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3966 
3967     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3968     SDValue Result = CTOp;
3969     for (unsigned i = 0; i < Passes; i++) {
3970       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3971       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3972     }
3973     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3974     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3975   }
3976 
3977   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3978   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3979     // For scalars, keep CTPOP if it is legal or custom.
3980     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3981       return SDValue();
3982     // This is based on X86's custom lowering for CTPOP which produces more
3983     // instructions than the expansion here.
3984 
3985     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3986     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3987     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3988     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3989     assert(CTVT.isInteger());
3990     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3991     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3992     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3993     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3994     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3995     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3996     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3997   }
3998 
3999   return SDValue();
4000 }
4001 
4002 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4003                                    ISD::CondCode Cond, const SDLoc &dl,
4004                                    SelectionDAG &DAG) {
4005   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4006     return SDValue();
4007 
4008   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4009   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4010     return SDValue();
4011 
4012   auto getRotateSource = [](SDValue X) {
4013     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4014       return X.getOperand(0);
4015     return SDValue();
4016   };
4017 
4018   // Peek through a rotated value compared against 0 or -1:
4019   // (rot X, Y) == 0/-1 --> X == 0/-1
4020   // (rot X, Y) != 0/-1 --> X != 0/-1
4021   if (SDValue R = getRotateSource(N0))
4022     return DAG.getSetCC(dl, VT, R, N1, Cond);
4023 
4024   // Peek through an 'or' of a rotated value compared against 0:
4025   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4026   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4027   //
4028   // TODO: Add the 'and' with -1 sibling.
4029   // TODO: Recurse through a series of 'or' ops to find the rotate.
4030   EVT OpVT = N0.getValueType();
4031   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4032     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4033       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4034       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4035     }
4036     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4037       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4038       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4039     }
4040   }
4041 
4042   return SDValue();
4043 }
4044 
4045 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4046                                         ISD::CondCode Cond, const SDLoc &dl,
4047                                         SelectionDAG &DAG) {
4048   // If we are testing for all-bits-clear, we might be able to do that with
4049   // less shifting since bit-order does not matter.
4050   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4051     return SDValue();
4052 
4053   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4054   if (!C1 || !C1->isZero())
4055     return SDValue();
4056 
4057   if (!N0.hasOneUse() ||
4058       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4059     return SDValue();
4060 
4061   unsigned BitWidth = N0.getScalarValueSizeInBits();
4062   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4063   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4064     return SDValue();
4065 
4066   // Canonicalize fshr as fshl to reduce pattern-matching.
4067   unsigned ShAmt = ShAmtC->getZExtValue();
4068   if (N0.getOpcode() == ISD::FSHR)
4069     ShAmt = BitWidth - ShAmt;
4070 
4071   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4072   SDValue X, Y;
4073   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4074     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4075       return false;
4076     if (Or.getOperand(0) == Other) {
4077       X = Or.getOperand(0);
4078       Y = Or.getOperand(1);
4079       return true;
4080     }
4081     if (Or.getOperand(1) == Other) {
4082       X = Or.getOperand(1);
4083       Y = Or.getOperand(0);
4084       return true;
4085     }
4086     return false;
4087   };
4088 
4089   EVT OpVT = N0.getValueType();
4090   EVT ShAmtVT = N0.getOperand(2).getValueType();
4091   SDValue F0 = N0.getOperand(0);
4092   SDValue F1 = N0.getOperand(1);
4093   if (matchOr(F0, F1)) {
4094     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4095     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4096     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4097     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4098     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4099   }
4100   if (matchOr(F1, F0)) {
4101     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4102     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4103     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4104     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4105     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4106   }
4107 
4108   return SDValue();
4109 }
4110 
4111 /// Try to simplify a setcc built with the specified operands and cc. If it is
4112 /// unable to simplify it, return a null SDValue.
4113 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4114                                       ISD::CondCode Cond, bool foldBooleans,
4115                                       DAGCombinerInfo &DCI,
4116                                       const SDLoc &dl) const {
4117   SelectionDAG &DAG = DCI.DAG;
4118   const DataLayout &Layout = DAG.getDataLayout();
4119   EVT OpVT = N0.getValueType();
4120 
4121   // Constant fold or commute setcc.
4122   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4123     return Fold;
4124 
4125   bool N0ConstOrSplat =
4126       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4127   bool N1ConstOrSplat =
4128       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4129 
4130   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4131   // TODO: Handle non-splat vector constants. All undef causes trouble.
4132   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4133   // infinite loop here when we encounter one.
4134   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4135   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4136       (DCI.isBeforeLegalizeOps() ||
4137        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4138     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4139 
4140   // If we have a subtract with the same 2 non-constant operands as this setcc
4141   // -- but in reverse order -- then try to commute the operands of this setcc
4142   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4143   // instruction on some targets.
4144   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4145       (DCI.isBeforeLegalizeOps() ||
4146        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4147       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4148       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4149     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4150 
4151   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4152     return V;
4153 
4154   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4155     return V;
4156 
4157   if (auto *N1C = isConstOrConstSplat(N1)) {
4158     const APInt &C1 = N1C->getAPIntValue();
4159 
4160     // Optimize some CTPOP cases.
4161     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4162       return V;
4163 
4164     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4165     // equality comparison, then we're just comparing whether X itself is
4166     // zero.
4167     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4168         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4169         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4170       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4171         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4172             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4173           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4174             // (srl (ctlz x), 5) == 0  -> X != 0
4175             // (srl (ctlz x), 5) != 1  -> X != 0
4176             Cond = ISD::SETNE;
4177           } else {
4178             // (srl (ctlz x), 5) != 0  -> X == 0
4179             // (srl (ctlz x), 5) == 1  -> X == 0
4180             Cond = ISD::SETEQ;
4181           }
4182           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4183           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4184                               Cond);
4185         }
4186       }
4187     }
4188   }
4189 
4190   // FIXME: Support vectors.
4191   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4192     const APInt &C1 = N1C->getAPIntValue();
4193 
4194     // (zext x) == C --> x == (trunc C)
4195     // (sext x) == C --> x == (trunc C)
4196     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4197         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4198       unsigned MinBits = N0.getValueSizeInBits();
4199       SDValue PreExt;
4200       bool Signed = false;
4201       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4202         // ZExt
4203         MinBits = N0->getOperand(0).getValueSizeInBits();
4204         PreExt = N0->getOperand(0);
4205       } else if (N0->getOpcode() == ISD::AND) {
4206         // DAGCombine turns costly ZExts into ANDs
4207         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4208           if ((C->getAPIntValue()+1).isPowerOf2()) {
4209             MinBits = C->getAPIntValue().countTrailingOnes();
4210             PreExt = N0->getOperand(0);
4211           }
4212       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4213         // SExt
4214         MinBits = N0->getOperand(0).getValueSizeInBits();
4215         PreExt = N0->getOperand(0);
4216         Signed = true;
4217       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4218         // ZEXTLOAD / SEXTLOAD
4219         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4220           MinBits = LN0->getMemoryVT().getSizeInBits();
4221           PreExt = N0;
4222         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4223           Signed = true;
4224           MinBits = LN0->getMemoryVT().getSizeInBits();
4225           PreExt = N0;
4226         }
4227       }
4228 
4229       // Figure out how many bits we need to preserve this constant.
4230       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4231 
4232       // Make sure we're not losing bits from the constant.
4233       if (MinBits > 0 &&
4234           MinBits < C1.getBitWidth() &&
4235           MinBits >= ReqdBits) {
4236         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4237         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4238           // Will get folded away.
4239           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4240           if (MinBits == 1 && C1 == 1)
4241             // Invert the condition.
4242             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4243                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4244           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4245           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4246         }
4247 
4248         // If truncating the setcc operands is not desirable, we can still
4249         // simplify the expression in some cases:
4250         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4251         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4252         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4253         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4254         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4255         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4256         SDValue TopSetCC = N0->getOperand(0);
4257         unsigned N0Opc = N0->getOpcode();
4258         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4259         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4260             TopSetCC.getOpcode() == ISD::SETCC &&
4261             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4262             (isConstFalseVal(N1) ||
4263              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4264 
4265           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4266                          (!N1C->isZero() && Cond == ISD::SETNE);
4267 
4268           if (!Inverse)
4269             return TopSetCC;
4270 
4271           ISD::CondCode InvCond = ISD::getSetCCInverse(
4272               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4273               TopSetCC.getOperand(0).getValueType());
4274           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4275                                       TopSetCC.getOperand(1),
4276                                       InvCond);
4277         }
4278       }
4279     }
4280 
4281     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4282     // equality or unsigned, and all 1 bits of the const are in the same
4283     // partial word, see if we can shorten the load.
4284     if (DCI.isBeforeLegalize() &&
4285         !ISD::isSignedIntSetCC(Cond) &&
4286         N0.getOpcode() == ISD::AND && C1 == 0 &&
4287         N0.getNode()->hasOneUse() &&
4288         isa<LoadSDNode>(N0.getOperand(0)) &&
4289         N0.getOperand(0).getNode()->hasOneUse() &&
4290         isa<ConstantSDNode>(N0.getOperand(1))) {
4291       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4292       APInt bestMask;
4293       unsigned bestWidth = 0, bestOffset = 0;
4294       if (Lod->isSimple() && Lod->isUnindexed()) {
4295         unsigned origWidth = N0.getValueSizeInBits();
4296         unsigned maskWidth = origWidth;
4297         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4298         // 8 bits, but have to be careful...
4299         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4300           origWidth = Lod->getMemoryVT().getSizeInBits();
4301         const APInt &Mask = N0.getConstantOperandAPInt(1);
4302         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4303           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4304           for (unsigned offset=0; offset<origWidth/width; offset++) {
4305             if (Mask.isSubsetOf(newMask)) {
4306               if (Layout.isLittleEndian())
4307                 bestOffset = (uint64_t)offset * (width/8);
4308               else
4309                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4310               bestMask = Mask.lshr(offset * (width/8) * 8);
4311               bestWidth = width;
4312               break;
4313             }
4314             newMask <<= width;
4315           }
4316         }
4317       }
4318       if (bestWidth) {
4319         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4320         if (newVT.isRound() &&
4321             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4322           SDValue Ptr = Lod->getBasePtr();
4323           if (bestOffset != 0)
4324             Ptr =
4325                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4326           SDValue NewLoad =
4327               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4328                           Lod->getPointerInfo().getWithOffset(bestOffset),
4329                           Lod->getOriginalAlign());
4330           return DAG.getSetCC(dl, VT,
4331                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4332                                       DAG.getConstant(bestMask.trunc(bestWidth),
4333                                                       dl, newVT)),
4334                               DAG.getConstant(0LL, dl, newVT), Cond);
4335         }
4336       }
4337     }
4338 
4339     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4340     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4341       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4342 
4343       // If the comparison constant has bits in the upper part, the
4344       // zero-extended value could never match.
4345       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4346                                               C1.getBitWidth() - InSize))) {
4347         switch (Cond) {
4348         case ISD::SETUGT:
4349         case ISD::SETUGE:
4350         case ISD::SETEQ:
4351           return DAG.getConstant(0, dl, VT);
4352         case ISD::SETULT:
4353         case ISD::SETULE:
4354         case ISD::SETNE:
4355           return DAG.getConstant(1, dl, VT);
4356         case ISD::SETGT:
4357         case ISD::SETGE:
4358           // True if the sign bit of C1 is set.
4359           return DAG.getConstant(C1.isNegative(), dl, VT);
4360         case ISD::SETLT:
4361         case ISD::SETLE:
4362           // True if the sign bit of C1 isn't set.
4363           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4364         default:
4365           break;
4366         }
4367       }
4368 
4369       // Otherwise, we can perform the comparison with the low bits.
4370       switch (Cond) {
4371       case ISD::SETEQ:
4372       case ISD::SETNE:
4373       case ISD::SETUGT:
4374       case ISD::SETUGE:
4375       case ISD::SETULT:
4376       case ISD::SETULE: {
4377         EVT newVT = N0.getOperand(0).getValueType();
4378         if (DCI.isBeforeLegalizeOps() ||
4379             (isOperationLegal(ISD::SETCC, newVT) &&
4380              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4381           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4382           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4383 
4384           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4385                                           NewConst, Cond);
4386           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4387         }
4388         break;
4389       }
4390       default:
4391         break; // todo, be more careful with signed comparisons
4392       }
4393     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4394                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4395                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4396                                       OpVT)) {
4397       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4398       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4399       EVT ExtDstTy = N0.getValueType();
4400       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4401 
4402       // If the constant doesn't fit into the number of bits for the source of
4403       // the sign extension, it is impossible for both sides to be equal.
4404       if (C1.getMinSignedBits() > ExtSrcTyBits)
4405         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4406 
4407       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4408              ExtDstTy != ExtSrcTy && "Unexpected types!");
4409       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4410       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4411                                    DAG.getConstant(Imm, dl, ExtDstTy));
4412       if (!DCI.isCalledByLegalizer())
4413         DCI.AddToWorklist(ZextOp.getNode());
4414       // Otherwise, make this a use of a zext.
4415       return DAG.getSetCC(dl, VT, ZextOp,
4416                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4417     } else if ((N1C->isZero() || N1C->isOne()) &&
4418                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4419       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4420       if (N0.getOpcode() == ISD::SETCC &&
4421           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4422           (N0.getValueType() == MVT::i1 ||
4423            getBooleanContents(N0.getOperand(0).getValueType()) ==
4424                        ZeroOrOneBooleanContent)) {
4425         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4426         if (TrueWhenTrue)
4427           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4428         // Invert the condition.
4429         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4430         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4431         if (DCI.isBeforeLegalizeOps() ||
4432             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4433           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4434       }
4435 
4436       if ((N0.getOpcode() == ISD::XOR ||
4437            (N0.getOpcode() == ISD::AND &&
4438             N0.getOperand(0).getOpcode() == ISD::XOR &&
4439             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4440           isOneConstant(N0.getOperand(1))) {
4441         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4442         // can only do this if the top bits are known zero.
4443         unsigned BitWidth = N0.getValueSizeInBits();
4444         if (DAG.MaskedValueIsZero(N0,
4445                                   APInt::getHighBitsSet(BitWidth,
4446                                                         BitWidth-1))) {
4447           // Okay, get the un-inverted input value.
4448           SDValue Val;
4449           if (N0.getOpcode() == ISD::XOR) {
4450             Val = N0.getOperand(0);
4451           } else {
4452             assert(N0.getOpcode() == ISD::AND &&
4453                     N0.getOperand(0).getOpcode() == ISD::XOR);
4454             // ((X^1)&1)^1 -> X & 1
4455             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4456                               N0.getOperand(0).getOperand(0),
4457                               N0.getOperand(1));
4458           }
4459 
4460           return DAG.getSetCC(dl, VT, Val, N1,
4461                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4462         }
4463       } else if (N1C->isOne()) {
4464         SDValue Op0 = N0;
4465         if (Op0.getOpcode() == ISD::TRUNCATE)
4466           Op0 = Op0.getOperand(0);
4467 
4468         if ((Op0.getOpcode() == ISD::XOR) &&
4469             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4470             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4471           SDValue XorLHS = Op0.getOperand(0);
4472           SDValue XorRHS = Op0.getOperand(1);
4473           // Ensure that the input setccs return an i1 type or 0/1 value.
4474           if (Op0.getValueType() == MVT::i1 ||
4475               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4476                       ZeroOrOneBooleanContent &&
4477                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4478                         ZeroOrOneBooleanContent)) {
4479             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4480             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4481             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4482           }
4483         }
4484         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4485           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4486           if (Op0.getValueType().bitsGT(VT))
4487             Op0 = DAG.getNode(ISD::AND, dl, VT,
4488                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4489                           DAG.getConstant(1, dl, VT));
4490           else if (Op0.getValueType().bitsLT(VT))
4491             Op0 = DAG.getNode(ISD::AND, dl, VT,
4492                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4493                         DAG.getConstant(1, dl, VT));
4494 
4495           return DAG.getSetCC(dl, VT, Op0,
4496                               DAG.getConstant(0, dl, Op0.getValueType()),
4497                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4498         }
4499         if (Op0.getOpcode() == ISD::AssertZext &&
4500             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4501           return DAG.getSetCC(dl, VT, Op0,
4502                               DAG.getConstant(0, dl, Op0.getValueType()),
4503                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4504       }
4505     }
4506 
4507     // Given:
4508     //   icmp eq/ne (urem %x, %y), 0
4509     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4510     //   icmp eq/ne %x, 0
4511     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4512         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4513       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4514       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4515       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4516         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4517     }
4518 
4519     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4520     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4521     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4522         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4523         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4524         N1C && N1C->isAllOnes()) {
4525       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4526                           DAG.getConstant(0, dl, OpVT),
4527                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4528     }
4529 
4530     if (SDValue V =
4531             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4532       return V;
4533   }
4534 
4535   // These simplifications apply to splat vectors as well.
4536   // TODO: Handle more splat vector cases.
4537   if (auto *N1C = isConstOrConstSplat(N1)) {
4538     const APInt &C1 = N1C->getAPIntValue();
4539 
4540     APInt MinVal, MaxVal;
4541     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4542     if (ISD::isSignedIntSetCC(Cond)) {
4543       MinVal = APInt::getSignedMinValue(OperandBitSize);
4544       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4545     } else {
4546       MinVal = APInt::getMinValue(OperandBitSize);
4547       MaxVal = APInt::getMaxValue(OperandBitSize);
4548     }
4549 
4550     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4551     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4552       // X >= MIN --> true
4553       if (C1 == MinVal)
4554         return DAG.getBoolConstant(true, dl, VT, OpVT);
4555 
4556       if (!VT.isVector()) { // TODO: Support this for vectors.
4557         // X >= C0 --> X > (C0 - 1)
4558         APInt C = C1 - 1;
4559         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4560         if ((DCI.isBeforeLegalizeOps() ||
4561              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4562             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4563                                   isLegalICmpImmediate(C.getSExtValue())))) {
4564           return DAG.getSetCC(dl, VT, N0,
4565                               DAG.getConstant(C, dl, N1.getValueType()),
4566                               NewCC);
4567         }
4568       }
4569     }
4570 
4571     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4572       // X <= MAX --> true
4573       if (C1 == MaxVal)
4574         return DAG.getBoolConstant(true, dl, VT, OpVT);
4575 
4576       // X <= C0 --> X < (C0 + 1)
4577       if (!VT.isVector()) { // TODO: Support this for vectors.
4578         APInt C = C1 + 1;
4579         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4580         if ((DCI.isBeforeLegalizeOps() ||
4581              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4582             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4583                                   isLegalICmpImmediate(C.getSExtValue())))) {
4584           return DAG.getSetCC(dl, VT, N0,
4585                               DAG.getConstant(C, dl, N1.getValueType()),
4586                               NewCC);
4587         }
4588       }
4589     }
4590 
4591     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4592       if (C1 == MinVal)
4593         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4594 
4595       // TODO: Support this for vectors after legalize ops.
4596       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4597         // Canonicalize setlt X, Max --> setne X, Max
4598         if (C1 == MaxVal)
4599           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4600 
4601         // If we have setult X, 1, turn it into seteq X, 0
4602         if (C1 == MinVal+1)
4603           return DAG.getSetCC(dl, VT, N0,
4604                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4605                               ISD::SETEQ);
4606       }
4607     }
4608 
4609     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4610       if (C1 == MaxVal)
4611         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4612 
4613       // TODO: Support this for vectors after legalize ops.
4614       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4615         // Canonicalize setgt X, Min --> setne X, Min
4616         if (C1 == MinVal)
4617           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4618 
4619         // If we have setugt X, Max-1, turn it into seteq X, Max
4620         if (C1 == MaxVal-1)
4621           return DAG.getSetCC(dl, VT, N0,
4622                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4623                               ISD::SETEQ);
4624       }
4625     }
4626 
4627     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4628       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4629       if (C1.isZero())
4630         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4631                 VT, N0, N1, Cond, DCI, dl))
4632           return CC;
4633 
4634       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4635       // For example, when high 32-bits of i64 X are known clear:
4636       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4637       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4638       bool CmpZero = N1C->getAPIntValue().isZero();
4639       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4640       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4641         // Match or(lo,shl(hi,bw/2)) pattern.
4642         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4643           unsigned EltBits = V.getScalarValueSizeInBits();
4644           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4645             return false;
4646           SDValue LHS = V.getOperand(0);
4647           SDValue RHS = V.getOperand(1);
4648           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4649           // Unshifted element must have zero upperbits.
4650           if (RHS.getOpcode() == ISD::SHL &&
4651               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4652               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4653               DAG.MaskedValueIsZero(LHS, HiBits)) {
4654             Lo = LHS;
4655             Hi = RHS.getOperand(0);
4656             return true;
4657           }
4658           if (LHS.getOpcode() == ISD::SHL &&
4659               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4660               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4661               DAG.MaskedValueIsZero(RHS, HiBits)) {
4662             Lo = RHS;
4663             Hi = LHS.getOperand(0);
4664             return true;
4665           }
4666           return false;
4667         };
4668 
4669         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4670           unsigned EltBits = N0.getScalarValueSizeInBits();
4671           unsigned HalfBits = EltBits / 2;
4672           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4673           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4674           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4675           SDValue NewN0 =
4676               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4677           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4678           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4679         };
4680 
4681         SDValue Lo, Hi;
4682         if (IsConcat(N0, Lo, Hi))
4683           return MergeConcat(Lo, Hi);
4684 
4685         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4686           SDValue Lo0, Lo1, Hi0, Hi1;
4687           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4688               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4689             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4690                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4691           }
4692         }
4693       }
4694     }
4695 
4696     // If we have "setcc X, C0", check to see if we can shrink the immediate
4697     // by changing cc.
4698     // TODO: Support this for vectors after legalize ops.
4699     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4700       // SETUGT X, SINTMAX  -> SETLT X, 0
4701       // SETUGE X, SINTMIN -> SETLT X, 0
4702       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4703           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4704         return DAG.getSetCC(dl, VT, N0,
4705                             DAG.getConstant(0, dl, N1.getValueType()),
4706                             ISD::SETLT);
4707 
4708       // SETULT X, SINTMIN  -> SETGT X, -1
4709       // SETULE X, SINTMAX  -> SETGT X, -1
4710       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4711           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4712         return DAG.getSetCC(dl, VT, N0,
4713                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4714                             ISD::SETGT);
4715     }
4716   }
4717 
4718   // Back to non-vector simplifications.
4719   // TODO: Can we do these for vector splats?
4720   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4721     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722     const APInt &C1 = N1C->getAPIntValue();
4723     EVT ShValTy = N0.getValueType();
4724 
4725     // Fold bit comparisons when we can. This will result in an
4726     // incorrect value when boolean false is negative one, unless
4727     // the bitsize is 1 in which case the false value is the same
4728     // in practice regardless of the representation.
4729     if ((VT.getSizeInBits() == 1 ||
4730          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4731         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4732         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4733         N0.getOpcode() == ISD::AND) {
4734       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4735         EVT ShiftTy =
4736             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4737         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4738           // Perform the xform if the AND RHS is a single bit.
4739           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4740           if (AndRHS->getAPIntValue().isPowerOf2() &&
4741               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4742             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4743                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4744                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4745           }
4746         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4747           // (X & 8) == 8  -->  (X & 8) >> 3
4748           // Perform the xform if C1 is a single bit.
4749           unsigned ShCt = C1.logBase2();
4750           if (C1.isPowerOf2() &&
4751               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4752             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4753                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4754                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4755           }
4756         }
4757       }
4758     }
4759 
4760     if (C1.getMinSignedBits() <= 64 &&
4761         !isLegalICmpImmediate(C1.getSExtValue())) {
4762       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4763       // (X & -256) == 256 -> (X >> 8) == 1
4764       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4765           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4766         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4767           const APInt &AndRHSC = AndRHS->getAPIntValue();
4768           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4769             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4770             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4771               SDValue Shift =
4772                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4773                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4774               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4775               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4776             }
4777           }
4778         }
4779       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4780                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4781         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4782         // X <  0x100000000 -> (X >> 32) <  1
4783         // X >= 0x100000000 -> (X >> 32) >= 1
4784         // X <= 0x0ffffffff -> (X >> 32) <  1
4785         // X >  0x0ffffffff -> (X >> 32) >= 1
4786         unsigned ShiftBits;
4787         APInt NewC = C1;
4788         ISD::CondCode NewCond = Cond;
4789         if (AdjOne) {
4790           ShiftBits = C1.countTrailingOnes();
4791           NewC = NewC + 1;
4792           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4793         } else {
4794           ShiftBits = C1.countTrailingZeros();
4795         }
4796         NewC.lshrInPlace(ShiftBits);
4797         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4798             isLegalICmpImmediate(NewC.getSExtValue()) &&
4799             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4800           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4801                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4802           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4803           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4804         }
4805       }
4806     }
4807   }
4808 
4809   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4810     auto *CFP = cast<ConstantFPSDNode>(N1);
4811     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4812 
4813     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4814     // constant if knowing that the operand is non-nan is enough.  We prefer to
4815     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4816     // materialize 0.0.
4817     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4818       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4819 
4820     // setcc (fneg x), C -> setcc swap(pred) x, -C
4821     if (N0.getOpcode() == ISD::FNEG) {
4822       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4823       if (DCI.isBeforeLegalizeOps() ||
4824           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4825         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4826         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4827       }
4828     }
4829 
4830     // If the condition is not legal, see if we can find an equivalent one
4831     // which is legal.
4832     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4833       // If the comparison was an awkward floating-point == or != and one of
4834       // the comparison operands is infinity or negative infinity, convert the
4835       // condition to a less-awkward <= or >=.
4836       if (CFP->getValueAPF().isInfinity()) {
4837         bool IsNegInf = CFP->getValueAPF().isNegative();
4838         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4839         switch (Cond) {
4840         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4841         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4842         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4843         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4844         default: break;
4845         }
4846         if (NewCond != ISD::SETCC_INVALID &&
4847             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4848           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4849       }
4850     }
4851   }
4852 
4853   if (N0 == N1) {
4854     // The sext(setcc()) => setcc() optimization relies on the appropriate
4855     // constant being emitted.
4856     assert(!N0.getValueType().isInteger() &&
4857            "Integer types should be handled by FoldSetCC");
4858 
4859     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4860     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4861     if (UOF == 2) // FP operators that are undefined on NaNs.
4862       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4863     if (UOF == unsigned(EqTrue))
4864       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4865     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4866     // if it is not already.
4867     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4868     if (NewCond != Cond &&
4869         (DCI.isBeforeLegalizeOps() ||
4870                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4871       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4872   }
4873 
4874   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4875       N0.getValueType().isInteger()) {
4876     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4877         N0.getOpcode() == ISD::XOR) {
4878       // Simplify (X+Y) == (X+Z) -->  Y == Z
4879       if (N0.getOpcode() == N1.getOpcode()) {
4880         if (N0.getOperand(0) == N1.getOperand(0))
4881           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4882         if (N0.getOperand(1) == N1.getOperand(1))
4883           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4884         if (isCommutativeBinOp(N0.getOpcode())) {
4885           // If X op Y == Y op X, try other combinations.
4886           if (N0.getOperand(0) == N1.getOperand(1))
4887             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4888                                 Cond);
4889           if (N0.getOperand(1) == N1.getOperand(0))
4890             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4891                                 Cond);
4892         }
4893       }
4894 
4895       // If RHS is a legal immediate value for a compare instruction, we need
4896       // to be careful about increasing register pressure needlessly.
4897       bool LegalRHSImm = false;
4898 
4899       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4900         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4901           // Turn (X+C1) == C2 --> X == C2-C1
4902           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4903             return DAG.getSetCC(
4904                 dl, VT, N0.getOperand(0),
4905                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4906                                 dl, N0.getValueType()),
4907                 Cond);
4908 
4909           // Turn (X^C1) == C2 --> X == C1^C2
4910           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4911             return DAG.getSetCC(
4912                 dl, VT, N0.getOperand(0),
4913                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4914                                 dl, N0.getValueType()),
4915                 Cond);
4916         }
4917 
4918         // Turn (C1-X) == C2 --> X == C1-C2
4919         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4920           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4921             return DAG.getSetCC(
4922                 dl, VT, N0.getOperand(1),
4923                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4924                                 dl, N0.getValueType()),
4925                 Cond);
4926 
4927         // Could RHSC fold directly into a compare?
4928         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4929           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4930       }
4931 
4932       // (X+Y) == X --> Y == 0 and similar folds.
4933       // Don't do this if X is an immediate that can fold into a cmp
4934       // instruction and X+Y has other uses. It could be an induction variable
4935       // chain, and the transform would increase register pressure.
4936       if (!LegalRHSImm || N0.hasOneUse())
4937         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4938           return V;
4939     }
4940 
4941     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4942         N1.getOpcode() == ISD::XOR)
4943       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4944         return V;
4945 
4946     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4947       return V;
4948   }
4949 
4950   // Fold remainder of division by a constant.
4951   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4952       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4953     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4954 
4955     // When division is cheap or optimizing for minimum size,
4956     // fall through to DIVREM creation by skipping this fold.
4957     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4958       if (N0.getOpcode() == ISD::UREM) {
4959         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4960           return Folded;
4961       } else if (N0.getOpcode() == ISD::SREM) {
4962         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4963           return Folded;
4964       }
4965     }
4966   }
4967 
4968   // Fold away ALL boolean setcc's.
4969   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4970     SDValue Temp;
4971     switch (Cond) {
4972     default: llvm_unreachable("Unknown integer setcc!");
4973     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4974       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4975       N0 = DAG.getNOT(dl, Temp, OpVT);
4976       if (!DCI.isCalledByLegalizer())
4977         DCI.AddToWorklist(Temp.getNode());
4978       break;
4979     case ISD::SETNE:  // X != Y   -->  (X^Y)
4980       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4981       break;
4982     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4983     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4984       Temp = DAG.getNOT(dl, N0, OpVT);
4985       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4986       if (!DCI.isCalledByLegalizer())
4987         DCI.AddToWorklist(Temp.getNode());
4988       break;
4989     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4990     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4991       Temp = DAG.getNOT(dl, N1, OpVT);
4992       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4993       if (!DCI.isCalledByLegalizer())
4994         DCI.AddToWorklist(Temp.getNode());
4995       break;
4996     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4997     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4998       Temp = DAG.getNOT(dl, N0, OpVT);
4999       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5000       if (!DCI.isCalledByLegalizer())
5001         DCI.AddToWorklist(Temp.getNode());
5002       break;
5003     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5004     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5005       Temp = DAG.getNOT(dl, N1, OpVT);
5006       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5007       break;
5008     }
5009     if (VT.getScalarType() != MVT::i1) {
5010       if (!DCI.isCalledByLegalizer())
5011         DCI.AddToWorklist(N0.getNode());
5012       // FIXME: If running after legalize, we probably can't do this.
5013       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5014       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5015     }
5016     return N0;
5017   }
5018 
5019   // Could not fold it.
5020   return SDValue();
5021 }
5022 
5023 /// Returns true (and the GlobalValue and the offset) if the node is a
5024 /// GlobalAddress + offset.
5025 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5026                                     int64_t &Offset) const {
5027 
5028   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5029 
5030   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5031     GA = GASD->getGlobal();
5032     Offset += GASD->getOffset();
5033     return true;
5034   }
5035 
5036   if (N->getOpcode() == ISD::ADD) {
5037     SDValue N1 = N->getOperand(0);
5038     SDValue N2 = N->getOperand(1);
5039     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5040       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5041         Offset += V->getSExtValue();
5042         return true;
5043       }
5044     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5045       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5046         Offset += V->getSExtValue();
5047         return true;
5048       }
5049     }
5050   }
5051 
5052   return false;
5053 }
5054 
5055 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5056                                           DAGCombinerInfo &DCI) const {
5057   // Default implementation: no optimization.
5058   return SDValue();
5059 }
5060 
5061 //===----------------------------------------------------------------------===//
5062 //  Inline Assembler Implementation Methods
5063 //===----------------------------------------------------------------------===//
5064 
5065 TargetLowering::ConstraintType
5066 TargetLowering::getConstraintType(StringRef Constraint) const {
5067   unsigned S = Constraint.size();
5068 
5069   if (S == 1) {
5070     switch (Constraint[0]) {
5071     default: break;
5072     case 'r':
5073       return C_RegisterClass;
5074     case 'm': // memory
5075     case 'o': // offsetable
5076     case 'V': // not offsetable
5077       return C_Memory;
5078     case 'p': // Address.
5079       return C_Address;
5080     case 'n': // Simple Integer
5081     case 'E': // Floating Point Constant
5082     case 'F': // Floating Point Constant
5083       return C_Immediate;
5084     case 'i': // Simple Integer or Relocatable Constant
5085     case 's': // Relocatable Constant
5086     case 'X': // Allow ANY value.
5087     case 'I': // Target registers.
5088     case 'J':
5089     case 'K':
5090     case 'L':
5091     case 'M':
5092     case 'N':
5093     case 'O':
5094     case 'P':
5095     case '<':
5096     case '>':
5097       return C_Other;
5098     }
5099   }
5100 
5101   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5102     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5103       return C_Memory;
5104     return C_Register;
5105   }
5106   return C_Unknown;
5107 }
5108 
5109 /// Try to replace an X constraint, which matches anything, with another that
5110 /// has more specific requirements based on the type of the corresponding
5111 /// operand.
5112 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5113   if (ConstraintVT.isInteger())
5114     return "r";
5115   if (ConstraintVT.isFloatingPoint())
5116     return "f"; // works for many targets
5117   return nullptr;
5118 }
5119 
5120 SDValue TargetLowering::LowerAsmOutputForConstraint(
5121     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5122     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5123   return SDValue();
5124 }
5125 
5126 /// Lower the specified operand into the Ops vector.
5127 /// If it is invalid, don't add anything to Ops.
5128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5129                                                   std::string &Constraint,
5130                                                   std::vector<SDValue> &Ops,
5131                                                   SelectionDAG &DAG) const {
5132 
5133   if (Constraint.length() > 1) return;
5134 
5135   char ConstraintLetter = Constraint[0];
5136   switch (ConstraintLetter) {
5137   default: break;
5138   case 'X':    // Allows any operand
5139   case 'i':    // Simple Integer or Relocatable Constant
5140   case 'n':    // Simple Integer
5141   case 's': {  // Relocatable Constant
5142 
5143     ConstantSDNode *C;
5144     uint64_t Offset = 0;
5145 
5146     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5147     // etc., since getelementpointer is variadic. We can't use
5148     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5149     // while in this case the GA may be furthest from the root node which is
5150     // likely an ISD::ADD.
5151     while (true) {
5152       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5153         // gcc prints these as sign extended.  Sign extend value to 64 bits
5154         // now; without this it would get ZExt'd later in
5155         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5156         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5157         BooleanContent BCont = getBooleanContents(MVT::i64);
5158         ISD::NodeType ExtOpc =
5159             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5160         int64_t ExtVal =
5161             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5162         Ops.push_back(
5163             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5164         return;
5165       }
5166       if (ConstraintLetter != 'n') {
5167         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5168           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5169                                                    GA->getValueType(0),
5170                                                    Offset + GA->getOffset()));
5171           return;
5172         }
5173         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5174           Ops.push_back(DAG.getTargetBlockAddress(
5175               BA->getBlockAddress(), BA->getValueType(0),
5176               Offset + BA->getOffset(), BA->getTargetFlags()));
5177           return;
5178         }
5179         if (isa<BasicBlockSDNode>(Op)) {
5180           Ops.push_back(Op);
5181           return;
5182         }
5183       }
5184       const unsigned OpCode = Op.getOpcode();
5185       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5186         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5187           Op = Op.getOperand(1);
5188         // Subtraction is not commutative.
5189         else if (OpCode == ISD::ADD &&
5190                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5191           Op = Op.getOperand(0);
5192         else
5193           return;
5194         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5195         continue;
5196       }
5197       return;
5198     }
5199     break;
5200   }
5201   }
5202 }
5203 
5204 std::pair<unsigned, const TargetRegisterClass *>
5205 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5206                                              StringRef Constraint,
5207                                              MVT VT) const {
5208   if (Constraint.empty() || Constraint[0] != '{')
5209     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5210   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5211 
5212   // Remove the braces from around the name.
5213   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5214 
5215   std::pair<unsigned, const TargetRegisterClass *> R =
5216       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5217 
5218   // Figure out which register class contains this reg.
5219   for (const TargetRegisterClass *RC : RI->regclasses()) {
5220     // If none of the value types for this register class are valid, we
5221     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5222     if (!isLegalRC(*RI, *RC))
5223       continue;
5224 
5225     for (const MCPhysReg &PR : *RC) {
5226       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5227         std::pair<unsigned, const TargetRegisterClass *> S =
5228             std::make_pair(PR, RC);
5229 
5230         // If this register class has the requested value type, return it,
5231         // otherwise keep searching and return the first class found
5232         // if no other is found which explicitly has the requested type.
5233         if (RI->isTypeLegalForClass(*RC, VT))
5234           return S;
5235         if (!R.second)
5236           R = S;
5237       }
5238     }
5239   }
5240 
5241   return R;
5242 }
5243 
5244 //===----------------------------------------------------------------------===//
5245 // Constraint Selection.
5246 
5247 /// Return true of this is an input operand that is a matching constraint like
5248 /// "4".
5249 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5250   assert(!ConstraintCode.empty() && "No known constraint!");
5251   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5252 }
5253 
5254 /// If this is an input matching constraint, this method returns the output
5255 /// operand it matches.
5256 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5257   assert(!ConstraintCode.empty() && "No known constraint!");
5258   return atoi(ConstraintCode.c_str());
5259 }
5260 
5261 /// Split up the constraint string from the inline assembly value into the
5262 /// specific constraints and their prefixes, and also tie in the associated
5263 /// operand values.
5264 /// If this returns an empty vector, and if the constraint string itself
5265 /// isn't empty, there was an error parsing.
5266 TargetLowering::AsmOperandInfoVector
5267 TargetLowering::ParseConstraints(const DataLayout &DL,
5268                                  const TargetRegisterInfo *TRI,
5269                                  const CallBase &Call) const {
5270   /// Information about all of the constraints.
5271   AsmOperandInfoVector ConstraintOperands;
5272   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5273   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5274 
5275   // Do a prepass over the constraints, canonicalizing them, and building up the
5276   // ConstraintOperands list.
5277   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5278   unsigned ResNo = 0; // ResNo - The result number of the next output.
5279   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5280 
5281   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5282     ConstraintOperands.emplace_back(std::move(CI));
5283     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5284 
5285     // Update multiple alternative constraint count.
5286     if (OpInfo.multipleAlternatives.size() > maCount)
5287       maCount = OpInfo.multipleAlternatives.size();
5288 
5289     OpInfo.ConstraintVT = MVT::Other;
5290 
5291     // Compute the value type for each operand.
5292     switch (OpInfo.Type) {
5293     case InlineAsm::isOutput:
5294       // Indirect outputs just consume an argument.
5295       if (OpInfo.isIndirect) {
5296         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5297         break;
5298       }
5299 
5300       // The return value of the call is this value.  As such, there is no
5301       // corresponding argument.
5302       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5303       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5304         OpInfo.ConstraintVT =
5305             getSimpleValueType(DL, STy->getElementType(ResNo));
5306       } else {
5307         assert(ResNo == 0 && "Asm only has one result!");
5308         OpInfo.ConstraintVT =
5309             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5310       }
5311       ++ResNo;
5312       break;
5313     case InlineAsm::isInput:
5314       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5315       break;
5316     case InlineAsm::isLabel:
5317       OpInfo.CallOperandVal =
5318           cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5319       OpInfo.ConstraintVT =
5320           getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5321               .getSimpleVT();
5322       ++LabelNo;
5323       continue;
5324     case InlineAsm::isClobber:
5325       // Nothing to do.
5326       break;
5327     }
5328 
5329     if (OpInfo.CallOperandVal) {
5330       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5331       if (OpInfo.isIndirect) {
5332         OpTy = Call.getParamElementType(ArgNo);
5333         assert(OpTy && "Indirect operand must have elementtype attribute");
5334       }
5335 
5336       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5337       if (StructType *STy = dyn_cast<StructType>(OpTy))
5338         if (STy->getNumElements() == 1)
5339           OpTy = STy->getElementType(0);
5340 
5341       // If OpTy is not a single value, it may be a struct/union that we
5342       // can tile with integers.
5343       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5344         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5345         switch (BitSize) {
5346         default: break;
5347         case 1:
5348         case 8:
5349         case 16:
5350         case 32:
5351         case 64:
5352         case 128:
5353           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5354           break;
5355         }
5356       }
5357 
5358       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5359       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5360       ArgNo++;
5361     }
5362   }
5363 
5364   // If we have multiple alternative constraints, select the best alternative.
5365   if (!ConstraintOperands.empty()) {
5366     if (maCount) {
5367       unsigned bestMAIndex = 0;
5368       int bestWeight = -1;
5369       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5370       int weight = -1;
5371       unsigned maIndex;
5372       // Compute the sums of the weights for each alternative, keeping track
5373       // of the best (highest weight) one so far.
5374       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5375         int weightSum = 0;
5376         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5377              cIndex != eIndex; ++cIndex) {
5378           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5379           if (OpInfo.Type == InlineAsm::isClobber)
5380             continue;
5381 
5382           // If this is an output operand with a matching input operand,
5383           // look up the matching input. If their types mismatch, e.g. one
5384           // is an integer, the other is floating point, or their sizes are
5385           // different, flag it as an maCantMatch.
5386           if (OpInfo.hasMatchingInput()) {
5387             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5388             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5389               if ((OpInfo.ConstraintVT.isInteger() !=
5390                    Input.ConstraintVT.isInteger()) ||
5391                   (OpInfo.ConstraintVT.getSizeInBits() !=
5392                    Input.ConstraintVT.getSizeInBits())) {
5393                 weightSum = -1; // Can't match.
5394                 break;
5395               }
5396             }
5397           }
5398           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5399           if (weight == -1) {
5400             weightSum = -1;
5401             break;
5402           }
5403           weightSum += weight;
5404         }
5405         // Update best.
5406         if (weightSum > bestWeight) {
5407           bestWeight = weightSum;
5408           bestMAIndex = maIndex;
5409         }
5410       }
5411 
5412       // Now select chosen alternative in each constraint.
5413       for (AsmOperandInfo &cInfo : ConstraintOperands)
5414         if (cInfo.Type != InlineAsm::isClobber)
5415           cInfo.selectAlternative(bestMAIndex);
5416     }
5417   }
5418 
5419   // Check and hook up tied operands, choose constraint code to use.
5420   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5421        cIndex != eIndex; ++cIndex) {
5422     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5423 
5424     // If this is an output operand with a matching input operand, look up the
5425     // matching input. If their types mismatch, e.g. one is an integer, the
5426     // other is floating point, or their sizes are different, flag it as an
5427     // error.
5428     if (OpInfo.hasMatchingInput()) {
5429       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5430 
5431       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5432         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5433             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5434                                          OpInfo.ConstraintVT);
5435         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5436             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5437                                          Input.ConstraintVT);
5438         if ((OpInfo.ConstraintVT.isInteger() !=
5439              Input.ConstraintVT.isInteger()) ||
5440             (MatchRC.second != InputRC.second)) {
5441           report_fatal_error("Unsupported asm: input constraint"
5442                              " with a matching output constraint of"
5443                              " incompatible type!");
5444         }
5445       }
5446     }
5447   }
5448 
5449   return ConstraintOperands;
5450 }
5451 
5452 /// Return an integer indicating how general CT is.
5453 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5454   switch (CT) {
5455   case TargetLowering::C_Immediate:
5456   case TargetLowering::C_Other:
5457   case TargetLowering::C_Unknown:
5458     return 0;
5459   case TargetLowering::C_Register:
5460     return 1;
5461   case TargetLowering::C_RegisterClass:
5462     return 2;
5463   case TargetLowering::C_Memory:
5464   case TargetLowering::C_Address:
5465     return 3;
5466   }
5467   llvm_unreachable("Invalid constraint type");
5468 }
5469 
5470 /// Examine constraint type and operand type and determine a weight value.
5471 /// This object must already have been set up with the operand type
5472 /// and the current alternative constraint selected.
5473 TargetLowering::ConstraintWeight
5474   TargetLowering::getMultipleConstraintMatchWeight(
5475     AsmOperandInfo &info, int maIndex) const {
5476   InlineAsm::ConstraintCodeVector *rCodes;
5477   if (maIndex >= (int)info.multipleAlternatives.size())
5478     rCodes = &info.Codes;
5479   else
5480     rCodes = &info.multipleAlternatives[maIndex].Codes;
5481   ConstraintWeight BestWeight = CW_Invalid;
5482 
5483   // Loop over the options, keeping track of the most general one.
5484   for (const std::string &rCode : *rCodes) {
5485     ConstraintWeight weight =
5486         getSingleConstraintMatchWeight(info, rCode.c_str());
5487     if (weight > BestWeight)
5488       BestWeight = weight;
5489   }
5490 
5491   return BestWeight;
5492 }
5493 
5494 /// Examine constraint type and operand type and determine a weight value.
5495 /// This object must already have been set up with the operand type
5496 /// and the current alternative constraint selected.
5497 TargetLowering::ConstraintWeight
5498   TargetLowering::getSingleConstraintMatchWeight(
5499     AsmOperandInfo &info, const char *constraint) const {
5500   ConstraintWeight weight = CW_Invalid;
5501   Value *CallOperandVal = info.CallOperandVal;
5502     // If we don't have a value, we can't do a match,
5503     // but allow it at the lowest weight.
5504   if (!CallOperandVal)
5505     return CW_Default;
5506   // Look at the constraint type.
5507   switch (*constraint) {
5508     case 'i': // immediate integer.
5509     case 'n': // immediate integer with a known value.
5510       if (isa<ConstantInt>(CallOperandVal))
5511         weight = CW_Constant;
5512       break;
5513     case 's': // non-explicit intregal immediate.
5514       if (isa<GlobalValue>(CallOperandVal))
5515         weight = CW_Constant;
5516       break;
5517     case 'E': // immediate float if host format.
5518     case 'F': // immediate float.
5519       if (isa<ConstantFP>(CallOperandVal))
5520         weight = CW_Constant;
5521       break;
5522     case '<': // memory operand with autodecrement.
5523     case '>': // memory operand with autoincrement.
5524     case 'm': // memory operand.
5525     case 'o': // offsettable memory operand
5526     case 'V': // non-offsettable memory operand
5527       weight = CW_Memory;
5528       break;
5529     case 'r': // general register.
5530     case 'g': // general register, memory operand or immediate integer.
5531               // note: Clang converts "g" to "imr".
5532       if (CallOperandVal->getType()->isIntegerTy())
5533         weight = CW_Register;
5534       break;
5535     case 'X': // any operand.
5536   default:
5537     weight = CW_Default;
5538     break;
5539   }
5540   return weight;
5541 }
5542 
5543 /// If there are multiple different constraints that we could pick for this
5544 /// operand (e.g. "imr") try to pick the 'best' one.
5545 /// This is somewhat tricky: constraints fall into four classes:
5546 ///    Other         -> immediates and magic values
5547 ///    Register      -> one specific register
5548 ///    RegisterClass -> a group of regs
5549 ///    Memory        -> memory
5550 /// Ideally, we would pick the most specific constraint possible: if we have
5551 /// something that fits into a register, we would pick it.  The problem here
5552 /// is that if we have something that could either be in a register or in
5553 /// memory that use of the register could cause selection of *other*
5554 /// operands to fail: they might only succeed if we pick memory.  Because of
5555 /// this the heuristic we use is:
5556 ///
5557 ///  1) If there is an 'other' constraint, and if the operand is valid for
5558 ///     that constraint, use it.  This makes us take advantage of 'i'
5559 ///     constraints when available.
5560 ///  2) Otherwise, pick the most general constraint present.  This prefers
5561 ///     'm' over 'r', for example.
5562 ///
5563 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5564                              const TargetLowering &TLI,
5565                              SDValue Op, SelectionDAG *DAG) {
5566   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5567   unsigned BestIdx = 0;
5568   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5569   int BestGenerality = -1;
5570 
5571   // Loop over the options, keeping track of the most general one.
5572   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5573     TargetLowering::ConstraintType CType =
5574       TLI.getConstraintType(OpInfo.Codes[i]);
5575 
5576     // Indirect 'other' or 'immediate' constraints are not allowed.
5577     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5578                                CType == TargetLowering::C_Register ||
5579                                CType == TargetLowering::C_RegisterClass))
5580       continue;
5581 
5582     // If this is an 'other' or 'immediate' constraint, see if the operand is
5583     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5584     // the operand is an integer in the range [0..31] we want to use I (saving a
5585     // load of a register), otherwise we must use 'r'.
5586     if ((CType == TargetLowering::C_Other ||
5587          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5588       assert(OpInfo.Codes[i].size() == 1 &&
5589              "Unhandled multi-letter 'other' constraint");
5590       std::vector<SDValue> ResultOps;
5591       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5592                                        ResultOps, *DAG);
5593       if (!ResultOps.empty()) {
5594         BestType = CType;
5595         BestIdx = i;
5596         break;
5597       }
5598     }
5599 
5600     // Things with matching constraints can only be registers, per gcc
5601     // documentation.  This mainly affects "g" constraints.
5602     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5603       continue;
5604 
5605     // This constraint letter is more general than the previous one, use it.
5606     int Generality = getConstraintGenerality(CType);
5607     if (Generality > BestGenerality) {
5608       BestType = CType;
5609       BestIdx = i;
5610       BestGenerality = Generality;
5611     }
5612   }
5613 
5614   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5615   OpInfo.ConstraintType = BestType;
5616 }
5617 
5618 /// Determines the constraint code and constraint type to use for the specific
5619 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5620 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5621                                             SDValue Op,
5622                                             SelectionDAG *DAG) const {
5623   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5624 
5625   // Single-letter constraints ('r') are very common.
5626   if (OpInfo.Codes.size() == 1) {
5627     OpInfo.ConstraintCode = OpInfo.Codes[0];
5628     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5629   } else {
5630     ChooseConstraint(OpInfo, *this, Op, DAG);
5631   }
5632 
5633   // 'X' matches anything.
5634   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5635     // Constants are handled elsewhere.  For Functions, the type here is the
5636     // type of the result, which is not what we want to look at; leave them
5637     // alone.
5638     Value *v = OpInfo.CallOperandVal;
5639     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5640       return;
5641     }
5642 
5643     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5644       OpInfo.ConstraintCode = "i";
5645       return;
5646     }
5647 
5648     // Otherwise, try to resolve it to something we know about by looking at
5649     // the actual operand type.
5650     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5651       OpInfo.ConstraintCode = Repl;
5652       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5653     }
5654   }
5655 }
5656 
5657 /// Given an exact SDIV by a constant, create a multiplication
5658 /// with the multiplicative inverse of the constant.
5659 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5660                               const SDLoc &dl, SelectionDAG &DAG,
5661                               SmallVectorImpl<SDNode *> &Created) {
5662   SDValue Op0 = N->getOperand(0);
5663   SDValue Op1 = N->getOperand(1);
5664   EVT VT = N->getValueType(0);
5665   EVT SVT = VT.getScalarType();
5666   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5667   EVT ShSVT = ShVT.getScalarType();
5668 
5669   bool UseSRA = false;
5670   SmallVector<SDValue, 16> Shifts, Factors;
5671 
5672   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5673     if (C->isZero())
5674       return false;
5675     APInt Divisor = C->getAPIntValue();
5676     unsigned Shift = Divisor.countTrailingZeros();
5677     if (Shift) {
5678       Divisor.ashrInPlace(Shift);
5679       UseSRA = true;
5680     }
5681     // Calculate the multiplicative inverse, using Newton's method.
5682     APInt t;
5683     APInt Factor = Divisor;
5684     while ((t = Divisor * Factor) != 1)
5685       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5686     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5687     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5688     return true;
5689   };
5690 
5691   // Collect all magic values from the build vector.
5692   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5693     return SDValue();
5694 
5695   SDValue Shift, Factor;
5696   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5697     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5698     Factor = DAG.getBuildVector(VT, dl, Factors);
5699   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5700     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5701            "Expected matchUnaryPredicate to return one element for scalable "
5702            "vectors");
5703     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5704     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5705   } else {
5706     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5707     Shift = Shifts[0];
5708     Factor = Factors[0];
5709   }
5710 
5711   SDValue Res = Op0;
5712 
5713   // Shift the value upfront if it is even, so the LSB is one.
5714   if (UseSRA) {
5715     // TODO: For UDIV use SRL instead of SRA.
5716     SDNodeFlags Flags;
5717     Flags.setExact(true);
5718     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5719     Created.push_back(Res.getNode());
5720   }
5721 
5722   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5723 }
5724 
5725 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5726                               SelectionDAG &DAG,
5727                               SmallVectorImpl<SDNode *> &Created) const {
5728   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5729   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5730   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5731     return SDValue(N, 0); // Lower SDIV as SDIV
5732   return SDValue();
5733 }
5734 
5735 SDValue
5736 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5737                               SelectionDAG &DAG,
5738                               SmallVectorImpl<SDNode *> &Created) const {
5739   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5740   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5741   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5742     return SDValue(N, 0); // Lower SREM as SREM
5743   return SDValue();
5744 }
5745 
5746 /// Given an ISD::SDIV node expressing a divide by constant,
5747 /// return a DAG expression to select that will generate the same value by
5748 /// multiplying by a magic number.
5749 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5750 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5751                                   bool IsAfterLegalization,
5752                                   SmallVectorImpl<SDNode *> &Created) const {
5753   SDLoc dl(N);
5754   EVT VT = N->getValueType(0);
5755   EVT SVT = VT.getScalarType();
5756   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5757   EVT ShSVT = ShVT.getScalarType();
5758   unsigned EltBits = VT.getScalarSizeInBits();
5759   EVT MulVT;
5760 
5761   // Check to see if we can do this.
5762   // FIXME: We should be more aggressive here.
5763   if (!isTypeLegal(VT)) {
5764     // Limit this to simple scalars for now.
5765     if (VT.isVector() || !VT.isSimple())
5766       return SDValue();
5767 
5768     // If this type will be promoted to a large enough type with a legal
5769     // multiply operation, we can go ahead and do this transform.
5770     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5771       return SDValue();
5772 
5773     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5774     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5775         !isOperationLegal(ISD::MUL, MulVT))
5776       return SDValue();
5777   }
5778 
5779   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5780   if (N->getFlags().hasExact())
5781     return BuildExactSDIV(*this, N, dl, DAG, Created);
5782 
5783   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5784 
5785   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5786     if (C->isZero())
5787       return false;
5788 
5789     const APInt &Divisor = C->getAPIntValue();
5790     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5791     int NumeratorFactor = 0;
5792     int ShiftMask = -1;
5793 
5794     if (Divisor.isOne() || Divisor.isAllOnes()) {
5795       // If d is +1/-1, we just multiply the numerator by +1/-1.
5796       NumeratorFactor = Divisor.getSExtValue();
5797       magics.Magic = 0;
5798       magics.ShiftAmount = 0;
5799       ShiftMask = 0;
5800     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5801       // If d > 0 and m < 0, add the numerator.
5802       NumeratorFactor = 1;
5803     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5804       // If d < 0 and m > 0, subtract the numerator.
5805       NumeratorFactor = -1;
5806     }
5807 
5808     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5809     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5810     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5811     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5812     return true;
5813   };
5814 
5815   SDValue N0 = N->getOperand(0);
5816   SDValue N1 = N->getOperand(1);
5817 
5818   // Collect the shifts / magic values from each element.
5819   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5820     return SDValue();
5821 
5822   SDValue MagicFactor, Factor, Shift, ShiftMask;
5823   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5824     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5825     Factor = DAG.getBuildVector(VT, dl, Factors);
5826     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5827     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5828   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5829     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5830            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5831            "Expected matchUnaryPredicate to return one element for scalable "
5832            "vectors");
5833     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5834     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5835     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5836     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5837   } else {
5838     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5839     MagicFactor = MagicFactors[0];
5840     Factor = Factors[0];
5841     Shift = Shifts[0];
5842     ShiftMask = ShiftMasks[0];
5843   }
5844 
5845   // Multiply the numerator (operand 0) by the magic value.
5846   // FIXME: We should support doing a MUL in a wider type.
5847   auto GetMULHS = [&](SDValue X, SDValue Y) {
5848     // If the type isn't legal, use a wider mul of the the type calculated
5849     // earlier.
5850     if (!isTypeLegal(VT)) {
5851       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5852       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5853       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5854       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5855                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5856       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5857     }
5858 
5859     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5860       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5861     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5862       SDValue LoHi =
5863           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5864       return SDValue(LoHi.getNode(), 1);
5865     }
5866     return SDValue();
5867   };
5868 
5869   SDValue Q = GetMULHS(N0, MagicFactor);
5870   if (!Q)
5871     return SDValue();
5872 
5873   Created.push_back(Q.getNode());
5874 
5875   // (Optionally) Add/subtract the numerator using Factor.
5876   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5877   Created.push_back(Factor.getNode());
5878   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5879   Created.push_back(Q.getNode());
5880 
5881   // Shift right algebraic by shift value.
5882   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5883   Created.push_back(Q.getNode());
5884 
5885   // Extract the sign bit, mask it and add it to the quotient.
5886   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5887   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5888   Created.push_back(T.getNode());
5889   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5890   Created.push_back(T.getNode());
5891   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5892 }
5893 
5894 /// Given an ISD::UDIV node expressing a divide by constant,
5895 /// return a DAG expression to select that will generate the same value by
5896 /// multiplying by a magic number.
5897 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5898 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5899                                   bool IsAfterLegalization,
5900                                   SmallVectorImpl<SDNode *> &Created) const {
5901   SDLoc dl(N);
5902   EVT VT = N->getValueType(0);
5903   EVT SVT = VT.getScalarType();
5904   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5905   EVT ShSVT = ShVT.getScalarType();
5906   unsigned EltBits = VT.getScalarSizeInBits();
5907   EVT MulVT;
5908 
5909   // Check to see if we can do this.
5910   // FIXME: We should be more aggressive here.
5911   if (!isTypeLegal(VT)) {
5912     // Limit this to simple scalars for now.
5913     if (VT.isVector() || !VT.isSimple())
5914       return SDValue();
5915 
5916     // If this type will be promoted to a large enough type with a legal
5917     // multiply operation, we can go ahead and do this transform.
5918     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5919       return SDValue();
5920 
5921     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5922     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5923         !isOperationLegal(ISD::MUL, MulVT))
5924       return SDValue();
5925   }
5926 
5927   bool UseNPQ = false;
5928   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5929 
5930   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5931     if (C->isZero())
5932       return false;
5933     // FIXME: We should use a narrower constant when the upper
5934     // bits are known to be zero.
5935     const APInt& Divisor = C->getAPIntValue();
5936     UnsignedDivisionByConstantInfo magics =
5937         UnsignedDivisionByConstantInfo::get(Divisor);
5938     unsigned PreShift = 0, PostShift = 0;
5939 
5940     // If the divisor is even, we can avoid using the expensive fixup by
5941     // shifting the divided value upfront.
5942     if (magics.IsAdd && !Divisor[0]) {
5943       PreShift = Divisor.countTrailingZeros();
5944       // Get magic number for the shifted divisor.
5945       magics =
5946           UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5947       assert(!magics.IsAdd && "Should use cheap fixup now");
5948     }
5949 
5950     unsigned SelNPQ;
5951     if (!magics.IsAdd || Divisor.isOne()) {
5952       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5953              "We shouldn't generate an undefined shift!");
5954       PostShift = magics.ShiftAmount;
5955       SelNPQ = false;
5956     } else {
5957       PostShift = magics.ShiftAmount - 1;
5958       SelNPQ = true;
5959     }
5960 
5961     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5962     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5963     NPQFactors.push_back(
5964         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5965                                : APInt::getZero(EltBits),
5966                         dl, SVT));
5967     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5968     UseNPQ |= SelNPQ;
5969     return true;
5970   };
5971 
5972   SDValue N0 = N->getOperand(0);
5973   SDValue N1 = N->getOperand(1);
5974 
5975   // Collect the shifts/magic values from each element.
5976   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5977     return SDValue();
5978 
5979   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5980   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5981     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5982     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5983     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5984     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5985   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5986     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5987            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5988            "Expected matchUnaryPredicate to return one for scalable vectors");
5989     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5990     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5991     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5992     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5993   } else {
5994     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5995     PreShift = PreShifts[0];
5996     MagicFactor = MagicFactors[0];
5997     PostShift = PostShifts[0];
5998   }
5999 
6000   SDValue Q = N0;
6001   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6002   Created.push_back(Q.getNode());
6003 
6004   // FIXME: We should support doing a MUL in a wider type.
6005   auto GetMULHU = [&](SDValue X, SDValue Y) {
6006     // If the type isn't legal, use a wider mul of the the type calculated
6007     // earlier.
6008     if (!isTypeLegal(VT)) {
6009       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6010       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6011       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6012       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6013                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6014       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6015     }
6016 
6017     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6018       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6019     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6020       SDValue LoHi =
6021           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6022       return SDValue(LoHi.getNode(), 1);
6023     }
6024     return SDValue(); // No mulhu or equivalent
6025   };
6026 
6027   // Multiply the numerator (operand 0) by the magic value.
6028   Q = GetMULHU(Q, MagicFactor);
6029   if (!Q)
6030     return SDValue();
6031 
6032   Created.push_back(Q.getNode());
6033 
6034   if (UseNPQ) {
6035     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6036     Created.push_back(NPQ.getNode());
6037 
6038     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6039     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6040     if (VT.isVector())
6041       NPQ = GetMULHU(NPQ, NPQFactor);
6042     else
6043       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6044 
6045     Created.push_back(NPQ.getNode());
6046 
6047     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6048     Created.push_back(Q.getNode());
6049   }
6050 
6051   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6052   Created.push_back(Q.getNode());
6053 
6054   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6055 
6056   SDValue One = DAG.getConstant(1, dl, VT);
6057   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6058   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6059 }
6060 
6061 /// If all values in Values that *don't* match the predicate are same 'splat'
6062 /// value, then replace all values with that splat value.
6063 /// Else, if AlternativeReplacement was provided, then replace all values that
6064 /// do match predicate with AlternativeReplacement value.
6065 static void
6066 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6067                           std::function<bool(SDValue)> Predicate,
6068                           SDValue AlternativeReplacement = SDValue()) {
6069   SDValue Replacement;
6070   // Is there a value for which the Predicate does *NOT* match? What is it?
6071   auto SplatValue = llvm::find_if_not(Values, Predicate);
6072   if (SplatValue != Values.end()) {
6073     // Does Values consist only of SplatValue's and values matching Predicate?
6074     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6075           return Value == *SplatValue || Predicate(Value);
6076         })) // Then we shall replace values matching predicate with SplatValue.
6077       Replacement = *SplatValue;
6078   }
6079   if (!Replacement) {
6080     // Oops, we did not find the "baseline" splat value.
6081     if (!AlternativeReplacement)
6082       return; // Nothing to do.
6083     // Let's replace with provided value then.
6084     Replacement = AlternativeReplacement;
6085   }
6086   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6087 }
6088 
6089 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6090 /// where the divisor is constant and the comparison target is zero,
6091 /// return a DAG expression that will generate the same comparison result
6092 /// using only multiplications, additions and shifts/rotations.
6093 /// Ref: "Hacker's Delight" 10-17.
6094 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6095                                         SDValue CompTargetNode,
6096                                         ISD::CondCode Cond,
6097                                         DAGCombinerInfo &DCI,
6098                                         const SDLoc &DL) const {
6099   SmallVector<SDNode *, 5> Built;
6100   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6101                                          DCI, DL, Built)) {
6102     for (SDNode *N : Built)
6103       DCI.AddToWorklist(N);
6104     return Folded;
6105   }
6106 
6107   return SDValue();
6108 }
6109 
6110 SDValue
6111 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6112                                   SDValue CompTargetNode, ISD::CondCode Cond,
6113                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6114                                   SmallVectorImpl<SDNode *> &Created) const {
6115   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6116   // - D must be constant, with D = D0 * 2^K where D0 is odd
6117   // - P is the multiplicative inverse of D0 modulo 2^W
6118   // - Q = floor(((2^W) - 1) / D)
6119   // where W is the width of the common type of N and D.
6120   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6121          "Only applicable for (in)equality comparisons.");
6122 
6123   SelectionDAG &DAG = DCI.DAG;
6124 
6125   EVT VT = REMNode.getValueType();
6126   EVT SVT = VT.getScalarType();
6127   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6128   EVT ShSVT = ShVT.getScalarType();
6129 
6130   // If MUL is unavailable, we cannot proceed in any case.
6131   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6132     return SDValue();
6133 
6134   bool ComparingWithAllZeros = true;
6135   bool AllComparisonsWithNonZerosAreTautological = true;
6136   bool HadTautologicalLanes = false;
6137   bool AllLanesAreTautological = true;
6138   bool HadEvenDivisor = false;
6139   bool AllDivisorsArePowerOfTwo = true;
6140   bool HadTautologicalInvertedLanes = false;
6141   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6142 
6143   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6144     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6145     if (CDiv->isZero())
6146       return false;
6147 
6148     const APInt &D = CDiv->getAPIntValue();
6149     const APInt &Cmp = CCmp->getAPIntValue();
6150 
6151     ComparingWithAllZeros &= Cmp.isZero();
6152 
6153     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6154     // if C2 is not less than C1, the comparison is always false.
6155     // But we will only be able to produce the comparison that will give the
6156     // opposive tautological answer. So this lane would need to be fixed up.
6157     bool TautologicalInvertedLane = D.ule(Cmp);
6158     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6159 
6160     // If all lanes are tautological (either all divisors are ones, or divisor
6161     // is not greater than the constant we are comparing with),
6162     // we will prefer to avoid the fold.
6163     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6164     HadTautologicalLanes |= TautologicalLane;
6165     AllLanesAreTautological &= TautologicalLane;
6166 
6167     // If we are comparing with non-zero, we need'll need  to subtract said
6168     // comparison value from the LHS. But there is no point in doing that if
6169     // every lane where we are comparing with non-zero is tautological..
6170     if (!Cmp.isZero())
6171       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6172 
6173     // Decompose D into D0 * 2^K
6174     unsigned K = D.countTrailingZeros();
6175     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6176     APInt D0 = D.lshr(K);
6177 
6178     // D is even if it has trailing zeros.
6179     HadEvenDivisor |= (K != 0);
6180     // D is a power-of-two if D0 is one.
6181     // If all divisors are power-of-two, we will prefer to avoid the fold.
6182     AllDivisorsArePowerOfTwo &= D0.isOne();
6183 
6184     // P = inv(D0, 2^W)
6185     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6186     unsigned W = D.getBitWidth();
6187     APInt P = D0.zext(W + 1)
6188                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6189                   .trunc(W);
6190     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6191     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6192 
6193     // Q = floor((2^W - 1) u/ D)
6194     // R = ((2^W - 1) u% D)
6195     APInt Q, R;
6196     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6197 
6198     // If we are comparing with zero, then that comparison constant is okay,
6199     // else it may need to be one less than that.
6200     if (Cmp.ugt(R))
6201       Q -= 1;
6202 
6203     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6204            "We are expecting that K is always less than all-ones for ShSVT");
6205 
6206     // If the lane is tautological the result can be constant-folded.
6207     if (TautologicalLane) {
6208       // Set P and K amount to a bogus values so we can try to splat them.
6209       P = 0;
6210       K = -1;
6211       // And ensure that comparison constant is tautological,
6212       // it will always compare true/false.
6213       Q = -1;
6214     }
6215 
6216     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6217     KAmts.push_back(
6218         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6219     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6220     return true;
6221   };
6222 
6223   SDValue N = REMNode.getOperand(0);
6224   SDValue D = REMNode.getOperand(1);
6225 
6226   // Collect the values from each element.
6227   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6228     return SDValue();
6229 
6230   // If all lanes are tautological, the result can be constant-folded.
6231   if (AllLanesAreTautological)
6232     return SDValue();
6233 
6234   // If this is a urem by a powers-of-two, avoid the fold since it can be
6235   // best implemented as a bit test.
6236   if (AllDivisorsArePowerOfTwo)
6237     return SDValue();
6238 
6239   SDValue PVal, KVal, QVal;
6240   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6241     if (HadTautologicalLanes) {
6242       // Try to turn PAmts into a splat, since we don't care about the values
6243       // that are currently '0'. If we can't, just keep '0'`s.
6244       turnVectorIntoSplatVector(PAmts, isNullConstant);
6245       // Try to turn KAmts into a splat, since we don't care about the values
6246       // that are currently '-1'. If we can't, change them to '0'`s.
6247       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6248                                 DAG.getConstant(0, DL, ShSVT));
6249     }
6250 
6251     PVal = DAG.getBuildVector(VT, DL, PAmts);
6252     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6253     QVal = DAG.getBuildVector(VT, DL, QAmts);
6254   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6255     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6256            "Expected matchBinaryPredicate to return one element for "
6257            "SPLAT_VECTORs");
6258     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6259     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6260     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6261   } else {
6262     PVal = PAmts[0];
6263     KVal = KAmts[0];
6264     QVal = QAmts[0];
6265   }
6266 
6267   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6268     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6269       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6270     assert(CompTargetNode.getValueType() == N.getValueType() &&
6271            "Expecting that the types on LHS and RHS of comparisons match.");
6272     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6273   }
6274 
6275   // (mul N, P)
6276   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6277   Created.push_back(Op0.getNode());
6278 
6279   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6280   // divisors as a performance improvement, since rotating by 0 is a no-op.
6281   if (HadEvenDivisor) {
6282     // We need ROTR to do this.
6283     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6284       return SDValue();
6285     // UREM: (rotr (mul N, P), K)
6286     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6287     Created.push_back(Op0.getNode());
6288   }
6289 
6290   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6291   SDValue NewCC =
6292       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6293                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6294   if (!HadTautologicalInvertedLanes)
6295     return NewCC;
6296 
6297   // If any lanes previously compared always-false, the NewCC will give
6298   // always-true result for them, so we need to fixup those lanes.
6299   // Or the other way around for inequality predicate.
6300   assert(VT.isVector() && "Can/should only get here for vectors.");
6301   Created.push_back(NewCC.getNode());
6302 
6303   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6304   // if C2 is not less than C1, the comparison is always false.
6305   // But we have produced the comparison that will give the
6306   // opposive tautological answer. So these lanes would need to be fixed up.
6307   SDValue TautologicalInvertedChannels =
6308       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6309   Created.push_back(TautologicalInvertedChannels.getNode());
6310 
6311   // NOTE: we avoid letting illegal types through even if we're before legalize
6312   // ops – legalization has a hard time producing good code for this.
6313   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6314     // If we have a vector select, let's replace the comparison results in the
6315     // affected lanes with the correct tautological result.
6316     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6317                                               DL, SETCCVT, SETCCVT);
6318     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6319                        Replacement, NewCC);
6320   }
6321 
6322   // Else, we can just invert the comparison result in the appropriate lanes.
6323   //
6324   // NOTE: see the note above VSELECT above.
6325   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6326     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6327                        TautologicalInvertedChannels);
6328 
6329   return SDValue(); // Don't know how to lower.
6330 }
6331 
6332 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6333 /// where the divisor is constant and the comparison target is zero,
6334 /// return a DAG expression that will generate the same comparison result
6335 /// using only multiplications, additions and shifts/rotations.
6336 /// Ref: "Hacker's Delight" 10-17.
6337 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6338                                         SDValue CompTargetNode,
6339                                         ISD::CondCode Cond,
6340                                         DAGCombinerInfo &DCI,
6341                                         const SDLoc &DL) const {
6342   SmallVector<SDNode *, 7> Built;
6343   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6344                                          DCI, DL, Built)) {
6345     assert(Built.size() <= 7 && "Max size prediction failed.");
6346     for (SDNode *N : Built)
6347       DCI.AddToWorklist(N);
6348     return Folded;
6349   }
6350 
6351   return SDValue();
6352 }
6353 
6354 SDValue
6355 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6356                                   SDValue CompTargetNode, ISD::CondCode Cond,
6357                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6358                                   SmallVectorImpl<SDNode *> &Created) const {
6359   // Fold:
6360   //   (seteq/ne (srem N, D), 0)
6361   // To:
6362   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6363   //
6364   // - D must be constant, with D = D0 * 2^K where D0 is odd
6365   // - P is the multiplicative inverse of D0 modulo 2^W
6366   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6367   // - Q = floor((2 * A) / (2^K))
6368   // where W is the width of the common type of N and D.
6369   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6370          "Only applicable for (in)equality comparisons.");
6371 
6372   SelectionDAG &DAG = DCI.DAG;
6373 
6374   EVT VT = REMNode.getValueType();
6375   EVT SVT = VT.getScalarType();
6376   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6377   EVT ShSVT = ShVT.getScalarType();
6378 
6379   // If we are after ops legalization, and MUL is unavailable, we can not
6380   // proceed.
6381   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6382     return SDValue();
6383 
6384   // TODO: Could support comparing with non-zero too.
6385   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6386   if (!CompTarget || !CompTarget->isZero())
6387     return SDValue();
6388 
6389   bool HadIntMinDivisor = false;
6390   bool HadOneDivisor = false;
6391   bool AllDivisorsAreOnes = true;
6392   bool HadEvenDivisor = false;
6393   bool NeedToApplyOffset = false;
6394   bool AllDivisorsArePowerOfTwo = true;
6395   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6396 
6397   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6398     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6399     if (C->isZero())
6400       return false;
6401 
6402     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6403 
6404     // WARNING: this fold is only valid for positive divisors!
6405     APInt D = C->getAPIntValue();
6406     if (D.isNegative())
6407       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6408 
6409     HadIntMinDivisor |= D.isMinSignedValue();
6410 
6411     // If all divisors are ones, we will prefer to avoid the fold.
6412     HadOneDivisor |= D.isOne();
6413     AllDivisorsAreOnes &= D.isOne();
6414 
6415     // Decompose D into D0 * 2^K
6416     unsigned K = D.countTrailingZeros();
6417     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6418     APInt D0 = D.lshr(K);
6419 
6420     if (!D.isMinSignedValue()) {
6421       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6422       // we don't care about this lane in this fold, we'll special-handle it.
6423       HadEvenDivisor |= (K != 0);
6424     }
6425 
6426     // D is a power-of-two if D0 is one. This includes INT_MIN.
6427     // If all divisors are power-of-two, we will prefer to avoid the fold.
6428     AllDivisorsArePowerOfTwo &= D0.isOne();
6429 
6430     // P = inv(D0, 2^W)
6431     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6432     unsigned W = D.getBitWidth();
6433     APInt P = D0.zext(W + 1)
6434                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6435                   .trunc(W);
6436     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6437     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6438 
6439     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6440     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6441     A.clearLowBits(K);
6442 
6443     if (!D.isMinSignedValue()) {
6444       // If divisor INT_MIN, then we don't care about this lane in this fold,
6445       // we'll special-handle it.
6446       NeedToApplyOffset |= A != 0;
6447     }
6448 
6449     // Q = floor((2 * A) / (2^K))
6450     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6451 
6452     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6453            "We are expecting that A is always less than all-ones for SVT");
6454     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6455            "We are expecting that K is always less than all-ones for ShSVT");
6456 
6457     // If the divisor is 1 the result can be constant-folded. Likewise, we
6458     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6459     if (D.isOne()) {
6460       // Set P, A and K to a bogus values so we can try to splat them.
6461       P = 0;
6462       A = -1;
6463       K = -1;
6464 
6465       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6466       Q = -1;
6467     }
6468 
6469     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6470     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6471     KAmts.push_back(
6472         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6473     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6474     return true;
6475   };
6476 
6477   SDValue N = REMNode.getOperand(0);
6478   SDValue D = REMNode.getOperand(1);
6479 
6480   // Collect the values from each element.
6481   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6482     return SDValue();
6483 
6484   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6485   if (AllDivisorsAreOnes)
6486     return SDValue();
6487 
6488   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6489   // since it can be best implemented as a bit test.
6490   if (AllDivisorsArePowerOfTwo)
6491     return SDValue();
6492 
6493   SDValue PVal, AVal, KVal, QVal;
6494   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6495     if (HadOneDivisor) {
6496       // Try to turn PAmts into a splat, since we don't care about the values
6497       // that are currently '0'. If we can't, just keep '0'`s.
6498       turnVectorIntoSplatVector(PAmts, isNullConstant);
6499       // Try to turn AAmts into a splat, since we don't care about the
6500       // values that are currently '-1'. If we can't, change them to '0'`s.
6501       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6502                                 DAG.getConstant(0, DL, SVT));
6503       // Try to turn KAmts into a splat, since we don't care about the values
6504       // that are currently '-1'. If we can't, change them to '0'`s.
6505       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6506                                 DAG.getConstant(0, DL, ShSVT));
6507     }
6508 
6509     PVal = DAG.getBuildVector(VT, DL, PAmts);
6510     AVal = DAG.getBuildVector(VT, DL, AAmts);
6511     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6512     QVal = DAG.getBuildVector(VT, DL, QAmts);
6513   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6514     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6515            QAmts.size() == 1 &&
6516            "Expected matchUnaryPredicate to return one element for scalable "
6517            "vectors");
6518     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6519     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6520     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6521     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6522   } else {
6523     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6524     PVal = PAmts[0];
6525     AVal = AAmts[0];
6526     KVal = KAmts[0];
6527     QVal = QAmts[0];
6528   }
6529 
6530   // (mul N, P)
6531   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6532   Created.push_back(Op0.getNode());
6533 
6534   if (NeedToApplyOffset) {
6535     // We need ADD to do this.
6536     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6537       return SDValue();
6538 
6539     // (add (mul N, P), A)
6540     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6541     Created.push_back(Op0.getNode());
6542   }
6543 
6544   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6545   // divisors as a performance improvement, since rotating by 0 is a no-op.
6546   if (HadEvenDivisor) {
6547     // We need ROTR to do this.
6548     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6549       return SDValue();
6550     // SREM: (rotr (add (mul N, P), A), K)
6551     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6552     Created.push_back(Op0.getNode());
6553   }
6554 
6555   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6556   SDValue Fold =
6557       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6558                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6559 
6560   // If we didn't have lanes with INT_MIN divisor, then we're done.
6561   if (!HadIntMinDivisor)
6562     return Fold;
6563 
6564   // That fold is only valid for positive divisors. Which effectively means,
6565   // it is invalid for INT_MIN divisors. So if we have such a lane,
6566   // we must fix-up results for said lanes.
6567   assert(VT.isVector() && "Can/should only get here for vectors.");
6568 
6569   // NOTE: we avoid letting illegal types through even if we're before legalize
6570   // ops – legalization has a hard time producing good code for the code that
6571   // follows.
6572   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6573       !isOperationLegalOrCustom(ISD::AND, VT) ||
6574       !isOperationLegalOrCustom(Cond, VT) ||
6575       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6576     return SDValue();
6577 
6578   Created.push_back(Fold.getNode());
6579 
6580   SDValue IntMin = DAG.getConstant(
6581       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6582   SDValue IntMax = DAG.getConstant(
6583       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6584   SDValue Zero =
6585       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6586 
6587   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6588   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6589   Created.push_back(DivisorIsIntMin.getNode());
6590 
6591   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6592   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6593   Created.push_back(Masked.getNode());
6594   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6595   Created.push_back(MaskedIsZero.getNode());
6596 
6597   // To produce final result we need to blend 2 vectors: 'SetCC' and
6598   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6599   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6600   // constant-folded, select can get lowered to a shuffle with constant mask.
6601   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6602                                 MaskedIsZero, Fold);
6603 
6604   return Blended;
6605 }
6606 
6607 bool TargetLowering::
6608 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6609   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6610     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6611                                 "be a constant integer");
6612     return true;
6613   }
6614 
6615   return false;
6616 }
6617 
6618 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6619                                          const DenormalMode &Mode) const {
6620   SDLoc DL(Op);
6621   EVT VT = Op.getValueType();
6622   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6623   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6624   // Testing it with denormal inputs to avoid wrong estimate.
6625   if (Mode.Input == DenormalMode::IEEE) {
6626     // This is specifically a check for the handling of denormal inputs,
6627     // not the result.
6628 
6629     // Test = fabs(X) < SmallestNormal
6630     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6631     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6632     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6633     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6634     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6635   }
6636   // Test = X == 0.0
6637   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6638 }
6639 
6640 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6641                                              bool LegalOps, bool OptForSize,
6642                                              NegatibleCost &Cost,
6643                                              unsigned Depth) const {
6644   // fneg is removable even if it has multiple uses.
6645   if (Op.getOpcode() == ISD::FNEG) {
6646     Cost = NegatibleCost::Cheaper;
6647     return Op.getOperand(0);
6648   }
6649 
6650   // Don't recurse exponentially.
6651   if (Depth > SelectionDAG::MaxRecursionDepth)
6652     return SDValue();
6653 
6654   // Pre-increment recursion depth for use in recursive calls.
6655   ++Depth;
6656   const SDNodeFlags Flags = Op->getFlags();
6657   const TargetOptions &Options = DAG.getTarget().Options;
6658   EVT VT = Op.getValueType();
6659   unsigned Opcode = Op.getOpcode();
6660 
6661   // Don't allow anything with multiple uses unless we know it is free.
6662   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6663     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6664                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6665     if (!IsFreeExtend)
6666       return SDValue();
6667   }
6668 
6669   auto RemoveDeadNode = [&](SDValue N) {
6670     if (N && N.getNode()->use_empty())
6671       DAG.RemoveDeadNode(N.getNode());
6672   };
6673 
6674   SDLoc DL(Op);
6675 
6676   // Because getNegatedExpression can delete nodes we need a handle to keep
6677   // temporary nodes alive in case the recursion manages to create an identical
6678   // node.
6679   std::list<HandleSDNode> Handles;
6680 
6681   switch (Opcode) {
6682   case ISD::ConstantFP: {
6683     // Don't invert constant FP values after legalization unless the target says
6684     // the negated constant is legal.
6685     bool IsOpLegal =
6686         isOperationLegal(ISD::ConstantFP, VT) ||
6687         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6688                      OptForSize);
6689 
6690     if (LegalOps && !IsOpLegal)
6691       break;
6692 
6693     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6694     V.changeSign();
6695     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6696 
6697     // If we already have the use of the negated floating constant, it is free
6698     // to negate it even it has multiple uses.
6699     if (!Op.hasOneUse() && CFP.use_empty())
6700       break;
6701     Cost = NegatibleCost::Neutral;
6702     return CFP;
6703   }
6704   case ISD::BUILD_VECTOR: {
6705     // Only permit BUILD_VECTOR of constants.
6706     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6707           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6708         }))
6709       break;
6710 
6711     bool IsOpLegal =
6712         (isOperationLegal(ISD::ConstantFP, VT) &&
6713          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6714         llvm::all_of(Op->op_values(), [&](SDValue N) {
6715           return N.isUndef() ||
6716                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6717                               OptForSize);
6718         });
6719 
6720     if (LegalOps && !IsOpLegal)
6721       break;
6722 
6723     SmallVector<SDValue, 4> Ops;
6724     for (SDValue C : Op->op_values()) {
6725       if (C.isUndef()) {
6726         Ops.push_back(C);
6727         continue;
6728       }
6729       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6730       V.changeSign();
6731       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6732     }
6733     Cost = NegatibleCost::Neutral;
6734     return DAG.getBuildVector(VT, DL, Ops);
6735   }
6736   case ISD::FADD: {
6737     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6738       break;
6739 
6740     // After operation legalization, it might not be legal to create new FSUBs.
6741     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6742       break;
6743     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6744 
6745     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6746     NegatibleCost CostX = NegatibleCost::Expensive;
6747     SDValue NegX =
6748         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6749     // Prevent this node from being deleted by the next call.
6750     if (NegX)
6751       Handles.emplace_back(NegX);
6752 
6753     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6754     NegatibleCost CostY = NegatibleCost::Expensive;
6755     SDValue NegY =
6756         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6757 
6758     // We're done with the handles.
6759     Handles.clear();
6760 
6761     // Negate the X if its cost is less or equal than Y.
6762     if (NegX && (CostX <= CostY)) {
6763       Cost = CostX;
6764       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6765       if (NegY != N)
6766         RemoveDeadNode(NegY);
6767       return N;
6768     }
6769 
6770     // Negate the Y if it is not expensive.
6771     if (NegY) {
6772       Cost = CostY;
6773       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6774       if (NegX != N)
6775         RemoveDeadNode(NegX);
6776       return N;
6777     }
6778     break;
6779   }
6780   case ISD::FSUB: {
6781     // We can't turn -(A-B) into B-A when we honor signed zeros.
6782     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6783       break;
6784 
6785     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6786     // fold (fneg (fsub 0, Y)) -> Y
6787     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6788       if (C->isZero()) {
6789         Cost = NegatibleCost::Cheaper;
6790         return Y;
6791       }
6792 
6793     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6794     Cost = NegatibleCost::Neutral;
6795     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6796   }
6797   case ISD::FMUL:
6798   case ISD::FDIV: {
6799     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6800 
6801     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6802     NegatibleCost CostX = NegatibleCost::Expensive;
6803     SDValue NegX =
6804         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6805     // Prevent this node from being deleted by the next call.
6806     if (NegX)
6807       Handles.emplace_back(NegX);
6808 
6809     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6810     NegatibleCost CostY = NegatibleCost::Expensive;
6811     SDValue NegY =
6812         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6813 
6814     // We're done with the handles.
6815     Handles.clear();
6816 
6817     // Negate the X if its cost is less or equal than Y.
6818     if (NegX && (CostX <= CostY)) {
6819       Cost = CostX;
6820       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6821       if (NegY != N)
6822         RemoveDeadNode(NegY);
6823       return N;
6824     }
6825 
6826     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6827     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6828       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6829         break;
6830 
6831     // Negate the Y if it is not expensive.
6832     if (NegY) {
6833       Cost = CostY;
6834       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6835       if (NegX != N)
6836         RemoveDeadNode(NegX);
6837       return N;
6838     }
6839     break;
6840   }
6841   case ISD::FMA:
6842   case ISD::FMAD: {
6843     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6844       break;
6845 
6846     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6847     NegatibleCost CostZ = NegatibleCost::Expensive;
6848     SDValue NegZ =
6849         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6850     // Give up if fail to negate the Z.
6851     if (!NegZ)
6852       break;
6853 
6854     // Prevent this node from being deleted by the next two calls.
6855     Handles.emplace_back(NegZ);
6856 
6857     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6858     NegatibleCost CostX = NegatibleCost::Expensive;
6859     SDValue NegX =
6860         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6861     // Prevent this node from being deleted by the next call.
6862     if (NegX)
6863       Handles.emplace_back(NegX);
6864 
6865     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6866     NegatibleCost CostY = NegatibleCost::Expensive;
6867     SDValue NegY =
6868         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6869 
6870     // We're done with the handles.
6871     Handles.clear();
6872 
6873     // Negate the X if its cost is less or equal than Y.
6874     if (NegX && (CostX <= CostY)) {
6875       Cost = std::min(CostX, CostZ);
6876       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6877       if (NegY != N)
6878         RemoveDeadNode(NegY);
6879       return N;
6880     }
6881 
6882     // Negate the Y if it is not expensive.
6883     if (NegY) {
6884       Cost = std::min(CostY, CostZ);
6885       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6886       if (NegX != N)
6887         RemoveDeadNode(NegX);
6888       return N;
6889     }
6890     break;
6891   }
6892 
6893   case ISD::FP_EXTEND:
6894   case ISD::FSIN:
6895     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6896                                             OptForSize, Cost, Depth))
6897       return DAG.getNode(Opcode, DL, VT, NegV);
6898     break;
6899   case ISD::FP_ROUND:
6900     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6901                                             OptForSize, Cost, Depth))
6902       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6903     break;
6904   }
6905 
6906   return SDValue();
6907 }
6908 
6909 //===----------------------------------------------------------------------===//
6910 // Legalization Utilities
6911 //===----------------------------------------------------------------------===//
6912 
6913 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6914                                     SDValue LHS, SDValue RHS,
6915                                     SmallVectorImpl<SDValue> &Result,
6916                                     EVT HiLoVT, SelectionDAG &DAG,
6917                                     MulExpansionKind Kind, SDValue LL,
6918                                     SDValue LH, SDValue RL, SDValue RH) const {
6919   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6920          Opcode == ISD::SMUL_LOHI);
6921 
6922   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6923                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6924   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6925                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6926   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6927                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6928   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6929                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6930 
6931   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6932     return false;
6933 
6934   unsigned OuterBitSize = VT.getScalarSizeInBits();
6935   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6936 
6937   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6938   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6939          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6940 
6941   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6942   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6943                           bool Signed) -> bool {
6944     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6945       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6946       Hi = SDValue(Lo.getNode(), 1);
6947       return true;
6948     }
6949     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6950       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6951       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6952       return true;
6953     }
6954     return false;
6955   };
6956 
6957   SDValue Lo, Hi;
6958 
6959   if (!LL.getNode() && !RL.getNode() &&
6960       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6961     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6962     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6963   }
6964 
6965   if (!LL.getNode())
6966     return false;
6967 
6968   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6969   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6970       DAG.MaskedValueIsZero(RHS, HighMask)) {
6971     // The inputs are both zero-extended.
6972     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6973       Result.push_back(Lo);
6974       Result.push_back(Hi);
6975       if (Opcode != ISD::MUL) {
6976         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6977         Result.push_back(Zero);
6978         Result.push_back(Zero);
6979       }
6980       return true;
6981     }
6982   }
6983 
6984   if (!VT.isVector() && Opcode == ISD::MUL &&
6985       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6986       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6987     // The input values are both sign-extended.
6988     // TODO non-MUL case?
6989     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6990       Result.push_back(Lo);
6991       Result.push_back(Hi);
6992       return true;
6993     }
6994   }
6995 
6996   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6997   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6998   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6999 
7000   if (!LH.getNode() && !RH.getNode() &&
7001       isOperationLegalOrCustom(ISD::SRL, VT) &&
7002       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7003     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7004     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7005     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7006     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7007   }
7008 
7009   if (!LH.getNode())
7010     return false;
7011 
7012   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7013     return false;
7014 
7015   Result.push_back(Lo);
7016 
7017   if (Opcode == ISD::MUL) {
7018     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7019     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7020     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7021     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7022     Result.push_back(Hi);
7023     return true;
7024   }
7025 
7026   // Compute the full width result.
7027   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7028     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7029     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7030     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7031     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7032   };
7033 
7034   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7035   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7036     return false;
7037 
7038   // This is effectively the add part of a multiply-add of half-sized operands,
7039   // so it cannot overflow.
7040   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7041 
7042   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7043     return false;
7044 
7045   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7046   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7047 
7048   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7049                   isOperationLegalOrCustom(ISD::ADDE, VT));
7050   if (UseGlue)
7051     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7052                        Merge(Lo, Hi));
7053   else
7054     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7055                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7056 
7057   SDValue Carry = Next.getValue(1);
7058   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7059   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7060 
7061   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7062     return false;
7063 
7064   if (UseGlue)
7065     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7066                      Carry);
7067   else
7068     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7069                      Zero, Carry);
7070 
7071   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7072 
7073   if (Opcode == ISD::SMUL_LOHI) {
7074     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7075                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7076     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7077 
7078     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7079                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7080     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7081   }
7082 
7083   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7084   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7085   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7086   return true;
7087 }
7088 
7089 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7090                                SelectionDAG &DAG, MulExpansionKind Kind,
7091                                SDValue LL, SDValue LH, SDValue RL,
7092                                SDValue RH) const {
7093   SmallVector<SDValue, 2> Result;
7094   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7095                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7096                            DAG, Kind, LL, LH, RL, RH);
7097   if (Ok) {
7098     assert(Result.size() == 2);
7099     Lo = Result[0];
7100     Hi = Result[1];
7101   }
7102   return Ok;
7103 }
7104 
7105 // Check that (every element of) Z is undef or not an exact multiple of BW.
7106 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7107   return ISD::matchUnaryPredicate(
7108       Z,
7109       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7110       true);
7111 }
7112 
7113 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7114                                           SelectionDAG &DAG) const {
7115   EVT VT = Node->getValueType(0);
7116 
7117   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7118                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7119                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7120                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7121     return SDValue();
7122 
7123   SDValue X = Node->getOperand(0);
7124   SDValue Y = Node->getOperand(1);
7125   SDValue Z = Node->getOperand(2);
7126 
7127   unsigned BW = VT.getScalarSizeInBits();
7128   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7129   SDLoc DL(SDValue(Node, 0));
7130 
7131   EVT ShVT = Z.getValueType();
7132 
7133   // If a funnel shift in the other direction is more supported, use it.
7134   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7135   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7136       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7137     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7138       // fshl X, Y, Z -> fshr X, Y, -Z
7139       // fshr X, Y, Z -> fshl X, Y, -Z
7140       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7141       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7142     } else {
7143       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7144       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7145       SDValue One = DAG.getConstant(1, DL, ShVT);
7146       if (IsFSHL) {
7147         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7148         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7149       } else {
7150         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7151         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7152       }
7153       Z = DAG.getNOT(DL, Z, ShVT);
7154     }
7155     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7156   }
7157 
7158   SDValue ShX, ShY;
7159   SDValue ShAmt, InvShAmt;
7160   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7161     // fshl: X << C | Y >> (BW - C)
7162     // fshr: X << (BW - C) | Y >> C
7163     // where C = Z % BW is not zero
7164     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7165     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7166     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7167     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7168     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7169   } else {
7170     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7171     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7172     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7173     if (isPowerOf2_32(BW)) {
7174       // Z % BW -> Z & (BW - 1)
7175       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7176       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7177       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7178     } else {
7179       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7180       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7181       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7182     }
7183 
7184     SDValue One = DAG.getConstant(1, DL, ShVT);
7185     if (IsFSHL) {
7186       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7187       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7188       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7189     } else {
7190       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7191       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7192       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7193     }
7194   }
7195   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7196 }
7197 
7198 // TODO: Merge with expandFunnelShift.
7199 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7200                                   SelectionDAG &DAG) const {
7201   EVT VT = Node->getValueType(0);
7202   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7203   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7204   SDValue Op0 = Node->getOperand(0);
7205   SDValue Op1 = Node->getOperand(1);
7206   SDLoc DL(SDValue(Node, 0));
7207 
7208   EVT ShVT = Op1.getValueType();
7209   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7210 
7211   // If a rotate in the other direction is more supported, use it.
7212   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7213   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7214       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7215     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7216     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7217   }
7218 
7219   if (!AllowVectorOps && VT.isVector() &&
7220       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7221        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7222        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7223        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7224        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7225     return SDValue();
7226 
7227   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7228   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7229   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7230   SDValue ShVal;
7231   SDValue HsVal;
7232   if (isPowerOf2_32(EltSizeInBits)) {
7233     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7234     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7235     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7236     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7237     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7238     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7239     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7240   } else {
7241     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7242     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7243     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7244     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7245     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7246     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7247     SDValue One = DAG.getConstant(1, DL, ShVT);
7248     HsVal =
7249         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7250   }
7251   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7252 }
7253 
7254 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7255                                       SelectionDAG &DAG) const {
7256   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7257   EVT VT = Node->getValueType(0);
7258   unsigned VTBits = VT.getScalarSizeInBits();
7259   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7260 
7261   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7262   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7263   SDValue ShOpLo = Node->getOperand(0);
7264   SDValue ShOpHi = Node->getOperand(1);
7265   SDValue ShAmt = Node->getOperand(2);
7266   EVT ShAmtVT = ShAmt.getValueType();
7267   EVT ShAmtCCVT =
7268       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7269   SDLoc dl(Node);
7270 
7271   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7272   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7273   // away during isel.
7274   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7275                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7276   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7277                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7278                        : DAG.getConstant(0, dl, VT);
7279 
7280   SDValue Tmp2, Tmp3;
7281   if (IsSHL) {
7282     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7283     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7284   } else {
7285     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7286     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7287   }
7288 
7289   // If the shift amount is larger or equal than the width of a part we don't
7290   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7291   // values for large shift amounts.
7292   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7293                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7294   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7295                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7296 
7297   if (IsSHL) {
7298     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7299     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7300   } else {
7301     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7302     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7303   }
7304 }
7305 
7306 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7307                                       SelectionDAG &DAG) const {
7308   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7309   SDValue Src = Node->getOperand(OpNo);
7310   EVT SrcVT = Src.getValueType();
7311   EVT DstVT = Node->getValueType(0);
7312   SDLoc dl(SDValue(Node, 0));
7313 
7314   // FIXME: Only f32 to i64 conversions are supported.
7315   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7316     return false;
7317 
7318   if (Node->isStrictFPOpcode())
7319     // When a NaN is converted to an integer a trap is allowed. We can't
7320     // use this expansion here because it would eliminate that trap. Other
7321     // traps are also allowed and cannot be eliminated. See
7322     // IEEE 754-2008 sec 5.8.
7323     return false;
7324 
7325   // Expand f32 -> i64 conversion
7326   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7327   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7328   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7329   EVT IntVT = SrcVT.changeTypeToInteger();
7330   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7331 
7332   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7333   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7334   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7335   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7336   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7337   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7338 
7339   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7340 
7341   SDValue ExponentBits = DAG.getNode(
7342       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7343       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7344   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7345 
7346   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7347                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7348                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7349   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7350 
7351   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7352                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7353                           DAG.getConstant(0x00800000, dl, IntVT));
7354 
7355   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7356 
7357   R = DAG.getSelectCC(
7358       dl, Exponent, ExponentLoBit,
7359       DAG.getNode(ISD::SHL, dl, DstVT, R,
7360                   DAG.getZExtOrTrunc(
7361                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7362                       dl, IntShVT)),
7363       DAG.getNode(ISD::SRL, dl, DstVT, R,
7364                   DAG.getZExtOrTrunc(
7365                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7366                       dl, IntShVT)),
7367       ISD::SETGT);
7368 
7369   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7370                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7371 
7372   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7373                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7374   return true;
7375 }
7376 
7377 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7378                                       SDValue &Chain,
7379                                       SelectionDAG &DAG) const {
7380   SDLoc dl(SDValue(Node, 0));
7381   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7382   SDValue Src = Node->getOperand(OpNo);
7383 
7384   EVT SrcVT = Src.getValueType();
7385   EVT DstVT = Node->getValueType(0);
7386   EVT SetCCVT =
7387       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7388   EVT DstSetCCVT =
7389       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7390 
7391   // Only expand vector types if we have the appropriate vector bit operations.
7392   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7393                                                    ISD::FP_TO_SINT;
7394   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7395                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7396     return false;
7397 
7398   // If the maximum float value is smaller then the signed integer range,
7399   // the destination signmask can't be represented by the float, so we can
7400   // just use FP_TO_SINT directly.
7401   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7402   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7403   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7404   if (APFloat::opOverflow &
7405       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7406     if (Node->isStrictFPOpcode()) {
7407       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7408                            { Node->getOperand(0), Src });
7409       Chain = Result.getValue(1);
7410     } else
7411       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7412     return true;
7413   }
7414 
7415   // Don't expand it if there isn't cheap fsub instruction.
7416   if (!isOperationLegalOrCustom(
7417           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7418     return false;
7419 
7420   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7421   SDValue Sel;
7422 
7423   if (Node->isStrictFPOpcode()) {
7424     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7425                        Node->getOperand(0), /*IsSignaling*/ true);
7426     Chain = Sel.getValue(1);
7427   } else {
7428     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7429   }
7430 
7431   bool Strict = Node->isStrictFPOpcode() ||
7432                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7433 
7434   if (Strict) {
7435     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7436     // signmask then offset (the result of which should be fully representable).
7437     // Sel = Src < 0x8000000000000000
7438     // FltOfs = select Sel, 0, 0x8000000000000000
7439     // IntOfs = select Sel, 0, 0x8000000000000000
7440     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7441 
7442     // TODO: Should any fast-math-flags be set for the FSUB?
7443     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7444                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7445     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7446     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7447                                    DAG.getConstant(0, dl, DstVT),
7448                                    DAG.getConstant(SignMask, dl, DstVT));
7449     SDValue SInt;
7450     if (Node->isStrictFPOpcode()) {
7451       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7452                                 { Chain, Src, FltOfs });
7453       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7454                          { Val.getValue(1), Val });
7455       Chain = SInt.getValue(1);
7456     } else {
7457       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7458       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7459     }
7460     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7461   } else {
7462     // Expand based on maximum range of FP_TO_SINT:
7463     // True = fp_to_sint(Src)
7464     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7465     // Result = select (Src < 0x8000000000000000), True, False
7466 
7467     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7468     // TODO: Should any fast-math-flags be set for the FSUB?
7469     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7470                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7471     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7472                         DAG.getConstant(SignMask, dl, DstVT));
7473     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7474     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7475   }
7476   return true;
7477 }
7478 
7479 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7480                                       SDValue &Chain,
7481                                       SelectionDAG &DAG) const {
7482   // This transform is not correct for converting 0 when rounding mode is set
7483   // to round toward negative infinity which will produce -0.0. So disable under
7484   // strictfp.
7485   if (Node->isStrictFPOpcode())
7486     return false;
7487 
7488   SDValue Src = Node->getOperand(0);
7489   EVT SrcVT = Src.getValueType();
7490   EVT DstVT = Node->getValueType(0);
7491 
7492   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7493     return false;
7494 
7495   // Only expand vector types if we have the appropriate vector bit operations.
7496   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7497                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7498                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7499                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7500                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7501     return false;
7502 
7503   SDLoc dl(SDValue(Node, 0));
7504   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7505 
7506   // Implementation of unsigned i64 to f64 following the algorithm in
7507   // __floatundidf in compiler_rt.  This implementation performs rounding
7508   // correctly in all rounding modes with the exception of converting 0
7509   // when rounding toward negative infinity. In that case the fsub will produce
7510   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7511   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7512   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7513       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7514   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7515   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7516   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7517 
7518   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7519   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7520   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7521   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7522   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7523   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7524   SDValue HiSub =
7525       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7526   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7527   return true;
7528 }
7529 
7530 SDValue
7531 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7532                                                SelectionDAG &DAG) const {
7533   unsigned Opcode = Node->getOpcode();
7534   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7535           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7536          "Wrong opcode");
7537 
7538   if (Node->getFlags().hasNoNaNs()) {
7539     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7540     SDValue Op1 = Node->getOperand(0);
7541     SDValue Op2 = Node->getOperand(1);
7542     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7543     // Copy FMF flags, but always set the no-signed-zeros flag
7544     // as this is implied by the FMINNUM/FMAXNUM semantics.
7545     SDNodeFlags Flags = Node->getFlags();
7546     Flags.setNoSignedZeros(true);
7547     SelCC->setFlags(Flags);
7548     return SelCC;
7549   }
7550 
7551   return SDValue();
7552 }
7553 
7554 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7555                                               SelectionDAG &DAG) const {
7556   SDLoc dl(Node);
7557   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7558     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7559   EVT VT = Node->getValueType(0);
7560 
7561   if (VT.isScalableVector())
7562     report_fatal_error(
7563         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7564 
7565   if (isOperationLegalOrCustom(NewOp, VT)) {
7566     SDValue Quiet0 = Node->getOperand(0);
7567     SDValue Quiet1 = Node->getOperand(1);
7568 
7569     if (!Node->getFlags().hasNoNaNs()) {
7570       // Insert canonicalizes if it's possible we need to quiet to get correct
7571       // sNaN behavior.
7572       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7573         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7574                              Node->getFlags());
7575       }
7576       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7577         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7578                              Node->getFlags());
7579       }
7580     }
7581 
7582     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7583   }
7584 
7585   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7586   // instead if there are no NaNs.
7587   if (Node->getFlags().hasNoNaNs()) {
7588     unsigned IEEE2018Op =
7589         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7590     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7591       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7592                          Node->getOperand(1), Node->getFlags());
7593     }
7594   }
7595 
7596   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7597     return SelCC;
7598 
7599   return SDValue();
7600 }
7601 
7602 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7603                                          unsigned Test, SDNodeFlags Flags,
7604                                          const SDLoc &DL,
7605                                          SelectionDAG &DAG) const {
7606   EVT OperandVT = Op.getValueType();
7607   assert(OperandVT.isFloatingPoint());
7608 
7609   // Degenerated cases.
7610   if (Test == 0)
7611     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7612   if ((Test & fcAllFlags) == fcAllFlags)
7613     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7614 
7615   // PPC double double is a pair of doubles, of which the higher part determines
7616   // the value class.
7617   if (OperandVT == MVT::ppcf128) {
7618     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7619                      DAG.getConstant(1, DL, MVT::i32));
7620     OperandVT = MVT::f64;
7621   }
7622 
7623   // Some checks may be represented as inversion of simpler check, for example
7624   // "inf|normal|subnormal|zero" => !"nan".
7625   bool IsInverted = false;
7626   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7627     IsInverted = true;
7628     Test = InvertedCheck;
7629   }
7630 
7631   // Floating-point type properties.
7632   EVT ScalarFloatVT = OperandVT.getScalarType();
7633   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7634   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7635   bool IsF80 = (ScalarFloatVT == MVT::f80);
7636 
7637   // Some checks can be implemented using float comparisons, if floating point
7638   // exceptions are ignored.
7639   if (Flags.hasNoFPExcept() &&
7640       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7641     if (Test == fcZero)
7642       return DAG.getSetCC(DL, ResultVT, Op,
7643                           DAG.getConstantFP(0.0, DL, OperandVT),
7644                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7645     if (Test == fcNan)
7646       return DAG.getSetCC(DL, ResultVT, Op, Op,
7647                           IsInverted ? ISD::SETO : ISD::SETUO);
7648   }
7649 
7650   // In the general case use integer operations.
7651   unsigned BitSize = OperandVT.getScalarSizeInBits();
7652   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7653   if (OperandVT.isVector())
7654     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7655                              OperandVT.getVectorElementCount());
7656   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7657 
7658   // Various masks.
7659   APInt SignBit = APInt::getSignMask(BitSize);
7660   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7661   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7662   const unsigned ExplicitIntBitInF80 = 63;
7663   APInt ExpMask = Inf;
7664   if (IsF80)
7665     ExpMask.clearBit(ExplicitIntBitInF80);
7666   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7667   APInt QNaNBitMask =
7668       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7669   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7670 
7671   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7672   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7673   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7674   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7675   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7676   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7677 
7678   SDValue Res;
7679   const auto appendResult = [&](SDValue PartialRes) {
7680     if (PartialRes) {
7681       if (Res)
7682         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7683       else
7684         Res = PartialRes;
7685     }
7686   };
7687 
7688   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7689   const auto getIntBitIsSet = [&]() -> SDValue {
7690     if (!IntBitIsSetV) {
7691       APInt IntBitMask(BitSize, 0);
7692       IntBitMask.setBit(ExplicitIntBitInF80);
7693       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7694       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7695       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7696     }
7697     return IntBitIsSetV;
7698   };
7699 
7700   // Split the value into sign bit and absolute value.
7701   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7702   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7703                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7704 
7705   // Tests that involve more than one class should be processed first.
7706   SDValue PartialRes;
7707 
7708   if (IsF80)
7709     ; // Detect finite numbers of f80 by checking individual classes because
7710       // they have different settings of the explicit integer bit.
7711   else if ((Test & fcFinite) == fcFinite) {
7712     // finite(V) ==> abs(V) < exp_mask
7713     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7714     Test &= ~fcFinite;
7715   } else if ((Test & fcFinite) == fcPosFinite) {
7716     // finite(V) && V > 0 ==> V < exp_mask
7717     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7718     Test &= ~fcPosFinite;
7719   } else if ((Test & fcFinite) == fcNegFinite) {
7720     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7721     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7722     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7723     Test &= ~fcNegFinite;
7724   }
7725   appendResult(PartialRes);
7726 
7727   // Check for individual classes.
7728 
7729   if (unsigned PartialCheck = Test & fcZero) {
7730     if (PartialCheck == fcPosZero)
7731       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7732     else if (PartialCheck == fcZero)
7733       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7734     else // ISD::fcNegZero
7735       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7736     appendResult(PartialRes);
7737   }
7738 
7739   if (unsigned PartialCheck = Test & fcInf) {
7740     if (PartialCheck == fcPosInf)
7741       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7742     else if (PartialCheck == fcInf)
7743       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7744     else { // ISD::fcNegInf
7745       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7746       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7747       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7748     }
7749     appendResult(PartialRes);
7750   }
7751 
7752   if (unsigned PartialCheck = Test & fcNan) {
7753     APInt InfWithQnanBit = Inf | QNaNBitMask;
7754     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7755     if (PartialCheck == fcNan) {
7756       // isnan(V) ==> abs(V) > int(inf)
7757       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7758       if (IsF80) {
7759         // Recognize unsupported values as NaNs for compatibility with glibc.
7760         // In them (exp(V)==0) == int_bit.
7761         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7762         SDValue ExpIsZero =
7763             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7764         SDValue IsPseudo =
7765             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7766         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7767       }
7768     } else if (PartialCheck == fcQNan) {
7769       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7770       PartialRes =
7771           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7772     } else { // ISD::fcSNan
7773       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7774       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7775       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7776       SDValue IsNotQnan =
7777           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7778       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7779     }
7780     appendResult(PartialRes);
7781   }
7782 
7783   if (unsigned PartialCheck = Test & fcSubnormal) {
7784     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7785     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7786     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7787     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7788     SDValue VMinusOneV =
7789         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7790     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7791     if (PartialCheck == fcNegSubnormal)
7792       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7793     appendResult(PartialRes);
7794   }
7795 
7796   if (unsigned PartialCheck = Test & fcNormal) {
7797     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7798     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7799     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7800     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7801     APInt ExpLimit = ExpMask - ExpLSB;
7802     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7803     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7804     if (PartialCheck == fcNegNormal)
7805       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7806     else if (PartialCheck == fcPosNormal) {
7807       SDValue PosSignV =
7808           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7809       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7810     }
7811     if (IsF80)
7812       PartialRes =
7813           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7814     appendResult(PartialRes);
7815   }
7816 
7817   if (!Res)
7818     return DAG.getConstant(IsInverted, DL, ResultVT);
7819   if (IsInverted)
7820     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7821   return Res;
7822 }
7823 
7824 // Only expand vector types if we have the appropriate vector bit operations.
7825 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7826   assert(VT.isVector() && "Expected vector type");
7827   unsigned Len = VT.getScalarSizeInBits();
7828   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7829          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7830          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7831          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7832          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7833 }
7834 
7835 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7836   SDLoc dl(Node);
7837   EVT VT = Node->getValueType(0);
7838   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7839   SDValue Op = Node->getOperand(0);
7840   unsigned Len = VT.getScalarSizeInBits();
7841   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7842 
7843   // TODO: Add support for irregular type lengths.
7844   if (!(Len <= 128 && Len % 8 == 0))
7845     return SDValue();
7846 
7847   // Only expand vector types if we have the appropriate vector bit operations.
7848   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7849     return SDValue();
7850 
7851   // This is the "best" algorithm from
7852   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7853   SDValue Mask55 =
7854       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7855   SDValue Mask33 =
7856       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7857   SDValue Mask0F =
7858       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7859 
7860   // v = v - ((v >> 1) & 0x55555555...)
7861   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7862                    DAG.getNode(ISD::AND, dl, VT,
7863                                DAG.getNode(ISD::SRL, dl, VT, Op,
7864                                            DAG.getConstant(1, dl, ShVT)),
7865                                Mask55));
7866   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7867   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7868                    DAG.getNode(ISD::AND, dl, VT,
7869                                DAG.getNode(ISD::SRL, dl, VT, Op,
7870                                            DAG.getConstant(2, dl, ShVT)),
7871                                Mask33));
7872   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7873   Op = DAG.getNode(ISD::AND, dl, VT,
7874                    DAG.getNode(ISD::ADD, dl, VT, Op,
7875                                DAG.getNode(ISD::SRL, dl, VT, Op,
7876                                            DAG.getConstant(4, dl, ShVT))),
7877                    Mask0F);
7878 
7879   if (Len <= 8)
7880     return Op;
7881 
7882   // Avoid the multiply if we only have 2 bytes to add.
7883   // TODO: Only doing this for scalars because vectors weren't as obviously
7884   // improved.
7885   if (Len == 16 && !VT.isVector()) {
7886     // v = (v + (v >> 8)) & 0x00FF;
7887     return DAG.getNode(ISD::AND, dl, VT,
7888                      DAG.getNode(ISD::ADD, dl, VT, Op,
7889                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7890                                              DAG.getConstant(8, dl, ShVT))),
7891                      DAG.getConstant(0xFF, dl, VT));
7892   }
7893 
7894   // v = (v * 0x01010101...) >> (Len - 8)
7895   SDValue Mask01 =
7896       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7897   return DAG.getNode(ISD::SRL, dl, VT,
7898                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7899                      DAG.getConstant(Len - 8, dl, ShVT));
7900 }
7901 
7902 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7903   SDLoc dl(Node);
7904   EVT VT = Node->getValueType(0);
7905   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7906   SDValue Op = Node->getOperand(0);
7907   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7908 
7909   // If the non-ZERO_UNDEF version is supported we can use that instead.
7910   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7911       isOperationLegalOrCustom(ISD::CTLZ, VT))
7912     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7913 
7914   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7915   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7916     EVT SetCCVT =
7917         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7918     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7919     SDValue Zero = DAG.getConstant(0, dl, VT);
7920     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7921     return DAG.getSelect(dl, VT, SrcIsZero,
7922                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7923   }
7924 
7925   // Only expand vector types if we have the appropriate vector bit operations.
7926   // This includes the operations needed to expand CTPOP if it isn't supported.
7927   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7928                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7929                          !canExpandVectorCTPOP(*this, VT)) ||
7930                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7931                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7932     return SDValue();
7933 
7934   // for now, we do this:
7935   // x = x | (x >> 1);
7936   // x = x | (x >> 2);
7937   // ...
7938   // x = x | (x >>16);
7939   // x = x | (x >>32); // for 64-bit input
7940   // return popcount(~x);
7941   //
7942   // Ref: "Hacker's Delight" by Henry Warren
7943   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7944     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7945     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7946                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7947   }
7948   Op = DAG.getNOT(dl, Op, VT);
7949   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7950 }
7951 
7952 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7953   SDLoc dl(Node);
7954   EVT VT = Node->getValueType(0);
7955   SDValue Op = Node->getOperand(0);
7956   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7957 
7958   // If the non-ZERO_UNDEF version is supported we can use that instead.
7959   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7960       isOperationLegalOrCustom(ISD::CTTZ, VT))
7961     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7962 
7963   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7964   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7965     EVT SetCCVT =
7966         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7967     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7968     SDValue Zero = DAG.getConstant(0, dl, VT);
7969     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7970     return DAG.getSelect(dl, VT, SrcIsZero,
7971                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7972   }
7973 
7974   // Only expand vector types if we have the appropriate vector bit operations.
7975   // This includes the operations needed to expand CTPOP if it isn't supported.
7976   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7977                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7978                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7979                          !canExpandVectorCTPOP(*this, VT)) ||
7980                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7981                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7982                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7983     return SDValue();
7984 
7985   // for now, we use: { return popcount(~x & (x - 1)); }
7986   // unless the target has ctlz but not ctpop, in which case we use:
7987   // { return 32 - nlz(~x & (x-1)); }
7988   // Ref: "Hacker's Delight" by Henry Warren
7989   SDValue Tmp = DAG.getNode(
7990       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7991       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7992 
7993   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7994   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7995     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7996                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7997   }
7998 
7999   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8000 }
8001 
8002 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8003                                   bool IsNegative) const {
8004   SDLoc dl(N);
8005   EVT VT = N->getValueType(0);
8006   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8007   SDValue Op = N->getOperand(0);
8008 
8009   // abs(x) -> smax(x,sub(0,x))
8010   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8011       isOperationLegal(ISD::SMAX, VT)) {
8012     SDValue Zero = DAG.getConstant(0, dl, VT);
8013     return DAG.getNode(ISD::SMAX, dl, VT, Op,
8014                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8015   }
8016 
8017   // abs(x) -> umin(x,sub(0,x))
8018   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8019       isOperationLegal(ISD::UMIN, VT)) {
8020     SDValue Zero = DAG.getConstant(0, dl, VT);
8021     Op = DAG.getFreeze(Op);
8022     return DAG.getNode(ISD::UMIN, dl, VT, Op,
8023                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8024   }
8025 
8026   // 0 - abs(x) -> smin(x, sub(0,x))
8027   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8028       isOperationLegal(ISD::SMIN, VT)) {
8029     Op = DAG.getFreeze(Op);
8030     SDValue Zero = DAG.getConstant(0, dl, VT);
8031     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8032                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8033   }
8034 
8035   // Only expand vector types if we have the appropriate vector operations.
8036   if (VT.isVector() &&
8037       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8038        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8039        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8040        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8041     return SDValue();
8042 
8043   Op = DAG.getFreeze(Op);
8044   SDValue Shift =
8045       DAG.getNode(ISD::SRA, dl, VT, Op,
8046                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8047   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8048 
8049   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8050   if (!IsNegative)
8051     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8052 
8053   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8054   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8055 }
8056 
8057 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8058   SDLoc dl(N);
8059   EVT VT = N->getValueType(0);
8060   SDValue Op = N->getOperand(0);
8061 
8062   if (!VT.isSimple())
8063     return SDValue();
8064 
8065   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8066   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8067   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8068   default:
8069     return SDValue();
8070   case MVT::i16:
8071     // Use a rotate by 8. This can be further expanded if necessary.
8072     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8073   case MVT::i32:
8074     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8075     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8076     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8077     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8078     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8079                        DAG.getConstant(0xFF0000, dl, VT));
8080     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8081     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8082     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8083     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8084   case MVT::i64:
8085     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8086     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8087     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8088     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8089     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8090     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8091     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8092     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8093     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8094                        DAG.getConstant(255ULL<<48, dl, VT));
8095     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8096                        DAG.getConstant(255ULL<<40, dl, VT));
8097     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8098                        DAG.getConstant(255ULL<<32, dl, VT));
8099     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8100                        DAG.getConstant(255ULL<<24, dl, VT));
8101     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8102                        DAG.getConstant(255ULL<<16, dl, VT));
8103     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8104                        DAG.getConstant(255ULL<<8 , dl, VT));
8105     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8106     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8107     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8108     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8109     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8110     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8111     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8112   }
8113 }
8114 
8115 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8116   SDLoc dl(N);
8117   EVT VT = N->getValueType(0);
8118   SDValue Op = N->getOperand(0);
8119   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8120   unsigned Sz = VT.getScalarSizeInBits();
8121 
8122   SDValue Tmp, Tmp2, Tmp3;
8123 
8124   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8125   // and finally the i1 pairs.
8126   // TODO: We can easily support i4/i2 legal types if any target ever does.
8127   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8128     // Create the masks - repeating the pattern every byte.
8129     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8130     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8131     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8132 
8133     // BSWAP if the type is wider than a single byte.
8134     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8135 
8136     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8137     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8138     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8139     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8140     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8141     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8142 
8143     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8144     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8145     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8146     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8147     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8148     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8149 
8150     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8151     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8152     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8153     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8154     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8155     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8156     return Tmp;
8157   }
8158 
8159   Tmp = DAG.getConstant(0, dl, VT);
8160   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8161     if (I < J)
8162       Tmp2 =
8163           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8164     else
8165       Tmp2 =
8166           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8167 
8168     APInt Shift(Sz, 1);
8169     Shift <<= J;
8170     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8171     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8172   }
8173 
8174   return Tmp;
8175 }
8176 
8177 std::pair<SDValue, SDValue>
8178 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8179                                     SelectionDAG &DAG) const {
8180   SDLoc SL(LD);
8181   SDValue Chain = LD->getChain();
8182   SDValue BasePTR = LD->getBasePtr();
8183   EVT SrcVT = LD->getMemoryVT();
8184   EVT DstVT = LD->getValueType(0);
8185   ISD::LoadExtType ExtType = LD->getExtensionType();
8186 
8187   if (SrcVT.isScalableVector())
8188     report_fatal_error("Cannot scalarize scalable vector loads");
8189 
8190   unsigned NumElem = SrcVT.getVectorNumElements();
8191 
8192   EVT SrcEltVT = SrcVT.getScalarType();
8193   EVT DstEltVT = DstVT.getScalarType();
8194 
8195   // A vector must always be stored in memory as-is, i.e. without any padding
8196   // between the elements, since various code depend on it, e.g. in the
8197   // handling of a bitcast of a vector type to int, which may be done with a
8198   // vector store followed by an integer load. A vector that does not have
8199   // elements that are byte-sized must therefore be stored as an integer
8200   // built out of the extracted vector elements.
8201   if (!SrcEltVT.isByteSized()) {
8202     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8203     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8204 
8205     unsigned NumSrcBits = SrcVT.getSizeInBits();
8206     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8207 
8208     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8209     SDValue SrcEltBitMask = DAG.getConstant(
8210         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8211 
8212     // Load the whole vector and avoid masking off the top bits as it makes
8213     // the codegen worse.
8214     SDValue Load =
8215         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8216                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8217                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8218 
8219     SmallVector<SDValue, 8> Vals;
8220     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8221       unsigned ShiftIntoIdx =
8222           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8223       SDValue ShiftAmount =
8224           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8225                                      LoadVT, SL, /*LegalTypes=*/false);
8226       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8227       SDValue Elt =
8228           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8229       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8230 
8231       if (ExtType != ISD::NON_EXTLOAD) {
8232         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8233         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8234       }
8235 
8236       Vals.push_back(Scalar);
8237     }
8238 
8239     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8240     return std::make_pair(Value, Load.getValue(1));
8241   }
8242 
8243   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8244   assert(SrcEltVT.isByteSized());
8245 
8246   SmallVector<SDValue, 8> Vals;
8247   SmallVector<SDValue, 8> LoadChains;
8248 
8249   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8250     SDValue ScalarLoad =
8251         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8252                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8253                        SrcEltVT, LD->getOriginalAlign(),
8254                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8255 
8256     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8257 
8258     Vals.push_back(ScalarLoad.getValue(0));
8259     LoadChains.push_back(ScalarLoad.getValue(1));
8260   }
8261 
8262   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8263   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8264 
8265   return std::make_pair(Value, NewChain);
8266 }
8267 
8268 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8269                                              SelectionDAG &DAG) const {
8270   SDLoc SL(ST);
8271 
8272   SDValue Chain = ST->getChain();
8273   SDValue BasePtr = ST->getBasePtr();
8274   SDValue Value = ST->getValue();
8275   EVT StVT = ST->getMemoryVT();
8276 
8277   if (StVT.isScalableVector())
8278     report_fatal_error("Cannot scalarize scalable vector stores");
8279 
8280   // The type of the data we want to save
8281   EVT RegVT = Value.getValueType();
8282   EVT RegSclVT = RegVT.getScalarType();
8283 
8284   // The type of data as saved in memory.
8285   EVT MemSclVT = StVT.getScalarType();
8286 
8287   unsigned NumElem = StVT.getVectorNumElements();
8288 
8289   // A vector must always be stored in memory as-is, i.e. without any padding
8290   // between the elements, since various code depend on it, e.g. in the
8291   // handling of a bitcast of a vector type to int, which may be done with a
8292   // vector store followed by an integer load. A vector that does not have
8293   // elements that are byte-sized must therefore be stored as an integer
8294   // built out of the extracted vector elements.
8295   if (!MemSclVT.isByteSized()) {
8296     unsigned NumBits = StVT.getSizeInBits();
8297     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8298 
8299     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8300 
8301     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8302       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8303                                 DAG.getVectorIdxConstant(Idx, SL));
8304       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8305       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8306       unsigned ShiftIntoIdx =
8307           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8308       SDValue ShiftAmount =
8309           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8310       SDValue ShiftedElt =
8311           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8312       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8313     }
8314 
8315     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8316                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8317                         ST->getAAInfo());
8318   }
8319 
8320   // Store Stride in bytes
8321   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8322   assert(Stride && "Zero stride!");
8323   // Extract each of the elements from the original vector and save them into
8324   // memory individually.
8325   SmallVector<SDValue, 8> Stores;
8326   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8327     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8328                               DAG.getVectorIdxConstant(Idx, SL));
8329 
8330     SDValue Ptr =
8331         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8332 
8333     // This scalar TruncStore may be illegal, but we legalize it later.
8334     SDValue Store = DAG.getTruncStore(
8335         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8336         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8337         ST->getAAInfo());
8338 
8339     Stores.push_back(Store);
8340   }
8341 
8342   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8343 }
8344 
8345 std::pair<SDValue, SDValue>
8346 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8347   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8348          "unaligned indexed loads not implemented!");
8349   SDValue Chain = LD->getChain();
8350   SDValue Ptr = LD->getBasePtr();
8351   EVT VT = LD->getValueType(0);
8352   EVT LoadedVT = LD->getMemoryVT();
8353   SDLoc dl(LD);
8354   auto &MF = DAG.getMachineFunction();
8355 
8356   if (VT.isFloatingPoint() || VT.isVector()) {
8357     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8358     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8359       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8360           LoadedVT.isVector()) {
8361         // Scalarize the load and let the individual components be handled.
8362         return scalarizeVectorLoad(LD, DAG);
8363       }
8364 
8365       // Expand to a (misaligned) integer load of the same size,
8366       // then bitconvert to floating point or vector.
8367       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8368                                     LD->getMemOperand());
8369       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8370       if (LoadedVT != VT)
8371         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8372                              ISD::ANY_EXTEND, dl, VT, Result);
8373 
8374       return std::make_pair(Result, newLoad.getValue(1));
8375     }
8376 
8377     // Copy the value to a (aligned) stack slot using (unaligned) integer
8378     // loads and stores, then do a (aligned) load from the stack slot.
8379     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8380     unsigned LoadedBytes = LoadedVT.getStoreSize();
8381     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8382     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8383 
8384     // Make sure the stack slot is also aligned for the register type.
8385     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8386     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8387     SmallVector<SDValue, 8> Stores;
8388     SDValue StackPtr = StackBase;
8389     unsigned Offset = 0;
8390 
8391     EVT PtrVT = Ptr.getValueType();
8392     EVT StackPtrVT = StackPtr.getValueType();
8393 
8394     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8395     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8396 
8397     // Do all but one copies using the full register width.
8398     for (unsigned i = 1; i < NumRegs; i++) {
8399       // Load one integer register's worth from the original location.
8400       SDValue Load = DAG.getLoad(
8401           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8402           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8403           LD->getAAInfo());
8404       // Follow the load with a store to the stack slot.  Remember the store.
8405       Stores.push_back(DAG.getStore(
8406           Load.getValue(1), dl, Load, StackPtr,
8407           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8408       // Increment the pointers.
8409       Offset += RegBytes;
8410 
8411       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8412       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8413     }
8414 
8415     // The last copy may be partial.  Do an extending load.
8416     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8417                                   8 * (LoadedBytes - Offset));
8418     SDValue Load =
8419         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8420                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8421                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8422                        LD->getAAInfo());
8423     // Follow the load with a store to the stack slot.  Remember the store.
8424     // On big-endian machines this requires a truncating store to ensure
8425     // that the bits end up in the right place.
8426     Stores.push_back(DAG.getTruncStore(
8427         Load.getValue(1), dl, Load, StackPtr,
8428         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8429 
8430     // The order of the stores doesn't matter - say it with a TokenFactor.
8431     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8432 
8433     // Finally, perform the original load only redirected to the stack slot.
8434     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8435                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8436                           LoadedVT);
8437 
8438     // Callers expect a MERGE_VALUES node.
8439     return std::make_pair(Load, TF);
8440   }
8441 
8442   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8443          "Unaligned load of unsupported type.");
8444 
8445   // Compute the new VT that is half the size of the old one.  This is an
8446   // integer MVT.
8447   unsigned NumBits = LoadedVT.getSizeInBits();
8448   EVT NewLoadedVT;
8449   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8450   NumBits >>= 1;
8451 
8452   Align Alignment = LD->getOriginalAlign();
8453   unsigned IncrementSize = NumBits / 8;
8454   ISD::LoadExtType HiExtType = LD->getExtensionType();
8455 
8456   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8457   if (HiExtType == ISD::NON_EXTLOAD)
8458     HiExtType = ISD::ZEXTLOAD;
8459 
8460   // Load the value in two parts
8461   SDValue Lo, Hi;
8462   if (DAG.getDataLayout().isLittleEndian()) {
8463     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8464                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8465                         LD->getAAInfo());
8466 
8467     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8468     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8469                         LD->getPointerInfo().getWithOffset(IncrementSize),
8470                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8471                         LD->getAAInfo());
8472   } else {
8473     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8474                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8475                         LD->getAAInfo());
8476 
8477     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8478     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8479                         LD->getPointerInfo().getWithOffset(IncrementSize),
8480                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8481                         LD->getAAInfo());
8482   }
8483 
8484   // aggregate the two parts
8485   SDValue ShiftAmount =
8486       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8487                                                     DAG.getDataLayout()));
8488   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8489   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8490 
8491   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8492                              Hi.getValue(1));
8493 
8494   return std::make_pair(Result, TF);
8495 }
8496 
8497 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8498                                              SelectionDAG &DAG) const {
8499   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8500          "unaligned indexed stores not implemented!");
8501   SDValue Chain = ST->getChain();
8502   SDValue Ptr = ST->getBasePtr();
8503   SDValue Val = ST->getValue();
8504   EVT VT = Val.getValueType();
8505   Align Alignment = ST->getOriginalAlign();
8506   auto &MF = DAG.getMachineFunction();
8507   EVT StoreMemVT = ST->getMemoryVT();
8508 
8509   SDLoc dl(ST);
8510   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8511     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8512     if (isTypeLegal(intVT)) {
8513       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8514           StoreMemVT.isVector()) {
8515         // Scalarize the store and let the individual components be handled.
8516         SDValue Result = scalarizeVectorStore(ST, DAG);
8517         return Result;
8518       }
8519       // Expand to a bitconvert of the value to the integer type of the
8520       // same size, then a (misaligned) int store.
8521       // FIXME: Does not handle truncating floating point stores!
8522       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8523       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8524                             Alignment, ST->getMemOperand()->getFlags());
8525       return Result;
8526     }
8527     // Do a (aligned) store to a stack slot, then copy from the stack slot
8528     // to the final destination using (unaligned) integer loads and stores.
8529     MVT RegVT = getRegisterType(
8530         *DAG.getContext(),
8531         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8532     EVT PtrVT = Ptr.getValueType();
8533     unsigned StoredBytes = StoreMemVT.getStoreSize();
8534     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8535     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8536 
8537     // Make sure the stack slot is also aligned for the register type.
8538     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8539     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8540 
8541     // Perform the original store, only redirected to the stack slot.
8542     SDValue Store = DAG.getTruncStore(
8543         Chain, dl, Val, StackPtr,
8544         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8545 
8546     EVT StackPtrVT = StackPtr.getValueType();
8547 
8548     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8549     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8550     SmallVector<SDValue, 8> Stores;
8551     unsigned Offset = 0;
8552 
8553     // Do all but one copies using the full register width.
8554     for (unsigned i = 1; i < NumRegs; i++) {
8555       // Load one integer register's worth from the stack slot.
8556       SDValue Load = DAG.getLoad(
8557           RegVT, dl, Store, StackPtr,
8558           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8559       // Store it to the final location.  Remember the store.
8560       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8561                                     ST->getPointerInfo().getWithOffset(Offset),
8562                                     ST->getOriginalAlign(),
8563                                     ST->getMemOperand()->getFlags()));
8564       // Increment the pointers.
8565       Offset += RegBytes;
8566       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8567       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8568     }
8569 
8570     // The last store may be partial.  Do a truncating store.  On big-endian
8571     // machines this requires an extending load from the stack slot to ensure
8572     // that the bits are in the right place.
8573     EVT LoadMemVT =
8574         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8575 
8576     // Load from the stack slot.
8577     SDValue Load = DAG.getExtLoad(
8578         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8579         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8580 
8581     Stores.push_back(
8582         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8583                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8584                           ST->getOriginalAlign(),
8585                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8586     // The order of the stores doesn't matter - say it with a TokenFactor.
8587     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8588     return Result;
8589   }
8590 
8591   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8592          "Unaligned store of unknown type.");
8593   // Get the half-size VT
8594   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8595   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8596   unsigned IncrementSize = NumBits / 8;
8597 
8598   // Divide the stored value in two parts.
8599   SDValue ShiftAmount = DAG.getConstant(
8600       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8601   SDValue Lo = Val;
8602   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8603 
8604   // Store the two parts
8605   SDValue Store1, Store2;
8606   Store1 = DAG.getTruncStore(Chain, dl,
8607                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8608                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8609                              ST->getMemOperand()->getFlags());
8610 
8611   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8612   Store2 = DAG.getTruncStore(
8613       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8614       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8615       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8616 
8617   SDValue Result =
8618       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8619   return Result;
8620 }
8621 
8622 SDValue
8623 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8624                                        const SDLoc &DL, EVT DataVT,
8625                                        SelectionDAG &DAG,
8626                                        bool IsCompressedMemory) const {
8627   SDValue Increment;
8628   EVT AddrVT = Addr.getValueType();
8629   EVT MaskVT = Mask.getValueType();
8630   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8631          "Incompatible types of Data and Mask");
8632   if (IsCompressedMemory) {
8633     if (DataVT.isScalableVector())
8634       report_fatal_error(
8635           "Cannot currently handle compressed memory with scalable vectors");
8636     // Incrementing the pointer according to number of '1's in the mask.
8637     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8638     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8639     if (MaskIntVT.getSizeInBits() < 32) {
8640       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8641       MaskIntVT = MVT::i32;
8642     }
8643 
8644     // Count '1's with POPCNT.
8645     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8646     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8647     // Scale is an element size in bytes.
8648     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8649                                     AddrVT);
8650     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8651   } else if (DataVT.isScalableVector()) {
8652     Increment = DAG.getVScale(DL, AddrVT,
8653                               APInt(AddrVT.getFixedSizeInBits(),
8654                                     DataVT.getStoreSize().getKnownMinSize()));
8655   } else
8656     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8657 
8658   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8659 }
8660 
8661 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8662                                        EVT VecVT, const SDLoc &dl,
8663                                        ElementCount SubEC) {
8664   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8665          "Cannot index a scalable vector within a fixed-width vector");
8666 
8667   unsigned NElts = VecVT.getVectorMinNumElements();
8668   unsigned NumSubElts = SubEC.getKnownMinValue();
8669   EVT IdxVT = Idx.getValueType();
8670 
8671   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8672     // If this is a constant index and we know the value plus the number of the
8673     // elements in the subvector minus one is less than the minimum number of
8674     // elements then it's safe to return Idx.
8675     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8676       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8677         return Idx;
8678     SDValue VS =
8679         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8680     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8681     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8682                               DAG.getConstant(NumSubElts, dl, IdxVT));
8683     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8684   }
8685   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8686     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8687     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8688                        DAG.getConstant(Imm, dl, IdxVT));
8689   }
8690   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8691   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8692                      DAG.getConstant(MaxIndex, dl, IdxVT));
8693 }
8694 
8695 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8696                                                 SDValue VecPtr, EVT VecVT,
8697                                                 SDValue Index) const {
8698   return getVectorSubVecPointer(
8699       DAG, VecPtr, VecVT,
8700       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8701       Index);
8702 }
8703 
8704 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8705                                                SDValue VecPtr, EVT VecVT,
8706                                                EVT SubVecVT,
8707                                                SDValue Index) const {
8708   SDLoc dl(Index);
8709   // Make sure the index type is big enough to compute in.
8710   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8711 
8712   EVT EltVT = VecVT.getVectorElementType();
8713 
8714   // Calculate the element offset and add it to the pointer.
8715   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8716   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8717          "Converting bits to bytes lost precision");
8718   assert(SubVecVT.getVectorElementType() == EltVT &&
8719          "Sub-vector must be a vector with matching element type");
8720   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8721                                   SubVecVT.getVectorElementCount());
8722 
8723   EVT IdxVT = Index.getValueType();
8724   if (SubVecVT.isScalableVector())
8725     Index =
8726         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8727                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8728 
8729   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8730                       DAG.getConstant(EltSize, dl, IdxVT));
8731   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8732 }
8733 
8734 //===----------------------------------------------------------------------===//
8735 // Implementation of Emulated TLS Model
8736 //===----------------------------------------------------------------------===//
8737 
8738 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8739                                                 SelectionDAG &DAG) const {
8740   // Access to address of TLS varialbe xyz is lowered to a function call:
8741   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8742   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8743   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8744   SDLoc dl(GA);
8745 
8746   ArgListTy Args;
8747   ArgListEntry Entry;
8748   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8749   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8750   StringRef EmuTlsVarName(NameString);
8751   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8752   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8753   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8754   Entry.Ty = VoidPtrType;
8755   Args.push_back(Entry);
8756 
8757   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8758 
8759   TargetLowering::CallLoweringInfo CLI(DAG);
8760   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8761   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8762   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8763 
8764   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8765   // At last for X86 targets, maybe good for other targets too?
8766   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8767   MFI.setAdjustsStack(true); // Is this only for X86 target?
8768   MFI.setHasCalls(true);
8769 
8770   assert((GA->getOffset() == 0) &&
8771          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8772   return CallResult.first;
8773 }
8774 
8775 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8776                                                 SelectionDAG &DAG) const {
8777   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8778   if (!isCtlzFast())
8779     return SDValue();
8780   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8781   SDLoc dl(Op);
8782   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8783     if (C->isZero() && CC == ISD::SETEQ) {
8784       EVT VT = Op.getOperand(0).getValueType();
8785       SDValue Zext = Op.getOperand(0);
8786       if (VT.bitsLT(MVT::i32)) {
8787         VT = MVT::i32;
8788         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8789       }
8790       unsigned Log2b = Log2_32(VT.getSizeInBits());
8791       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8792       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8793                                 DAG.getConstant(Log2b, dl, MVT::i32));
8794       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8795     }
8796   }
8797   return SDValue();
8798 }
8799 
8800 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8801   SDValue Op0 = Node->getOperand(0);
8802   SDValue Op1 = Node->getOperand(1);
8803   EVT VT = Op0.getValueType();
8804   unsigned Opcode = Node->getOpcode();
8805   SDLoc DL(Node);
8806 
8807   // umin(x,y) -> sub(x,usubsat(x,y))
8808   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8809       isOperationLegal(ISD::USUBSAT, VT)) {
8810     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8811                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8812   }
8813 
8814   // umax(x,y) -> add(x,usubsat(y,x))
8815   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8816       isOperationLegal(ISD::USUBSAT, VT)) {
8817     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8818                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8819   }
8820 
8821   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8822   ISD::CondCode CC;
8823   switch (Opcode) {
8824   default: llvm_unreachable("How did we get here?");
8825   case ISD::SMAX: CC = ISD::SETGT; break;
8826   case ISD::SMIN: CC = ISD::SETLT; break;
8827   case ISD::UMAX: CC = ISD::SETUGT; break;
8828   case ISD::UMIN: CC = ISD::SETULT; break;
8829   }
8830 
8831   // FIXME: Should really try to split the vector in case it's legal on a
8832   // subvector.
8833   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8834     return DAG.UnrollVectorOp(Node);
8835 
8836   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8837   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8838   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8839 }
8840 
8841 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8842   unsigned Opcode = Node->getOpcode();
8843   SDValue LHS = Node->getOperand(0);
8844   SDValue RHS = Node->getOperand(1);
8845   EVT VT = LHS.getValueType();
8846   SDLoc dl(Node);
8847 
8848   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8849   assert(VT.isInteger() && "Expected operands to be integers");
8850 
8851   // usub.sat(a, b) -> umax(a, b) - b
8852   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8853     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8854     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8855   }
8856 
8857   // uadd.sat(a, b) -> umin(a, ~b) + b
8858   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8859     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8860     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8861     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8862   }
8863 
8864   unsigned OverflowOp;
8865   switch (Opcode) {
8866   case ISD::SADDSAT:
8867     OverflowOp = ISD::SADDO;
8868     break;
8869   case ISD::UADDSAT:
8870     OverflowOp = ISD::UADDO;
8871     break;
8872   case ISD::SSUBSAT:
8873     OverflowOp = ISD::SSUBO;
8874     break;
8875   case ISD::USUBSAT:
8876     OverflowOp = ISD::USUBO;
8877     break;
8878   default:
8879     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8880                      "addition or subtraction node.");
8881   }
8882 
8883   // FIXME: Should really try to split the vector in case it's legal on a
8884   // subvector.
8885   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8886     return DAG.UnrollVectorOp(Node);
8887 
8888   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8889   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8890   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8891   SDValue SumDiff = Result.getValue(0);
8892   SDValue Overflow = Result.getValue(1);
8893   SDValue Zero = DAG.getConstant(0, dl, VT);
8894   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8895 
8896   if (Opcode == ISD::UADDSAT) {
8897     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8898       // (LHS + RHS) | OverflowMask
8899       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8900       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8901     }
8902     // Overflow ? 0xffff.... : (LHS + RHS)
8903     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8904   }
8905 
8906   if (Opcode == ISD::USUBSAT) {
8907     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8908       // (LHS - RHS) & ~OverflowMask
8909       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8910       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8911       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8912     }
8913     // Overflow ? 0 : (LHS - RHS)
8914     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8915   }
8916 
8917   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8918   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8919   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8920   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8921                               DAG.getConstant(BitWidth - 1, dl, VT));
8922   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8923   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8924 }
8925 
8926 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8927   unsigned Opcode = Node->getOpcode();
8928   bool IsSigned = Opcode == ISD::SSHLSAT;
8929   SDValue LHS = Node->getOperand(0);
8930   SDValue RHS = Node->getOperand(1);
8931   EVT VT = LHS.getValueType();
8932   SDLoc dl(Node);
8933 
8934   assert((Node->getOpcode() == ISD::SSHLSAT ||
8935           Node->getOpcode() == ISD::USHLSAT) &&
8936           "Expected a SHLSAT opcode");
8937   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8938   assert(VT.isInteger() && "Expected operands to be integers");
8939 
8940   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8941 
8942   unsigned BW = VT.getScalarSizeInBits();
8943   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8944   SDValue Orig =
8945       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8946 
8947   SDValue SatVal;
8948   if (IsSigned) {
8949     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8950     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8951     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8952                              SatMin, SatMax, ISD::SETLT);
8953   } else {
8954     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8955   }
8956   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8957 
8958   return Result;
8959 }
8960 
8961 SDValue
8962 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8963   assert((Node->getOpcode() == ISD::SMULFIX ||
8964           Node->getOpcode() == ISD::UMULFIX ||
8965           Node->getOpcode() == ISD::SMULFIXSAT ||
8966           Node->getOpcode() == ISD::UMULFIXSAT) &&
8967          "Expected a fixed point multiplication opcode");
8968 
8969   SDLoc dl(Node);
8970   SDValue LHS = Node->getOperand(0);
8971   SDValue RHS = Node->getOperand(1);
8972   EVT VT = LHS.getValueType();
8973   unsigned Scale = Node->getConstantOperandVal(2);
8974   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8975                      Node->getOpcode() == ISD::UMULFIXSAT);
8976   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8977                  Node->getOpcode() == ISD::SMULFIXSAT);
8978   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8979   unsigned VTSize = VT.getScalarSizeInBits();
8980 
8981   if (!Scale) {
8982     // [us]mul.fix(a, b, 0) -> mul(a, b)
8983     if (!Saturating) {
8984       if (isOperationLegalOrCustom(ISD::MUL, VT))
8985         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8986     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8987       SDValue Result =
8988           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8989       SDValue Product = Result.getValue(0);
8990       SDValue Overflow = Result.getValue(1);
8991       SDValue Zero = DAG.getConstant(0, dl, VT);
8992 
8993       APInt MinVal = APInt::getSignedMinValue(VTSize);
8994       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8995       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8996       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8997       // Xor the inputs, if resulting sign bit is 0 the product will be
8998       // positive, else negative.
8999       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9000       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9001       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9002       return DAG.getSelect(dl, VT, Overflow, Result, Product);
9003     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9004       SDValue Result =
9005           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9006       SDValue Product = Result.getValue(0);
9007       SDValue Overflow = Result.getValue(1);
9008 
9009       APInt MaxVal = APInt::getMaxValue(VTSize);
9010       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9011       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9012     }
9013   }
9014 
9015   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9016          "Expected scale to be less than the number of bits if signed or at "
9017          "most the number of bits if unsigned.");
9018   assert(LHS.getValueType() == RHS.getValueType() &&
9019          "Expected both operands to be the same type");
9020 
9021   // Get the upper and lower bits of the result.
9022   SDValue Lo, Hi;
9023   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9024   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9025   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9026     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9027     Lo = Result.getValue(0);
9028     Hi = Result.getValue(1);
9029   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9030     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9031     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9032   } else if (VT.isVector()) {
9033     return SDValue();
9034   } else {
9035     report_fatal_error("Unable to expand fixed point multiplication.");
9036   }
9037 
9038   if (Scale == VTSize)
9039     // Result is just the top half since we'd be shifting by the width of the
9040     // operand. Overflow impossible so this works for both UMULFIX and
9041     // UMULFIXSAT.
9042     return Hi;
9043 
9044   // The result will need to be shifted right by the scale since both operands
9045   // are scaled. The result is given to us in 2 halves, so we only want part of
9046   // both in the result.
9047   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9048   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9049                                DAG.getConstant(Scale, dl, ShiftTy));
9050   if (!Saturating)
9051     return Result;
9052 
9053   if (!Signed) {
9054     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9055     // widened multiplication) aren't all zeroes.
9056 
9057     // Saturate to max if ((Hi >> Scale) != 0),
9058     // which is the same as if (Hi > ((1 << Scale) - 1))
9059     APInt MaxVal = APInt::getMaxValue(VTSize);
9060     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9061                                       dl, VT);
9062     Result = DAG.getSelectCC(dl, Hi, LowMask,
9063                              DAG.getConstant(MaxVal, dl, VT), Result,
9064                              ISD::SETUGT);
9065 
9066     return Result;
9067   }
9068 
9069   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9070   // widened multiplication) aren't all ones or all zeroes.
9071 
9072   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9073   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9074 
9075   if (Scale == 0) {
9076     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9077                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9078     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9079     // Saturated to SatMin if wide product is negative, and SatMax if wide
9080     // product is positive ...
9081     SDValue Zero = DAG.getConstant(0, dl, VT);
9082     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9083                                                ISD::SETLT);
9084     // ... but only if we overflowed.
9085     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9086   }
9087 
9088   //  We handled Scale==0 above so all the bits to examine is in Hi.
9089 
9090   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9091   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9092   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9093                                     dl, VT);
9094   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9095   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9096   // which is the same as if (HI < (-1 << (Scale - 1))
9097   SDValue HighMask =
9098       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9099                       dl, VT);
9100   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9101   return Result;
9102 }
9103 
9104 SDValue
9105 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9106                                     SDValue LHS, SDValue RHS,
9107                                     unsigned Scale, SelectionDAG &DAG) const {
9108   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9109           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9110          "Expected a fixed point division opcode");
9111 
9112   EVT VT = LHS.getValueType();
9113   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9114   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9115   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9116 
9117   // If there is enough room in the type to upscale the LHS or downscale the
9118   // RHS before the division, we can perform it in this type without having to
9119   // resize. For signed operations, the LHS headroom is the number of
9120   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9121   // The headroom for the RHS is the number of trailing zeroes.
9122   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9123                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9124   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9125 
9126   // For signed saturating operations, we need to be able to detect true integer
9127   // division overflow; that is, when you have MIN / -EPS. However, this
9128   // is undefined behavior and if we emit divisions that could take such
9129   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9130   // example).
9131   // Avoid this by requiring an extra bit so that we never get this case.
9132   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9133   // signed saturating division, we need to emit a whopping 32-bit division.
9134   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9135     return SDValue();
9136 
9137   unsigned LHSShift = std::min(LHSLead, Scale);
9138   unsigned RHSShift = Scale - LHSShift;
9139 
9140   // At this point, we know that if we shift the LHS up by LHSShift and the
9141   // RHS down by RHSShift, we can emit a regular division with a final scaling
9142   // factor of Scale.
9143 
9144   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9145   if (LHSShift)
9146     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9147                       DAG.getConstant(LHSShift, dl, ShiftTy));
9148   if (RHSShift)
9149     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9150                       DAG.getConstant(RHSShift, dl, ShiftTy));
9151 
9152   SDValue Quot;
9153   if (Signed) {
9154     // For signed operations, if the resulting quotient is negative and the
9155     // remainder is nonzero, subtract 1 from the quotient to round towards
9156     // negative infinity.
9157     SDValue Rem;
9158     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9159     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9160     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9161     if (isTypeLegal(VT) &&
9162         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9163       Quot = DAG.getNode(ISD::SDIVREM, dl,
9164                          DAG.getVTList(VT, VT),
9165                          LHS, RHS);
9166       Rem = Quot.getValue(1);
9167       Quot = Quot.getValue(0);
9168     } else {
9169       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9170                          LHS, RHS);
9171       Rem = DAG.getNode(ISD::SREM, dl, VT,
9172                         LHS, RHS);
9173     }
9174     SDValue Zero = DAG.getConstant(0, dl, VT);
9175     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9176     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9177     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9178     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9179     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9180                                DAG.getConstant(1, dl, VT));
9181     Quot = DAG.getSelect(dl, VT,
9182                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9183                          Sub1, Quot);
9184   } else
9185     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9186                        LHS, RHS);
9187 
9188   return Quot;
9189 }
9190 
9191 void TargetLowering::expandUADDSUBO(
9192     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9193   SDLoc dl(Node);
9194   SDValue LHS = Node->getOperand(0);
9195   SDValue RHS = Node->getOperand(1);
9196   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9197 
9198   // If ADD/SUBCARRY is legal, use that instead.
9199   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9200   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9201     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9202     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9203                                     { LHS, RHS, CarryIn });
9204     Result = SDValue(NodeCarry.getNode(), 0);
9205     Overflow = SDValue(NodeCarry.getNode(), 1);
9206     return;
9207   }
9208 
9209   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9210                             LHS.getValueType(), LHS, RHS);
9211 
9212   EVT ResultType = Node->getValueType(1);
9213   EVT SetCCType = getSetCCResultType(
9214       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9215   SDValue SetCC;
9216   if (IsAdd && isOneConstant(RHS)) {
9217     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9218     // the live range of X. We assume comparing with 0 is cheap.
9219     // The general case (X + C) < C is not necessarily beneficial. Although we
9220     // reduce the live range of X, we may introduce the materialization of
9221     // constant C.
9222     SetCC =
9223         DAG.getSetCC(dl, SetCCType, Result,
9224                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9225   } else {
9226     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9227     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9228   }
9229   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9230 }
9231 
9232 void TargetLowering::expandSADDSUBO(
9233     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9234   SDLoc dl(Node);
9235   SDValue LHS = Node->getOperand(0);
9236   SDValue RHS = Node->getOperand(1);
9237   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9238 
9239   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9240                             LHS.getValueType(), LHS, RHS);
9241 
9242   EVT ResultType = Node->getValueType(1);
9243   EVT OType = getSetCCResultType(
9244       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9245 
9246   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9247   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9248   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9249     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9250     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9251     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9252     return;
9253   }
9254 
9255   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9256 
9257   // For an addition, the result should be less than one of the operands (LHS)
9258   // if and only if the other operand (RHS) is negative, otherwise there will
9259   // be overflow.
9260   // For a subtraction, the result should be less than one of the operands
9261   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9262   // otherwise there will be overflow.
9263   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9264   SDValue ConditionRHS =
9265       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9266 
9267   Overflow = DAG.getBoolExtOrTrunc(
9268       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9269       ResultType, ResultType);
9270 }
9271 
9272 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9273                                 SDValue &Overflow, SelectionDAG &DAG) const {
9274   SDLoc dl(Node);
9275   EVT VT = Node->getValueType(0);
9276   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9277   SDValue LHS = Node->getOperand(0);
9278   SDValue RHS = Node->getOperand(1);
9279   bool isSigned = Node->getOpcode() == ISD::SMULO;
9280 
9281   // For power-of-two multiplications we can use a simpler shift expansion.
9282   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9283     const APInt &C = RHSC->getAPIntValue();
9284     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9285     if (C.isPowerOf2()) {
9286       // smulo(x, signed_min) is same as umulo(x, signed_min).
9287       bool UseArithShift = isSigned && !C.isMinSignedValue();
9288       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9289       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9290       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9291       Overflow = DAG.getSetCC(dl, SetCCVT,
9292           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9293                       dl, VT, Result, ShiftAmt),
9294           LHS, ISD::SETNE);
9295       return true;
9296     }
9297   }
9298 
9299   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9300   if (VT.isVector())
9301     WideVT =
9302         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9303 
9304   SDValue BottomHalf;
9305   SDValue TopHalf;
9306   static const unsigned Ops[2][3] =
9307       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9308         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9309   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9310     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9311     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9312   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9313     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9314                              RHS);
9315     TopHalf = BottomHalf.getValue(1);
9316   } else if (isTypeLegal(WideVT)) {
9317     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9318     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9319     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9320     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9321     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9322         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9323     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9324                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9325   } else {
9326     if (VT.isVector())
9327       return false;
9328 
9329     // We can fall back to a libcall with an illegal type for the MUL if we
9330     // have a libcall big enough.
9331     // Also, we can fall back to a division in some cases, but that's a big
9332     // performance hit in the general case.
9333     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9334     if (WideVT == MVT::i16)
9335       LC = RTLIB::MUL_I16;
9336     else if (WideVT == MVT::i32)
9337       LC = RTLIB::MUL_I32;
9338     else if (WideVT == MVT::i64)
9339       LC = RTLIB::MUL_I64;
9340     else if (WideVT == MVT::i128)
9341       LC = RTLIB::MUL_I128;
9342     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9343 
9344     SDValue HiLHS;
9345     SDValue HiRHS;
9346     if (isSigned) {
9347       // The high part is obtained by SRA'ing all but one of the bits of low
9348       // part.
9349       unsigned LoSize = VT.getFixedSizeInBits();
9350       HiLHS =
9351           DAG.getNode(ISD::SRA, dl, VT, LHS,
9352                       DAG.getConstant(LoSize - 1, dl,
9353                                       getPointerTy(DAG.getDataLayout())));
9354       HiRHS =
9355           DAG.getNode(ISD::SRA, dl, VT, RHS,
9356                       DAG.getConstant(LoSize - 1, dl,
9357                                       getPointerTy(DAG.getDataLayout())));
9358     } else {
9359         HiLHS = DAG.getConstant(0, dl, VT);
9360         HiRHS = DAG.getConstant(0, dl, VT);
9361     }
9362 
9363     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9364     // pre-lowered to the correct types. This all depends upon WideVT not
9365     // being a legal type for the architecture and thus has to be split to
9366     // two arguments.
9367     SDValue Ret;
9368     TargetLowering::MakeLibCallOptions CallOptions;
9369     CallOptions.setSExt(isSigned);
9370     CallOptions.setIsPostTypeLegalization(true);
9371     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9372       // Halves of WideVT are packed into registers in different order
9373       // depending on platform endianness. This is usually handled by
9374       // the C calling convention, but we can't defer to it in
9375       // the legalizer.
9376       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9377       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9378     } else {
9379       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9380       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9381     }
9382     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9383            "Ret value is a collection of constituent nodes holding result.");
9384     if (DAG.getDataLayout().isLittleEndian()) {
9385       // Same as above.
9386       BottomHalf = Ret.getOperand(0);
9387       TopHalf = Ret.getOperand(1);
9388     } else {
9389       BottomHalf = Ret.getOperand(1);
9390       TopHalf = Ret.getOperand(0);
9391     }
9392   }
9393 
9394   Result = BottomHalf;
9395   if (isSigned) {
9396     SDValue ShiftAmt = DAG.getConstant(
9397         VT.getScalarSizeInBits() - 1, dl,
9398         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9399     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9400     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9401   } else {
9402     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9403                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9404   }
9405 
9406   // Truncate the result if SetCC returns a larger type than needed.
9407   EVT RType = Node->getValueType(1);
9408   if (RType.bitsLT(Overflow.getValueType()))
9409     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9410 
9411   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9412          "Unexpected result type for S/UMULO legalization");
9413   return true;
9414 }
9415 
9416 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9417   SDLoc dl(Node);
9418   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9419   SDValue Op = Node->getOperand(0);
9420   EVT VT = Op.getValueType();
9421 
9422   if (VT.isScalableVector())
9423     report_fatal_error(
9424         "Expanding reductions for scalable vectors is undefined.");
9425 
9426   // Try to use a shuffle reduction for power of two vectors.
9427   if (VT.isPow2VectorType()) {
9428     while (VT.getVectorNumElements() > 1) {
9429       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9430       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9431         break;
9432 
9433       SDValue Lo, Hi;
9434       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9435       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9436       VT = HalfVT;
9437     }
9438   }
9439 
9440   EVT EltVT = VT.getVectorElementType();
9441   unsigned NumElts = VT.getVectorNumElements();
9442 
9443   SmallVector<SDValue, 8> Ops;
9444   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9445 
9446   SDValue Res = Ops[0];
9447   for (unsigned i = 1; i < NumElts; i++)
9448     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9449 
9450   // Result type may be wider than element type.
9451   if (EltVT != Node->getValueType(0))
9452     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9453   return Res;
9454 }
9455 
9456 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9457   SDLoc dl(Node);
9458   SDValue AccOp = Node->getOperand(0);
9459   SDValue VecOp = Node->getOperand(1);
9460   SDNodeFlags Flags = Node->getFlags();
9461 
9462   EVT VT = VecOp.getValueType();
9463   EVT EltVT = VT.getVectorElementType();
9464 
9465   if (VT.isScalableVector())
9466     report_fatal_error(
9467         "Expanding reductions for scalable vectors is undefined.");
9468 
9469   unsigned NumElts = VT.getVectorNumElements();
9470 
9471   SmallVector<SDValue, 8> Ops;
9472   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9473 
9474   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9475 
9476   SDValue Res = AccOp;
9477   for (unsigned i = 0; i < NumElts; i++)
9478     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9479 
9480   return Res;
9481 }
9482 
9483 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9484                                SelectionDAG &DAG) const {
9485   EVT VT = Node->getValueType(0);
9486   SDLoc dl(Node);
9487   bool isSigned = Node->getOpcode() == ISD::SREM;
9488   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9489   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9490   SDValue Dividend = Node->getOperand(0);
9491   SDValue Divisor = Node->getOperand(1);
9492   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9493     SDVTList VTs = DAG.getVTList(VT, VT);
9494     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9495     return true;
9496   }
9497   if (isOperationLegalOrCustom(DivOpc, VT)) {
9498     // X % Y -> X-X/Y*Y
9499     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9500     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9501     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9502     return true;
9503   }
9504   return false;
9505 }
9506 
9507 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9508                                             SelectionDAG &DAG) const {
9509   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9510   SDLoc dl(SDValue(Node, 0));
9511   SDValue Src = Node->getOperand(0);
9512 
9513   // DstVT is the result type, while SatVT is the size to which we saturate
9514   EVT SrcVT = Src.getValueType();
9515   EVT DstVT = Node->getValueType(0);
9516 
9517   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9518   unsigned SatWidth = SatVT.getScalarSizeInBits();
9519   unsigned DstWidth = DstVT.getScalarSizeInBits();
9520   assert(SatWidth <= DstWidth &&
9521          "Expected saturation width smaller than result width");
9522 
9523   // Determine minimum and maximum integer values and their corresponding
9524   // floating-point values.
9525   APInt MinInt, MaxInt;
9526   if (IsSigned) {
9527     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9528     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9529   } else {
9530     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9531     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9532   }
9533 
9534   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9535   // libcall emission cannot handle this. Large result types will fail.
9536   if (SrcVT == MVT::f16) {
9537     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9538     SrcVT = Src.getValueType();
9539   }
9540 
9541   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9542   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9543 
9544   APFloat::opStatus MinStatus =
9545       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9546   APFloat::opStatus MaxStatus =
9547       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9548   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9549                              !(MaxStatus & APFloat::opStatus::opInexact);
9550 
9551   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9552   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9553 
9554   // If the integer bounds are exactly representable as floats and min/max are
9555   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9556   // of comparisons and selects.
9557   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9558                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9559   if (AreExactFloatBounds && MinMaxLegal) {
9560     SDValue Clamped = Src;
9561 
9562     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9563     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9564     // Clamp by MaxFloat from above. NaN cannot occur.
9565     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9566     // Convert clamped value to integer.
9567     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9568                                   dl, DstVT, Clamped);
9569 
9570     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9571     // which will cast to zero.
9572     if (!IsSigned)
9573       return FpToInt;
9574 
9575     // Otherwise, select 0 if Src is NaN.
9576     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9577     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9578                            ISD::CondCode::SETUO);
9579   }
9580 
9581   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9582   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9583 
9584   // Result of direct conversion. The assumption here is that the operation is
9585   // non-trapping and it's fine to apply it to an out-of-range value if we
9586   // select it away later.
9587   SDValue FpToInt =
9588       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9589 
9590   SDValue Select = FpToInt;
9591 
9592   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9593   // MinInt if Src is NaN.
9594   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9595                            ISD::CondCode::SETULT);
9596   // If Src OGT MaxFloat, select MaxInt.
9597   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9598                            ISD::CondCode::SETOGT);
9599 
9600   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9601   // is already zero.
9602   if (!IsSigned)
9603     return Select;
9604 
9605   // Otherwise, select 0 if Src is NaN.
9606   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9607   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9608 }
9609 
9610 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9611                                            SelectionDAG &DAG) const {
9612   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9613   assert(Node->getValueType(0).isScalableVector() &&
9614          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9615 
9616   EVT VT = Node->getValueType(0);
9617   SDValue V1 = Node->getOperand(0);
9618   SDValue V2 = Node->getOperand(1);
9619   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9620   SDLoc DL(Node);
9621 
9622   // Expand through memory thusly:
9623   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9624   //  Store V1, Ptr
9625   //  Store V2, Ptr + sizeof(V1)
9626   //  If (Imm < 0)
9627   //    TrailingElts = -Imm
9628   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9629   //  else
9630   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9631   //  Res = Load Ptr
9632 
9633   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9634 
9635   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9636                                VT.getVectorElementCount() * 2);
9637   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9638   EVT PtrVT = StackPtr.getValueType();
9639   auto &MF = DAG.getMachineFunction();
9640   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9641   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9642 
9643   // Store the lo part of CONCAT_VECTORS(V1, V2)
9644   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9645   // Store the hi part of CONCAT_VECTORS(V1, V2)
9646   SDValue OffsetToV2 = DAG.getVScale(
9647       DL, PtrVT,
9648       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9649   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9650   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9651 
9652   if (Imm >= 0) {
9653     // Load back the required element. getVectorElementPointer takes care of
9654     // clamping the index if it's out-of-bounds.
9655     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9656     // Load the spliced result
9657     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9658                        MachinePointerInfo::getUnknownStack(MF));
9659   }
9660 
9661   uint64_t TrailingElts = -Imm;
9662 
9663   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9664   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9665   SDValue TrailingBytes =
9666       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9667 
9668   if (TrailingElts > VT.getVectorMinNumElements()) {
9669     SDValue VLBytes = DAG.getVScale(
9670         DL, PtrVT,
9671         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9672     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9673   }
9674 
9675   // Calculate the start address of the spliced result.
9676   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9677 
9678   // Load the spliced result
9679   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9680                      MachinePointerInfo::getUnknownStack(MF));
9681 }
9682 
9683 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9684                                            SDValue &LHS, SDValue &RHS,
9685                                            SDValue &CC, SDValue Mask,
9686                                            SDValue EVL, bool &NeedInvert,
9687                                            const SDLoc &dl, SDValue &Chain,
9688                                            bool IsSignaling) const {
9689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9690   MVT OpVT = LHS.getSimpleValueType();
9691   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9692   NeedInvert = false;
9693   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9694   bool IsNonVP = !EVL;
9695   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9696   default:
9697     llvm_unreachable("Unknown condition code action!");
9698   case TargetLowering::Legal:
9699     // Nothing to do.
9700     break;
9701   case TargetLowering::Expand: {
9702     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9703     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9704       std::swap(LHS, RHS);
9705       CC = DAG.getCondCode(InvCC);
9706       return true;
9707     }
9708     // Swapping operands didn't work. Try inverting the condition.
9709     bool NeedSwap = false;
9710     InvCC = getSetCCInverse(CCCode, OpVT);
9711     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9712       // If inverting the condition is not enough, try swapping operands
9713       // on top of it.
9714       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9715       NeedSwap = true;
9716     }
9717     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9718       CC = DAG.getCondCode(InvCC);
9719       NeedInvert = true;
9720       if (NeedSwap)
9721         std::swap(LHS, RHS);
9722       return true;
9723     }
9724 
9725     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9726     unsigned Opc = 0;
9727     switch (CCCode) {
9728     default:
9729       llvm_unreachable("Don't know how to expand this condition!");
9730     case ISD::SETUO:
9731       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9732         CC1 = ISD::SETUNE;
9733         CC2 = ISD::SETUNE;
9734         Opc = ISD::OR;
9735         break;
9736       }
9737       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9738              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9739       NeedInvert = true;
9740       LLVM_FALLTHROUGH;
9741     case ISD::SETO:
9742       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9743              "If SETO is expanded, SETOEQ must be legal!");
9744       CC1 = ISD::SETOEQ;
9745       CC2 = ISD::SETOEQ;
9746       Opc = ISD::AND;
9747       break;
9748     case ISD::SETONE:
9749     case ISD::SETUEQ:
9750       // If the SETUO or SETO CC isn't legal, we might be able to use
9751       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9752       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9753       // the operands.
9754       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9755       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9756           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9757            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9758         CC1 = ISD::SETOGT;
9759         CC2 = ISD::SETOLT;
9760         Opc = ISD::OR;
9761         NeedInvert = ((unsigned)CCCode & 0x8U);
9762         break;
9763       }
9764       LLVM_FALLTHROUGH;
9765     case ISD::SETOEQ:
9766     case ISD::SETOGT:
9767     case ISD::SETOGE:
9768     case ISD::SETOLT:
9769     case ISD::SETOLE:
9770     case ISD::SETUNE:
9771     case ISD::SETUGT:
9772     case ISD::SETUGE:
9773     case ISD::SETULT:
9774     case ISD::SETULE:
9775       // If we are floating point, assign and break, otherwise fall through.
9776       if (!OpVT.isInteger()) {
9777         // We can use the 4th bit to tell if we are the unordered
9778         // or ordered version of the opcode.
9779         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9780         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9781         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9782         break;
9783       }
9784       // Fallthrough if we are unsigned integer.
9785       LLVM_FALLTHROUGH;
9786     case ISD::SETLE:
9787     case ISD::SETGT:
9788     case ISD::SETGE:
9789     case ISD::SETLT:
9790     case ISD::SETNE:
9791     case ISD::SETEQ:
9792       // If all combinations of inverting the condition and swapping operands
9793       // didn't work then we have no means to expand the condition.
9794       llvm_unreachable("Don't know how to expand this condition!");
9795     }
9796 
9797     SDValue SetCC1, SetCC2;
9798     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9799       // If we aren't the ordered or unorder operation,
9800       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9801       if (IsNonVP) {
9802         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9803         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9804       } else {
9805         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9806         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9807       }
9808     } else {
9809       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9810       if (IsNonVP) {
9811         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9812         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9813       } else {
9814         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9815         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9816       }
9817     }
9818     if (Chain)
9819       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9820                           SetCC2.getValue(1));
9821     if (IsNonVP)
9822       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9823     else {
9824       // Transform the binary opcode to the VP equivalent.
9825       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9826       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9827       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9828     }
9829     RHS = SDValue();
9830     CC = SDValue();
9831     return true;
9832   }
9833   }
9834   return false;
9835 }
9836