1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809     APInt DemandedSrcBits = DemandedBits.byteSwap();
1810     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1811                              Depth + 1))
1812       return true;
1813     Known.One = Known2.One.byteSwap();
1814     Known.Zero = Known2.Zero.byteSwap();
1815     break;
1816   }
1817   case ISD::CTPOP: {
1818     // If only 1 bit is demanded, replace with PARITY as long as we're before
1819     // op legalization.
1820     // FIXME: Limit to scalars for now.
1821     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1823                                                Op.getOperand(0)));
1824 
1825     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1826     break;
1827   }
1828   case ISD::SIGN_EXTEND_INREG: {
1829     SDValue Op0 = Op.getOperand(0);
1830     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1831     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1832 
1833     // If we only care about the highest bit, don't bother shifting right.
1834     if (DemandedBits.isSignMask()) {
1835       unsigned MinSignedBits =
1836           TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1);
1837       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1838       // However if the input is already sign extended we expect the sign
1839       // extension to be dropped altogether later and do not simplify.
1840       if (!AlreadySignExtended) {
1841         // Compute the correct shift amount type, which must be getShiftAmountTy
1842         // for scalar types after legalization.
1843         EVT ShiftAmtTy = VT;
1844         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1845           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1846 
1847         SDValue ShiftAmt =
1848             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1849         return TLO.CombineTo(Op,
1850                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1851       }
1852     }
1853 
1854     // If none of the extended bits are demanded, eliminate the sextinreg.
1855     if (DemandedBits.getActiveBits() <= ExVTBits)
1856       return TLO.CombineTo(Op, Op0);
1857 
1858     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1859 
1860     // Since the sign extended bits are demanded, we know that the sign
1861     // bit is demanded.
1862     InputDemandedBits.setBit(ExVTBits - 1);
1863 
1864     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867 
1868     // If the sign bit of the input is known set or clear, then we know the
1869     // top bits of the result.
1870 
1871     // If the input sign bit is known zero, convert this into a zero extension.
1872     if (Known.Zero[ExVTBits - 1])
1873       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1874 
1875     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1876     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1877       Known.One.setBitsFrom(ExVTBits);
1878       Known.Zero &= Mask;
1879     } else { // Input sign bit unknown
1880       Known.Zero &= Mask;
1881       Known.One &= Mask;
1882     }
1883     break;
1884   }
1885   case ISD::BUILD_PAIR: {
1886     EVT HalfVT = Op.getOperand(0).getValueType();
1887     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1888 
1889     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1890     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1891 
1892     KnownBits KnownLo, KnownHi;
1893 
1894     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1895       return true;
1896 
1897     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1898       return true;
1899 
1900     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1901                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1902 
1903     Known.One = KnownLo.One.zext(BitWidth) |
1904                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1905     break;
1906   }
1907   case ISD::ZERO_EXTEND:
1908   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned InBits = SrcVT.getScalarSizeInBits();
1912     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1913     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1914 
1915     // If none of the top bits are demanded, convert this into an any_extend.
1916     if (DemandedBits.getActiveBits() <= InBits) {
1917       // If we only need the non-extended bits of the bottom element
1918       // then we can just bitcast to the result.
1919       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1920           VT.getSizeInBits() == SrcVT.getSizeInBits())
1921         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1922 
1923       unsigned Opc =
1924           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1925       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1926         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1927     }
1928 
1929     APInt InDemandedBits = DemandedBits.trunc(InBits);
1930     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1931     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1932                              Depth + 1))
1933       return true;
1934     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1935     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1936     Known = Known.zext(BitWidth);
1937 
1938     // Attempt to avoid multi-use ops if we don't need anything from them.
1939     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1940             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1941       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1942     break;
1943   }
1944   case ISD::SIGN_EXTEND:
1945   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1946     SDValue Src = Op.getOperand(0);
1947     EVT SrcVT = Src.getValueType();
1948     unsigned InBits = SrcVT.getScalarSizeInBits();
1949     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1950     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1951 
1952     // If none of the top bits are demanded, convert this into an any_extend.
1953     if (DemandedBits.getActiveBits() <= InBits) {
1954       // If we only need the non-extended bits of the bottom element
1955       // then we can just bitcast to the result.
1956       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1957           VT.getSizeInBits() == SrcVT.getSizeInBits())
1958         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1959 
1960       unsigned Opc =
1961           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1962       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1963         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1964     }
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968 
1969     // Since some of the sign extended bits are demanded, we know that the sign
1970     // bit is demanded.
1971     InDemandedBits.setBit(InBits - 1);
1972 
1973     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1974                              Depth + 1))
1975       return true;
1976     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1977     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1978 
1979     // If the sign bit is known one, the top bits match.
1980     Known = Known.sext(BitWidth);
1981 
1982     // If the sign bit is known zero, convert this to a zero extend.
1983     if (Known.isNonNegative()) {
1984       unsigned Opc =
1985           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1986       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1987         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1988     }
1989 
1990     // Attempt to avoid multi-use ops if we don't need anything from them.
1991     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1992             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1993       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1994     break;
1995   }
1996   case ISD::ANY_EXTEND:
1997   case ISD::ANY_EXTEND_VECTOR_INREG: {
1998     SDValue Src = Op.getOperand(0);
1999     EVT SrcVT = Src.getValueType();
2000     unsigned InBits = SrcVT.getScalarSizeInBits();
2001     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2002     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2003 
2004     // If we only need the bottom element then we can just bitcast.
2005     // TODO: Handle ANY_EXTEND?
2006     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2007         VT.getSizeInBits() == SrcVT.getSizeInBits())
2008       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2009 
2010     APInt InDemandedBits = DemandedBits.trunc(InBits);
2011     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2012     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2013                              Depth + 1))
2014       return true;
2015     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2016     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2017     Known = Known.anyext(BitWidth);
2018 
2019     // Attempt to avoid multi-use ops if we don't need anything from them.
2020     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2021             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2022       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2023     break;
2024   }
2025   case ISD::TRUNCATE: {
2026     SDValue Src = Op.getOperand(0);
2027 
2028     // Simplify the input, using demanded bit information, and compute the known
2029     // zero/one bits live out.
2030     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2031     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2032     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2033                              Depth + 1))
2034       return true;
2035     Known = Known.trunc(BitWidth);
2036 
2037     // Attempt to avoid multi-use ops if we don't need anything from them.
2038     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2039             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2040       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2041 
2042     // If the input is only used by this truncate, see if we can shrink it based
2043     // on the known demanded bits.
2044     if (Src.getNode()->hasOneUse()) {
2045       switch (Src.getOpcode()) {
2046       default:
2047         break;
2048       case ISD::SRL:
2049         // Shrink SRL by a constant if none of the high bits shifted in are
2050         // demanded.
2051         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2052           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2053           // undesirable.
2054           break;
2055 
2056         const APInt *ShAmtC =
2057             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2058         if (!ShAmtC || ShAmtC->uge(BitWidth))
2059           break;
2060         uint64_t ShVal = ShAmtC->getZExtValue();
2061 
2062         APInt HighBits =
2063             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2064         HighBits.lshrInPlace(ShVal);
2065         HighBits = HighBits.trunc(BitWidth);
2066 
2067         if (!(HighBits & DemandedBits)) {
2068           // None of the shifted in bits are needed.  Add a truncate of the
2069           // shift input, then shift it.
2070           SDValue NewShAmt = TLO.DAG.getConstant(
2071               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2072           SDValue NewTrunc =
2073               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2074           return TLO.CombineTo(
2075               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2076         }
2077         break;
2078       }
2079     }
2080 
2081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2082     break;
2083   }
2084   case ISD::AssertZext: {
2085     // AssertZext demands all of the high bits, plus any of the low bits
2086     // demanded by its users.
2087     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2088     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2089     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2090                              TLO, Depth + 1))
2091       return true;
2092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2093 
2094     Known.Zero |= ~InMask;
2095     break;
2096   }
2097   case ISD::EXTRACT_VECTOR_ELT: {
2098     SDValue Src = Op.getOperand(0);
2099     SDValue Idx = Op.getOperand(1);
2100     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2101     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2102 
2103     if (SrcEltCnt.isScalable())
2104       return false;
2105 
2106     // Demand the bits from every vector element without a constant index.
2107     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2108     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2109     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2110       if (CIdx->getAPIntValue().ult(NumSrcElts))
2111         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2112 
2113     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2114     // anything about the extended bits.
2115     APInt DemandedSrcBits = DemandedBits;
2116     if (BitWidth > EltBitWidth)
2117       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2118 
2119     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2120                              Depth + 1))
2121       return true;
2122 
2123     // Attempt to avoid multi-use ops if we don't need anything from them.
2124     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2125       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2126               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2127         SDValue NewOp =
2128             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2129         return TLO.CombineTo(Op, NewOp);
2130       }
2131     }
2132 
2133     Known = Known2;
2134     if (BitWidth > EltBitWidth)
2135       Known = Known.anyext(BitWidth);
2136     break;
2137   }
2138   case ISD::BITCAST: {
2139     SDValue Src = Op.getOperand(0);
2140     EVT SrcVT = Src.getValueType();
2141     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2142 
2143     // If this is an FP->Int bitcast and if the sign bit is the only
2144     // thing demanded, turn this into a FGETSIGN.
2145     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2146         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2147         SrcVT.isFloatingPoint()) {
2148       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2149       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2150       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2151           SrcVT != MVT::f128) {
2152         // Cannot eliminate/lower SHL for f128 yet.
2153         EVT Ty = OpVTLegal ? VT : MVT::i32;
2154         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2155         // place.  We expect the SHL to be eliminated by other optimizations.
2156         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2157         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2158         if (!OpVTLegal && OpVTSizeInBits > 32)
2159           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2160         unsigned ShVal = Op.getValueSizeInBits() - 1;
2161         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2162         return TLO.CombineTo(Op,
2163                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2164       }
2165     }
2166 
2167     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2168     // Demand the elt/bit if any of the original elts/bits are demanded.
2169     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2170       unsigned Scale = BitWidth / NumSrcEltBits;
2171       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2172       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2173       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2174       for (unsigned i = 0; i != Scale; ++i) {
2175         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2176         unsigned BitOffset = EltOffset * NumSrcEltBits;
2177         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2178         if (!Sub.isZero()) {
2179           DemandedSrcBits |= Sub;
2180           for (unsigned j = 0; j != NumElts; ++j)
2181             if (DemandedElts[j])
2182               DemandedSrcElts.setBit((j * Scale) + i);
2183         }
2184       }
2185 
2186       APInt KnownSrcUndef, KnownSrcZero;
2187       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2188                                      KnownSrcZero, TLO, Depth + 1))
2189         return true;
2190 
2191       KnownBits KnownSrcBits;
2192       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2193                                KnownSrcBits, TLO, Depth + 1))
2194         return true;
2195     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2196       // TODO - bigendian once we have test coverage.
2197       unsigned Scale = NumSrcEltBits / BitWidth;
2198       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2199       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2200       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2201       for (unsigned i = 0; i != NumElts; ++i)
2202         if (DemandedElts[i]) {
2203           unsigned Offset = (i % Scale) * BitWidth;
2204           DemandedSrcBits.insertBits(DemandedBits, Offset);
2205           DemandedSrcElts.setBit(i / Scale);
2206         }
2207 
2208       if (SrcVT.isVector()) {
2209         APInt KnownSrcUndef, KnownSrcZero;
2210         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2211                                        KnownSrcZero, TLO, Depth + 1))
2212           return true;
2213       }
2214 
2215       KnownBits KnownSrcBits;
2216       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2217                                KnownSrcBits, TLO, Depth + 1))
2218         return true;
2219     }
2220 
2221     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2222     // recursive call where Known may be useful to the caller.
2223     if (Depth > 0) {
2224       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2225       return false;
2226     }
2227     break;
2228   }
2229   case ISD::ADD:
2230   case ISD::MUL:
2231   case ISD::SUB: {
2232     // Add, Sub, and Mul don't demand any bits in positions beyond that
2233     // of the highest bit demanded of them.
2234     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2235     SDNodeFlags Flags = Op.getNode()->getFlags();
2236     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2237     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2238     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2239                              Depth + 1) ||
2240         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2241                              Depth + 1) ||
2242         // See if the operation should be performed at a smaller bit width.
2243         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2244       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2245         // Disable the nsw and nuw flags. We can no longer guarantee that we
2246         // won't wrap after simplification.
2247         Flags.setNoSignedWrap(false);
2248         Flags.setNoUnsignedWrap(false);
2249         SDValue NewOp =
2250             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2251         return TLO.CombineTo(Op, NewOp);
2252       }
2253       return true;
2254     }
2255 
2256     // Attempt to avoid multi-use ops if we don't need anything from them.
2257     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2259           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2261           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2262       if (DemandedOp0 || DemandedOp1) {
2263         Flags.setNoSignedWrap(false);
2264         Flags.setNoUnsignedWrap(false);
2265         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2266         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2267         SDValue NewOp =
2268             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2269         return TLO.CombineTo(Op, NewOp);
2270       }
2271     }
2272 
2273     // If we have a constant operand, we may be able to turn it into -1 if we
2274     // do not demand the high bits. This can make the constant smaller to
2275     // encode, allow more general folding, or match specialized instruction
2276     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2277     // is probably not useful (and could be detrimental).
2278     ConstantSDNode *C = isConstOrConstSplat(Op1);
2279     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2280     if (C && !C->isAllOnes() && !C->isOne() &&
2281         (C->getAPIntValue() | HighMask).isAllOnes()) {
2282       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2283       // Disable the nsw and nuw flags. We can no longer guarantee that we
2284       // won't wrap after simplification.
2285       Flags.setNoSignedWrap(false);
2286       Flags.setNoUnsignedWrap(false);
2287       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2288       return TLO.CombineTo(Op, NewOp);
2289     }
2290 
2291     LLVM_FALLTHROUGH;
2292   }
2293   default:
2294     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2295       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2296                                             Known, TLO, Depth))
2297         return true;
2298       break;
2299     }
2300 
2301     // Just use computeKnownBits to compute output bits.
2302     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2303     break;
2304   }
2305 
2306   // If we know the value of all of the demanded bits, return this as a
2307   // constant.
2308   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2309     // Avoid folding to a constant if any OpaqueConstant is involved.
2310     const SDNode *N = Op.getNode();
2311     for (SDNode *Op :
2312          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2313       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2314         if (C->isOpaque())
2315           return false;
2316     }
2317     if (VT.isInteger())
2318       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2319     if (VT.isFloatingPoint())
2320       return TLO.CombineTo(
2321           Op,
2322           TLO.DAG.getConstantFP(
2323               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2324   }
2325 
2326   return false;
2327 }
2328 
2329 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2330                                                 const APInt &DemandedElts,
2331                                                 APInt &KnownUndef,
2332                                                 APInt &KnownZero,
2333                                                 DAGCombinerInfo &DCI) const {
2334   SelectionDAG &DAG = DCI.DAG;
2335   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2336                         !DCI.isBeforeLegalizeOps());
2337 
2338   bool Simplified =
2339       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2340   if (Simplified) {
2341     DCI.AddToWorklist(Op.getNode());
2342     DCI.CommitTargetLoweringOpt(TLO);
2343   }
2344 
2345   return Simplified;
2346 }
2347 
2348 /// Given a vector binary operation and known undefined elements for each input
2349 /// operand, compute whether each element of the output is undefined.
2350 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2351                                          const APInt &UndefOp0,
2352                                          const APInt &UndefOp1) {
2353   EVT VT = BO.getValueType();
2354   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2355          "Vector binop only");
2356 
2357   EVT EltVT = VT.getVectorElementType();
2358   unsigned NumElts = VT.getVectorNumElements();
2359   assert(UndefOp0.getBitWidth() == NumElts &&
2360          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2361 
2362   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2363                                    const APInt &UndefVals) {
2364     if (UndefVals[Index])
2365       return DAG.getUNDEF(EltVT);
2366 
2367     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2368       // Try hard to make sure that the getNode() call is not creating temporary
2369       // nodes. Ignore opaque integers because they do not constant fold.
2370       SDValue Elt = BV->getOperand(Index);
2371       auto *C = dyn_cast<ConstantSDNode>(Elt);
2372       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2373         return Elt;
2374     }
2375 
2376     return SDValue();
2377   };
2378 
2379   APInt KnownUndef = APInt::getZero(NumElts);
2380   for (unsigned i = 0; i != NumElts; ++i) {
2381     // If both inputs for this element are either constant or undef and match
2382     // the element type, compute the constant/undef result for this element of
2383     // the vector.
2384     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2385     // not handle FP constants. The code within getNode() should be refactored
2386     // to avoid the danger of creating a bogus temporary node here.
2387     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2388     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2389     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2390       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2391         KnownUndef.setBit(i);
2392   }
2393   return KnownUndef;
2394 }
2395 
2396 bool TargetLowering::SimplifyDemandedVectorElts(
2397     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2398     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2399     bool AssumeSingleUse) const {
2400   EVT VT = Op.getValueType();
2401   unsigned Opcode = Op.getOpcode();
2402   APInt DemandedElts = OriginalDemandedElts;
2403   unsigned NumElts = DemandedElts.getBitWidth();
2404   assert(VT.isVector() && "Expected vector op");
2405 
2406   KnownUndef = KnownZero = APInt::getZero(NumElts);
2407 
2408   // TODO: For now we assume we know nothing about scalable vectors.
2409   if (VT.isScalableVector())
2410     return false;
2411 
2412   assert(VT.getVectorNumElements() == NumElts &&
2413          "Mask size mismatches value type element count!");
2414 
2415   // Undef operand.
2416   if (Op.isUndef()) {
2417     KnownUndef.setAllBits();
2418     return false;
2419   }
2420 
2421   // If Op has other users, assume that all elements are needed.
2422   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2423     DemandedElts.setAllBits();
2424 
2425   // Not demanding any elements from Op.
2426   if (DemandedElts == 0) {
2427     KnownUndef.setAllBits();
2428     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2429   }
2430 
2431   // Limit search depth.
2432   if (Depth >= SelectionDAG::MaxRecursionDepth)
2433     return false;
2434 
2435   SDLoc DL(Op);
2436   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2437   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2438 
2439   // Helper for demanding the specified elements and all the bits of both binary
2440   // operands.
2441   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2442     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2443                                                            TLO.DAG, Depth + 1);
2444     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2445                                                            TLO.DAG, Depth + 1);
2446     if (NewOp0 || NewOp1) {
2447       SDValue NewOp = TLO.DAG.getNode(
2448           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2449       return TLO.CombineTo(Op, NewOp);
2450     }
2451     return false;
2452   };
2453 
2454   switch (Opcode) {
2455   case ISD::SCALAR_TO_VECTOR: {
2456     if (!DemandedElts[0]) {
2457       KnownUndef.setAllBits();
2458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2459     }
2460     SDValue ScalarSrc = Op.getOperand(0);
2461     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2462       SDValue Src = ScalarSrc.getOperand(0);
2463       SDValue Idx = ScalarSrc.getOperand(1);
2464       EVT SrcVT = Src.getValueType();
2465 
2466       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2467 
2468       if (SrcEltCnt.isScalable())
2469         return false;
2470 
2471       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2472       if (isNullConstant(Idx)) {
2473         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2474         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2475         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2476         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2477                                        TLO, Depth + 1))
2478           return true;
2479       }
2480     }
2481     KnownUndef.setHighBits(NumElts - 1);
2482     break;
2483   }
2484   case ISD::BITCAST: {
2485     SDValue Src = Op.getOperand(0);
2486     EVT SrcVT = Src.getValueType();
2487 
2488     // We only handle vectors here.
2489     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2490     if (!SrcVT.isVector())
2491       break;
2492 
2493     // Fast handling of 'identity' bitcasts.
2494     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2495     if (NumSrcElts == NumElts)
2496       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2497                                         KnownZero, TLO, Depth + 1);
2498 
2499     APInt SrcDemandedElts, SrcZero, SrcUndef;
2500 
2501     // Bitcast from 'large element' src vector to 'small element' vector, we
2502     // must demand a source element if any DemandedElt maps to it.
2503     if ((NumElts % NumSrcElts) == 0) {
2504       unsigned Scale = NumElts / NumSrcElts;
2505       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2506       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2507                                      TLO, Depth + 1))
2508         return true;
2509 
2510       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2511       // of the large element.
2512       // TODO - bigendian once we have test coverage.
2513       if (IsLE) {
2514         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2515         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2516         for (unsigned i = 0; i != NumElts; ++i)
2517           if (DemandedElts[i]) {
2518             unsigned Ofs = (i % Scale) * EltSizeInBits;
2519             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2520           }
2521 
2522         KnownBits Known;
2523         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2524                                  TLO, Depth + 1))
2525           return true;
2526       }
2527 
2528       // If the src element is zero/undef then all the output elements will be -
2529       // only demanded elements are guaranteed to be correct.
2530       for (unsigned i = 0; i != NumSrcElts; ++i) {
2531         if (SrcDemandedElts[i]) {
2532           if (SrcZero[i])
2533             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2534           if (SrcUndef[i])
2535             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2536         }
2537       }
2538     }
2539 
2540     // Bitcast from 'small element' src vector to 'large element' vector, we
2541     // demand all smaller source elements covered by the larger demanded element
2542     // of this vector.
2543     if ((NumSrcElts % NumElts) == 0) {
2544       unsigned Scale = NumSrcElts / NumElts;
2545       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2546       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2547                                      TLO, Depth + 1))
2548         return true;
2549 
2550       // If all the src elements covering an output element are zero/undef, then
2551       // the output element will be as well, assuming it was demanded.
2552       for (unsigned i = 0; i != NumElts; ++i) {
2553         if (DemandedElts[i]) {
2554           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2555             KnownZero.setBit(i);
2556           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2557             KnownUndef.setBit(i);
2558         }
2559       }
2560     }
2561     break;
2562   }
2563   case ISD::BUILD_VECTOR: {
2564     // Check all elements and simplify any unused elements with UNDEF.
2565     if (!DemandedElts.isAllOnes()) {
2566       // Don't simplify BROADCASTS.
2567       if (llvm::any_of(Op->op_values(),
2568                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2569         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2570         bool Updated = false;
2571         for (unsigned i = 0; i != NumElts; ++i) {
2572           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2573             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2574             KnownUndef.setBit(i);
2575             Updated = true;
2576           }
2577         }
2578         if (Updated)
2579           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2580       }
2581     }
2582     for (unsigned i = 0; i != NumElts; ++i) {
2583       SDValue SrcOp = Op.getOperand(i);
2584       if (SrcOp.isUndef()) {
2585         KnownUndef.setBit(i);
2586       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2587                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2588         KnownZero.setBit(i);
2589       }
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     EVT SubVT = Op.getOperand(0).getValueType();
2595     unsigned NumSubVecs = Op.getNumOperands();
2596     unsigned NumSubElts = SubVT.getVectorNumElements();
2597     for (unsigned i = 0; i != NumSubVecs; ++i) {
2598       SDValue SubOp = Op.getOperand(i);
2599       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2600       APInt SubUndef, SubZero;
2601       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2602                                      Depth + 1))
2603         return true;
2604       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2605       KnownZero.insertBits(SubZero, i * NumSubElts);
2606     }
2607     break;
2608   }
2609   case ISD::INSERT_SUBVECTOR: {
2610     // Demand any elements from the subvector and the remainder from the src its
2611     // inserted into.
2612     SDValue Src = Op.getOperand(0);
2613     SDValue Sub = Op.getOperand(1);
2614     uint64_t Idx = Op.getConstantOperandVal(2);
2615     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2616     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2617     APInt DemandedSrcElts = DemandedElts;
2618     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2619 
2620     APInt SubUndef, SubZero;
2621     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2622                                    Depth + 1))
2623       return true;
2624 
2625     // If none of the src operand elements are demanded, replace it with undef.
2626     if (!DemandedSrcElts && !Src.isUndef())
2627       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2628                                                TLO.DAG.getUNDEF(VT), Sub,
2629                                                Op.getOperand(2)));
2630 
2631     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2632                                    TLO, Depth + 1))
2633       return true;
2634     KnownUndef.insertBits(SubUndef, Idx);
2635     KnownZero.insertBits(SubZero, Idx);
2636 
2637     // Attempt to avoid multi-use ops if we don't need anything from them.
2638     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2639       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2640           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2641       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2642           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2643       if (NewSrc || NewSub) {
2644         NewSrc = NewSrc ? NewSrc : Src;
2645         NewSub = NewSub ? NewSub : Sub;
2646         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2647                                         NewSub, Op.getOperand(2));
2648         return TLO.CombineTo(Op, NewOp);
2649       }
2650     }
2651     break;
2652   }
2653   case ISD::EXTRACT_SUBVECTOR: {
2654     // Offset the demanded elts by the subvector index.
2655     SDValue Src = Op.getOperand(0);
2656     if (Src.getValueType().isScalableVector())
2657       break;
2658     uint64_t Idx = Op.getConstantOperandVal(1);
2659     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2660     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2661 
2662     APInt SrcUndef, SrcZero;
2663     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2664                                    Depth + 1))
2665       return true;
2666     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2667     KnownZero = SrcZero.extractBits(NumElts, Idx);
2668 
2669     // Attempt to avoid multi-use ops if we don't need anything from them.
2670     if (!DemandedElts.isAllOnes()) {
2671       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2672           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2673       if (NewSrc) {
2674         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2675                                         Op.getOperand(1));
2676         return TLO.CombineTo(Op, NewOp);
2677       }
2678     }
2679     break;
2680   }
2681   case ISD::INSERT_VECTOR_ELT: {
2682     SDValue Vec = Op.getOperand(0);
2683     SDValue Scl = Op.getOperand(1);
2684     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2685 
2686     // For a legal, constant insertion index, if we don't need this insertion
2687     // then strip it, else remove it from the demanded elts.
2688     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2689       unsigned Idx = CIdx->getZExtValue();
2690       if (!DemandedElts[Idx])
2691         return TLO.CombineTo(Op, Vec);
2692 
2693       APInt DemandedVecElts(DemandedElts);
2694       DemandedVecElts.clearBit(Idx);
2695       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2696                                      KnownZero, TLO, Depth + 1))
2697         return true;
2698 
2699       KnownUndef.setBitVal(Idx, Scl.isUndef());
2700 
2701       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2702       break;
2703     }
2704 
2705     APInt VecUndef, VecZero;
2706     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2707                                    Depth + 1))
2708       return true;
2709     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2710     break;
2711   }
2712   case ISD::VSELECT: {
2713     // Try to transform the select condition based on the current demanded
2714     // elements.
2715     // TODO: If a condition element is undef, we can choose from one arm of the
2716     //       select (and if one arm is undef, then we can propagate that to the
2717     //       result).
2718     // TODO - add support for constant vselect masks (see IR version of this).
2719     APInt UnusedUndef, UnusedZero;
2720     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2721                                    UnusedZero, TLO, Depth + 1))
2722       return true;
2723 
2724     // See if we can simplify either vselect operand.
2725     APInt DemandedLHS(DemandedElts);
2726     APInt DemandedRHS(DemandedElts);
2727     APInt UndefLHS, ZeroLHS;
2728     APInt UndefRHS, ZeroRHS;
2729     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2730                                    ZeroLHS, TLO, Depth + 1))
2731       return true;
2732     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2733                                    ZeroRHS, TLO, Depth + 1))
2734       return true;
2735 
2736     KnownUndef = UndefLHS & UndefRHS;
2737     KnownZero = ZeroLHS & ZeroRHS;
2738     break;
2739   }
2740   case ISD::VECTOR_SHUFFLE: {
2741     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2742 
2743     // Collect demanded elements from shuffle operands..
2744     APInt DemandedLHS(NumElts, 0);
2745     APInt DemandedRHS(NumElts, 0);
2746     for (unsigned i = 0; i != NumElts; ++i) {
2747       int M = ShuffleMask[i];
2748       if (M < 0 || !DemandedElts[i])
2749         continue;
2750       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2751       if (M < (int)NumElts)
2752         DemandedLHS.setBit(M);
2753       else
2754         DemandedRHS.setBit(M - NumElts);
2755     }
2756 
2757     // See if we can simplify either shuffle operand.
2758     APInt UndefLHS, ZeroLHS;
2759     APInt UndefRHS, ZeroRHS;
2760     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2761                                    ZeroLHS, TLO, Depth + 1))
2762       return true;
2763     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2764                                    ZeroRHS, TLO, Depth + 1))
2765       return true;
2766 
2767     // Simplify mask using undef elements from LHS/RHS.
2768     bool Updated = false;
2769     bool IdentityLHS = true, IdentityRHS = true;
2770     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2771     for (unsigned i = 0; i != NumElts; ++i) {
2772       int &M = NewMask[i];
2773       if (M < 0)
2774         continue;
2775       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2776           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2777         Updated = true;
2778         M = -1;
2779       }
2780       IdentityLHS &= (M < 0) || (M == (int)i);
2781       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2782     }
2783 
2784     // Update legal shuffle masks based on demanded elements if it won't reduce
2785     // to Identity which can cause premature removal of the shuffle mask.
2786     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2787       SDValue LegalShuffle =
2788           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2789                                   NewMask, TLO.DAG);
2790       if (LegalShuffle)
2791         return TLO.CombineTo(Op, LegalShuffle);
2792     }
2793 
2794     // Propagate undef/zero elements from LHS/RHS.
2795     for (unsigned i = 0; i != NumElts; ++i) {
2796       int M = ShuffleMask[i];
2797       if (M < 0) {
2798         KnownUndef.setBit(i);
2799       } else if (M < (int)NumElts) {
2800         if (UndefLHS[M])
2801           KnownUndef.setBit(i);
2802         if (ZeroLHS[M])
2803           KnownZero.setBit(i);
2804       } else {
2805         if (UndefRHS[M - NumElts])
2806           KnownUndef.setBit(i);
2807         if (ZeroRHS[M - NumElts])
2808           KnownZero.setBit(i);
2809       }
2810     }
2811     break;
2812   }
2813   case ISD::ANY_EXTEND_VECTOR_INREG:
2814   case ISD::SIGN_EXTEND_VECTOR_INREG:
2815   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2816     APInt SrcUndef, SrcZero;
2817     SDValue Src = Op.getOperand(0);
2818     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2819     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2820     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2821                                    Depth + 1))
2822       return true;
2823     KnownZero = SrcZero.zextOrTrunc(NumElts);
2824     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2825 
2826     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2827         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2828         DemandedSrcElts == 1) {
2829       // aext - if we just need the bottom element then we can bitcast.
2830       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2831     }
2832 
2833     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2834       // zext(undef) upper bits are guaranteed to be zero.
2835       if (DemandedElts.isSubsetOf(KnownUndef))
2836         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2837       KnownUndef.clearAllBits();
2838 
2839       // zext - if we just need the bottom element then we can mask:
2840       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2841       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2842           Op->isOnlyUserOf(Src.getNode()) &&
2843           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2844         SDLoc DL(Op);
2845         EVT SrcVT = Src.getValueType();
2846         EVT SrcSVT = SrcVT.getScalarType();
2847         SmallVector<SDValue> MaskElts;
2848         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2849         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2850         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2851         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2852                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2853           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2854           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2855         }
2856       }
2857     }
2858     break;
2859   }
2860 
2861   // TODO: There are more binop opcodes that could be handled here - MIN,
2862   // MAX, saturated math, etc.
2863   case ISD::ADD: {
2864     SDValue Op0 = Op.getOperand(0);
2865     SDValue Op1 = Op.getOperand(1);
2866     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2867       APInt UndefLHS, ZeroLHS;
2868       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2869                                      Depth + 1, /*AssumeSingleUse*/ true))
2870         return true;
2871     }
2872     LLVM_FALLTHROUGH;
2873   }
2874   case ISD::OR:
2875   case ISD::XOR:
2876   case ISD::SUB:
2877   case ISD::FADD:
2878   case ISD::FSUB:
2879   case ISD::FMUL:
2880   case ISD::FDIV:
2881   case ISD::FREM: {
2882     SDValue Op0 = Op.getOperand(0);
2883     SDValue Op1 = Op.getOperand(1);
2884 
2885     APInt UndefRHS, ZeroRHS;
2886     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2887                                    Depth + 1))
2888       return true;
2889     APInt UndefLHS, ZeroLHS;
2890     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2891                                    Depth + 1))
2892       return true;
2893 
2894     KnownZero = ZeroLHS & ZeroRHS;
2895     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2896 
2897     // Attempt to avoid multi-use ops if we don't need anything from them.
2898     // TODO - use KnownUndef to relax the demandedelts?
2899     if (!DemandedElts.isAllOnes())
2900       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2901         return true;
2902     break;
2903   }
2904   case ISD::SHL:
2905   case ISD::SRL:
2906   case ISD::SRA:
2907   case ISD::ROTL:
2908   case ISD::ROTR: {
2909     SDValue Op0 = Op.getOperand(0);
2910     SDValue Op1 = Op.getOperand(1);
2911 
2912     APInt UndefRHS, ZeroRHS;
2913     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2914                                    Depth + 1))
2915       return true;
2916     APInt UndefLHS, ZeroLHS;
2917     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2918                                    Depth + 1))
2919       return true;
2920 
2921     KnownZero = ZeroLHS;
2922     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2923 
2924     // Attempt to avoid multi-use ops if we don't need anything from them.
2925     // TODO - use KnownUndef to relax the demandedelts?
2926     if (!DemandedElts.isAllOnes())
2927       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2928         return true;
2929     break;
2930   }
2931   case ISD::MUL:
2932   case ISD::AND: {
2933     SDValue Op0 = Op.getOperand(0);
2934     SDValue Op1 = Op.getOperand(1);
2935 
2936     APInt SrcUndef, SrcZero;
2937     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2938                                    Depth + 1))
2939       return true;
2940     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2941                                    TLO, Depth + 1))
2942       return true;
2943 
2944     // If either side has a zero element, then the result element is zero, even
2945     // if the other is an UNDEF.
2946     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2947     // and then handle 'and' nodes with the rest of the binop opcodes.
2948     KnownZero |= SrcZero;
2949     KnownUndef &= SrcUndef;
2950     KnownUndef &= ~KnownZero;
2951 
2952     // Attempt to avoid multi-use ops if we don't need anything from them.
2953     // TODO - use KnownUndef to relax the demandedelts?
2954     if (!DemandedElts.isAllOnes())
2955       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2956         return true;
2957     break;
2958   }
2959   case ISD::TRUNCATE:
2960   case ISD::SIGN_EXTEND:
2961   case ISD::ZERO_EXTEND:
2962     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2963                                    KnownZero, TLO, Depth + 1))
2964       return true;
2965 
2966     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2967       // zext(undef) upper bits are guaranteed to be zero.
2968       if (DemandedElts.isSubsetOf(KnownUndef))
2969         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2970       KnownUndef.clearAllBits();
2971     }
2972     break;
2973   default: {
2974     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2975       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2976                                                   KnownZero, TLO, Depth))
2977         return true;
2978     } else {
2979       KnownBits Known;
2980       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2981       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2982                                TLO, Depth, AssumeSingleUse))
2983         return true;
2984     }
2985     break;
2986   }
2987   }
2988   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2989 
2990   // Constant fold all undef cases.
2991   // TODO: Handle zero cases as well.
2992   if (DemandedElts.isSubsetOf(KnownUndef))
2993     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2994 
2995   return false;
2996 }
2997 
2998 /// Determine which of the bits specified in Mask are known to be either zero or
2999 /// one and return them in the Known.
3000 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3001                                                    KnownBits &Known,
3002                                                    const APInt &DemandedElts,
3003                                                    const SelectionDAG &DAG,
3004                                                    unsigned Depth) const {
3005   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3006           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3007           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3008           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3009          "Should use MaskedValueIsZero if you don't know whether Op"
3010          " is a target node!");
3011   Known.resetAll();
3012 }
3013 
3014 void TargetLowering::computeKnownBitsForTargetInstr(
3015     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3016     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3017     unsigned Depth) const {
3018   Known.resetAll();
3019 }
3020 
3021 void TargetLowering::computeKnownBitsForFrameIndex(
3022   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3023   // The low bits are known zero if the pointer is aligned.
3024   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3025 }
3026 
3027 Align TargetLowering::computeKnownAlignForTargetInstr(
3028   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3029   unsigned Depth) const {
3030   return Align(1);
3031 }
3032 
3033 /// This method can be implemented by targets that want to expose additional
3034 /// information about sign bits to the DAG Combiner.
3035 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3036                                                          const APInt &,
3037                                                          const SelectionDAG &,
3038                                                          unsigned Depth) const {
3039   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3040           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3041           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3042           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3043          "Should use ComputeNumSignBits if you don't know whether Op"
3044          " is a target node!");
3045   return 1;
3046 }
3047 
3048 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3049   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3050   const MachineRegisterInfo &MRI, unsigned Depth) const {
3051   return 1;
3052 }
3053 
3054 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3055     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3056     TargetLoweringOpt &TLO, unsigned Depth) const {
3057   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3058           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3059           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3060           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3061          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3062          " is a target node!");
3063   return false;
3064 }
3065 
3066 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3067     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3068     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3069   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3070           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3071           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3072           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3073          "Should use SimplifyDemandedBits if you don't know whether Op"
3074          " is a target node!");
3075   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3076   return false;
3077 }
3078 
3079 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3080     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3081     SelectionDAG &DAG, unsigned Depth) const {
3082   assert(
3083       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3084        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3085        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3086        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3087       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3088       " is a target node!");
3089   return SDValue();
3090 }
3091 
3092 SDValue
3093 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3094                                         SDValue N1, MutableArrayRef<int> Mask,
3095                                         SelectionDAG &DAG) const {
3096   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3097   if (!LegalMask) {
3098     std::swap(N0, N1);
3099     ShuffleVectorSDNode::commuteMask(Mask);
3100     LegalMask = isShuffleMaskLegal(Mask, VT);
3101   }
3102 
3103   if (!LegalMask)
3104     return SDValue();
3105 
3106   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3107 }
3108 
3109 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3110   return nullptr;
3111 }
3112 
3113 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3114     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3115     bool PoisonOnly, unsigned Depth) const {
3116   assert(
3117       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3118        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3119        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3120        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3121       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3122       " is a target node!");
3123   return false;
3124 }
3125 
3126 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3127                                                   const SelectionDAG &DAG,
3128                                                   bool SNaN,
3129                                                   unsigned Depth) const {
3130   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3131           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3132           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3133           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3134          "Should use isKnownNeverNaN if you don't know whether Op"
3135          " is a target node!");
3136   return false;
3137 }
3138 
3139 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3140 // work with truncating build vectors and vectors with elements of less than
3141 // 8 bits.
3142 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3143   if (!N)
3144     return false;
3145 
3146   APInt CVal;
3147   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3148     CVal = CN->getAPIntValue();
3149   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3150     auto *CN = BV->getConstantSplatNode();
3151     if (!CN)
3152       return false;
3153 
3154     // If this is a truncating build vector, truncate the splat value.
3155     // Otherwise, we may fail to match the expected values below.
3156     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3157     CVal = CN->getAPIntValue();
3158     if (BVEltWidth < CVal.getBitWidth())
3159       CVal = CVal.trunc(BVEltWidth);
3160   } else {
3161     return false;
3162   }
3163 
3164   switch (getBooleanContents(N->getValueType(0))) {
3165   case UndefinedBooleanContent:
3166     return CVal[0];
3167   case ZeroOrOneBooleanContent:
3168     return CVal.isOne();
3169   case ZeroOrNegativeOneBooleanContent:
3170     return CVal.isAllOnes();
3171   }
3172 
3173   llvm_unreachable("Invalid boolean contents");
3174 }
3175 
3176 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3177   if (!N)
3178     return false;
3179 
3180   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3181   if (!CN) {
3182     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3183     if (!BV)
3184       return false;
3185 
3186     // Only interested in constant splats, we don't care about undef
3187     // elements in identifying boolean constants and getConstantSplatNode
3188     // returns NULL if all ops are undef;
3189     CN = BV->getConstantSplatNode();
3190     if (!CN)
3191       return false;
3192   }
3193 
3194   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3195     return !CN->getAPIntValue()[0];
3196 
3197   return CN->isZero();
3198 }
3199 
3200 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3201                                        bool SExt) const {
3202   if (VT == MVT::i1)
3203     return N->isOne();
3204 
3205   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3206   switch (Cnt) {
3207   case TargetLowering::ZeroOrOneBooleanContent:
3208     // An extended value of 1 is always true, unless its original type is i1,
3209     // in which case it will be sign extended to -1.
3210     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3211   case TargetLowering::UndefinedBooleanContent:
3212   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3213     return N->isAllOnes() && SExt;
3214   }
3215   llvm_unreachable("Unexpected enumeration.");
3216 }
3217 
3218 /// This helper function of SimplifySetCC tries to optimize the comparison when
3219 /// either operand of the SetCC node is a bitwise-and instruction.
3220 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3221                                          ISD::CondCode Cond, const SDLoc &DL,
3222                                          DAGCombinerInfo &DCI) const {
3223   // Match these patterns in any of their permutations:
3224   // (X & Y) == Y
3225   // (X & Y) != Y
3226   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3227     std::swap(N0, N1);
3228 
3229   EVT OpVT = N0.getValueType();
3230   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3231       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3232     return SDValue();
3233 
3234   SDValue X, Y;
3235   if (N0.getOperand(0) == N1) {
3236     X = N0.getOperand(1);
3237     Y = N0.getOperand(0);
3238   } else if (N0.getOperand(1) == N1) {
3239     X = N0.getOperand(0);
3240     Y = N0.getOperand(1);
3241   } else {
3242     return SDValue();
3243   }
3244 
3245   SelectionDAG &DAG = DCI.DAG;
3246   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3247   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3248     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3249     // Note that where Y is variable and is known to have at most one bit set
3250     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3251     // equivalent when Y == 0.
3252     assert(OpVT.isInteger());
3253     Cond = ISD::getSetCCInverse(Cond, OpVT);
3254     if (DCI.isBeforeLegalizeOps() ||
3255         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3256       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3257   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3258     // If the target supports an 'and-not' or 'and-complement' logic operation,
3259     // try to use that to make a comparison operation more efficient.
3260     // But don't do this transform if the mask is a single bit because there are
3261     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3262     // 'rlwinm' on PPC).
3263 
3264     // Bail out if the compare operand that we want to turn into a zero is
3265     // already a zero (otherwise, infinite loop).
3266     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3267     if (YConst && YConst->isZero())
3268       return SDValue();
3269 
3270     // Transform this into: ~X & Y == 0.
3271     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3272     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3273     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3274   }
3275 
3276   return SDValue();
3277 }
3278 
3279 /// There are multiple IR patterns that could be checking whether certain
3280 /// truncation of a signed number would be lossy or not. The pattern which is
3281 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3282 /// We are looking for the following pattern: (KeptBits is a constant)
3283 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3284 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3285 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3286 /// We will unfold it into the natural trunc+sext pattern:
3287 ///   ((%x << C) a>> C) dstcond %x
3288 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3289 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3290     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3291     const SDLoc &DL) const {
3292   // We must be comparing with a constant.
3293   ConstantSDNode *C1;
3294   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3295     return SDValue();
3296 
3297   // N0 should be:  add %x, (1 << (KeptBits-1))
3298   if (N0->getOpcode() != ISD::ADD)
3299     return SDValue();
3300 
3301   // And we must be 'add'ing a constant.
3302   ConstantSDNode *C01;
3303   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3304     return SDValue();
3305 
3306   SDValue X = N0->getOperand(0);
3307   EVT XVT = X.getValueType();
3308 
3309   // Validate constants ...
3310 
3311   APInt I1 = C1->getAPIntValue();
3312 
3313   ISD::CondCode NewCond;
3314   if (Cond == ISD::CondCode::SETULT) {
3315     NewCond = ISD::CondCode::SETEQ;
3316   } else if (Cond == ISD::CondCode::SETULE) {
3317     NewCond = ISD::CondCode::SETEQ;
3318     // But need to 'canonicalize' the constant.
3319     I1 += 1;
3320   } else if (Cond == ISD::CondCode::SETUGT) {
3321     NewCond = ISD::CondCode::SETNE;
3322     // But need to 'canonicalize' the constant.
3323     I1 += 1;
3324   } else if (Cond == ISD::CondCode::SETUGE) {
3325     NewCond = ISD::CondCode::SETNE;
3326   } else
3327     return SDValue();
3328 
3329   APInt I01 = C01->getAPIntValue();
3330 
3331   auto checkConstants = [&I1, &I01]() -> bool {
3332     // Both of them must be power-of-two, and the constant from setcc is bigger.
3333     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3334   };
3335 
3336   if (checkConstants()) {
3337     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3338   } else {
3339     // What if we invert constants? (and the target predicate)
3340     I1.negate();
3341     I01.negate();
3342     assert(XVT.isInteger());
3343     NewCond = getSetCCInverse(NewCond, XVT);
3344     if (!checkConstants())
3345       return SDValue();
3346     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3347   }
3348 
3349   // They are power-of-two, so which bit is set?
3350   const unsigned KeptBits = I1.logBase2();
3351   const unsigned KeptBitsMinusOne = I01.logBase2();
3352 
3353   // Magic!
3354   if (KeptBits != (KeptBitsMinusOne + 1))
3355     return SDValue();
3356   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3357 
3358   // We don't want to do this in every single case.
3359   SelectionDAG &DAG = DCI.DAG;
3360   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3361           XVT, KeptBits))
3362     return SDValue();
3363 
3364   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3365   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3366 
3367   // Unfold into:  ((%x << C) a>> C) cond %x
3368   // Where 'cond' will be either 'eq' or 'ne'.
3369   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3370   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3371   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3372   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3373 
3374   return T2;
3375 }
3376 
3377 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3378 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3379     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3380     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3381   assert(isConstOrConstSplat(N1C) &&
3382          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3383          "Should be a comparison with 0.");
3384   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3385          "Valid only for [in]equality comparisons.");
3386 
3387   unsigned NewShiftOpcode;
3388   SDValue X, C, Y;
3389 
3390   SelectionDAG &DAG = DCI.DAG;
3391   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3392 
3393   // Look for '(C l>>/<< Y)'.
3394   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3395     // The shift should be one-use.
3396     if (!V.hasOneUse())
3397       return false;
3398     unsigned OldShiftOpcode = V.getOpcode();
3399     switch (OldShiftOpcode) {
3400     case ISD::SHL:
3401       NewShiftOpcode = ISD::SRL;
3402       break;
3403     case ISD::SRL:
3404       NewShiftOpcode = ISD::SHL;
3405       break;
3406     default:
3407       return false; // must be a logical shift.
3408     }
3409     // We should be shifting a constant.
3410     // FIXME: best to use isConstantOrConstantVector().
3411     C = V.getOperand(0);
3412     ConstantSDNode *CC =
3413         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3414     if (!CC)
3415       return false;
3416     Y = V.getOperand(1);
3417 
3418     ConstantSDNode *XC =
3419         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3420     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3421         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3422   };
3423 
3424   // LHS of comparison should be an one-use 'and'.
3425   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3426     return SDValue();
3427 
3428   X = N0.getOperand(0);
3429   SDValue Mask = N0.getOperand(1);
3430 
3431   // 'and' is commutative!
3432   if (!Match(Mask)) {
3433     std::swap(X, Mask);
3434     if (!Match(Mask))
3435       return SDValue();
3436   }
3437 
3438   EVT VT = X.getValueType();
3439 
3440   // Produce:
3441   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3442   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3443   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3444   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3445   return T2;
3446 }
3447 
3448 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3449 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3450 /// handle the commuted versions of these patterns.
3451 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3452                                            ISD::CondCode Cond, const SDLoc &DL,
3453                                            DAGCombinerInfo &DCI) const {
3454   unsigned BOpcode = N0.getOpcode();
3455   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3456          "Unexpected binop");
3457   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3458 
3459   // (X + Y) == X --> Y == 0
3460   // (X - Y) == X --> Y == 0
3461   // (X ^ Y) == X --> Y == 0
3462   SelectionDAG &DAG = DCI.DAG;
3463   EVT OpVT = N0.getValueType();
3464   SDValue X = N0.getOperand(0);
3465   SDValue Y = N0.getOperand(1);
3466   if (X == N1)
3467     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3468 
3469   if (Y != N1)
3470     return SDValue();
3471 
3472   // (X + Y) == Y --> X == 0
3473   // (X ^ Y) == Y --> X == 0
3474   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3475     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3476 
3477   // The shift would not be valid if the operands are boolean (i1).
3478   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3479     return SDValue();
3480 
3481   // (X - Y) == Y --> X == Y << 1
3482   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3483                                  !DCI.isBeforeLegalize());
3484   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3485   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3486   if (!DCI.isCalledByLegalizer())
3487     DCI.AddToWorklist(YShl1.getNode());
3488   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3489 }
3490 
3491 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3492                                       SDValue N0, const APInt &C1,
3493                                       ISD::CondCode Cond, const SDLoc &dl,
3494                                       SelectionDAG &DAG) {
3495   // Look through truncs that don't change the value of a ctpop.
3496   // FIXME: Add vector support? Need to be careful with setcc result type below.
3497   SDValue CTPOP = N0;
3498   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3499       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3500     CTPOP = N0.getOperand(0);
3501 
3502   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3503     return SDValue();
3504 
3505   EVT CTVT = CTPOP.getValueType();
3506   SDValue CTOp = CTPOP.getOperand(0);
3507 
3508   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3509   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3510   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3511     return SDValue();
3512 
3513   // (ctpop x) u< 2 -> (x & x-1) == 0
3514   // (ctpop x) u> 1 -> (x & x-1) != 0
3515   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3516     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3517     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3518       return SDValue();
3519     if (C1 == 0 && (Cond == ISD::SETULT))
3520       return SDValue(); // This is handled elsewhere.
3521 
3522     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3523 
3524     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3525     SDValue Result = CTOp;
3526     for (unsigned i = 0; i < Passes; i++) {
3527       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3528       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3529     }
3530     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3531     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3532   }
3533 
3534   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3535   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3536     // For scalars, keep CTPOP if it is legal or custom.
3537     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3538       return SDValue();
3539     // This is based on X86's custom lowering for CTPOP which produces more
3540     // instructions than the expansion here.
3541 
3542     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3543     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3544     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3545     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3546     assert(CTVT.isInteger());
3547     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3548     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3549     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3550     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3551     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3552     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3553     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3554   }
3555 
3556   return SDValue();
3557 }
3558 
3559 /// Try to simplify a setcc built with the specified operands and cc. If it is
3560 /// unable to simplify it, return a null SDValue.
3561 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3562                                       ISD::CondCode Cond, bool foldBooleans,
3563                                       DAGCombinerInfo &DCI,
3564                                       const SDLoc &dl) const {
3565   SelectionDAG &DAG = DCI.DAG;
3566   const DataLayout &Layout = DAG.getDataLayout();
3567   EVT OpVT = N0.getValueType();
3568 
3569   // Constant fold or commute setcc.
3570   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3571     return Fold;
3572 
3573   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3574   // TODO: Handle non-splat vector constants. All undef causes trouble.
3575   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3576   // infinite loop here when we encounter one.
3577   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3578   if (isConstOrConstSplat(N0) &&
3579       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3580       (DCI.isBeforeLegalizeOps() ||
3581        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3582     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3583 
3584   // If we have a subtract with the same 2 non-constant operands as this setcc
3585   // -- but in reverse order -- then try to commute the operands of this setcc
3586   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3587   // instruction on some targets.
3588   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3589       (DCI.isBeforeLegalizeOps() ||
3590        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3591       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3592       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3593     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3594 
3595   if (auto *N1C = isConstOrConstSplat(N1)) {
3596     const APInt &C1 = N1C->getAPIntValue();
3597 
3598     // Optimize some CTPOP cases.
3599     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3600       return V;
3601 
3602     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3603     // equality comparison, then we're just comparing whether X itself is
3604     // zero.
3605     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3606         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3607         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3608       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3609         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3610             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3611           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3612             // (srl (ctlz x), 5) == 0  -> X != 0
3613             // (srl (ctlz x), 5) != 1  -> X != 0
3614             Cond = ISD::SETNE;
3615           } else {
3616             // (srl (ctlz x), 5) != 0  -> X == 0
3617             // (srl (ctlz x), 5) == 1  -> X == 0
3618             Cond = ISD::SETEQ;
3619           }
3620           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3621           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3622                               Cond);
3623         }
3624       }
3625     }
3626   }
3627 
3628   // FIXME: Support vectors.
3629   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3630     const APInt &C1 = N1C->getAPIntValue();
3631 
3632     // (zext x) == C --> x == (trunc C)
3633     // (sext x) == C --> x == (trunc C)
3634     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3635         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3636       unsigned MinBits = N0.getValueSizeInBits();
3637       SDValue PreExt;
3638       bool Signed = false;
3639       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3640         // ZExt
3641         MinBits = N0->getOperand(0).getValueSizeInBits();
3642         PreExt = N0->getOperand(0);
3643       } else if (N0->getOpcode() == ISD::AND) {
3644         // DAGCombine turns costly ZExts into ANDs
3645         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3646           if ((C->getAPIntValue()+1).isPowerOf2()) {
3647             MinBits = C->getAPIntValue().countTrailingOnes();
3648             PreExt = N0->getOperand(0);
3649           }
3650       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3651         // SExt
3652         MinBits = N0->getOperand(0).getValueSizeInBits();
3653         PreExt = N0->getOperand(0);
3654         Signed = true;
3655       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3656         // ZEXTLOAD / SEXTLOAD
3657         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3658           MinBits = LN0->getMemoryVT().getSizeInBits();
3659           PreExt = N0;
3660         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3661           Signed = true;
3662           MinBits = LN0->getMemoryVT().getSizeInBits();
3663           PreExt = N0;
3664         }
3665       }
3666 
3667       // Figure out how many bits we need to preserve this constant.
3668       unsigned ReqdBits = Signed ?
3669         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3670         C1.getActiveBits();
3671 
3672       // Make sure we're not losing bits from the constant.
3673       if (MinBits > 0 &&
3674           MinBits < C1.getBitWidth() &&
3675           MinBits >= ReqdBits) {
3676         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3677         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3678           // Will get folded away.
3679           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3680           if (MinBits == 1 && C1 == 1)
3681             // Invert the condition.
3682             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3683                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3684           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3685           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3686         }
3687 
3688         // If truncating the setcc operands is not desirable, we can still
3689         // simplify the expression in some cases:
3690         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3691         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3692         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3693         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3694         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3695         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3696         SDValue TopSetCC = N0->getOperand(0);
3697         unsigned N0Opc = N0->getOpcode();
3698         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3699         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3700             TopSetCC.getOpcode() == ISD::SETCC &&
3701             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3702             (isConstFalseVal(N1C) ||
3703              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3704 
3705           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3706                          (!N1C->isZero() && Cond == ISD::SETNE);
3707 
3708           if (!Inverse)
3709             return TopSetCC;
3710 
3711           ISD::CondCode InvCond = ISD::getSetCCInverse(
3712               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3713               TopSetCC.getOperand(0).getValueType());
3714           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3715                                       TopSetCC.getOperand(1),
3716                                       InvCond);
3717         }
3718       }
3719     }
3720 
3721     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3722     // equality or unsigned, and all 1 bits of the const are in the same
3723     // partial word, see if we can shorten the load.
3724     if (DCI.isBeforeLegalize() &&
3725         !ISD::isSignedIntSetCC(Cond) &&
3726         N0.getOpcode() == ISD::AND && C1 == 0 &&
3727         N0.getNode()->hasOneUse() &&
3728         isa<LoadSDNode>(N0.getOperand(0)) &&
3729         N0.getOperand(0).getNode()->hasOneUse() &&
3730         isa<ConstantSDNode>(N0.getOperand(1))) {
3731       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3732       APInt bestMask;
3733       unsigned bestWidth = 0, bestOffset = 0;
3734       if (Lod->isSimple() && Lod->isUnindexed()) {
3735         unsigned origWidth = N0.getValueSizeInBits();
3736         unsigned maskWidth = origWidth;
3737         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3738         // 8 bits, but have to be careful...
3739         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3740           origWidth = Lod->getMemoryVT().getSizeInBits();
3741         const APInt &Mask = N0.getConstantOperandAPInt(1);
3742         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3743           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3744           for (unsigned offset=0; offset<origWidth/width; offset++) {
3745             if (Mask.isSubsetOf(newMask)) {
3746               if (Layout.isLittleEndian())
3747                 bestOffset = (uint64_t)offset * (width/8);
3748               else
3749                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3750               bestMask = Mask.lshr(offset * (width/8) * 8);
3751               bestWidth = width;
3752               break;
3753             }
3754             newMask <<= width;
3755           }
3756         }
3757       }
3758       if (bestWidth) {
3759         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3760         if (newVT.isRound() &&
3761             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3762           SDValue Ptr = Lod->getBasePtr();
3763           if (bestOffset != 0)
3764             Ptr =
3765                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3766           SDValue NewLoad =
3767               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3768                           Lod->getPointerInfo().getWithOffset(bestOffset),
3769                           Lod->getOriginalAlign());
3770           return DAG.getSetCC(dl, VT,
3771                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3772                                       DAG.getConstant(bestMask.trunc(bestWidth),
3773                                                       dl, newVT)),
3774                               DAG.getConstant(0LL, dl, newVT), Cond);
3775         }
3776       }
3777     }
3778 
3779     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3780     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3781       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3782 
3783       // If the comparison constant has bits in the upper part, the
3784       // zero-extended value could never match.
3785       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3786                                               C1.getBitWidth() - InSize))) {
3787         switch (Cond) {
3788         case ISD::SETUGT:
3789         case ISD::SETUGE:
3790         case ISD::SETEQ:
3791           return DAG.getConstant(0, dl, VT);
3792         case ISD::SETULT:
3793         case ISD::SETULE:
3794         case ISD::SETNE:
3795           return DAG.getConstant(1, dl, VT);
3796         case ISD::SETGT:
3797         case ISD::SETGE:
3798           // True if the sign bit of C1 is set.
3799           return DAG.getConstant(C1.isNegative(), dl, VT);
3800         case ISD::SETLT:
3801         case ISD::SETLE:
3802           // True if the sign bit of C1 isn't set.
3803           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3804         default:
3805           break;
3806         }
3807       }
3808 
3809       // Otherwise, we can perform the comparison with the low bits.
3810       switch (Cond) {
3811       case ISD::SETEQ:
3812       case ISD::SETNE:
3813       case ISD::SETUGT:
3814       case ISD::SETUGE:
3815       case ISD::SETULT:
3816       case ISD::SETULE: {
3817         EVT newVT = N0.getOperand(0).getValueType();
3818         if (DCI.isBeforeLegalizeOps() ||
3819             (isOperationLegal(ISD::SETCC, newVT) &&
3820              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3821           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3822           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3823 
3824           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3825                                           NewConst, Cond);
3826           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3827         }
3828         break;
3829       }
3830       default:
3831         break; // todo, be more careful with signed comparisons
3832       }
3833     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3834                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3835                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3836                                       OpVT)) {
3837       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3838       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3839       EVT ExtDstTy = N0.getValueType();
3840       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3841 
3842       // If the constant doesn't fit into the number of bits for the source of
3843       // the sign extension, it is impossible for both sides to be equal.
3844       if (C1.getMinSignedBits() > ExtSrcTyBits)
3845         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3846 
3847       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3848              ExtDstTy != ExtSrcTy && "Unexpected types!");
3849       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3850       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3851                                    DAG.getConstant(Imm, dl, ExtDstTy));
3852       if (!DCI.isCalledByLegalizer())
3853         DCI.AddToWorklist(ZextOp.getNode());
3854       // Otherwise, make this a use of a zext.
3855       return DAG.getSetCC(dl, VT, ZextOp,
3856                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3857     } else if ((N1C->isZero() || N1C->isOne()) &&
3858                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3859       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3860       if (N0.getOpcode() == ISD::SETCC &&
3861           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3862           (N0.getValueType() == MVT::i1 ||
3863            getBooleanContents(N0.getOperand(0).getValueType()) ==
3864                        ZeroOrOneBooleanContent)) {
3865         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3866         if (TrueWhenTrue)
3867           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3868         // Invert the condition.
3869         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3870         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3871         if (DCI.isBeforeLegalizeOps() ||
3872             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3873           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3874       }
3875 
3876       if ((N0.getOpcode() == ISD::XOR ||
3877            (N0.getOpcode() == ISD::AND &&
3878             N0.getOperand(0).getOpcode() == ISD::XOR &&
3879             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3880           isOneConstant(N0.getOperand(1))) {
3881         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3882         // can only do this if the top bits are known zero.
3883         unsigned BitWidth = N0.getValueSizeInBits();
3884         if (DAG.MaskedValueIsZero(N0,
3885                                   APInt::getHighBitsSet(BitWidth,
3886                                                         BitWidth-1))) {
3887           // Okay, get the un-inverted input value.
3888           SDValue Val;
3889           if (N0.getOpcode() == ISD::XOR) {
3890             Val = N0.getOperand(0);
3891           } else {
3892             assert(N0.getOpcode() == ISD::AND &&
3893                     N0.getOperand(0).getOpcode() == ISD::XOR);
3894             // ((X^1)&1)^1 -> X & 1
3895             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3896                               N0.getOperand(0).getOperand(0),
3897                               N0.getOperand(1));
3898           }
3899 
3900           return DAG.getSetCC(dl, VT, Val, N1,
3901                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3902         }
3903       } else if (N1C->isOne()) {
3904         SDValue Op0 = N0;
3905         if (Op0.getOpcode() == ISD::TRUNCATE)
3906           Op0 = Op0.getOperand(0);
3907 
3908         if ((Op0.getOpcode() == ISD::XOR) &&
3909             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3910             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3911           SDValue XorLHS = Op0.getOperand(0);
3912           SDValue XorRHS = Op0.getOperand(1);
3913           // Ensure that the input setccs return an i1 type or 0/1 value.
3914           if (Op0.getValueType() == MVT::i1 ||
3915               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3916                       ZeroOrOneBooleanContent &&
3917                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3918                         ZeroOrOneBooleanContent)) {
3919             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3920             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3921             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3922           }
3923         }
3924         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3925           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3926           if (Op0.getValueType().bitsGT(VT))
3927             Op0 = DAG.getNode(ISD::AND, dl, VT,
3928                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3929                           DAG.getConstant(1, dl, VT));
3930           else if (Op0.getValueType().bitsLT(VT))
3931             Op0 = DAG.getNode(ISD::AND, dl, VT,
3932                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3933                         DAG.getConstant(1, dl, VT));
3934 
3935           return DAG.getSetCC(dl, VT, Op0,
3936                               DAG.getConstant(0, dl, Op0.getValueType()),
3937                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3938         }
3939         if (Op0.getOpcode() == ISD::AssertZext &&
3940             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3941           return DAG.getSetCC(dl, VT, Op0,
3942                               DAG.getConstant(0, dl, Op0.getValueType()),
3943                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3944       }
3945     }
3946 
3947     // Given:
3948     //   icmp eq/ne (urem %x, %y), 0
3949     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3950     //   icmp eq/ne %x, 0
3951     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3952         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3953       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3954       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3955       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3956         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3957     }
3958 
3959     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3960     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3961     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3962         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3963         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3964         N1C && N1C->isAllOnes()) {
3965       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3966                           DAG.getConstant(0, dl, OpVT),
3967                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3968     }
3969 
3970     if (SDValue V =
3971             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3972       return V;
3973   }
3974 
3975   // These simplifications apply to splat vectors as well.
3976   // TODO: Handle more splat vector cases.
3977   if (auto *N1C = isConstOrConstSplat(N1)) {
3978     const APInt &C1 = N1C->getAPIntValue();
3979 
3980     APInt MinVal, MaxVal;
3981     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3982     if (ISD::isSignedIntSetCC(Cond)) {
3983       MinVal = APInt::getSignedMinValue(OperandBitSize);
3984       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3985     } else {
3986       MinVal = APInt::getMinValue(OperandBitSize);
3987       MaxVal = APInt::getMaxValue(OperandBitSize);
3988     }
3989 
3990     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3991     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3992       // X >= MIN --> true
3993       if (C1 == MinVal)
3994         return DAG.getBoolConstant(true, dl, VT, OpVT);
3995 
3996       if (!VT.isVector()) { // TODO: Support this for vectors.
3997         // X >= C0 --> X > (C0 - 1)
3998         APInt C = C1 - 1;
3999         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4000         if ((DCI.isBeforeLegalizeOps() ||
4001              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4002             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4003                                   isLegalICmpImmediate(C.getSExtValue())))) {
4004           return DAG.getSetCC(dl, VT, N0,
4005                               DAG.getConstant(C, dl, N1.getValueType()),
4006                               NewCC);
4007         }
4008       }
4009     }
4010 
4011     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4012       // X <= MAX --> true
4013       if (C1 == MaxVal)
4014         return DAG.getBoolConstant(true, dl, VT, OpVT);
4015 
4016       // X <= C0 --> X < (C0 + 1)
4017       if (!VT.isVector()) { // TODO: Support this for vectors.
4018         APInt C = C1 + 1;
4019         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4020         if ((DCI.isBeforeLegalizeOps() ||
4021              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4022             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4023                                   isLegalICmpImmediate(C.getSExtValue())))) {
4024           return DAG.getSetCC(dl, VT, N0,
4025                               DAG.getConstant(C, dl, N1.getValueType()),
4026                               NewCC);
4027         }
4028       }
4029     }
4030 
4031     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4032       if (C1 == MinVal)
4033         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4034 
4035       // TODO: Support this for vectors after legalize ops.
4036       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4037         // Canonicalize setlt X, Max --> setne X, Max
4038         if (C1 == MaxVal)
4039           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4040 
4041         // If we have setult X, 1, turn it into seteq X, 0
4042         if (C1 == MinVal+1)
4043           return DAG.getSetCC(dl, VT, N0,
4044                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4045                               ISD::SETEQ);
4046       }
4047     }
4048 
4049     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4050       if (C1 == MaxVal)
4051         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4052 
4053       // TODO: Support this for vectors after legalize ops.
4054       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4055         // Canonicalize setgt X, Min --> setne X, Min
4056         if (C1 == MinVal)
4057           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4058 
4059         // If we have setugt X, Max-1, turn it into seteq X, Max
4060         if (C1 == MaxVal-1)
4061           return DAG.getSetCC(dl, VT, N0,
4062                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4063                               ISD::SETEQ);
4064       }
4065     }
4066 
4067     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4068       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4069       if (C1.isZero())
4070         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4071                 VT, N0, N1, Cond, DCI, dl))
4072           return CC;
4073 
4074       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4075       // For example, when high 32-bits of i64 X are known clear:
4076       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4077       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4078       bool CmpZero = N1C->getAPIntValue().isZero();
4079       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4080       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4081         // Match or(lo,shl(hi,bw/2)) pattern.
4082         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4083           unsigned EltBits = V.getScalarValueSizeInBits();
4084           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4085             return false;
4086           SDValue LHS = V.getOperand(0);
4087           SDValue RHS = V.getOperand(1);
4088           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4089           // Unshifted element must have zero upperbits.
4090           if (RHS.getOpcode() == ISD::SHL &&
4091               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4092               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4093               DAG.MaskedValueIsZero(LHS, HiBits)) {
4094             Lo = LHS;
4095             Hi = RHS.getOperand(0);
4096             return true;
4097           }
4098           if (LHS.getOpcode() == ISD::SHL &&
4099               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4100               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4101               DAG.MaskedValueIsZero(RHS, HiBits)) {
4102             Lo = RHS;
4103             Hi = LHS.getOperand(0);
4104             return true;
4105           }
4106           return false;
4107         };
4108 
4109         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4110           unsigned EltBits = N0.getScalarValueSizeInBits();
4111           unsigned HalfBits = EltBits / 2;
4112           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4113           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4114           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4115           SDValue NewN0 =
4116               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4117           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4118           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4119         };
4120 
4121         SDValue Lo, Hi;
4122         if (IsConcat(N0, Lo, Hi))
4123           return MergeConcat(Lo, Hi);
4124 
4125         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4126           SDValue Lo0, Lo1, Hi0, Hi1;
4127           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4128               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4129             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4130                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4131           }
4132         }
4133       }
4134     }
4135 
4136     // If we have "setcc X, C0", check to see if we can shrink the immediate
4137     // by changing cc.
4138     // TODO: Support this for vectors after legalize ops.
4139     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4140       // SETUGT X, SINTMAX  -> SETLT X, 0
4141       // SETUGE X, SINTMIN -> SETLT X, 0
4142       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4143           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4144         return DAG.getSetCC(dl, VT, N0,
4145                             DAG.getConstant(0, dl, N1.getValueType()),
4146                             ISD::SETLT);
4147 
4148       // SETULT X, SINTMIN  -> SETGT X, -1
4149       // SETULE X, SINTMAX  -> SETGT X, -1
4150       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4151           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4152         return DAG.getSetCC(dl, VT, N0,
4153                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4154                             ISD::SETGT);
4155     }
4156   }
4157 
4158   // Back to non-vector simplifications.
4159   // TODO: Can we do these for vector splats?
4160   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4161     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4162     const APInt &C1 = N1C->getAPIntValue();
4163     EVT ShValTy = N0.getValueType();
4164 
4165     // Fold bit comparisons when we can. This will result in an
4166     // incorrect value when boolean false is negative one, unless
4167     // the bitsize is 1 in which case the false value is the same
4168     // in practice regardless of the representation.
4169     if ((VT.getSizeInBits() == 1 ||
4170          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4171         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4172         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4173         N0.getOpcode() == ISD::AND) {
4174       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4175         EVT ShiftTy =
4176             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4177         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4178           // Perform the xform if the AND RHS is a single bit.
4179           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4180           if (AndRHS->getAPIntValue().isPowerOf2() &&
4181               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4182             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4183                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4184                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4185           }
4186         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4187           // (X & 8) == 8  -->  (X & 8) >> 3
4188           // Perform the xform if C1 is a single bit.
4189           unsigned ShCt = C1.logBase2();
4190           if (C1.isPowerOf2() &&
4191               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4192             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4193                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4194                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4195           }
4196         }
4197       }
4198     }
4199 
4200     if (C1.getMinSignedBits() <= 64 &&
4201         !isLegalICmpImmediate(C1.getSExtValue())) {
4202       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4203       // (X & -256) == 256 -> (X >> 8) == 1
4204       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4205           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4206         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4207           const APInt &AndRHSC = AndRHS->getAPIntValue();
4208           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4209             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4210             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4211               SDValue Shift =
4212                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4213                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4214               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4215               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4216             }
4217           }
4218         }
4219       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4220                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4221         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4222         // X <  0x100000000 -> (X >> 32) <  1
4223         // X >= 0x100000000 -> (X >> 32) >= 1
4224         // X <= 0x0ffffffff -> (X >> 32) <  1
4225         // X >  0x0ffffffff -> (X >> 32) >= 1
4226         unsigned ShiftBits;
4227         APInt NewC = C1;
4228         ISD::CondCode NewCond = Cond;
4229         if (AdjOne) {
4230           ShiftBits = C1.countTrailingOnes();
4231           NewC = NewC + 1;
4232           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4233         } else {
4234           ShiftBits = C1.countTrailingZeros();
4235         }
4236         NewC.lshrInPlace(ShiftBits);
4237         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4238             isLegalICmpImmediate(NewC.getSExtValue()) &&
4239             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4240           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4241                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4242           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4243           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4244         }
4245       }
4246     }
4247   }
4248 
4249   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4250     auto *CFP = cast<ConstantFPSDNode>(N1);
4251     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4252 
4253     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4254     // constant if knowing that the operand is non-nan is enough.  We prefer to
4255     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4256     // materialize 0.0.
4257     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4258       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4259 
4260     // setcc (fneg x), C -> setcc swap(pred) x, -C
4261     if (N0.getOpcode() == ISD::FNEG) {
4262       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4263       if (DCI.isBeforeLegalizeOps() ||
4264           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4265         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4266         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4267       }
4268     }
4269 
4270     // If the condition is not legal, see if we can find an equivalent one
4271     // which is legal.
4272     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4273       // If the comparison was an awkward floating-point == or != and one of
4274       // the comparison operands is infinity or negative infinity, convert the
4275       // condition to a less-awkward <= or >=.
4276       if (CFP->getValueAPF().isInfinity()) {
4277         bool IsNegInf = CFP->getValueAPF().isNegative();
4278         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4279         switch (Cond) {
4280         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4281         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4282         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4283         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4284         default: break;
4285         }
4286         if (NewCond != ISD::SETCC_INVALID &&
4287             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4288           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4289       }
4290     }
4291   }
4292 
4293   if (N0 == N1) {
4294     // The sext(setcc()) => setcc() optimization relies on the appropriate
4295     // constant being emitted.
4296     assert(!N0.getValueType().isInteger() &&
4297            "Integer types should be handled by FoldSetCC");
4298 
4299     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4300     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4301     if (UOF == 2) // FP operators that are undefined on NaNs.
4302       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4303     if (UOF == unsigned(EqTrue))
4304       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4305     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4306     // if it is not already.
4307     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4308     if (NewCond != Cond &&
4309         (DCI.isBeforeLegalizeOps() ||
4310                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4311       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4312   }
4313 
4314   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4315       N0.getValueType().isInteger()) {
4316     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4317         N0.getOpcode() == ISD::XOR) {
4318       // Simplify (X+Y) == (X+Z) -->  Y == Z
4319       if (N0.getOpcode() == N1.getOpcode()) {
4320         if (N0.getOperand(0) == N1.getOperand(0))
4321           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4322         if (N0.getOperand(1) == N1.getOperand(1))
4323           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4324         if (isCommutativeBinOp(N0.getOpcode())) {
4325           // If X op Y == Y op X, try other combinations.
4326           if (N0.getOperand(0) == N1.getOperand(1))
4327             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4328                                 Cond);
4329           if (N0.getOperand(1) == N1.getOperand(0))
4330             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4331                                 Cond);
4332         }
4333       }
4334 
4335       // If RHS is a legal immediate value for a compare instruction, we need
4336       // to be careful about increasing register pressure needlessly.
4337       bool LegalRHSImm = false;
4338 
4339       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4340         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4341           // Turn (X+C1) == C2 --> X == C2-C1
4342           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4343             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4344                                 DAG.getConstant(RHSC->getAPIntValue()-
4345                                                 LHSR->getAPIntValue(),
4346                                 dl, N0.getValueType()), Cond);
4347           }
4348 
4349           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4350           if (N0.getOpcode() == ISD::XOR)
4351             // If we know that all of the inverted bits are zero, don't bother
4352             // performing the inversion.
4353             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4354               return
4355                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4356                              DAG.getConstant(LHSR->getAPIntValue() ^
4357                                                RHSC->getAPIntValue(),
4358                                              dl, N0.getValueType()),
4359                              Cond);
4360         }
4361 
4362         // Turn (C1-X) == C2 --> X == C1-C2
4363         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4364           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4365             return
4366               DAG.getSetCC(dl, VT, N0.getOperand(1),
4367                            DAG.getConstant(SUBC->getAPIntValue() -
4368                                              RHSC->getAPIntValue(),
4369                                            dl, N0.getValueType()),
4370                            Cond);
4371           }
4372         }
4373 
4374         // Could RHSC fold directly into a compare?
4375         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4376           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4377       }
4378 
4379       // (X+Y) == X --> Y == 0 and similar folds.
4380       // Don't do this if X is an immediate that can fold into a cmp
4381       // instruction and X+Y has other uses. It could be an induction variable
4382       // chain, and the transform would increase register pressure.
4383       if (!LegalRHSImm || N0.hasOneUse())
4384         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4385           return V;
4386     }
4387 
4388     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4389         N1.getOpcode() == ISD::XOR)
4390       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4391         return V;
4392 
4393     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4394       return V;
4395   }
4396 
4397   // Fold remainder of division by a constant.
4398   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4399       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4400     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4401 
4402     // When division is cheap or optimizing for minimum size,
4403     // fall through to DIVREM creation by skipping this fold.
4404     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4405       if (N0.getOpcode() == ISD::UREM) {
4406         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4407           return Folded;
4408       } else if (N0.getOpcode() == ISD::SREM) {
4409         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4410           return Folded;
4411       }
4412     }
4413   }
4414 
4415   // Fold away ALL boolean setcc's.
4416   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4417     SDValue Temp;
4418     switch (Cond) {
4419     default: llvm_unreachable("Unknown integer setcc!");
4420     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4421       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4422       N0 = DAG.getNOT(dl, Temp, OpVT);
4423       if (!DCI.isCalledByLegalizer())
4424         DCI.AddToWorklist(Temp.getNode());
4425       break;
4426     case ISD::SETNE:  // X != Y   -->  (X^Y)
4427       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4428       break;
4429     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4430     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4431       Temp = DAG.getNOT(dl, N0, OpVT);
4432       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4433       if (!DCI.isCalledByLegalizer())
4434         DCI.AddToWorklist(Temp.getNode());
4435       break;
4436     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4437     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4438       Temp = DAG.getNOT(dl, N1, OpVT);
4439       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4440       if (!DCI.isCalledByLegalizer())
4441         DCI.AddToWorklist(Temp.getNode());
4442       break;
4443     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4444     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4445       Temp = DAG.getNOT(dl, N0, OpVT);
4446       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4447       if (!DCI.isCalledByLegalizer())
4448         DCI.AddToWorklist(Temp.getNode());
4449       break;
4450     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4451     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4452       Temp = DAG.getNOT(dl, N1, OpVT);
4453       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4454       break;
4455     }
4456     if (VT.getScalarType() != MVT::i1) {
4457       if (!DCI.isCalledByLegalizer())
4458         DCI.AddToWorklist(N0.getNode());
4459       // FIXME: If running after legalize, we probably can't do this.
4460       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4461       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4462     }
4463     return N0;
4464   }
4465 
4466   // Could not fold it.
4467   return SDValue();
4468 }
4469 
4470 /// Returns true (and the GlobalValue and the offset) if the node is a
4471 /// GlobalAddress + offset.
4472 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4473                                     int64_t &Offset) const {
4474 
4475   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4476 
4477   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4478     GA = GASD->getGlobal();
4479     Offset += GASD->getOffset();
4480     return true;
4481   }
4482 
4483   if (N->getOpcode() == ISD::ADD) {
4484     SDValue N1 = N->getOperand(0);
4485     SDValue N2 = N->getOperand(1);
4486     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4487       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4488         Offset += V->getSExtValue();
4489         return true;
4490       }
4491     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4492       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4493         Offset += V->getSExtValue();
4494         return true;
4495       }
4496     }
4497   }
4498 
4499   return false;
4500 }
4501 
4502 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4503                                           DAGCombinerInfo &DCI) const {
4504   // Default implementation: no optimization.
4505   return SDValue();
4506 }
4507 
4508 //===----------------------------------------------------------------------===//
4509 //  Inline Assembler Implementation Methods
4510 //===----------------------------------------------------------------------===//
4511 
4512 TargetLowering::ConstraintType
4513 TargetLowering::getConstraintType(StringRef Constraint) const {
4514   unsigned S = Constraint.size();
4515 
4516   if (S == 1) {
4517     switch (Constraint[0]) {
4518     default: break;
4519     case 'r':
4520       return C_RegisterClass;
4521     case 'm': // memory
4522     case 'o': // offsetable
4523     case 'V': // not offsetable
4524       return C_Memory;
4525     case 'n': // Simple Integer
4526     case 'E': // Floating Point Constant
4527     case 'F': // Floating Point Constant
4528       return C_Immediate;
4529     case 'i': // Simple Integer or Relocatable Constant
4530     case 's': // Relocatable Constant
4531     case 'p': // Address.
4532     case 'X': // Allow ANY value.
4533     case 'I': // Target registers.
4534     case 'J':
4535     case 'K':
4536     case 'L':
4537     case 'M':
4538     case 'N':
4539     case 'O':
4540     case 'P':
4541     case '<':
4542     case '>':
4543       return C_Other;
4544     }
4545   }
4546 
4547   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4548     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4549       return C_Memory;
4550     return C_Register;
4551   }
4552   return C_Unknown;
4553 }
4554 
4555 /// Try to replace an X constraint, which matches anything, with another that
4556 /// has more specific requirements based on the type of the corresponding
4557 /// operand.
4558 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4559   if (ConstraintVT.isInteger())
4560     return "r";
4561   if (ConstraintVT.isFloatingPoint())
4562     return "f"; // works for many targets
4563   return nullptr;
4564 }
4565 
4566 SDValue TargetLowering::LowerAsmOutputForConstraint(
4567     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4568     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4569   return SDValue();
4570 }
4571 
4572 /// Lower the specified operand into the Ops vector.
4573 /// If it is invalid, don't add anything to Ops.
4574 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4575                                                   std::string &Constraint,
4576                                                   std::vector<SDValue> &Ops,
4577                                                   SelectionDAG &DAG) const {
4578 
4579   if (Constraint.length() > 1) return;
4580 
4581   char ConstraintLetter = Constraint[0];
4582   switch (ConstraintLetter) {
4583   default: break;
4584   case 'X':     // Allows any operand; labels (basic block) use this.
4585     if (Op.getOpcode() == ISD::BasicBlock ||
4586         Op.getOpcode() == ISD::TargetBlockAddress) {
4587       Ops.push_back(Op);
4588       return;
4589     }
4590     LLVM_FALLTHROUGH;
4591   case 'i':    // Simple Integer or Relocatable Constant
4592   case 'n':    // Simple Integer
4593   case 's': {  // Relocatable Constant
4594 
4595     GlobalAddressSDNode *GA;
4596     ConstantSDNode *C;
4597     BlockAddressSDNode *BA;
4598     uint64_t Offset = 0;
4599 
4600     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4601     // etc., since getelementpointer is variadic. We can't use
4602     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4603     // while in this case the GA may be furthest from the root node which is
4604     // likely an ISD::ADD.
4605     while (1) {
4606       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4607         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4608                                                  GA->getValueType(0),
4609                                                  Offset + GA->getOffset()));
4610         return;
4611       }
4612       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4613         // gcc prints these as sign extended.  Sign extend value to 64 bits
4614         // now; without this it would get ZExt'd later in
4615         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4616         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4617         BooleanContent BCont = getBooleanContents(MVT::i64);
4618         ISD::NodeType ExtOpc =
4619             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4620         int64_t ExtVal =
4621             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4622         Ops.push_back(
4623             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4624         return;
4625       }
4626       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4627         Ops.push_back(DAG.getTargetBlockAddress(
4628             BA->getBlockAddress(), BA->getValueType(0),
4629             Offset + BA->getOffset(), BA->getTargetFlags()));
4630         return;
4631       }
4632       const unsigned OpCode = Op.getOpcode();
4633       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4634         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4635           Op = Op.getOperand(1);
4636         // Subtraction is not commutative.
4637         else if (OpCode == ISD::ADD &&
4638                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4639           Op = Op.getOperand(0);
4640         else
4641           return;
4642         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4643         continue;
4644       }
4645       return;
4646     }
4647     break;
4648   }
4649   }
4650 }
4651 
4652 std::pair<unsigned, const TargetRegisterClass *>
4653 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4654                                              StringRef Constraint,
4655                                              MVT VT) const {
4656   if (Constraint.empty() || Constraint[0] != '{')
4657     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4658   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4659 
4660   // Remove the braces from around the name.
4661   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4662 
4663   std::pair<unsigned, const TargetRegisterClass *> R =
4664       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4665 
4666   // Figure out which register class contains this reg.
4667   for (const TargetRegisterClass *RC : RI->regclasses()) {
4668     // If none of the value types for this register class are valid, we
4669     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4670     if (!isLegalRC(*RI, *RC))
4671       continue;
4672 
4673     for (const MCPhysReg &PR : *RC) {
4674       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4675         std::pair<unsigned, const TargetRegisterClass *> S =
4676             std::make_pair(PR, RC);
4677 
4678         // If this register class has the requested value type, return it,
4679         // otherwise keep searching and return the first class found
4680         // if no other is found which explicitly has the requested type.
4681         if (RI->isTypeLegalForClass(*RC, VT))
4682           return S;
4683         if (!R.second)
4684           R = S;
4685       }
4686     }
4687   }
4688 
4689   return R;
4690 }
4691 
4692 //===----------------------------------------------------------------------===//
4693 // Constraint Selection.
4694 
4695 /// Return true of this is an input operand that is a matching constraint like
4696 /// "4".
4697 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4698   assert(!ConstraintCode.empty() && "No known constraint!");
4699   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4700 }
4701 
4702 /// If this is an input matching constraint, this method returns the output
4703 /// operand it matches.
4704 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4705   assert(!ConstraintCode.empty() && "No known constraint!");
4706   return atoi(ConstraintCode.c_str());
4707 }
4708 
4709 /// Split up the constraint string from the inline assembly value into the
4710 /// specific constraints and their prefixes, and also tie in the associated
4711 /// operand values.
4712 /// If this returns an empty vector, and if the constraint string itself
4713 /// isn't empty, there was an error parsing.
4714 TargetLowering::AsmOperandInfoVector
4715 TargetLowering::ParseConstraints(const DataLayout &DL,
4716                                  const TargetRegisterInfo *TRI,
4717                                  const CallBase &Call) const {
4718   /// Information about all of the constraints.
4719   AsmOperandInfoVector ConstraintOperands;
4720   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4721   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4722 
4723   // Do a prepass over the constraints, canonicalizing them, and building up the
4724   // ConstraintOperands list.
4725   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4726   unsigned ResNo = 0; // ResNo - The result number of the next output.
4727 
4728   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4729     ConstraintOperands.emplace_back(std::move(CI));
4730     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4731 
4732     // Update multiple alternative constraint count.
4733     if (OpInfo.multipleAlternatives.size() > maCount)
4734       maCount = OpInfo.multipleAlternatives.size();
4735 
4736     OpInfo.ConstraintVT = MVT::Other;
4737 
4738     // Compute the value type for each operand.
4739     switch (OpInfo.Type) {
4740     case InlineAsm::isOutput:
4741       // Indirect outputs just consume an argument.
4742       if (OpInfo.isIndirect) {
4743         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4744         break;
4745       }
4746 
4747       // The return value of the call is this value.  As such, there is no
4748       // corresponding argument.
4749       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4750       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4751         OpInfo.ConstraintVT =
4752             getSimpleValueType(DL, STy->getElementType(ResNo));
4753       } else {
4754         assert(ResNo == 0 && "Asm only has one result!");
4755         OpInfo.ConstraintVT =
4756             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4757       }
4758       ++ResNo;
4759       break;
4760     case InlineAsm::isInput:
4761       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4762       break;
4763     case InlineAsm::isClobber:
4764       // Nothing to do.
4765       break;
4766     }
4767 
4768     if (OpInfo.CallOperandVal) {
4769       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4770       if (OpInfo.isIndirect) {
4771         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4772         if (!PtrTy)
4773           report_fatal_error("Indirect operand for inline asm not a pointer!");
4774         OpTy = PtrTy->getElementType();
4775       }
4776 
4777       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4778       if (StructType *STy = dyn_cast<StructType>(OpTy))
4779         if (STy->getNumElements() == 1)
4780           OpTy = STy->getElementType(0);
4781 
4782       // If OpTy is not a single value, it may be a struct/union that we
4783       // can tile with integers.
4784       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4785         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4786         switch (BitSize) {
4787         default: break;
4788         case 1:
4789         case 8:
4790         case 16:
4791         case 32:
4792         case 64:
4793         case 128:
4794           OpInfo.ConstraintVT =
4795               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4796           break;
4797         }
4798       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4799         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4800         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4801       } else {
4802         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4803       }
4804     }
4805   }
4806 
4807   // If we have multiple alternative constraints, select the best alternative.
4808   if (!ConstraintOperands.empty()) {
4809     if (maCount) {
4810       unsigned bestMAIndex = 0;
4811       int bestWeight = -1;
4812       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4813       int weight = -1;
4814       unsigned maIndex;
4815       // Compute the sums of the weights for each alternative, keeping track
4816       // of the best (highest weight) one so far.
4817       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4818         int weightSum = 0;
4819         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4820              cIndex != eIndex; ++cIndex) {
4821           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4822           if (OpInfo.Type == InlineAsm::isClobber)
4823             continue;
4824 
4825           // If this is an output operand with a matching input operand,
4826           // look up the matching input. If their types mismatch, e.g. one
4827           // is an integer, the other is floating point, or their sizes are
4828           // different, flag it as an maCantMatch.
4829           if (OpInfo.hasMatchingInput()) {
4830             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4831             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4832               if ((OpInfo.ConstraintVT.isInteger() !=
4833                    Input.ConstraintVT.isInteger()) ||
4834                   (OpInfo.ConstraintVT.getSizeInBits() !=
4835                    Input.ConstraintVT.getSizeInBits())) {
4836                 weightSum = -1; // Can't match.
4837                 break;
4838               }
4839             }
4840           }
4841           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4842           if (weight == -1) {
4843             weightSum = -1;
4844             break;
4845           }
4846           weightSum += weight;
4847         }
4848         // Update best.
4849         if (weightSum > bestWeight) {
4850           bestWeight = weightSum;
4851           bestMAIndex = maIndex;
4852         }
4853       }
4854 
4855       // Now select chosen alternative in each constraint.
4856       for (AsmOperandInfo &cInfo : ConstraintOperands)
4857         if (cInfo.Type != InlineAsm::isClobber)
4858           cInfo.selectAlternative(bestMAIndex);
4859     }
4860   }
4861 
4862   // Check and hook up tied operands, choose constraint code to use.
4863   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4864        cIndex != eIndex; ++cIndex) {
4865     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4866 
4867     // If this is an output operand with a matching input operand, look up the
4868     // matching input. If their types mismatch, e.g. one is an integer, the
4869     // other is floating point, or their sizes are different, flag it as an
4870     // error.
4871     if (OpInfo.hasMatchingInput()) {
4872       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4873 
4874       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4875         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4876             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4877                                          OpInfo.ConstraintVT);
4878         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4879             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4880                                          Input.ConstraintVT);
4881         if ((OpInfo.ConstraintVT.isInteger() !=
4882              Input.ConstraintVT.isInteger()) ||
4883             (MatchRC.second != InputRC.second)) {
4884           report_fatal_error("Unsupported asm: input constraint"
4885                              " with a matching output constraint of"
4886                              " incompatible type!");
4887         }
4888       }
4889     }
4890   }
4891 
4892   return ConstraintOperands;
4893 }
4894 
4895 /// Return an integer indicating how general CT is.
4896 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4897   switch (CT) {
4898   case TargetLowering::C_Immediate:
4899   case TargetLowering::C_Other:
4900   case TargetLowering::C_Unknown:
4901     return 0;
4902   case TargetLowering::C_Register:
4903     return 1;
4904   case TargetLowering::C_RegisterClass:
4905     return 2;
4906   case TargetLowering::C_Memory:
4907     return 3;
4908   }
4909   llvm_unreachable("Invalid constraint type");
4910 }
4911 
4912 /// Examine constraint type and operand type and determine a weight value.
4913 /// This object must already have been set up with the operand type
4914 /// and the current alternative constraint selected.
4915 TargetLowering::ConstraintWeight
4916   TargetLowering::getMultipleConstraintMatchWeight(
4917     AsmOperandInfo &info, int maIndex) const {
4918   InlineAsm::ConstraintCodeVector *rCodes;
4919   if (maIndex >= (int)info.multipleAlternatives.size())
4920     rCodes = &info.Codes;
4921   else
4922     rCodes = &info.multipleAlternatives[maIndex].Codes;
4923   ConstraintWeight BestWeight = CW_Invalid;
4924 
4925   // Loop over the options, keeping track of the most general one.
4926   for (const std::string &rCode : *rCodes) {
4927     ConstraintWeight weight =
4928         getSingleConstraintMatchWeight(info, rCode.c_str());
4929     if (weight > BestWeight)
4930       BestWeight = weight;
4931   }
4932 
4933   return BestWeight;
4934 }
4935 
4936 /// Examine constraint type and operand type and determine a weight value.
4937 /// This object must already have been set up with the operand type
4938 /// and the current alternative constraint selected.
4939 TargetLowering::ConstraintWeight
4940   TargetLowering::getSingleConstraintMatchWeight(
4941     AsmOperandInfo &info, const char *constraint) const {
4942   ConstraintWeight weight = CW_Invalid;
4943   Value *CallOperandVal = info.CallOperandVal;
4944     // If we don't have a value, we can't do a match,
4945     // but allow it at the lowest weight.
4946   if (!CallOperandVal)
4947     return CW_Default;
4948   // Look at the constraint type.
4949   switch (*constraint) {
4950     case 'i': // immediate integer.
4951     case 'n': // immediate integer with a known value.
4952       if (isa<ConstantInt>(CallOperandVal))
4953         weight = CW_Constant;
4954       break;
4955     case 's': // non-explicit intregal immediate.
4956       if (isa<GlobalValue>(CallOperandVal))
4957         weight = CW_Constant;
4958       break;
4959     case 'E': // immediate float if host format.
4960     case 'F': // immediate float.
4961       if (isa<ConstantFP>(CallOperandVal))
4962         weight = CW_Constant;
4963       break;
4964     case '<': // memory operand with autodecrement.
4965     case '>': // memory operand with autoincrement.
4966     case 'm': // memory operand.
4967     case 'o': // offsettable memory operand
4968     case 'V': // non-offsettable memory operand
4969       weight = CW_Memory;
4970       break;
4971     case 'r': // general register.
4972     case 'g': // general register, memory operand or immediate integer.
4973               // note: Clang converts "g" to "imr".
4974       if (CallOperandVal->getType()->isIntegerTy())
4975         weight = CW_Register;
4976       break;
4977     case 'X': // any operand.
4978   default:
4979     weight = CW_Default;
4980     break;
4981   }
4982   return weight;
4983 }
4984 
4985 /// If there are multiple different constraints that we could pick for this
4986 /// operand (e.g. "imr") try to pick the 'best' one.
4987 /// This is somewhat tricky: constraints fall into four classes:
4988 ///    Other         -> immediates and magic values
4989 ///    Register      -> one specific register
4990 ///    RegisterClass -> a group of regs
4991 ///    Memory        -> memory
4992 /// Ideally, we would pick the most specific constraint possible: if we have
4993 /// something that fits into a register, we would pick it.  The problem here
4994 /// is that if we have something that could either be in a register or in
4995 /// memory that use of the register could cause selection of *other*
4996 /// operands to fail: they might only succeed if we pick memory.  Because of
4997 /// this the heuristic we use is:
4998 ///
4999 ///  1) If there is an 'other' constraint, and if the operand is valid for
5000 ///     that constraint, use it.  This makes us take advantage of 'i'
5001 ///     constraints when available.
5002 ///  2) Otherwise, pick the most general constraint present.  This prefers
5003 ///     'm' over 'r', for example.
5004 ///
5005 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5006                              const TargetLowering &TLI,
5007                              SDValue Op, SelectionDAG *DAG) {
5008   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5009   unsigned BestIdx = 0;
5010   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5011   int BestGenerality = -1;
5012 
5013   // Loop over the options, keeping track of the most general one.
5014   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5015     TargetLowering::ConstraintType CType =
5016       TLI.getConstraintType(OpInfo.Codes[i]);
5017 
5018     // Indirect 'other' or 'immediate' constraints are not allowed.
5019     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5020                                CType == TargetLowering::C_Register ||
5021                                CType == TargetLowering::C_RegisterClass))
5022       continue;
5023 
5024     // If this is an 'other' or 'immediate' constraint, see if the operand is
5025     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5026     // the operand is an integer in the range [0..31] we want to use I (saving a
5027     // load of a register), otherwise we must use 'r'.
5028     if ((CType == TargetLowering::C_Other ||
5029          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5030       assert(OpInfo.Codes[i].size() == 1 &&
5031              "Unhandled multi-letter 'other' constraint");
5032       std::vector<SDValue> ResultOps;
5033       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5034                                        ResultOps, *DAG);
5035       if (!ResultOps.empty()) {
5036         BestType = CType;
5037         BestIdx = i;
5038         break;
5039       }
5040     }
5041 
5042     // Things with matching constraints can only be registers, per gcc
5043     // documentation.  This mainly affects "g" constraints.
5044     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5045       continue;
5046 
5047     // This constraint letter is more general than the previous one, use it.
5048     int Generality = getConstraintGenerality(CType);
5049     if (Generality > BestGenerality) {
5050       BestType = CType;
5051       BestIdx = i;
5052       BestGenerality = Generality;
5053     }
5054   }
5055 
5056   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5057   OpInfo.ConstraintType = BestType;
5058 }
5059 
5060 /// Determines the constraint code and constraint type to use for the specific
5061 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5062 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5063                                             SDValue Op,
5064                                             SelectionDAG *DAG) const {
5065   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5066 
5067   // Single-letter constraints ('r') are very common.
5068   if (OpInfo.Codes.size() == 1) {
5069     OpInfo.ConstraintCode = OpInfo.Codes[0];
5070     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5071   } else {
5072     ChooseConstraint(OpInfo, *this, Op, DAG);
5073   }
5074 
5075   // 'X' matches anything.
5076   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5077     // Labels and constants are handled elsewhere ('X' is the only thing
5078     // that matches labels).  For Functions, the type here is the type of
5079     // the result, which is not what we want to look at; leave them alone.
5080     Value *v = OpInfo.CallOperandVal;
5081     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5082       OpInfo.CallOperandVal = v;
5083       return;
5084     }
5085 
5086     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5087       return;
5088 
5089     // Otherwise, try to resolve it to something we know about by looking at
5090     // the actual operand type.
5091     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5092       OpInfo.ConstraintCode = Repl;
5093       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5094     }
5095   }
5096 }
5097 
5098 /// Given an exact SDIV by a constant, create a multiplication
5099 /// with the multiplicative inverse of the constant.
5100 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5101                               const SDLoc &dl, SelectionDAG &DAG,
5102                               SmallVectorImpl<SDNode *> &Created) {
5103   SDValue Op0 = N->getOperand(0);
5104   SDValue Op1 = N->getOperand(1);
5105   EVT VT = N->getValueType(0);
5106   EVT SVT = VT.getScalarType();
5107   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5108   EVT ShSVT = ShVT.getScalarType();
5109 
5110   bool UseSRA = false;
5111   SmallVector<SDValue, 16> Shifts, Factors;
5112 
5113   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5114     if (C->isZero())
5115       return false;
5116     APInt Divisor = C->getAPIntValue();
5117     unsigned Shift = Divisor.countTrailingZeros();
5118     if (Shift) {
5119       Divisor.ashrInPlace(Shift);
5120       UseSRA = true;
5121     }
5122     // Calculate the multiplicative inverse, using Newton's method.
5123     APInt t;
5124     APInt Factor = Divisor;
5125     while ((t = Divisor * Factor) != 1)
5126       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5127     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5128     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5129     return true;
5130   };
5131 
5132   // Collect all magic values from the build vector.
5133   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5134     return SDValue();
5135 
5136   SDValue Shift, Factor;
5137   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5138     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5139     Factor = DAG.getBuildVector(VT, dl, Factors);
5140   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5141     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5142            "Expected matchUnaryPredicate to return one element for scalable "
5143            "vectors");
5144     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5145     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5146   } else {
5147     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5148     Shift = Shifts[0];
5149     Factor = Factors[0];
5150   }
5151 
5152   SDValue Res = Op0;
5153 
5154   // Shift the value upfront if it is even, so the LSB is one.
5155   if (UseSRA) {
5156     // TODO: For UDIV use SRL instead of SRA.
5157     SDNodeFlags Flags;
5158     Flags.setExact(true);
5159     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5160     Created.push_back(Res.getNode());
5161   }
5162 
5163   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5164 }
5165 
5166 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5167                               SelectionDAG &DAG,
5168                               SmallVectorImpl<SDNode *> &Created) const {
5169   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5171   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5172     return SDValue(N, 0); // Lower SDIV as SDIV
5173   return SDValue();
5174 }
5175 
5176 /// Given an ISD::SDIV node expressing a divide by constant,
5177 /// return a DAG expression to select that will generate the same value by
5178 /// multiplying by a magic number.
5179 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5180 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5181                                   bool IsAfterLegalization,
5182                                   SmallVectorImpl<SDNode *> &Created) const {
5183   SDLoc dl(N);
5184   EVT VT = N->getValueType(0);
5185   EVT SVT = VT.getScalarType();
5186   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5187   EVT ShSVT = ShVT.getScalarType();
5188   unsigned EltBits = VT.getScalarSizeInBits();
5189   EVT MulVT;
5190 
5191   // Check to see if we can do this.
5192   // FIXME: We should be more aggressive here.
5193   if (!isTypeLegal(VT)) {
5194     // Limit this to simple scalars for now.
5195     if (VT.isVector() || !VT.isSimple())
5196       return SDValue();
5197 
5198     // If this type will be promoted to a large enough type with a legal
5199     // multiply operation, we can go ahead and do this transform.
5200     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5201       return SDValue();
5202 
5203     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5204     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5205         !isOperationLegal(ISD::MUL, MulVT))
5206       return SDValue();
5207   }
5208 
5209   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5210   if (N->getFlags().hasExact())
5211     return BuildExactSDIV(*this, N, dl, DAG, Created);
5212 
5213   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5214 
5215   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5216     if (C->isZero())
5217       return false;
5218 
5219     const APInt &Divisor = C->getAPIntValue();
5220     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5221     int NumeratorFactor = 0;
5222     int ShiftMask = -1;
5223 
5224     if (Divisor.isOne() || Divisor.isAllOnes()) {
5225       // If d is +1/-1, we just multiply the numerator by +1/-1.
5226       NumeratorFactor = Divisor.getSExtValue();
5227       magics.Magic = 0;
5228       magics.ShiftAmount = 0;
5229       ShiftMask = 0;
5230     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5231       // If d > 0 and m < 0, add the numerator.
5232       NumeratorFactor = 1;
5233     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5234       // If d < 0 and m > 0, subtract the numerator.
5235       NumeratorFactor = -1;
5236     }
5237 
5238     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5239     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5240     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5241     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5242     return true;
5243   };
5244 
5245   SDValue N0 = N->getOperand(0);
5246   SDValue N1 = N->getOperand(1);
5247 
5248   // Collect the shifts / magic values from each element.
5249   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5250     return SDValue();
5251 
5252   SDValue MagicFactor, Factor, Shift, ShiftMask;
5253   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5254     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5255     Factor = DAG.getBuildVector(VT, dl, Factors);
5256     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5257     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5258   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5259     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5260            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5261            "Expected matchUnaryPredicate to return one element for scalable "
5262            "vectors");
5263     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5264     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5265     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5266     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5267   } else {
5268     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5269     MagicFactor = MagicFactors[0];
5270     Factor = Factors[0];
5271     Shift = Shifts[0];
5272     ShiftMask = ShiftMasks[0];
5273   }
5274 
5275   // Multiply the numerator (operand 0) by the magic value.
5276   // FIXME: We should support doing a MUL in a wider type.
5277   auto GetMULHS = [&](SDValue X, SDValue Y) {
5278     // If the type isn't legal, use a wider mul of the the type calculated
5279     // earlier.
5280     if (!isTypeLegal(VT)) {
5281       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5282       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5283       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5284       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5285                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5286       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5287     }
5288 
5289     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5290       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5291     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5292       SDValue LoHi =
5293           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5294       return SDValue(LoHi.getNode(), 1);
5295     }
5296     return SDValue();
5297   };
5298 
5299   SDValue Q = GetMULHS(N0, MagicFactor);
5300   if (!Q)
5301     return SDValue();
5302 
5303   Created.push_back(Q.getNode());
5304 
5305   // (Optionally) Add/subtract the numerator using Factor.
5306   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5307   Created.push_back(Factor.getNode());
5308   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5309   Created.push_back(Q.getNode());
5310 
5311   // Shift right algebraic by shift value.
5312   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5313   Created.push_back(Q.getNode());
5314 
5315   // Extract the sign bit, mask it and add it to the quotient.
5316   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5317   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5318   Created.push_back(T.getNode());
5319   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5320   Created.push_back(T.getNode());
5321   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5322 }
5323 
5324 /// Given an ISD::UDIV node expressing a divide by constant,
5325 /// return a DAG expression to select that will generate the same value by
5326 /// multiplying by a magic number.
5327 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5328 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5329                                   bool IsAfterLegalization,
5330                                   SmallVectorImpl<SDNode *> &Created) const {
5331   SDLoc dl(N);
5332   EVT VT = N->getValueType(0);
5333   EVT SVT = VT.getScalarType();
5334   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5335   EVT ShSVT = ShVT.getScalarType();
5336   unsigned EltBits = VT.getScalarSizeInBits();
5337   EVT MulVT;
5338 
5339   // Check to see if we can do this.
5340   // FIXME: We should be more aggressive here.
5341   if (!isTypeLegal(VT)) {
5342     // Limit this to simple scalars for now.
5343     if (VT.isVector() || !VT.isSimple())
5344       return SDValue();
5345 
5346     // If this type will be promoted to a large enough type with a legal
5347     // multiply operation, we can go ahead and do this transform.
5348     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5349       return SDValue();
5350 
5351     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5352     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5353         !isOperationLegal(ISD::MUL, MulVT))
5354       return SDValue();
5355   }
5356 
5357   bool UseNPQ = false;
5358   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5359 
5360   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5361     if (C->isZero())
5362       return false;
5363     // FIXME: We should use a narrower constant when the upper
5364     // bits are known to be zero.
5365     const APInt& Divisor = C->getAPIntValue();
5366     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5367     unsigned PreShift = 0, PostShift = 0;
5368 
5369     // If the divisor is even, we can avoid using the expensive fixup by
5370     // shifting the divided value upfront.
5371     if (magics.IsAdd != 0 && !Divisor[0]) {
5372       PreShift = Divisor.countTrailingZeros();
5373       // Get magic number for the shifted divisor.
5374       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5375       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5376     }
5377 
5378     APInt Magic = magics.Magic;
5379 
5380     unsigned SelNPQ;
5381     if (magics.IsAdd == 0 || Divisor.isOne()) {
5382       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5383              "We shouldn't generate an undefined shift!");
5384       PostShift = magics.ShiftAmount;
5385       SelNPQ = false;
5386     } else {
5387       PostShift = magics.ShiftAmount - 1;
5388       SelNPQ = true;
5389     }
5390 
5391     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5392     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5393     NPQFactors.push_back(
5394         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5395                                : APInt::getZero(EltBits),
5396                         dl, SVT));
5397     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5398     UseNPQ |= SelNPQ;
5399     return true;
5400   };
5401 
5402   SDValue N0 = N->getOperand(0);
5403   SDValue N1 = N->getOperand(1);
5404 
5405   // Collect the shifts/magic values from each element.
5406   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5407     return SDValue();
5408 
5409   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5410   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5411     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5412     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5413     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5414     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5415   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5416     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5417            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5418            "Expected matchUnaryPredicate to return one for scalable vectors");
5419     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5420     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5421     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5422     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5423   } else {
5424     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5425     PreShift = PreShifts[0];
5426     MagicFactor = MagicFactors[0];
5427     PostShift = PostShifts[0];
5428   }
5429 
5430   SDValue Q = N0;
5431   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5432   Created.push_back(Q.getNode());
5433 
5434   // FIXME: We should support doing a MUL in a wider type.
5435   auto GetMULHU = [&](SDValue X, SDValue Y) {
5436     // If the type isn't legal, use a wider mul of the the type calculated
5437     // earlier.
5438     if (!isTypeLegal(VT)) {
5439       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5440       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5441       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5442       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5443                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5444       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5445     }
5446 
5447     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5448       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5449     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5450       SDValue LoHi =
5451           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5452       return SDValue(LoHi.getNode(), 1);
5453     }
5454     return SDValue(); // No mulhu or equivalent
5455   };
5456 
5457   // Multiply the numerator (operand 0) by the magic value.
5458   Q = GetMULHU(Q, MagicFactor);
5459   if (!Q)
5460     return SDValue();
5461 
5462   Created.push_back(Q.getNode());
5463 
5464   if (UseNPQ) {
5465     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5466     Created.push_back(NPQ.getNode());
5467 
5468     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5469     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5470     if (VT.isVector())
5471       NPQ = GetMULHU(NPQ, NPQFactor);
5472     else
5473       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5474 
5475     Created.push_back(NPQ.getNode());
5476 
5477     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5478     Created.push_back(Q.getNode());
5479   }
5480 
5481   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5482   Created.push_back(Q.getNode());
5483 
5484   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5485 
5486   SDValue One = DAG.getConstant(1, dl, VT);
5487   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5488   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5489 }
5490 
5491 /// If all values in Values that *don't* match the predicate are same 'splat'
5492 /// value, then replace all values with that splat value.
5493 /// Else, if AlternativeReplacement was provided, then replace all values that
5494 /// do match predicate with AlternativeReplacement value.
5495 static void
5496 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5497                           std::function<bool(SDValue)> Predicate,
5498                           SDValue AlternativeReplacement = SDValue()) {
5499   SDValue Replacement;
5500   // Is there a value for which the Predicate does *NOT* match? What is it?
5501   auto SplatValue = llvm::find_if_not(Values, Predicate);
5502   if (SplatValue != Values.end()) {
5503     // Does Values consist only of SplatValue's and values matching Predicate?
5504     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5505           return Value == *SplatValue || Predicate(Value);
5506         })) // Then we shall replace values matching predicate with SplatValue.
5507       Replacement = *SplatValue;
5508   }
5509   if (!Replacement) {
5510     // Oops, we did not find the "baseline" splat value.
5511     if (!AlternativeReplacement)
5512       return; // Nothing to do.
5513     // Let's replace with provided value then.
5514     Replacement = AlternativeReplacement;
5515   }
5516   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5517 }
5518 
5519 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5520 /// where the divisor is constant and the comparison target is zero,
5521 /// return a DAG expression that will generate the same comparison result
5522 /// using only multiplications, additions and shifts/rotations.
5523 /// Ref: "Hacker's Delight" 10-17.
5524 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5525                                         SDValue CompTargetNode,
5526                                         ISD::CondCode Cond,
5527                                         DAGCombinerInfo &DCI,
5528                                         const SDLoc &DL) const {
5529   SmallVector<SDNode *, 5> Built;
5530   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5531                                          DCI, DL, Built)) {
5532     for (SDNode *N : Built)
5533       DCI.AddToWorklist(N);
5534     return Folded;
5535   }
5536 
5537   return SDValue();
5538 }
5539 
5540 SDValue
5541 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5542                                   SDValue CompTargetNode, ISD::CondCode Cond,
5543                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5544                                   SmallVectorImpl<SDNode *> &Created) const {
5545   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5546   // - D must be constant, with D = D0 * 2^K where D0 is odd
5547   // - P is the multiplicative inverse of D0 modulo 2^W
5548   // - Q = floor(((2^W) - 1) / D)
5549   // where W is the width of the common type of N and D.
5550   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5551          "Only applicable for (in)equality comparisons.");
5552 
5553   SelectionDAG &DAG = DCI.DAG;
5554 
5555   EVT VT = REMNode.getValueType();
5556   EVT SVT = VT.getScalarType();
5557   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5558   EVT ShSVT = ShVT.getScalarType();
5559 
5560   // If MUL is unavailable, we cannot proceed in any case.
5561   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5562     return SDValue();
5563 
5564   bool ComparingWithAllZeros = true;
5565   bool AllComparisonsWithNonZerosAreTautological = true;
5566   bool HadTautologicalLanes = false;
5567   bool AllLanesAreTautological = true;
5568   bool HadEvenDivisor = false;
5569   bool AllDivisorsArePowerOfTwo = true;
5570   bool HadTautologicalInvertedLanes = false;
5571   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5572 
5573   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5574     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5575     if (CDiv->isZero())
5576       return false;
5577 
5578     const APInt &D = CDiv->getAPIntValue();
5579     const APInt &Cmp = CCmp->getAPIntValue();
5580 
5581     ComparingWithAllZeros &= Cmp.isZero();
5582 
5583     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5584     // if C2 is not less than C1, the comparison is always false.
5585     // But we will only be able to produce the comparison that will give the
5586     // opposive tautological answer. So this lane would need to be fixed up.
5587     bool TautologicalInvertedLane = D.ule(Cmp);
5588     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5589 
5590     // If all lanes are tautological (either all divisors are ones, or divisor
5591     // is not greater than the constant we are comparing with),
5592     // we will prefer to avoid the fold.
5593     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5594     HadTautologicalLanes |= TautologicalLane;
5595     AllLanesAreTautological &= TautologicalLane;
5596 
5597     // If we are comparing with non-zero, we need'll need  to subtract said
5598     // comparison value from the LHS. But there is no point in doing that if
5599     // every lane where we are comparing with non-zero is tautological..
5600     if (!Cmp.isZero())
5601       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5602 
5603     // Decompose D into D0 * 2^K
5604     unsigned K = D.countTrailingZeros();
5605     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5606     APInt D0 = D.lshr(K);
5607 
5608     // D is even if it has trailing zeros.
5609     HadEvenDivisor |= (K != 0);
5610     // D is a power-of-two if D0 is one.
5611     // If all divisors are power-of-two, we will prefer to avoid the fold.
5612     AllDivisorsArePowerOfTwo &= D0.isOne();
5613 
5614     // P = inv(D0, 2^W)
5615     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5616     unsigned W = D.getBitWidth();
5617     APInt P = D0.zext(W + 1)
5618                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5619                   .trunc(W);
5620     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5621     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5622 
5623     // Q = floor((2^W - 1) u/ D)
5624     // R = ((2^W - 1) u% D)
5625     APInt Q, R;
5626     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5627 
5628     // If we are comparing with zero, then that comparison constant is okay,
5629     // else it may need to be one less than that.
5630     if (Cmp.ugt(R))
5631       Q -= 1;
5632 
5633     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5634            "We are expecting that K is always less than all-ones for ShSVT");
5635 
5636     // If the lane is tautological the result can be constant-folded.
5637     if (TautologicalLane) {
5638       // Set P and K amount to a bogus values so we can try to splat them.
5639       P = 0;
5640       K = -1;
5641       // And ensure that comparison constant is tautological,
5642       // it will always compare true/false.
5643       Q = -1;
5644     }
5645 
5646     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5647     KAmts.push_back(
5648         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5649     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5650     return true;
5651   };
5652 
5653   SDValue N = REMNode.getOperand(0);
5654   SDValue D = REMNode.getOperand(1);
5655 
5656   // Collect the values from each element.
5657   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5658     return SDValue();
5659 
5660   // If all lanes are tautological, the result can be constant-folded.
5661   if (AllLanesAreTautological)
5662     return SDValue();
5663 
5664   // If this is a urem by a powers-of-two, avoid the fold since it can be
5665   // best implemented as a bit test.
5666   if (AllDivisorsArePowerOfTwo)
5667     return SDValue();
5668 
5669   SDValue PVal, KVal, QVal;
5670   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5671     if (HadTautologicalLanes) {
5672       // Try to turn PAmts into a splat, since we don't care about the values
5673       // that are currently '0'. If we can't, just keep '0'`s.
5674       turnVectorIntoSplatVector(PAmts, isNullConstant);
5675       // Try to turn KAmts into a splat, since we don't care about the values
5676       // that are currently '-1'. If we can't, change them to '0'`s.
5677       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5678                                 DAG.getConstant(0, DL, ShSVT));
5679     }
5680 
5681     PVal = DAG.getBuildVector(VT, DL, PAmts);
5682     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5683     QVal = DAG.getBuildVector(VT, DL, QAmts);
5684   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5685     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5686            "Expected matchBinaryPredicate to return one element for "
5687            "SPLAT_VECTORs");
5688     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5689     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5690     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5691   } else {
5692     PVal = PAmts[0];
5693     KVal = KAmts[0];
5694     QVal = QAmts[0];
5695   }
5696 
5697   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5698     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5699       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5700     assert(CompTargetNode.getValueType() == N.getValueType() &&
5701            "Expecting that the types on LHS and RHS of comparisons match.");
5702     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5703   }
5704 
5705   // (mul N, P)
5706   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5707   Created.push_back(Op0.getNode());
5708 
5709   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5710   // divisors as a performance improvement, since rotating by 0 is a no-op.
5711   if (HadEvenDivisor) {
5712     // We need ROTR to do this.
5713     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5714       return SDValue();
5715     // UREM: (rotr (mul N, P), K)
5716     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5717     Created.push_back(Op0.getNode());
5718   }
5719 
5720   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5721   SDValue NewCC =
5722       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5723                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5724   if (!HadTautologicalInvertedLanes)
5725     return NewCC;
5726 
5727   // If any lanes previously compared always-false, the NewCC will give
5728   // always-true result for them, so we need to fixup those lanes.
5729   // Or the other way around for inequality predicate.
5730   assert(VT.isVector() && "Can/should only get here for vectors.");
5731   Created.push_back(NewCC.getNode());
5732 
5733   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5734   // if C2 is not less than C1, the comparison is always false.
5735   // But we have produced the comparison that will give the
5736   // opposive tautological answer. So these lanes would need to be fixed up.
5737   SDValue TautologicalInvertedChannels =
5738       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5739   Created.push_back(TautologicalInvertedChannels.getNode());
5740 
5741   // NOTE: we avoid letting illegal types through even if we're before legalize
5742   // ops – legalization has a hard time producing good code for this.
5743   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5744     // If we have a vector select, let's replace the comparison results in the
5745     // affected lanes with the correct tautological result.
5746     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5747                                               DL, SETCCVT, SETCCVT);
5748     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5749                        Replacement, NewCC);
5750   }
5751 
5752   // Else, we can just invert the comparison result in the appropriate lanes.
5753   //
5754   // NOTE: see the note above VSELECT above.
5755   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5756     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5757                        TautologicalInvertedChannels);
5758 
5759   return SDValue(); // Don't know how to lower.
5760 }
5761 
5762 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5763 /// where the divisor is constant and the comparison target is zero,
5764 /// return a DAG expression that will generate the same comparison result
5765 /// using only multiplications, additions and shifts/rotations.
5766 /// Ref: "Hacker's Delight" 10-17.
5767 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5768                                         SDValue CompTargetNode,
5769                                         ISD::CondCode Cond,
5770                                         DAGCombinerInfo &DCI,
5771                                         const SDLoc &DL) const {
5772   SmallVector<SDNode *, 7> Built;
5773   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5774                                          DCI, DL, Built)) {
5775     assert(Built.size() <= 7 && "Max size prediction failed.");
5776     for (SDNode *N : Built)
5777       DCI.AddToWorklist(N);
5778     return Folded;
5779   }
5780 
5781   return SDValue();
5782 }
5783 
5784 SDValue
5785 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5786                                   SDValue CompTargetNode, ISD::CondCode Cond,
5787                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5788                                   SmallVectorImpl<SDNode *> &Created) const {
5789   // Fold:
5790   //   (seteq/ne (srem N, D), 0)
5791   // To:
5792   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5793   //
5794   // - D must be constant, with D = D0 * 2^K where D0 is odd
5795   // - P is the multiplicative inverse of D0 modulo 2^W
5796   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5797   // - Q = floor((2 * A) / (2^K))
5798   // where W is the width of the common type of N and D.
5799   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5800          "Only applicable for (in)equality comparisons.");
5801 
5802   SelectionDAG &DAG = DCI.DAG;
5803 
5804   EVT VT = REMNode.getValueType();
5805   EVT SVT = VT.getScalarType();
5806   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5807   EVT ShSVT = ShVT.getScalarType();
5808 
5809   // If we are after ops legalization, and MUL is unavailable, we can not
5810   // proceed.
5811   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5812     return SDValue();
5813 
5814   // TODO: Could support comparing with non-zero too.
5815   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5816   if (!CompTarget || !CompTarget->isZero())
5817     return SDValue();
5818 
5819   bool HadIntMinDivisor = false;
5820   bool HadOneDivisor = false;
5821   bool AllDivisorsAreOnes = true;
5822   bool HadEvenDivisor = false;
5823   bool NeedToApplyOffset = false;
5824   bool AllDivisorsArePowerOfTwo = true;
5825   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5826 
5827   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5828     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5829     if (C->isZero())
5830       return false;
5831 
5832     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5833 
5834     // WARNING: this fold is only valid for positive divisors!
5835     APInt D = C->getAPIntValue();
5836     if (D.isNegative())
5837       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5838 
5839     HadIntMinDivisor |= D.isMinSignedValue();
5840 
5841     // If all divisors are ones, we will prefer to avoid the fold.
5842     HadOneDivisor |= D.isOne();
5843     AllDivisorsAreOnes &= D.isOne();
5844 
5845     // Decompose D into D0 * 2^K
5846     unsigned K = D.countTrailingZeros();
5847     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5848     APInt D0 = D.lshr(K);
5849 
5850     if (!D.isMinSignedValue()) {
5851       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5852       // we don't care about this lane in this fold, we'll special-handle it.
5853       HadEvenDivisor |= (K != 0);
5854     }
5855 
5856     // D is a power-of-two if D0 is one. This includes INT_MIN.
5857     // If all divisors are power-of-two, we will prefer to avoid the fold.
5858     AllDivisorsArePowerOfTwo &= D0.isOne();
5859 
5860     // P = inv(D0, 2^W)
5861     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5862     unsigned W = D.getBitWidth();
5863     APInt P = D0.zext(W + 1)
5864                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5865                   .trunc(W);
5866     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5867     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5868 
5869     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5870     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5871     A.clearLowBits(K);
5872 
5873     if (!D.isMinSignedValue()) {
5874       // If divisor INT_MIN, then we don't care about this lane in this fold,
5875       // we'll special-handle it.
5876       NeedToApplyOffset |= A != 0;
5877     }
5878 
5879     // Q = floor((2 * A) / (2^K))
5880     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5881 
5882     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5883            "We are expecting that A is always less than all-ones for SVT");
5884     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5885            "We are expecting that K is always less than all-ones for ShSVT");
5886 
5887     // If the divisor is 1 the result can be constant-folded. Likewise, we
5888     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5889     if (D.isOne()) {
5890       // Set P, A and K to a bogus values so we can try to splat them.
5891       P = 0;
5892       A = -1;
5893       K = -1;
5894 
5895       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5896       Q = -1;
5897     }
5898 
5899     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5900     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5901     KAmts.push_back(
5902         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5903     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5904     return true;
5905   };
5906 
5907   SDValue N = REMNode.getOperand(0);
5908   SDValue D = REMNode.getOperand(1);
5909 
5910   // Collect the values from each element.
5911   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5912     return SDValue();
5913 
5914   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5915   if (AllDivisorsAreOnes)
5916     return SDValue();
5917 
5918   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5919   // since it can be best implemented as a bit test.
5920   if (AllDivisorsArePowerOfTwo)
5921     return SDValue();
5922 
5923   SDValue PVal, AVal, KVal, QVal;
5924   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5925     if (HadOneDivisor) {
5926       // Try to turn PAmts into a splat, since we don't care about the values
5927       // that are currently '0'. If we can't, just keep '0'`s.
5928       turnVectorIntoSplatVector(PAmts, isNullConstant);
5929       // Try to turn AAmts into a splat, since we don't care about the
5930       // values that are currently '-1'. If we can't, change them to '0'`s.
5931       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5932                                 DAG.getConstant(0, DL, SVT));
5933       // Try to turn KAmts into a splat, since we don't care about the values
5934       // that are currently '-1'. If we can't, change them to '0'`s.
5935       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5936                                 DAG.getConstant(0, DL, ShSVT));
5937     }
5938 
5939     PVal = DAG.getBuildVector(VT, DL, PAmts);
5940     AVal = DAG.getBuildVector(VT, DL, AAmts);
5941     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5942     QVal = DAG.getBuildVector(VT, DL, QAmts);
5943   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5944     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5945            QAmts.size() == 1 &&
5946            "Expected matchUnaryPredicate to return one element for scalable "
5947            "vectors");
5948     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5949     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5950     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5951     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5952   } else {
5953     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5954     PVal = PAmts[0];
5955     AVal = AAmts[0];
5956     KVal = KAmts[0];
5957     QVal = QAmts[0];
5958   }
5959 
5960   // (mul N, P)
5961   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5962   Created.push_back(Op0.getNode());
5963 
5964   if (NeedToApplyOffset) {
5965     // We need ADD to do this.
5966     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5967       return SDValue();
5968 
5969     // (add (mul N, P), A)
5970     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5971     Created.push_back(Op0.getNode());
5972   }
5973 
5974   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5975   // divisors as a performance improvement, since rotating by 0 is a no-op.
5976   if (HadEvenDivisor) {
5977     // We need ROTR to do this.
5978     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5979       return SDValue();
5980     // SREM: (rotr (add (mul N, P), A), K)
5981     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5982     Created.push_back(Op0.getNode());
5983   }
5984 
5985   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5986   SDValue Fold =
5987       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5988                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5989 
5990   // If we didn't have lanes with INT_MIN divisor, then we're done.
5991   if (!HadIntMinDivisor)
5992     return Fold;
5993 
5994   // That fold is only valid for positive divisors. Which effectively means,
5995   // it is invalid for INT_MIN divisors. So if we have such a lane,
5996   // we must fix-up results for said lanes.
5997   assert(VT.isVector() && "Can/should only get here for vectors.");
5998 
5999   // NOTE: we avoid letting illegal types through even if we're before legalize
6000   // ops – legalization has a hard time producing good code for the code that
6001   // follows.
6002   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6003       !isOperationLegalOrCustom(ISD::AND, VT) ||
6004       !isOperationLegalOrCustom(Cond, VT) ||
6005       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6006     return SDValue();
6007 
6008   Created.push_back(Fold.getNode());
6009 
6010   SDValue IntMin = DAG.getConstant(
6011       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6012   SDValue IntMax = DAG.getConstant(
6013       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6014   SDValue Zero =
6015       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6016 
6017   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6018   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6019   Created.push_back(DivisorIsIntMin.getNode());
6020 
6021   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6022   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6023   Created.push_back(Masked.getNode());
6024   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6025   Created.push_back(MaskedIsZero.getNode());
6026 
6027   // To produce final result we need to blend 2 vectors: 'SetCC' and
6028   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6029   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6030   // constant-folded, select can get lowered to a shuffle with constant mask.
6031   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6032                                 MaskedIsZero, Fold);
6033 
6034   return Blended;
6035 }
6036 
6037 bool TargetLowering::
6038 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6039   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6040     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6041                                 "be a constant integer");
6042     return true;
6043   }
6044 
6045   return false;
6046 }
6047 
6048 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6049                                          const DenormalMode &Mode) const {
6050   SDLoc DL(Op);
6051   EVT VT = Op.getValueType();
6052   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6053   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6054   // Testing it with denormal inputs to avoid wrong estimate.
6055   if (Mode.Input == DenormalMode::IEEE) {
6056     // This is specifically a check for the handling of denormal inputs,
6057     // not the result.
6058 
6059     // Test = fabs(X) < SmallestNormal
6060     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6061     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6062     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6063     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6064     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6065   }
6066   // Test = X == 0.0
6067   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6068 }
6069 
6070 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6071                                              bool LegalOps, bool OptForSize,
6072                                              NegatibleCost &Cost,
6073                                              unsigned Depth) const {
6074   // fneg is removable even if it has multiple uses.
6075   if (Op.getOpcode() == ISD::FNEG) {
6076     Cost = NegatibleCost::Cheaper;
6077     return Op.getOperand(0);
6078   }
6079 
6080   // Don't recurse exponentially.
6081   if (Depth > SelectionDAG::MaxRecursionDepth)
6082     return SDValue();
6083 
6084   // Pre-increment recursion depth for use in recursive calls.
6085   ++Depth;
6086   const SDNodeFlags Flags = Op->getFlags();
6087   const TargetOptions &Options = DAG.getTarget().Options;
6088   EVT VT = Op.getValueType();
6089   unsigned Opcode = Op.getOpcode();
6090 
6091   // Don't allow anything with multiple uses unless we know it is free.
6092   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6093     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6094                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6095     if (!IsFreeExtend)
6096       return SDValue();
6097   }
6098 
6099   auto RemoveDeadNode = [&](SDValue N) {
6100     if (N && N.getNode()->use_empty())
6101       DAG.RemoveDeadNode(N.getNode());
6102   };
6103 
6104   SDLoc DL(Op);
6105 
6106   // Because getNegatedExpression can delete nodes we need a handle to keep
6107   // temporary nodes alive in case the recursion manages to create an identical
6108   // node.
6109   std::list<HandleSDNode> Handles;
6110 
6111   switch (Opcode) {
6112   case ISD::ConstantFP: {
6113     // Don't invert constant FP values after legalization unless the target says
6114     // the negated constant is legal.
6115     bool IsOpLegal =
6116         isOperationLegal(ISD::ConstantFP, VT) ||
6117         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6118                      OptForSize);
6119 
6120     if (LegalOps && !IsOpLegal)
6121       break;
6122 
6123     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6124     V.changeSign();
6125     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6126 
6127     // If we already have the use of the negated floating constant, it is free
6128     // to negate it even it has multiple uses.
6129     if (!Op.hasOneUse() && CFP.use_empty())
6130       break;
6131     Cost = NegatibleCost::Neutral;
6132     return CFP;
6133   }
6134   case ISD::BUILD_VECTOR: {
6135     // Only permit BUILD_VECTOR of constants.
6136     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6137           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6138         }))
6139       break;
6140 
6141     bool IsOpLegal =
6142         (isOperationLegal(ISD::ConstantFP, VT) &&
6143          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6144         llvm::all_of(Op->op_values(), [&](SDValue N) {
6145           return N.isUndef() ||
6146                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6147                               OptForSize);
6148         });
6149 
6150     if (LegalOps && !IsOpLegal)
6151       break;
6152 
6153     SmallVector<SDValue, 4> Ops;
6154     for (SDValue C : Op->op_values()) {
6155       if (C.isUndef()) {
6156         Ops.push_back(C);
6157         continue;
6158       }
6159       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6160       V.changeSign();
6161       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6162     }
6163     Cost = NegatibleCost::Neutral;
6164     return DAG.getBuildVector(VT, DL, Ops);
6165   }
6166   case ISD::FADD: {
6167     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6168       break;
6169 
6170     // After operation legalization, it might not be legal to create new FSUBs.
6171     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6172       break;
6173     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6174 
6175     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6176     NegatibleCost CostX = NegatibleCost::Expensive;
6177     SDValue NegX =
6178         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6179     // Prevent this node from being deleted by the next call.
6180     if (NegX)
6181       Handles.emplace_back(NegX);
6182 
6183     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6184     NegatibleCost CostY = NegatibleCost::Expensive;
6185     SDValue NegY =
6186         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6187 
6188     // We're done with the handles.
6189     Handles.clear();
6190 
6191     // Negate the X if its cost is less or equal than Y.
6192     if (NegX && (CostX <= CostY)) {
6193       Cost = CostX;
6194       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6195       if (NegY != N)
6196         RemoveDeadNode(NegY);
6197       return N;
6198     }
6199 
6200     // Negate the Y if it is not expensive.
6201     if (NegY) {
6202       Cost = CostY;
6203       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6204       if (NegX != N)
6205         RemoveDeadNode(NegX);
6206       return N;
6207     }
6208     break;
6209   }
6210   case ISD::FSUB: {
6211     // We can't turn -(A-B) into B-A when we honor signed zeros.
6212     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6213       break;
6214 
6215     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6216     // fold (fneg (fsub 0, Y)) -> Y
6217     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6218       if (C->isZero()) {
6219         Cost = NegatibleCost::Cheaper;
6220         return Y;
6221       }
6222 
6223     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6224     Cost = NegatibleCost::Neutral;
6225     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6226   }
6227   case ISD::FMUL:
6228   case ISD::FDIV: {
6229     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6230 
6231     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6232     NegatibleCost CostX = NegatibleCost::Expensive;
6233     SDValue NegX =
6234         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6235     // Prevent this node from being deleted by the next call.
6236     if (NegX)
6237       Handles.emplace_back(NegX);
6238 
6239     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6240     NegatibleCost CostY = NegatibleCost::Expensive;
6241     SDValue NegY =
6242         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6243 
6244     // We're done with the handles.
6245     Handles.clear();
6246 
6247     // Negate the X if its cost is less or equal than Y.
6248     if (NegX && (CostX <= CostY)) {
6249       Cost = CostX;
6250       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6251       if (NegY != N)
6252         RemoveDeadNode(NegY);
6253       return N;
6254     }
6255 
6256     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6257     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6258       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6259         break;
6260 
6261     // Negate the Y if it is not expensive.
6262     if (NegY) {
6263       Cost = CostY;
6264       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6265       if (NegX != N)
6266         RemoveDeadNode(NegX);
6267       return N;
6268     }
6269     break;
6270   }
6271   case ISD::FMA:
6272   case ISD::FMAD: {
6273     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6274       break;
6275 
6276     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6277     NegatibleCost CostZ = NegatibleCost::Expensive;
6278     SDValue NegZ =
6279         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6280     // Give up if fail to negate the Z.
6281     if (!NegZ)
6282       break;
6283 
6284     // Prevent this node from being deleted by the next two calls.
6285     Handles.emplace_back(NegZ);
6286 
6287     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6288     NegatibleCost CostX = NegatibleCost::Expensive;
6289     SDValue NegX =
6290         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6291     // Prevent this node from being deleted by the next call.
6292     if (NegX)
6293       Handles.emplace_back(NegX);
6294 
6295     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6296     NegatibleCost CostY = NegatibleCost::Expensive;
6297     SDValue NegY =
6298         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6299 
6300     // We're done with the handles.
6301     Handles.clear();
6302 
6303     // Negate the X if its cost is less or equal than Y.
6304     if (NegX && (CostX <= CostY)) {
6305       Cost = std::min(CostX, CostZ);
6306       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6307       if (NegY != N)
6308         RemoveDeadNode(NegY);
6309       return N;
6310     }
6311 
6312     // Negate the Y if it is not expensive.
6313     if (NegY) {
6314       Cost = std::min(CostY, CostZ);
6315       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6316       if (NegX != N)
6317         RemoveDeadNode(NegX);
6318       return N;
6319     }
6320     break;
6321   }
6322 
6323   case ISD::FP_EXTEND:
6324   case ISD::FSIN:
6325     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6326                                             OptForSize, Cost, Depth))
6327       return DAG.getNode(Opcode, DL, VT, NegV);
6328     break;
6329   case ISD::FP_ROUND:
6330     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6331                                             OptForSize, Cost, Depth))
6332       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6333     break;
6334   }
6335 
6336   return SDValue();
6337 }
6338 
6339 //===----------------------------------------------------------------------===//
6340 // Legalization Utilities
6341 //===----------------------------------------------------------------------===//
6342 
6343 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6344                                     SDValue LHS, SDValue RHS,
6345                                     SmallVectorImpl<SDValue> &Result,
6346                                     EVT HiLoVT, SelectionDAG &DAG,
6347                                     MulExpansionKind Kind, SDValue LL,
6348                                     SDValue LH, SDValue RL, SDValue RH) const {
6349   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6350          Opcode == ISD::SMUL_LOHI);
6351 
6352   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6353                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6354   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6355                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6356   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6357                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6358   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6359                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6360 
6361   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6362     return false;
6363 
6364   unsigned OuterBitSize = VT.getScalarSizeInBits();
6365   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6366 
6367   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6368   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6369          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6370 
6371   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6372   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6373                           bool Signed) -> bool {
6374     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6375       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6376       Hi = SDValue(Lo.getNode(), 1);
6377       return true;
6378     }
6379     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6380       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6381       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6382       return true;
6383     }
6384     return false;
6385   };
6386 
6387   SDValue Lo, Hi;
6388 
6389   if (!LL.getNode() && !RL.getNode() &&
6390       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6391     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6392     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6393   }
6394 
6395   if (!LL.getNode())
6396     return false;
6397 
6398   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6399   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6400       DAG.MaskedValueIsZero(RHS, HighMask)) {
6401     // The inputs are both zero-extended.
6402     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6403       Result.push_back(Lo);
6404       Result.push_back(Hi);
6405       if (Opcode != ISD::MUL) {
6406         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6407         Result.push_back(Zero);
6408         Result.push_back(Zero);
6409       }
6410       return true;
6411     }
6412   }
6413 
6414   if (!VT.isVector() && Opcode == ISD::MUL &&
6415       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6416       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6417     // The input values are both sign-extended.
6418     // TODO non-MUL case?
6419     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6420       Result.push_back(Lo);
6421       Result.push_back(Hi);
6422       return true;
6423     }
6424   }
6425 
6426   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6427   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6428   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6429     // FIXME getShiftAmountTy does not always return a sensible result when VT
6430     // is an illegal type, and so the type may be too small to fit the shift
6431     // amount. Override it with i32. The shift will have to be legalized.
6432     ShiftAmountTy = MVT::i32;
6433   }
6434   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6435 
6436   if (!LH.getNode() && !RH.getNode() &&
6437       isOperationLegalOrCustom(ISD::SRL, VT) &&
6438       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6439     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6440     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6441     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6442     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6443   }
6444 
6445   if (!LH.getNode())
6446     return false;
6447 
6448   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6449     return false;
6450 
6451   Result.push_back(Lo);
6452 
6453   if (Opcode == ISD::MUL) {
6454     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6455     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6456     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6457     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6458     Result.push_back(Hi);
6459     return true;
6460   }
6461 
6462   // Compute the full width result.
6463   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6464     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6465     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6466     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6467     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6468   };
6469 
6470   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6471   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6472     return false;
6473 
6474   // This is effectively the add part of a multiply-add of half-sized operands,
6475   // so it cannot overflow.
6476   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6477 
6478   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6479     return false;
6480 
6481   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6482   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6483 
6484   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6485                   isOperationLegalOrCustom(ISD::ADDE, VT));
6486   if (UseGlue)
6487     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6488                        Merge(Lo, Hi));
6489   else
6490     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6491                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6492 
6493   SDValue Carry = Next.getValue(1);
6494   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6495   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6496 
6497   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6498     return false;
6499 
6500   if (UseGlue)
6501     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6502                      Carry);
6503   else
6504     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6505                      Zero, Carry);
6506 
6507   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6508 
6509   if (Opcode == ISD::SMUL_LOHI) {
6510     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6511                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6512     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6513 
6514     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6515                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6516     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6517   }
6518 
6519   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6520   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6521   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6522   return true;
6523 }
6524 
6525 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6526                                SelectionDAG &DAG, MulExpansionKind Kind,
6527                                SDValue LL, SDValue LH, SDValue RL,
6528                                SDValue RH) const {
6529   SmallVector<SDValue, 2> Result;
6530   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6531                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6532                            DAG, Kind, LL, LH, RL, RH);
6533   if (Ok) {
6534     assert(Result.size() == 2);
6535     Lo = Result[0];
6536     Hi = Result[1];
6537   }
6538   return Ok;
6539 }
6540 
6541 // Check that (every element of) Z is undef or not an exact multiple of BW.
6542 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6543   return ISD::matchUnaryPredicate(
6544       Z,
6545       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6546       true);
6547 }
6548 
6549 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6550                                           SelectionDAG &DAG) const {
6551   EVT VT = Node->getValueType(0);
6552 
6553   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6554                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6555                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6556                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6557     return SDValue();
6558 
6559   SDValue X = Node->getOperand(0);
6560   SDValue Y = Node->getOperand(1);
6561   SDValue Z = Node->getOperand(2);
6562 
6563   unsigned BW = VT.getScalarSizeInBits();
6564   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6565   SDLoc DL(SDValue(Node, 0));
6566 
6567   EVT ShVT = Z.getValueType();
6568 
6569   // If a funnel shift in the other direction is more supported, use it.
6570   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6571   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6572       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6573     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6574       // fshl X, Y, Z -> fshr X, Y, -Z
6575       // fshr X, Y, Z -> fshl X, Y, -Z
6576       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6577       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6578     } else {
6579       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6580       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6581       SDValue One = DAG.getConstant(1, DL, ShVT);
6582       if (IsFSHL) {
6583         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6584         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6585       } else {
6586         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6587         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6588       }
6589       Z = DAG.getNOT(DL, Z, ShVT);
6590     }
6591     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6592   }
6593 
6594   SDValue ShX, ShY;
6595   SDValue ShAmt, InvShAmt;
6596   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6597     // fshl: X << C | Y >> (BW - C)
6598     // fshr: X << (BW - C) | Y >> C
6599     // where C = Z % BW is not zero
6600     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6601     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6602     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6603     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6604     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6605   } else {
6606     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6607     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6608     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6609     if (isPowerOf2_32(BW)) {
6610       // Z % BW -> Z & (BW - 1)
6611       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6612       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6613       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6614     } else {
6615       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6616       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6617       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6618     }
6619 
6620     SDValue One = DAG.getConstant(1, DL, ShVT);
6621     if (IsFSHL) {
6622       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6623       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6624       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6625     } else {
6626       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6627       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6628       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6629     }
6630   }
6631   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6632 }
6633 
6634 // TODO: Merge with expandFunnelShift.
6635 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6636                                   SelectionDAG &DAG) const {
6637   EVT VT = Node->getValueType(0);
6638   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6639   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6640   SDValue Op0 = Node->getOperand(0);
6641   SDValue Op1 = Node->getOperand(1);
6642   SDLoc DL(SDValue(Node, 0));
6643 
6644   EVT ShVT = Op1.getValueType();
6645   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6646 
6647   // If a rotate in the other direction is supported, use it.
6648   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6649   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6650     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6651     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6652   }
6653 
6654   if (!AllowVectorOps && VT.isVector() &&
6655       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6656        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6657        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6658        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6659        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6660     return SDValue();
6661 
6662   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6663   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6664   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6665   SDValue ShVal;
6666   SDValue HsVal;
6667   if (isPowerOf2_32(EltSizeInBits)) {
6668     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6669     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6670     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6671     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6672     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6673     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6674     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6675   } else {
6676     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6677     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6678     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6679     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6680     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6681     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6682     SDValue One = DAG.getConstant(1, DL, ShVT);
6683     HsVal =
6684         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6685   }
6686   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6687 }
6688 
6689 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6690                                       SelectionDAG &DAG) const {
6691   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6692   EVT VT = Node->getValueType(0);
6693   unsigned VTBits = VT.getScalarSizeInBits();
6694   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6695 
6696   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6697   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6698   SDValue ShOpLo = Node->getOperand(0);
6699   SDValue ShOpHi = Node->getOperand(1);
6700   SDValue ShAmt = Node->getOperand(2);
6701   EVT ShAmtVT = ShAmt.getValueType();
6702   EVT ShAmtCCVT =
6703       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6704   SDLoc dl(Node);
6705 
6706   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6707   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6708   // away during isel.
6709   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6710                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6711   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6712                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6713                        : DAG.getConstant(0, dl, VT);
6714 
6715   SDValue Tmp2, Tmp3;
6716   if (IsSHL) {
6717     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6718     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6719   } else {
6720     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6721     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6722   }
6723 
6724   // If the shift amount is larger or equal than the width of a part we don't
6725   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6726   // values for large shift amounts.
6727   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6728                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6729   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6730                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6731 
6732   if (IsSHL) {
6733     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6734     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6735   } else {
6736     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6737     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6738   }
6739 }
6740 
6741 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6742                                       SelectionDAG &DAG) const {
6743   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6744   SDValue Src = Node->getOperand(OpNo);
6745   EVT SrcVT = Src.getValueType();
6746   EVT DstVT = Node->getValueType(0);
6747   SDLoc dl(SDValue(Node, 0));
6748 
6749   // FIXME: Only f32 to i64 conversions are supported.
6750   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6751     return false;
6752 
6753   if (Node->isStrictFPOpcode())
6754     // When a NaN is converted to an integer a trap is allowed. We can't
6755     // use this expansion here because it would eliminate that trap. Other
6756     // traps are also allowed and cannot be eliminated. See
6757     // IEEE 754-2008 sec 5.8.
6758     return false;
6759 
6760   // Expand f32 -> i64 conversion
6761   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6762   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6763   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6764   EVT IntVT = SrcVT.changeTypeToInteger();
6765   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6766 
6767   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6768   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6769   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6770   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6771   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6772   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6773 
6774   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6775 
6776   SDValue ExponentBits = DAG.getNode(
6777       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6778       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6779   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6780 
6781   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6782                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6783                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6784   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6785 
6786   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6787                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6788                           DAG.getConstant(0x00800000, dl, IntVT));
6789 
6790   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6791 
6792   R = DAG.getSelectCC(
6793       dl, Exponent, ExponentLoBit,
6794       DAG.getNode(ISD::SHL, dl, DstVT, R,
6795                   DAG.getZExtOrTrunc(
6796                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6797                       dl, IntShVT)),
6798       DAG.getNode(ISD::SRL, dl, DstVT, R,
6799                   DAG.getZExtOrTrunc(
6800                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6801                       dl, IntShVT)),
6802       ISD::SETGT);
6803 
6804   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6805                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6806 
6807   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6808                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6809   return true;
6810 }
6811 
6812 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6813                                       SDValue &Chain,
6814                                       SelectionDAG &DAG) const {
6815   SDLoc dl(SDValue(Node, 0));
6816   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6817   SDValue Src = Node->getOperand(OpNo);
6818 
6819   EVT SrcVT = Src.getValueType();
6820   EVT DstVT = Node->getValueType(0);
6821   EVT SetCCVT =
6822       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6823   EVT DstSetCCVT =
6824       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6825 
6826   // Only expand vector types if we have the appropriate vector bit operations.
6827   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6828                                                    ISD::FP_TO_SINT;
6829   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6830                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6831     return false;
6832 
6833   // If the maximum float value is smaller then the signed integer range,
6834   // the destination signmask can't be represented by the float, so we can
6835   // just use FP_TO_SINT directly.
6836   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6837   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6838   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6839   if (APFloat::opOverflow &
6840       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6841     if (Node->isStrictFPOpcode()) {
6842       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6843                            { Node->getOperand(0), Src });
6844       Chain = Result.getValue(1);
6845     } else
6846       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6847     return true;
6848   }
6849 
6850   // Don't expand it if there isn't cheap fsub instruction.
6851   if (!isOperationLegalOrCustom(
6852           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6853     return false;
6854 
6855   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6856   SDValue Sel;
6857 
6858   if (Node->isStrictFPOpcode()) {
6859     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6860                        Node->getOperand(0), /*IsSignaling*/ true);
6861     Chain = Sel.getValue(1);
6862   } else {
6863     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6864   }
6865 
6866   bool Strict = Node->isStrictFPOpcode() ||
6867                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6868 
6869   if (Strict) {
6870     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6871     // signmask then offset (the result of which should be fully representable).
6872     // Sel = Src < 0x8000000000000000
6873     // FltOfs = select Sel, 0, 0x8000000000000000
6874     // IntOfs = select Sel, 0, 0x8000000000000000
6875     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6876 
6877     // TODO: Should any fast-math-flags be set for the FSUB?
6878     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6879                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6880     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6881     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6882                                    DAG.getConstant(0, dl, DstVT),
6883                                    DAG.getConstant(SignMask, dl, DstVT));
6884     SDValue SInt;
6885     if (Node->isStrictFPOpcode()) {
6886       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6887                                 { Chain, Src, FltOfs });
6888       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6889                          { Val.getValue(1), Val });
6890       Chain = SInt.getValue(1);
6891     } else {
6892       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6893       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6894     }
6895     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6896   } else {
6897     // Expand based on maximum range of FP_TO_SINT:
6898     // True = fp_to_sint(Src)
6899     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6900     // Result = select (Src < 0x8000000000000000), True, False
6901 
6902     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6903     // TODO: Should any fast-math-flags be set for the FSUB?
6904     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6905                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6906     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6907                         DAG.getConstant(SignMask, dl, DstVT));
6908     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6909     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6910   }
6911   return true;
6912 }
6913 
6914 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6915                                       SDValue &Chain,
6916                                       SelectionDAG &DAG) const {
6917   // This transform is not correct for converting 0 when rounding mode is set
6918   // to round toward negative infinity which will produce -0.0. So disable under
6919   // strictfp.
6920   if (Node->isStrictFPOpcode())
6921     return false;
6922 
6923   SDValue Src = Node->getOperand(0);
6924   EVT SrcVT = Src.getValueType();
6925   EVT DstVT = Node->getValueType(0);
6926 
6927   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6928     return false;
6929 
6930   // Only expand vector types if we have the appropriate vector bit operations.
6931   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6932                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6933                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6934                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6935                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6936     return false;
6937 
6938   SDLoc dl(SDValue(Node, 0));
6939   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6940 
6941   // Implementation of unsigned i64 to f64 following the algorithm in
6942   // __floatundidf in compiler_rt.  This implementation performs rounding
6943   // correctly in all rounding modes with the exception of converting 0
6944   // when rounding toward negative infinity. In that case the fsub will produce
6945   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6946   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6947   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6948       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6949   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6950   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6951   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6952 
6953   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6954   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6955   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6956   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6957   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6958   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6959   SDValue HiSub =
6960       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6961   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6962   return true;
6963 }
6964 
6965 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6966                                               SelectionDAG &DAG) const {
6967   SDLoc dl(Node);
6968   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6969     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6970   EVT VT = Node->getValueType(0);
6971 
6972   if (VT.isScalableVector())
6973     report_fatal_error(
6974         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6975 
6976   if (isOperationLegalOrCustom(NewOp, VT)) {
6977     SDValue Quiet0 = Node->getOperand(0);
6978     SDValue Quiet1 = Node->getOperand(1);
6979 
6980     if (!Node->getFlags().hasNoNaNs()) {
6981       // Insert canonicalizes if it's possible we need to quiet to get correct
6982       // sNaN behavior.
6983       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6984         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6985                              Node->getFlags());
6986       }
6987       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6988         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6989                              Node->getFlags());
6990       }
6991     }
6992 
6993     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6994   }
6995 
6996   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6997   // instead if there are no NaNs.
6998   if (Node->getFlags().hasNoNaNs()) {
6999     unsigned IEEE2018Op =
7000         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7001     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7002       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7003                          Node->getOperand(1), Node->getFlags());
7004     }
7005   }
7006 
7007   // If none of the above worked, but there are no NaNs, then expand to
7008   // a compare/select sequence.  This is required for correctness since
7009   // InstCombine might have canonicalized a fcmp+select sequence to a
7010   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7011   // expansion to libcall, we might introduce a link-time dependency
7012   // on libm into a file that originally did not have one.
7013   if (Node->getFlags().hasNoNaNs()) {
7014     ISD::CondCode Pred =
7015         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7016     SDValue Op1 = Node->getOperand(0);
7017     SDValue Op2 = Node->getOperand(1);
7018     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7019     // Copy FMF flags, but always set the no-signed-zeros flag
7020     // as this is implied by the FMINNUM/FMAXNUM semantics.
7021     SDNodeFlags Flags = Node->getFlags();
7022     Flags.setNoSignedZeros(true);
7023     SelCC->setFlags(Flags);
7024     return SelCC;
7025   }
7026 
7027   return SDValue();
7028 }
7029 
7030 // Only expand vector types if we have the appropriate vector bit operations.
7031 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7032   assert(VT.isVector() && "Expected vector type");
7033   unsigned Len = VT.getScalarSizeInBits();
7034   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7035          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7036          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7037          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7038          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7039 }
7040 
7041 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7042   SDLoc dl(Node);
7043   EVT VT = Node->getValueType(0);
7044   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7045   SDValue Op = Node->getOperand(0);
7046   unsigned Len = VT.getScalarSizeInBits();
7047   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7048 
7049   // TODO: Add support for irregular type lengths.
7050   if (!(Len <= 128 && Len % 8 == 0))
7051     return SDValue();
7052 
7053   // Only expand vector types if we have the appropriate vector bit operations.
7054   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7055     return SDValue();
7056 
7057   // This is the "best" algorithm from
7058   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7059   SDValue Mask55 =
7060       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7061   SDValue Mask33 =
7062       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7063   SDValue Mask0F =
7064       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7065   SDValue Mask01 =
7066       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7067 
7068   // v = v - ((v >> 1) & 0x55555555...)
7069   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7070                    DAG.getNode(ISD::AND, dl, VT,
7071                                DAG.getNode(ISD::SRL, dl, VT, Op,
7072                                            DAG.getConstant(1, dl, ShVT)),
7073                                Mask55));
7074   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7075   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7076                    DAG.getNode(ISD::AND, dl, VT,
7077                                DAG.getNode(ISD::SRL, dl, VT, Op,
7078                                            DAG.getConstant(2, dl, ShVT)),
7079                                Mask33));
7080   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7081   Op = DAG.getNode(ISD::AND, dl, VT,
7082                    DAG.getNode(ISD::ADD, dl, VT, Op,
7083                                DAG.getNode(ISD::SRL, dl, VT, Op,
7084                                            DAG.getConstant(4, dl, ShVT))),
7085                    Mask0F);
7086   // v = (v * 0x01010101...) >> (Len - 8)
7087   if (Len > 8)
7088     Op =
7089         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7090                     DAG.getConstant(Len - 8, dl, ShVT));
7091 
7092   return Op;
7093 }
7094 
7095 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7096   SDLoc dl(Node);
7097   EVT VT = Node->getValueType(0);
7098   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7099   SDValue Op = Node->getOperand(0);
7100   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7101 
7102   // If the non-ZERO_UNDEF version is supported we can use that instead.
7103   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7104       isOperationLegalOrCustom(ISD::CTLZ, VT))
7105     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7106 
7107   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7108   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7109     EVT SetCCVT =
7110         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7111     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7112     SDValue Zero = DAG.getConstant(0, dl, VT);
7113     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7114     return DAG.getSelect(dl, VT, SrcIsZero,
7115                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7116   }
7117 
7118   // Only expand vector types if we have the appropriate vector bit operations.
7119   // This includes the operations needed to expand CTPOP if it isn't supported.
7120   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7121                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7122                          !canExpandVectorCTPOP(*this, VT)) ||
7123                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7124                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7125     return SDValue();
7126 
7127   // for now, we do this:
7128   // x = x | (x >> 1);
7129   // x = x | (x >> 2);
7130   // ...
7131   // x = x | (x >>16);
7132   // x = x | (x >>32); // for 64-bit input
7133   // return popcount(~x);
7134   //
7135   // Ref: "Hacker's Delight" by Henry Warren
7136   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7137     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7138     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7139                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7140   }
7141   Op = DAG.getNOT(dl, Op, VT);
7142   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7143 }
7144 
7145 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7146   SDLoc dl(Node);
7147   EVT VT = Node->getValueType(0);
7148   SDValue Op = Node->getOperand(0);
7149   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7150 
7151   // If the non-ZERO_UNDEF version is supported we can use that instead.
7152   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7153       isOperationLegalOrCustom(ISD::CTTZ, VT))
7154     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7155 
7156   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7157   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7158     EVT SetCCVT =
7159         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7160     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7161     SDValue Zero = DAG.getConstant(0, dl, VT);
7162     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7163     return DAG.getSelect(dl, VT, SrcIsZero,
7164                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7165   }
7166 
7167   // Only expand vector types if we have the appropriate vector bit operations.
7168   // This includes the operations needed to expand CTPOP if it isn't supported.
7169   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7170                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7171                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7172                          !canExpandVectorCTPOP(*this, VT)) ||
7173                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7174                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7175                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7176     return SDValue();
7177 
7178   // for now, we use: { return popcount(~x & (x - 1)); }
7179   // unless the target has ctlz but not ctpop, in which case we use:
7180   // { return 32 - nlz(~x & (x-1)); }
7181   // Ref: "Hacker's Delight" by Henry Warren
7182   SDValue Tmp = DAG.getNode(
7183       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7184       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7185 
7186   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7187   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7188     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7189                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7190   }
7191 
7192   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7193 }
7194 
7195 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7196                                   bool IsNegative) const {
7197   SDLoc dl(N);
7198   EVT VT = N->getValueType(0);
7199   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7200   SDValue Op = N->getOperand(0);
7201 
7202   // abs(x) -> smax(x,sub(0,x))
7203   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7204       isOperationLegal(ISD::SMAX, VT)) {
7205     SDValue Zero = DAG.getConstant(0, dl, VT);
7206     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7207                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7208   }
7209 
7210   // abs(x) -> umin(x,sub(0,x))
7211   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7212       isOperationLegal(ISD::UMIN, VT)) {
7213     SDValue Zero = DAG.getConstant(0, dl, VT);
7214     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7215                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7216   }
7217 
7218   // 0 - abs(x) -> smin(x, sub(0,x))
7219   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7220       isOperationLegal(ISD::SMIN, VT)) {
7221     SDValue Zero = DAG.getConstant(0, dl, VT);
7222     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7223                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7224   }
7225 
7226   // Only expand vector types if we have the appropriate vector operations.
7227   if (VT.isVector() &&
7228       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7229        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7230        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7231        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7232     return SDValue();
7233 
7234   SDValue Shift =
7235       DAG.getNode(ISD::SRA, dl, VT, Op,
7236                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7237   if (!IsNegative) {
7238     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7239     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7240   }
7241 
7242   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7243   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7244   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7245 }
7246 
7247 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7248   SDLoc dl(N);
7249   EVT VT = N->getValueType(0);
7250   SDValue Op = N->getOperand(0);
7251 
7252   if (!VT.isSimple())
7253     return SDValue();
7254 
7255   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7256   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7257   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7258   default:
7259     return SDValue();
7260   case MVT::i16:
7261     // Use a rotate by 8. This can be further expanded if necessary.
7262     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7263   case MVT::i32:
7264     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7265     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7266     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7267     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7268     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7269                        DAG.getConstant(0xFF0000, dl, VT));
7270     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7271     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7272     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7273     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7274   case MVT::i64:
7275     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7276     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7277     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7278     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7279     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7280     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7281     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7282     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7283     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7284                        DAG.getConstant(255ULL<<48, dl, VT));
7285     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7286                        DAG.getConstant(255ULL<<40, dl, VT));
7287     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7288                        DAG.getConstant(255ULL<<32, dl, VT));
7289     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7290                        DAG.getConstant(255ULL<<24, dl, VT));
7291     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7292                        DAG.getConstant(255ULL<<16, dl, VT));
7293     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7294                        DAG.getConstant(255ULL<<8 , dl, VT));
7295     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7296     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7297     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7298     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7299     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7300     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7301     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7302   }
7303 }
7304 
7305 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7306   SDLoc dl(N);
7307   EVT VT = N->getValueType(0);
7308   SDValue Op = N->getOperand(0);
7309   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7310   unsigned Sz = VT.getScalarSizeInBits();
7311 
7312   SDValue Tmp, Tmp2, Tmp3;
7313 
7314   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7315   // and finally the i1 pairs.
7316   // TODO: We can easily support i4/i2 legal types if any target ever does.
7317   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7318     // Create the masks - repeating the pattern every byte.
7319     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7320     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7321     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7322 
7323     // BSWAP if the type is wider than a single byte.
7324     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7325 
7326     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7327     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7328     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7329     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7330     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7331     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7332 
7333     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7334     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7335     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7336     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7337     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7338     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7339 
7340     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7341     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7342     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7343     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7344     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7345     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7346     return Tmp;
7347   }
7348 
7349   Tmp = DAG.getConstant(0, dl, VT);
7350   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7351     if (I < J)
7352       Tmp2 =
7353           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7354     else
7355       Tmp2 =
7356           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7357 
7358     APInt Shift(Sz, 1);
7359     Shift <<= J;
7360     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7361     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7362   }
7363 
7364   return Tmp;
7365 }
7366 
7367 std::pair<SDValue, SDValue>
7368 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7369                                     SelectionDAG &DAG) const {
7370   SDLoc SL(LD);
7371   SDValue Chain = LD->getChain();
7372   SDValue BasePTR = LD->getBasePtr();
7373   EVT SrcVT = LD->getMemoryVT();
7374   EVT DstVT = LD->getValueType(0);
7375   ISD::LoadExtType ExtType = LD->getExtensionType();
7376 
7377   if (SrcVT.isScalableVector())
7378     report_fatal_error("Cannot scalarize scalable vector loads");
7379 
7380   unsigned NumElem = SrcVT.getVectorNumElements();
7381 
7382   EVT SrcEltVT = SrcVT.getScalarType();
7383   EVT DstEltVT = DstVT.getScalarType();
7384 
7385   // A vector must always be stored in memory as-is, i.e. without any padding
7386   // between the elements, since various code depend on it, e.g. in the
7387   // handling of a bitcast of a vector type to int, which may be done with a
7388   // vector store followed by an integer load. A vector that does not have
7389   // elements that are byte-sized must therefore be stored as an integer
7390   // built out of the extracted vector elements.
7391   if (!SrcEltVT.isByteSized()) {
7392     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7393     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7394 
7395     unsigned NumSrcBits = SrcVT.getSizeInBits();
7396     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7397 
7398     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7399     SDValue SrcEltBitMask = DAG.getConstant(
7400         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7401 
7402     // Load the whole vector and avoid masking off the top bits as it makes
7403     // the codegen worse.
7404     SDValue Load =
7405         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7406                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7407                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7408 
7409     SmallVector<SDValue, 8> Vals;
7410     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7411       unsigned ShiftIntoIdx =
7412           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7413       SDValue ShiftAmount =
7414           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7415                                      LoadVT, SL, /*LegalTypes=*/false);
7416       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7417       SDValue Elt =
7418           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7419       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7420 
7421       if (ExtType != ISD::NON_EXTLOAD) {
7422         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7423         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7424       }
7425 
7426       Vals.push_back(Scalar);
7427     }
7428 
7429     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7430     return std::make_pair(Value, Load.getValue(1));
7431   }
7432 
7433   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7434   assert(SrcEltVT.isByteSized());
7435 
7436   SmallVector<SDValue, 8> Vals;
7437   SmallVector<SDValue, 8> LoadChains;
7438 
7439   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7440     SDValue ScalarLoad =
7441         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7442                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7443                        SrcEltVT, LD->getOriginalAlign(),
7444                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7445 
7446     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7447 
7448     Vals.push_back(ScalarLoad.getValue(0));
7449     LoadChains.push_back(ScalarLoad.getValue(1));
7450   }
7451 
7452   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7453   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7454 
7455   return std::make_pair(Value, NewChain);
7456 }
7457 
7458 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7459                                              SelectionDAG &DAG) const {
7460   SDLoc SL(ST);
7461 
7462   SDValue Chain = ST->getChain();
7463   SDValue BasePtr = ST->getBasePtr();
7464   SDValue Value = ST->getValue();
7465   EVT StVT = ST->getMemoryVT();
7466 
7467   if (StVT.isScalableVector())
7468     report_fatal_error("Cannot scalarize scalable vector stores");
7469 
7470   // The type of the data we want to save
7471   EVT RegVT = Value.getValueType();
7472   EVT RegSclVT = RegVT.getScalarType();
7473 
7474   // The type of data as saved in memory.
7475   EVT MemSclVT = StVT.getScalarType();
7476 
7477   unsigned NumElem = StVT.getVectorNumElements();
7478 
7479   // A vector must always be stored in memory as-is, i.e. without any padding
7480   // between the elements, since various code depend on it, e.g. in the
7481   // handling of a bitcast of a vector type to int, which may be done with a
7482   // vector store followed by an integer load. A vector that does not have
7483   // elements that are byte-sized must therefore be stored as an integer
7484   // built out of the extracted vector elements.
7485   if (!MemSclVT.isByteSized()) {
7486     unsigned NumBits = StVT.getSizeInBits();
7487     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7488 
7489     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7490 
7491     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7492       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7493                                 DAG.getVectorIdxConstant(Idx, SL));
7494       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7495       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7496       unsigned ShiftIntoIdx =
7497           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7498       SDValue ShiftAmount =
7499           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7500       SDValue ShiftedElt =
7501           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7502       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7503     }
7504 
7505     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7506                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7507                         ST->getAAInfo());
7508   }
7509 
7510   // Store Stride in bytes
7511   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7512   assert(Stride && "Zero stride!");
7513   // Extract each of the elements from the original vector and save them into
7514   // memory individually.
7515   SmallVector<SDValue, 8> Stores;
7516   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7517     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7518                               DAG.getVectorIdxConstant(Idx, SL));
7519 
7520     SDValue Ptr =
7521         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7522 
7523     // This scalar TruncStore may be illegal, but we legalize it later.
7524     SDValue Store = DAG.getTruncStore(
7525         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7526         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7527         ST->getAAInfo());
7528 
7529     Stores.push_back(Store);
7530   }
7531 
7532   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7533 }
7534 
7535 std::pair<SDValue, SDValue>
7536 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7537   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7538          "unaligned indexed loads not implemented!");
7539   SDValue Chain = LD->getChain();
7540   SDValue Ptr = LD->getBasePtr();
7541   EVT VT = LD->getValueType(0);
7542   EVT LoadedVT = LD->getMemoryVT();
7543   SDLoc dl(LD);
7544   auto &MF = DAG.getMachineFunction();
7545 
7546   if (VT.isFloatingPoint() || VT.isVector()) {
7547     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7548     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7549       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7550           LoadedVT.isVector()) {
7551         // Scalarize the load and let the individual components be handled.
7552         return scalarizeVectorLoad(LD, DAG);
7553       }
7554 
7555       // Expand to a (misaligned) integer load of the same size,
7556       // then bitconvert to floating point or vector.
7557       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7558                                     LD->getMemOperand());
7559       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7560       if (LoadedVT != VT)
7561         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7562                              ISD::ANY_EXTEND, dl, VT, Result);
7563 
7564       return std::make_pair(Result, newLoad.getValue(1));
7565     }
7566 
7567     // Copy the value to a (aligned) stack slot using (unaligned) integer
7568     // loads and stores, then do a (aligned) load from the stack slot.
7569     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7570     unsigned LoadedBytes = LoadedVT.getStoreSize();
7571     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7572     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7573 
7574     // Make sure the stack slot is also aligned for the register type.
7575     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7576     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7577     SmallVector<SDValue, 8> Stores;
7578     SDValue StackPtr = StackBase;
7579     unsigned Offset = 0;
7580 
7581     EVT PtrVT = Ptr.getValueType();
7582     EVT StackPtrVT = StackPtr.getValueType();
7583 
7584     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7585     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7586 
7587     // Do all but one copies using the full register width.
7588     for (unsigned i = 1; i < NumRegs; i++) {
7589       // Load one integer register's worth from the original location.
7590       SDValue Load = DAG.getLoad(
7591           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7592           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7593           LD->getAAInfo());
7594       // Follow the load with a store to the stack slot.  Remember the store.
7595       Stores.push_back(DAG.getStore(
7596           Load.getValue(1), dl, Load, StackPtr,
7597           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7598       // Increment the pointers.
7599       Offset += RegBytes;
7600 
7601       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7602       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7603     }
7604 
7605     // The last copy may be partial.  Do an extending load.
7606     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7607                                   8 * (LoadedBytes - Offset));
7608     SDValue Load =
7609         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7610                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7611                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7612                        LD->getAAInfo());
7613     // Follow the load with a store to the stack slot.  Remember the store.
7614     // On big-endian machines this requires a truncating store to ensure
7615     // that the bits end up in the right place.
7616     Stores.push_back(DAG.getTruncStore(
7617         Load.getValue(1), dl, Load, StackPtr,
7618         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7619 
7620     // The order of the stores doesn't matter - say it with a TokenFactor.
7621     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7622 
7623     // Finally, perform the original load only redirected to the stack slot.
7624     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7625                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7626                           LoadedVT);
7627 
7628     // Callers expect a MERGE_VALUES node.
7629     return std::make_pair(Load, TF);
7630   }
7631 
7632   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7633          "Unaligned load of unsupported type.");
7634 
7635   // Compute the new VT that is half the size of the old one.  This is an
7636   // integer MVT.
7637   unsigned NumBits = LoadedVT.getSizeInBits();
7638   EVT NewLoadedVT;
7639   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7640   NumBits >>= 1;
7641 
7642   Align Alignment = LD->getOriginalAlign();
7643   unsigned IncrementSize = NumBits / 8;
7644   ISD::LoadExtType HiExtType = LD->getExtensionType();
7645 
7646   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7647   if (HiExtType == ISD::NON_EXTLOAD)
7648     HiExtType = ISD::ZEXTLOAD;
7649 
7650   // Load the value in two parts
7651   SDValue Lo, Hi;
7652   if (DAG.getDataLayout().isLittleEndian()) {
7653     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7654                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7655                         LD->getAAInfo());
7656 
7657     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7658     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7659                         LD->getPointerInfo().getWithOffset(IncrementSize),
7660                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7661                         LD->getAAInfo());
7662   } else {
7663     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7664                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7665                         LD->getAAInfo());
7666 
7667     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7668     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7669                         LD->getPointerInfo().getWithOffset(IncrementSize),
7670                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7671                         LD->getAAInfo());
7672   }
7673 
7674   // aggregate the two parts
7675   SDValue ShiftAmount =
7676       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7677                                                     DAG.getDataLayout()));
7678   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7679   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7680 
7681   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7682                              Hi.getValue(1));
7683 
7684   return std::make_pair(Result, TF);
7685 }
7686 
7687 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7688                                              SelectionDAG &DAG) const {
7689   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7690          "unaligned indexed stores not implemented!");
7691   SDValue Chain = ST->getChain();
7692   SDValue Ptr = ST->getBasePtr();
7693   SDValue Val = ST->getValue();
7694   EVT VT = Val.getValueType();
7695   Align Alignment = ST->getOriginalAlign();
7696   auto &MF = DAG.getMachineFunction();
7697   EVT StoreMemVT = ST->getMemoryVT();
7698 
7699   SDLoc dl(ST);
7700   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7701     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7702     if (isTypeLegal(intVT)) {
7703       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7704           StoreMemVT.isVector()) {
7705         // Scalarize the store and let the individual components be handled.
7706         SDValue Result = scalarizeVectorStore(ST, DAG);
7707         return Result;
7708       }
7709       // Expand to a bitconvert of the value to the integer type of the
7710       // same size, then a (misaligned) int store.
7711       // FIXME: Does not handle truncating floating point stores!
7712       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7713       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7714                             Alignment, ST->getMemOperand()->getFlags());
7715       return Result;
7716     }
7717     // Do a (aligned) store to a stack slot, then copy from the stack slot
7718     // to the final destination using (unaligned) integer loads and stores.
7719     MVT RegVT = getRegisterType(
7720         *DAG.getContext(),
7721         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7722     EVT PtrVT = Ptr.getValueType();
7723     unsigned StoredBytes = StoreMemVT.getStoreSize();
7724     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7725     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7726 
7727     // Make sure the stack slot is also aligned for the register type.
7728     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7729     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7730 
7731     // Perform the original store, only redirected to the stack slot.
7732     SDValue Store = DAG.getTruncStore(
7733         Chain, dl, Val, StackPtr,
7734         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7735 
7736     EVT StackPtrVT = StackPtr.getValueType();
7737 
7738     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7739     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7740     SmallVector<SDValue, 8> Stores;
7741     unsigned Offset = 0;
7742 
7743     // Do all but one copies using the full register width.
7744     for (unsigned i = 1; i < NumRegs; i++) {
7745       // Load one integer register's worth from the stack slot.
7746       SDValue Load = DAG.getLoad(
7747           RegVT, dl, Store, StackPtr,
7748           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7749       // Store it to the final location.  Remember the store.
7750       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7751                                     ST->getPointerInfo().getWithOffset(Offset),
7752                                     ST->getOriginalAlign(),
7753                                     ST->getMemOperand()->getFlags()));
7754       // Increment the pointers.
7755       Offset += RegBytes;
7756       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7757       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7758     }
7759 
7760     // The last store may be partial.  Do a truncating store.  On big-endian
7761     // machines this requires an extending load from the stack slot to ensure
7762     // that the bits are in the right place.
7763     EVT LoadMemVT =
7764         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7765 
7766     // Load from the stack slot.
7767     SDValue Load = DAG.getExtLoad(
7768         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7769         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7770 
7771     Stores.push_back(
7772         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7773                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7774                           ST->getOriginalAlign(),
7775                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7776     // The order of the stores doesn't matter - say it with a TokenFactor.
7777     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7778     return Result;
7779   }
7780 
7781   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7782          "Unaligned store of unknown type.");
7783   // Get the half-size VT
7784   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7785   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7786   unsigned IncrementSize = NumBits / 8;
7787 
7788   // Divide the stored value in two parts.
7789   SDValue ShiftAmount = DAG.getConstant(
7790       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7791   SDValue Lo = Val;
7792   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7793 
7794   // Store the two parts
7795   SDValue Store1, Store2;
7796   Store1 = DAG.getTruncStore(Chain, dl,
7797                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7798                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7799                              ST->getMemOperand()->getFlags());
7800 
7801   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7802   Store2 = DAG.getTruncStore(
7803       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7804       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7805       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7806 
7807   SDValue Result =
7808       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7809   return Result;
7810 }
7811 
7812 SDValue
7813 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7814                                        const SDLoc &DL, EVT DataVT,
7815                                        SelectionDAG &DAG,
7816                                        bool IsCompressedMemory) const {
7817   SDValue Increment;
7818   EVT AddrVT = Addr.getValueType();
7819   EVT MaskVT = Mask.getValueType();
7820   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7821          "Incompatible types of Data and Mask");
7822   if (IsCompressedMemory) {
7823     if (DataVT.isScalableVector())
7824       report_fatal_error(
7825           "Cannot currently handle compressed memory with scalable vectors");
7826     // Incrementing the pointer according to number of '1's in the mask.
7827     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7828     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7829     if (MaskIntVT.getSizeInBits() < 32) {
7830       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7831       MaskIntVT = MVT::i32;
7832     }
7833 
7834     // Count '1's with POPCNT.
7835     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7836     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7837     // Scale is an element size in bytes.
7838     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7839                                     AddrVT);
7840     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7841   } else if (DataVT.isScalableVector()) {
7842     Increment = DAG.getVScale(DL, AddrVT,
7843                               APInt(AddrVT.getFixedSizeInBits(),
7844                                     DataVT.getStoreSize().getKnownMinSize()));
7845   } else
7846     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7847 
7848   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7849 }
7850 
7851 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7852                                        EVT VecVT, const SDLoc &dl,
7853                                        ElementCount SubEC) {
7854   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7855          "Cannot index a scalable vector within a fixed-width vector");
7856 
7857   unsigned NElts = VecVT.getVectorMinNumElements();
7858   unsigned NumSubElts = SubEC.getKnownMinValue();
7859   EVT IdxVT = Idx.getValueType();
7860 
7861   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7862     // If this is a constant index and we know the value plus the number of the
7863     // elements in the subvector minus one is less than the minimum number of
7864     // elements then it's safe to return Idx.
7865     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7866       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7867         return Idx;
7868     SDValue VS =
7869         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7870     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7871     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7872                               DAG.getConstant(NumSubElts, dl, IdxVT));
7873     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7874   }
7875   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7876     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7877     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7878                        DAG.getConstant(Imm, dl, IdxVT));
7879   }
7880   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7881   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7882                      DAG.getConstant(MaxIndex, dl, IdxVT));
7883 }
7884 
7885 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7886                                                 SDValue VecPtr, EVT VecVT,
7887                                                 SDValue Index) const {
7888   return getVectorSubVecPointer(
7889       DAG, VecPtr, VecVT,
7890       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7891       Index);
7892 }
7893 
7894 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7895                                                SDValue VecPtr, EVT VecVT,
7896                                                EVT SubVecVT,
7897                                                SDValue Index) const {
7898   SDLoc dl(Index);
7899   // Make sure the index type is big enough to compute in.
7900   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7901 
7902   EVT EltVT = VecVT.getVectorElementType();
7903 
7904   // Calculate the element offset and add it to the pointer.
7905   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7906   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7907          "Converting bits to bytes lost precision");
7908   assert(SubVecVT.getVectorElementType() == EltVT &&
7909          "Sub-vector must be a vector with matching element type");
7910   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7911                                   SubVecVT.getVectorElementCount());
7912 
7913   EVT IdxVT = Index.getValueType();
7914   if (SubVecVT.isScalableVector())
7915     Index =
7916         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7917                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7918 
7919   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7920                       DAG.getConstant(EltSize, dl, IdxVT));
7921   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7922 }
7923 
7924 //===----------------------------------------------------------------------===//
7925 // Implementation of Emulated TLS Model
7926 //===----------------------------------------------------------------------===//
7927 
7928 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7929                                                 SelectionDAG &DAG) const {
7930   // Access to address of TLS varialbe xyz is lowered to a function call:
7931   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7932   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7933   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7934   SDLoc dl(GA);
7935 
7936   ArgListTy Args;
7937   ArgListEntry Entry;
7938   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7939   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7940   StringRef EmuTlsVarName(NameString);
7941   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7942   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7943   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7944   Entry.Ty = VoidPtrType;
7945   Args.push_back(Entry);
7946 
7947   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7948 
7949   TargetLowering::CallLoweringInfo CLI(DAG);
7950   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7951   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7952   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7953 
7954   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7955   // At last for X86 targets, maybe good for other targets too?
7956   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7957   MFI.setAdjustsStack(true); // Is this only for X86 target?
7958   MFI.setHasCalls(true);
7959 
7960   assert((GA->getOffset() == 0) &&
7961          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7962   return CallResult.first;
7963 }
7964 
7965 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7966                                                 SelectionDAG &DAG) const {
7967   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7968   if (!isCtlzFast())
7969     return SDValue();
7970   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7971   SDLoc dl(Op);
7972   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7973     if (C->isZero() && CC == ISD::SETEQ) {
7974       EVT VT = Op.getOperand(0).getValueType();
7975       SDValue Zext = Op.getOperand(0);
7976       if (VT.bitsLT(MVT::i32)) {
7977         VT = MVT::i32;
7978         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7979       }
7980       unsigned Log2b = Log2_32(VT.getSizeInBits());
7981       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7982       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7983                                 DAG.getConstant(Log2b, dl, MVT::i32));
7984       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7985     }
7986   }
7987   return SDValue();
7988 }
7989 
7990 // Convert redundant addressing modes (e.g. scaling is redundant
7991 // when accessing bytes).
7992 ISD::MemIndexType
7993 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7994                                       SDValue Offsets) const {
7995   bool IsScaledIndex =
7996       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7997   bool IsSignedIndex =
7998       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7999 
8000   // Scaling is unimportant for bytes, canonicalize to unscaled.
8001   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8002     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8003 
8004   return IndexType;
8005 }
8006 
8007 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8008   SDValue Op0 = Node->getOperand(0);
8009   SDValue Op1 = Node->getOperand(1);
8010   EVT VT = Op0.getValueType();
8011   unsigned Opcode = Node->getOpcode();
8012   SDLoc DL(Node);
8013 
8014   // umin(x,y) -> sub(x,usubsat(x,y))
8015   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8016       isOperationLegal(ISD::USUBSAT, VT)) {
8017     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8018                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8019   }
8020 
8021   // umax(x,y) -> add(x,usubsat(y,x))
8022   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8023       isOperationLegal(ISD::USUBSAT, VT)) {
8024     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8025                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8026   }
8027 
8028   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8029   ISD::CondCode CC;
8030   switch (Opcode) {
8031   default: llvm_unreachable("How did we get here?");
8032   case ISD::SMAX: CC = ISD::SETGT; break;
8033   case ISD::SMIN: CC = ISD::SETLT; break;
8034   case ISD::UMAX: CC = ISD::SETUGT; break;
8035   case ISD::UMIN: CC = ISD::SETULT; break;
8036   }
8037 
8038   // FIXME: Should really try to split the vector in case it's legal on a
8039   // subvector.
8040   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8041     return DAG.UnrollVectorOp(Node);
8042 
8043   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8044   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8045   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8046 }
8047 
8048 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8049   unsigned Opcode = Node->getOpcode();
8050   SDValue LHS = Node->getOperand(0);
8051   SDValue RHS = Node->getOperand(1);
8052   EVT VT = LHS.getValueType();
8053   SDLoc dl(Node);
8054 
8055   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8056   assert(VT.isInteger() && "Expected operands to be integers");
8057 
8058   // usub.sat(a, b) -> umax(a, b) - b
8059   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8060     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8061     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8062   }
8063 
8064   // uadd.sat(a, b) -> umin(a, ~b) + b
8065   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8066     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8067     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8068     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8069   }
8070 
8071   unsigned OverflowOp;
8072   switch (Opcode) {
8073   case ISD::SADDSAT:
8074     OverflowOp = ISD::SADDO;
8075     break;
8076   case ISD::UADDSAT:
8077     OverflowOp = ISD::UADDO;
8078     break;
8079   case ISD::SSUBSAT:
8080     OverflowOp = ISD::SSUBO;
8081     break;
8082   case ISD::USUBSAT:
8083     OverflowOp = ISD::USUBO;
8084     break;
8085   default:
8086     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8087                      "addition or subtraction node.");
8088   }
8089 
8090   // FIXME: Should really try to split the vector in case it's legal on a
8091   // subvector.
8092   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8093     return DAG.UnrollVectorOp(Node);
8094 
8095   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8096   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8097   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8098   SDValue SumDiff = Result.getValue(0);
8099   SDValue Overflow = Result.getValue(1);
8100   SDValue Zero = DAG.getConstant(0, dl, VT);
8101   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8102 
8103   if (Opcode == ISD::UADDSAT) {
8104     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8105       // (LHS + RHS) | OverflowMask
8106       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8107       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8108     }
8109     // Overflow ? 0xffff.... : (LHS + RHS)
8110     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8111   }
8112 
8113   if (Opcode == ISD::USUBSAT) {
8114     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8115       // (LHS - RHS) & ~OverflowMask
8116       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8117       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8118       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8119     }
8120     // Overflow ? 0 : (LHS - RHS)
8121     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8122   }
8123 
8124   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8125   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8126   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8127   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8128                               DAG.getConstant(BitWidth - 1, dl, VT));
8129   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8130   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8131 }
8132 
8133 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8134   unsigned Opcode = Node->getOpcode();
8135   bool IsSigned = Opcode == ISD::SSHLSAT;
8136   SDValue LHS = Node->getOperand(0);
8137   SDValue RHS = Node->getOperand(1);
8138   EVT VT = LHS.getValueType();
8139   SDLoc dl(Node);
8140 
8141   assert((Node->getOpcode() == ISD::SSHLSAT ||
8142           Node->getOpcode() == ISD::USHLSAT) &&
8143           "Expected a SHLSAT opcode");
8144   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8145   assert(VT.isInteger() && "Expected operands to be integers");
8146 
8147   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8148 
8149   unsigned BW = VT.getScalarSizeInBits();
8150   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8151   SDValue Orig =
8152       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8153 
8154   SDValue SatVal;
8155   if (IsSigned) {
8156     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8157     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8158     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8159                              SatMin, SatMax, ISD::SETLT);
8160   } else {
8161     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8162   }
8163   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8164 
8165   return Result;
8166 }
8167 
8168 SDValue
8169 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8170   assert((Node->getOpcode() == ISD::SMULFIX ||
8171           Node->getOpcode() == ISD::UMULFIX ||
8172           Node->getOpcode() == ISD::SMULFIXSAT ||
8173           Node->getOpcode() == ISD::UMULFIXSAT) &&
8174          "Expected a fixed point multiplication opcode");
8175 
8176   SDLoc dl(Node);
8177   SDValue LHS = Node->getOperand(0);
8178   SDValue RHS = Node->getOperand(1);
8179   EVT VT = LHS.getValueType();
8180   unsigned Scale = Node->getConstantOperandVal(2);
8181   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8182                      Node->getOpcode() == ISD::UMULFIXSAT);
8183   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8184                  Node->getOpcode() == ISD::SMULFIXSAT);
8185   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8186   unsigned VTSize = VT.getScalarSizeInBits();
8187 
8188   if (!Scale) {
8189     // [us]mul.fix(a, b, 0) -> mul(a, b)
8190     if (!Saturating) {
8191       if (isOperationLegalOrCustom(ISD::MUL, VT))
8192         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8193     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8194       SDValue Result =
8195           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8196       SDValue Product = Result.getValue(0);
8197       SDValue Overflow = Result.getValue(1);
8198       SDValue Zero = DAG.getConstant(0, dl, VT);
8199 
8200       APInt MinVal = APInt::getSignedMinValue(VTSize);
8201       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8202       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8203       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8204       // Xor the inputs, if resulting sign bit is 0 the product will be
8205       // positive, else negative.
8206       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8207       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8208       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8209       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8210     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8211       SDValue Result =
8212           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8213       SDValue Product = Result.getValue(0);
8214       SDValue Overflow = Result.getValue(1);
8215 
8216       APInt MaxVal = APInt::getMaxValue(VTSize);
8217       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8218       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8219     }
8220   }
8221 
8222   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8223          "Expected scale to be less than the number of bits if signed or at "
8224          "most the number of bits if unsigned.");
8225   assert(LHS.getValueType() == RHS.getValueType() &&
8226          "Expected both operands to be the same type");
8227 
8228   // Get the upper and lower bits of the result.
8229   SDValue Lo, Hi;
8230   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8231   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8232   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8233     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8234     Lo = Result.getValue(0);
8235     Hi = Result.getValue(1);
8236   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8237     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8238     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8239   } else if (VT.isVector()) {
8240     return SDValue();
8241   } else {
8242     report_fatal_error("Unable to expand fixed point multiplication.");
8243   }
8244 
8245   if (Scale == VTSize)
8246     // Result is just the top half since we'd be shifting by the width of the
8247     // operand. Overflow impossible so this works for both UMULFIX and
8248     // UMULFIXSAT.
8249     return Hi;
8250 
8251   // The result will need to be shifted right by the scale since both operands
8252   // are scaled. The result is given to us in 2 halves, so we only want part of
8253   // both in the result.
8254   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8255   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8256                                DAG.getConstant(Scale, dl, ShiftTy));
8257   if (!Saturating)
8258     return Result;
8259 
8260   if (!Signed) {
8261     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8262     // widened multiplication) aren't all zeroes.
8263 
8264     // Saturate to max if ((Hi >> Scale) != 0),
8265     // which is the same as if (Hi > ((1 << Scale) - 1))
8266     APInt MaxVal = APInt::getMaxValue(VTSize);
8267     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8268                                       dl, VT);
8269     Result = DAG.getSelectCC(dl, Hi, LowMask,
8270                              DAG.getConstant(MaxVal, dl, VT), Result,
8271                              ISD::SETUGT);
8272 
8273     return Result;
8274   }
8275 
8276   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8277   // widened multiplication) aren't all ones or all zeroes.
8278 
8279   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8280   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8281 
8282   if (Scale == 0) {
8283     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8284                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8285     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8286     // Saturated to SatMin if wide product is negative, and SatMax if wide
8287     // product is positive ...
8288     SDValue Zero = DAG.getConstant(0, dl, VT);
8289     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8290                                                ISD::SETLT);
8291     // ... but only if we overflowed.
8292     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8293   }
8294 
8295   //  We handled Scale==0 above so all the bits to examine is in Hi.
8296 
8297   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8298   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8299   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8300                                     dl, VT);
8301   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8302   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8303   // which is the same as if (HI < (-1 << (Scale - 1))
8304   SDValue HighMask =
8305       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8306                       dl, VT);
8307   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8308   return Result;
8309 }
8310 
8311 SDValue
8312 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8313                                     SDValue LHS, SDValue RHS,
8314                                     unsigned Scale, SelectionDAG &DAG) const {
8315   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8316           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8317          "Expected a fixed point division opcode");
8318 
8319   EVT VT = LHS.getValueType();
8320   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8321   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8322   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8323 
8324   // If there is enough room in the type to upscale the LHS or downscale the
8325   // RHS before the division, we can perform it in this type without having to
8326   // resize. For signed operations, the LHS headroom is the number of
8327   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8328   // The headroom for the RHS is the number of trailing zeroes.
8329   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8330                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8331   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8332 
8333   // For signed saturating operations, we need to be able to detect true integer
8334   // division overflow; that is, when you have MIN / -EPS. However, this
8335   // is undefined behavior and if we emit divisions that could take such
8336   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8337   // example).
8338   // Avoid this by requiring an extra bit so that we never get this case.
8339   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8340   // signed saturating division, we need to emit a whopping 32-bit division.
8341   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8342     return SDValue();
8343 
8344   unsigned LHSShift = std::min(LHSLead, Scale);
8345   unsigned RHSShift = Scale - LHSShift;
8346 
8347   // At this point, we know that if we shift the LHS up by LHSShift and the
8348   // RHS down by RHSShift, we can emit a regular division with a final scaling
8349   // factor of Scale.
8350 
8351   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8352   if (LHSShift)
8353     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8354                       DAG.getConstant(LHSShift, dl, ShiftTy));
8355   if (RHSShift)
8356     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8357                       DAG.getConstant(RHSShift, dl, ShiftTy));
8358 
8359   SDValue Quot;
8360   if (Signed) {
8361     // For signed operations, if the resulting quotient is negative and the
8362     // remainder is nonzero, subtract 1 from the quotient to round towards
8363     // negative infinity.
8364     SDValue Rem;
8365     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8366     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8367     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8368     if (isTypeLegal(VT) &&
8369         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8370       Quot = DAG.getNode(ISD::SDIVREM, dl,
8371                          DAG.getVTList(VT, VT),
8372                          LHS, RHS);
8373       Rem = Quot.getValue(1);
8374       Quot = Quot.getValue(0);
8375     } else {
8376       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8377                          LHS, RHS);
8378       Rem = DAG.getNode(ISD::SREM, dl, VT,
8379                         LHS, RHS);
8380     }
8381     SDValue Zero = DAG.getConstant(0, dl, VT);
8382     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8383     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8384     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8385     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8386     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8387                                DAG.getConstant(1, dl, VT));
8388     Quot = DAG.getSelect(dl, VT,
8389                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8390                          Sub1, Quot);
8391   } else
8392     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8393                        LHS, RHS);
8394 
8395   return Quot;
8396 }
8397 
8398 void TargetLowering::expandUADDSUBO(
8399     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8400   SDLoc dl(Node);
8401   SDValue LHS = Node->getOperand(0);
8402   SDValue RHS = Node->getOperand(1);
8403   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8404 
8405   // If ADD/SUBCARRY is legal, use that instead.
8406   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8407   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8408     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8409     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8410                                     { LHS, RHS, CarryIn });
8411     Result = SDValue(NodeCarry.getNode(), 0);
8412     Overflow = SDValue(NodeCarry.getNode(), 1);
8413     return;
8414   }
8415 
8416   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8417                             LHS.getValueType(), LHS, RHS);
8418 
8419   EVT ResultType = Node->getValueType(1);
8420   EVT SetCCType = getSetCCResultType(
8421       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8422   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8423   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8424   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8425 }
8426 
8427 void TargetLowering::expandSADDSUBO(
8428     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8429   SDLoc dl(Node);
8430   SDValue LHS = Node->getOperand(0);
8431   SDValue RHS = Node->getOperand(1);
8432   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8433 
8434   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8435                             LHS.getValueType(), LHS, RHS);
8436 
8437   EVT ResultType = Node->getValueType(1);
8438   EVT OType = getSetCCResultType(
8439       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8440 
8441   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8442   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8443   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8444     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8445     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8446     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8447     return;
8448   }
8449 
8450   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8451 
8452   // For an addition, the result should be less than one of the operands (LHS)
8453   // if and only if the other operand (RHS) is negative, otherwise there will
8454   // be overflow.
8455   // For a subtraction, the result should be less than one of the operands
8456   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8457   // otherwise there will be overflow.
8458   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8459   SDValue ConditionRHS =
8460       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8461 
8462   Overflow = DAG.getBoolExtOrTrunc(
8463       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8464       ResultType, ResultType);
8465 }
8466 
8467 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8468                                 SDValue &Overflow, SelectionDAG &DAG) const {
8469   SDLoc dl(Node);
8470   EVT VT = Node->getValueType(0);
8471   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8472   SDValue LHS = Node->getOperand(0);
8473   SDValue RHS = Node->getOperand(1);
8474   bool isSigned = Node->getOpcode() == ISD::SMULO;
8475 
8476   // For power-of-two multiplications we can use a simpler shift expansion.
8477   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8478     const APInt &C = RHSC->getAPIntValue();
8479     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8480     if (C.isPowerOf2()) {
8481       // smulo(x, signed_min) is same as umulo(x, signed_min).
8482       bool UseArithShift = isSigned && !C.isMinSignedValue();
8483       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8484       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8485       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8486       Overflow = DAG.getSetCC(dl, SetCCVT,
8487           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8488                       dl, VT, Result, ShiftAmt),
8489           LHS, ISD::SETNE);
8490       return true;
8491     }
8492   }
8493 
8494   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8495   if (VT.isVector())
8496     WideVT =
8497         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8498 
8499   SDValue BottomHalf;
8500   SDValue TopHalf;
8501   static const unsigned Ops[2][3] =
8502       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8503         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8504   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8505     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8506     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8507   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8508     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8509                              RHS);
8510     TopHalf = BottomHalf.getValue(1);
8511   } else if (isTypeLegal(WideVT)) {
8512     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8513     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8514     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8515     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8516     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8517         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8518     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8519                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8520   } else {
8521     if (VT.isVector())
8522       return false;
8523 
8524     // We can fall back to a libcall with an illegal type for the MUL if we
8525     // have a libcall big enough.
8526     // Also, we can fall back to a division in some cases, but that's a big
8527     // performance hit in the general case.
8528     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8529     if (WideVT == MVT::i16)
8530       LC = RTLIB::MUL_I16;
8531     else if (WideVT == MVT::i32)
8532       LC = RTLIB::MUL_I32;
8533     else if (WideVT == MVT::i64)
8534       LC = RTLIB::MUL_I64;
8535     else if (WideVT == MVT::i128)
8536       LC = RTLIB::MUL_I128;
8537     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8538 
8539     SDValue HiLHS;
8540     SDValue HiRHS;
8541     if (isSigned) {
8542       // The high part is obtained by SRA'ing all but one of the bits of low
8543       // part.
8544       unsigned LoSize = VT.getFixedSizeInBits();
8545       HiLHS =
8546           DAG.getNode(ISD::SRA, dl, VT, LHS,
8547                       DAG.getConstant(LoSize - 1, dl,
8548                                       getPointerTy(DAG.getDataLayout())));
8549       HiRHS =
8550           DAG.getNode(ISD::SRA, dl, VT, RHS,
8551                       DAG.getConstant(LoSize - 1, dl,
8552                                       getPointerTy(DAG.getDataLayout())));
8553     } else {
8554         HiLHS = DAG.getConstant(0, dl, VT);
8555         HiRHS = DAG.getConstant(0, dl, VT);
8556     }
8557 
8558     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8559     // pre-lowered to the correct types. This all depends upon WideVT not
8560     // being a legal type for the architecture and thus has to be split to
8561     // two arguments.
8562     SDValue Ret;
8563     TargetLowering::MakeLibCallOptions CallOptions;
8564     CallOptions.setSExt(isSigned);
8565     CallOptions.setIsPostTypeLegalization(true);
8566     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8567       // Halves of WideVT are packed into registers in different order
8568       // depending on platform endianness. This is usually handled by
8569       // the C calling convention, but we can't defer to it in
8570       // the legalizer.
8571       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8572       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8573     } else {
8574       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8575       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8576     }
8577     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8578            "Ret value is a collection of constituent nodes holding result.");
8579     if (DAG.getDataLayout().isLittleEndian()) {
8580       // Same as above.
8581       BottomHalf = Ret.getOperand(0);
8582       TopHalf = Ret.getOperand(1);
8583     } else {
8584       BottomHalf = Ret.getOperand(1);
8585       TopHalf = Ret.getOperand(0);
8586     }
8587   }
8588 
8589   Result = BottomHalf;
8590   if (isSigned) {
8591     SDValue ShiftAmt = DAG.getConstant(
8592         VT.getScalarSizeInBits() - 1, dl,
8593         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8594     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8595     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8596   } else {
8597     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8598                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8599   }
8600 
8601   // Truncate the result if SetCC returns a larger type than needed.
8602   EVT RType = Node->getValueType(1);
8603   if (RType.bitsLT(Overflow.getValueType()))
8604     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8605 
8606   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8607          "Unexpected result type for S/UMULO legalization");
8608   return true;
8609 }
8610 
8611 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8612   SDLoc dl(Node);
8613   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8614   SDValue Op = Node->getOperand(0);
8615   EVT VT = Op.getValueType();
8616 
8617   if (VT.isScalableVector())
8618     report_fatal_error(
8619         "Expanding reductions for scalable vectors is undefined.");
8620 
8621   // Try to use a shuffle reduction for power of two vectors.
8622   if (VT.isPow2VectorType()) {
8623     while (VT.getVectorNumElements() > 1) {
8624       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8625       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8626         break;
8627 
8628       SDValue Lo, Hi;
8629       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8630       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8631       VT = HalfVT;
8632     }
8633   }
8634 
8635   EVT EltVT = VT.getVectorElementType();
8636   unsigned NumElts = VT.getVectorNumElements();
8637 
8638   SmallVector<SDValue, 8> Ops;
8639   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8640 
8641   SDValue Res = Ops[0];
8642   for (unsigned i = 1; i < NumElts; i++)
8643     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8644 
8645   // Result type may be wider than element type.
8646   if (EltVT != Node->getValueType(0))
8647     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8648   return Res;
8649 }
8650 
8651 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8652   SDLoc dl(Node);
8653   SDValue AccOp = Node->getOperand(0);
8654   SDValue VecOp = Node->getOperand(1);
8655   SDNodeFlags Flags = Node->getFlags();
8656 
8657   EVT VT = VecOp.getValueType();
8658   EVT EltVT = VT.getVectorElementType();
8659 
8660   if (VT.isScalableVector())
8661     report_fatal_error(
8662         "Expanding reductions for scalable vectors is undefined.");
8663 
8664   unsigned NumElts = VT.getVectorNumElements();
8665 
8666   SmallVector<SDValue, 8> Ops;
8667   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8668 
8669   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8670 
8671   SDValue Res = AccOp;
8672   for (unsigned i = 0; i < NumElts; i++)
8673     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8674 
8675   return Res;
8676 }
8677 
8678 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8679                                SelectionDAG &DAG) const {
8680   EVT VT = Node->getValueType(0);
8681   SDLoc dl(Node);
8682   bool isSigned = Node->getOpcode() == ISD::SREM;
8683   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8684   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8685   SDValue Dividend = Node->getOperand(0);
8686   SDValue Divisor = Node->getOperand(1);
8687   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8688     SDVTList VTs = DAG.getVTList(VT, VT);
8689     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8690     return true;
8691   }
8692   if (isOperationLegalOrCustom(DivOpc, VT)) {
8693     // X % Y -> X-X/Y*Y
8694     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8695     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8696     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8697     return true;
8698   }
8699   return false;
8700 }
8701 
8702 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8703                                             SelectionDAG &DAG) const {
8704   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8705   SDLoc dl(SDValue(Node, 0));
8706   SDValue Src = Node->getOperand(0);
8707 
8708   // DstVT is the result type, while SatVT is the size to which we saturate
8709   EVT SrcVT = Src.getValueType();
8710   EVT DstVT = Node->getValueType(0);
8711 
8712   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8713   unsigned SatWidth = SatVT.getScalarSizeInBits();
8714   unsigned DstWidth = DstVT.getScalarSizeInBits();
8715   assert(SatWidth <= DstWidth &&
8716          "Expected saturation width smaller than result width");
8717 
8718   // Determine minimum and maximum integer values and their corresponding
8719   // floating-point values.
8720   APInt MinInt, MaxInt;
8721   if (IsSigned) {
8722     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8723     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8724   } else {
8725     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8726     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8727   }
8728 
8729   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8730   // libcall emission cannot handle this. Large result types will fail.
8731   if (SrcVT == MVT::f16) {
8732     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8733     SrcVT = Src.getValueType();
8734   }
8735 
8736   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8737   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8738 
8739   APFloat::opStatus MinStatus =
8740       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8741   APFloat::opStatus MaxStatus =
8742       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8743   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8744                              !(MaxStatus & APFloat::opStatus::opInexact);
8745 
8746   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8747   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8748 
8749   // If the integer bounds are exactly representable as floats and min/max are
8750   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8751   // of comparisons and selects.
8752   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8753                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8754   if (AreExactFloatBounds && MinMaxLegal) {
8755     SDValue Clamped = Src;
8756 
8757     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8758     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8759     // Clamp by MaxFloat from above. NaN cannot occur.
8760     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8761     // Convert clamped value to integer.
8762     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8763                                   dl, DstVT, Clamped);
8764 
8765     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8766     // which will cast to zero.
8767     if (!IsSigned)
8768       return FpToInt;
8769 
8770     // Otherwise, select 0 if Src is NaN.
8771     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8772     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8773                            ISD::CondCode::SETUO);
8774   }
8775 
8776   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8777   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8778 
8779   // Result of direct conversion. The assumption here is that the operation is
8780   // non-trapping and it's fine to apply it to an out-of-range value if we
8781   // select it away later.
8782   SDValue FpToInt =
8783       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8784 
8785   SDValue Select = FpToInt;
8786 
8787   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8788   // MinInt if Src is NaN.
8789   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8790                            ISD::CondCode::SETULT);
8791   // If Src OGT MaxFloat, select MaxInt.
8792   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8793                            ISD::CondCode::SETOGT);
8794 
8795   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8796   // is already zero.
8797   if (!IsSigned)
8798     return Select;
8799 
8800   // Otherwise, select 0 if Src is NaN.
8801   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8802   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8803 }
8804 
8805 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8806                                            SelectionDAG &DAG) const {
8807   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8808   assert(Node->getValueType(0).isScalableVector() &&
8809          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8810 
8811   EVT VT = Node->getValueType(0);
8812   SDValue V1 = Node->getOperand(0);
8813   SDValue V2 = Node->getOperand(1);
8814   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8815   SDLoc DL(Node);
8816 
8817   // Expand through memory thusly:
8818   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8819   //  Store V1, Ptr
8820   //  Store V2, Ptr + sizeof(V1)
8821   //  If (Imm < 0)
8822   //    TrailingElts = -Imm
8823   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8824   //  else
8825   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8826   //  Res = Load Ptr
8827 
8828   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8829 
8830   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8831                                VT.getVectorElementCount() * 2);
8832   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8833   EVT PtrVT = StackPtr.getValueType();
8834   auto &MF = DAG.getMachineFunction();
8835   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8836   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8837 
8838   // Store the lo part of CONCAT_VECTORS(V1, V2)
8839   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8840   // Store the hi part of CONCAT_VECTORS(V1, V2)
8841   SDValue OffsetToV2 = DAG.getVScale(
8842       DL, PtrVT,
8843       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8844   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8845   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8846 
8847   if (Imm >= 0) {
8848     // Load back the required element. getVectorElementPointer takes care of
8849     // clamping the index if it's out-of-bounds.
8850     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8851     // Load the spliced result
8852     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8853                        MachinePointerInfo::getUnknownStack(MF));
8854   }
8855 
8856   uint64_t TrailingElts = -Imm;
8857 
8858   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8859   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8860   SDValue TrailingBytes =
8861       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8862 
8863   if (TrailingElts > VT.getVectorMinNumElements()) {
8864     SDValue VLBytes = DAG.getVScale(
8865         DL, PtrVT,
8866         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8867     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8868   }
8869 
8870   // Calculate the start address of the spliced result.
8871   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8872 
8873   // Load the spliced result
8874   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8875                      MachinePointerInfo::getUnknownStack(MF));
8876 }
8877 
8878 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8879                                            SDValue &LHS, SDValue &RHS,
8880                                            SDValue &CC, bool &NeedInvert,
8881                                            const SDLoc &dl, SDValue &Chain,
8882                                            bool IsSignaling) const {
8883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8884   MVT OpVT = LHS.getSimpleValueType();
8885   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8886   NeedInvert = false;
8887   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8888   default:
8889     llvm_unreachable("Unknown condition code action!");
8890   case TargetLowering::Legal:
8891     // Nothing to do.
8892     break;
8893   case TargetLowering::Expand: {
8894     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8895     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8896       std::swap(LHS, RHS);
8897       CC = DAG.getCondCode(InvCC);
8898       return true;
8899     }
8900     // Swapping operands didn't work. Try inverting the condition.
8901     bool NeedSwap = false;
8902     InvCC = getSetCCInverse(CCCode, OpVT);
8903     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8904       // If inverting the condition is not enough, try swapping operands
8905       // on top of it.
8906       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8907       NeedSwap = true;
8908     }
8909     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8910       CC = DAG.getCondCode(InvCC);
8911       NeedInvert = true;
8912       if (NeedSwap)
8913         std::swap(LHS, RHS);
8914       return true;
8915     }
8916 
8917     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8918     unsigned Opc = 0;
8919     switch (CCCode) {
8920     default:
8921       llvm_unreachable("Don't know how to expand this condition!");
8922     case ISD::SETUO:
8923       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8924         CC1 = ISD::SETUNE;
8925         CC2 = ISD::SETUNE;
8926         Opc = ISD::OR;
8927         break;
8928       }
8929       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8930              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8931       NeedInvert = true;
8932       LLVM_FALLTHROUGH;
8933     case ISD::SETO:
8934       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8935              "If SETO is expanded, SETOEQ must be legal!");
8936       CC1 = ISD::SETOEQ;
8937       CC2 = ISD::SETOEQ;
8938       Opc = ISD::AND;
8939       break;
8940     case ISD::SETONE:
8941     case ISD::SETUEQ:
8942       // If the SETUO or SETO CC isn't legal, we might be able to use
8943       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8944       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8945       // the operands.
8946       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8947       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8948           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8949            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8950         CC1 = ISD::SETOGT;
8951         CC2 = ISD::SETOLT;
8952         Opc = ISD::OR;
8953         NeedInvert = ((unsigned)CCCode & 0x8U);
8954         break;
8955       }
8956       LLVM_FALLTHROUGH;
8957     case ISD::SETOEQ:
8958     case ISD::SETOGT:
8959     case ISD::SETOGE:
8960     case ISD::SETOLT:
8961     case ISD::SETOLE:
8962     case ISD::SETUNE:
8963     case ISD::SETUGT:
8964     case ISD::SETUGE:
8965     case ISD::SETULT:
8966     case ISD::SETULE:
8967       // If we are floating point, assign and break, otherwise fall through.
8968       if (!OpVT.isInteger()) {
8969         // We can use the 4th bit to tell if we are the unordered
8970         // or ordered version of the opcode.
8971         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8972         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8973         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8974         break;
8975       }
8976       // Fallthrough if we are unsigned integer.
8977       LLVM_FALLTHROUGH;
8978     case ISD::SETLE:
8979     case ISD::SETGT:
8980     case ISD::SETGE:
8981     case ISD::SETLT:
8982     case ISD::SETNE:
8983     case ISD::SETEQ:
8984       // If all combinations of inverting the condition and swapping operands
8985       // didn't work then we have no means to expand the condition.
8986       llvm_unreachable("Don't know how to expand this condition!");
8987     }
8988 
8989     SDValue SetCC1, SetCC2;
8990     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8991       // If we aren't the ordered or unorder operation,
8992       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8993       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8994       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8995     } else {
8996       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8997       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8998       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8999     }
9000     if (Chain)
9001       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9002                           SetCC2.getValue(1));
9003     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9004     RHS = SDValue();
9005     CC = SDValue();
9006     return true;
9007   }
9008   }
9009   return false;
9010 }
9011