1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on a call instruction
106 /// and called function attributes.
107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121   Alignment = Call->getParamStackAlign(ArgIdx);
122   IndirectType = nullptr;
123   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
124          "multiple ABI attributes?");
125   if (IsByVal) {
126     IndirectType = Call->getParamByValType(ArgIdx);
127     if (!Alignment)
128       Alignment = Call->getParamAlign(ArgIdx);
129   }
130   if (IsPreallocated)
131     IndirectType = Call->getParamPreallocatedType(ArgIdx);
132   if (IsInAlloca)
133     IndirectType = Call->getParamInAllocaType(ArgIdx);
134 }
135 
136 /// Generate a libcall taking the given operands as arguments and returning a
137 /// result of type RetVT.
138 std::pair<SDValue, SDValue>
139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
140                             ArrayRef<SDValue> Ops,
141                             MakeLibCallOptions CallOptions,
142                             const SDLoc &dl,
143                             SDValue InChain) const {
144   if (!InChain)
145     InChain = DAG.getEntryNode();
146 
147   TargetLowering::ArgListTy Args;
148   Args.reserve(Ops.size());
149 
150   TargetLowering::ArgListEntry Entry;
151   for (unsigned i = 0; i < Ops.size(); ++i) {
152     SDValue NewOp = Ops[i];
153     Entry.Node = NewOp;
154     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
155     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
156                                                  CallOptions.IsSExt);
157     Entry.IsZExt = !Entry.IsSExt;
158 
159     if (CallOptions.IsSoften &&
160         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
161       Entry.IsSExt = Entry.IsZExt = false;
162     }
163     Args.push_back(Entry);
164   }
165 
166   if (LC == RTLIB::UNKNOWN_LIBCALL)
167     report_fatal_error("Unsupported library call operation!");
168   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
169                                          getPointerTy(DAG.getDataLayout()));
170 
171   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
172   TargetLowering::CallLoweringInfo CLI(DAG);
173   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
174   bool zeroExtend = !signExtend;
175 
176   if (CallOptions.IsSoften &&
177       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
178     signExtend = zeroExtend = false;
179   }
180 
181   CLI.setDebugLoc(dl)
182       .setChain(InChain)
183       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
184       .setNoReturn(CallOptions.DoesNotReturn)
185       .setDiscardResult(!CallOptions.IsReturnValueUsed)
186       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
187       .setSExtResult(signExtend)
188       .setZExtResult(zeroExtend);
189   return LowerCallTo(CLI);
190 }
191 
192 bool TargetLowering::findOptimalMemOpLowering(
193     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
194     unsigned SrcAS, const AttributeList &FuncAttributes) const {
195   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
196     return false;
197 
198   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
199 
200   if (VT == MVT::Other) {
201     // Use the largest integer type whose alignment constraints are satisfied.
202     // We only need to check DstAlign here as SrcAlign is always greater or
203     // equal to DstAlign (or zero).
204     VT = MVT::i64;
205     if (Op.isFixedDstAlign())
206       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
207              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
208         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
209     assert(VT.isInteger());
210 
211     // Find the largest legal integer type.
212     MVT LVT = MVT::i64;
213     while (!isTypeLegal(LVT))
214       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
215     assert(LVT.isInteger());
216 
217     // If the type we've chosen is larger than the largest legal integer type
218     // then use that instead.
219     if (VT.bitsGT(LVT))
220       VT = LVT;
221   }
222 
223   unsigned NumMemOps = 0;
224   uint64_t Size = Op.size();
225   while (Size) {
226     unsigned VTSize = VT.getSizeInBits() / 8;
227     while (VTSize > Size) {
228       // For now, only use non-vector load / store's for the left-over pieces.
229       EVT NewVT = VT;
230       unsigned NewVTSize;
231 
232       bool Found = false;
233       if (VT.isVector() || VT.isFloatingPoint()) {
234         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
235         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
236             isSafeMemOpType(NewVT.getSimpleVT()))
237           Found = true;
238         else if (NewVT == MVT::i64 &&
239                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
240                  isSafeMemOpType(MVT::f64)) {
241           // i64 is usually not legal on 32-bit targets, but f64 may be.
242           NewVT = MVT::f64;
243           Found = true;
244         }
245       }
246 
247       if (!Found) {
248         do {
249           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
250           if (NewVT == MVT::i8)
251             break;
252         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
253       }
254       NewVTSize = NewVT.getSizeInBits() / 8;
255 
256       // If the new VT cannot cover all of the remaining bits, then consider
257       // issuing a (or a pair of) unaligned and overlapping load / store.
258       bool Fast;
259       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
260           allowsMisalignedMemoryAccesses(
261               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
262               MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
495                                             const APInt &DemandedBits,
496                                             const APInt &DemandedElts,
497                                             TargetLoweringOpt &TLO) const {
498   SDLoc DL(Op);
499   unsigned Opcode = Op.getOpcode();
500 
501   // Do target-specific constant optimization.
502   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
503     return TLO.New.getNode();
504 
505   // FIXME: ISD::SELECT, ISD::SELECT_CC
506   switch (Opcode) {
507   default:
508     break;
509   case ISD::XOR:
510   case ISD::AND:
511   case ISD::OR: {
512     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513     if (!Op1C || Op1C->isOpaque())
514       return false;
515 
516     // If this is a 'not' op, don't touch it because that's a canonical form.
517     const APInt &C = Op1C->getAPIntValue();
518     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
519       return false;
520 
521     if (!C.isSubsetOf(DemandedBits)) {
522       EVT VT = Op.getValueType();
523       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
524       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525       return TLO.CombineTo(Op, NewOp);
526     }
527 
528     break;
529   }
530   }
531 
532   return false;
533 }
534 
535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
536                                             const APInt &DemandedBits,
537                                             TargetLoweringOpt &TLO) const {
538   EVT VT = Op.getValueType();
539   APInt DemandedElts = VT.isVector()
540                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
541                            : APInt(1, 1);
542   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
543 }
544 
545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
547 /// generalized for targets with other types of implicit widening casts.
548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
549                                       const APInt &Demanded,
550                                       TargetLoweringOpt &TLO) const {
551   assert(Op.getNumOperands() == 2 &&
552          "ShrinkDemandedOp only supports binary operators!");
553   assert(Op.getNode()->getNumValues() == 1 &&
554          "ShrinkDemandedOp only supports nodes with one result!");
555 
556   SelectionDAG &DAG = TLO.DAG;
557   SDLoc dl(Op);
558 
559   // Early return, as this function cannot handle vector types.
560   if (Op.getValueType().isVector())
561     return false;
562 
563   // Don't do this if the node has another user, which may require the
564   // full value.
565   if (!Op.getNode()->hasOneUse())
566     return false;
567 
568   // Search for the smallest integer type with free casts to and from
569   // Op's type. For expedience, just check power-of-2 integer types.
570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
571   unsigned DemandedSize = Demanded.getActiveBits();
572   unsigned SmallVTBits = DemandedSize;
573   if (!isPowerOf2_32(SmallVTBits))
574     SmallVTBits = NextPowerOf2(SmallVTBits);
575   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
576     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
577     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
578         TLI.isZExtFree(SmallVT, Op.getValueType())) {
579       // We found a type with free casts.
580       SDValue X = DAG.getNode(
581           Op.getOpcode(), dl, SmallVT,
582           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
584       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
585       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
586       return TLO.CombineTo(Op, Z);
587     }
588   }
589   return false;
590 }
591 
592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
593                                           DAGCombinerInfo &DCI) const {
594   SelectionDAG &DAG = DCI.DAG;
595   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
596                         !DCI.isBeforeLegalizeOps());
597   KnownBits Known;
598 
599   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
600   if (Simplified) {
601     DCI.AddToWorklist(Op.getNode());
602     DCI.CommitTargetLoweringOpt(TLO);
603   }
604   return Simplified;
605 }
606 
607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
608                                           KnownBits &Known,
609                                           TargetLoweringOpt &TLO,
610                                           unsigned Depth,
611                                           bool AssumeSingleUse) const {
612   EVT VT = Op.getValueType();
613 
614   // TODO: We can probably do more work on calculating the known bits and
615   // simplifying the operations for scalable vectors, but for now we just
616   // bail out.
617   if (VT.isScalableVector()) {
618     // Pretend we don't know anything for now.
619     Known = KnownBits(DemandedBits.getBitWidth());
620     return false;
621   }
622 
623   APInt DemandedElts = VT.isVector()
624                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
625                            : APInt(1, 1);
626   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
627                               AssumeSingleUse);
628 }
629 
630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
631 // TODO: Under what circumstances can we create nodes? Constant folding?
632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
633     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
634     SelectionDAG &DAG, unsigned Depth) const {
635   // Limit search depth.
636   if (Depth >= SelectionDAG::MaxRecursionDepth)
637     return SDValue();
638 
639   // Ignore UNDEFs.
640   if (Op.isUndef())
641     return SDValue();
642 
643   // Not demanding any bits/elts from Op.
644   if (DemandedBits == 0 || DemandedElts == 0)
645     return DAG.getUNDEF(Op.getValueType());
646 
647   unsigned NumElts = DemandedElts.getBitWidth();
648   unsigned BitWidth = DemandedBits.getBitWidth();
649   KnownBits LHSKnown, RHSKnown;
650   switch (Op.getOpcode()) {
651   case ISD::BITCAST: {
652     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
653     EVT SrcVT = Src.getValueType();
654     EVT DstVT = Op.getValueType();
655     if (SrcVT == DstVT)
656       return Src;
657 
658     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
659     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
660     if (NumSrcEltBits == NumDstEltBits)
661       if (SDValue V = SimplifyMultipleUseDemandedBits(
662               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
663         return DAG.getBitcast(DstVT, V);
664 
665     // TODO - bigendian once we have test coverage.
666     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
667         DAG.getDataLayout().isLittleEndian()) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned Offset = i * NumSrcEltBits;
674         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
675         if (!Sub.isNullValue()) {
676           DemandedSrcBits |= Sub;
677           for (unsigned j = 0; j != NumElts; ++j)
678             if (DemandedElts[j])
679               DemandedSrcElts.setBit((j * Scale) + i);
680         }
681       }
682 
683       if (SDValue V = SimplifyMultipleUseDemandedBits(
684               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
685         return DAG.getBitcast(DstVT, V);
686     }
687 
688     // TODO - bigendian once we have test coverage.
689     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
690         DAG.getDataLayout().isLittleEndian()) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
805         DAG.getDataLayout().isLittleEndian() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     // If we don't demand the inserted subvector, return the base vector.
823     SDValue Vec = Op.getOperand(0);
824     SDValue Sub = Op.getOperand(1);
825     uint64_t Idx = Op.getConstantOperandVal(2);
826     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
827     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
828       return Vec;
829     break;
830   }
831   case ISD::VECTOR_SHUFFLE: {
832     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
833 
834     // If all the demanded elts are from one operand and are inline,
835     // then we can use the operand directly.
836     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
837     for (unsigned i = 0; i != NumElts; ++i) {
838       int M = ShuffleMask[i];
839       if (M < 0 || !DemandedElts[i])
840         continue;
841       AllUndef = false;
842       IdentityLHS &= (M == (int)i);
843       IdentityRHS &= ((M - NumElts) == i);
844     }
845 
846     if (AllUndef)
847       return DAG.getUNDEF(Op.getValueType());
848     if (IdentityLHS)
849       return Op.getOperand(0);
850     if (IdentityRHS)
851       return Op.getOperand(1);
852     break;
853   }
854   default:
855     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
856       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
857               Op, DemandedBits, DemandedElts, DAG, Depth))
858         return V;
859     break;
860   }
861   return SDValue();
862 }
863 
864 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
865     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
866     unsigned Depth) const {
867   EVT VT = Op.getValueType();
868   APInt DemandedElts = VT.isVector()
869                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
870                            : APInt(1, 1);
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
876     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
877     unsigned Depth) const {
878   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
884 /// result of Op are ever used downstream. If we can use this information to
885 /// simplify Op, create a new simplified DAG node and return true, returning the
886 /// original and new nodes in Old and New. Otherwise, analyze the expression and
887 /// return a mask of Known bits for the expression (used to simplify the
888 /// caller).  The Known bits may only be accurate for those bits in the
889 /// OriginalDemandedBits and OriginalDemandedElts.
890 bool TargetLowering::SimplifyDemandedBits(
891     SDValue Op, const APInt &OriginalDemandedBits,
892     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
893     unsigned Depth, bool AssumeSingleUse) const {
894   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
895   assert(Op.getScalarValueSizeInBits() == BitWidth &&
896          "Mask size mismatches value type size!");
897 
898   // Don't know anything.
899   Known = KnownBits(BitWidth);
900 
901   // TODO: We can probably do more work on calculating the known bits and
902   // simplifying the operations for scalable vectors, but for now we just
903   // bail out.
904   if (Op.getValueType().isScalableVector())
905     return false;
906 
907   unsigned NumElts = OriginalDemandedElts.getBitWidth();
908   assert((!Op.getValueType().isVector() ||
909           NumElts == Op.getValueType().getVectorNumElements()) &&
910          "Unexpected vector size");
911 
912   APInt DemandedBits = OriginalDemandedBits;
913   APInt DemandedElts = OriginalDemandedElts;
914   SDLoc dl(Op);
915   auto &DL = TLO.DAG.getDataLayout();
916 
917   // Undef operand.
918   if (Op.isUndef())
919     return false;
920 
921   if (Op.getOpcode() == ISD::Constant) {
922     // We know all of the bits for a constant!
923     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
924     return false;
925   }
926 
927   if (Op.getOpcode() == ISD::ConstantFP) {
928     // We know all of the bits for a floating point constant!
929     Known = KnownBits::makeConstant(
930         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
931     return false;
932   }
933 
934   // Other users may use these bits.
935   EVT VT = Op.getValueType();
936   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
937     if (Depth != 0) {
938       // If not at the root, Just compute the Known bits to
939       // simplify things downstream.
940       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
941       return false;
942     }
943     // If this is the root being simplified, allow it to have multiple uses,
944     // just set the DemandedBits/Elts to all bits.
945     DemandedBits = APInt::getAllOnesValue(BitWidth);
946     DemandedElts = APInt::getAllOnesValue(NumElts);
947   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
948     // Not demanding any bits/elts from Op.
949     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
950   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
951     // Limit search depth.
952     return false;
953   }
954 
955   KnownBits Known2;
956   switch (Op.getOpcode()) {
957   case ISD::TargetConstant:
958     llvm_unreachable("Can't simplify this node");
959   case ISD::SCALAR_TO_VECTOR: {
960     if (!DemandedElts[0])
961       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
962 
963     KnownBits SrcKnown;
964     SDValue Src = Op.getOperand(0);
965     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
966     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
967     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
968       return true;
969 
970     // Upper elements are undef, so only get the knownbits if we just demand
971     // the bottom element.
972     if (DemandedElts == 1)
973       Known = SrcKnown.anyextOrTrunc(BitWidth);
974     break;
975   }
976   case ISD::BUILD_VECTOR:
977     // Collect the known bits that are shared by every demanded element.
978     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
979     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
980     return false; // Don't fall through, will infinitely loop.
981   case ISD::LOAD: {
982     auto *LD = cast<LoadSDNode>(Op);
983     if (getTargetConstantFromLoad(LD)) {
984       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
985       return false; // Don't fall through, will infinitely loop.
986     }
987     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
988       // If this is a ZEXTLoad and we are looking at the loaded value.
989       EVT MemVT = LD->getMemoryVT();
990       unsigned MemBits = MemVT.getScalarSizeInBits();
991       Known.Zero.setBitsFrom(MemBits);
992       return false; // Don't fall through, will infinitely loop.
993     }
994     break;
995   }
996   case ISD::INSERT_VECTOR_ELT: {
997     SDValue Vec = Op.getOperand(0);
998     SDValue Scl = Op.getOperand(1);
999     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1000     EVT VecVT = Vec.getValueType();
1001 
1002     // If index isn't constant, assume we need all vector elements AND the
1003     // inserted element.
1004     APInt DemandedVecElts(DemandedElts);
1005     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1006       unsigned Idx = CIdx->getZExtValue();
1007       DemandedVecElts.clearBit(Idx);
1008 
1009       // Inserted element is not required.
1010       if (!DemandedElts[Idx])
1011         return TLO.CombineTo(Op, Vec);
1012     }
1013 
1014     KnownBits KnownScl;
1015     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1016     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1017     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1018       return true;
1019 
1020     Known = KnownScl.anyextOrTrunc(BitWidth);
1021 
1022     KnownBits KnownVec;
1023     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1024                              Depth + 1))
1025       return true;
1026 
1027     if (!!DemandedVecElts)
1028       Known = KnownBits::commonBits(Known, KnownVec);
1029 
1030     return false;
1031   }
1032   case ISD::INSERT_SUBVECTOR: {
1033     // Demand any elements from the subvector and the remainder from the src its
1034     // inserted into.
1035     SDValue Src = Op.getOperand(0);
1036     SDValue Sub = Op.getOperand(1);
1037     uint64_t Idx = Op.getConstantOperandVal(2);
1038     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1039     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1040     APInt DemandedSrcElts = DemandedElts;
1041     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1042 
1043     KnownBits KnownSub, KnownSrc;
1044     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1045                              Depth + 1))
1046       return true;
1047     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1048                              Depth + 1))
1049       return true;
1050 
1051     Known.Zero.setAllBits();
1052     Known.One.setAllBits();
1053     if (!!DemandedSubElts)
1054       Known = KnownBits::commonBits(Known, KnownSub);
1055     if (!!DemandedSrcElts)
1056       Known = KnownBits::commonBits(Known, KnownSrc);
1057 
1058     // Attempt to avoid multi-use src if we don't need anything from it.
1059     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1060         !DemandedSrcElts.isAllOnesValue()) {
1061       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1062           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1063       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1064           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1065       if (NewSub || NewSrc) {
1066         NewSub = NewSub ? NewSub : Sub;
1067         NewSrc = NewSrc ? NewSrc : Src;
1068         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1069                                         Op.getOperand(2));
1070         return TLO.CombineTo(Op, NewOp);
1071       }
1072     }
1073     break;
1074   }
1075   case ISD::EXTRACT_SUBVECTOR: {
1076     // Offset the demanded elts by the subvector index.
1077     SDValue Src = Op.getOperand(0);
1078     if (Src.getValueType().isScalableVector())
1079       break;
1080     uint64_t Idx = Op.getConstantOperandVal(1);
1081     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1082     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1083 
1084     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1085                              Depth + 1))
1086       return true;
1087 
1088     // Attempt to avoid multi-use src if we don't need anything from it.
1089     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1090       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1091           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1092       if (DemandedSrc) {
1093         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1094                                         Op.getOperand(1));
1095         return TLO.CombineTo(Op, NewOp);
1096       }
1097     }
1098     break;
1099   }
1100   case ISD::CONCAT_VECTORS: {
1101     Known.Zero.setAllBits();
1102     Known.One.setAllBits();
1103     EVT SubVT = Op.getOperand(0).getValueType();
1104     unsigned NumSubVecs = Op.getNumOperands();
1105     unsigned NumSubElts = SubVT.getVectorNumElements();
1106     for (unsigned i = 0; i != NumSubVecs; ++i) {
1107       APInt DemandedSubElts =
1108           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1109       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1110                                Known2, TLO, Depth + 1))
1111         return true;
1112       // Known bits are shared by every demanded subvector element.
1113       if (!!DemandedSubElts)
1114         Known = KnownBits::commonBits(Known, Known2);
1115     }
1116     break;
1117   }
1118   case ISD::VECTOR_SHUFFLE: {
1119     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1120 
1121     // Collect demanded elements from shuffle operands..
1122     APInt DemandedLHS(NumElts, 0);
1123     APInt DemandedRHS(NumElts, 0);
1124     for (unsigned i = 0; i != NumElts; ++i) {
1125       if (!DemandedElts[i])
1126         continue;
1127       int M = ShuffleMask[i];
1128       if (M < 0) {
1129         // For UNDEF elements, we don't know anything about the common state of
1130         // the shuffle result.
1131         DemandedLHS.clearAllBits();
1132         DemandedRHS.clearAllBits();
1133         break;
1134       }
1135       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1136       if (M < (int)NumElts)
1137         DemandedLHS.setBit(M);
1138       else
1139         DemandedRHS.setBit(M - NumElts);
1140     }
1141 
1142     if (!!DemandedLHS || !!DemandedRHS) {
1143       SDValue Op0 = Op.getOperand(0);
1144       SDValue Op1 = Op.getOperand(1);
1145 
1146       Known.Zero.setAllBits();
1147       Known.One.setAllBits();
1148       if (!!DemandedLHS) {
1149         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1150                                  Depth + 1))
1151           return true;
1152         Known = KnownBits::commonBits(Known, Known2);
1153       }
1154       if (!!DemandedRHS) {
1155         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1156                                  Depth + 1))
1157           return true;
1158         Known = KnownBits::commonBits(Known, Known2);
1159       }
1160 
1161       // Attempt to avoid multi-use ops if we don't need anything from them.
1162       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1163           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1164       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1165           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1166       if (DemandedOp0 || DemandedOp1) {
1167         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1168         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1169         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1170         return TLO.CombineTo(Op, NewOp);
1171       }
1172     }
1173     break;
1174   }
1175   case ISD::AND: {
1176     SDValue Op0 = Op.getOperand(0);
1177     SDValue Op1 = Op.getOperand(1);
1178 
1179     // If the RHS is a constant, check to see if the LHS would be zero without
1180     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1181     // simplify the LHS, here we're using information from the LHS to simplify
1182     // the RHS.
1183     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1184       // Do not increment Depth here; that can cause an infinite loop.
1185       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1186       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1187       if ((LHSKnown.Zero & DemandedBits) ==
1188           (~RHSC->getAPIntValue() & DemandedBits))
1189         return TLO.CombineTo(Op, Op0);
1190 
1191       // If any of the set bits in the RHS are known zero on the LHS, shrink
1192       // the constant.
1193       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1194                                  DemandedElts, TLO))
1195         return true;
1196 
1197       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1198       // constant, but if this 'and' is only clearing bits that were just set by
1199       // the xor, then this 'and' can be eliminated by shrinking the mask of
1200       // the xor. For example, for a 32-bit X:
1201       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1202       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1203           LHSKnown.One == ~RHSC->getAPIntValue()) {
1204         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1205         return TLO.CombineTo(Op, Xor);
1206       }
1207     }
1208 
1209     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1210                              Depth + 1))
1211       return true;
1212     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1213     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1214                              Known2, TLO, Depth + 1))
1215       return true;
1216     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1217 
1218     // Attempt to avoid multi-use ops if we don't need anything from them.
1219     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1220       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1221           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1222       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1223           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1224       if (DemandedOp0 || DemandedOp1) {
1225         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1226         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1227         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1228         return TLO.CombineTo(Op, NewOp);
1229       }
1230     }
1231 
1232     // If all of the demanded bits are known one on one side, return the other.
1233     // These bits cannot contribute to the result of the 'and'.
1234     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1235       return TLO.CombineTo(Op, Op0);
1236     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1237       return TLO.CombineTo(Op, Op1);
1238     // If all of the demanded bits in the inputs are known zeros, return zero.
1239     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1240       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1241     // If the RHS is a constant, see if we can simplify it.
1242     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1243                                TLO))
1244       return true;
1245     // If the operation can be done in a smaller type, do so.
1246     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1247       return true;
1248 
1249     Known &= Known2;
1250     break;
1251   }
1252   case ISD::OR: {
1253     SDValue Op0 = Op.getOperand(0);
1254     SDValue Op1 = Op.getOperand(1);
1255 
1256     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1257                              Depth + 1))
1258       return true;
1259     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1260     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1261                              Known2, TLO, Depth + 1))
1262       return true;
1263     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1264 
1265     // Attempt to avoid multi-use ops if we don't need anything from them.
1266     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1267       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1268           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1269       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1270           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1271       if (DemandedOp0 || DemandedOp1) {
1272         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1273         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1274         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1275         return TLO.CombineTo(Op, NewOp);
1276       }
1277     }
1278 
1279     // If all of the demanded bits are known zero on one side, return the other.
1280     // These bits cannot contribute to the result of the 'or'.
1281     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1282       return TLO.CombineTo(Op, Op0);
1283     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1284       return TLO.CombineTo(Op, Op1);
1285     // If the RHS is a constant, see if we can simplify it.
1286     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1287       return true;
1288     // If the operation can be done in a smaller type, do so.
1289     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1290       return true;
1291 
1292     Known |= Known2;
1293     break;
1294   }
1295   case ISD::XOR: {
1296     SDValue Op0 = Op.getOperand(0);
1297     SDValue Op1 = Op.getOperand(1);
1298 
1299     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1300                              Depth + 1))
1301       return true;
1302     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1303     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1304                              Depth + 1))
1305       return true;
1306     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1307 
1308     // Attempt to avoid multi-use ops if we don't need anything from them.
1309     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1310       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1311           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1312       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1313           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1314       if (DemandedOp0 || DemandedOp1) {
1315         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1316         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1317         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1318         return TLO.CombineTo(Op, NewOp);
1319       }
1320     }
1321 
1322     // If all of the demanded bits are known zero on one side, return the other.
1323     // These bits cannot contribute to the result of the 'xor'.
1324     if (DemandedBits.isSubsetOf(Known.Zero))
1325       return TLO.CombineTo(Op, Op0);
1326     if (DemandedBits.isSubsetOf(Known2.Zero))
1327       return TLO.CombineTo(Op, Op1);
1328     // If the operation can be done in a smaller type, do so.
1329     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1330       return true;
1331 
1332     // If all of the unknown bits are known to be zero on one side or the other
1333     // turn this into an *inclusive* or.
1334     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1335     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1336       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1337 
1338     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1339     if (C) {
1340       // If one side is a constant, and all of the set bits in the constant are
1341       // also known set on the other side, turn this into an AND, as we know
1342       // the bits will be cleared.
1343       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1344       // NB: it is okay if more bits are known than are requested
1345       if (C->getAPIntValue() == Known2.One) {
1346         SDValue ANDC =
1347             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1348         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1349       }
1350 
1351       // If the RHS is a constant, see if we can change it. Don't alter a -1
1352       // constant because that's a 'not' op, and that is better for combining
1353       // and codegen.
1354       if (!C->isAllOnesValue() &&
1355           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1356         // We're flipping all demanded bits. Flip the undemanded bits too.
1357         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1358         return TLO.CombineTo(Op, New);
1359       }
1360     }
1361 
1362     // If we can't turn this into a 'not', try to shrink the constant.
1363     if (!C || !C->isAllOnesValue())
1364       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1365         return true;
1366 
1367     Known ^= Known2;
1368     break;
1369   }
1370   case ISD::SELECT:
1371     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1372                              Depth + 1))
1373       return true;
1374     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1375                              Depth + 1))
1376       return true;
1377     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1378     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1379 
1380     // If the operands are constants, see if we can simplify them.
1381     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1382       return true;
1383 
1384     // Only known if known in both the LHS and RHS.
1385     Known = KnownBits::commonBits(Known, Known2);
1386     break;
1387   case ISD::SELECT_CC:
1388     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1392                              Depth + 1))
1393       return true;
1394     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // If the operands are constants, see if we can simplify them.
1398     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1399       return true;
1400 
1401     // Only known if known in both the LHS and RHS.
1402     Known = KnownBits::commonBits(Known, Known2);
1403     break;
1404   case ISD::SETCC: {
1405     SDValue Op0 = Op.getOperand(0);
1406     SDValue Op1 = Op.getOperand(1);
1407     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1408     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1409     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1410     // -1, we may be able to bypass the setcc.
1411     if (DemandedBits.isSignMask() &&
1412         Op0.getScalarValueSizeInBits() == BitWidth &&
1413         getBooleanContents(Op0.getValueType()) ==
1414             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1415       // If we're testing X < 0, then this compare isn't needed - just use X!
1416       // FIXME: We're limiting to integer types here, but this should also work
1417       // if we don't care about FP signed-zero. The use of SETLT with FP means
1418       // that we don't care about NaNs.
1419       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1420           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1421         return TLO.CombineTo(Op, Op0);
1422 
1423       // TODO: Should we check for other forms of sign-bit comparisons?
1424       // Examples: X <= -1, X >= 0
1425     }
1426     if (getBooleanContents(Op0.getValueType()) ==
1427             TargetLowering::ZeroOrOneBooleanContent &&
1428         BitWidth > 1)
1429       Known.Zero.setBitsFrom(1);
1430     break;
1431   }
1432   case ISD::SHL: {
1433     SDValue Op0 = Op.getOperand(0);
1434     SDValue Op1 = Op.getOperand(1);
1435     EVT ShiftVT = Op1.getValueType();
1436 
1437     if (const APInt *SA =
1438             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1439       unsigned ShAmt = SA->getZExtValue();
1440       if (ShAmt == 0)
1441         return TLO.CombineTo(Op, Op0);
1442 
1443       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1444       // single shift.  We can do this if the bottom bits (which are shifted
1445       // out) are never demanded.
1446       // TODO - support non-uniform vector amounts.
1447       if (Op0.getOpcode() == ISD::SRL) {
1448         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1449           if (const APInt *SA2 =
1450                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1451             unsigned C1 = SA2->getZExtValue();
1452             unsigned Opc = ISD::SHL;
1453             int Diff = ShAmt - C1;
1454             if (Diff < 0) {
1455               Diff = -Diff;
1456               Opc = ISD::SRL;
1457             }
1458             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1459             return TLO.CombineTo(
1460                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1461           }
1462         }
1463       }
1464 
1465       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1466       // are not demanded. This will likely allow the anyext to be folded away.
1467       // TODO - support non-uniform vector amounts.
1468       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1469         SDValue InnerOp = Op0.getOperand(0);
1470         EVT InnerVT = InnerOp.getValueType();
1471         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1472         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1473             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1474           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1475           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1476             ShTy = InnerVT;
1477           SDValue NarrowShl =
1478               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1479                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1480           return TLO.CombineTo(
1481               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1482         }
1483 
1484         // Repeat the SHL optimization above in cases where an extension
1485         // intervenes: (shl (anyext (shr x, c1)), c2) to
1486         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1487         // aren't demanded (as above) and that the shifted upper c1 bits of
1488         // x aren't demanded.
1489         // TODO - support non-uniform vector amounts.
1490         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1491             InnerOp.hasOneUse()) {
1492           if (const APInt *SA2 =
1493                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1494             unsigned InnerShAmt = SA2->getZExtValue();
1495             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1496                 DemandedBits.getActiveBits() <=
1497                     (InnerBits - InnerShAmt + ShAmt) &&
1498                 DemandedBits.countTrailingZeros() >= ShAmt) {
1499               SDValue NewSA =
1500                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1501               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1502                                                InnerOp.getOperand(0));
1503               return TLO.CombineTo(
1504                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1505             }
1506           }
1507         }
1508       }
1509 
1510       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1511       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1512                                Depth + 1))
1513         return true;
1514       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1515       Known.Zero <<= ShAmt;
1516       Known.One <<= ShAmt;
1517       // low bits known zero.
1518       Known.Zero.setLowBits(ShAmt);
1519 
1520       // Try shrinking the operation as long as the shift amount will still be
1521       // in range.
1522       if ((ShAmt < DemandedBits.getActiveBits()) &&
1523           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1524         return true;
1525     }
1526 
1527     // If we are only demanding sign bits then we can use the shift source
1528     // directly.
1529     if (const APInt *MaxSA =
1530             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1531       unsigned ShAmt = MaxSA->getZExtValue();
1532       unsigned NumSignBits =
1533           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1534       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1535       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1536         return TLO.CombineTo(Op, Op0);
1537     }
1538     break;
1539   }
1540   case ISD::SRL: {
1541     SDValue Op0 = Op.getOperand(0);
1542     SDValue Op1 = Op.getOperand(1);
1543     EVT ShiftVT = Op1.getValueType();
1544 
1545     if (const APInt *SA =
1546             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1547       unsigned ShAmt = SA->getZExtValue();
1548       if (ShAmt == 0)
1549         return TLO.CombineTo(Op, Op0);
1550 
1551       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1552       // single shift.  We can do this if the top bits (which are shifted out)
1553       // are never demanded.
1554       // TODO - support non-uniform vector amounts.
1555       if (Op0.getOpcode() == ISD::SHL) {
1556         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1557           if (const APInt *SA2 =
1558                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1559             unsigned C1 = SA2->getZExtValue();
1560             unsigned Opc = ISD::SRL;
1561             int Diff = ShAmt - C1;
1562             if (Diff < 0) {
1563               Diff = -Diff;
1564               Opc = ISD::SHL;
1565             }
1566             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1567             return TLO.CombineTo(
1568                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1569           }
1570         }
1571       }
1572 
1573       APInt InDemandedMask = (DemandedBits << ShAmt);
1574 
1575       // If the shift is exact, then it does demand the low bits (and knows that
1576       // they are zero).
1577       if (Op->getFlags().hasExact())
1578         InDemandedMask.setLowBits(ShAmt);
1579 
1580       // Compute the new bits that are at the top now.
1581       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1582                                Depth + 1))
1583         return true;
1584       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1585       Known.Zero.lshrInPlace(ShAmt);
1586       Known.One.lshrInPlace(ShAmt);
1587       // High bits known zero.
1588       Known.Zero.setHighBits(ShAmt);
1589     }
1590     break;
1591   }
1592   case ISD::SRA: {
1593     SDValue Op0 = Op.getOperand(0);
1594     SDValue Op1 = Op.getOperand(1);
1595     EVT ShiftVT = Op1.getValueType();
1596 
1597     // If we only want bits that already match the signbit then we don't need
1598     // to shift.
1599     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1600     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1601         NumHiDemandedBits)
1602       return TLO.CombineTo(Op, Op0);
1603 
1604     // If this is an arithmetic shift right and only the low-bit is set, we can
1605     // always convert this into a logical shr, even if the shift amount is
1606     // variable.  The low bit of the shift cannot be an input sign bit unless
1607     // the shift amount is >= the size of the datatype, which is undefined.
1608     if (DemandedBits.isOneValue())
1609       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1610 
1611     if (const APInt *SA =
1612             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1613       unsigned ShAmt = SA->getZExtValue();
1614       if (ShAmt == 0)
1615         return TLO.CombineTo(Op, Op0);
1616 
1617       APInt InDemandedMask = (DemandedBits << ShAmt);
1618 
1619       // If the shift is exact, then it does demand the low bits (and knows that
1620       // they are zero).
1621       if (Op->getFlags().hasExact())
1622         InDemandedMask.setLowBits(ShAmt);
1623 
1624       // If any of the demanded bits are produced by the sign extension, we also
1625       // demand the input sign bit.
1626       if (DemandedBits.countLeadingZeros() < ShAmt)
1627         InDemandedMask.setSignBit();
1628 
1629       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1630                                Depth + 1))
1631         return true;
1632       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1633       Known.Zero.lshrInPlace(ShAmt);
1634       Known.One.lshrInPlace(ShAmt);
1635 
1636       // If the input sign bit is known to be zero, or if none of the top bits
1637       // are demanded, turn this into an unsigned shift right.
1638       if (Known.Zero[BitWidth - ShAmt - 1] ||
1639           DemandedBits.countLeadingZeros() >= ShAmt) {
1640         SDNodeFlags Flags;
1641         Flags.setExact(Op->getFlags().hasExact());
1642         return TLO.CombineTo(
1643             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1644       }
1645 
1646       int Log2 = DemandedBits.exactLogBase2();
1647       if (Log2 >= 0) {
1648         // The bit must come from the sign.
1649         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1650         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1651       }
1652 
1653       if (Known.One[BitWidth - ShAmt - 1])
1654         // New bits are known one.
1655         Known.One.setHighBits(ShAmt);
1656 
1657       // Attempt to avoid multi-use ops if we don't need anything from them.
1658       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1659         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1660             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1661         if (DemandedOp0) {
1662           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1663           return TLO.CombineTo(Op, NewOp);
1664         }
1665       }
1666     }
1667     break;
1668   }
1669   case ISD::FSHL:
1670   case ISD::FSHR: {
1671     SDValue Op0 = Op.getOperand(0);
1672     SDValue Op1 = Op.getOperand(1);
1673     SDValue Op2 = Op.getOperand(2);
1674     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1675 
1676     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1677       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1678 
1679       // For fshl, 0-shift returns the 1st arg.
1680       // For fshr, 0-shift returns the 2nd arg.
1681       if (Amt == 0) {
1682         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1683                                  Known, TLO, Depth + 1))
1684           return true;
1685         break;
1686       }
1687 
1688       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1689       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1690       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1691       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1692       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1693                                Depth + 1))
1694         return true;
1695       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1696                                Depth + 1))
1697         return true;
1698 
1699       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1700       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1701       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1702       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1703       Known.One |= Known2.One;
1704       Known.Zero |= Known2.Zero;
1705     }
1706 
1707     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1708     if (isPowerOf2_32(BitWidth)) {
1709       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1710       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1711                                Known2, TLO, Depth + 1))
1712         return true;
1713     }
1714     break;
1715   }
1716   case ISD::ROTL:
1717   case ISD::ROTR: {
1718     SDValue Op0 = Op.getOperand(0);
1719     SDValue Op1 = Op.getOperand(1);
1720 
1721     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1722     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1723       return TLO.CombineTo(Op, Op0);
1724 
1725     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1726     if (isPowerOf2_32(BitWidth)) {
1727       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1728       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1729                                Depth + 1))
1730         return true;
1731     }
1732     break;
1733   }
1734   case ISD::UMIN: {
1735     // Check if one arg is always less than (or equal) to the other arg.
1736     SDValue Op0 = Op.getOperand(0);
1737     SDValue Op1 = Op.getOperand(1);
1738     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1739     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1740     Known = KnownBits::umin(Known0, Known1);
1741     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1742       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1743     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1744       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1745     break;
1746   }
1747   case ISD::UMAX: {
1748     // Check if one arg is always greater than (or equal) to the other arg.
1749     SDValue Op0 = Op.getOperand(0);
1750     SDValue Op1 = Op.getOperand(1);
1751     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1752     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1753     Known = KnownBits::umax(Known0, Known1);
1754     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1755       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1756     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1757       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1758     break;
1759   }
1760   case ISD::BITREVERSE: {
1761     SDValue Src = Op.getOperand(0);
1762     APInt DemandedSrcBits = DemandedBits.reverseBits();
1763     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1764                              Depth + 1))
1765       return true;
1766     Known.One = Known2.One.reverseBits();
1767     Known.Zero = Known2.Zero.reverseBits();
1768     break;
1769   }
1770   case ISD::BSWAP: {
1771     SDValue Src = Op.getOperand(0);
1772     APInt DemandedSrcBits = DemandedBits.byteSwap();
1773     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1774                              Depth + 1))
1775       return true;
1776     Known.One = Known2.One.byteSwap();
1777     Known.Zero = Known2.Zero.byteSwap();
1778     break;
1779   }
1780   case ISD::CTPOP: {
1781     // If only 1 bit is demanded, replace with PARITY as long as we're before
1782     // op legalization.
1783     // FIXME: Limit to scalars for now.
1784     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1785       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1786                                                Op.getOperand(0)));
1787 
1788     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1789     break;
1790   }
1791   case ISD::SIGN_EXTEND_INREG: {
1792     SDValue Op0 = Op.getOperand(0);
1793     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1794     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1795 
1796     // If we only care about the highest bit, don't bother shifting right.
1797     if (DemandedBits.isSignMask()) {
1798       unsigned NumSignBits =
1799           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1800       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1801       // However if the input is already sign extended we expect the sign
1802       // extension to be dropped altogether later and do not simplify.
1803       if (!AlreadySignExtended) {
1804         // Compute the correct shift amount type, which must be getShiftAmountTy
1805         // for scalar types after legalization.
1806         EVT ShiftAmtTy = VT;
1807         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1808           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1809 
1810         SDValue ShiftAmt =
1811             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1812         return TLO.CombineTo(Op,
1813                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1814       }
1815     }
1816 
1817     // If none of the extended bits are demanded, eliminate the sextinreg.
1818     if (DemandedBits.getActiveBits() <= ExVTBits)
1819       return TLO.CombineTo(Op, Op0);
1820 
1821     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1822 
1823     // Since the sign extended bits are demanded, we know that the sign
1824     // bit is demanded.
1825     InputDemandedBits.setBit(ExVTBits - 1);
1826 
1827     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1828       return true;
1829     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1830 
1831     // If the sign bit of the input is known set or clear, then we know the
1832     // top bits of the result.
1833 
1834     // If the input sign bit is known zero, convert this into a zero extension.
1835     if (Known.Zero[ExVTBits - 1])
1836       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1837 
1838     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1839     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1840       Known.One.setBitsFrom(ExVTBits);
1841       Known.Zero &= Mask;
1842     } else { // Input sign bit unknown
1843       Known.Zero &= Mask;
1844       Known.One &= Mask;
1845     }
1846     break;
1847   }
1848   case ISD::BUILD_PAIR: {
1849     EVT HalfVT = Op.getOperand(0).getValueType();
1850     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1851 
1852     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1853     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1854 
1855     KnownBits KnownLo, KnownHi;
1856 
1857     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1858       return true;
1859 
1860     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1861       return true;
1862 
1863     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1864                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1865 
1866     Known.One = KnownLo.One.zext(BitWidth) |
1867                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1868     break;
1869   }
1870   case ISD::ZERO_EXTEND:
1871   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1872     SDValue Src = Op.getOperand(0);
1873     EVT SrcVT = Src.getValueType();
1874     unsigned InBits = SrcVT.getScalarSizeInBits();
1875     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1876     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1877 
1878     // If none of the top bits are demanded, convert this into an any_extend.
1879     if (DemandedBits.getActiveBits() <= InBits) {
1880       // If we only need the non-extended bits of the bottom element
1881       // then we can just bitcast to the result.
1882       if (IsVecInReg && DemandedElts == 1 &&
1883           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1884           TLO.DAG.getDataLayout().isLittleEndian())
1885         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1886 
1887       unsigned Opc =
1888           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1889       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1890         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1891     }
1892 
1893     APInt InDemandedBits = DemandedBits.trunc(InBits);
1894     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1895     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1896                              Depth + 1))
1897       return true;
1898     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1899     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1900     Known = Known.zext(BitWidth);
1901 
1902     // Attempt to avoid multi-use ops if we don't need anything from them.
1903     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1904             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1905       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1906     break;
1907   }
1908   case ISD::SIGN_EXTEND:
1909   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1910     SDValue Src = Op.getOperand(0);
1911     EVT SrcVT = Src.getValueType();
1912     unsigned InBits = SrcVT.getScalarSizeInBits();
1913     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1914     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1915 
1916     // If none of the top bits are demanded, convert this into an any_extend.
1917     if (DemandedBits.getActiveBits() <= InBits) {
1918       // If we only need the non-extended bits of the bottom element
1919       // then we can just bitcast to the result.
1920       if (IsVecInReg && DemandedElts == 1 &&
1921           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1922           TLO.DAG.getDataLayout().isLittleEndian())
1923         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1924 
1925       unsigned Opc =
1926           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1927       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1928         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1929     }
1930 
1931     APInt InDemandedBits = DemandedBits.trunc(InBits);
1932     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1933 
1934     // Since some of the sign extended bits are demanded, we know that the sign
1935     // bit is demanded.
1936     InDemandedBits.setBit(InBits - 1);
1937 
1938     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1939                              Depth + 1))
1940       return true;
1941     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1942     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1943 
1944     // If the sign bit is known one, the top bits match.
1945     Known = Known.sext(BitWidth);
1946 
1947     // If the sign bit is known zero, convert this to a zero extend.
1948     if (Known.isNonNegative()) {
1949       unsigned Opc =
1950           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1951       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1952         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1953     }
1954 
1955     // Attempt to avoid multi-use ops if we don't need anything from them.
1956     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1957             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1958       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1959     break;
1960   }
1961   case ISD::ANY_EXTEND:
1962   case ISD::ANY_EXTEND_VECTOR_INREG: {
1963     SDValue Src = Op.getOperand(0);
1964     EVT SrcVT = Src.getValueType();
1965     unsigned InBits = SrcVT.getScalarSizeInBits();
1966     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1967     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1968 
1969     // If we only need the bottom element then we can just bitcast.
1970     // TODO: Handle ANY_EXTEND?
1971     if (IsVecInReg && DemandedElts == 1 &&
1972         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1973         TLO.DAG.getDataLayout().isLittleEndian())
1974       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1975 
1976     APInt InDemandedBits = DemandedBits.trunc(InBits);
1977     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1978     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1979                              Depth + 1))
1980       return true;
1981     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1982     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1983     Known = Known.anyext(BitWidth);
1984 
1985     // Attempt to avoid multi-use ops if we don't need anything from them.
1986     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1987             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1988       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1989     break;
1990   }
1991   case ISD::TRUNCATE: {
1992     SDValue Src = Op.getOperand(0);
1993 
1994     // Simplify the input, using demanded bit information, and compute the known
1995     // zero/one bits live out.
1996     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1997     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1998     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1999                              Depth + 1))
2000       return true;
2001     Known = Known.trunc(BitWidth);
2002 
2003     // Attempt to avoid multi-use ops if we don't need anything from them.
2004     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2005             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2006       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2007 
2008     // If the input is only used by this truncate, see if we can shrink it based
2009     // on the known demanded bits.
2010     if (Src.getNode()->hasOneUse()) {
2011       switch (Src.getOpcode()) {
2012       default:
2013         break;
2014       case ISD::SRL:
2015         // Shrink SRL by a constant if none of the high bits shifted in are
2016         // demanded.
2017         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2018           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2019           // undesirable.
2020           break;
2021 
2022         const APInt *ShAmtC =
2023             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2024         if (!ShAmtC || ShAmtC->uge(BitWidth))
2025           break;
2026         uint64_t ShVal = ShAmtC->getZExtValue();
2027 
2028         APInt HighBits =
2029             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2030         HighBits.lshrInPlace(ShVal);
2031         HighBits = HighBits.trunc(BitWidth);
2032 
2033         if (!(HighBits & DemandedBits)) {
2034           // None of the shifted in bits are needed.  Add a truncate of the
2035           // shift input, then shift it.
2036           SDValue NewShAmt = TLO.DAG.getConstant(
2037               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2038           SDValue NewTrunc =
2039               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2040           return TLO.CombineTo(
2041               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2042         }
2043         break;
2044       }
2045     }
2046 
2047     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2048     break;
2049   }
2050   case ISD::AssertZext: {
2051     // AssertZext demands all of the high bits, plus any of the low bits
2052     // demanded by its users.
2053     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2054     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2055     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2056                              TLO, Depth + 1))
2057       return true;
2058     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2059 
2060     Known.Zero |= ~InMask;
2061     break;
2062   }
2063   case ISD::EXTRACT_VECTOR_ELT: {
2064     SDValue Src = Op.getOperand(0);
2065     SDValue Idx = Op.getOperand(1);
2066     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2067     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2068 
2069     if (SrcEltCnt.isScalable())
2070       return false;
2071 
2072     // Demand the bits from every vector element without a constant index.
2073     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2074     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2075     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2076       if (CIdx->getAPIntValue().ult(NumSrcElts))
2077         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2078 
2079     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2080     // anything about the extended bits.
2081     APInt DemandedSrcBits = DemandedBits;
2082     if (BitWidth > EltBitWidth)
2083       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2084 
2085     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2086                              Depth + 1))
2087       return true;
2088 
2089     // Attempt to avoid multi-use ops if we don't need anything from them.
2090     if (!DemandedSrcBits.isAllOnesValue() ||
2091         !DemandedSrcElts.isAllOnesValue()) {
2092       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2093               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2094         SDValue NewOp =
2095             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2096         return TLO.CombineTo(Op, NewOp);
2097       }
2098     }
2099 
2100     Known = Known2;
2101     if (BitWidth > EltBitWidth)
2102       Known = Known.anyext(BitWidth);
2103     break;
2104   }
2105   case ISD::BITCAST: {
2106     SDValue Src = Op.getOperand(0);
2107     EVT SrcVT = Src.getValueType();
2108     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2109 
2110     // If this is an FP->Int bitcast and if the sign bit is the only
2111     // thing demanded, turn this into a FGETSIGN.
2112     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2113         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2114         SrcVT.isFloatingPoint()) {
2115       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2116       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2117       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2118           SrcVT != MVT::f128) {
2119         // Cannot eliminate/lower SHL for f128 yet.
2120         EVT Ty = OpVTLegal ? VT : MVT::i32;
2121         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2122         // place.  We expect the SHL to be eliminated by other optimizations.
2123         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2124         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2125         if (!OpVTLegal && OpVTSizeInBits > 32)
2126           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2127         unsigned ShVal = Op.getValueSizeInBits() - 1;
2128         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2129         return TLO.CombineTo(Op,
2130                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2131       }
2132     }
2133 
2134     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2135     // Demand the elt/bit if any of the original elts/bits are demanded.
2136     // TODO - bigendian once we have test coverage.
2137     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2138         TLO.DAG.getDataLayout().isLittleEndian()) {
2139       unsigned Scale = BitWidth / NumSrcEltBits;
2140       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2141       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2142       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2143       for (unsigned i = 0; i != Scale; ++i) {
2144         unsigned Offset = i * NumSrcEltBits;
2145         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2146         if (!Sub.isNullValue()) {
2147           DemandedSrcBits |= Sub;
2148           for (unsigned j = 0; j != NumElts; ++j)
2149             if (DemandedElts[j])
2150               DemandedSrcElts.setBit((j * Scale) + i);
2151         }
2152       }
2153 
2154       APInt KnownSrcUndef, KnownSrcZero;
2155       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2156                                      KnownSrcZero, TLO, Depth + 1))
2157         return true;
2158 
2159       KnownBits KnownSrcBits;
2160       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2161                                KnownSrcBits, TLO, Depth + 1))
2162         return true;
2163     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2164                TLO.DAG.getDataLayout().isLittleEndian()) {
2165       unsigned Scale = NumSrcEltBits / BitWidth;
2166       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2167       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2168       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2169       for (unsigned i = 0; i != NumElts; ++i)
2170         if (DemandedElts[i]) {
2171           unsigned Offset = (i % Scale) * BitWidth;
2172           DemandedSrcBits.insertBits(DemandedBits, Offset);
2173           DemandedSrcElts.setBit(i / Scale);
2174         }
2175 
2176       if (SrcVT.isVector()) {
2177         APInt KnownSrcUndef, KnownSrcZero;
2178         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2179                                        KnownSrcZero, TLO, Depth + 1))
2180           return true;
2181       }
2182 
2183       KnownBits KnownSrcBits;
2184       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2185                                KnownSrcBits, TLO, Depth + 1))
2186         return true;
2187     }
2188 
2189     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2190     // recursive call where Known may be useful to the caller.
2191     if (Depth > 0) {
2192       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2193       return false;
2194     }
2195     break;
2196   }
2197   case ISD::ADD:
2198   case ISD::MUL:
2199   case ISD::SUB: {
2200     // Add, Sub, and Mul don't demand any bits in positions beyond that
2201     // of the highest bit demanded of them.
2202     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2203     SDNodeFlags Flags = Op.getNode()->getFlags();
2204     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2205     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2206     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2207                              Depth + 1) ||
2208         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2209                              Depth + 1) ||
2210         // See if the operation should be performed at a smaller bit width.
2211         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2212       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2213         // Disable the nsw and nuw flags. We can no longer guarantee that we
2214         // won't wrap after simplification.
2215         Flags.setNoSignedWrap(false);
2216         Flags.setNoUnsignedWrap(false);
2217         SDValue NewOp =
2218             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2219         return TLO.CombineTo(Op, NewOp);
2220       }
2221       return true;
2222     }
2223 
2224     // Attempt to avoid multi-use ops if we don't need anything from them.
2225     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2226       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2227           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2228       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2229           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2230       if (DemandedOp0 || DemandedOp1) {
2231         Flags.setNoSignedWrap(false);
2232         Flags.setNoUnsignedWrap(false);
2233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2235         SDValue NewOp =
2236             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2237         return TLO.CombineTo(Op, NewOp);
2238       }
2239     }
2240 
2241     // If we have a constant operand, we may be able to turn it into -1 if we
2242     // do not demand the high bits. This can make the constant smaller to
2243     // encode, allow more general folding, or match specialized instruction
2244     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2245     // is probably not useful (and could be detrimental).
2246     ConstantSDNode *C = isConstOrConstSplat(Op1);
2247     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2248     if (C && !C->isAllOnesValue() && !C->isOne() &&
2249         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2250       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2251       // Disable the nsw and nuw flags. We can no longer guarantee that we
2252       // won't wrap after simplification.
2253       Flags.setNoSignedWrap(false);
2254       Flags.setNoUnsignedWrap(false);
2255       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2256       return TLO.CombineTo(Op, NewOp);
2257     }
2258 
2259     LLVM_FALLTHROUGH;
2260   }
2261   default:
2262     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2263       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2264                                             Known, TLO, Depth))
2265         return true;
2266       break;
2267     }
2268 
2269     // Just use computeKnownBits to compute output bits.
2270     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2271     break;
2272   }
2273 
2274   // If we know the value of all of the demanded bits, return this as a
2275   // constant.
2276   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2277     // Avoid folding to a constant if any OpaqueConstant is involved.
2278     const SDNode *N = Op.getNode();
2279     for (SDNode *Op :
2280          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2281       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2282         if (C->isOpaque())
2283           return false;
2284     }
2285     if (VT.isInteger())
2286       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2287     if (VT.isFloatingPoint())
2288       return TLO.CombineTo(
2289           Op,
2290           TLO.DAG.getConstantFP(
2291               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2292   }
2293 
2294   return false;
2295 }
2296 
2297 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2298                                                 const APInt &DemandedElts,
2299                                                 APInt &KnownUndef,
2300                                                 APInt &KnownZero,
2301                                                 DAGCombinerInfo &DCI) const {
2302   SelectionDAG &DAG = DCI.DAG;
2303   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2304                         !DCI.isBeforeLegalizeOps());
2305 
2306   bool Simplified =
2307       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2308   if (Simplified) {
2309     DCI.AddToWorklist(Op.getNode());
2310     DCI.CommitTargetLoweringOpt(TLO);
2311   }
2312 
2313   return Simplified;
2314 }
2315 
2316 /// Given a vector binary operation and known undefined elements for each input
2317 /// operand, compute whether each element of the output is undefined.
2318 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2319                                          const APInt &UndefOp0,
2320                                          const APInt &UndefOp1) {
2321   EVT VT = BO.getValueType();
2322   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2323          "Vector binop only");
2324 
2325   EVT EltVT = VT.getVectorElementType();
2326   unsigned NumElts = VT.getVectorNumElements();
2327   assert(UndefOp0.getBitWidth() == NumElts &&
2328          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2329 
2330   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2331                                    const APInt &UndefVals) {
2332     if (UndefVals[Index])
2333       return DAG.getUNDEF(EltVT);
2334 
2335     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2336       // Try hard to make sure that the getNode() call is not creating temporary
2337       // nodes. Ignore opaque integers because they do not constant fold.
2338       SDValue Elt = BV->getOperand(Index);
2339       auto *C = dyn_cast<ConstantSDNode>(Elt);
2340       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2341         return Elt;
2342     }
2343 
2344     return SDValue();
2345   };
2346 
2347   APInt KnownUndef = APInt::getNullValue(NumElts);
2348   for (unsigned i = 0; i != NumElts; ++i) {
2349     // If both inputs for this element are either constant or undef and match
2350     // the element type, compute the constant/undef result for this element of
2351     // the vector.
2352     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2353     // not handle FP constants. The code within getNode() should be refactored
2354     // to avoid the danger of creating a bogus temporary node here.
2355     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2356     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2357     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2358       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2359         KnownUndef.setBit(i);
2360   }
2361   return KnownUndef;
2362 }
2363 
2364 bool TargetLowering::SimplifyDemandedVectorElts(
2365     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2366     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2367     bool AssumeSingleUse) const {
2368   EVT VT = Op.getValueType();
2369   unsigned Opcode = Op.getOpcode();
2370   APInt DemandedElts = OriginalDemandedElts;
2371   unsigned NumElts = DemandedElts.getBitWidth();
2372   assert(VT.isVector() && "Expected vector op");
2373 
2374   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2375 
2376   // TODO: For now we assume we know nothing about scalable vectors.
2377   if (VT.isScalableVector())
2378     return false;
2379 
2380   assert(VT.getVectorNumElements() == NumElts &&
2381          "Mask size mismatches value type element count!");
2382 
2383   // Undef operand.
2384   if (Op.isUndef()) {
2385     KnownUndef.setAllBits();
2386     return false;
2387   }
2388 
2389   // If Op has other users, assume that all elements are needed.
2390   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2391     DemandedElts.setAllBits();
2392 
2393   // Not demanding any elements from Op.
2394   if (DemandedElts == 0) {
2395     KnownUndef.setAllBits();
2396     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2397   }
2398 
2399   // Limit search depth.
2400   if (Depth >= SelectionDAG::MaxRecursionDepth)
2401     return false;
2402 
2403   SDLoc DL(Op);
2404   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2405 
2406   // Helper for demanding the specified elements and all the bits of both binary
2407   // operands.
2408   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2409     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2410                                                            TLO.DAG, Depth + 1);
2411     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2412                                                            TLO.DAG, Depth + 1);
2413     if (NewOp0 || NewOp1) {
2414       SDValue NewOp = TLO.DAG.getNode(
2415           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2416       return TLO.CombineTo(Op, NewOp);
2417     }
2418     return false;
2419   };
2420 
2421   switch (Opcode) {
2422   case ISD::SCALAR_TO_VECTOR: {
2423     if (!DemandedElts[0]) {
2424       KnownUndef.setAllBits();
2425       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2426     }
2427     SDValue ScalarSrc = Op.getOperand(0);
2428     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2429       SDValue Src = ScalarSrc.getOperand(0);
2430       SDValue Idx = ScalarSrc.getOperand(1);
2431       EVT SrcVT = Src.getValueType();
2432 
2433       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2434 
2435       if (SrcEltCnt.isScalable())
2436         return false;
2437 
2438       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2439       if (isNullConstant(Idx)) {
2440         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2441         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2442         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2443         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2444                                        TLO, Depth + 1))
2445           return true;
2446       }
2447     }
2448     KnownUndef.setHighBits(NumElts - 1);
2449     break;
2450   }
2451   case ISD::BITCAST: {
2452     SDValue Src = Op.getOperand(0);
2453     EVT SrcVT = Src.getValueType();
2454 
2455     // We only handle vectors here.
2456     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2457     if (!SrcVT.isVector())
2458       break;
2459 
2460     // Fast handling of 'identity' bitcasts.
2461     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2462     if (NumSrcElts == NumElts)
2463       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2464                                         KnownZero, TLO, Depth + 1);
2465 
2466     APInt SrcZero, SrcUndef;
2467     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2468 
2469     // Bitcast from 'large element' src vector to 'small element' vector, we
2470     // must demand a source element if any DemandedElt maps to it.
2471     if ((NumElts % NumSrcElts) == 0) {
2472       unsigned Scale = NumElts / NumSrcElts;
2473       for (unsigned i = 0; i != NumElts; ++i)
2474         if (DemandedElts[i])
2475           SrcDemandedElts.setBit(i / Scale);
2476 
2477       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2478                                      TLO, Depth + 1))
2479         return true;
2480 
2481       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2482       // of the large element.
2483       // TODO - bigendian once we have test coverage.
2484       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2485         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2486         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2487         for (unsigned i = 0; i != NumElts; ++i)
2488           if (DemandedElts[i]) {
2489             unsigned Ofs = (i % Scale) * EltSizeInBits;
2490             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2491           }
2492 
2493         KnownBits Known;
2494         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2495                                  TLO, Depth + 1))
2496           return true;
2497       }
2498 
2499       // If the src element is zero/undef then all the output elements will be -
2500       // only demanded elements are guaranteed to be correct.
2501       for (unsigned i = 0; i != NumSrcElts; ++i) {
2502         if (SrcDemandedElts[i]) {
2503           if (SrcZero[i])
2504             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2505           if (SrcUndef[i])
2506             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2507         }
2508       }
2509     }
2510 
2511     // Bitcast from 'small element' src vector to 'large element' vector, we
2512     // demand all smaller source elements covered by the larger demanded element
2513     // of this vector.
2514     if ((NumSrcElts % NumElts) == 0) {
2515       unsigned Scale = NumSrcElts / NumElts;
2516       for (unsigned i = 0; i != NumElts; ++i)
2517         if (DemandedElts[i])
2518           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2519 
2520       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2521                                      TLO, Depth + 1))
2522         return true;
2523 
2524       // If all the src elements covering an output element are zero/undef, then
2525       // the output element will be as well, assuming it was demanded.
2526       for (unsigned i = 0; i != NumElts; ++i) {
2527         if (DemandedElts[i]) {
2528           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2529             KnownZero.setBit(i);
2530           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2531             KnownUndef.setBit(i);
2532         }
2533       }
2534     }
2535     break;
2536   }
2537   case ISD::BUILD_VECTOR: {
2538     // Check all elements and simplify any unused elements with UNDEF.
2539     if (!DemandedElts.isAllOnesValue()) {
2540       // Don't simplify BROADCASTS.
2541       if (llvm::any_of(Op->op_values(),
2542                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2543         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2544         bool Updated = false;
2545         for (unsigned i = 0; i != NumElts; ++i) {
2546           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2547             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2548             KnownUndef.setBit(i);
2549             Updated = true;
2550           }
2551         }
2552         if (Updated)
2553           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2554       }
2555     }
2556     for (unsigned i = 0; i != NumElts; ++i) {
2557       SDValue SrcOp = Op.getOperand(i);
2558       if (SrcOp.isUndef()) {
2559         KnownUndef.setBit(i);
2560       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2561                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2562         KnownZero.setBit(i);
2563       }
2564     }
2565     break;
2566   }
2567   case ISD::CONCAT_VECTORS: {
2568     EVT SubVT = Op.getOperand(0).getValueType();
2569     unsigned NumSubVecs = Op.getNumOperands();
2570     unsigned NumSubElts = SubVT.getVectorNumElements();
2571     for (unsigned i = 0; i != NumSubVecs; ++i) {
2572       SDValue SubOp = Op.getOperand(i);
2573       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2574       APInt SubUndef, SubZero;
2575       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2576                                      Depth + 1))
2577         return true;
2578       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2579       KnownZero.insertBits(SubZero, i * NumSubElts);
2580     }
2581     break;
2582   }
2583   case ISD::INSERT_SUBVECTOR: {
2584     // Demand any elements from the subvector and the remainder from the src its
2585     // inserted into.
2586     SDValue Src = Op.getOperand(0);
2587     SDValue Sub = Op.getOperand(1);
2588     uint64_t Idx = Op.getConstantOperandVal(2);
2589     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2590     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2591     APInt DemandedSrcElts = DemandedElts;
2592     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2593 
2594     APInt SubUndef, SubZero;
2595     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2596                                    Depth + 1))
2597       return true;
2598 
2599     // If none of the src operand elements are demanded, replace it with undef.
2600     if (!DemandedSrcElts && !Src.isUndef())
2601       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2602                                                TLO.DAG.getUNDEF(VT), Sub,
2603                                                Op.getOperand(2)));
2604 
2605     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2606                                    TLO, Depth + 1))
2607       return true;
2608     KnownUndef.insertBits(SubUndef, Idx);
2609     KnownZero.insertBits(SubZero, Idx);
2610 
2611     // Attempt to avoid multi-use ops if we don't need anything from them.
2612     if (!DemandedSrcElts.isAllOnesValue() ||
2613         !DemandedSubElts.isAllOnesValue()) {
2614       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2615           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2616       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2617           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2618       if (NewSrc || NewSub) {
2619         NewSrc = NewSrc ? NewSrc : Src;
2620         NewSub = NewSub ? NewSub : Sub;
2621         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2622                                         NewSub, Op.getOperand(2));
2623         return TLO.CombineTo(Op, NewOp);
2624       }
2625     }
2626     break;
2627   }
2628   case ISD::EXTRACT_SUBVECTOR: {
2629     // Offset the demanded elts by the subvector index.
2630     SDValue Src = Op.getOperand(0);
2631     if (Src.getValueType().isScalableVector())
2632       break;
2633     uint64_t Idx = Op.getConstantOperandVal(1);
2634     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2635     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2636 
2637     APInt SrcUndef, SrcZero;
2638     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2639                                    Depth + 1))
2640       return true;
2641     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2642     KnownZero = SrcZero.extractBits(NumElts, Idx);
2643 
2644     // Attempt to avoid multi-use ops if we don't need anything from them.
2645     if (!DemandedElts.isAllOnesValue()) {
2646       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2647           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2648       if (NewSrc) {
2649         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2650                                         Op.getOperand(1));
2651         return TLO.CombineTo(Op, NewOp);
2652       }
2653     }
2654     break;
2655   }
2656   case ISD::INSERT_VECTOR_ELT: {
2657     SDValue Vec = Op.getOperand(0);
2658     SDValue Scl = Op.getOperand(1);
2659     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2660 
2661     // For a legal, constant insertion index, if we don't need this insertion
2662     // then strip it, else remove it from the demanded elts.
2663     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2664       unsigned Idx = CIdx->getZExtValue();
2665       if (!DemandedElts[Idx])
2666         return TLO.CombineTo(Op, Vec);
2667 
2668       APInt DemandedVecElts(DemandedElts);
2669       DemandedVecElts.clearBit(Idx);
2670       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2671                                      KnownZero, TLO, Depth + 1))
2672         return true;
2673 
2674       KnownUndef.setBitVal(Idx, Scl.isUndef());
2675 
2676       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2677       break;
2678     }
2679 
2680     APInt VecUndef, VecZero;
2681     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2682                                    Depth + 1))
2683       return true;
2684     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2685     break;
2686   }
2687   case ISD::VSELECT: {
2688     // Try to transform the select condition based on the current demanded
2689     // elements.
2690     // TODO: If a condition element is undef, we can choose from one arm of the
2691     //       select (and if one arm is undef, then we can propagate that to the
2692     //       result).
2693     // TODO - add support for constant vselect masks (see IR version of this).
2694     APInt UnusedUndef, UnusedZero;
2695     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2696                                    UnusedZero, TLO, Depth + 1))
2697       return true;
2698 
2699     // See if we can simplify either vselect operand.
2700     APInt DemandedLHS(DemandedElts);
2701     APInt DemandedRHS(DemandedElts);
2702     APInt UndefLHS, ZeroLHS;
2703     APInt UndefRHS, ZeroRHS;
2704     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2705                                    ZeroLHS, TLO, Depth + 1))
2706       return true;
2707     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2708                                    ZeroRHS, TLO, Depth + 1))
2709       return true;
2710 
2711     KnownUndef = UndefLHS & UndefRHS;
2712     KnownZero = ZeroLHS & ZeroRHS;
2713     break;
2714   }
2715   case ISD::VECTOR_SHUFFLE: {
2716     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2717 
2718     // Collect demanded elements from shuffle operands..
2719     APInt DemandedLHS(NumElts, 0);
2720     APInt DemandedRHS(NumElts, 0);
2721     for (unsigned i = 0; i != NumElts; ++i) {
2722       int M = ShuffleMask[i];
2723       if (M < 0 || !DemandedElts[i])
2724         continue;
2725       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2726       if (M < (int)NumElts)
2727         DemandedLHS.setBit(M);
2728       else
2729         DemandedRHS.setBit(M - NumElts);
2730     }
2731 
2732     // See if we can simplify either shuffle operand.
2733     APInt UndefLHS, ZeroLHS;
2734     APInt UndefRHS, ZeroRHS;
2735     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2736                                    ZeroLHS, TLO, Depth + 1))
2737       return true;
2738     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2739                                    ZeroRHS, TLO, Depth + 1))
2740       return true;
2741 
2742     // Simplify mask using undef elements from LHS/RHS.
2743     bool Updated = false;
2744     bool IdentityLHS = true, IdentityRHS = true;
2745     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2746     for (unsigned i = 0; i != NumElts; ++i) {
2747       int &M = NewMask[i];
2748       if (M < 0)
2749         continue;
2750       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2751           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2752         Updated = true;
2753         M = -1;
2754       }
2755       IdentityLHS &= (M < 0) || (M == (int)i);
2756       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2757     }
2758 
2759     // Update legal shuffle masks based on demanded elements if it won't reduce
2760     // to Identity which can cause premature removal of the shuffle mask.
2761     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2762       SDValue LegalShuffle =
2763           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2764                                   NewMask, TLO.DAG);
2765       if (LegalShuffle)
2766         return TLO.CombineTo(Op, LegalShuffle);
2767     }
2768 
2769     // Propagate undef/zero elements from LHS/RHS.
2770     for (unsigned i = 0; i != NumElts; ++i) {
2771       int M = ShuffleMask[i];
2772       if (M < 0) {
2773         KnownUndef.setBit(i);
2774       } else if (M < (int)NumElts) {
2775         if (UndefLHS[M])
2776           KnownUndef.setBit(i);
2777         if (ZeroLHS[M])
2778           KnownZero.setBit(i);
2779       } else {
2780         if (UndefRHS[M - NumElts])
2781           KnownUndef.setBit(i);
2782         if (ZeroRHS[M - NumElts])
2783           KnownZero.setBit(i);
2784       }
2785     }
2786     break;
2787   }
2788   case ISD::ANY_EXTEND_VECTOR_INREG:
2789   case ISD::SIGN_EXTEND_VECTOR_INREG:
2790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2791     APInt SrcUndef, SrcZero;
2792     SDValue Src = Op.getOperand(0);
2793     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2794     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2795     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2796                                    Depth + 1))
2797       return true;
2798     KnownZero = SrcZero.zextOrTrunc(NumElts);
2799     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2800 
2801     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2802         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2803         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2804       // aext - if we just need the bottom element then we can bitcast.
2805       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2806     }
2807 
2808     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2809       // zext(undef) upper bits are guaranteed to be zero.
2810       if (DemandedElts.isSubsetOf(KnownUndef))
2811         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2812       KnownUndef.clearAllBits();
2813     }
2814     break;
2815   }
2816 
2817   // TODO: There are more binop opcodes that could be handled here - MIN,
2818   // MAX, saturated math, etc.
2819   case ISD::OR:
2820   case ISD::XOR:
2821   case ISD::ADD:
2822   case ISD::SUB:
2823   case ISD::FADD:
2824   case ISD::FSUB:
2825   case ISD::FMUL:
2826   case ISD::FDIV:
2827   case ISD::FREM: {
2828     SDValue Op0 = Op.getOperand(0);
2829     SDValue Op1 = Op.getOperand(1);
2830 
2831     APInt UndefRHS, ZeroRHS;
2832     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2833                                    Depth + 1))
2834       return true;
2835     APInt UndefLHS, ZeroLHS;
2836     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2837                                    Depth + 1))
2838       return true;
2839 
2840     KnownZero = ZeroLHS & ZeroRHS;
2841     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2842 
2843     // Attempt to avoid multi-use ops if we don't need anything from them.
2844     // TODO - use KnownUndef to relax the demandedelts?
2845     if (!DemandedElts.isAllOnesValue())
2846       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2847         return true;
2848     break;
2849   }
2850   case ISD::SHL:
2851   case ISD::SRL:
2852   case ISD::SRA:
2853   case ISD::ROTL:
2854   case ISD::ROTR: {
2855     SDValue Op0 = Op.getOperand(0);
2856     SDValue Op1 = Op.getOperand(1);
2857 
2858     APInt UndefRHS, ZeroRHS;
2859     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2860                                    Depth + 1))
2861       return true;
2862     APInt UndefLHS, ZeroLHS;
2863     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2864                                    Depth + 1))
2865       return true;
2866 
2867     KnownZero = ZeroLHS;
2868     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2869 
2870     // Attempt to avoid multi-use ops if we don't need anything from them.
2871     // TODO - use KnownUndef to relax the demandedelts?
2872     if (!DemandedElts.isAllOnesValue())
2873       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2874         return true;
2875     break;
2876   }
2877   case ISD::MUL:
2878   case ISD::AND: {
2879     SDValue Op0 = Op.getOperand(0);
2880     SDValue Op1 = Op.getOperand(1);
2881 
2882     APInt SrcUndef, SrcZero;
2883     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2884                                    Depth + 1))
2885       return true;
2886     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2887                                    TLO, Depth + 1))
2888       return true;
2889 
2890     // If either side has a zero element, then the result element is zero, even
2891     // if the other is an UNDEF.
2892     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2893     // and then handle 'and' nodes with the rest of the binop opcodes.
2894     KnownZero |= SrcZero;
2895     KnownUndef &= SrcUndef;
2896     KnownUndef &= ~KnownZero;
2897 
2898     // Attempt to avoid multi-use ops if we don't need anything from them.
2899     // TODO - use KnownUndef to relax the demandedelts?
2900     if (!DemandedElts.isAllOnesValue())
2901       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2902         return true;
2903     break;
2904   }
2905   case ISD::TRUNCATE:
2906   case ISD::SIGN_EXTEND:
2907   case ISD::ZERO_EXTEND:
2908     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2909                                    KnownZero, TLO, Depth + 1))
2910       return true;
2911 
2912     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2913       // zext(undef) upper bits are guaranteed to be zero.
2914       if (DemandedElts.isSubsetOf(KnownUndef))
2915         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2916       KnownUndef.clearAllBits();
2917     }
2918     break;
2919   default: {
2920     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2921       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2922                                                   KnownZero, TLO, Depth))
2923         return true;
2924     } else {
2925       KnownBits Known;
2926       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2927       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2928                                TLO, Depth, AssumeSingleUse))
2929         return true;
2930     }
2931     break;
2932   }
2933   }
2934   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2935 
2936   // Constant fold all undef cases.
2937   // TODO: Handle zero cases as well.
2938   if (DemandedElts.isSubsetOf(KnownUndef))
2939     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2940 
2941   return false;
2942 }
2943 
2944 /// Determine which of the bits specified in Mask are known to be either zero or
2945 /// one and return them in the Known.
2946 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2947                                                    KnownBits &Known,
2948                                                    const APInt &DemandedElts,
2949                                                    const SelectionDAG &DAG,
2950                                                    unsigned Depth) const {
2951   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2952           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2953           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2954           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2955          "Should use MaskedValueIsZero if you don't know whether Op"
2956          " is a target node!");
2957   Known.resetAll();
2958 }
2959 
2960 void TargetLowering::computeKnownBitsForTargetInstr(
2961     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2962     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2963     unsigned Depth) const {
2964   Known.resetAll();
2965 }
2966 
2967 void TargetLowering::computeKnownBitsForFrameIndex(
2968   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2969   // The low bits are known zero if the pointer is aligned.
2970   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2971 }
2972 
2973 Align TargetLowering::computeKnownAlignForTargetInstr(
2974   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2975   unsigned Depth) const {
2976   return Align(1);
2977 }
2978 
2979 /// This method can be implemented by targets that want to expose additional
2980 /// information about sign bits to the DAG Combiner.
2981 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2982                                                          const APInt &,
2983                                                          const SelectionDAG &,
2984                                                          unsigned Depth) const {
2985   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2986           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2987           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2988           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2989          "Should use ComputeNumSignBits if you don't know whether Op"
2990          " is a target node!");
2991   return 1;
2992 }
2993 
2994 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2995   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2996   const MachineRegisterInfo &MRI, unsigned Depth) const {
2997   return 1;
2998 }
2999 
3000 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3001     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3002     TargetLoweringOpt &TLO, unsigned Depth) const {
3003   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3004           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3005           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3006           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3007          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3008          " is a target node!");
3009   return false;
3010 }
3011 
3012 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3013     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3014     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3015   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3016           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3017           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3018           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3019          "Should use SimplifyDemandedBits if you don't know whether Op"
3020          " is a target node!");
3021   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3022   return false;
3023 }
3024 
3025 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3026     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3027     SelectionDAG &DAG, unsigned Depth) const {
3028   assert(
3029       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3030        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3031        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3032        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3033       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3034       " is a target node!");
3035   return SDValue();
3036 }
3037 
3038 SDValue
3039 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3040                                         SDValue N1, MutableArrayRef<int> Mask,
3041                                         SelectionDAG &DAG) const {
3042   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3043   if (!LegalMask) {
3044     std::swap(N0, N1);
3045     ShuffleVectorSDNode::commuteMask(Mask);
3046     LegalMask = isShuffleMaskLegal(Mask, VT);
3047   }
3048 
3049   if (!LegalMask)
3050     return SDValue();
3051 
3052   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3053 }
3054 
3055 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3056   return nullptr;
3057 }
3058 
3059 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3060     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3061     bool PoisonOnly, unsigned Depth) const {
3062   assert(
3063       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3064        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3065        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3066        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3067       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3068       " is a target node!");
3069   return false;
3070 }
3071 
3072 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3073                                                   const SelectionDAG &DAG,
3074                                                   bool SNaN,
3075                                                   unsigned Depth) const {
3076   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3077           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3078           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3079           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3080          "Should use isKnownNeverNaN if you don't know whether Op"
3081          " is a target node!");
3082   return false;
3083 }
3084 
3085 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3086 // work with truncating build vectors and vectors with elements of less than
3087 // 8 bits.
3088 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3089   if (!N)
3090     return false;
3091 
3092   APInt CVal;
3093   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3094     CVal = CN->getAPIntValue();
3095   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3096     auto *CN = BV->getConstantSplatNode();
3097     if (!CN)
3098       return false;
3099 
3100     // If this is a truncating build vector, truncate the splat value.
3101     // Otherwise, we may fail to match the expected values below.
3102     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3103     CVal = CN->getAPIntValue();
3104     if (BVEltWidth < CVal.getBitWidth())
3105       CVal = CVal.trunc(BVEltWidth);
3106   } else {
3107     return false;
3108   }
3109 
3110   switch (getBooleanContents(N->getValueType(0))) {
3111   case UndefinedBooleanContent:
3112     return CVal[0];
3113   case ZeroOrOneBooleanContent:
3114     return CVal.isOneValue();
3115   case ZeroOrNegativeOneBooleanContent:
3116     return CVal.isAllOnesValue();
3117   }
3118 
3119   llvm_unreachable("Invalid boolean contents");
3120 }
3121 
3122 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3123   if (!N)
3124     return false;
3125 
3126   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3127   if (!CN) {
3128     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3129     if (!BV)
3130       return false;
3131 
3132     // Only interested in constant splats, we don't care about undef
3133     // elements in identifying boolean constants and getConstantSplatNode
3134     // returns NULL if all ops are undef;
3135     CN = BV->getConstantSplatNode();
3136     if (!CN)
3137       return false;
3138   }
3139 
3140   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3141     return !CN->getAPIntValue()[0];
3142 
3143   return CN->isNullValue();
3144 }
3145 
3146 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3147                                        bool SExt) const {
3148   if (VT == MVT::i1)
3149     return N->isOne();
3150 
3151   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3152   switch (Cnt) {
3153   case TargetLowering::ZeroOrOneBooleanContent:
3154     // An extended value of 1 is always true, unless its original type is i1,
3155     // in which case it will be sign extended to -1.
3156     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3157   case TargetLowering::UndefinedBooleanContent:
3158   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3159     return N->isAllOnesValue() && SExt;
3160   }
3161   llvm_unreachable("Unexpected enumeration.");
3162 }
3163 
3164 /// This helper function of SimplifySetCC tries to optimize the comparison when
3165 /// either operand of the SetCC node is a bitwise-and instruction.
3166 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3167                                          ISD::CondCode Cond, const SDLoc &DL,
3168                                          DAGCombinerInfo &DCI) const {
3169   // Match these patterns in any of their permutations:
3170   // (X & Y) == Y
3171   // (X & Y) != Y
3172   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3173     std::swap(N0, N1);
3174 
3175   EVT OpVT = N0.getValueType();
3176   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3177       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3178     return SDValue();
3179 
3180   SDValue X, Y;
3181   if (N0.getOperand(0) == N1) {
3182     X = N0.getOperand(1);
3183     Y = N0.getOperand(0);
3184   } else if (N0.getOperand(1) == N1) {
3185     X = N0.getOperand(0);
3186     Y = N0.getOperand(1);
3187   } else {
3188     return SDValue();
3189   }
3190 
3191   SelectionDAG &DAG = DCI.DAG;
3192   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3193   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3194     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3195     // Note that where Y is variable and is known to have at most one bit set
3196     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3197     // equivalent when Y == 0.
3198     assert(OpVT.isInteger());
3199     Cond = ISD::getSetCCInverse(Cond, OpVT);
3200     if (DCI.isBeforeLegalizeOps() ||
3201         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3202       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3203   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3204     // If the target supports an 'and-not' or 'and-complement' logic operation,
3205     // try to use that to make a comparison operation more efficient.
3206     // But don't do this transform if the mask is a single bit because there are
3207     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3208     // 'rlwinm' on PPC).
3209 
3210     // Bail out if the compare operand that we want to turn into a zero is
3211     // already a zero (otherwise, infinite loop).
3212     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3213     if (YConst && YConst->isNullValue())
3214       return SDValue();
3215 
3216     // Transform this into: ~X & Y == 0.
3217     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3218     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3219     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3220   }
3221 
3222   return SDValue();
3223 }
3224 
3225 /// There are multiple IR patterns that could be checking whether certain
3226 /// truncation of a signed number would be lossy or not. The pattern which is
3227 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3228 /// We are looking for the following pattern: (KeptBits is a constant)
3229 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3230 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3231 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3232 /// We will unfold it into the natural trunc+sext pattern:
3233 ///   ((%x << C) a>> C) dstcond %x
3234 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3235 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3236     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3237     const SDLoc &DL) const {
3238   // We must be comparing with a constant.
3239   ConstantSDNode *C1;
3240   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3241     return SDValue();
3242 
3243   // N0 should be:  add %x, (1 << (KeptBits-1))
3244   if (N0->getOpcode() != ISD::ADD)
3245     return SDValue();
3246 
3247   // And we must be 'add'ing a constant.
3248   ConstantSDNode *C01;
3249   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3250     return SDValue();
3251 
3252   SDValue X = N0->getOperand(0);
3253   EVT XVT = X.getValueType();
3254 
3255   // Validate constants ...
3256 
3257   APInt I1 = C1->getAPIntValue();
3258 
3259   ISD::CondCode NewCond;
3260   if (Cond == ISD::CondCode::SETULT) {
3261     NewCond = ISD::CondCode::SETEQ;
3262   } else if (Cond == ISD::CondCode::SETULE) {
3263     NewCond = ISD::CondCode::SETEQ;
3264     // But need to 'canonicalize' the constant.
3265     I1 += 1;
3266   } else if (Cond == ISD::CondCode::SETUGT) {
3267     NewCond = ISD::CondCode::SETNE;
3268     // But need to 'canonicalize' the constant.
3269     I1 += 1;
3270   } else if (Cond == ISD::CondCode::SETUGE) {
3271     NewCond = ISD::CondCode::SETNE;
3272   } else
3273     return SDValue();
3274 
3275   APInt I01 = C01->getAPIntValue();
3276 
3277   auto checkConstants = [&I1, &I01]() -> bool {
3278     // Both of them must be power-of-two, and the constant from setcc is bigger.
3279     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3280   };
3281 
3282   if (checkConstants()) {
3283     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3284   } else {
3285     // What if we invert constants? (and the target predicate)
3286     I1.negate();
3287     I01.negate();
3288     assert(XVT.isInteger());
3289     NewCond = getSetCCInverse(NewCond, XVT);
3290     if (!checkConstants())
3291       return SDValue();
3292     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3293   }
3294 
3295   // They are power-of-two, so which bit is set?
3296   const unsigned KeptBits = I1.logBase2();
3297   const unsigned KeptBitsMinusOne = I01.logBase2();
3298 
3299   // Magic!
3300   if (KeptBits != (KeptBitsMinusOne + 1))
3301     return SDValue();
3302   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3303 
3304   // We don't want to do this in every single case.
3305   SelectionDAG &DAG = DCI.DAG;
3306   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3307           XVT, KeptBits))
3308     return SDValue();
3309 
3310   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3311   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3312 
3313   // Unfold into:  ((%x << C) a>> C) cond %x
3314   // Where 'cond' will be either 'eq' or 'ne'.
3315   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3316   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3317   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3318   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3319 
3320   return T2;
3321 }
3322 
3323 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3324 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3325     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3326     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3327   assert(isConstOrConstSplat(N1C) &&
3328          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3329          "Should be a comparison with 0.");
3330   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3331          "Valid only for [in]equality comparisons.");
3332 
3333   unsigned NewShiftOpcode;
3334   SDValue X, C, Y;
3335 
3336   SelectionDAG &DAG = DCI.DAG;
3337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3338 
3339   // Look for '(C l>>/<< Y)'.
3340   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3341     // The shift should be one-use.
3342     if (!V.hasOneUse())
3343       return false;
3344     unsigned OldShiftOpcode = V.getOpcode();
3345     switch (OldShiftOpcode) {
3346     case ISD::SHL:
3347       NewShiftOpcode = ISD::SRL;
3348       break;
3349     case ISD::SRL:
3350       NewShiftOpcode = ISD::SHL;
3351       break;
3352     default:
3353       return false; // must be a logical shift.
3354     }
3355     // We should be shifting a constant.
3356     // FIXME: best to use isConstantOrConstantVector().
3357     C = V.getOperand(0);
3358     ConstantSDNode *CC =
3359         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3360     if (!CC)
3361       return false;
3362     Y = V.getOperand(1);
3363 
3364     ConstantSDNode *XC =
3365         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3366     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3367         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3368   };
3369 
3370   // LHS of comparison should be an one-use 'and'.
3371   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3372     return SDValue();
3373 
3374   X = N0.getOperand(0);
3375   SDValue Mask = N0.getOperand(1);
3376 
3377   // 'and' is commutative!
3378   if (!Match(Mask)) {
3379     std::swap(X, Mask);
3380     if (!Match(Mask))
3381       return SDValue();
3382   }
3383 
3384   EVT VT = X.getValueType();
3385 
3386   // Produce:
3387   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3388   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3389   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3390   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3391   return T2;
3392 }
3393 
3394 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3395 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3396 /// handle the commuted versions of these patterns.
3397 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3398                                            ISD::CondCode Cond, const SDLoc &DL,
3399                                            DAGCombinerInfo &DCI) const {
3400   unsigned BOpcode = N0.getOpcode();
3401   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3402          "Unexpected binop");
3403   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3404 
3405   // (X + Y) == X --> Y == 0
3406   // (X - Y) == X --> Y == 0
3407   // (X ^ Y) == X --> Y == 0
3408   SelectionDAG &DAG = DCI.DAG;
3409   EVT OpVT = N0.getValueType();
3410   SDValue X = N0.getOperand(0);
3411   SDValue Y = N0.getOperand(1);
3412   if (X == N1)
3413     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3414 
3415   if (Y != N1)
3416     return SDValue();
3417 
3418   // (X + Y) == Y --> X == 0
3419   // (X ^ Y) == Y --> X == 0
3420   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3421     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3422 
3423   // The shift would not be valid if the operands are boolean (i1).
3424   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3425     return SDValue();
3426 
3427   // (X - Y) == Y --> X == Y << 1
3428   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3429                                  !DCI.isBeforeLegalize());
3430   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3431   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3432   if (!DCI.isCalledByLegalizer())
3433     DCI.AddToWorklist(YShl1.getNode());
3434   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3435 }
3436 
3437 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3438                                       SDValue N0, const APInt &C1,
3439                                       ISD::CondCode Cond, const SDLoc &dl,
3440                                       SelectionDAG &DAG) {
3441   // Look through truncs that don't change the value of a ctpop.
3442   // FIXME: Add vector support? Need to be careful with setcc result type below.
3443   SDValue CTPOP = N0;
3444   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3445       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3446     CTPOP = N0.getOperand(0);
3447 
3448   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3449     return SDValue();
3450 
3451   EVT CTVT = CTPOP.getValueType();
3452   SDValue CTOp = CTPOP.getOperand(0);
3453 
3454   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3455   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3456   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3457     return SDValue();
3458 
3459   // (ctpop x) u< 2 -> (x & x-1) == 0
3460   // (ctpop x) u> 1 -> (x & x-1) != 0
3461   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3462     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3463     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3464       return SDValue();
3465     if (C1 == 0 && (Cond == ISD::SETULT))
3466       return SDValue(); // This is handled elsewhere.
3467 
3468     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3469 
3470     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3471     SDValue Result = CTOp;
3472     for (unsigned i = 0; i < Passes; i++) {
3473       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3474       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3475     }
3476     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3477     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3478   }
3479 
3480   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3481   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3482     // For scalars, keep CTPOP if it is legal or custom.
3483     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3484       return SDValue();
3485     // This is based on X86's custom lowering for CTPOP which produces more
3486     // instructions than the expansion here.
3487 
3488     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3489     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3490     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3491     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3492     assert(CTVT.isInteger());
3493     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3494     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3495     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3496     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3497     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3498     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3499     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3500   }
3501 
3502   return SDValue();
3503 }
3504 
3505 /// Try to simplify a setcc built with the specified operands and cc. If it is
3506 /// unable to simplify it, return a null SDValue.
3507 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3508                                       ISD::CondCode Cond, bool foldBooleans,
3509                                       DAGCombinerInfo &DCI,
3510                                       const SDLoc &dl) const {
3511   SelectionDAG &DAG = DCI.DAG;
3512   const DataLayout &Layout = DAG.getDataLayout();
3513   EVT OpVT = N0.getValueType();
3514 
3515   // Constant fold or commute setcc.
3516   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3517     return Fold;
3518 
3519   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3520   // TODO: Handle non-splat vector constants. All undef causes trouble.
3521   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3522   // infinite loop here when we encounter one.
3523   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3524   if (isConstOrConstSplat(N0) &&
3525       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3526       (DCI.isBeforeLegalizeOps() ||
3527        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3528     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3529 
3530   // If we have a subtract with the same 2 non-constant operands as this setcc
3531   // -- but in reverse order -- then try to commute the operands of this setcc
3532   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3533   // instruction on some targets.
3534   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3535       (DCI.isBeforeLegalizeOps() ||
3536        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3537       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3538       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3539     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3540 
3541   if (auto *N1C = isConstOrConstSplat(N1)) {
3542     const APInt &C1 = N1C->getAPIntValue();
3543 
3544     // Optimize some CTPOP cases.
3545     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3546       return V;
3547 
3548     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3549     // equality comparison, then we're just comparing whether X itself is
3550     // zero.
3551     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3552         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3553         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3554       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3555         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3556             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3557           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3558             // (srl (ctlz x), 5) == 0  -> X != 0
3559             // (srl (ctlz x), 5) != 1  -> X != 0
3560             Cond = ISD::SETNE;
3561           } else {
3562             // (srl (ctlz x), 5) != 0  -> X == 0
3563             // (srl (ctlz x), 5) == 1  -> X == 0
3564             Cond = ISD::SETEQ;
3565           }
3566           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3567           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3568                               Cond);
3569         }
3570       }
3571     }
3572   }
3573 
3574   // FIXME: Support vectors.
3575   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3576     const APInt &C1 = N1C->getAPIntValue();
3577 
3578     // (zext x) == C --> x == (trunc C)
3579     // (sext x) == C --> x == (trunc C)
3580     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3581         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3582       unsigned MinBits = N0.getValueSizeInBits();
3583       SDValue PreExt;
3584       bool Signed = false;
3585       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3586         // ZExt
3587         MinBits = N0->getOperand(0).getValueSizeInBits();
3588         PreExt = N0->getOperand(0);
3589       } else if (N0->getOpcode() == ISD::AND) {
3590         // DAGCombine turns costly ZExts into ANDs
3591         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3592           if ((C->getAPIntValue()+1).isPowerOf2()) {
3593             MinBits = C->getAPIntValue().countTrailingOnes();
3594             PreExt = N0->getOperand(0);
3595           }
3596       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3597         // SExt
3598         MinBits = N0->getOperand(0).getValueSizeInBits();
3599         PreExt = N0->getOperand(0);
3600         Signed = true;
3601       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3602         // ZEXTLOAD / SEXTLOAD
3603         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3604           MinBits = LN0->getMemoryVT().getSizeInBits();
3605           PreExt = N0;
3606         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3607           Signed = true;
3608           MinBits = LN0->getMemoryVT().getSizeInBits();
3609           PreExt = N0;
3610         }
3611       }
3612 
3613       // Figure out how many bits we need to preserve this constant.
3614       unsigned ReqdBits = Signed ?
3615         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3616         C1.getActiveBits();
3617 
3618       // Make sure we're not losing bits from the constant.
3619       if (MinBits > 0 &&
3620           MinBits < C1.getBitWidth() &&
3621           MinBits >= ReqdBits) {
3622         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3623         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3624           // Will get folded away.
3625           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3626           if (MinBits == 1 && C1 == 1)
3627             // Invert the condition.
3628             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3629                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3630           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3631           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3632         }
3633 
3634         // If truncating the setcc operands is not desirable, we can still
3635         // simplify the expression in some cases:
3636         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3637         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3638         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3639         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3640         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3641         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3642         SDValue TopSetCC = N0->getOperand(0);
3643         unsigned N0Opc = N0->getOpcode();
3644         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3645         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3646             TopSetCC.getOpcode() == ISD::SETCC &&
3647             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3648             (isConstFalseVal(N1C) ||
3649              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3650 
3651           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3652                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3653 
3654           if (!Inverse)
3655             return TopSetCC;
3656 
3657           ISD::CondCode InvCond = ISD::getSetCCInverse(
3658               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3659               TopSetCC.getOperand(0).getValueType());
3660           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3661                                       TopSetCC.getOperand(1),
3662                                       InvCond);
3663         }
3664       }
3665     }
3666 
3667     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3668     // equality or unsigned, and all 1 bits of the const are in the same
3669     // partial word, see if we can shorten the load.
3670     if (DCI.isBeforeLegalize() &&
3671         !ISD::isSignedIntSetCC(Cond) &&
3672         N0.getOpcode() == ISD::AND && C1 == 0 &&
3673         N0.getNode()->hasOneUse() &&
3674         isa<LoadSDNode>(N0.getOperand(0)) &&
3675         N0.getOperand(0).getNode()->hasOneUse() &&
3676         isa<ConstantSDNode>(N0.getOperand(1))) {
3677       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3678       APInt bestMask;
3679       unsigned bestWidth = 0, bestOffset = 0;
3680       if (Lod->isSimple() && Lod->isUnindexed()) {
3681         unsigned origWidth = N0.getValueSizeInBits();
3682         unsigned maskWidth = origWidth;
3683         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3684         // 8 bits, but have to be careful...
3685         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3686           origWidth = Lod->getMemoryVT().getSizeInBits();
3687         const APInt &Mask = N0.getConstantOperandAPInt(1);
3688         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3689           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3690           for (unsigned offset=0; offset<origWidth/width; offset++) {
3691             if (Mask.isSubsetOf(newMask)) {
3692               if (Layout.isLittleEndian())
3693                 bestOffset = (uint64_t)offset * (width/8);
3694               else
3695                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3696               bestMask = Mask.lshr(offset * (width/8) * 8);
3697               bestWidth = width;
3698               break;
3699             }
3700             newMask <<= width;
3701           }
3702         }
3703       }
3704       if (bestWidth) {
3705         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3706         if (newVT.isRound() &&
3707             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3708           SDValue Ptr = Lod->getBasePtr();
3709           if (bestOffset != 0)
3710             Ptr =
3711                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3712           SDValue NewLoad =
3713               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3714                           Lod->getPointerInfo().getWithOffset(bestOffset),
3715                           Lod->getOriginalAlign());
3716           return DAG.getSetCC(dl, VT,
3717                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3718                                       DAG.getConstant(bestMask.trunc(bestWidth),
3719                                                       dl, newVT)),
3720                               DAG.getConstant(0LL, dl, newVT), Cond);
3721         }
3722       }
3723     }
3724 
3725     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3726     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3727       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3728 
3729       // If the comparison constant has bits in the upper part, the
3730       // zero-extended value could never match.
3731       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3732                                               C1.getBitWidth() - InSize))) {
3733         switch (Cond) {
3734         case ISD::SETUGT:
3735         case ISD::SETUGE:
3736         case ISD::SETEQ:
3737           return DAG.getConstant(0, dl, VT);
3738         case ISD::SETULT:
3739         case ISD::SETULE:
3740         case ISD::SETNE:
3741           return DAG.getConstant(1, dl, VT);
3742         case ISD::SETGT:
3743         case ISD::SETGE:
3744           // True if the sign bit of C1 is set.
3745           return DAG.getConstant(C1.isNegative(), dl, VT);
3746         case ISD::SETLT:
3747         case ISD::SETLE:
3748           // True if the sign bit of C1 isn't set.
3749           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3750         default:
3751           break;
3752         }
3753       }
3754 
3755       // Otherwise, we can perform the comparison with the low bits.
3756       switch (Cond) {
3757       case ISD::SETEQ:
3758       case ISD::SETNE:
3759       case ISD::SETUGT:
3760       case ISD::SETUGE:
3761       case ISD::SETULT:
3762       case ISD::SETULE: {
3763         EVT newVT = N0.getOperand(0).getValueType();
3764         if (DCI.isBeforeLegalizeOps() ||
3765             (isOperationLegal(ISD::SETCC, newVT) &&
3766              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3767           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3768           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3769 
3770           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3771                                           NewConst, Cond);
3772           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3773         }
3774         break;
3775       }
3776       default:
3777         break; // todo, be more careful with signed comparisons
3778       }
3779     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3780                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3781                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3782                                       OpVT)) {
3783       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3784       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3785       EVT ExtDstTy = N0.getValueType();
3786       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3787 
3788       // If the constant doesn't fit into the number of bits for the source of
3789       // the sign extension, it is impossible for both sides to be equal.
3790       if (C1.getMinSignedBits() > ExtSrcTyBits)
3791         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3792 
3793       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3794              ExtDstTy != ExtSrcTy && "Unexpected types!");
3795       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3796       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3797                                    DAG.getConstant(Imm, dl, ExtDstTy));
3798       if (!DCI.isCalledByLegalizer())
3799         DCI.AddToWorklist(ZextOp.getNode());
3800       // Otherwise, make this a use of a zext.
3801       return DAG.getSetCC(dl, VT, ZextOp,
3802                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3803     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3804                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3805       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3806       if (N0.getOpcode() == ISD::SETCC &&
3807           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3808           (N0.getValueType() == MVT::i1 ||
3809            getBooleanContents(N0.getOperand(0).getValueType()) ==
3810                        ZeroOrOneBooleanContent)) {
3811         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3812         if (TrueWhenTrue)
3813           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3814         // Invert the condition.
3815         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3816         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3817         if (DCI.isBeforeLegalizeOps() ||
3818             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3819           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3820       }
3821 
3822       if ((N0.getOpcode() == ISD::XOR ||
3823            (N0.getOpcode() == ISD::AND &&
3824             N0.getOperand(0).getOpcode() == ISD::XOR &&
3825             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3826           isOneConstant(N0.getOperand(1))) {
3827         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3828         // can only do this if the top bits are known zero.
3829         unsigned BitWidth = N0.getValueSizeInBits();
3830         if (DAG.MaskedValueIsZero(N0,
3831                                   APInt::getHighBitsSet(BitWidth,
3832                                                         BitWidth-1))) {
3833           // Okay, get the un-inverted input value.
3834           SDValue Val;
3835           if (N0.getOpcode() == ISD::XOR) {
3836             Val = N0.getOperand(0);
3837           } else {
3838             assert(N0.getOpcode() == ISD::AND &&
3839                     N0.getOperand(0).getOpcode() == ISD::XOR);
3840             // ((X^1)&1)^1 -> X & 1
3841             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3842                               N0.getOperand(0).getOperand(0),
3843                               N0.getOperand(1));
3844           }
3845 
3846           return DAG.getSetCC(dl, VT, Val, N1,
3847                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3848         }
3849       } else if (N1C->isOne()) {
3850         SDValue Op0 = N0;
3851         if (Op0.getOpcode() == ISD::TRUNCATE)
3852           Op0 = Op0.getOperand(0);
3853 
3854         if ((Op0.getOpcode() == ISD::XOR) &&
3855             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3856             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3857           SDValue XorLHS = Op0.getOperand(0);
3858           SDValue XorRHS = Op0.getOperand(1);
3859           // Ensure that the input setccs return an i1 type or 0/1 value.
3860           if (Op0.getValueType() == MVT::i1 ||
3861               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3862                       ZeroOrOneBooleanContent &&
3863                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3864                         ZeroOrOneBooleanContent)) {
3865             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3866             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3867             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3868           }
3869         }
3870         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3871           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3872           if (Op0.getValueType().bitsGT(VT))
3873             Op0 = DAG.getNode(ISD::AND, dl, VT,
3874                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3875                           DAG.getConstant(1, dl, VT));
3876           else if (Op0.getValueType().bitsLT(VT))
3877             Op0 = DAG.getNode(ISD::AND, dl, VT,
3878                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3879                         DAG.getConstant(1, dl, VT));
3880 
3881           return DAG.getSetCC(dl, VT, Op0,
3882                               DAG.getConstant(0, dl, Op0.getValueType()),
3883                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3884         }
3885         if (Op0.getOpcode() == ISD::AssertZext &&
3886             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3887           return DAG.getSetCC(dl, VT, Op0,
3888                               DAG.getConstant(0, dl, Op0.getValueType()),
3889                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3890       }
3891     }
3892 
3893     // Given:
3894     //   icmp eq/ne (urem %x, %y), 0
3895     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3896     //   icmp eq/ne %x, 0
3897     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3898         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3899       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3900       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3901       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3902         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3903     }
3904 
3905     if (SDValue V =
3906             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3907       return V;
3908   }
3909 
3910   // These simplifications apply to splat vectors as well.
3911   // TODO: Handle more splat vector cases.
3912   if (auto *N1C = isConstOrConstSplat(N1)) {
3913     const APInt &C1 = N1C->getAPIntValue();
3914 
3915     APInt MinVal, MaxVal;
3916     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3917     if (ISD::isSignedIntSetCC(Cond)) {
3918       MinVal = APInt::getSignedMinValue(OperandBitSize);
3919       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3920     } else {
3921       MinVal = APInt::getMinValue(OperandBitSize);
3922       MaxVal = APInt::getMaxValue(OperandBitSize);
3923     }
3924 
3925     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3926     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3927       // X >= MIN --> true
3928       if (C1 == MinVal)
3929         return DAG.getBoolConstant(true, dl, VT, OpVT);
3930 
3931       if (!VT.isVector()) { // TODO: Support this for vectors.
3932         // X >= C0 --> X > (C0 - 1)
3933         APInt C = C1 - 1;
3934         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3935         if ((DCI.isBeforeLegalizeOps() ||
3936              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3937             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3938                                   isLegalICmpImmediate(C.getSExtValue())))) {
3939           return DAG.getSetCC(dl, VT, N0,
3940                               DAG.getConstant(C, dl, N1.getValueType()),
3941                               NewCC);
3942         }
3943       }
3944     }
3945 
3946     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3947       // X <= MAX --> true
3948       if (C1 == MaxVal)
3949         return DAG.getBoolConstant(true, dl, VT, OpVT);
3950 
3951       // X <= C0 --> X < (C0 + 1)
3952       if (!VT.isVector()) { // TODO: Support this for vectors.
3953         APInt C = C1 + 1;
3954         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3955         if ((DCI.isBeforeLegalizeOps() ||
3956              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3957             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3958                                   isLegalICmpImmediate(C.getSExtValue())))) {
3959           return DAG.getSetCC(dl, VT, N0,
3960                               DAG.getConstant(C, dl, N1.getValueType()),
3961                               NewCC);
3962         }
3963       }
3964     }
3965 
3966     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3967       if (C1 == MinVal)
3968         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3969 
3970       // TODO: Support this for vectors after legalize ops.
3971       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3972         // Canonicalize setlt X, Max --> setne X, Max
3973         if (C1 == MaxVal)
3974           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3975 
3976         // If we have setult X, 1, turn it into seteq X, 0
3977         if (C1 == MinVal+1)
3978           return DAG.getSetCC(dl, VT, N0,
3979                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3980                               ISD::SETEQ);
3981       }
3982     }
3983 
3984     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3985       if (C1 == MaxVal)
3986         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3987 
3988       // TODO: Support this for vectors after legalize ops.
3989       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3990         // Canonicalize setgt X, Min --> setne X, Min
3991         if (C1 == MinVal)
3992           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3993 
3994         // If we have setugt X, Max-1, turn it into seteq X, Max
3995         if (C1 == MaxVal-1)
3996           return DAG.getSetCC(dl, VT, N0,
3997                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3998                               ISD::SETEQ);
3999       }
4000     }
4001 
4002     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4003       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4004       if (C1.isNullValue())
4005         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4006                 VT, N0, N1, Cond, DCI, dl))
4007           return CC;
4008 
4009       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4010       // For example, when high 32-bits of i64 X are known clear:
4011       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4012       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4013       bool CmpZero = N1C->getAPIntValue().isNullValue();
4014       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
4015       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4016         // Match or(lo,shl(hi,bw/2)) pattern.
4017         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4018           unsigned EltBits = V.getScalarValueSizeInBits();
4019           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4020             return false;
4021           SDValue LHS = V.getOperand(0);
4022           SDValue RHS = V.getOperand(1);
4023           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4024           // Unshifted element must have zero upperbits.
4025           if (RHS.getOpcode() == ISD::SHL &&
4026               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4027               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4028               DAG.MaskedValueIsZero(LHS, HiBits)) {
4029             Lo = LHS;
4030             Hi = RHS.getOperand(0);
4031             return true;
4032           }
4033           if (LHS.getOpcode() == ISD::SHL &&
4034               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4035               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4036               DAG.MaskedValueIsZero(RHS, HiBits)) {
4037             Lo = RHS;
4038             Hi = LHS.getOperand(0);
4039             return true;
4040           }
4041           return false;
4042         };
4043 
4044         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4045           unsigned EltBits = N0.getScalarValueSizeInBits();
4046           unsigned HalfBits = EltBits / 2;
4047           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4048           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4049           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4050           SDValue NewN0 =
4051               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4052           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4053           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4054         };
4055 
4056         SDValue Lo, Hi;
4057         if (IsConcat(N0, Lo, Hi))
4058           return MergeConcat(Lo, Hi);
4059 
4060         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4061           SDValue Lo0, Lo1, Hi0, Hi1;
4062           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4063               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4064             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4065                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4066           }
4067         }
4068       }
4069     }
4070 
4071     // If we have "setcc X, C0", check to see if we can shrink the immediate
4072     // by changing cc.
4073     // TODO: Support this for vectors after legalize ops.
4074     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4075       // SETUGT X, SINTMAX  -> SETLT X, 0
4076       // SETUGE X, SINTMIN -> SETLT X, 0
4077       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4078           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4079         return DAG.getSetCC(dl, VT, N0,
4080                             DAG.getConstant(0, dl, N1.getValueType()),
4081                             ISD::SETLT);
4082 
4083       // SETULT X, SINTMIN  -> SETGT X, -1
4084       // SETULE X, SINTMAX  -> SETGT X, -1
4085       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4086           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4087         return DAG.getSetCC(dl, VT, N0,
4088                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4089                             ISD::SETGT);
4090     }
4091   }
4092 
4093   // Back to non-vector simplifications.
4094   // TODO: Can we do these for vector splats?
4095   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4096     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4097     const APInt &C1 = N1C->getAPIntValue();
4098     EVT ShValTy = N0.getValueType();
4099 
4100     // Fold bit comparisons when we can. This will result in an
4101     // incorrect value when boolean false is negative one, unless
4102     // the bitsize is 1 in which case the false value is the same
4103     // in practice regardless of the representation.
4104     if ((VT.getSizeInBits() == 1 ||
4105          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4106         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4107         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4108         N0.getOpcode() == ISD::AND) {
4109       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4110         EVT ShiftTy =
4111             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4112         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4113           // Perform the xform if the AND RHS is a single bit.
4114           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4115           if (AndRHS->getAPIntValue().isPowerOf2() &&
4116               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4117             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4118                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4119                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4120           }
4121         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4122           // (X & 8) == 8  -->  (X & 8) >> 3
4123           // Perform the xform if C1 is a single bit.
4124           unsigned ShCt = C1.logBase2();
4125           if (C1.isPowerOf2() &&
4126               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4127             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4128                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4129                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4130           }
4131         }
4132       }
4133     }
4134 
4135     if (C1.getMinSignedBits() <= 64 &&
4136         !isLegalICmpImmediate(C1.getSExtValue())) {
4137       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4138       // (X & -256) == 256 -> (X >> 8) == 1
4139       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4140           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4141         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4142           const APInt &AndRHSC = AndRHS->getAPIntValue();
4143           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4144             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4145             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4146               SDValue Shift =
4147                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4148                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4149               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4150               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4151             }
4152           }
4153         }
4154       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4155                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4156         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4157         // X <  0x100000000 -> (X >> 32) <  1
4158         // X >= 0x100000000 -> (X >> 32) >= 1
4159         // X <= 0x0ffffffff -> (X >> 32) <  1
4160         // X >  0x0ffffffff -> (X >> 32) >= 1
4161         unsigned ShiftBits;
4162         APInt NewC = C1;
4163         ISD::CondCode NewCond = Cond;
4164         if (AdjOne) {
4165           ShiftBits = C1.countTrailingOnes();
4166           NewC = NewC + 1;
4167           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4168         } else {
4169           ShiftBits = C1.countTrailingZeros();
4170         }
4171         NewC.lshrInPlace(ShiftBits);
4172         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4173             isLegalICmpImmediate(NewC.getSExtValue()) &&
4174             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4175           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4176                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4177           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4178           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4179         }
4180       }
4181     }
4182   }
4183 
4184   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4185     auto *CFP = cast<ConstantFPSDNode>(N1);
4186     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4187 
4188     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4189     // constant if knowing that the operand is non-nan is enough.  We prefer to
4190     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4191     // materialize 0.0.
4192     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4193       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4194 
4195     // setcc (fneg x), C -> setcc swap(pred) x, -C
4196     if (N0.getOpcode() == ISD::FNEG) {
4197       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4198       if (DCI.isBeforeLegalizeOps() ||
4199           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4200         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4201         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4202       }
4203     }
4204 
4205     // If the condition is not legal, see if we can find an equivalent one
4206     // which is legal.
4207     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4208       // If the comparison was an awkward floating-point == or != and one of
4209       // the comparison operands is infinity or negative infinity, convert the
4210       // condition to a less-awkward <= or >=.
4211       if (CFP->getValueAPF().isInfinity()) {
4212         bool IsNegInf = CFP->getValueAPF().isNegative();
4213         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4214         switch (Cond) {
4215         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4216         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4217         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4218         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4219         default: break;
4220         }
4221         if (NewCond != ISD::SETCC_INVALID &&
4222             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4223           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4224       }
4225     }
4226   }
4227 
4228   if (N0 == N1) {
4229     // The sext(setcc()) => setcc() optimization relies on the appropriate
4230     // constant being emitted.
4231     assert(!N0.getValueType().isInteger() &&
4232            "Integer types should be handled by FoldSetCC");
4233 
4234     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4235     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4236     if (UOF == 2) // FP operators that are undefined on NaNs.
4237       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4238     if (UOF == unsigned(EqTrue))
4239       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4240     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4241     // if it is not already.
4242     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4243     if (NewCond != Cond &&
4244         (DCI.isBeforeLegalizeOps() ||
4245                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4246       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4247   }
4248 
4249   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4250       N0.getValueType().isInteger()) {
4251     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4252         N0.getOpcode() == ISD::XOR) {
4253       // Simplify (X+Y) == (X+Z) -->  Y == Z
4254       if (N0.getOpcode() == N1.getOpcode()) {
4255         if (N0.getOperand(0) == N1.getOperand(0))
4256           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4257         if (N0.getOperand(1) == N1.getOperand(1))
4258           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4259         if (isCommutativeBinOp(N0.getOpcode())) {
4260           // If X op Y == Y op X, try other combinations.
4261           if (N0.getOperand(0) == N1.getOperand(1))
4262             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4263                                 Cond);
4264           if (N0.getOperand(1) == N1.getOperand(0))
4265             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4266                                 Cond);
4267         }
4268       }
4269 
4270       // If RHS is a legal immediate value for a compare instruction, we need
4271       // to be careful about increasing register pressure needlessly.
4272       bool LegalRHSImm = false;
4273 
4274       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4275         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4276           // Turn (X+C1) == C2 --> X == C2-C1
4277           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4278             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4279                                 DAG.getConstant(RHSC->getAPIntValue()-
4280                                                 LHSR->getAPIntValue(),
4281                                 dl, N0.getValueType()), Cond);
4282           }
4283 
4284           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4285           if (N0.getOpcode() == ISD::XOR)
4286             // If we know that all of the inverted bits are zero, don't bother
4287             // performing the inversion.
4288             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4289               return
4290                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4291                              DAG.getConstant(LHSR->getAPIntValue() ^
4292                                                RHSC->getAPIntValue(),
4293                                              dl, N0.getValueType()),
4294                              Cond);
4295         }
4296 
4297         // Turn (C1-X) == C2 --> X == C1-C2
4298         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4299           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4300             return
4301               DAG.getSetCC(dl, VT, N0.getOperand(1),
4302                            DAG.getConstant(SUBC->getAPIntValue() -
4303                                              RHSC->getAPIntValue(),
4304                                            dl, N0.getValueType()),
4305                            Cond);
4306           }
4307         }
4308 
4309         // Could RHSC fold directly into a compare?
4310         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4311           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4312       }
4313 
4314       // (X+Y) == X --> Y == 0 and similar folds.
4315       // Don't do this if X is an immediate that can fold into a cmp
4316       // instruction and X+Y has other uses. It could be an induction variable
4317       // chain, and the transform would increase register pressure.
4318       if (!LegalRHSImm || N0.hasOneUse())
4319         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4320           return V;
4321     }
4322 
4323     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4324         N1.getOpcode() == ISD::XOR)
4325       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4326         return V;
4327 
4328     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4329       return V;
4330   }
4331 
4332   // Fold remainder of division by a constant.
4333   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4334       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4335     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4336 
4337     // When division is cheap or optimizing for minimum size,
4338     // fall through to DIVREM creation by skipping this fold.
4339     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4340       if (N0.getOpcode() == ISD::UREM) {
4341         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4342           return Folded;
4343       } else if (N0.getOpcode() == ISD::SREM) {
4344         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4345           return Folded;
4346       }
4347     }
4348   }
4349 
4350   // Fold away ALL boolean setcc's.
4351   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4352     SDValue Temp;
4353     switch (Cond) {
4354     default: llvm_unreachable("Unknown integer setcc!");
4355     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4356       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4357       N0 = DAG.getNOT(dl, Temp, OpVT);
4358       if (!DCI.isCalledByLegalizer())
4359         DCI.AddToWorklist(Temp.getNode());
4360       break;
4361     case ISD::SETNE:  // X != Y   -->  (X^Y)
4362       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4363       break;
4364     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4365     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4366       Temp = DAG.getNOT(dl, N0, OpVT);
4367       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4368       if (!DCI.isCalledByLegalizer())
4369         DCI.AddToWorklist(Temp.getNode());
4370       break;
4371     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4372     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4373       Temp = DAG.getNOT(dl, N1, OpVT);
4374       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4375       if (!DCI.isCalledByLegalizer())
4376         DCI.AddToWorklist(Temp.getNode());
4377       break;
4378     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4379     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4380       Temp = DAG.getNOT(dl, N0, OpVT);
4381       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4382       if (!DCI.isCalledByLegalizer())
4383         DCI.AddToWorklist(Temp.getNode());
4384       break;
4385     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4386     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4387       Temp = DAG.getNOT(dl, N1, OpVT);
4388       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4389       break;
4390     }
4391     if (VT.getScalarType() != MVT::i1) {
4392       if (!DCI.isCalledByLegalizer())
4393         DCI.AddToWorklist(N0.getNode());
4394       // FIXME: If running after legalize, we probably can't do this.
4395       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4396       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4397     }
4398     return N0;
4399   }
4400 
4401   // Could not fold it.
4402   return SDValue();
4403 }
4404 
4405 /// Returns true (and the GlobalValue and the offset) if the node is a
4406 /// GlobalAddress + offset.
4407 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4408                                     int64_t &Offset) const {
4409 
4410   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4411 
4412   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4413     GA = GASD->getGlobal();
4414     Offset += GASD->getOffset();
4415     return true;
4416   }
4417 
4418   if (N->getOpcode() == ISD::ADD) {
4419     SDValue N1 = N->getOperand(0);
4420     SDValue N2 = N->getOperand(1);
4421     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4422       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4423         Offset += V->getSExtValue();
4424         return true;
4425       }
4426     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4427       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4428         Offset += V->getSExtValue();
4429         return true;
4430       }
4431     }
4432   }
4433 
4434   return false;
4435 }
4436 
4437 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4438                                           DAGCombinerInfo &DCI) const {
4439   // Default implementation: no optimization.
4440   return SDValue();
4441 }
4442 
4443 //===----------------------------------------------------------------------===//
4444 //  Inline Assembler Implementation Methods
4445 //===----------------------------------------------------------------------===//
4446 
4447 TargetLowering::ConstraintType
4448 TargetLowering::getConstraintType(StringRef Constraint) const {
4449   unsigned S = Constraint.size();
4450 
4451   if (S == 1) {
4452     switch (Constraint[0]) {
4453     default: break;
4454     case 'r':
4455       return C_RegisterClass;
4456     case 'm': // memory
4457     case 'o': // offsetable
4458     case 'V': // not offsetable
4459       return C_Memory;
4460     case 'n': // Simple Integer
4461     case 'E': // Floating Point Constant
4462     case 'F': // Floating Point Constant
4463       return C_Immediate;
4464     case 'i': // Simple Integer or Relocatable Constant
4465     case 's': // Relocatable Constant
4466     case 'p': // Address.
4467     case 'X': // Allow ANY value.
4468     case 'I': // Target registers.
4469     case 'J':
4470     case 'K':
4471     case 'L':
4472     case 'M':
4473     case 'N':
4474     case 'O':
4475     case 'P':
4476     case '<':
4477     case '>':
4478       return C_Other;
4479     }
4480   }
4481 
4482   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4483     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4484       return C_Memory;
4485     return C_Register;
4486   }
4487   return C_Unknown;
4488 }
4489 
4490 /// Try to replace an X constraint, which matches anything, with another that
4491 /// has more specific requirements based on the type of the corresponding
4492 /// operand.
4493 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4494   if (ConstraintVT.isInteger())
4495     return "r";
4496   if (ConstraintVT.isFloatingPoint())
4497     return "f"; // works for many targets
4498   return nullptr;
4499 }
4500 
4501 SDValue TargetLowering::LowerAsmOutputForConstraint(
4502     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4503     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4504   return SDValue();
4505 }
4506 
4507 /// Lower the specified operand into the Ops vector.
4508 /// If it is invalid, don't add anything to Ops.
4509 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4510                                                   std::string &Constraint,
4511                                                   std::vector<SDValue> &Ops,
4512                                                   SelectionDAG &DAG) const {
4513 
4514   if (Constraint.length() > 1) return;
4515 
4516   char ConstraintLetter = Constraint[0];
4517   switch (ConstraintLetter) {
4518   default: break;
4519   case 'X':     // Allows any operand; labels (basic block) use this.
4520     if (Op.getOpcode() == ISD::BasicBlock ||
4521         Op.getOpcode() == ISD::TargetBlockAddress) {
4522       Ops.push_back(Op);
4523       return;
4524     }
4525     LLVM_FALLTHROUGH;
4526   case 'i':    // Simple Integer or Relocatable Constant
4527   case 'n':    // Simple Integer
4528   case 's': {  // Relocatable Constant
4529 
4530     GlobalAddressSDNode *GA;
4531     ConstantSDNode *C;
4532     BlockAddressSDNode *BA;
4533     uint64_t Offset = 0;
4534 
4535     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4536     // etc., since getelementpointer is variadic. We can't use
4537     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4538     // while in this case the GA may be furthest from the root node which is
4539     // likely an ISD::ADD.
4540     while (1) {
4541       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4542         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4543                                                  GA->getValueType(0),
4544                                                  Offset + GA->getOffset()));
4545         return;
4546       }
4547       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4548         // gcc prints these as sign extended.  Sign extend value to 64 bits
4549         // now; without this it would get ZExt'd later in
4550         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4551         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4552         BooleanContent BCont = getBooleanContents(MVT::i64);
4553         ISD::NodeType ExtOpc =
4554             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4555         int64_t ExtVal =
4556             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4557         Ops.push_back(
4558             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4559         return;
4560       }
4561       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4562         Ops.push_back(DAG.getTargetBlockAddress(
4563             BA->getBlockAddress(), BA->getValueType(0),
4564             Offset + BA->getOffset(), BA->getTargetFlags()));
4565         return;
4566       }
4567       const unsigned OpCode = Op.getOpcode();
4568       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4569         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4570           Op = Op.getOperand(1);
4571         // Subtraction is not commutative.
4572         else if (OpCode == ISD::ADD &&
4573                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4574           Op = Op.getOperand(0);
4575         else
4576           return;
4577         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4578         continue;
4579       }
4580       return;
4581     }
4582     break;
4583   }
4584   }
4585 }
4586 
4587 std::pair<unsigned, const TargetRegisterClass *>
4588 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4589                                              StringRef Constraint,
4590                                              MVT VT) const {
4591   if (Constraint.empty() || Constraint[0] != '{')
4592     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4593   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4594 
4595   // Remove the braces from around the name.
4596   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4597 
4598   std::pair<unsigned, const TargetRegisterClass *> R =
4599       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4600 
4601   // Figure out which register class contains this reg.
4602   for (const TargetRegisterClass *RC : RI->regclasses()) {
4603     // If none of the value types for this register class are valid, we
4604     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4605     if (!isLegalRC(*RI, *RC))
4606       continue;
4607 
4608     for (const MCPhysReg &PR : *RC) {
4609       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4610         std::pair<unsigned, const TargetRegisterClass *> S =
4611             std::make_pair(PR, RC);
4612 
4613         // If this register class has the requested value type, return it,
4614         // otherwise keep searching and return the first class found
4615         // if no other is found which explicitly has the requested type.
4616         if (RI->isTypeLegalForClass(*RC, VT))
4617           return S;
4618         if (!R.second)
4619           R = S;
4620       }
4621     }
4622   }
4623 
4624   return R;
4625 }
4626 
4627 //===----------------------------------------------------------------------===//
4628 // Constraint Selection.
4629 
4630 /// Return true of this is an input operand that is a matching constraint like
4631 /// "4".
4632 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4633   assert(!ConstraintCode.empty() && "No known constraint!");
4634   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4635 }
4636 
4637 /// If this is an input matching constraint, this method returns the output
4638 /// operand it matches.
4639 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4640   assert(!ConstraintCode.empty() && "No known constraint!");
4641   return atoi(ConstraintCode.c_str());
4642 }
4643 
4644 /// Split up the constraint string from the inline assembly value into the
4645 /// specific constraints and their prefixes, and also tie in the associated
4646 /// operand values.
4647 /// If this returns an empty vector, and if the constraint string itself
4648 /// isn't empty, there was an error parsing.
4649 TargetLowering::AsmOperandInfoVector
4650 TargetLowering::ParseConstraints(const DataLayout &DL,
4651                                  const TargetRegisterInfo *TRI,
4652                                  const CallBase &Call) const {
4653   /// Information about all of the constraints.
4654   AsmOperandInfoVector ConstraintOperands;
4655   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4656   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4657 
4658   // Do a prepass over the constraints, canonicalizing them, and building up the
4659   // ConstraintOperands list.
4660   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4661   unsigned ResNo = 0; // ResNo - The result number of the next output.
4662 
4663   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4664     ConstraintOperands.emplace_back(std::move(CI));
4665     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4666 
4667     // Update multiple alternative constraint count.
4668     if (OpInfo.multipleAlternatives.size() > maCount)
4669       maCount = OpInfo.multipleAlternatives.size();
4670 
4671     OpInfo.ConstraintVT = MVT::Other;
4672 
4673     // Compute the value type for each operand.
4674     switch (OpInfo.Type) {
4675     case InlineAsm::isOutput:
4676       // Indirect outputs just consume an argument.
4677       if (OpInfo.isIndirect) {
4678         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4679         break;
4680       }
4681 
4682       // The return value of the call is this value.  As such, there is no
4683       // corresponding argument.
4684       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4685       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4686         OpInfo.ConstraintVT =
4687             getSimpleValueType(DL, STy->getElementType(ResNo));
4688       } else {
4689         assert(ResNo == 0 && "Asm only has one result!");
4690         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4691       }
4692       ++ResNo;
4693       break;
4694     case InlineAsm::isInput:
4695       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4696       break;
4697     case InlineAsm::isClobber:
4698       // Nothing to do.
4699       break;
4700     }
4701 
4702     if (OpInfo.CallOperandVal) {
4703       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4704       if (OpInfo.isIndirect) {
4705         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4706         if (!PtrTy)
4707           report_fatal_error("Indirect operand for inline asm not a pointer!");
4708         OpTy = PtrTy->getElementType();
4709       }
4710 
4711       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4712       if (StructType *STy = dyn_cast<StructType>(OpTy))
4713         if (STy->getNumElements() == 1)
4714           OpTy = STy->getElementType(0);
4715 
4716       // If OpTy is not a single value, it may be a struct/union that we
4717       // can tile with integers.
4718       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4719         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4720         switch (BitSize) {
4721         default: break;
4722         case 1:
4723         case 8:
4724         case 16:
4725         case 32:
4726         case 64:
4727         case 128:
4728           OpInfo.ConstraintVT =
4729               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4730           break;
4731         }
4732       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4733         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4734         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4735       } else {
4736         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4737       }
4738     }
4739   }
4740 
4741   // If we have multiple alternative constraints, select the best alternative.
4742   if (!ConstraintOperands.empty()) {
4743     if (maCount) {
4744       unsigned bestMAIndex = 0;
4745       int bestWeight = -1;
4746       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4747       int weight = -1;
4748       unsigned maIndex;
4749       // Compute the sums of the weights for each alternative, keeping track
4750       // of the best (highest weight) one so far.
4751       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4752         int weightSum = 0;
4753         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4754              cIndex != eIndex; ++cIndex) {
4755           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4756           if (OpInfo.Type == InlineAsm::isClobber)
4757             continue;
4758 
4759           // If this is an output operand with a matching input operand,
4760           // look up the matching input. If their types mismatch, e.g. one
4761           // is an integer, the other is floating point, or their sizes are
4762           // different, flag it as an maCantMatch.
4763           if (OpInfo.hasMatchingInput()) {
4764             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4765             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4766               if ((OpInfo.ConstraintVT.isInteger() !=
4767                    Input.ConstraintVT.isInteger()) ||
4768                   (OpInfo.ConstraintVT.getSizeInBits() !=
4769                    Input.ConstraintVT.getSizeInBits())) {
4770                 weightSum = -1; // Can't match.
4771                 break;
4772               }
4773             }
4774           }
4775           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4776           if (weight == -1) {
4777             weightSum = -1;
4778             break;
4779           }
4780           weightSum += weight;
4781         }
4782         // Update best.
4783         if (weightSum > bestWeight) {
4784           bestWeight = weightSum;
4785           bestMAIndex = maIndex;
4786         }
4787       }
4788 
4789       // Now select chosen alternative in each constraint.
4790       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4791            cIndex != eIndex; ++cIndex) {
4792         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4793         if (cInfo.Type == InlineAsm::isClobber)
4794           continue;
4795         cInfo.selectAlternative(bestMAIndex);
4796       }
4797     }
4798   }
4799 
4800   // Check and hook up tied operands, choose constraint code to use.
4801   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4802        cIndex != eIndex; ++cIndex) {
4803     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4804 
4805     // If this is an output operand with a matching input operand, look up the
4806     // matching input. If their types mismatch, e.g. one is an integer, the
4807     // other is floating point, or their sizes are different, flag it as an
4808     // error.
4809     if (OpInfo.hasMatchingInput()) {
4810       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4811 
4812       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4813         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4814             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4815                                          OpInfo.ConstraintVT);
4816         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4817             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4818                                          Input.ConstraintVT);
4819         if ((OpInfo.ConstraintVT.isInteger() !=
4820              Input.ConstraintVT.isInteger()) ||
4821             (MatchRC.second != InputRC.second)) {
4822           report_fatal_error("Unsupported asm: input constraint"
4823                              " with a matching output constraint of"
4824                              " incompatible type!");
4825         }
4826       }
4827     }
4828   }
4829 
4830   return ConstraintOperands;
4831 }
4832 
4833 /// Return an integer indicating how general CT is.
4834 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4835   switch (CT) {
4836   case TargetLowering::C_Immediate:
4837   case TargetLowering::C_Other:
4838   case TargetLowering::C_Unknown:
4839     return 0;
4840   case TargetLowering::C_Register:
4841     return 1;
4842   case TargetLowering::C_RegisterClass:
4843     return 2;
4844   case TargetLowering::C_Memory:
4845     return 3;
4846   }
4847   llvm_unreachable("Invalid constraint type");
4848 }
4849 
4850 /// Examine constraint type and operand type and determine a weight value.
4851 /// This object must already have been set up with the operand type
4852 /// and the current alternative constraint selected.
4853 TargetLowering::ConstraintWeight
4854   TargetLowering::getMultipleConstraintMatchWeight(
4855     AsmOperandInfo &info, int maIndex) const {
4856   InlineAsm::ConstraintCodeVector *rCodes;
4857   if (maIndex >= (int)info.multipleAlternatives.size())
4858     rCodes = &info.Codes;
4859   else
4860     rCodes = &info.multipleAlternatives[maIndex].Codes;
4861   ConstraintWeight BestWeight = CW_Invalid;
4862 
4863   // Loop over the options, keeping track of the most general one.
4864   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4865     ConstraintWeight weight =
4866       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4867     if (weight > BestWeight)
4868       BestWeight = weight;
4869   }
4870 
4871   return BestWeight;
4872 }
4873 
4874 /// Examine constraint type and operand type and determine a weight value.
4875 /// This object must already have been set up with the operand type
4876 /// and the current alternative constraint selected.
4877 TargetLowering::ConstraintWeight
4878   TargetLowering::getSingleConstraintMatchWeight(
4879     AsmOperandInfo &info, const char *constraint) const {
4880   ConstraintWeight weight = CW_Invalid;
4881   Value *CallOperandVal = info.CallOperandVal;
4882     // If we don't have a value, we can't do a match,
4883     // but allow it at the lowest weight.
4884   if (!CallOperandVal)
4885     return CW_Default;
4886   // Look at the constraint type.
4887   switch (*constraint) {
4888     case 'i': // immediate integer.
4889     case 'n': // immediate integer with a known value.
4890       if (isa<ConstantInt>(CallOperandVal))
4891         weight = CW_Constant;
4892       break;
4893     case 's': // non-explicit intregal immediate.
4894       if (isa<GlobalValue>(CallOperandVal))
4895         weight = CW_Constant;
4896       break;
4897     case 'E': // immediate float if host format.
4898     case 'F': // immediate float.
4899       if (isa<ConstantFP>(CallOperandVal))
4900         weight = CW_Constant;
4901       break;
4902     case '<': // memory operand with autodecrement.
4903     case '>': // memory operand with autoincrement.
4904     case 'm': // memory operand.
4905     case 'o': // offsettable memory operand
4906     case 'V': // non-offsettable memory operand
4907       weight = CW_Memory;
4908       break;
4909     case 'r': // general register.
4910     case 'g': // general register, memory operand or immediate integer.
4911               // note: Clang converts "g" to "imr".
4912       if (CallOperandVal->getType()->isIntegerTy())
4913         weight = CW_Register;
4914       break;
4915     case 'X': // any operand.
4916   default:
4917     weight = CW_Default;
4918     break;
4919   }
4920   return weight;
4921 }
4922 
4923 /// If there are multiple different constraints that we could pick for this
4924 /// operand (e.g. "imr") try to pick the 'best' one.
4925 /// This is somewhat tricky: constraints fall into four classes:
4926 ///    Other         -> immediates and magic values
4927 ///    Register      -> one specific register
4928 ///    RegisterClass -> a group of regs
4929 ///    Memory        -> memory
4930 /// Ideally, we would pick the most specific constraint possible: if we have
4931 /// something that fits into a register, we would pick it.  The problem here
4932 /// is that if we have something that could either be in a register or in
4933 /// memory that use of the register could cause selection of *other*
4934 /// operands to fail: they might only succeed if we pick memory.  Because of
4935 /// this the heuristic we use is:
4936 ///
4937 ///  1) If there is an 'other' constraint, and if the operand is valid for
4938 ///     that constraint, use it.  This makes us take advantage of 'i'
4939 ///     constraints when available.
4940 ///  2) Otherwise, pick the most general constraint present.  This prefers
4941 ///     'm' over 'r', for example.
4942 ///
4943 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4944                              const TargetLowering &TLI,
4945                              SDValue Op, SelectionDAG *DAG) {
4946   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4947   unsigned BestIdx = 0;
4948   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4949   int BestGenerality = -1;
4950 
4951   // Loop over the options, keeping track of the most general one.
4952   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4953     TargetLowering::ConstraintType CType =
4954       TLI.getConstraintType(OpInfo.Codes[i]);
4955 
4956     // Indirect 'other' or 'immediate' constraints are not allowed.
4957     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4958                                CType == TargetLowering::C_Register ||
4959                                CType == TargetLowering::C_RegisterClass))
4960       continue;
4961 
4962     // If this is an 'other' or 'immediate' constraint, see if the operand is
4963     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4964     // the operand is an integer in the range [0..31] we want to use I (saving a
4965     // load of a register), otherwise we must use 'r'.
4966     if ((CType == TargetLowering::C_Other ||
4967          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4968       assert(OpInfo.Codes[i].size() == 1 &&
4969              "Unhandled multi-letter 'other' constraint");
4970       std::vector<SDValue> ResultOps;
4971       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4972                                        ResultOps, *DAG);
4973       if (!ResultOps.empty()) {
4974         BestType = CType;
4975         BestIdx = i;
4976         break;
4977       }
4978     }
4979 
4980     // Things with matching constraints can only be registers, per gcc
4981     // documentation.  This mainly affects "g" constraints.
4982     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4983       continue;
4984 
4985     // This constraint letter is more general than the previous one, use it.
4986     int Generality = getConstraintGenerality(CType);
4987     if (Generality > BestGenerality) {
4988       BestType = CType;
4989       BestIdx = i;
4990       BestGenerality = Generality;
4991     }
4992   }
4993 
4994   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4995   OpInfo.ConstraintType = BestType;
4996 }
4997 
4998 /// Determines the constraint code and constraint type to use for the specific
4999 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5000 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5001                                             SDValue Op,
5002                                             SelectionDAG *DAG) const {
5003   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5004 
5005   // Single-letter constraints ('r') are very common.
5006   if (OpInfo.Codes.size() == 1) {
5007     OpInfo.ConstraintCode = OpInfo.Codes[0];
5008     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5009   } else {
5010     ChooseConstraint(OpInfo, *this, Op, DAG);
5011   }
5012 
5013   // 'X' matches anything.
5014   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5015     // Labels and constants are handled elsewhere ('X' is the only thing
5016     // that matches labels).  For Functions, the type here is the type of
5017     // the result, which is not what we want to look at; leave them alone.
5018     Value *v = OpInfo.CallOperandVal;
5019     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5020       OpInfo.CallOperandVal = v;
5021       return;
5022     }
5023 
5024     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5025       return;
5026 
5027     // Otherwise, try to resolve it to something we know about by looking at
5028     // the actual operand type.
5029     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5030       OpInfo.ConstraintCode = Repl;
5031       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5032     }
5033   }
5034 }
5035 
5036 /// Given an exact SDIV by a constant, create a multiplication
5037 /// with the multiplicative inverse of the constant.
5038 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5039                               const SDLoc &dl, SelectionDAG &DAG,
5040                               SmallVectorImpl<SDNode *> &Created) {
5041   SDValue Op0 = N->getOperand(0);
5042   SDValue Op1 = N->getOperand(1);
5043   EVT VT = N->getValueType(0);
5044   EVT SVT = VT.getScalarType();
5045   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5046   EVT ShSVT = ShVT.getScalarType();
5047 
5048   bool UseSRA = false;
5049   SmallVector<SDValue, 16> Shifts, Factors;
5050 
5051   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5052     if (C->isNullValue())
5053       return false;
5054     APInt Divisor = C->getAPIntValue();
5055     unsigned Shift = Divisor.countTrailingZeros();
5056     if (Shift) {
5057       Divisor.ashrInPlace(Shift);
5058       UseSRA = true;
5059     }
5060     // Calculate the multiplicative inverse, using Newton's method.
5061     APInt t;
5062     APInt Factor = Divisor;
5063     while ((t = Divisor * Factor) != 1)
5064       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5065     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5066     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5067     return true;
5068   };
5069 
5070   // Collect all magic values from the build vector.
5071   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5072     return SDValue();
5073 
5074   SDValue Shift, Factor;
5075   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5076     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5077     Factor = DAG.getBuildVector(VT, dl, Factors);
5078   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5079     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5080            "Expected matchUnaryPredicate to return one element for scalable "
5081            "vectors");
5082     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5083     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5084   } else {
5085     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5086     Shift = Shifts[0];
5087     Factor = Factors[0];
5088   }
5089 
5090   SDValue Res = Op0;
5091 
5092   // Shift the value upfront if it is even, so the LSB is one.
5093   if (UseSRA) {
5094     // TODO: For UDIV use SRL instead of SRA.
5095     SDNodeFlags Flags;
5096     Flags.setExact(true);
5097     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5098     Created.push_back(Res.getNode());
5099   }
5100 
5101   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5102 }
5103 
5104 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5105                               SelectionDAG &DAG,
5106                               SmallVectorImpl<SDNode *> &Created) const {
5107   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5108   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5109   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5110     return SDValue(N, 0); // Lower SDIV as SDIV
5111   return SDValue();
5112 }
5113 
5114 /// Given an ISD::SDIV node expressing a divide by constant,
5115 /// return a DAG expression to select that will generate the same value by
5116 /// multiplying by a magic number.
5117 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5118 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5119                                   bool IsAfterLegalization,
5120                                   SmallVectorImpl<SDNode *> &Created) const {
5121   SDLoc dl(N);
5122   EVT VT = N->getValueType(0);
5123   EVT SVT = VT.getScalarType();
5124   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5125   EVT ShSVT = ShVT.getScalarType();
5126   unsigned EltBits = VT.getScalarSizeInBits();
5127   EVT MulVT;
5128 
5129   // Check to see if we can do this.
5130   // FIXME: We should be more aggressive here.
5131   if (!isTypeLegal(VT)) {
5132     // Limit this to simple scalars for now.
5133     if (VT.isVector() || !VT.isSimple())
5134       return SDValue();
5135 
5136     // If this type will be promoted to a large enough type with a legal
5137     // multiply operation, we can go ahead and do this transform.
5138     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5139       return SDValue();
5140 
5141     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5142     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5143         !isOperationLegal(ISD::MUL, MulVT))
5144       return SDValue();
5145   }
5146 
5147   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5148   if (N->getFlags().hasExact())
5149     return BuildExactSDIV(*this, N, dl, DAG, Created);
5150 
5151   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5152 
5153   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5154     if (C->isNullValue())
5155       return false;
5156 
5157     const APInt &Divisor = C->getAPIntValue();
5158     APInt::ms magics = Divisor.magic();
5159     int NumeratorFactor = 0;
5160     int ShiftMask = -1;
5161 
5162     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5163       // If d is +1/-1, we just multiply the numerator by +1/-1.
5164       NumeratorFactor = Divisor.getSExtValue();
5165       magics.m = 0;
5166       magics.s = 0;
5167       ShiftMask = 0;
5168     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5169       // If d > 0 and m < 0, add the numerator.
5170       NumeratorFactor = 1;
5171     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5172       // If d < 0 and m > 0, subtract the numerator.
5173       NumeratorFactor = -1;
5174     }
5175 
5176     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5177     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5178     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5179     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5180     return true;
5181   };
5182 
5183   SDValue N0 = N->getOperand(0);
5184   SDValue N1 = N->getOperand(1);
5185 
5186   // Collect the shifts / magic values from each element.
5187   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5188     return SDValue();
5189 
5190   SDValue MagicFactor, Factor, Shift, ShiftMask;
5191   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5192     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5193     Factor = DAG.getBuildVector(VT, dl, Factors);
5194     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5195     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5196   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5197     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5198            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5199            "Expected matchUnaryPredicate to return one element for scalable "
5200            "vectors");
5201     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5202     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5203     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5204     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5205   } else {
5206     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5207     MagicFactor = MagicFactors[0];
5208     Factor = Factors[0];
5209     Shift = Shifts[0];
5210     ShiftMask = ShiftMasks[0];
5211   }
5212 
5213   // Multiply the numerator (operand 0) by the magic value.
5214   // FIXME: We should support doing a MUL in a wider type.
5215   auto GetMULHS = [&](SDValue X, SDValue Y) {
5216     // If the type isn't legal, use a wider mul of the the type calculated
5217     // earlier.
5218     if (!isTypeLegal(VT)) {
5219       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5220       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5221       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5222       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5223                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5224       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5225     }
5226 
5227     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5228       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5229     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5230       SDValue LoHi =
5231           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5232       return SDValue(LoHi.getNode(), 1);
5233     }
5234     return SDValue();
5235   };
5236 
5237   SDValue Q = GetMULHS(N0, MagicFactor);
5238   if (!Q)
5239     return SDValue();
5240 
5241   Created.push_back(Q.getNode());
5242 
5243   // (Optionally) Add/subtract the numerator using Factor.
5244   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5245   Created.push_back(Factor.getNode());
5246   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5247   Created.push_back(Q.getNode());
5248 
5249   // Shift right algebraic by shift value.
5250   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5251   Created.push_back(Q.getNode());
5252 
5253   // Extract the sign bit, mask it and add it to the quotient.
5254   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5255   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5256   Created.push_back(T.getNode());
5257   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5258   Created.push_back(T.getNode());
5259   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5260 }
5261 
5262 /// Given an ISD::UDIV node expressing a divide by constant,
5263 /// return a DAG expression to select that will generate the same value by
5264 /// multiplying by a magic number.
5265 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5266 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5267                                   bool IsAfterLegalization,
5268                                   SmallVectorImpl<SDNode *> &Created) const {
5269   SDLoc dl(N);
5270   EVT VT = N->getValueType(0);
5271   EVT SVT = VT.getScalarType();
5272   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5273   EVT ShSVT = ShVT.getScalarType();
5274   unsigned EltBits = VT.getScalarSizeInBits();
5275   EVT MulVT;
5276 
5277   // Check to see if we can do this.
5278   // FIXME: We should be more aggressive here.
5279   if (!isTypeLegal(VT)) {
5280     // Limit this to simple scalars for now.
5281     if (VT.isVector() || !VT.isSimple())
5282       return SDValue();
5283 
5284     // If this type will be promoted to a large enough type with a legal
5285     // multiply operation, we can go ahead and do this transform.
5286     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5287       return SDValue();
5288 
5289     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5290     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5291         !isOperationLegal(ISD::MUL, MulVT))
5292       return SDValue();
5293   }
5294 
5295   bool UseNPQ = false;
5296   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5297 
5298   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5299     if (C->isNullValue())
5300       return false;
5301     // FIXME: We should use a narrower constant when the upper
5302     // bits are known to be zero.
5303     const APInt& Divisor = C->getAPIntValue();
5304     APInt::mu magics = Divisor.magicu();
5305     unsigned PreShift = 0, PostShift = 0;
5306 
5307     // If the divisor is even, we can avoid using the expensive fixup by
5308     // shifting the divided value upfront.
5309     if (magics.a != 0 && !Divisor[0]) {
5310       PreShift = Divisor.countTrailingZeros();
5311       // Get magic number for the shifted divisor.
5312       magics = Divisor.lshr(PreShift).magicu(PreShift);
5313       assert(magics.a == 0 && "Should use cheap fixup now");
5314     }
5315 
5316     APInt Magic = magics.m;
5317 
5318     unsigned SelNPQ;
5319     if (magics.a == 0 || Divisor.isOneValue()) {
5320       assert(magics.s < Divisor.getBitWidth() &&
5321              "We shouldn't generate an undefined shift!");
5322       PostShift = magics.s;
5323       SelNPQ = false;
5324     } else {
5325       PostShift = magics.s - 1;
5326       SelNPQ = true;
5327     }
5328 
5329     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5330     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5331     NPQFactors.push_back(
5332         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5333                                : APInt::getNullValue(EltBits),
5334                         dl, SVT));
5335     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5336     UseNPQ |= SelNPQ;
5337     return true;
5338   };
5339 
5340   SDValue N0 = N->getOperand(0);
5341   SDValue N1 = N->getOperand(1);
5342 
5343   // Collect the shifts/magic values from each element.
5344   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5345     return SDValue();
5346 
5347   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5348   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5349     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5350     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5351     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5352     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5353   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5354     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5355            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5356            "Expected matchUnaryPredicate to return one for scalable vectors");
5357     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5358     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5359     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5360     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5361   } else {
5362     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5363     PreShift = PreShifts[0];
5364     MagicFactor = MagicFactors[0];
5365     PostShift = PostShifts[0];
5366   }
5367 
5368   SDValue Q = N0;
5369   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5370   Created.push_back(Q.getNode());
5371 
5372   // FIXME: We should support doing a MUL in a wider type.
5373   auto GetMULHU = [&](SDValue X, SDValue Y) {
5374     // If the type isn't legal, use a wider mul of the the type calculated
5375     // earlier.
5376     if (!isTypeLegal(VT)) {
5377       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5378       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5379       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5380       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5381                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5382       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5383     }
5384 
5385     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5386       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5387     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5388       SDValue LoHi =
5389           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5390       return SDValue(LoHi.getNode(), 1);
5391     }
5392     return SDValue(); // No mulhu or equivalent
5393   };
5394 
5395   // Multiply the numerator (operand 0) by the magic value.
5396   Q = GetMULHU(Q, MagicFactor);
5397   if (!Q)
5398     return SDValue();
5399 
5400   Created.push_back(Q.getNode());
5401 
5402   if (UseNPQ) {
5403     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5404     Created.push_back(NPQ.getNode());
5405 
5406     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5407     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5408     if (VT.isVector())
5409       NPQ = GetMULHU(NPQ, NPQFactor);
5410     else
5411       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5412 
5413     Created.push_back(NPQ.getNode());
5414 
5415     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5416     Created.push_back(Q.getNode());
5417   }
5418 
5419   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5420   Created.push_back(Q.getNode());
5421 
5422   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5423 
5424   SDValue One = DAG.getConstant(1, dl, VT);
5425   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5426   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5427 }
5428 
5429 /// If all values in Values that *don't* match the predicate are same 'splat'
5430 /// value, then replace all values with that splat value.
5431 /// Else, if AlternativeReplacement was provided, then replace all values that
5432 /// do match predicate with AlternativeReplacement value.
5433 static void
5434 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5435                           std::function<bool(SDValue)> Predicate,
5436                           SDValue AlternativeReplacement = SDValue()) {
5437   SDValue Replacement;
5438   // Is there a value for which the Predicate does *NOT* match? What is it?
5439   auto SplatValue = llvm::find_if_not(Values, Predicate);
5440   if (SplatValue != Values.end()) {
5441     // Does Values consist only of SplatValue's and values matching Predicate?
5442     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5443           return Value == *SplatValue || Predicate(Value);
5444         })) // Then we shall replace values matching predicate with SplatValue.
5445       Replacement = *SplatValue;
5446   }
5447   if (!Replacement) {
5448     // Oops, we did not find the "baseline" splat value.
5449     if (!AlternativeReplacement)
5450       return; // Nothing to do.
5451     // Let's replace with provided value then.
5452     Replacement = AlternativeReplacement;
5453   }
5454   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5455 }
5456 
5457 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5458 /// where the divisor is constant and the comparison target is zero,
5459 /// return a DAG expression that will generate the same comparison result
5460 /// using only multiplications, additions and shifts/rotations.
5461 /// Ref: "Hacker's Delight" 10-17.
5462 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5463                                         SDValue CompTargetNode,
5464                                         ISD::CondCode Cond,
5465                                         DAGCombinerInfo &DCI,
5466                                         const SDLoc &DL) const {
5467   SmallVector<SDNode *, 5> Built;
5468   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5469                                          DCI, DL, Built)) {
5470     for (SDNode *N : Built)
5471       DCI.AddToWorklist(N);
5472     return Folded;
5473   }
5474 
5475   return SDValue();
5476 }
5477 
5478 SDValue
5479 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5480                                   SDValue CompTargetNode, ISD::CondCode Cond,
5481                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5482                                   SmallVectorImpl<SDNode *> &Created) const {
5483   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5484   // - D must be constant, with D = D0 * 2^K where D0 is odd
5485   // - P is the multiplicative inverse of D0 modulo 2^W
5486   // - Q = floor(((2^W) - 1) / D)
5487   // where W is the width of the common type of N and D.
5488   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5489          "Only applicable for (in)equality comparisons.");
5490 
5491   SelectionDAG &DAG = DCI.DAG;
5492 
5493   EVT VT = REMNode.getValueType();
5494   EVT SVT = VT.getScalarType();
5495   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5496   EVT ShSVT = ShVT.getScalarType();
5497 
5498   // If MUL is unavailable, we cannot proceed in any case.
5499   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5500     return SDValue();
5501 
5502   bool ComparingWithAllZeros = true;
5503   bool AllComparisonsWithNonZerosAreTautological = true;
5504   bool HadTautologicalLanes = false;
5505   bool AllLanesAreTautological = true;
5506   bool HadEvenDivisor = false;
5507   bool AllDivisorsArePowerOfTwo = true;
5508   bool HadTautologicalInvertedLanes = false;
5509   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5510 
5511   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5512     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5513     if (CDiv->isNullValue())
5514       return false;
5515 
5516     const APInt &D = CDiv->getAPIntValue();
5517     const APInt &Cmp = CCmp->getAPIntValue();
5518 
5519     ComparingWithAllZeros &= Cmp.isNullValue();
5520 
5521     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5522     // if C2 is not less than C1, the comparison is always false.
5523     // But we will only be able to produce the comparison that will give the
5524     // opposive tautological answer. So this lane would need to be fixed up.
5525     bool TautologicalInvertedLane = D.ule(Cmp);
5526     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5527 
5528     // If all lanes are tautological (either all divisors are ones, or divisor
5529     // is not greater than the constant we are comparing with),
5530     // we will prefer to avoid the fold.
5531     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5532     HadTautologicalLanes |= TautologicalLane;
5533     AllLanesAreTautological &= TautologicalLane;
5534 
5535     // If we are comparing with non-zero, we need'll need  to subtract said
5536     // comparison value from the LHS. But there is no point in doing that if
5537     // every lane where we are comparing with non-zero is tautological..
5538     if (!Cmp.isNullValue())
5539       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5540 
5541     // Decompose D into D0 * 2^K
5542     unsigned K = D.countTrailingZeros();
5543     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5544     APInt D0 = D.lshr(K);
5545 
5546     // D is even if it has trailing zeros.
5547     HadEvenDivisor |= (K != 0);
5548     // D is a power-of-two if D0 is one.
5549     // If all divisors are power-of-two, we will prefer to avoid the fold.
5550     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5551 
5552     // P = inv(D0, 2^W)
5553     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5554     unsigned W = D.getBitWidth();
5555     APInt P = D0.zext(W + 1)
5556                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5557                   .trunc(W);
5558     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5559     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5560 
5561     // Q = floor((2^W - 1) u/ D)
5562     // R = ((2^W - 1) u% D)
5563     APInt Q, R;
5564     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5565 
5566     // If we are comparing with zero, then that comparison constant is okay,
5567     // else it may need to be one less than that.
5568     if (Cmp.ugt(R))
5569       Q -= 1;
5570 
5571     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5572            "We are expecting that K is always less than all-ones for ShSVT");
5573 
5574     // If the lane is tautological the result can be constant-folded.
5575     if (TautologicalLane) {
5576       // Set P and K amount to a bogus values so we can try to splat them.
5577       P = 0;
5578       K = -1;
5579       // And ensure that comparison constant is tautological,
5580       // it will always compare true/false.
5581       Q = -1;
5582     }
5583 
5584     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5585     KAmts.push_back(
5586         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5587     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5588     return true;
5589   };
5590 
5591   SDValue N = REMNode.getOperand(0);
5592   SDValue D = REMNode.getOperand(1);
5593 
5594   // Collect the values from each element.
5595   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5596     return SDValue();
5597 
5598   // If all lanes are tautological, the result can be constant-folded.
5599   if (AllLanesAreTautological)
5600     return SDValue();
5601 
5602   // If this is a urem by a powers-of-two, avoid the fold since it can be
5603   // best implemented as a bit test.
5604   if (AllDivisorsArePowerOfTwo)
5605     return SDValue();
5606 
5607   SDValue PVal, KVal, QVal;
5608   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5609     if (HadTautologicalLanes) {
5610       // Try to turn PAmts into a splat, since we don't care about the values
5611       // that are currently '0'. If we can't, just keep '0'`s.
5612       turnVectorIntoSplatVector(PAmts, isNullConstant);
5613       // Try to turn KAmts into a splat, since we don't care about the values
5614       // that are currently '-1'. If we can't, change them to '0'`s.
5615       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5616                                 DAG.getConstant(0, DL, ShSVT));
5617     }
5618 
5619     PVal = DAG.getBuildVector(VT, DL, PAmts);
5620     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5621     QVal = DAG.getBuildVector(VT, DL, QAmts);
5622   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5623     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5624            "Expected matchBinaryPredicate to return one element for "
5625            "SPLAT_VECTORs");
5626     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5627     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5628     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5629   } else {
5630     PVal = PAmts[0];
5631     KVal = KAmts[0];
5632     QVal = QAmts[0];
5633   }
5634 
5635   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5636     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5637       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5638     assert(CompTargetNode.getValueType() == N.getValueType() &&
5639            "Expecting that the types on LHS and RHS of comparisons match.");
5640     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5641   }
5642 
5643   // (mul N, P)
5644   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5645   Created.push_back(Op0.getNode());
5646 
5647   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5648   // divisors as a performance improvement, since rotating by 0 is a no-op.
5649   if (HadEvenDivisor) {
5650     // We need ROTR to do this.
5651     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5652       return SDValue();
5653     // UREM: (rotr (mul N, P), K)
5654     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5655     Created.push_back(Op0.getNode());
5656   }
5657 
5658   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5659   SDValue NewCC =
5660       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5661                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5662   if (!HadTautologicalInvertedLanes)
5663     return NewCC;
5664 
5665   // If any lanes previously compared always-false, the NewCC will give
5666   // always-true result for them, so we need to fixup those lanes.
5667   // Or the other way around for inequality predicate.
5668   assert(VT.isVector() && "Can/should only get here for vectors.");
5669   Created.push_back(NewCC.getNode());
5670 
5671   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5672   // if C2 is not less than C1, the comparison is always false.
5673   // But we have produced the comparison that will give the
5674   // opposive tautological answer. So these lanes would need to be fixed up.
5675   SDValue TautologicalInvertedChannels =
5676       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5677   Created.push_back(TautologicalInvertedChannels.getNode());
5678 
5679   // NOTE: we avoid letting illegal types through even if we're before legalize
5680   // ops – legalization has a hard time producing good code for this.
5681   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5682     // If we have a vector select, let's replace the comparison results in the
5683     // affected lanes with the correct tautological result.
5684     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5685                                               DL, SETCCVT, SETCCVT);
5686     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5687                        Replacement, NewCC);
5688   }
5689 
5690   // Else, we can just invert the comparison result in the appropriate lanes.
5691   //
5692   // NOTE: see the note above VSELECT above.
5693   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5694     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5695                        TautologicalInvertedChannels);
5696 
5697   return SDValue(); // Don't know how to lower.
5698 }
5699 
5700 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5701 /// where the divisor is constant and the comparison target is zero,
5702 /// return a DAG expression that will generate the same comparison result
5703 /// using only multiplications, additions and shifts/rotations.
5704 /// Ref: "Hacker's Delight" 10-17.
5705 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5706                                         SDValue CompTargetNode,
5707                                         ISD::CondCode Cond,
5708                                         DAGCombinerInfo &DCI,
5709                                         const SDLoc &DL) const {
5710   SmallVector<SDNode *, 7> Built;
5711   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5712                                          DCI, DL, Built)) {
5713     assert(Built.size() <= 7 && "Max size prediction failed.");
5714     for (SDNode *N : Built)
5715       DCI.AddToWorklist(N);
5716     return Folded;
5717   }
5718 
5719   return SDValue();
5720 }
5721 
5722 SDValue
5723 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5724                                   SDValue CompTargetNode, ISD::CondCode Cond,
5725                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5726                                   SmallVectorImpl<SDNode *> &Created) const {
5727   // Fold:
5728   //   (seteq/ne (srem N, D), 0)
5729   // To:
5730   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5731   //
5732   // - D must be constant, with D = D0 * 2^K where D0 is odd
5733   // - P is the multiplicative inverse of D0 modulo 2^W
5734   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5735   // - Q = floor((2 * A) / (2^K))
5736   // where W is the width of the common type of N and D.
5737   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5738          "Only applicable for (in)equality comparisons.");
5739 
5740   SelectionDAG &DAG = DCI.DAG;
5741 
5742   EVT VT = REMNode.getValueType();
5743   EVT SVT = VT.getScalarType();
5744   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5745   EVT ShSVT = ShVT.getScalarType();
5746 
5747   // If we are after ops legalization, and MUL is unavailable, we can not
5748   // proceed.
5749   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5750     return SDValue();
5751 
5752   // TODO: Could support comparing with non-zero too.
5753   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5754   if (!CompTarget || !CompTarget->isNullValue())
5755     return SDValue();
5756 
5757   bool HadIntMinDivisor = false;
5758   bool HadOneDivisor = false;
5759   bool AllDivisorsAreOnes = true;
5760   bool HadEvenDivisor = false;
5761   bool NeedToApplyOffset = false;
5762   bool AllDivisorsArePowerOfTwo = true;
5763   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5764 
5765   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5766     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5767     if (C->isNullValue())
5768       return false;
5769 
5770     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5771 
5772     // WARNING: this fold is only valid for positive divisors!
5773     APInt D = C->getAPIntValue();
5774     if (D.isNegative())
5775       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5776 
5777     HadIntMinDivisor |= D.isMinSignedValue();
5778 
5779     // If all divisors are ones, we will prefer to avoid the fold.
5780     HadOneDivisor |= D.isOneValue();
5781     AllDivisorsAreOnes &= D.isOneValue();
5782 
5783     // Decompose D into D0 * 2^K
5784     unsigned K = D.countTrailingZeros();
5785     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5786     APInt D0 = D.lshr(K);
5787 
5788     if (!D.isMinSignedValue()) {
5789       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5790       // we don't care about this lane in this fold, we'll special-handle it.
5791       HadEvenDivisor |= (K != 0);
5792     }
5793 
5794     // D is a power-of-two if D0 is one. This includes INT_MIN.
5795     // If all divisors are power-of-two, we will prefer to avoid the fold.
5796     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5797 
5798     // P = inv(D0, 2^W)
5799     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5800     unsigned W = D.getBitWidth();
5801     APInt P = D0.zext(W + 1)
5802                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5803                   .trunc(W);
5804     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5805     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5806 
5807     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5808     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5809     A.clearLowBits(K);
5810 
5811     if (!D.isMinSignedValue()) {
5812       // If divisor INT_MIN, then we don't care about this lane in this fold,
5813       // we'll special-handle it.
5814       NeedToApplyOffset |= A != 0;
5815     }
5816 
5817     // Q = floor((2 * A) / (2^K))
5818     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5819 
5820     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5821            "We are expecting that A is always less than all-ones for SVT");
5822     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5823            "We are expecting that K is always less than all-ones for ShSVT");
5824 
5825     // If the divisor is 1 the result can be constant-folded. Likewise, we
5826     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5827     if (D.isOneValue()) {
5828       // Set P, A and K to a bogus values so we can try to splat them.
5829       P = 0;
5830       A = -1;
5831       K = -1;
5832 
5833       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5834       Q = -1;
5835     }
5836 
5837     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5838     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5839     KAmts.push_back(
5840         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5841     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5842     return true;
5843   };
5844 
5845   SDValue N = REMNode.getOperand(0);
5846   SDValue D = REMNode.getOperand(1);
5847 
5848   // Collect the values from each element.
5849   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5850     return SDValue();
5851 
5852   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5853   if (AllDivisorsAreOnes)
5854     return SDValue();
5855 
5856   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5857   // since it can be best implemented as a bit test.
5858   if (AllDivisorsArePowerOfTwo)
5859     return SDValue();
5860 
5861   SDValue PVal, AVal, KVal, QVal;
5862   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5863     if (HadOneDivisor) {
5864       // Try to turn PAmts into a splat, since we don't care about the values
5865       // that are currently '0'. If we can't, just keep '0'`s.
5866       turnVectorIntoSplatVector(PAmts, isNullConstant);
5867       // Try to turn AAmts into a splat, since we don't care about the
5868       // values that are currently '-1'. If we can't, change them to '0'`s.
5869       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5870                                 DAG.getConstant(0, DL, SVT));
5871       // Try to turn KAmts into a splat, since we don't care about the values
5872       // that are currently '-1'. If we can't, change them to '0'`s.
5873       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5874                                 DAG.getConstant(0, DL, ShSVT));
5875     }
5876 
5877     PVal = DAG.getBuildVector(VT, DL, PAmts);
5878     AVal = DAG.getBuildVector(VT, DL, AAmts);
5879     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5880     QVal = DAG.getBuildVector(VT, DL, QAmts);
5881   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5882     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5883            QAmts.size() == 1 &&
5884            "Expected matchUnaryPredicate to return one element for scalable "
5885            "vectors");
5886     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5887     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5888     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5889     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5890   } else {
5891     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5892     PVal = PAmts[0];
5893     AVal = AAmts[0];
5894     KVal = KAmts[0];
5895     QVal = QAmts[0];
5896   }
5897 
5898   // (mul N, P)
5899   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5900   Created.push_back(Op0.getNode());
5901 
5902   if (NeedToApplyOffset) {
5903     // We need ADD to do this.
5904     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5905       return SDValue();
5906 
5907     // (add (mul N, P), A)
5908     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5909     Created.push_back(Op0.getNode());
5910   }
5911 
5912   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5913   // divisors as a performance improvement, since rotating by 0 is a no-op.
5914   if (HadEvenDivisor) {
5915     // We need ROTR to do this.
5916     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5917       return SDValue();
5918     // SREM: (rotr (add (mul N, P), A), K)
5919     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5920     Created.push_back(Op0.getNode());
5921   }
5922 
5923   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5924   SDValue Fold =
5925       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5926                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5927 
5928   // If we didn't have lanes with INT_MIN divisor, then we're done.
5929   if (!HadIntMinDivisor)
5930     return Fold;
5931 
5932   // That fold is only valid for positive divisors. Which effectively means,
5933   // it is invalid for INT_MIN divisors. So if we have such a lane,
5934   // we must fix-up results for said lanes.
5935   assert(VT.isVector() && "Can/should only get here for vectors.");
5936 
5937   // NOTE: we avoid letting illegal types through even if we're before legalize
5938   // ops – legalization has a hard time producing good code for the code that
5939   // follows.
5940   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5941       !isOperationLegalOrCustom(ISD::AND, VT) ||
5942       !isOperationLegalOrCustom(Cond, VT) ||
5943       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
5944     return SDValue();
5945 
5946   Created.push_back(Fold.getNode());
5947 
5948   SDValue IntMin = DAG.getConstant(
5949       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5950   SDValue IntMax = DAG.getConstant(
5951       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5952   SDValue Zero =
5953       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5954 
5955   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5956   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5957   Created.push_back(DivisorIsIntMin.getNode());
5958 
5959   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5960   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5961   Created.push_back(Masked.getNode());
5962   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5963   Created.push_back(MaskedIsZero.getNode());
5964 
5965   // To produce final result we need to blend 2 vectors: 'SetCC' and
5966   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5967   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5968   // constant-folded, select can get lowered to a shuffle with constant mask.
5969   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
5970                                 MaskedIsZero, Fold);
5971 
5972   return Blended;
5973 }
5974 
5975 bool TargetLowering::
5976 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5977   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5978     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5979                                 "be a constant integer");
5980     return true;
5981   }
5982 
5983   return false;
5984 }
5985 
5986 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5987                                          const DenormalMode &Mode) const {
5988   SDLoc DL(Op);
5989   EVT VT = Op.getValueType();
5990   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5991   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5992   // Testing it with denormal inputs to avoid wrong estimate.
5993   if (Mode.Input == DenormalMode::IEEE) {
5994     // This is specifically a check for the handling of denormal inputs,
5995     // not the result.
5996 
5997     // Test = fabs(X) < SmallestNormal
5998     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5999     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6000     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6001     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6002     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6003   }
6004   // Test = X == 0.0
6005   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6006 }
6007 
6008 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6009                                              bool LegalOps, bool OptForSize,
6010                                              NegatibleCost &Cost,
6011                                              unsigned Depth) const {
6012   // fneg is removable even if it has multiple uses.
6013   if (Op.getOpcode() == ISD::FNEG) {
6014     Cost = NegatibleCost::Cheaper;
6015     return Op.getOperand(0);
6016   }
6017 
6018   // Don't recurse exponentially.
6019   if (Depth > SelectionDAG::MaxRecursionDepth)
6020     return SDValue();
6021 
6022   // Pre-increment recursion depth for use in recursive calls.
6023   ++Depth;
6024   const SDNodeFlags Flags = Op->getFlags();
6025   const TargetOptions &Options = DAG.getTarget().Options;
6026   EVT VT = Op.getValueType();
6027   unsigned Opcode = Op.getOpcode();
6028 
6029   // Don't allow anything with multiple uses unless we know it is free.
6030   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6031     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6032                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6033     if (!IsFreeExtend)
6034       return SDValue();
6035   }
6036 
6037   auto RemoveDeadNode = [&](SDValue N) {
6038     if (N && N.getNode()->use_empty())
6039       DAG.RemoveDeadNode(N.getNode());
6040   };
6041 
6042   SDLoc DL(Op);
6043 
6044   // Because getNegatedExpression can delete nodes we need a handle to keep
6045   // temporary nodes alive in case the recursion manages to create an identical
6046   // node.
6047   std::list<HandleSDNode> Handles;
6048 
6049   switch (Opcode) {
6050   case ISD::ConstantFP: {
6051     // Don't invert constant FP values after legalization unless the target says
6052     // the negated constant is legal.
6053     bool IsOpLegal =
6054         isOperationLegal(ISD::ConstantFP, VT) ||
6055         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6056                      OptForSize);
6057 
6058     if (LegalOps && !IsOpLegal)
6059       break;
6060 
6061     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6062     V.changeSign();
6063     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6064 
6065     // If we already have the use of the negated floating constant, it is free
6066     // to negate it even it has multiple uses.
6067     if (!Op.hasOneUse() && CFP.use_empty())
6068       break;
6069     Cost = NegatibleCost::Neutral;
6070     return CFP;
6071   }
6072   case ISD::BUILD_VECTOR: {
6073     // Only permit BUILD_VECTOR of constants.
6074     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6075           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6076         }))
6077       break;
6078 
6079     bool IsOpLegal =
6080         (isOperationLegal(ISD::ConstantFP, VT) &&
6081          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6082         llvm::all_of(Op->op_values(), [&](SDValue N) {
6083           return N.isUndef() ||
6084                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6085                               OptForSize);
6086         });
6087 
6088     if (LegalOps && !IsOpLegal)
6089       break;
6090 
6091     SmallVector<SDValue, 4> Ops;
6092     for (SDValue C : Op->op_values()) {
6093       if (C.isUndef()) {
6094         Ops.push_back(C);
6095         continue;
6096       }
6097       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6098       V.changeSign();
6099       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6100     }
6101     Cost = NegatibleCost::Neutral;
6102     return DAG.getBuildVector(VT, DL, Ops);
6103   }
6104   case ISD::FADD: {
6105     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6106       break;
6107 
6108     // After operation legalization, it might not be legal to create new FSUBs.
6109     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6110       break;
6111     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6112 
6113     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6114     NegatibleCost CostX = NegatibleCost::Expensive;
6115     SDValue NegX =
6116         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6117     // Prevent this node from being deleted by the next call.
6118     if (NegX)
6119       Handles.emplace_back(NegX);
6120 
6121     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6122     NegatibleCost CostY = NegatibleCost::Expensive;
6123     SDValue NegY =
6124         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6125 
6126     // We're done with the handles.
6127     Handles.clear();
6128 
6129     // Negate the X if its cost is less or equal than Y.
6130     if (NegX && (CostX <= CostY)) {
6131       Cost = CostX;
6132       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6133       if (NegY != N)
6134         RemoveDeadNode(NegY);
6135       return N;
6136     }
6137 
6138     // Negate the Y if it is not expensive.
6139     if (NegY) {
6140       Cost = CostY;
6141       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6142       if (NegX != N)
6143         RemoveDeadNode(NegX);
6144       return N;
6145     }
6146     break;
6147   }
6148   case ISD::FSUB: {
6149     // We can't turn -(A-B) into B-A when we honor signed zeros.
6150     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6151       break;
6152 
6153     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6154     // fold (fneg (fsub 0, Y)) -> Y
6155     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6156       if (C->isZero()) {
6157         Cost = NegatibleCost::Cheaper;
6158         return Y;
6159       }
6160 
6161     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6162     Cost = NegatibleCost::Neutral;
6163     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6164   }
6165   case ISD::FMUL:
6166   case ISD::FDIV: {
6167     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6168 
6169     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6170     NegatibleCost CostX = NegatibleCost::Expensive;
6171     SDValue NegX =
6172         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6173     // Prevent this node from being deleted by the next call.
6174     if (NegX)
6175       Handles.emplace_back(NegX);
6176 
6177     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6178     NegatibleCost CostY = NegatibleCost::Expensive;
6179     SDValue NegY =
6180         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6181 
6182     // We're done with the handles.
6183     Handles.clear();
6184 
6185     // Negate the X if its cost is less or equal than Y.
6186     if (NegX && (CostX <= CostY)) {
6187       Cost = CostX;
6188       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6189       if (NegY != N)
6190         RemoveDeadNode(NegY);
6191       return N;
6192     }
6193 
6194     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6195     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6196       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6197         break;
6198 
6199     // Negate the Y if it is not expensive.
6200     if (NegY) {
6201       Cost = CostY;
6202       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6203       if (NegX != N)
6204         RemoveDeadNode(NegX);
6205       return N;
6206     }
6207     break;
6208   }
6209   case ISD::FMA:
6210   case ISD::FMAD: {
6211     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6212       break;
6213 
6214     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6215     NegatibleCost CostZ = NegatibleCost::Expensive;
6216     SDValue NegZ =
6217         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6218     // Give up if fail to negate the Z.
6219     if (!NegZ)
6220       break;
6221 
6222     // Prevent this node from being deleted by the next two calls.
6223     Handles.emplace_back(NegZ);
6224 
6225     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6226     NegatibleCost CostX = NegatibleCost::Expensive;
6227     SDValue NegX =
6228         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6229     // Prevent this node from being deleted by the next call.
6230     if (NegX)
6231       Handles.emplace_back(NegX);
6232 
6233     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6234     NegatibleCost CostY = NegatibleCost::Expensive;
6235     SDValue NegY =
6236         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6237 
6238     // We're done with the handles.
6239     Handles.clear();
6240 
6241     // Negate the X if its cost is less or equal than Y.
6242     if (NegX && (CostX <= CostY)) {
6243       Cost = std::min(CostX, CostZ);
6244       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6245       if (NegY != N)
6246         RemoveDeadNode(NegY);
6247       return N;
6248     }
6249 
6250     // Negate the Y if it is not expensive.
6251     if (NegY) {
6252       Cost = std::min(CostY, CostZ);
6253       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6254       if (NegX != N)
6255         RemoveDeadNode(NegX);
6256       return N;
6257     }
6258     break;
6259   }
6260 
6261   case ISD::FP_EXTEND:
6262   case ISD::FSIN:
6263     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6264                                             OptForSize, Cost, Depth))
6265       return DAG.getNode(Opcode, DL, VT, NegV);
6266     break;
6267   case ISD::FP_ROUND:
6268     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6269                                             OptForSize, Cost, Depth))
6270       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6271     break;
6272   }
6273 
6274   return SDValue();
6275 }
6276 
6277 //===----------------------------------------------------------------------===//
6278 // Legalization Utilities
6279 //===----------------------------------------------------------------------===//
6280 
6281 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6282                                     SDValue LHS, SDValue RHS,
6283                                     SmallVectorImpl<SDValue> &Result,
6284                                     EVT HiLoVT, SelectionDAG &DAG,
6285                                     MulExpansionKind Kind, SDValue LL,
6286                                     SDValue LH, SDValue RL, SDValue RH) const {
6287   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6288          Opcode == ISD::SMUL_LOHI);
6289 
6290   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6291                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6292   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6293                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6294   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6295                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6296   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6297                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6298 
6299   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6300     return false;
6301 
6302   unsigned OuterBitSize = VT.getScalarSizeInBits();
6303   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6304 
6305   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6306   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6307          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6308 
6309   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6310   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6311                           bool Signed) -> bool {
6312     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6313       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6314       Hi = SDValue(Lo.getNode(), 1);
6315       return true;
6316     }
6317     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6318       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6319       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6320       return true;
6321     }
6322     return false;
6323   };
6324 
6325   SDValue Lo, Hi;
6326 
6327   if (!LL.getNode() && !RL.getNode() &&
6328       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6329     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6330     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6331   }
6332 
6333   if (!LL.getNode())
6334     return false;
6335 
6336   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6337   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6338       DAG.MaskedValueIsZero(RHS, HighMask)) {
6339     // The inputs are both zero-extended.
6340     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6341       Result.push_back(Lo);
6342       Result.push_back(Hi);
6343       if (Opcode != ISD::MUL) {
6344         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6345         Result.push_back(Zero);
6346         Result.push_back(Zero);
6347       }
6348       return true;
6349     }
6350   }
6351 
6352   if (!VT.isVector() && Opcode == ISD::MUL &&
6353       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6354       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6355     // The input values are both sign-extended.
6356     // TODO non-MUL case?
6357     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6358       Result.push_back(Lo);
6359       Result.push_back(Hi);
6360       return true;
6361     }
6362   }
6363 
6364   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6365   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6366   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6367     // FIXME getShiftAmountTy does not always return a sensible result when VT
6368     // is an illegal type, and so the type may be too small to fit the shift
6369     // amount. Override it with i32. The shift will have to be legalized.
6370     ShiftAmountTy = MVT::i32;
6371   }
6372   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6373 
6374   if (!LH.getNode() && !RH.getNode() &&
6375       isOperationLegalOrCustom(ISD::SRL, VT) &&
6376       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6377     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6378     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6379     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6380     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6381   }
6382 
6383   if (!LH.getNode())
6384     return false;
6385 
6386   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6387     return false;
6388 
6389   Result.push_back(Lo);
6390 
6391   if (Opcode == ISD::MUL) {
6392     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6393     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6394     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6395     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6396     Result.push_back(Hi);
6397     return true;
6398   }
6399 
6400   // Compute the full width result.
6401   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6402     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6403     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6404     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6405     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6406   };
6407 
6408   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6409   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6410     return false;
6411 
6412   // This is effectively the add part of a multiply-add of half-sized operands,
6413   // so it cannot overflow.
6414   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6415 
6416   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6417     return false;
6418 
6419   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6420   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6421 
6422   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6423                   isOperationLegalOrCustom(ISD::ADDE, VT));
6424   if (UseGlue)
6425     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6426                        Merge(Lo, Hi));
6427   else
6428     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6429                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6430 
6431   SDValue Carry = Next.getValue(1);
6432   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6433   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6434 
6435   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6436     return false;
6437 
6438   if (UseGlue)
6439     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6440                      Carry);
6441   else
6442     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6443                      Zero, Carry);
6444 
6445   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6446 
6447   if (Opcode == ISD::SMUL_LOHI) {
6448     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6449                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6450     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6451 
6452     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6453                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6454     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6455   }
6456 
6457   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6458   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6459   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6460   return true;
6461 }
6462 
6463 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6464                                SelectionDAG &DAG, MulExpansionKind Kind,
6465                                SDValue LL, SDValue LH, SDValue RL,
6466                                SDValue RH) const {
6467   SmallVector<SDValue, 2> Result;
6468   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6469                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6470                            DAG, Kind, LL, LH, RL, RH);
6471   if (Ok) {
6472     assert(Result.size() == 2);
6473     Lo = Result[0];
6474     Hi = Result[1];
6475   }
6476   return Ok;
6477 }
6478 
6479 // Check that (every element of) Z is undef or not an exact multiple of BW.
6480 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6481   return ISD::matchUnaryPredicate(
6482       Z,
6483       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6484       true);
6485 }
6486 
6487 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6488                                        SelectionDAG &DAG) const {
6489   EVT VT = Node->getValueType(0);
6490 
6491   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6492                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6493                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6494                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6495     return false;
6496 
6497   SDValue X = Node->getOperand(0);
6498   SDValue Y = Node->getOperand(1);
6499   SDValue Z = Node->getOperand(2);
6500 
6501   unsigned BW = VT.getScalarSizeInBits();
6502   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6503   SDLoc DL(SDValue(Node, 0));
6504 
6505   EVT ShVT = Z.getValueType();
6506 
6507   // If a funnel shift in the other direction is more supported, use it.
6508   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6509   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6510       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6511     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6512       // fshl X, Y, Z -> fshr X, Y, -Z
6513       // fshr X, Y, Z -> fshl X, Y, -Z
6514       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6515       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6516     } else {
6517       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6518       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6519       SDValue One = DAG.getConstant(1, DL, ShVT);
6520       if (IsFSHL) {
6521         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6522         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6523       } else {
6524         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6525         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6526       }
6527       Z = DAG.getNOT(DL, Z, ShVT);
6528     }
6529     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6530     return true;
6531   }
6532 
6533   SDValue ShX, ShY;
6534   SDValue ShAmt, InvShAmt;
6535   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6536     // fshl: X << C | Y >> (BW - C)
6537     // fshr: X << (BW - C) | Y >> C
6538     // where C = Z % BW is not zero
6539     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6540     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6541     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6542     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6543     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6544   } else {
6545     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6546     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6547     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6548     if (isPowerOf2_32(BW)) {
6549       // Z % BW -> Z & (BW - 1)
6550       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6551       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6552       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6553     } else {
6554       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6555       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6556       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6557     }
6558 
6559     SDValue One = DAG.getConstant(1, DL, ShVT);
6560     if (IsFSHL) {
6561       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6562       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6563       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6564     } else {
6565       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6566       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6567       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6568     }
6569   }
6570   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6571   return true;
6572 }
6573 
6574 // TODO: Merge with expandFunnelShift.
6575 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6576                                SDValue &Result, SelectionDAG &DAG) const {
6577   EVT VT = Node->getValueType(0);
6578   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6579   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6580   SDValue Op0 = Node->getOperand(0);
6581   SDValue Op1 = Node->getOperand(1);
6582   SDLoc DL(SDValue(Node, 0));
6583 
6584   EVT ShVT = Op1.getValueType();
6585   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6586 
6587   // If a rotate in the other direction is supported, use it.
6588   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6589   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6590     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6591     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6592     return true;
6593   }
6594 
6595   if (!AllowVectorOps && VT.isVector() &&
6596       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6597        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6598        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6599        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6600        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6601     return false;
6602 
6603   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6604   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6605   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6606   SDValue ShVal;
6607   SDValue HsVal;
6608   if (isPowerOf2_32(EltSizeInBits)) {
6609     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6610     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6611     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6612     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6613     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6614     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6615     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6616   } else {
6617     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6618     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6619     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6620     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6621     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6622     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6623     SDValue One = DAG.getConstant(1, DL, ShVT);
6624     HsVal =
6625         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6626   }
6627   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6628   return true;
6629 }
6630 
6631 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6632                                       SelectionDAG &DAG) const {
6633   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6634   EVT VT = Node->getValueType(0);
6635   unsigned VTBits = VT.getScalarSizeInBits();
6636   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6637 
6638   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6639   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6640   SDValue ShOpLo = Node->getOperand(0);
6641   SDValue ShOpHi = Node->getOperand(1);
6642   SDValue ShAmt = Node->getOperand(2);
6643   EVT ShAmtVT = ShAmt.getValueType();
6644   EVT ShAmtCCVT =
6645       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6646   SDLoc dl(Node);
6647 
6648   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6649   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6650   // away during isel.
6651   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6652                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6653   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6654                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6655                        : DAG.getConstant(0, dl, VT);
6656 
6657   SDValue Tmp2, Tmp3;
6658   if (IsSHL) {
6659     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6660     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6661   } else {
6662     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6663     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6664   }
6665 
6666   // If the shift amount is larger or equal than the width of a part we don't
6667   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6668   // values for large shift amounts.
6669   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6670                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6671   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6672                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6673 
6674   if (IsSHL) {
6675     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6676     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6677   } else {
6678     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6679     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6680   }
6681 }
6682 
6683 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6684                                       SelectionDAG &DAG) const {
6685   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6686   SDValue Src = Node->getOperand(OpNo);
6687   EVT SrcVT = Src.getValueType();
6688   EVT DstVT = Node->getValueType(0);
6689   SDLoc dl(SDValue(Node, 0));
6690 
6691   // FIXME: Only f32 to i64 conversions are supported.
6692   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6693     return false;
6694 
6695   if (Node->isStrictFPOpcode())
6696     // When a NaN is converted to an integer a trap is allowed. We can't
6697     // use this expansion here because it would eliminate that trap. Other
6698     // traps are also allowed and cannot be eliminated. See
6699     // IEEE 754-2008 sec 5.8.
6700     return false;
6701 
6702   // Expand f32 -> i64 conversion
6703   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6704   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6705   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6706   EVT IntVT = SrcVT.changeTypeToInteger();
6707   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6708 
6709   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6710   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6711   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6712   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6713   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6714   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6715 
6716   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6717 
6718   SDValue ExponentBits = DAG.getNode(
6719       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6720       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6721   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6722 
6723   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6724                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6725                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6726   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6727 
6728   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6729                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6730                           DAG.getConstant(0x00800000, dl, IntVT));
6731 
6732   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6733 
6734   R = DAG.getSelectCC(
6735       dl, Exponent, ExponentLoBit,
6736       DAG.getNode(ISD::SHL, dl, DstVT, R,
6737                   DAG.getZExtOrTrunc(
6738                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6739                       dl, IntShVT)),
6740       DAG.getNode(ISD::SRL, dl, DstVT, R,
6741                   DAG.getZExtOrTrunc(
6742                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6743                       dl, IntShVT)),
6744       ISD::SETGT);
6745 
6746   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6747                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6748 
6749   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6750                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6751   return true;
6752 }
6753 
6754 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6755                                       SDValue &Chain,
6756                                       SelectionDAG &DAG) const {
6757   SDLoc dl(SDValue(Node, 0));
6758   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6759   SDValue Src = Node->getOperand(OpNo);
6760 
6761   EVT SrcVT = Src.getValueType();
6762   EVT DstVT = Node->getValueType(0);
6763   EVT SetCCVT =
6764       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6765   EVT DstSetCCVT =
6766       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6767 
6768   // Only expand vector types if we have the appropriate vector bit operations.
6769   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6770                                                    ISD::FP_TO_SINT;
6771   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6772                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6773     return false;
6774 
6775   // If the maximum float value is smaller then the signed integer range,
6776   // the destination signmask can't be represented by the float, so we can
6777   // just use FP_TO_SINT directly.
6778   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6779   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6780   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6781   if (APFloat::opOverflow &
6782       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6783     if (Node->isStrictFPOpcode()) {
6784       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6785                            { Node->getOperand(0), Src });
6786       Chain = Result.getValue(1);
6787     } else
6788       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6789     return true;
6790   }
6791 
6792   // Don't expand it if there isn't cheap fsub instruction.
6793   if (!isOperationLegalOrCustom(
6794           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6795     return false;
6796 
6797   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6798   SDValue Sel;
6799 
6800   if (Node->isStrictFPOpcode()) {
6801     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6802                        Node->getOperand(0), /*IsSignaling*/ true);
6803     Chain = Sel.getValue(1);
6804   } else {
6805     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6806   }
6807 
6808   bool Strict = Node->isStrictFPOpcode() ||
6809                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6810 
6811   if (Strict) {
6812     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6813     // signmask then offset (the result of which should be fully representable).
6814     // Sel = Src < 0x8000000000000000
6815     // FltOfs = select Sel, 0, 0x8000000000000000
6816     // IntOfs = select Sel, 0, 0x8000000000000000
6817     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6818 
6819     // TODO: Should any fast-math-flags be set for the FSUB?
6820     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6821                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6822     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6823     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6824                                    DAG.getConstant(0, dl, DstVT),
6825                                    DAG.getConstant(SignMask, dl, DstVT));
6826     SDValue SInt;
6827     if (Node->isStrictFPOpcode()) {
6828       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6829                                 { Chain, Src, FltOfs });
6830       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6831                          { Val.getValue(1), Val });
6832       Chain = SInt.getValue(1);
6833     } else {
6834       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6835       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6836     }
6837     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6838   } else {
6839     // Expand based on maximum range of FP_TO_SINT:
6840     // True = fp_to_sint(Src)
6841     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6842     // Result = select (Src < 0x8000000000000000), True, False
6843 
6844     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6845     // TODO: Should any fast-math-flags be set for the FSUB?
6846     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6847                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6848     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6849                         DAG.getConstant(SignMask, dl, DstVT));
6850     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6851     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6852   }
6853   return true;
6854 }
6855 
6856 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6857                                       SDValue &Chain,
6858                                       SelectionDAG &DAG) const {
6859   // This transform is not correct for converting 0 when rounding mode is set
6860   // to round toward negative infinity which will produce -0.0. So disable under
6861   // strictfp.
6862   if (Node->isStrictFPOpcode())
6863     return false;
6864 
6865   SDValue Src = Node->getOperand(0);
6866   EVT SrcVT = Src.getValueType();
6867   EVT DstVT = Node->getValueType(0);
6868 
6869   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6870     return false;
6871 
6872   // Only expand vector types if we have the appropriate vector bit operations.
6873   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6874                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6875                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6876                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6877                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6878     return false;
6879 
6880   SDLoc dl(SDValue(Node, 0));
6881   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6882 
6883   // Implementation of unsigned i64 to f64 following the algorithm in
6884   // __floatundidf in compiler_rt.  This implementation performs rounding
6885   // correctly in all rounding modes with the exception of converting 0
6886   // when rounding toward negative infinity. In that case the fsub will produce
6887   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6888   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6889   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6890       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6891   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6892   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6893   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6894 
6895   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6896   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6897   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6898   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6899   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6900   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6901   SDValue HiSub =
6902       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6903   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6904   return true;
6905 }
6906 
6907 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6908                                               SelectionDAG &DAG) const {
6909   SDLoc dl(Node);
6910   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6911     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6912   EVT VT = Node->getValueType(0);
6913 
6914   if (VT.isScalableVector())
6915     report_fatal_error(
6916         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6917 
6918   if (isOperationLegalOrCustom(NewOp, VT)) {
6919     SDValue Quiet0 = Node->getOperand(0);
6920     SDValue Quiet1 = Node->getOperand(1);
6921 
6922     if (!Node->getFlags().hasNoNaNs()) {
6923       // Insert canonicalizes if it's possible we need to quiet to get correct
6924       // sNaN behavior.
6925       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6926         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6927                              Node->getFlags());
6928       }
6929       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6930         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6931                              Node->getFlags());
6932       }
6933     }
6934 
6935     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6936   }
6937 
6938   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6939   // instead if there are no NaNs.
6940   if (Node->getFlags().hasNoNaNs()) {
6941     unsigned IEEE2018Op =
6942         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6943     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6944       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6945                          Node->getOperand(1), Node->getFlags());
6946     }
6947   }
6948 
6949   // If none of the above worked, but there are no NaNs, then expand to
6950   // a compare/select sequence.  This is required for correctness since
6951   // InstCombine might have canonicalized a fcmp+select sequence to a
6952   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6953   // expansion to libcall, we might introduce a link-time dependency
6954   // on libm into a file that originally did not have one.
6955   if (Node->getFlags().hasNoNaNs()) {
6956     ISD::CondCode Pred =
6957         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6958     SDValue Op1 = Node->getOperand(0);
6959     SDValue Op2 = Node->getOperand(1);
6960     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6961     // Copy FMF flags, but always set the no-signed-zeros flag
6962     // as this is implied by the FMINNUM/FMAXNUM semantics.
6963     SDNodeFlags Flags = Node->getFlags();
6964     Flags.setNoSignedZeros(true);
6965     SelCC->setFlags(Flags);
6966     return SelCC;
6967   }
6968 
6969   return SDValue();
6970 }
6971 
6972 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6973                                  SelectionDAG &DAG) const {
6974   SDLoc dl(Node);
6975   EVT VT = Node->getValueType(0);
6976   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6977   SDValue Op = Node->getOperand(0);
6978   unsigned Len = VT.getScalarSizeInBits();
6979   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6980 
6981   // TODO: Add support for irregular type lengths.
6982   if (!(Len <= 128 && Len % 8 == 0))
6983     return false;
6984 
6985   // Only expand vector types if we have the appropriate vector bit operations.
6986   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6987                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6988                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6989                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6990                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6991     return false;
6992 
6993   // This is the "best" algorithm from
6994   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6995   SDValue Mask55 =
6996       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6997   SDValue Mask33 =
6998       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6999   SDValue Mask0F =
7000       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7001   SDValue Mask01 =
7002       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7003 
7004   // v = v - ((v >> 1) & 0x55555555...)
7005   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7006                    DAG.getNode(ISD::AND, dl, VT,
7007                                DAG.getNode(ISD::SRL, dl, VT, Op,
7008                                            DAG.getConstant(1, dl, ShVT)),
7009                                Mask55));
7010   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7011   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7012                    DAG.getNode(ISD::AND, dl, VT,
7013                                DAG.getNode(ISD::SRL, dl, VT, Op,
7014                                            DAG.getConstant(2, dl, ShVT)),
7015                                Mask33));
7016   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7017   Op = DAG.getNode(ISD::AND, dl, VT,
7018                    DAG.getNode(ISD::ADD, dl, VT, Op,
7019                                DAG.getNode(ISD::SRL, dl, VT, Op,
7020                                            DAG.getConstant(4, dl, ShVT))),
7021                    Mask0F);
7022   // v = (v * 0x01010101...) >> (Len - 8)
7023   if (Len > 8)
7024     Op =
7025         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7026                     DAG.getConstant(Len - 8, dl, ShVT));
7027 
7028   Result = Op;
7029   return true;
7030 }
7031 
7032 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7033                                 SelectionDAG &DAG) const {
7034   SDLoc dl(Node);
7035   EVT VT = Node->getValueType(0);
7036   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7037   SDValue Op = Node->getOperand(0);
7038   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7039 
7040   // If the non-ZERO_UNDEF version is supported we can use that instead.
7041   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7042       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7043     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7044     return true;
7045   }
7046 
7047   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7048   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7049     EVT SetCCVT =
7050         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7051     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7052     SDValue Zero = DAG.getConstant(0, dl, VT);
7053     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7054     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7055                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7056     return true;
7057   }
7058 
7059   // Only expand vector types if we have the appropriate vector bit operations.
7060   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7061                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7062                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7063                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7064     return false;
7065 
7066   // for now, we do this:
7067   // x = x | (x >> 1);
7068   // x = x | (x >> 2);
7069   // ...
7070   // x = x | (x >>16);
7071   // x = x | (x >>32); // for 64-bit input
7072   // return popcount(~x);
7073   //
7074   // Ref: "Hacker's Delight" by Henry Warren
7075   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7076     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7077     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7078                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7079   }
7080   Op = DAG.getNOT(dl, Op, VT);
7081   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7082   return true;
7083 }
7084 
7085 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7086                                 SelectionDAG &DAG) const {
7087   SDLoc dl(Node);
7088   EVT VT = Node->getValueType(0);
7089   SDValue Op = Node->getOperand(0);
7090   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7091 
7092   // If the non-ZERO_UNDEF version is supported we can use that instead.
7093   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7094       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7095     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7096     return true;
7097   }
7098 
7099   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7100   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7101     EVT SetCCVT =
7102         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7103     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7104     SDValue Zero = DAG.getConstant(0, dl, VT);
7105     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7106     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7107                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7108     return true;
7109   }
7110 
7111   // Only expand vector types if we have the appropriate vector bit operations.
7112   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7113                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7114                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7115                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7116                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7117                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7118     return false;
7119 
7120   // for now, we use: { return popcount(~x & (x - 1)); }
7121   // unless the target has ctlz but not ctpop, in which case we use:
7122   // { return 32 - nlz(~x & (x-1)); }
7123   // Ref: "Hacker's Delight" by Henry Warren
7124   SDValue Tmp = DAG.getNode(
7125       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7126       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7127 
7128   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7129   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7130     Result =
7131         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7132                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7133     return true;
7134   }
7135 
7136   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7137   return true;
7138 }
7139 
7140 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7141                                SelectionDAG &DAG, bool IsNegative) const {
7142   SDLoc dl(N);
7143   EVT VT = N->getValueType(0);
7144   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7145   SDValue Op = N->getOperand(0);
7146 
7147   // abs(x) -> smax(x,sub(0,x))
7148   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7149       isOperationLegal(ISD::SMAX, VT)) {
7150     SDValue Zero = DAG.getConstant(0, dl, VT);
7151     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7152                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7153     return true;
7154   }
7155 
7156   // abs(x) -> umin(x,sub(0,x))
7157   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7158       isOperationLegal(ISD::UMIN, VT)) {
7159     SDValue Zero = DAG.getConstant(0, dl, VT);
7160     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7161                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7162     return true;
7163   }
7164 
7165   // 0 - abs(x) -> smin(x, sub(0,x))
7166   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7167       isOperationLegal(ISD::SMIN, VT)) {
7168     SDValue Zero = DAG.getConstant(0, dl, VT);
7169     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7170                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7171     return true;
7172   }
7173 
7174   // Only expand vector types if we have the appropriate vector operations.
7175   if (VT.isVector() &&
7176       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7177        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7178        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7179        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7180     return false;
7181 
7182   SDValue Shift =
7183       DAG.getNode(ISD::SRA, dl, VT, Op,
7184                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7185   if (!IsNegative) {
7186     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7187     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7188   } else {
7189     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7190     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7191     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7192   }
7193   return true;
7194 }
7195 
7196 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7197   SDLoc dl(N);
7198   EVT VT = N->getValueType(0);
7199   SDValue Op = N->getOperand(0);
7200 
7201   if (!VT.isSimple())
7202     return SDValue();
7203 
7204   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7205   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7206   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7207   default:
7208     return SDValue();
7209   case MVT::i16:
7210     // Use a rotate by 8. This can be further expanded if necessary.
7211     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7212   case MVT::i32:
7213     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7214     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7215     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7216     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7217     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7218                        DAG.getConstant(0xFF0000, dl, VT));
7219     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7220     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7221     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7222     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7223   case MVT::i64:
7224     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7225     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7226     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7227     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7228     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7229     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7230     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7231     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7232     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7233                        DAG.getConstant(255ULL<<48, dl, VT));
7234     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7235                        DAG.getConstant(255ULL<<40, dl, VT));
7236     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7237                        DAG.getConstant(255ULL<<32, dl, VT));
7238     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7239                        DAG.getConstant(255ULL<<24, dl, VT));
7240     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7241                        DAG.getConstant(255ULL<<16, dl, VT));
7242     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7243                        DAG.getConstant(255ULL<<8 , dl, VT));
7244     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7245     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7246     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7247     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7248     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7249     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7250     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7251   }
7252 }
7253 
7254 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7255   SDLoc dl(N);
7256   EVT VT = N->getValueType(0);
7257   SDValue Op = N->getOperand(0);
7258   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7259   unsigned Sz = VT.getScalarSizeInBits();
7260 
7261   SDValue Tmp, Tmp2, Tmp3;
7262 
7263   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7264   // and finally the i1 pairs.
7265   // TODO: We can easily support i4/i2 legal types if any target ever does.
7266   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7267     // Create the masks - repeating the pattern every byte.
7268     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7269     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7270     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7271     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7272     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7273     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7274 
7275     // BSWAP if the type is wider than a single byte.
7276     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7277 
7278     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7279     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7280     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7281     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7282     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7283     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7284 
7285     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7286     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7287     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7288     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7289     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7290     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7291 
7292     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7293     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7294     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7295     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7296     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7297     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7298     return Tmp;
7299   }
7300 
7301   Tmp = DAG.getConstant(0, dl, VT);
7302   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7303     if (I < J)
7304       Tmp2 =
7305           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7306     else
7307       Tmp2 =
7308           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7309 
7310     APInt Shift(Sz, 1);
7311     Shift <<= J;
7312     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7313     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7314   }
7315 
7316   return Tmp;
7317 }
7318 
7319 std::pair<SDValue, SDValue>
7320 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7321                                     SelectionDAG &DAG) const {
7322   SDLoc SL(LD);
7323   SDValue Chain = LD->getChain();
7324   SDValue BasePTR = LD->getBasePtr();
7325   EVT SrcVT = LD->getMemoryVT();
7326   EVT DstVT = LD->getValueType(0);
7327   ISD::LoadExtType ExtType = LD->getExtensionType();
7328 
7329   if (SrcVT.isScalableVector())
7330     report_fatal_error("Cannot scalarize scalable vector loads");
7331 
7332   unsigned NumElem = SrcVT.getVectorNumElements();
7333 
7334   EVT SrcEltVT = SrcVT.getScalarType();
7335   EVT DstEltVT = DstVT.getScalarType();
7336 
7337   // A vector must always be stored in memory as-is, i.e. without any padding
7338   // between the elements, since various code depend on it, e.g. in the
7339   // handling of a bitcast of a vector type to int, which may be done with a
7340   // vector store followed by an integer load. A vector that does not have
7341   // elements that are byte-sized must therefore be stored as an integer
7342   // built out of the extracted vector elements.
7343   if (!SrcEltVT.isByteSized()) {
7344     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7345     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7346 
7347     unsigned NumSrcBits = SrcVT.getSizeInBits();
7348     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7349 
7350     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7351     SDValue SrcEltBitMask = DAG.getConstant(
7352         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7353 
7354     // Load the whole vector and avoid masking off the top bits as it makes
7355     // the codegen worse.
7356     SDValue Load =
7357         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7358                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7359                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7360 
7361     SmallVector<SDValue, 8> Vals;
7362     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7363       unsigned ShiftIntoIdx =
7364           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7365       SDValue ShiftAmount =
7366           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7367                                      LoadVT, SL, /*LegalTypes=*/false);
7368       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7369       SDValue Elt =
7370           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7371       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7372 
7373       if (ExtType != ISD::NON_EXTLOAD) {
7374         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7375         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7376       }
7377 
7378       Vals.push_back(Scalar);
7379     }
7380 
7381     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7382     return std::make_pair(Value, Load.getValue(1));
7383   }
7384 
7385   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7386   assert(SrcEltVT.isByteSized());
7387 
7388   SmallVector<SDValue, 8> Vals;
7389   SmallVector<SDValue, 8> LoadChains;
7390 
7391   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7392     SDValue ScalarLoad =
7393         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7394                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7395                        SrcEltVT, LD->getOriginalAlign(),
7396                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7397 
7398     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7399 
7400     Vals.push_back(ScalarLoad.getValue(0));
7401     LoadChains.push_back(ScalarLoad.getValue(1));
7402   }
7403 
7404   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7405   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7406 
7407   return std::make_pair(Value, NewChain);
7408 }
7409 
7410 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7411                                              SelectionDAG &DAG) const {
7412   SDLoc SL(ST);
7413 
7414   SDValue Chain = ST->getChain();
7415   SDValue BasePtr = ST->getBasePtr();
7416   SDValue Value = ST->getValue();
7417   EVT StVT = ST->getMemoryVT();
7418 
7419   if (StVT.isScalableVector())
7420     report_fatal_error("Cannot scalarize scalable vector stores");
7421 
7422   // The type of the data we want to save
7423   EVT RegVT = Value.getValueType();
7424   EVT RegSclVT = RegVT.getScalarType();
7425 
7426   // The type of data as saved in memory.
7427   EVT MemSclVT = StVT.getScalarType();
7428 
7429   unsigned NumElem = StVT.getVectorNumElements();
7430 
7431   // A vector must always be stored in memory as-is, i.e. without any padding
7432   // between the elements, since various code depend on it, e.g. in the
7433   // handling of a bitcast of a vector type to int, which may be done with a
7434   // vector store followed by an integer load. A vector that does not have
7435   // elements that are byte-sized must therefore be stored as an integer
7436   // built out of the extracted vector elements.
7437   if (!MemSclVT.isByteSized()) {
7438     unsigned NumBits = StVT.getSizeInBits();
7439     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7440 
7441     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7442 
7443     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7444       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7445                                 DAG.getVectorIdxConstant(Idx, SL));
7446       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7447       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7448       unsigned ShiftIntoIdx =
7449           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7450       SDValue ShiftAmount =
7451           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7452       SDValue ShiftedElt =
7453           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7454       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7455     }
7456 
7457     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7458                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7459                         ST->getAAInfo());
7460   }
7461 
7462   // Store Stride in bytes
7463   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7464   assert(Stride && "Zero stride!");
7465   // Extract each of the elements from the original vector and save them into
7466   // memory individually.
7467   SmallVector<SDValue, 8> Stores;
7468   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7469     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7470                               DAG.getVectorIdxConstant(Idx, SL));
7471 
7472     SDValue Ptr =
7473         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7474 
7475     // This scalar TruncStore may be illegal, but we legalize it later.
7476     SDValue Store = DAG.getTruncStore(
7477         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7478         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7479         ST->getAAInfo());
7480 
7481     Stores.push_back(Store);
7482   }
7483 
7484   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7485 }
7486 
7487 std::pair<SDValue, SDValue>
7488 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7489   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7490          "unaligned indexed loads not implemented!");
7491   SDValue Chain = LD->getChain();
7492   SDValue Ptr = LD->getBasePtr();
7493   EVT VT = LD->getValueType(0);
7494   EVT LoadedVT = LD->getMemoryVT();
7495   SDLoc dl(LD);
7496   auto &MF = DAG.getMachineFunction();
7497 
7498   if (VT.isFloatingPoint() || VT.isVector()) {
7499     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7500     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7501       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7502           LoadedVT.isVector()) {
7503         // Scalarize the load and let the individual components be handled.
7504         return scalarizeVectorLoad(LD, DAG);
7505       }
7506 
7507       // Expand to a (misaligned) integer load of the same size,
7508       // then bitconvert to floating point or vector.
7509       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7510                                     LD->getMemOperand());
7511       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7512       if (LoadedVT != VT)
7513         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7514                              ISD::ANY_EXTEND, dl, VT, Result);
7515 
7516       return std::make_pair(Result, newLoad.getValue(1));
7517     }
7518 
7519     // Copy the value to a (aligned) stack slot using (unaligned) integer
7520     // loads and stores, then do a (aligned) load from the stack slot.
7521     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7522     unsigned LoadedBytes = LoadedVT.getStoreSize();
7523     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7524     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7525 
7526     // Make sure the stack slot is also aligned for the register type.
7527     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7528     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7529     SmallVector<SDValue, 8> Stores;
7530     SDValue StackPtr = StackBase;
7531     unsigned Offset = 0;
7532 
7533     EVT PtrVT = Ptr.getValueType();
7534     EVT StackPtrVT = StackPtr.getValueType();
7535 
7536     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7537     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7538 
7539     // Do all but one copies using the full register width.
7540     for (unsigned i = 1; i < NumRegs; i++) {
7541       // Load one integer register's worth from the original location.
7542       SDValue Load = DAG.getLoad(
7543           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7544           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7545           LD->getAAInfo());
7546       // Follow the load with a store to the stack slot.  Remember the store.
7547       Stores.push_back(DAG.getStore(
7548           Load.getValue(1), dl, Load, StackPtr,
7549           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7550       // Increment the pointers.
7551       Offset += RegBytes;
7552 
7553       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7554       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7555     }
7556 
7557     // The last copy may be partial.  Do an extending load.
7558     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7559                                   8 * (LoadedBytes - Offset));
7560     SDValue Load =
7561         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7562                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7563                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7564                        LD->getAAInfo());
7565     // Follow the load with a store to the stack slot.  Remember the store.
7566     // On big-endian machines this requires a truncating store to ensure
7567     // that the bits end up in the right place.
7568     Stores.push_back(DAG.getTruncStore(
7569         Load.getValue(1), dl, Load, StackPtr,
7570         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7571 
7572     // The order of the stores doesn't matter - say it with a TokenFactor.
7573     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7574 
7575     // Finally, perform the original load only redirected to the stack slot.
7576     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7577                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7578                           LoadedVT);
7579 
7580     // Callers expect a MERGE_VALUES node.
7581     return std::make_pair(Load, TF);
7582   }
7583 
7584   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7585          "Unaligned load of unsupported type.");
7586 
7587   // Compute the new VT that is half the size of the old one.  This is an
7588   // integer MVT.
7589   unsigned NumBits = LoadedVT.getSizeInBits();
7590   EVT NewLoadedVT;
7591   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7592   NumBits >>= 1;
7593 
7594   Align Alignment = LD->getOriginalAlign();
7595   unsigned IncrementSize = NumBits / 8;
7596   ISD::LoadExtType HiExtType = LD->getExtensionType();
7597 
7598   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7599   if (HiExtType == ISD::NON_EXTLOAD)
7600     HiExtType = ISD::ZEXTLOAD;
7601 
7602   // Load the value in two parts
7603   SDValue Lo, Hi;
7604   if (DAG.getDataLayout().isLittleEndian()) {
7605     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7606                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7607                         LD->getAAInfo());
7608 
7609     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7610     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7611                         LD->getPointerInfo().getWithOffset(IncrementSize),
7612                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7613                         LD->getAAInfo());
7614   } else {
7615     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7616                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7617                         LD->getAAInfo());
7618 
7619     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7620     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7621                         LD->getPointerInfo().getWithOffset(IncrementSize),
7622                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7623                         LD->getAAInfo());
7624   }
7625 
7626   // aggregate the two parts
7627   SDValue ShiftAmount =
7628       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7629                                                     DAG.getDataLayout()));
7630   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7631   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7632 
7633   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7634                              Hi.getValue(1));
7635 
7636   return std::make_pair(Result, TF);
7637 }
7638 
7639 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7640                                              SelectionDAG &DAG) const {
7641   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7642          "unaligned indexed stores not implemented!");
7643   SDValue Chain = ST->getChain();
7644   SDValue Ptr = ST->getBasePtr();
7645   SDValue Val = ST->getValue();
7646   EVT VT = Val.getValueType();
7647   Align Alignment = ST->getOriginalAlign();
7648   auto &MF = DAG.getMachineFunction();
7649   EVT StoreMemVT = ST->getMemoryVT();
7650 
7651   SDLoc dl(ST);
7652   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7653     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7654     if (isTypeLegal(intVT)) {
7655       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7656           StoreMemVT.isVector()) {
7657         // Scalarize the store and let the individual components be handled.
7658         SDValue Result = scalarizeVectorStore(ST, DAG);
7659         return Result;
7660       }
7661       // Expand to a bitconvert of the value to the integer type of the
7662       // same size, then a (misaligned) int store.
7663       // FIXME: Does not handle truncating floating point stores!
7664       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7665       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7666                             Alignment, ST->getMemOperand()->getFlags());
7667       return Result;
7668     }
7669     // Do a (aligned) store to a stack slot, then copy from the stack slot
7670     // to the final destination using (unaligned) integer loads and stores.
7671     MVT RegVT = getRegisterType(
7672         *DAG.getContext(),
7673         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7674     EVT PtrVT = Ptr.getValueType();
7675     unsigned StoredBytes = StoreMemVT.getStoreSize();
7676     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7677     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7678 
7679     // Make sure the stack slot is also aligned for the register type.
7680     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7681     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7682 
7683     // Perform the original store, only redirected to the stack slot.
7684     SDValue Store = DAG.getTruncStore(
7685         Chain, dl, Val, StackPtr,
7686         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7687 
7688     EVT StackPtrVT = StackPtr.getValueType();
7689 
7690     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7691     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7692     SmallVector<SDValue, 8> Stores;
7693     unsigned Offset = 0;
7694 
7695     // Do all but one copies using the full register width.
7696     for (unsigned i = 1; i < NumRegs; i++) {
7697       // Load one integer register's worth from the stack slot.
7698       SDValue Load = DAG.getLoad(
7699           RegVT, dl, Store, StackPtr,
7700           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7701       // Store it to the final location.  Remember the store.
7702       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7703                                     ST->getPointerInfo().getWithOffset(Offset),
7704                                     ST->getOriginalAlign(),
7705                                     ST->getMemOperand()->getFlags()));
7706       // Increment the pointers.
7707       Offset += RegBytes;
7708       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7709       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7710     }
7711 
7712     // The last store may be partial.  Do a truncating store.  On big-endian
7713     // machines this requires an extending load from the stack slot to ensure
7714     // that the bits are in the right place.
7715     EVT LoadMemVT =
7716         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7717 
7718     // Load from the stack slot.
7719     SDValue Load = DAG.getExtLoad(
7720         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7721         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7722 
7723     Stores.push_back(
7724         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7725                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7726                           ST->getOriginalAlign(),
7727                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7728     // The order of the stores doesn't matter - say it with a TokenFactor.
7729     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7730     return Result;
7731   }
7732 
7733   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7734          "Unaligned store of unknown type.");
7735   // Get the half-size VT
7736   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7737   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7738   unsigned IncrementSize = NumBits / 8;
7739 
7740   // Divide the stored value in two parts.
7741   SDValue ShiftAmount = DAG.getConstant(
7742       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7743   SDValue Lo = Val;
7744   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7745 
7746   // Store the two parts
7747   SDValue Store1, Store2;
7748   Store1 = DAG.getTruncStore(Chain, dl,
7749                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7750                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7751                              ST->getMemOperand()->getFlags());
7752 
7753   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7754   Store2 = DAG.getTruncStore(
7755       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7756       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7757       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7758 
7759   SDValue Result =
7760       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7761   return Result;
7762 }
7763 
7764 SDValue
7765 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7766                                        const SDLoc &DL, EVT DataVT,
7767                                        SelectionDAG &DAG,
7768                                        bool IsCompressedMemory) const {
7769   SDValue Increment;
7770   EVT AddrVT = Addr.getValueType();
7771   EVT MaskVT = Mask.getValueType();
7772   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7773          "Incompatible types of Data and Mask");
7774   if (IsCompressedMemory) {
7775     if (DataVT.isScalableVector())
7776       report_fatal_error(
7777           "Cannot currently handle compressed memory with scalable vectors");
7778     // Incrementing the pointer according to number of '1's in the mask.
7779     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7780     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7781     if (MaskIntVT.getSizeInBits() < 32) {
7782       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7783       MaskIntVT = MVT::i32;
7784     }
7785 
7786     // Count '1's with POPCNT.
7787     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7788     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7789     // Scale is an element size in bytes.
7790     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7791                                     AddrVT);
7792     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7793   } else if (DataVT.isScalableVector()) {
7794     Increment = DAG.getVScale(DL, AddrVT,
7795                               APInt(AddrVT.getFixedSizeInBits(),
7796                                     DataVT.getStoreSize().getKnownMinSize()));
7797   } else
7798     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7799 
7800   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7801 }
7802 
7803 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7804                                        EVT VecVT, const SDLoc &dl,
7805                                        unsigned NumSubElts) {
7806   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7807     return Idx;
7808 
7809   EVT IdxVT = Idx.getValueType();
7810   unsigned NElts = VecVT.getVectorMinNumElements();
7811   if (VecVT.isScalableVector()) {
7812     // If this is a constant index and we know the value plus the number of the
7813     // elements in the subvector minus one is less than the minimum number of
7814     // elements then it's safe to return Idx.
7815     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7816       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7817         return Idx;
7818     SDValue VS =
7819         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7820     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7821     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7822                               DAG.getConstant(NumSubElts, dl, IdxVT));
7823     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7824   }
7825   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7826     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7827     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7828                        DAG.getConstant(Imm, dl, IdxVT));
7829   }
7830   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7831   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7832                      DAG.getConstant(MaxIndex, dl, IdxVT));
7833 }
7834 
7835 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7836                                                 SDValue VecPtr, EVT VecVT,
7837                                                 SDValue Index) const {
7838   return getVectorSubVecPointer(
7839       DAG, VecPtr, VecVT,
7840       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7841       Index);
7842 }
7843 
7844 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7845                                                SDValue VecPtr, EVT VecVT,
7846                                                EVT SubVecVT,
7847                                                SDValue Index) const {
7848   SDLoc dl(Index);
7849   // Make sure the index type is big enough to compute in.
7850   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7851 
7852   EVT EltVT = VecVT.getVectorElementType();
7853 
7854   // Calculate the element offset and add it to the pointer.
7855   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7856   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7857          "Converting bits to bytes lost precision");
7858 
7859   // Scalable vectors don't need clamping as these are checked at compile time
7860   if (SubVecVT.isFixedLengthVector()) {
7861     assert(SubVecVT.getVectorElementType() == EltVT &&
7862            "Sub-vector must be a fixed vector with matching element type");
7863     Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7864                                     SubVecVT.getVectorNumElements());
7865   }
7866 
7867   EVT IdxVT = Index.getValueType();
7868 
7869   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7870                       DAG.getConstant(EltSize, dl, IdxVT));
7871   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7872 }
7873 
7874 //===----------------------------------------------------------------------===//
7875 // Implementation of Emulated TLS Model
7876 //===----------------------------------------------------------------------===//
7877 
7878 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7879                                                 SelectionDAG &DAG) const {
7880   // Access to address of TLS varialbe xyz is lowered to a function call:
7881   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7882   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7883   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7884   SDLoc dl(GA);
7885 
7886   ArgListTy Args;
7887   ArgListEntry Entry;
7888   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7889   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7890   StringRef EmuTlsVarName(NameString);
7891   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7892   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7893   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7894   Entry.Ty = VoidPtrType;
7895   Args.push_back(Entry);
7896 
7897   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7898 
7899   TargetLowering::CallLoweringInfo CLI(DAG);
7900   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7901   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7902   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7903 
7904   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7905   // At last for X86 targets, maybe good for other targets too?
7906   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7907   MFI.setAdjustsStack(true); // Is this only for X86 target?
7908   MFI.setHasCalls(true);
7909 
7910   assert((GA->getOffset() == 0) &&
7911          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7912   return CallResult.first;
7913 }
7914 
7915 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7916                                                 SelectionDAG &DAG) const {
7917   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7918   if (!isCtlzFast())
7919     return SDValue();
7920   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7921   SDLoc dl(Op);
7922   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7923     if (C->isNullValue() && CC == ISD::SETEQ) {
7924       EVT VT = Op.getOperand(0).getValueType();
7925       SDValue Zext = Op.getOperand(0);
7926       if (VT.bitsLT(MVT::i32)) {
7927         VT = MVT::i32;
7928         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7929       }
7930       unsigned Log2b = Log2_32(VT.getSizeInBits());
7931       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7932       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7933                                 DAG.getConstant(Log2b, dl, MVT::i32));
7934       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7935     }
7936   }
7937   return SDValue();
7938 }
7939 
7940 // Convert redundant addressing modes (e.g. scaling is redundant
7941 // when accessing bytes).
7942 ISD::MemIndexType
7943 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7944                                       SDValue Offsets) const {
7945   bool IsScaledIndex =
7946       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7947   bool IsSignedIndex =
7948       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7949 
7950   // Scaling is unimportant for bytes, canonicalize to unscaled.
7951   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7952     IsScaledIndex = false;
7953     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7954   }
7955 
7956   return IndexType;
7957 }
7958 
7959 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7960   SDValue Op0 = Node->getOperand(0);
7961   SDValue Op1 = Node->getOperand(1);
7962   EVT VT = Op0.getValueType();
7963   unsigned Opcode = Node->getOpcode();
7964   SDLoc DL(Node);
7965 
7966   // umin(x,y) -> sub(x,usubsat(x,y))
7967   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7968       isOperationLegal(ISD::USUBSAT, VT)) {
7969     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7970                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7971   }
7972 
7973   // umax(x,y) -> add(x,usubsat(y,x))
7974   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7975       isOperationLegal(ISD::USUBSAT, VT)) {
7976     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7977                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7978   }
7979 
7980   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7981   ISD::CondCode CC;
7982   switch (Opcode) {
7983   default: llvm_unreachable("How did we get here?");
7984   case ISD::SMAX: CC = ISD::SETGT; break;
7985   case ISD::SMIN: CC = ISD::SETLT; break;
7986   case ISD::UMAX: CC = ISD::SETUGT; break;
7987   case ISD::UMIN: CC = ISD::SETULT; break;
7988   }
7989 
7990   // FIXME: Should really try to split the vector in case it's legal on a
7991   // subvector.
7992   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7993     return DAG.UnrollVectorOp(Node);
7994 
7995   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7996   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7997 }
7998 
7999 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8000   unsigned Opcode = Node->getOpcode();
8001   SDValue LHS = Node->getOperand(0);
8002   SDValue RHS = Node->getOperand(1);
8003   EVT VT = LHS.getValueType();
8004   SDLoc dl(Node);
8005 
8006   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8007   assert(VT.isInteger() && "Expected operands to be integers");
8008 
8009   // usub.sat(a, b) -> umax(a, b) - b
8010   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8011     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8012     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8013   }
8014 
8015   // uadd.sat(a, b) -> umin(a, ~b) + b
8016   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8017     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8018     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8019     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8020   }
8021 
8022   unsigned OverflowOp;
8023   switch (Opcode) {
8024   case ISD::SADDSAT:
8025     OverflowOp = ISD::SADDO;
8026     break;
8027   case ISD::UADDSAT:
8028     OverflowOp = ISD::UADDO;
8029     break;
8030   case ISD::SSUBSAT:
8031     OverflowOp = ISD::SSUBO;
8032     break;
8033   case ISD::USUBSAT:
8034     OverflowOp = ISD::USUBO;
8035     break;
8036   default:
8037     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8038                      "addition or subtraction node.");
8039   }
8040 
8041   // FIXME: Should really try to split the vector in case it's legal on a
8042   // subvector.
8043   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8044     return DAG.UnrollVectorOp(Node);
8045 
8046   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8047   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8048   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8049   SDValue SumDiff = Result.getValue(0);
8050   SDValue Overflow = Result.getValue(1);
8051   SDValue Zero = DAG.getConstant(0, dl, VT);
8052   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8053 
8054   if (Opcode == ISD::UADDSAT) {
8055     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8056       // (LHS + RHS) | OverflowMask
8057       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8058       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8059     }
8060     // Overflow ? 0xffff.... : (LHS + RHS)
8061     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8062   }
8063 
8064   if (Opcode == ISD::USUBSAT) {
8065     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8066       // (LHS - RHS) & ~OverflowMask
8067       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8068       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8069       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8070     }
8071     // Overflow ? 0 : (LHS - RHS)
8072     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8073   }
8074 
8075   // SatMax -> Overflow && SumDiff < 0
8076   // SatMin -> Overflow && SumDiff >= 0
8077   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8078   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
8079   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8080   SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8081   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
8082   Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
8083   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8084 }
8085 
8086 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8087   unsigned Opcode = Node->getOpcode();
8088   bool IsSigned = Opcode == ISD::SSHLSAT;
8089   SDValue LHS = Node->getOperand(0);
8090   SDValue RHS = Node->getOperand(1);
8091   EVT VT = LHS.getValueType();
8092   SDLoc dl(Node);
8093 
8094   assert((Node->getOpcode() == ISD::SSHLSAT ||
8095           Node->getOpcode() == ISD::USHLSAT) &&
8096           "Expected a SHLSAT opcode");
8097   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8098   assert(VT.isInteger() && "Expected operands to be integers");
8099 
8100   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8101 
8102   unsigned BW = VT.getScalarSizeInBits();
8103   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8104   SDValue Orig =
8105       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8106 
8107   SDValue SatVal;
8108   if (IsSigned) {
8109     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8110     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8111     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8112                              SatMin, SatMax, ISD::SETLT);
8113   } else {
8114     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8115   }
8116   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8117 
8118   return Result;
8119 }
8120 
8121 SDValue
8122 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8123   assert((Node->getOpcode() == ISD::SMULFIX ||
8124           Node->getOpcode() == ISD::UMULFIX ||
8125           Node->getOpcode() == ISD::SMULFIXSAT ||
8126           Node->getOpcode() == ISD::UMULFIXSAT) &&
8127          "Expected a fixed point multiplication opcode");
8128 
8129   SDLoc dl(Node);
8130   SDValue LHS = Node->getOperand(0);
8131   SDValue RHS = Node->getOperand(1);
8132   EVT VT = LHS.getValueType();
8133   unsigned Scale = Node->getConstantOperandVal(2);
8134   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8135                      Node->getOpcode() == ISD::UMULFIXSAT);
8136   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8137                  Node->getOpcode() == ISD::SMULFIXSAT);
8138   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8139   unsigned VTSize = VT.getScalarSizeInBits();
8140 
8141   if (!Scale) {
8142     // [us]mul.fix(a, b, 0) -> mul(a, b)
8143     if (!Saturating) {
8144       if (isOperationLegalOrCustom(ISD::MUL, VT))
8145         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8146     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8147       SDValue Result =
8148           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8149       SDValue Product = Result.getValue(0);
8150       SDValue Overflow = Result.getValue(1);
8151       SDValue Zero = DAG.getConstant(0, dl, VT);
8152 
8153       APInt MinVal = APInt::getSignedMinValue(VTSize);
8154       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8155       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8156       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8157       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8158       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8159       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8160     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8161       SDValue Result =
8162           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8163       SDValue Product = Result.getValue(0);
8164       SDValue Overflow = Result.getValue(1);
8165 
8166       APInt MaxVal = APInt::getMaxValue(VTSize);
8167       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8168       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8169     }
8170   }
8171 
8172   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8173          "Expected scale to be less than the number of bits if signed or at "
8174          "most the number of bits if unsigned.");
8175   assert(LHS.getValueType() == RHS.getValueType() &&
8176          "Expected both operands to be the same type");
8177 
8178   // Get the upper and lower bits of the result.
8179   SDValue Lo, Hi;
8180   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8181   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8182   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8183     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8184     Lo = Result.getValue(0);
8185     Hi = Result.getValue(1);
8186   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8187     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8188     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8189   } else if (VT.isVector()) {
8190     return SDValue();
8191   } else {
8192     report_fatal_error("Unable to expand fixed point multiplication.");
8193   }
8194 
8195   if (Scale == VTSize)
8196     // Result is just the top half since we'd be shifting by the width of the
8197     // operand. Overflow impossible so this works for both UMULFIX and
8198     // UMULFIXSAT.
8199     return Hi;
8200 
8201   // The result will need to be shifted right by the scale since both operands
8202   // are scaled. The result is given to us in 2 halves, so we only want part of
8203   // both in the result.
8204   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8205   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8206                                DAG.getConstant(Scale, dl, ShiftTy));
8207   if (!Saturating)
8208     return Result;
8209 
8210   if (!Signed) {
8211     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8212     // widened multiplication) aren't all zeroes.
8213 
8214     // Saturate to max if ((Hi >> Scale) != 0),
8215     // which is the same as if (Hi > ((1 << Scale) - 1))
8216     APInt MaxVal = APInt::getMaxValue(VTSize);
8217     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8218                                       dl, VT);
8219     Result = DAG.getSelectCC(dl, Hi, LowMask,
8220                              DAG.getConstant(MaxVal, dl, VT), Result,
8221                              ISD::SETUGT);
8222 
8223     return Result;
8224   }
8225 
8226   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8227   // widened multiplication) aren't all ones or all zeroes.
8228 
8229   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8230   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8231 
8232   if (Scale == 0) {
8233     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8234                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8235     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8236     // Saturated to SatMin if wide product is negative, and SatMax if wide
8237     // product is positive ...
8238     SDValue Zero = DAG.getConstant(0, dl, VT);
8239     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8240                                                ISD::SETLT);
8241     // ... but only if we overflowed.
8242     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8243   }
8244 
8245   //  We handled Scale==0 above so all the bits to examine is in Hi.
8246 
8247   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8248   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8249   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8250                                     dl, VT);
8251   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8252   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8253   // which is the same as if (HI < (-1 << (Scale - 1))
8254   SDValue HighMask =
8255       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8256                       dl, VT);
8257   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8258   return Result;
8259 }
8260 
8261 SDValue
8262 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8263                                     SDValue LHS, SDValue RHS,
8264                                     unsigned Scale, SelectionDAG &DAG) const {
8265   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8266           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8267          "Expected a fixed point division opcode");
8268 
8269   EVT VT = LHS.getValueType();
8270   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8271   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8272   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8273 
8274   // If there is enough room in the type to upscale the LHS or downscale the
8275   // RHS before the division, we can perform it in this type without having to
8276   // resize. For signed operations, the LHS headroom is the number of
8277   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8278   // The headroom for the RHS is the number of trailing zeroes.
8279   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8280                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8281   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8282 
8283   // For signed saturating operations, we need to be able to detect true integer
8284   // division overflow; that is, when you have MIN / -EPS. However, this
8285   // is undefined behavior and if we emit divisions that could take such
8286   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8287   // example).
8288   // Avoid this by requiring an extra bit so that we never get this case.
8289   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8290   // signed saturating division, we need to emit a whopping 32-bit division.
8291   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8292     return SDValue();
8293 
8294   unsigned LHSShift = std::min(LHSLead, Scale);
8295   unsigned RHSShift = Scale - LHSShift;
8296 
8297   // At this point, we know that if we shift the LHS up by LHSShift and the
8298   // RHS down by RHSShift, we can emit a regular division with a final scaling
8299   // factor of Scale.
8300 
8301   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8302   if (LHSShift)
8303     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8304                       DAG.getConstant(LHSShift, dl, ShiftTy));
8305   if (RHSShift)
8306     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8307                       DAG.getConstant(RHSShift, dl, ShiftTy));
8308 
8309   SDValue Quot;
8310   if (Signed) {
8311     // For signed operations, if the resulting quotient is negative and the
8312     // remainder is nonzero, subtract 1 from the quotient to round towards
8313     // negative infinity.
8314     SDValue Rem;
8315     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8316     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8317     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8318     if (isTypeLegal(VT) &&
8319         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8320       Quot = DAG.getNode(ISD::SDIVREM, dl,
8321                          DAG.getVTList(VT, VT),
8322                          LHS, RHS);
8323       Rem = Quot.getValue(1);
8324       Quot = Quot.getValue(0);
8325     } else {
8326       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8327                          LHS, RHS);
8328       Rem = DAG.getNode(ISD::SREM, dl, VT,
8329                         LHS, RHS);
8330     }
8331     SDValue Zero = DAG.getConstant(0, dl, VT);
8332     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8333     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8334     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8335     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8336     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8337                                DAG.getConstant(1, dl, VT));
8338     Quot = DAG.getSelect(dl, VT,
8339                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8340                          Sub1, Quot);
8341   } else
8342     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8343                        LHS, RHS);
8344 
8345   return Quot;
8346 }
8347 
8348 void TargetLowering::expandUADDSUBO(
8349     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8350   SDLoc dl(Node);
8351   SDValue LHS = Node->getOperand(0);
8352   SDValue RHS = Node->getOperand(1);
8353   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8354 
8355   // If ADD/SUBCARRY is legal, use that instead.
8356   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8357   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8358     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8359     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8360                                     { LHS, RHS, CarryIn });
8361     Result = SDValue(NodeCarry.getNode(), 0);
8362     Overflow = SDValue(NodeCarry.getNode(), 1);
8363     return;
8364   }
8365 
8366   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8367                             LHS.getValueType(), LHS, RHS);
8368 
8369   EVT ResultType = Node->getValueType(1);
8370   EVT SetCCType = getSetCCResultType(
8371       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8372   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8373   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8374   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8375 }
8376 
8377 void TargetLowering::expandSADDSUBO(
8378     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8379   SDLoc dl(Node);
8380   SDValue LHS = Node->getOperand(0);
8381   SDValue RHS = Node->getOperand(1);
8382   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8383 
8384   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8385                             LHS.getValueType(), LHS, RHS);
8386 
8387   EVT ResultType = Node->getValueType(1);
8388   EVT OType = getSetCCResultType(
8389       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8390 
8391   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8392   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8393   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8394     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8395     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8396     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8397     return;
8398   }
8399 
8400   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8401 
8402   // For an addition, the result should be less than one of the operands (LHS)
8403   // if and only if the other operand (RHS) is negative, otherwise there will
8404   // be overflow.
8405   // For a subtraction, the result should be less than one of the operands
8406   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8407   // otherwise there will be overflow.
8408   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8409   SDValue ConditionRHS =
8410       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8411 
8412   Overflow = DAG.getBoolExtOrTrunc(
8413       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8414       ResultType, ResultType);
8415 }
8416 
8417 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8418                                 SDValue &Overflow, SelectionDAG &DAG) const {
8419   SDLoc dl(Node);
8420   EVT VT = Node->getValueType(0);
8421   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8422   SDValue LHS = Node->getOperand(0);
8423   SDValue RHS = Node->getOperand(1);
8424   bool isSigned = Node->getOpcode() == ISD::SMULO;
8425 
8426   // For power-of-two multiplications we can use a simpler shift expansion.
8427   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8428     const APInt &C = RHSC->getAPIntValue();
8429     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8430     if (C.isPowerOf2()) {
8431       // smulo(x, signed_min) is same as umulo(x, signed_min).
8432       bool UseArithShift = isSigned && !C.isMinSignedValue();
8433       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8434       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8435       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8436       Overflow = DAG.getSetCC(dl, SetCCVT,
8437           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8438                       dl, VT, Result, ShiftAmt),
8439           LHS, ISD::SETNE);
8440       return true;
8441     }
8442   }
8443 
8444   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8445   if (VT.isVector())
8446     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8447                               VT.getVectorNumElements());
8448 
8449   SDValue BottomHalf;
8450   SDValue TopHalf;
8451   static const unsigned Ops[2][3] =
8452       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8453         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8454   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8455     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8456     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8457   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8458     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8459                              RHS);
8460     TopHalf = BottomHalf.getValue(1);
8461   } else if (isTypeLegal(WideVT)) {
8462     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8463     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8464     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8465     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8466     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8467         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8468     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8469                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8470   } else {
8471     if (VT.isVector())
8472       return false;
8473 
8474     // We can fall back to a libcall with an illegal type for the MUL if we
8475     // have a libcall big enough.
8476     // Also, we can fall back to a division in some cases, but that's a big
8477     // performance hit in the general case.
8478     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8479     if (WideVT == MVT::i16)
8480       LC = RTLIB::MUL_I16;
8481     else if (WideVT == MVT::i32)
8482       LC = RTLIB::MUL_I32;
8483     else if (WideVT == MVT::i64)
8484       LC = RTLIB::MUL_I64;
8485     else if (WideVT == MVT::i128)
8486       LC = RTLIB::MUL_I128;
8487     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8488 
8489     SDValue HiLHS;
8490     SDValue HiRHS;
8491     if (isSigned) {
8492       // The high part is obtained by SRA'ing all but one of the bits of low
8493       // part.
8494       unsigned LoSize = VT.getFixedSizeInBits();
8495       HiLHS =
8496           DAG.getNode(ISD::SRA, dl, VT, LHS,
8497                       DAG.getConstant(LoSize - 1, dl,
8498                                       getPointerTy(DAG.getDataLayout())));
8499       HiRHS =
8500           DAG.getNode(ISD::SRA, dl, VT, RHS,
8501                       DAG.getConstant(LoSize - 1, dl,
8502                                       getPointerTy(DAG.getDataLayout())));
8503     } else {
8504         HiLHS = DAG.getConstant(0, dl, VT);
8505         HiRHS = DAG.getConstant(0, dl, VT);
8506     }
8507 
8508     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8509     // pre-lowered to the correct types. This all depends upon WideVT not
8510     // being a legal type for the architecture and thus has to be split to
8511     // two arguments.
8512     SDValue Ret;
8513     TargetLowering::MakeLibCallOptions CallOptions;
8514     CallOptions.setSExt(isSigned);
8515     CallOptions.setIsPostTypeLegalization(true);
8516     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8517       // Halves of WideVT are packed into registers in different order
8518       // depending on platform endianness. This is usually handled by
8519       // the C calling convention, but we can't defer to it in
8520       // the legalizer.
8521       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8522       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8523     } else {
8524       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8525       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8526     }
8527     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8528            "Ret value is a collection of constituent nodes holding result.");
8529     if (DAG.getDataLayout().isLittleEndian()) {
8530       // Same as above.
8531       BottomHalf = Ret.getOperand(0);
8532       TopHalf = Ret.getOperand(1);
8533     } else {
8534       BottomHalf = Ret.getOperand(1);
8535       TopHalf = Ret.getOperand(0);
8536     }
8537   }
8538 
8539   Result = BottomHalf;
8540   if (isSigned) {
8541     SDValue ShiftAmt = DAG.getConstant(
8542         VT.getScalarSizeInBits() - 1, dl,
8543         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8544     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8545     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8546   } else {
8547     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8548                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8549   }
8550 
8551   // Truncate the result if SetCC returns a larger type than needed.
8552   EVT RType = Node->getValueType(1);
8553   if (RType.bitsLT(Overflow.getValueType()))
8554     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8555 
8556   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8557          "Unexpected result type for S/UMULO legalization");
8558   return true;
8559 }
8560 
8561 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8562   SDLoc dl(Node);
8563   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8564   SDValue Op = Node->getOperand(0);
8565   EVT VT = Op.getValueType();
8566 
8567   if (VT.isScalableVector())
8568     report_fatal_error(
8569         "Expanding reductions for scalable vectors is undefined.");
8570 
8571   // Try to use a shuffle reduction for power of two vectors.
8572   if (VT.isPow2VectorType()) {
8573     while (VT.getVectorNumElements() > 1) {
8574       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8575       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8576         break;
8577 
8578       SDValue Lo, Hi;
8579       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8580       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8581       VT = HalfVT;
8582     }
8583   }
8584 
8585   EVT EltVT = VT.getVectorElementType();
8586   unsigned NumElts = VT.getVectorNumElements();
8587 
8588   SmallVector<SDValue, 8> Ops;
8589   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8590 
8591   SDValue Res = Ops[0];
8592   for (unsigned i = 1; i < NumElts; i++)
8593     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8594 
8595   // Result type may be wider than element type.
8596   if (EltVT != Node->getValueType(0))
8597     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8598   return Res;
8599 }
8600 
8601 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8602   SDLoc dl(Node);
8603   SDValue AccOp = Node->getOperand(0);
8604   SDValue VecOp = Node->getOperand(1);
8605   SDNodeFlags Flags = Node->getFlags();
8606 
8607   EVT VT = VecOp.getValueType();
8608   EVT EltVT = VT.getVectorElementType();
8609 
8610   if (VT.isScalableVector())
8611     report_fatal_error(
8612         "Expanding reductions for scalable vectors is undefined.");
8613 
8614   unsigned NumElts = VT.getVectorNumElements();
8615 
8616   SmallVector<SDValue, 8> Ops;
8617   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8618 
8619   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8620 
8621   SDValue Res = AccOp;
8622   for (unsigned i = 0; i < NumElts; i++)
8623     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8624 
8625   return Res;
8626 }
8627 
8628 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8629                                SelectionDAG &DAG) const {
8630   EVT VT = Node->getValueType(0);
8631   SDLoc dl(Node);
8632   bool isSigned = Node->getOpcode() == ISD::SREM;
8633   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8634   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8635   SDValue Dividend = Node->getOperand(0);
8636   SDValue Divisor = Node->getOperand(1);
8637   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8638     SDVTList VTs = DAG.getVTList(VT, VT);
8639     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8640     return true;
8641   }
8642   if (isOperationLegalOrCustom(DivOpc, VT)) {
8643     // X % Y -> X-X/Y*Y
8644     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8645     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8646     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8647     return true;
8648   }
8649   return false;
8650 }
8651 
8652 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8653                                             SelectionDAG &DAG) const {
8654   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8655   SDLoc dl(SDValue(Node, 0));
8656   SDValue Src = Node->getOperand(0);
8657 
8658   // DstVT is the result type, while SatVT is the size to which we saturate
8659   EVT SrcVT = Src.getValueType();
8660   EVT DstVT = Node->getValueType(0);
8661 
8662   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8663   unsigned SatWidth = SatVT.getScalarSizeInBits();
8664   unsigned DstWidth = DstVT.getScalarSizeInBits();
8665   assert(SatWidth <= DstWidth &&
8666          "Expected saturation width smaller than result width");
8667 
8668   // Determine minimum and maximum integer values and their corresponding
8669   // floating-point values.
8670   APInt MinInt, MaxInt;
8671   if (IsSigned) {
8672     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8673     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8674   } else {
8675     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8676     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8677   }
8678 
8679   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8680   // libcall emission cannot handle this. Large result types will fail.
8681   if (SrcVT == MVT::f16) {
8682     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8683     SrcVT = Src.getValueType();
8684   }
8685 
8686   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8687   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8688 
8689   APFloat::opStatus MinStatus =
8690       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8691   APFloat::opStatus MaxStatus =
8692       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8693   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8694                              !(MaxStatus & APFloat::opStatus::opInexact);
8695 
8696   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8697   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8698 
8699   // If the integer bounds are exactly representable as floats and min/max are
8700   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8701   // of comparisons and selects.
8702   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8703                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8704   if (AreExactFloatBounds && MinMaxLegal) {
8705     SDValue Clamped = Src;
8706 
8707     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8708     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8709     // Clamp by MaxFloat from above. NaN cannot occur.
8710     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8711     // Convert clamped value to integer.
8712     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8713                                   dl, DstVT, Clamped);
8714 
8715     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8716     // which will cast to zero.
8717     if (!IsSigned)
8718       return FpToInt;
8719 
8720     // Otherwise, select 0 if Src is NaN.
8721     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8722     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8723                            ISD::CondCode::SETUO);
8724   }
8725 
8726   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8727   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8728 
8729   // Result of direct conversion. The assumption here is that the operation is
8730   // non-trapping and it's fine to apply it to an out-of-range value if we
8731   // select it away later.
8732   SDValue FpToInt =
8733       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8734 
8735   SDValue Select = FpToInt;
8736 
8737   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8738   // MinInt if Src is NaN.
8739   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8740                            ISD::CondCode::SETULT);
8741   // If Src OGT MaxFloat, select MaxInt.
8742   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8743                            ISD::CondCode::SETOGT);
8744 
8745   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8746   // is already zero.
8747   if (!IsSigned)
8748     return Select;
8749 
8750   // Otherwise, select 0 if Src is NaN.
8751   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8752   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8753 }
8754 
8755 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8756                                            SelectionDAG &DAG) const {
8757   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8758   assert(Node->getValueType(0).isScalableVector() &&
8759          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8760 
8761   EVT VT = Node->getValueType(0);
8762   SDValue V1 = Node->getOperand(0);
8763   SDValue V2 = Node->getOperand(1);
8764   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8765   SDLoc DL(Node);
8766 
8767   // Expand through memory thusly:
8768   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8769   //  Store V1, Ptr
8770   //  Store V2, Ptr + sizeof(V1)
8771   //  If (Imm < 0)
8772   //    TrailingElts = -Imm
8773   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8774   //  else
8775   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8776   //  Res = Load Ptr
8777 
8778   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8779 
8780   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8781                                VT.getVectorElementCount() * 2);
8782   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8783   EVT PtrVT = StackPtr.getValueType();
8784   auto &MF = DAG.getMachineFunction();
8785   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8786   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8787 
8788   // Store the lo part of CONCAT_VECTORS(V1, V2)
8789   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8790   // Store the hi part of CONCAT_VECTORS(V1, V2)
8791   SDValue OffsetToV2 = DAG.getVScale(
8792       DL, PtrVT,
8793       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8794   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8795   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8796 
8797   if (Imm >= 0) {
8798     // Load back the required element. getVectorElementPointer takes care of
8799     // clamping the index if it's out-of-bounds.
8800     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8801     // Load the spliced result
8802     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8803                        MachinePointerInfo::getUnknownStack(MF));
8804   }
8805 
8806   uint64_t TrailingElts = -Imm;
8807 
8808   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8809   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8810   SDValue TrailingBytes =
8811       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8812 
8813   if (TrailingElts > VT.getVectorMinNumElements()) {
8814     SDValue VLBytes = DAG.getVScale(
8815         DL, PtrVT,
8816         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8817     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8818   }
8819 
8820   // Calculate the start address of the spliced result.
8821   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8822 
8823   // Load the spliced result
8824   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8825                      MachinePointerInfo::getUnknownStack(MF));
8826 }
8827 
8828 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8829                                            SDValue &LHS, SDValue &RHS,
8830                                            SDValue &CC, bool &NeedInvert,
8831                                            const SDLoc &dl, SDValue &Chain,
8832                                            bool IsSignaling) const {
8833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834   MVT OpVT = LHS.getSimpleValueType();
8835   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8836   NeedInvert = false;
8837   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8838   default:
8839     llvm_unreachable("Unknown condition code action!");
8840   case TargetLowering::Legal:
8841     // Nothing to do.
8842     break;
8843   case TargetLowering::Expand: {
8844     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8845     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8846       std::swap(LHS, RHS);
8847       CC = DAG.getCondCode(InvCC);
8848       return true;
8849     }
8850     // Swapping operands didn't work. Try inverting the condition.
8851     bool NeedSwap = false;
8852     InvCC = getSetCCInverse(CCCode, OpVT);
8853     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8854       // If inverting the condition is not enough, try swapping operands
8855       // on top of it.
8856       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8857       NeedSwap = true;
8858     }
8859     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8860       CC = DAG.getCondCode(InvCC);
8861       NeedInvert = true;
8862       if (NeedSwap)
8863         std::swap(LHS, RHS);
8864       return true;
8865     }
8866 
8867     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8868     unsigned Opc = 0;
8869     switch (CCCode) {
8870     default:
8871       llvm_unreachable("Don't know how to expand this condition!");
8872     case ISD::SETUO:
8873       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8874         CC1 = ISD::SETUNE;
8875         CC2 = ISD::SETUNE;
8876         Opc = ISD::OR;
8877         break;
8878       }
8879       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8880              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8881       NeedInvert = true;
8882       LLVM_FALLTHROUGH;
8883     case ISD::SETO:
8884       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8885              "If SETO is expanded, SETOEQ must be legal!");
8886       CC1 = ISD::SETOEQ;
8887       CC2 = ISD::SETOEQ;
8888       Opc = ISD::AND;
8889       break;
8890     case ISD::SETONE:
8891     case ISD::SETUEQ:
8892       // If the SETUO or SETO CC isn't legal, we might be able to use
8893       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8894       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8895       // the operands.
8896       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8897       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8898           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8899            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8900         CC1 = ISD::SETOGT;
8901         CC2 = ISD::SETOLT;
8902         Opc = ISD::OR;
8903         NeedInvert = ((unsigned)CCCode & 0x8U);
8904         break;
8905       }
8906       LLVM_FALLTHROUGH;
8907     case ISD::SETOEQ:
8908     case ISD::SETOGT:
8909     case ISD::SETOGE:
8910     case ISD::SETOLT:
8911     case ISD::SETOLE:
8912     case ISD::SETUNE:
8913     case ISD::SETUGT:
8914     case ISD::SETUGE:
8915     case ISD::SETULT:
8916     case ISD::SETULE:
8917       // If we are floating point, assign and break, otherwise fall through.
8918       if (!OpVT.isInteger()) {
8919         // We can use the 4th bit to tell if we are the unordered
8920         // or ordered version of the opcode.
8921         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8922         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8923         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8924         break;
8925       }
8926       // Fallthrough if we are unsigned integer.
8927       LLVM_FALLTHROUGH;
8928     case ISD::SETLE:
8929     case ISD::SETGT:
8930     case ISD::SETGE:
8931     case ISD::SETLT:
8932     case ISD::SETNE:
8933     case ISD::SETEQ:
8934       // If all combinations of inverting the condition and swapping operands
8935       // didn't work then we have no means to expand the condition.
8936       llvm_unreachable("Don't know how to expand this condition!");
8937     }
8938 
8939     SDValue SetCC1, SetCC2;
8940     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8941       // If we aren't the ordered or unorder operation,
8942       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8943       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8944       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8945     } else {
8946       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8947       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8948       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8949     }
8950     if (Chain)
8951       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8952                           SetCC2.getValue(1));
8953     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8954     RHS = SDValue();
8955     CC = SDValue();
8956     return true;
8957   }
8958   }
8959   return false;
8960 }
8961