1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 IndirectType = nullptr; 123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 124 "multiple ABI attributes?"); 125 if (IsByVal) { 126 IndirectType = Call->getParamByValType(ArgIdx); 127 if (!Alignment) 128 Alignment = Call->getParamAlign(ArgIdx); 129 } 130 if (IsPreallocated) 131 IndirectType = Call->getParamPreallocatedType(ArgIdx); 132 if (IsInAlloca) 133 IndirectType = Call->getParamInAllocaType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C || Op1C->isOpaque()) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 // If we don't demand the inserted subvector, return the base vector. 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 828 return Vec; 829 break; 830 } 831 case ISD::VECTOR_SHUFFLE: { 832 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 833 834 // If all the demanded elts are from one operand and are inline, 835 // then we can use the operand directly. 836 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 837 for (unsigned i = 0; i != NumElts; ++i) { 838 int M = ShuffleMask[i]; 839 if (M < 0 || !DemandedElts[i]) 840 continue; 841 AllUndef = false; 842 IdentityLHS &= (M == (int)i); 843 IdentityRHS &= ((M - NumElts) == i); 844 } 845 846 if (AllUndef) 847 return DAG.getUNDEF(Op.getValueType()); 848 if (IdentityLHS) 849 return Op.getOperand(0); 850 if (IdentityRHS) 851 return Op.getOperand(1); 852 break; 853 } 854 default: 855 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 856 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 857 Op, DemandedBits, DemandedElts, DAG, Depth)) 858 return V; 859 break; 860 } 861 return SDValue(); 862 } 863 864 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 865 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 866 unsigned Depth) const { 867 EVT VT = Op.getValueType(); 868 APInt DemandedElts = VT.isVector() 869 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 870 : APInt(1, 1); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 876 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 877 unsigned Depth) const { 878 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 884 /// result of Op are ever used downstream. If we can use this information to 885 /// simplify Op, create a new simplified DAG node and return true, returning the 886 /// original and new nodes in Old and New. Otherwise, analyze the expression and 887 /// return a mask of Known bits for the expression (used to simplify the 888 /// caller). The Known bits may only be accurate for those bits in the 889 /// OriginalDemandedBits and OriginalDemandedElts. 890 bool TargetLowering::SimplifyDemandedBits( 891 SDValue Op, const APInt &OriginalDemandedBits, 892 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 893 unsigned Depth, bool AssumeSingleUse) const { 894 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 895 assert(Op.getScalarValueSizeInBits() == BitWidth && 896 "Mask size mismatches value type size!"); 897 898 // Don't know anything. 899 Known = KnownBits(BitWidth); 900 901 // TODO: We can probably do more work on calculating the known bits and 902 // simplifying the operations for scalable vectors, but for now we just 903 // bail out. 904 if (Op.getValueType().isScalableVector()) 905 return false; 906 907 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 908 assert((!Op.getValueType().isVector() || 909 NumElts == Op.getValueType().getVectorNumElements()) && 910 "Unexpected vector size"); 911 912 APInt DemandedBits = OriginalDemandedBits; 913 APInt DemandedElts = OriginalDemandedElts; 914 SDLoc dl(Op); 915 auto &DL = TLO.DAG.getDataLayout(); 916 917 // Undef operand. 918 if (Op.isUndef()) 919 return false; 920 921 if (Op.getOpcode() == ISD::Constant) { 922 // We know all of the bits for a constant! 923 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 924 return false; 925 } 926 927 if (Op.getOpcode() == ISD::ConstantFP) { 928 // We know all of the bits for a floating point constant! 929 Known = KnownBits::makeConstant( 930 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 931 return false; 932 } 933 934 // Other users may use these bits. 935 EVT VT = Op.getValueType(); 936 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 937 if (Depth != 0) { 938 // If not at the root, Just compute the Known bits to 939 // simplify things downstream. 940 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 941 return false; 942 } 943 // If this is the root being simplified, allow it to have multiple uses, 944 // just set the DemandedBits/Elts to all bits. 945 DemandedBits = APInt::getAllOnesValue(BitWidth); 946 DemandedElts = APInt::getAllOnesValue(NumElts); 947 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 948 // Not demanding any bits/elts from Op. 949 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 950 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 951 // Limit search depth. 952 return false; 953 } 954 955 KnownBits Known2; 956 switch (Op.getOpcode()) { 957 case ISD::TargetConstant: 958 llvm_unreachable("Can't simplify this node"); 959 case ISD::SCALAR_TO_VECTOR: { 960 if (!DemandedElts[0]) 961 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 962 963 KnownBits SrcKnown; 964 SDValue Src = Op.getOperand(0); 965 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 966 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 967 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 968 return true; 969 970 // Upper elements are undef, so only get the knownbits if we just demand 971 // the bottom element. 972 if (DemandedElts == 1) 973 Known = SrcKnown.anyextOrTrunc(BitWidth); 974 break; 975 } 976 case ISD::BUILD_VECTOR: 977 // Collect the known bits that are shared by every demanded element. 978 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 980 return false; // Don't fall through, will infinitely loop. 981 case ISD::LOAD: { 982 auto *LD = cast<LoadSDNode>(Op); 983 if (getTargetConstantFromLoad(LD)) { 984 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 985 return false; // Don't fall through, will infinitely loop. 986 } 987 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 988 // If this is a ZEXTLoad and we are looking at the loaded value. 989 EVT MemVT = LD->getMemoryVT(); 990 unsigned MemBits = MemVT.getScalarSizeInBits(); 991 Known.Zero.setBitsFrom(MemBits); 992 return false; // Don't fall through, will infinitely loop. 993 } 994 break; 995 } 996 case ISD::INSERT_VECTOR_ELT: { 997 SDValue Vec = Op.getOperand(0); 998 SDValue Scl = Op.getOperand(1); 999 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1000 EVT VecVT = Vec.getValueType(); 1001 1002 // If index isn't constant, assume we need all vector elements AND the 1003 // inserted element. 1004 APInt DemandedVecElts(DemandedElts); 1005 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1006 unsigned Idx = CIdx->getZExtValue(); 1007 DemandedVecElts.clearBit(Idx); 1008 1009 // Inserted element is not required. 1010 if (!DemandedElts[Idx]) 1011 return TLO.CombineTo(Op, Vec); 1012 } 1013 1014 KnownBits KnownScl; 1015 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1016 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1017 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1018 return true; 1019 1020 Known = KnownScl.anyextOrTrunc(BitWidth); 1021 1022 KnownBits KnownVec; 1023 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1024 Depth + 1)) 1025 return true; 1026 1027 if (!!DemandedVecElts) 1028 Known = KnownBits::commonBits(Known, KnownVec); 1029 1030 return false; 1031 } 1032 case ISD::INSERT_SUBVECTOR: { 1033 // Demand any elements from the subvector and the remainder from the src its 1034 // inserted into. 1035 SDValue Src = Op.getOperand(0); 1036 SDValue Sub = Op.getOperand(1); 1037 uint64_t Idx = Op.getConstantOperandVal(2); 1038 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1039 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1040 APInt DemandedSrcElts = DemandedElts; 1041 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1042 1043 KnownBits KnownSub, KnownSrc; 1044 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1045 Depth + 1)) 1046 return true; 1047 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1048 Depth + 1)) 1049 return true; 1050 1051 Known.Zero.setAllBits(); 1052 Known.One.setAllBits(); 1053 if (!!DemandedSubElts) 1054 Known = KnownBits::commonBits(Known, KnownSub); 1055 if (!!DemandedSrcElts) 1056 Known = KnownBits::commonBits(Known, KnownSrc); 1057 1058 // Attempt to avoid multi-use src if we don't need anything from it. 1059 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1060 !DemandedSrcElts.isAllOnesValue()) { 1061 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1062 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1063 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1064 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1065 if (NewSub || NewSrc) { 1066 NewSub = NewSub ? NewSub : Sub; 1067 NewSrc = NewSrc ? NewSrc : Src; 1068 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1069 Op.getOperand(2)); 1070 return TLO.CombineTo(Op, NewOp); 1071 } 1072 } 1073 break; 1074 } 1075 case ISD::EXTRACT_SUBVECTOR: { 1076 // Offset the demanded elts by the subvector index. 1077 SDValue Src = Op.getOperand(0); 1078 if (Src.getValueType().isScalableVector()) 1079 break; 1080 uint64_t Idx = Op.getConstantOperandVal(1); 1081 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1082 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1083 1084 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1085 Depth + 1)) 1086 return true; 1087 1088 // Attempt to avoid multi-use src if we don't need anything from it. 1089 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1090 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1091 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1092 if (DemandedSrc) { 1093 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1094 Op.getOperand(1)); 1095 return TLO.CombineTo(Op, NewOp); 1096 } 1097 } 1098 break; 1099 } 1100 case ISD::CONCAT_VECTORS: { 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 EVT SubVT = Op.getOperand(0).getValueType(); 1104 unsigned NumSubVecs = Op.getNumOperands(); 1105 unsigned NumSubElts = SubVT.getVectorNumElements(); 1106 for (unsigned i = 0; i != NumSubVecs; ++i) { 1107 APInt DemandedSubElts = 1108 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1109 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1110 Known2, TLO, Depth + 1)) 1111 return true; 1112 // Known bits are shared by every demanded subvector element. 1113 if (!!DemandedSubElts) 1114 Known = KnownBits::commonBits(Known, Known2); 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known = KnownBits::commonBits(Known, Known2); 1153 } 1154 if (!!DemandedRHS) { 1155 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1156 Depth + 1)) 1157 return true; 1158 Known = KnownBits::commonBits(Known, Known2); 1159 } 1160 1161 // Attempt to avoid multi-use ops if we don't need anything from them. 1162 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1163 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1164 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1165 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1166 if (DemandedOp0 || DemandedOp1) { 1167 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1168 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1169 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1170 return TLO.CombineTo(Op, NewOp); 1171 } 1172 } 1173 break; 1174 } 1175 case ISD::AND: { 1176 SDValue Op0 = Op.getOperand(0); 1177 SDValue Op1 = Op.getOperand(1); 1178 1179 // If the RHS is a constant, check to see if the LHS would be zero without 1180 // using the bits from the RHS. Below, we use knowledge about the RHS to 1181 // simplify the LHS, here we're using information from the LHS to simplify 1182 // the RHS. 1183 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1184 // Do not increment Depth here; that can cause an infinite loop. 1185 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1186 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1187 if ((LHSKnown.Zero & DemandedBits) == 1188 (~RHSC->getAPIntValue() & DemandedBits)) 1189 return TLO.CombineTo(Op, Op0); 1190 1191 // If any of the set bits in the RHS are known zero on the LHS, shrink 1192 // the constant. 1193 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1194 DemandedElts, TLO)) 1195 return true; 1196 1197 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1198 // constant, but if this 'and' is only clearing bits that were just set by 1199 // the xor, then this 'and' can be eliminated by shrinking the mask of 1200 // the xor. For example, for a 32-bit X: 1201 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1202 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1203 LHSKnown.One == ~RHSC->getAPIntValue()) { 1204 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1205 return TLO.CombineTo(Op, Xor); 1206 } 1207 } 1208 1209 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1210 Depth + 1)) 1211 return true; 1212 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1213 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1214 Known2, TLO, Depth + 1)) 1215 return true; 1216 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1217 1218 // Attempt to avoid multi-use ops if we don't need anything from them. 1219 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1220 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1221 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1222 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1223 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 if (DemandedOp0 || DemandedOp1) { 1225 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1226 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1227 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1228 return TLO.CombineTo(Op, NewOp); 1229 } 1230 } 1231 1232 // If all of the demanded bits are known one on one side, return the other. 1233 // These bits cannot contribute to the result of the 'and'. 1234 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1235 return TLO.CombineTo(Op, Op0); 1236 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1237 return TLO.CombineTo(Op, Op1); 1238 // If all of the demanded bits in the inputs are known zeros, return zero. 1239 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1240 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1241 // If the RHS is a constant, see if we can simplify it. 1242 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1243 TLO)) 1244 return true; 1245 // If the operation can be done in a smaller type, do so. 1246 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1247 return true; 1248 1249 Known &= Known2; 1250 break; 1251 } 1252 case ISD::OR: { 1253 SDValue Op0 = Op.getOperand(0); 1254 SDValue Op1 = Op.getOperand(1); 1255 1256 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1257 Depth + 1)) 1258 return true; 1259 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1260 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1261 Known2, TLO, Depth + 1)) 1262 return true; 1263 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1264 1265 // Attempt to avoid multi-use ops if we don't need anything from them. 1266 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1267 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1268 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1269 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1270 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 if (DemandedOp0 || DemandedOp1) { 1272 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1273 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1274 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1275 return TLO.CombineTo(Op, NewOp); 1276 } 1277 } 1278 1279 // If all of the demanded bits are known zero on one side, return the other. 1280 // These bits cannot contribute to the result of the 'or'. 1281 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1282 return TLO.CombineTo(Op, Op0); 1283 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1284 return TLO.CombineTo(Op, Op1); 1285 // If the RHS is a constant, see if we can simplify it. 1286 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1287 return true; 1288 // If the operation can be done in a smaller type, do so. 1289 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1290 return true; 1291 1292 Known |= Known2; 1293 break; 1294 } 1295 case ISD::XOR: { 1296 SDValue Op0 = Op.getOperand(0); 1297 SDValue Op1 = Op.getOperand(1); 1298 1299 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1300 Depth + 1)) 1301 return true; 1302 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1307 1308 // Attempt to avoid multi-use ops if we don't need anything from them. 1309 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1310 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1311 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1312 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1313 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 if (DemandedOp0 || DemandedOp1) { 1315 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1316 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1317 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1318 return TLO.CombineTo(Op, NewOp); 1319 } 1320 } 1321 1322 // If all of the demanded bits are known zero on one side, return the other. 1323 // These bits cannot contribute to the result of the 'xor'. 1324 if (DemandedBits.isSubsetOf(Known.Zero)) 1325 return TLO.CombineTo(Op, Op0); 1326 if (DemandedBits.isSubsetOf(Known2.Zero)) 1327 return TLO.CombineTo(Op, Op1); 1328 // If the operation can be done in a smaller type, do so. 1329 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1330 return true; 1331 1332 // If all of the unknown bits are known to be zero on one side or the other 1333 // turn this into an *inclusive* or. 1334 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1335 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1336 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1337 1338 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1339 if (C) { 1340 // If one side is a constant, and all of the set bits in the constant are 1341 // also known set on the other side, turn this into an AND, as we know 1342 // the bits will be cleared. 1343 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1344 // NB: it is okay if more bits are known than are requested 1345 if (C->getAPIntValue() == Known2.One) { 1346 SDValue ANDC = 1347 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1348 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1349 } 1350 1351 // If the RHS is a constant, see if we can change it. Don't alter a -1 1352 // constant because that's a 'not' op, and that is better for combining 1353 // and codegen. 1354 if (!C->isAllOnesValue() && 1355 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1356 // We're flipping all demanded bits. Flip the undemanded bits too. 1357 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1358 return TLO.CombineTo(Op, New); 1359 } 1360 } 1361 1362 // If we can't turn this into a 'not', try to shrink the constant. 1363 if (!C || !C->isAllOnesValue()) 1364 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1365 return true; 1366 1367 Known ^= Known2; 1368 break; 1369 } 1370 case ISD::SELECT: 1371 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1372 Depth + 1)) 1373 return true; 1374 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1375 Depth + 1)) 1376 return true; 1377 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1378 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1379 1380 // If the operands are constants, see if we can simplify them. 1381 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1382 return true; 1383 1384 // Only known if known in both the LHS and RHS. 1385 Known = KnownBits::commonBits(Known, Known2); 1386 break; 1387 case ISD::SELECT_CC: 1388 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1389 Depth + 1)) 1390 return true; 1391 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1392 Depth + 1)) 1393 return true; 1394 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1396 1397 // If the operands are constants, see if we can simplify them. 1398 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1399 return true; 1400 1401 // Only known if known in both the LHS and RHS. 1402 Known = KnownBits::commonBits(Known, Known2); 1403 break; 1404 case ISD::SETCC: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1408 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1409 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1410 // -1, we may be able to bypass the setcc. 1411 if (DemandedBits.isSignMask() && 1412 Op0.getScalarValueSizeInBits() == BitWidth && 1413 getBooleanContents(Op0.getValueType()) == 1414 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1415 // If we're testing X < 0, then this compare isn't needed - just use X! 1416 // FIXME: We're limiting to integer types here, but this should also work 1417 // if we don't care about FP signed-zero. The use of SETLT with FP means 1418 // that we don't care about NaNs. 1419 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1420 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1421 return TLO.CombineTo(Op, Op0); 1422 1423 // TODO: Should we check for other forms of sign-bit comparisons? 1424 // Examples: X <= -1, X >= 0 1425 } 1426 if (getBooleanContents(Op0.getValueType()) == 1427 TargetLowering::ZeroOrOneBooleanContent && 1428 BitWidth > 1) 1429 Known.Zero.setBitsFrom(1); 1430 break; 1431 } 1432 case ISD::SHL: { 1433 SDValue Op0 = Op.getOperand(0); 1434 SDValue Op1 = Op.getOperand(1); 1435 EVT ShiftVT = Op1.getValueType(); 1436 1437 if (const APInt *SA = 1438 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1439 unsigned ShAmt = SA->getZExtValue(); 1440 if (ShAmt == 0) 1441 return TLO.CombineTo(Op, Op0); 1442 1443 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1444 // single shift. We can do this if the bottom bits (which are shifted 1445 // out) are never demanded. 1446 // TODO - support non-uniform vector amounts. 1447 if (Op0.getOpcode() == ISD::SRL) { 1448 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1449 if (const APInt *SA2 = 1450 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1451 unsigned C1 = SA2->getZExtValue(); 1452 unsigned Opc = ISD::SHL; 1453 int Diff = ShAmt - C1; 1454 if (Diff < 0) { 1455 Diff = -Diff; 1456 Opc = ISD::SRL; 1457 } 1458 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1459 return TLO.CombineTo( 1460 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1461 } 1462 } 1463 } 1464 1465 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1466 // are not demanded. This will likely allow the anyext to be folded away. 1467 // TODO - support non-uniform vector amounts. 1468 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1469 SDValue InnerOp = Op0.getOperand(0); 1470 EVT InnerVT = InnerOp.getValueType(); 1471 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1472 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1473 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1474 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1475 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1476 ShTy = InnerVT; 1477 SDValue NarrowShl = 1478 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1479 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1480 return TLO.CombineTo( 1481 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1482 } 1483 1484 // Repeat the SHL optimization above in cases where an extension 1485 // intervenes: (shl (anyext (shr x, c1)), c2) to 1486 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1487 // aren't demanded (as above) and that the shifted upper c1 bits of 1488 // x aren't demanded. 1489 // TODO - support non-uniform vector amounts. 1490 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1491 InnerOp.hasOneUse()) { 1492 if (const APInt *SA2 = 1493 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1494 unsigned InnerShAmt = SA2->getZExtValue(); 1495 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1496 DemandedBits.getActiveBits() <= 1497 (InnerBits - InnerShAmt + ShAmt) && 1498 DemandedBits.countTrailingZeros() >= ShAmt) { 1499 SDValue NewSA = 1500 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1501 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1502 InnerOp.getOperand(0)); 1503 return TLO.CombineTo( 1504 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1505 } 1506 } 1507 } 1508 } 1509 1510 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1511 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1512 Depth + 1)) 1513 return true; 1514 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1515 Known.Zero <<= ShAmt; 1516 Known.One <<= ShAmt; 1517 // low bits known zero. 1518 Known.Zero.setLowBits(ShAmt); 1519 1520 // Try shrinking the operation as long as the shift amount will still be 1521 // in range. 1522 if ((ShAmt < DemandedBits.getActiveBits()) && 1523 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1524 return true; 1525 } 1526 1527 // If we are only demanding sign bits then we can use the shift source 1528 // directly. 1529 if (const APInt *MaxSA = 1530 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1531 unsigned ShAmt = MaxSA->getZExtValue(); 1532 unsigned NumSignBits = 1533 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1534 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1535 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1536 return TLO.CombineTo(Op, Op0); 1537 } 1538 break; 1539 } 1540 case ISD::SRL: { 1541 SDValue Op0 = Op.getOperand(0); 1542 SDValue Op1 = Op.getOperand(1); 1543 EVT ShiftVT = Op1.getValueType(); 1544 1545 if (const APInt *SA = 1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1547 unsigned ShAmt = SA->getZExtValue(); 1548 if (ShAmt == 0) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1552 // single shift. We can do this if the top bits (which are shifted out) 1553 // are never demanded. 1554 // TODO - support non-uniform vector amounts. 1555 if (Op0.getOpcode() == ISD::SHL) { 1556 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1557 if (const APInt *SA2 = 1558 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1559 unsigned C1 = SA2->getZExtValue(); 1560 unsigned Opc = ISD::SRL; 1561 int Diff = ShAmt - C1; 1562 if (Diff < 0) { 1563 Diff = -Diff; 1564 Opc = ISD::SHL; 1565 } 1566 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1567 return TLO.CombineTo( 1568 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1569 } 1570 } 1571 } 1572 1573 APInt InDemandedMask = (DemandedBits << ShAmt); 1574 1575 // If the shift is exact, then it does demand the low bits (and knows that 1576 // they are zero). 1577 if (Op->getFlags().hasExact()) 1578 InDemandedMask.setLowBits(ShAmt); 1579 1580 // Compute the new bits that are at the top now. 1581 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1582 Depth + 1)) 1583 return true; 1584 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1585 Known.Zero.lshrInPlace(ShAmt); 1586 Known.One.lshrInPlace(ShAmt); 1587 // High bits known zero. 1588 Known.Zero.setHighBits(ShAmt); 1589 } 1590 break; 1591 } 1592 case ISD::SRA: { 1593 SDValue Op0 = Op.getOperand(0); 1594 SDValue Op1 = Op.getOperand(1); 1595 EVT ShiftVT = Op1.getValueType(); 1596 1597 // If we only want bits that already match the signbit then we don't need 1598 // to shift. 1599 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1600 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1601 NumHiDemandedBits) 1602 return TLO.CombineTo(Op, Op0); 1603 1604 // If this is an arithmetic shift right and only the low-bit is set, we can 1605 // always convert this into a logical shr, even if the shift amount is 1606 // variable. The low bit of the shift cannot be an input sign bit unless 1607 // the shift amount is >= the size of the datatype, which is undefined. 1608 if (DemandedBits.isOneValue()) 1609 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1610 1611 if (const APInt *SA = 1612 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1613 unsigned ShAmt = SA->getZExtValue(); 1614 if (ShAmt == 0) 1615 return TLO.CombineTo(Op, Op0); 1616 1617 APInt InDemandedMask = (DemandedBits << ShAmt); 1618 1619 // If the shift is exact, then it does demand the low bits (and knows that 1620 // they are zero). 1621 if (Op->getFlags().hasExact()) 1622 InDemandedMask.setLowBits(ShAmt); 1623 1624 // If any of the demanded bits are produced by the sign extension, we also 1625 // demand the input sign bit. 1626 if (DemandedBits.countLeadingZeros() < ShAmt) 1627 InDemandedMask.setSignBit(); 1628 1629 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1630 Depth + 1)) 1631 return true; 1632 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1633 Known.Zero.lshrInPlace(ShAmt); 1634 Known.One.lshrInPlace(ShAmt); 1635 1636 // If the input sign bit is known to be zero, or if none of the top bits 1637 // are demanded, turn this into an unsigned shift right. 1638 if (Known.Zero[BitWidth - ShAmt - 1] || 1639 DemandedBits.countLeadingZeros() >= ShAmt) { 1640 SDNodeFlags Flags; 1641 Flags.setExact(Op->getFlags().hasExact()); 1642 return TLO.CombineTo( 1643 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1644 } 1645 1646 int Log2 = DemandedBits.exactLogBase2(); 1647 if (Log2 >= 0) { 1648 // The bit must come from the sign. 1649 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1650 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1651 } 1652 1653 if (Known.One[BitWidth - ShAmt - 1]) 1654 // New bits are known one. 1655 Known.One.setHighBits(ShAmt); 1656 1657 // Attempt to avoid multi-use ops if we don't need anything from them. 1658 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1659 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1660 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1661 if (DemandedOp0) { 1662 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1663 return TLO.CombineTo(Op, NewOp); 1664 } 1665 } 1666 } 1667 break; 1668 } 1669 case ISD::FSHL: 1670 case ISD::FSHR: { 1671 SDValue Op0 = Op.getOperand(0); 1672 SDValue Op1 = Op.getOperand(1); 1673 SDValue Op2 = Op.getOperand(2); 1674 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1675 1676 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1677 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1678 1679 // For fshl, 0-shift returns the 1st arg. 1680 // For fshr, 0-shift returns the 2nd arg. 1681 if (Amt == 0) { 1682 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1683 Known, TLO, Depth + 1)) 1684 return true; 1685 break; 1686 } 1687 1688 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1689 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1690 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1691 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1692 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1693 Depth + 1)) 1694 return true; 1695 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1696 Depth + 1)) 1697 return true; 1698 1699 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1700 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1701 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1702 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1703 Known.One |= Known2.One; 1704 Known.Zero |= Known2.Zero; 1705 } 1706 1707 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1708 if (isPowerOf2_32(BitWidth)) { 1709 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1710 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1711 Known2, TLO, Depth + 1)) 1712 return true; 1713 } 1714 break; 1715 } 1716 case ISD::ROTL: 1717 case ISD::ROTR: { 1718 SDValue Op0 = Op.getOperand(0); 1719 SDValue Op1 = Op.getOperand(1); 1720 1721 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1722 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1723 return TLO.CombineTo(Op, Op0); 1724 1725 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1726 if (isPowerOf2_32(BitWidth)) { 1727 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1728 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1729 Depth + 1)) 1730 return true; 1731 } 1732 break; 1733 } 1734 case ISD::UMIN: { 1735 // Check if one arg is always less than (or equal) to the other arg. 1736 SDValue Op0 = Op.getOperand(0); 1737 SDValue Op1 = Op.getOperand(1); 1738 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1739 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1740 Known = KnownBits::umin(Known0, Known1); 1741 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1742 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1743 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1744 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1745 break; 1746 } 1747 case ISD::UMAX: { 1748 // Check if one arg is always greater than (or equal) to the other arg. 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1752 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1753 Known = KnownBits::umax(Known0, Known1); 1754 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1755 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1756 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1757 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1758 break; 1759 } 1760 case ISD::BITREVERSE: { 1761 SDValue Src = Op.getOperand(0); 1762 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1763 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1764 Depth + 1)) 1765 return true; 1766 Known.One = Known2.One.reverseBits(); 1767 Known.Zero = Known2.Zero.reverseBits(); 1768 break; 1769 } 1770 case ISD::BSWAP: { 1771 SDValue Src = Op.getOperand(0); 1772 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1773 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1774 Depth + 1)) 1775 return true; 1776 Known.One = Known2.One.byteSwap(); 1777 Known.Zero = Known2.Zero.byteSwap(); 1778 break; 1779 } 1780 case ISD::CTPOP: { 1781 // If only 1 bit is demanded, replace with PARITY as long as we're before 1782 // op legalization. 1783 // FIXME: Limit to scalars for now. 1784 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1786 Op.getOperand(0))); 1787 1788 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1789 break; 1790 } 1791 case ISD::SIGN_EXTEND_INREG: { 1792 SDValue Op0 = Op.getOperand(0); 1793 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1794 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1795 1796 // If we only care about the highest bit, don't bother shifting right. 1797 if (DemandedBits.isSignMask()) { 1798 unsigned NumSignBits = 1799 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1800 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1801 // However if the input is already sign extended we expect the sign 1802 // extension to be dropped altogether later and do not simplify. 1803 if (!AlreadySignExtended) { 1804 // Compute the correct shift amount type, which must be getShiftAmountTy 1805 // for scalar types after legalization. 1806 EVT ShiftAmtTy = VT; 1807 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1808 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1809 1810 SDValue ShiftAmt = 1811 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1812 return TLO.CombineTo(Op, 1813 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1814 } 1815 } 1816 1817 // If none of the extended bits are demanded, eliminate the sextinreg. 1818 if (DemandedBits.getActiveBits() <= ExVTBits) 1819 return TLO.CombineTo(Op, Op0); 1820 1821 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1822 1823 // Since the sign extended bits are demanded, we know that the sign 1824 // bit is demanded. 1825 InputDemandedBits.setBit(ExVTBits - 1); 1826 1827 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1828 return true; 1829 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1830 1831 // If the sign bit of the input is known set or clear, then we know the 1832 // top bits of the result. 1833 1834 // If the input sign bit is known zero, convert this into a zero extension. 1835 if (Known.Zero[ExVTBits - 1]) 1836 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1837 1838 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1839 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1840 Known.One.setBitsFrom(ExVTBits); 1841 Known.Zero &= Mask; 1842 } else { // Input sign bit unknown 1843 Known.Zero &= Mask; 1844 Known.One &= Mask; 1845 } 1846 break; 1847 } 1848 case ISD::BUILD_PAIR: { 1849 EVT HalfVT = Op.getOperand(0).getValueType(); 1850 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1851 1852 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1853 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1854 1855 KnownBits KnownLo, KnownHi; 1856 1857 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1858 return true; 1859 1860 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1861 return true; 1862 1863 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1864 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1865 1866 Known.One = KnownLo.One.zext(BitWidth) | 1867 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1868 break; 1869 } 1870 case ISD::ZERO_EXTEND: 1871 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1872 SDValue Src = Op.getOperand(0); 1873 EVT SrcVT = Src.getValueType(); 1874 unsigned InBits = SrcVT.getScalarSizeInBits(); 1875 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1876 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1877 1878 // If none of the top bits are demanded, convert this into an any_extend. 1879 if (DemandedBits.getActiveBits() <= InBits) { 1880 // If we only need the non-extended bits of the bottom element 1881 // then we can just bitcast to the result. 1882 if (IsVecInReg && DemandedElts == 1 && 1883 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1884 TLO.DAG.getDataLayout().isLittleEndian()) 1885 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1886 1887 unsigned Opc = 1888 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1889 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1890 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1891 } 1892 1893 APInt InDemandedBits = DemandedBits.trunc(InBits); 1894 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1895 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1896 Depth + 1)) 1897 return true; 1898 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1899 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1900 Known = Known.zext(BitWidth); 1901 1902 // Attempt to avoid multi-use ops if we don't need anything from them. 1903 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1904 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1905 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1906 break; 1907 } 1908 case ISD::SIGN_EXTEND: 1909 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1910 SDValue Src = Op.getOperand(0); 1911 EVT SrcVT = Src.getValueType(); 1912 unsigned InBits = SrcVT.getScalarSizeInBits(); 1913 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1914 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1915 1916 // If none of the top bits are demanded, convert this into an any_extend. 1917 if (DemandedBits.getActiveBits() <= InBits) { 1918 // If we only need the non-extended bits of the bottom element 1919 // then we can just bitcast to the result. 1920 if (IsVecInReg && DemandedElts == 1 && 1921 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1922 TLO.DAG.getDataLayout().isLittleEndian()) 1923 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1924 1925 unsigned Opc = 1926 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1927 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1928 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1929 } 1930 1931 APInt InDemandedBits = DemandedBits.trunc(InBits); 1932 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1933 1934 // Since some of the sign extended bits are demanded, we know that the sign 1935 // bit is demanded. 1936 InDemandedBits.setBit(InBits - 1); 1937 1938 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1939 Depth + 1)) 1940 return true; 1941 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1942 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1943 1944 // If the sign bit is known one, the top bits match. 1945 Known = Known.sext(BitWidth); 1946 1947 // If the sign bit is known zero, convert this to a zero extend. 1948 if (Known.isNonNegative()) { 1949 unsigned Opc = 1950 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1951 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1952 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1953 } 1954 1955 // Attempt to avoid multi-use ops if we don't need anything from them. 1956 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1957 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1958 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1959 break; 1960 } 1961 case ISD::ANY_EXTEND: 1962 case ISD::ANY_EXTEND_VECTOR_INREG: { 1963 SDValue Src = Op.getOperand(0); 1964 EVT SrcVT = Src.getValueType(); 1965 unsigned InBits = SrcVT.getScalarSizeInBits(); 1966 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1967 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1968 1969 // If we only need the bottom element then we can just bitcast. 1970 // TODO: Handle ANY_EXTEND? 1971 if (IsVecInReg && DemandedElts == 1 && 1972 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1973 TLO.DAG.getDataLayout().isLittleEndian()) 1974 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1975 1976 APInt InDemandedBits = DemandedBits.trunc(InBits); 1977 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1978 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1979 Depth + 1)) 1980 return true; 1981 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1982 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1983 Known = Known.anyext(BitWidth); 1984 1985 // Attempt to avoid multi-use ops if we don't need anything from them. 1986 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1987 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1988 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1989 break; 1990 } 1991 case ISD::TRUNCATE: { 1992 SDValue Src = Op.getOperand(0); 1993 1994 // Simplify the input, using demanded bit information, and compute the known 1995 // zero/one bits live out. 1996 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1997 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1998 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1999 Depth + 1)) 2000 return true; 2001 Known = Known.trunc(BitWidth); 2002 2003 // Attempt to avoid multi-use ops if we don't need anything from them. 2004 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2005 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2007 2008 // If the input is only used by this truncate, see if we can shrink it based 2009 // on the known demanded bits. 2010 if (Src.getNode()->hasOneUse()) { 2011 switch (Src.getOpcode()) { 2012 default: 2013 break; 2014 case ISD::SRL: 2015 // Shrink SRL by a constant if none of the high bits shifted in are 2016 // demanded. 2017 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2018 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2019 // undesirable. 2020 break; 2021 2022 const APInt *ShAmtC = 2023 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2024 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2025 break; 2026 uint64_t ShVal = ShAmtC->getZExtValue(); 2027 2028 APInt HighBits = 2029 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2030 HighBits.lshrInPlace(ShVal); 2031 HighBits = HighBits.trunc(BitWidth); 2032 2033 if (!(HighBits & DemandedBits)) { 2034 // None of the shifted in bits are needed. Add a truncate of the 2035 // shift input, then shift it. 2036 SDValue NewShAmt = TLO.DAG.getConstant( 2037 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2038 SDValue NewTrunc = 2039 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2040 return TLO.CombineTo( 2041 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2042 } 2043 break; 2044 } 2045 } 2046 2047 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2048 break; 2049 } 2050 case ISD::AssertZext: { 2051 // AssertZext demands all of the high bits, plus any of the low bits 2052 // demanded by its users. 2053 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2054 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2055 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2056 TLO, Depth + 1)) 2057 return true; 2058 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2059 2060 Known.Zero |= ~InMask; 2061 break; 2062 } 2063 case ISD::EXTRACT_VECTOR_ELT: { 2064 SDValue Src = Op.getOperand(0); 2065 SDValue Idx = Op.getOperand(1); 2066 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2067 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2068 2069 if (SrcEltCnt.isScalable()) 2070 return false; 2071 2072 // Demand the bits from every vector element without a constant index. 2073 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2074 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2075 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2076 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2077 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2078 2079 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2080 // anything about the extended bits. 2081 APInt DemandedSrcBits = DemandedBits; 2082 if (BitWidth > EltBitWidth) 2083 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2084 2085 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2086 Depth + 1)) 2087 return true; 2088 2089 // Attempt to avoid multi-use ops if we don't need anything from them. 2090 if (!DemandedSrcBits.isAllOnesValue() || 2091 !DemandedSrcElts.isAllOnesValue()) { 2092 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2093 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2094 SDValue NewOp = 2095 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2096 return TLO.CombineTo(Op, NewOp); 2097 } 2098 } 2099 2100 Known = Known2; 2101 if (BitWidth > EltBitWidth) 2102 Known = Known.anyext(BitWidth); 2103 break; 2104 } 2105 case ISD::BITCAST: { 2106 SDValue Src = Op.getOperand(0); 2107 EVT SrcVT = Src.getValueType(); 2108 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2109 2110 // If this is an FP->Int bitcast and if the sign bit is the only 2111 // thing demanded, turn this into a FGETSIGN. 2112 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2113 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2114 SrcVT.isFloatingPoint()) { 2115 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2116 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2117 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2118 SrcVT != MVT::f128) { 2119 // Cannot eliminate/lower SHL for f128 yet. 2120 EVT Ty = OpVTLegal ? VT : MVT::i32; 2121 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2122 // place. We expect the SHL to be eliminated by other optimizations. 2123 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2124 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2125 if (!OpVTLegal && OpVTSizeInBits > 32) 2126 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2127 unsigned ShVal = Op.getValueSizeInBits() - 1; 2128 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2129 return TLO.CombineTo(Op, 2130 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2131 } 2132 } 2133 2134 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2135 // Demand the elt/bit if any of the original elts/bits are demanded. 2136 // TODO - bigendian once we have test coverage. 2137 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2138 TLO.DAG.getDataLayout().isLittleEndian()) { 2139 unsigned Scale = BitWidth / NumSrcEltBits; 2140 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2141 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2142 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2143 for (unsigned i = 0; i != Scale; ++i) { 2144 unsigned Offset = i * NumSrcEltBits; 2145 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2146 if (!Sub.isNullValue()) { 2147 DemandedSrcBits |= Sub; 2148 for (unsigned j = 0; j != NumElts; ++j) 2149 if (DemandedElts[j]) 2150 DemandedSrcElts.setBit((j * Scale) + i); 2151 } 2152 } 2153 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 2159 KnownBits KnownSrcBits; 2160 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2161 KnownSrcBits, TLO, Depth + 1)) 2162 return true; 2163 } else if ((NumSrcEltBits % BitWidth) == 0 && 2164 TLO.DAG.getDataLayout().isLittleEndian()) { 2165 unsigned Scale = NumSrcEltBits / BitWidth; 2166 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2167 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2168 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2169 for (unsigned i = 0; i != NumElts; ++i) 2170 if (DemandedElts[i]) { 2171 unsigned Offset = (i % Scale) * BitWidth; 2172 DemandedSrcBits.insertBits(DemandedBits, Offset); 2173 DemandedSrcElts.setBit(i / Scale); 2174 } 2175 2176 if (SrcVT.isVector()) { 2177 APInt KnownSrcUndef, KnownSrcZero; 2178 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2179 KnownSrcZero, TLO, Depth + 1)) 2180 return true; 2181 } 2182 2183 KnownBits KnownSrcBits; 2184 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2185 KnownSrcBits, TLO, Depth + 1)) 2186 return true; 2187 } 2188 2189 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2190 // recursive call where Known may be useful to the caller. 2191 if (Depth > 0) { 2192 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2193 return false; 2194 } 2195 break; 2196 } 2197 case ISD::ADD: 2198 case ISD::MUL: 2199 case ISD::SUB: { 2200 // Add, Sub, and Mul don't demand any bits in positions beyond that 2201 // of the highest bit demanded of them. 2202 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2203 SDNodeFlags Flags = Op.getNode()->getFlags(); 2204 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2205 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2206 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2207 Depth + 1) || 2208 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2209 Depth + 1) || 2210 // See if the operation should be performed at a smaller bit width. 2211 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2212 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2213 // Disable the nsw and nuw flags. We can no longer guarantee that we 2214 // won't wrap after simplification. 2215 Flags.setNoSignedWrap(false); 2216 Flags.setNoUnsignedWrap(false); 2217 SDValue NewOp = 2218 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2219 return TLO.CombineTo(Op, NewOp); 2220 } 2221 return true; 2222 } 2223 2224 // Attempt to avoid multi-use ops if we don't need anything from them. 2225 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2226 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2227 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2228 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2229 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2230 if (DemandedOp0 || DemandedOp1) { 2231 Flags.setNoSignedWrap(false); 2232 Flags.setNoUnsignedWrap(false); 2233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2235 SDValue NewOp = 2236 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2237 return TLO.CombineTo(Op, NewOp); 2238 } 2239 } 2240 2241 // If we have a constant operand, we may be able to turn it into -1 if we 2242 // do not demand the high bits. This can make the constant smaller to 2243 // encode, allow more general folding, or match specialized instruction 2244 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2245 // is probably not useful (and could be detrimental). 2246 ConstantSDNode *C = isConstOrConstSplat(Op1); 2247 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2248 if (C && !C->isAllOnesValue() && !C->isOne() && 2249 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2250 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2251 // Disable the nsw and nuw flags. We can no longer guarantee that we 2252 // won't wrap after simplification. 2253 Flags.setNoSignedWrap(false); 2254 Flags.setNoUnsignedWrap(false); 2255 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2256 return TLO.CombineTo(Op, NewOp); 2257 } 2258 2259 LLVM_FALLTHROUGH; 2260 } 2261 default: 2262 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2263 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2264 Known, TLO, Depth)) 2265 return true; 2266 break; 2267 } 2268 2269 // Just use computeKnownBits to compute output bits. 2270 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2271 break; 2272 } 2273 2274 // If we know the value of all of the demanded bits, return this as a 2275 // constant. 2276 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2277 // Avoid folding to a constant if any OpaqueConstant is involved. 2278 const SDNode *N = Op.getNode(); 2279 for (SDNode *Op : 2280 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2282 if (C->isOpaque()) 2283 return false; 2284 } 2285 if (VT.isInteger()) 2286 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2287 if (VT.isFloatingPoint()) 2288 return TLO.CombineTo( 2289 Op, 2290 TLO.DAG.getConstantFP( 2291 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2292 } 2293 2294 return false; 2295 } 2296 2297 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2298 const APInt &DemandedElts, 2299 APInt &KnownUndef, 2300 APInt &KnownZero, 2301 DAGCombinerInfo &DCI) const { 2302 SelectionDAG &DAG = DCI.DAG; 2303 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2304 !DCI.isBeforeLegalizeOps()); 2305 2306 bool Simplified = 2307 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2308 if (Simplified) { 2309 DCI.AddToWorklist(Op.getNode()); 2310 DCI.CommitTargetLoweringOpt(TLO); 2311 } 2312 2313 return Simplified; 2314 } 2315 2316 /// Given a vector binary operation and known undefined elements for each input 2317 /// operand, compute whether each element of the output is undefined. 2318 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2319 const APInt &UndefOp0, 2320 const APInt &UndefOp1) { 2321 EVT VT = BO.getValueType(); 2322 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2323 "Vector binop only"); 2324 2325 EVT EltVT = VT.getVectorElementType(); 2326 unsigned NumElts = VT.getVectorNumElements(); 2327 assert(UndefOp0.getBitWidth() == NumElts && 2328 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2329 2330 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2331 const APInt &UndefVals) { 2332 if (UndefVals[Index]) 2333 return DAG.getUNDEF(EltVT); 2334 2335 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2336 // Try hard to make sure that the getNode() call is not creating temporary 2337 // nodes. Ignore opaque integers because they do not constant fold. 2338 SDValue Elt = BV->getOperand(Index); 2339 auto *C = dyn_cast<ConstantSDNode>(Elt); 2340 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2341 return Elt; 2342 } 2343 2344 return SDValue(); 2345 }; 2346 2347 APInt KnownUndef = APInt::getNullValue(NumElts); 2348 for (unsigned i = 0; i != NumElts; ++i) { 2349 // If both inputs for this element are either constant or undef and match 2350 // the element type, compute the constant/undef result for this element of 2351 // the vector. 2352 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2353 // not handle FP constants. The code within getNode() should be refactored 2354 // to avoid the danger of creating a bogus temporary node here. 2355 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2356 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2357 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2358 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2359 KnownUndef.setBit(i); 2360 } 2361 return KnownUndef; 2362 } 2363 2364 bool TargetLowering::SimplifyDemandedVectorElts( 2365 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2366 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2367 bool AssumeSingleUse) const { 2368 EVT VT = Op.getValueType(); 2369 unsigned Opcode = Op.getOpcode(); 2370 APInt DemandedElts = OriginalDemandedElts; 2371 unsigned NumElts = DemandedElts.getBitWidth(); 2372 assert(VT.isVector() && "Expected vector op"); 2373 2374 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2375 2376 // TODO: For now we assume we know nothing about scalable vectors. 2377 if (VT.isScalableVector()) 2378 return false; 2379 2380 assert(VT.getVectorNumElements() == NumElts && 2381 "Mask size mismatches value type element count!"); 2382 2383 // Undef operand. 2384 if (Op.isUndef()) { 2385 KnownUndef.setAllBits(); 2386 return false; 2387 } 2388 2389 // If Op has other users, assume that all elements are needed. 2390 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2391 DemandedElts.setAllBits(); 2392 2393 // Not demanding any elements from Op. 2394 if (DemandedElts == 0) { 2395 KnownUndef.setAllBits(); 2396 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2397 } 2398 2399 // Limit search depth. 2400 if (Depth >= SelectionDAG::MaxRecursionDepth) 2401 return false; 2402 2403 SDLoc DL(Op); 2404 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2405 2406 // Helper for demanding the specified elements and all the bits of both binary 2407 // operands. 2408 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2409 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2410 TLO.DAG, Depth + 1); 2411 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2412 TLO.DAG, Depth + 1); 2413 if (NewOp0 || NewOp1) { 2414 SDValue NewOp = TLO.DAG.getNode( 2415 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2416 return TLO.CombineTo(Op, NewOp); 2417 } 2418 return false; 2419 }; 2420 2421 switch (Opcode) { 2422 case ISD::SCALAR_TO_VECTOR: { 2423 if (!DemandedElts[0]) { 2424 KnownUndef.setAllBits(); 2425 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2426 } 2427 SDValue ScalarSrc = Op.getOperand(0); 2428 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2429 SDValue Src = ScalarSrc.getOperand(0); 2430 SDValue Idx = ScalarSrc.getOperand(1); 2431 EVT SrcVT = Src.getValueType(); 2432 2433 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2434 2435 if (SrcEltCnt.isScalable()) 2436 return false; 2437 2438 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2439 if (isNullConstant(Idx)) { 2440 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2441 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2442 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2443 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2444 TLO, Depth + 1)) 2445 return true; 2446 } 2447 } 2448 KnownUndef.setHighBits(NumElts - 1); 2449 break; 2450 } 2451 case ISD::BITCAST: { 2452 SDValue Src = Op.getOperand(0); 2453 EVT SrcVT = Src.getValueType(); 2454 2455 // We only handle vectors here. 2456 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2457 if (!SrcVT.isVector()) 2458 break; 2459 2460 // Fast handling of 'identity' bitcasts. 2461 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2462 if (NumSrcElts == NumElts) 2463 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2464 KnownZero, TLO, Depth + 1); 2465 2466 APInt SrcZero, SrcUndef; 2467 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2468 2469 // Bitcast from 'large element' src vector to 'small element' vector, we 2470 // must demand a source element if any DemandedElt maps to it. 2471 if ((NumElts % NumSrcElts) == 0) { 2472 unsigned Scale = NumElts / NumSrcElts; 2473 for (unsigned i = 0; i != NumElts; ++i) 2474 if (DemandedElts[i]) 2475 SrcDemandedElts.setBit(i / Scale); 2476 2477 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2478 TLO, Depth + 1)) 2479 return true; 2480 2481 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2482 // of the large element. 2483 // TODO - bigendian once we have test coverage. 2484 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2485 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2486 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2487 for (unsigned i = 0; i != NumElts; ++i) 2488 if (DemandedElts[i]) { 2489 unsigned Ofs = (i % Scale) * EltSizeInBits; 2490 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2491 } 2492 2493 KnownBits Known; 2494 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2495 TLO, Depth + 1)) 2496 return true; 2497 } 2498 2499 // If the src element is zero/undef then all the output elements will be - 2500 // only demanded elements are guaranteed to be correct. 2501 for (unsigned i = 0; i != NumSrcElts; ++i) { 2502 if (SrcDemandedElts[i]) { 2503 if (SrcZero[i]) 2504 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2505 if (SrcUndef[i]) 2506 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2507 } 2508 } 2509 } 2510 2511 // Bitcast from 'small element' src vector to 'large element' vector, we 2512 // demand all smaller source elements covered by the larger demanded element 2513 // of this vector. 2514 if ((NumSrcElts % NumElts) == 0) { 2515 unsigned Scale = NumSrcElts / NumElts; 2516 for (unsigned i = 0; i != NumElts; ++i) 2517 if (DemandedElts[i]) 2518 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2519 2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2521 TLO, Depth + 1)) 2522 return true; 2523 2524 // If all the src elements covering an output element are zero/undef, then 2525 // the output element will be as well, assuming it was demanded. 2526 for (unsigned i = 0; i != NumElts; ++i) { 2527 if (DemandedElts[i]) { 2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2529 KnownZero.setBit(i); 2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2531 KnownUndef.setBit(i); 2532 } 2533 } 2534 } 2535 break; 2536 } 2537 case ISD::BUILD_VECTOR: { 2538 // Check all elements and simplify any unused elements with UNDEF. 2539 if (!DemandedElts.isAllOnesValue()) { 2540 // Don't simplify BROADCASTS. 2541 if (llvm::any_of(Op->op_values(), 2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2544 bool Updated = false; 2545 for (unsigned i = 0; i != NumElts; ++i) { 2546 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2548 KnownUndef.setBit(i); 2549 Updated = true; 2550 } 2551 } 2552 if (Updated) 2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2554 } 2555 } 2556 for (unsigned i = 0; i != NumElts; ++i) { 2557 SDValue SrcOp = Op.getOperand(i); 2558 if (SrcOp.isUndef()) { 2559 KnownUndef.setBit(i); 2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2562 KnownZero.setBit(i); 2563 } 2564 } 2565 break; 2566 } 2567 case ISD::CONCAT_VECTORS: { 2568 EVT SubVT = Op.getOperand(0).getValueType(); 2569 unsigned NumSubVecs = Op.getNumOperands(); 2570 unsigned NumSubElts = SubVT.getVectorNumElements(); 2571 for (unsigned i = 0; i != NumSubVecs; ++i) { 2572 SDValue SubOp = Op.getOperand(i); 2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2574 APInt SubUndef, SubZero; 2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2576 Depth + 1)) 2577 return true; 2578 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2579 KnownZero.insertBits(SubZero, i * NumSubElts); 2580 } 2581 break; 2582 } 2583 case ISD::INSERT_SUBVECTOR: { 2584 // Demand any elements from the subvector and the remainder from the src its 2585 // inserted into. 2586 SDValue Src = Op.getOperand(0); 2587 SDValue Sub = Op.getOperand(1); 2588 uint64_t Idx = Op.getConstantOperandVal(2); 2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2591 APInt DemandedSrcElts = DemandedElts; 2592 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2593 2594 APInt SubUndef, SubZero; 2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2596 Depth + 1)) 2597 return true; 2598 2599 // If none of the src operand elements are demanded, replace it with undef. 2600 if (!DemandedSrcElts && !Src.isUndef()) 2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2602 TLO.DAG.getUNDEF(VT), Sub, 2603 Op.getOperand(2))); 2604 2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2606 TLO, Depth + 1)) 2607 return true; 2608 KnownUndef.insertBits(SubUndef, Idx); 2609 KnownZero.insertBits(SubZero, Idx); 2610 2611 // Attempt to avoid multi-use ops if we don't need anything from them. 2612 if (!DemandedSrcElts.isAllOnesValue() || 2613 !DemandedSubElts.isAllOnesValue()) { 2614 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2615 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2616 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2617 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2618 if (NewSrc || NewSub) { 2619 NewSrc = NewSrc ? NewSrc : Src; 2620 NewSub = NewSub ? NewSub : Sub; 2621 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2622 NewSub, Op.getOperand(2)); 2623 return TLO.CombineTo(Op, NewOp); 2624 } 2625 } 2626 break; 2627 } 2628 case ISD::EXTRACT_SUBVECTOR: { 2629 // Offset the demanded elts by the subvector index. 2630 SDValue Src = Op.getOperand(0); 2631 if (Src.getValueType().isScalableVector()) 2632 break; 2633 uint64_t Idx = Op.getConstantOperandVal(1); 2634 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2635 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2636 2637 APInt SrcUndef, SrcZero; 2638 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2639 Depth + 1)) 2640 return true; 2641 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2642 KnownZero = SrcZero.extractBits(NumElts, Idx); 2643 2644 // Attempt to avoid multi-use ops if we don't need anything from them. 2645 if (!DemandedElts.isAllOnesValue()) { 2646 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2647 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2648 if (NewSrc) { 2649 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2650 Op.getOperand(1)); 2651 return TLO.CombineTo(Op, NewOp); 2652 } 2653 } 2654 break; 2655 } 2656 case ISD::INSERT_VECTOR_ELT: { 2657 SDValue Vec = Op.getOperand(0); 2658 SDValue Scl = Op.getOperand(1); 2659 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2660 2661 // For a legal, constant insertion index, if we don't need this insertion 2662 // then strip it, else remove it from the demanded elts. 2663 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2664 unsigned Idx = CIdx->getZExtValue(); 2665 if (!DemandedElts[Idx]) 2666 return TLO.CombineTo(Op, Vec); 2667 2668 APInt DemandedVecElts(DemandedElts); 2669 DemandedVecElts.clearBit(Idx); 2670 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2671 KnownZero, TLO, Depth + 1)) 2672 return true; 2673 2674 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2675 2676 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2677 break; 2678 } 2679 2680 APInt VecUndef, VecZero; 2681 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2682 Depth + 1)) 2683 return true; 2684 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2685 break; 2686 } 2687 case ISD::VSELECT: { 2688 // Try to transform the select condition based on the current demanded 2689 // elements. 2690 // TODO: If a condition element is undef, we can choose from one arm of the 2691 // select (and if one arm is undef, then we can propagate that to the 2692 // result). 2693 // TODO - add support for constant vselect masks (see IR version of this). 2694 APInt UnusedUndef, UnusedZero; 2695 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2696 UnusedZero, TLO, Depth + 1)) 2697 return true; 2698 2699 // See if we can simplify either vselect operand. 2700 APInt DemandedLHS(DemandedElts); 2701 APInt DemandedRHS(DemandedElts); 2702 APInt UndefLHS, ZeroLHS; 2703 APInt UndefRHS, ZeroRHS; 2704 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2705 ZeroLHS, TLO, Depth + 1)) 2706 return true; 2707 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2708 ZeroRHS, TLO, Depth + 1)) 2709 return true; 2710 2711 KnownUndef = UndefLHS & UndefRHS; 2712 KnownZero = ZeroLHS & ZeroRHS; 2713 break; 2714 } 2715 case ISD::VECTOR_SHUFFLE: { 2716 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2717 2718 // Collect demanded elements from shuffle operands.. 2719 APInt DemandedLHS(NumElts, 0); 2720 APInt DemandedRHS(NumElts, 0); 2721 for (unsigned i = 0; i != NumElts; ++i) { 2722 int M = ShuffleMask[i]; 2723 if (M < 0 || !DemandedElts[i]) 2724 continue; 2725 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2726 if (M < (int)NumElts) 2727 DemandedLHS.setBit(M); 2728 else 2729 DemandedRHS.setBit(M - NumElts); 2730 } 2731 2732 // See if we can simplify either shuffle operand. 2733 APInt UndefLHS, ZeroLHS; 2734 APInt UndefRHS, ZeroRHS; 2735 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2736 ZeroLHS, TLO, Depth + 1)) 2737 return true; 2738 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2739 ZeroRHS, TLO, Depth + 1)) 2740 return true; 2741 2742 // Simplify mask using undef elements from LHS/RHS. 2743 bool Updated = false; 2744 bool IdentityLHS = true, IdentityRHS = true; 2745 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2746 for (unsigned i = 0; i != NumElts; ++i) { 2747 int &M = NewMask[i]; 2748 if (M < 0) 2749 continue; 2750 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2751 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2752 Updated = true; 2753 M = -1; 2754 } 2755 IdentityLHS &= (M < 0) || (M == (int)i); 2756 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2757 } 2758 2759 // Update legal shuffle masks based on demanded elements if it won't reduce 2760 // to Identity which can cause premature removal of the shuffle mask. 2761 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2762 SDValue LegalShuffle = 2763 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2764 NewMask, TLO.DAG); 2765 if (LegalShuffle) 2766 return TLO.CombineTo(Op, LegalShuffle); 2767 } 2768 2769 // Propagate undef/zero elements from LHS/RHS. 2770 for (unsigned i = 0; i != NumElts; ++i) { 2771 int M = ShuffleMask[i]; 2772 if (M < 0) { 2773 KnownUndef.setBit(i); 2774 } else if (M < (int)NumElts) { 2775 if (UndefLHS[M]) 2776 KnownUndef.setBit(i); 2777 if (ZeroLHS[M]) 2778 KnownZero.setBit(i); 2779 } else { 2780 if (UndefRHS[M - NumElts]) 2781 KnownUndef.setBit(i); 2782 if (ZeroRHS[M - NumElts]) 2783 KnownZero.setBit(i); 2784 } 2785 } 2786 break; 2787 } 2788 case ISD::ANY_EXTEND_VECTOR_INREG: 2789 case ISD::SIGN_EXTEND_VECTOR_INREG: 2790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2791 APInt SrcUndef, SrcZero; 2792 SDValue Src = Op.getOperand(0); 2793 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2794 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2795 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2796 Depth + 1)) 2797 return true; 2798 KnownZero = SrcZero.zextOrTrunc(NumElts); 2799 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2800 2801 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2802 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2803 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2804 // aext - if we just need the bottom element then we can bitcast. 2805 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2806 } 2807 2808 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2809 // zext(undef) upper bits are guaranteed to be zero. 2810 if (DemandedElts.isSubsetOf(KnownUndef)) 2811 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2812 KnownUndef.clearAllBits(); 2813 } 2814 break; 2815 } 2816 2817 // TODO: There are more binop opcodes that could be handled here - MIN, 2818 // MAX, saturated math, etc. 2819 case ISD::OR: 2820 case ISD::XOR: 2821 case ISD::ADD: 2822 case ISD::SUB: 2823 case ISD::FADD: 2824 case ISD::FSUB: 2825 case ISD::FMUL: 2826 case ISD::FDIV: 2827 case ISD::FREM: { 2828 SDValue Op0 = Op.getOperand(0); 2829 SDValue Op1 = Op.getOperand(1); 2830 2831 APInt UndefRHS, ZeroRHS; 2832 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2833 Depth + 1)) 2834 return true; 2835 APInt UndefLHS, ZeroLHS; 2836 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2837 Depth + 1)) 2838 return true; 2839 2840 KnownZero = ZeroLHS & ZeroRHS; 2841 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2842 2843 // Attempt to avoid multi-use ops if we don't need anything from them. 2844 // TODO - use KnownUndef to relax the demandedelts? 2845 if (!DemandedElts.isAllOnesValue()) 2846 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2847 return true; 2848 break; 2849 } 2850 case ISD::SHL: 2851 case ISD::SRL: 2852 case ISD::SRA: 2853 case ISD::ROTL: 2854 case ISD::ROTR: { 2855 SDValue Op0 = Op.getOperand(0); 2856 SDValue Op1 = Op.getOperand(1); 2857 2858 APInt UndefRHS, ZeroRHS; 2859 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2860 Depth + 1)) 2861 return true; 2862 APInt UndefLHS, ZeroLHS; 2863 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2864 Depth + 1)) 2865 return true; 2866 2867 KnownZero = ZeroLHS; 2868 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2869 2870 // Attempt to avoid multi-use ops if we don't need anything from them. 2871 // TODO - use KnownUndef to relax the demandedelts? 2872 if (!DemandedElts.isAllOnesValue()) 2873 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2874 return true; 2875 break; 2876 } 2877 case ISD::MUL: 2878 case ISD::AND: { 2879 SDValue Op0 = Op.getOperand(0); 2880 SDValue Op1 = Op.getOperand(1); 2881 2882 APInt SrcUndef, SrcZero; 2883 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2884 Depth + 1)) 2885 return true; 2886 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2887 TLO, Depth + 1)) 2888 return true; 2889 2890 // If either side has a zero element, then the result element is zero, even 2891 // if the other is an UNDEF. 2892 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2893 // and then handle 'and' nodes with the rest of the binop opcodes. 2894 KnownZero |= SrcZero; 2895 KnownUndef &= SrcUndef; 2896 KnownUndef &= ~KnownZero; 2897 2898 // Attempt to avoid multi-use ops if we don't need anything from them. 2899 // TODO - use KnownUndef to relax the demandedelts? 2900 if (!DemandedElts.isAllOnesValue()) 2901 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2902 return true; 2903 break; 2904 } 2905 case ISD::TRUNCATE: 2906 case ISD::SIGN_EXTEND: 2907 case ISD::ZERO_EXTEND: 2908 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2909 KnownZero, TLO, Depth + 1)) 2910 return true; 2911 2912 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2913 // zext(undef) upper bits are guaranteed to be zero. 2914 if (DemandedElts.isSubsetOf(KnownUndef)) 2915 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2916 KnownUndef.clearAllBits(); 2917 } 2918 break; 2919 default: { 2920 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2921 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2922 KnownZero, TLO, Depth)) 2923 return true; 2924 } else { 2925 KnownBits Known; 2926 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2927 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2928 TLO, Depth, AssumeSingleUse)) 2929 return true; 2930 } 2931 break; 2932 } 2933 } 2934 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2935 2936 // Constant fold all undef cases. 2937 // TODO: Handle zero cases as well. 2938 if (DemandedElts.isSubsetOf(KnownUndef)) 2939 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2940 2941 return false; 2942 } 2943 2944 /// Determine which of the bits specified in Mask are known to be either zero or 2945 /// one and return them in the Known. 2946 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2947 KnownBits &Known, 2948 const APInt &DemandedElts, 2949 const SelectionDAG &DAG, 2950 unsigned Depth) const { 2951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2954 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2955 "Should use MaskedValueIsZero if you don't know whether Op" 2956 " is a target node!"); 2957 Known.resetAll(); 2958 } 2959 2960 void TargetLowering::computeKnownBitsForTargetInstr( 2961 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2962 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2963 unsigned Depth) const { 2964 Known.resetAll(); 2965 } 2966 2967 void TargetLowering::computeKnownBitsForFrameIndex( 2968 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2969 // The low bits are known zero if the pointer is aligned. 2970 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2971 } 2972 2973 Align TargetLowering::computeKnownAlignForTargetInstr( 2974 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2975 unsigned Depth) const { 2976 return Align(1); 2977 } 2978 2979 /// This method can be implemented by targets that want to expose additional 2980 /// information about sign bits to the DAG Combiner. 2981 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2982 const APInt &, 2983 const SelectionDAG &, 2984 unsigned Depth) const { 2985 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2986 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2987 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2988 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2989 "Should use ComputeNumSignBits if you don't know whether Op" 2990 " is a target node!"); 2991 return 1; 2992 } 2993 2994 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2995 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2996 const MachineRegisterInfo &MRI, unsigned Depth) const { 2997 return 1; 2998 } 2999 3000 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3001 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3002 TargetLoweringOpt &TLO, unsigned Depth) const { 3003 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3004 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3006 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3007 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3008 " is a target node!"); 3009 return false; 3010 } 3011 3012 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3013 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3014 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3015 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3016 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3017 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3018 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3019 "Should use SimplifyDemandedBits if you don't know whether Op" 3020 " is a target node!"); 3021 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3022 return false; 3023 } 3024 3025 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3026 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3027 SelectionDAG &DAG, unsigned Depth) const { 3028 assert( 3029 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3030 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3031 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3032 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3033 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3034 " is a target node!"); 3035 return SDValue(); 3036 } 3037 3038 SDValue 3039 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3040 SDValue N1, MutableArrayRef<int> Mask, 3041 SelectionDAG &DAG) const { 3042 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3043 if (!LegalMask) { 3044 std::swap(N0, N1); 3045 ShuffleVectorSDNode::commuteMask(Mask); 3046 LegalMask = isShuffleMaskLegal(Mask, VT); 3047 } 3048 3049 if (!LegalMask) 3050 return SDValue(); 3051 3052 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3053 } 3054 3055 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3056 return nullptr; 3057 } 3058 3059 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3060 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3061 bool PoisonOnly, unsigned Depth) const { 3062 assert( 3063 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3064 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3065 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3066 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3067 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3068 " is a target node!"); 3069 return false; 3070 } 3071 3072 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3073 const SelectionDAG &DAG, 3074 bool SNaN, 3075 unsigned Depth) const { 3076 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3077 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3078 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3079 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3080 "Should use isKnownNeverNaN if you don't know whether Op" 3081 " is a target node!"); 3082 return false; 3083 } 3084 3085 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3086 // work with truncating build vectors and vectors with elements of less than 3087 // 8 bits. 3088 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3089 if (!N) 3090 return false; 3091 3092 APInt CVal; 3093 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3094 CVal = CN->getAPIntValue(); 3095 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3096 auto *CN = BV->getConstantSplatNode(); 3097 if (!CN) 3098 return false; 3099 3100 // If this is a truncating build vector, truncate the splat value. 3101 // Otherwise, we may fail to match the expected values below. 3102 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3103 CVal = CN->getAPIntValue(); 3104 if (BVEltWidth < CVal.getBitWidth()) 3105 CVal = CVal.trunc(BVEltWidth); 3106 } else { 3107 return false; 3108 } 3109 3110 switch (getBooleanContents(N->getValueType(0))) { 3111 case UndefinedBooleanContent: 3112 return CVal[0]; 3113 case ZeroOrOneBooleanContent: 3114 return CVal.isOneValue(); 3115 case ZeroOrNegativeOneBooleanContent: 3116 return CVal.isAllOnesValue(); 3117 } 3118 3119 llvm_unreachable("Invalid boolean contents"); 3120 } 3121 3122 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3123 if (!N) 3124 return false; 3125 3126 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3127 if (!CN) { 3128 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3129 if (!BV) 3130 return false; 3131 3132 // Only interested in constant splats, we don't care about undef 3133 // elements in identifying boolean constants and getConstantSplatNode 3134 // returns NULL if all ops are undef; 3135 CN = BV->getConstantSplatNode(); 3136 if (!CN) 3137 return false; 3138 } 3139 3140 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3141 return !CN->getAPIntValue()[0]; 3142 3143 return CN->isNullValue(); 3144 } 3145 3146 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3147 bool SExt) const { 3148 if (VT == MVT::i1) 3149 return N->isOne(); 3150 3151 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3152 switch (Cnt) { 3153 case TargetLowering::ZeroOrOneBooleanContent: 3154 // An extended value of 1 is always true, unless its original type is i1, 3155 // in which case it will be sign extended to -1. 3156 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3157 case TargetLowering::UndefinedBooleanContent: 3158 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3159 return N->isAllOnesValue() && SExt; 3160 } 3161 llvm_unreachable("Unexpected enumeration."); 3162 } 3163 3164 /// This helper function of SimplifySetCC tries to optimize the comparison when 3165 /// either operand of the SetCC node is a bitwise-and instruction. 3166 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3167 ISD::CondCode Cond, const SDLoc &DL, 3168 DAGCombinerInfo &DCI) const { 3169 // Match these patterns in any of their permutations: 3170 // (X & Y) == Y 3171 // (X & Y) != Y 3172 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3173 std::swap(N0, N1); 3174 3175 EVT OpVT = N0.getValueType(); 3176 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3177 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3178 return SDValue(); 3179 3180 SDValue X, Y; 3181 if (N0.getOperand(0) == N1) { 3182 X = N0.getOperand(1); 3183 Y = N0.getOperand(0); 3184 } else if (N0.getOperand(1) == N1) { 3185 X = N0.getOperand(0); 3186 Y = N0.getOperand(1); 3187 } else { 3188 return SDValue(); 3189 } 3190 3191 SelectionDAG &DAG = DCI.DAG; 3192 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3193 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3194 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3195 // Note that where Y is variable and is known to have at most one bit set 3196 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3197 // equivalent when Y == 0. 3198 assert(OpVT.isInteger()); 3199 Cond = ISD::getSetCCInverse(Cond, OpVT); 3200 if (DCI.isBeforeLegalizeOps() || 3201 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3202 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3203 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3204 // If the target supports an 'and-not' or 'and-complement' logic operation, 3205 // try to use that to make a comparison operation more efficient. 3206 // But don't do this transform if the mask is a single bit because there are 3207 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3208 // 'rlwinm' on PPC). 3209 3210 // Bail out if the compare operand that we want to turn into a zero is 3211 // already a zero (otherwise, infinite loop). 3212 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3213 if (YConst && YConst->isNullValue()) 3214 return SDValue(); 3215 3216 // Transform this into: ~X & Y == 0. 3217 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3218 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3219 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3220 } 3221 3222 return SDValue(); 3223 } 3224 3225 /// There are multiple IR patterns that could be checking whether certain 3226 /// truncation of a signed number would be lossy or not. The pattern which is 3227 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3228 /// We are looking for the following pattern: (KeptBits is a constant) 3229 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3230 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3231 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3232 /// We will unfold it into the natural trunc+sext pattern: 3233 /// ((%x << C) a>> C) dstcond %x 3234 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3235 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3236 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3237 const SDLoc &DL) const { 3238 // We must be comparing with a constant. 3239 ConstantSDNode *C1; 3240 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3241 return SDValue(); 3242 3243 // N0 should be: add %x, (1 << (KeptBits-1)) 3244 if (N0->getOpcode() != ISD::ADD) 3245 return SDValue(); 3246 3247 // And we must be 'add'ing a constant. 3248 ConstantSDNode *C01; 3249 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3250 return SDValue(); 3251 3252 SDValue X = N0->getOperand(0); 3253 EVT XVT = X.getValueType(); 3254 3255 // Validate constants ... 3256 3257 APInt I1 = C1->getAPIntValue(); 3258 3259 ISD::CondCode NewCond; 3260 if (Cond == ISD::CondCode::SETULT) { 3261 NewCond = ISD::CondCode::SETEQ; 3262 } else if (Cond == ISD::CondCode::SETULE) { 3263 NewCond = ISD::CondCode::SETEQ; 3264 // But need to 'canonicalize' the constant. 3265 I1 += 1; 3266 } else if (Cond == ISD::CondCode::SETUGT) { 3267 NewCond = ISD::CondCode::SETNE; 3268 // But need to 'canonicalize' the constant. 3269 I1 += 1; 3270 } else if (Cond == ISD::CondCode::SETUGE) { 3271 NewCond = ISD::CondCode::SETNE; 3272 } else 3273 return SDValue(); 3274 3275 APInt I01 = C01->getAPIntValue(); 3276 3277 auto checkConstants = [&I1, &I01]() -> bool { 3278 // Both of them must be power-of-two, and the constant from setcc is bigger. 3279 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3280 }; 3281 3282 if (checkConstants()) { 3283 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3284 } else { 3285 // What if we invert constants? (and the target predicate) 3286 I1.negate(); 3287 I01.negate(); 3288 assert(XVT.isInteger()); 3289 NewCond = getSetCCInverse(NewCond, XVT); 3290 if (!checkConstants()) 3291 return SDValue(); 3292 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3293 } 3294 3295 // They are power-of-two, so which bit is set? 3296 const unsigned KeptBits = I1.logBase2(); 3297 const unsigned KeptBitsMinusOne = I01.logBase2(); 3298 3299 // Magic! 3300 if (KeptBits != (KeptBitsMinusOne + 1)) 3301 return SDValue(); 3302 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3303 3304 // We don't want to do this in every single case. 3305 SelectionDAG &DAG = DCI.DAG; 3306 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3307 XVT, KeptBits)) 3308 return SDValue(); 3309 3310 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3311 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3312 3313 // Unfold into: ((%x << C) a>> C) cond %x 3314 // Where 'cond' will be either 'eq' or 'ne'. 3315 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3316 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3317 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3318 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3319 3320 return T2; 3321 } 3322 3323 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3324 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3325 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3326 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3327 assert(isConstOrConstSplat(N1C) && 3328 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3329 "Should be a comparison with 0."); 3330 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3331 "Valid only for [in]equality comparisons."); 3332 3333 unsigned NewShiftOpcode; 3334 SDValue X, C, Y; 3335 3336 SelectionDAG &DAG = DCI.DAG; 3337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3338 3339 // Look for '(C l>>/<< Y)'. 3340 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3341 // The shift should be one-use. 3342 if (!V.hasOneUse()) 3343 return false; 3344 unsigned OldShiftOpcode = V.getOpcode(); 3345 switch (OldShiftOpcode) { 3346 case ISD::SHL: 3347 NewShiftOpcode = ISD::SRL; 3348 break; 3349 case ISD::SRL: 3350 NewShiftOpcode = ISD::SHL; 3351 break; 3352 default: 3353 return false; // must be a logical shift. 3354 } 3355 // We should be shifting a constant. 3356 // FIXME: best to use isConstantOrConstantVector(). 3357 C = V.getOperand(0); 3358 ConstantSDNode *CC = 3359 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3360 if (!CC) 3361 return false; 3362 Y = V.getOperand(1); 3363 3364 ConstantSDNode *XC = 3365 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3366 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3367 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3368 }; 3369 3370 // LHS of comparison should be an one-use 'and'. 3371 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3372 return SDValue(); 3373 3374 X = N0.getOperand(0); 3375 SDValue Mask = N0.getOperand(1); 3376 3377 // 'and' is commutative! 3378 if (!Match(Mask)) { 3379 std::swap(X, Mask); 3380 if (!Match(Mask)) 3381 return SDValue(); 3382 } 3383 3384 EVT VT = X.getValueType(); 3385 3386 // Produce: 3387 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3388 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3389 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3390 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3391 return T2; 3392 } 3393 3394 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3395 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3396 /// handle the commuted versions of these patterns. 3397 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3398 ISD::CondCode Cond, const SDLoc &DL, 3399 DAGCombinerInfo &DCI) const { 3400 unsigned BOpcode = N0.getOpcode(); 3401 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3402 "Unexpected binop"); 3403 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3404 3405 // (X + Y) == X --> Y == 0 3406 // (X - Y) == X --> Y == 0 3407 // (X ^ Y) == X --> Y == 0 3408 SelectionDAG &DAG = DCI.DAG; 3409 EVT OpVT = N0.getValueType(); 3410 SDValue X = N0.getOperand(0); 3411 SDValue Y = N0.getOperand(1); 3412 if (X == N1) 3413 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3414 3415 if (Y != N1) 3416 return SDValue(); 3417 3418 // (X + Y) == Y --> X == 0 3419 // (X ^ Y) == Y --> X == 0 3420 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3421 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3422 3423 // The shift would not be valid if the operands are boolean (i1). 3424 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3425 return SDValue(); 3426 3427 // (X - Y) == Y --> X == Y << 1 3428 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3429 !DCI.isBeforeLegalize()); 3430 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3431 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3432 if (!DCI.isCalledByLegalizer()) 3433 DCI.AddToWorklist(YShl1.getNode()); 3434 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3435 } 3436 3437 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3438 SDValue N0, const APInt &C1, 3439 ISD::CondCode Cond, const SDLoc &dl, 3440 SelectionDAG &DAG) { 3441 // Look through truncs that don't change the value of a ctpop. 3442 // FIXME: Add vector support? Need to be careful with setcc result type below. 3443 SDValue CTPOP = N0; 3444 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3445 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3446 CTPOP = N0.getOperand(0); 3447 3448 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3449 return SDValue(); 3450 3451 EVT CTVT = CTPOP.getValueType(); 3452 SDValue CTOp = CTPOP.getOperand(0); 3453 3454 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3455 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3456 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3457 return SDValue(); 3458 3459 // (ctpop x) u< 2 -> (x & x-1) == 0 3460 // (ctpop x) u> 1 -> (x & x-1) != 0 3461 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3462 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3463 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3464 return SDValue(); 3465 if (C1 == 0 && (Cond == ISD::SETULT)) 3466 return SDValue(); // This is handled elsewhere. 3467 3468 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3469 3470 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3471 SDValue Result = CTOp; 3472 for (unsigned i = 0; i < Passes; i++) { 3473 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3474 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3475 } 3476 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3477 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3478 } 3479 3480 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3481 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3482 // For scalars, keep CTPOP if it is legal or custom. 3483 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3484 return SDValue(); 3485 // This is based on X86's custom lowering for CTPOP which produces more 3486 // instructions than the expansion here. 3487 3488 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3489 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3490 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3491 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3492 assert(CTVT.isInteger()); 3493 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3494 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3495 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3496 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3497 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3498 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3499 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3500 } 3501 3502 return SDValue(); 3503 } 3504 3505 /// Try to simplify a setcc built with the specified operands and cc. If it is 3506 /// unable to simplify it, return a null SDValue. 3507 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3508 ISD::CondCode Cond, bool foldBooleans, 3509 DAGCombinerInfo &DCI, 3510 const SDLoc &dl) const { 3511 SelectionDAG &DAG = DCI.DAG; 3512 const DataLayout &Layout = DAG.getDataLayout(); 3513 EVT OpVT = N0.getValueType(); 3514 3515 // Constant fold or commute setcc. 3516 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3517 return Fold; 3518 3519 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3520 // TODO: Handle non-splat vector constants. All undef causes trouble. 3521 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3522 // infinite loop here when we encounter one. 3523 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3524 if (isConstOrConstSplat(N0) && 3525 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3526 (DCI.isBeforeLegalizeOps() || 3527 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3528 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3529 3530 // If we have a subtract with the same 2 non-constant operands as this setcc 3531 // -- but in reverse order -- then try to commute the operands of this setcc 3532 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3533 // instruction on some targets. 3534 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3535 (DCI.isBeforeLegalizeOps() || 3536 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3537 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3538 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3539 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3540 3541 if (auto *N1C = isConstOrConstSplat(N1)) { 3542 const APInt &C1 = N1C->getAPIntValue(); 3543 3544 // Optimize some CTPOP cases. 3545 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3546 return V; 3547 3548 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3549 // equality comparison, then we're just comparing whether X itself is 3550 // zero. 3551 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3552 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3553 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3554 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3555 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3556 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3557 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3558 // (srl (ctlz x), 5) == 0 -> X != 0 3559 // (srl (ctlz x), 5) != 1 -> X != 0 3560 Cond = ISD::SETNE; 3561 } else { 3562 // (srl (ctlz x), 5) != 0 -> X == 0 3563 // (srl (ctlz x), 5) == 1 -> X == 0 3564 Cond = ISD::SETEQ; 3565 } 3566 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3567 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3568 Cond); 3569 } 3570 } 3571 } 3572 } 3573 3574 // FIXME: Support vectors. 3575 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3576 const APInt &C1 = N1C->getAPIntValue(); 3577 3578 // (zext x) == C --> x == (trunc C) 3579 // (sext x) == C --> x == (trunc C) 3580 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3581 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3582 unsigned MinBits = N0.getValueSizeInBits(); 3583 SDValue PreExt; 3584 bool Signed = false; 3585 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3586 // ZExt 3587 MinBits = N0->getOperand(0).getValueSizeInBits(); 3588 PreExt = N0->getOperand(0); 3589 } else if (N0->getOpcode() == ISD::AND) { 3590 // DAGCombine turns costly ZExts into ANDs 3591 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3592 if ((C->getAPIntValue()+1).isPowerOf2()) { 3593 MinBits = C->getAPIntValue().countTrailingOnes(); 3594 PreExt = N0->getOperand(0); 3595 } 3596 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3597 // SExt 3598 MinBits = N0->getOperand(0).getValueSizeInBits(); 3599 PreExt = N0->getOperand(0); 3600 Signed = true; 3601 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3602 // ZEXTLOAD / SEXTLOAD 3603 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3604 MinBits = LN0->getMemoryVT().getSizeInBits(); 3605 PreExt = N0; 3606 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3607 Signed = true; 3608 MinBits = LN0->getMemoryVT().getSizeInBits(); 3609 PreExt = N0; 3610 } 3611 } 3612 3613 // Figure out how many bits we need to preserve this constant. 3614 unsigned ReqdBits = Signed ? 3615 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3616 C1.getActiveBits(); 3617 3618 // Make sure we're not losing bits from the constant. 3619 if (MinBits > 0 && 3620 MinBits < C1.getBitWidth() && 3621 MinBits >= ReqdBits) { 3622 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3623 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3624 // Will get folded away. 3625 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3626 if (MinBits == 1 && C1 == 1) 3627 // Invert the condition. 3628 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3629 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3630 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3631 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3632 } 3633 3634 // If truncating the setcc operands is not desirable, we can still 3635 // simplify the expression in some cases: 3636 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3637 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3638 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3639 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3640 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3641 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3642 SDValue TopSetCC = N0->getOperand(0); 3643 unsigned N0Opc = N0->getOpcode(); 3644 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3645 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3646 TopSetCC.getOpcode() == ISD::SETCC && 3647 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3648 (isConstFalseVal(N1C) || 3649 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3650 3651 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3652 (!N1C->isNullValue() && Cond == ISD::SETNE); 3653 3654 if (!Inverse) 3655 return TopSetCC; 3656 3657 ISD::CondCode InvCond = ISD::getSetCCInverse( 3658 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3659 TopSetCC.getOperand(0).getValueType()); 3660 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3661 TopSetCC.getOperand(1), 3662 InvCond); 3663 } 3664 } 3665 } 3666 3667 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3668 // equality or unsigned, and all 1 bits of the const are in the same 3669 // partial word, see if we can shorten the load. 3670 if (DCI.isBeforeLegalize() && 3671 !ISD::isSignedIntSetCC(Cond) && 3672 N0.getOpcode() == ISD::AND && C1 == 0 && 3673 N0.getNode()->hasOneUse() && 3674 isa<LoadSDNode>(N0.getOperand(0)) && 3675 N0.getOperand(0).getNode()->hasOneUse() && 3676 isa<ConstantSDNode>(N0.getOperand(1))) { 3677 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3678 APInt bestMask; 3679 unsigned bestWidth = 0, bestOffset = 0; 3680 if (Lod->isSimple() && Lod->isUnindexed()) { 3681 unsigned origWidth = N0.getValueSizeInBits(); 3682 unsigned maskWidth = origWidth; 3683 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3684 // 8 bits, but have to be careful... 3685 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3686 origWidth = Lod->getMemoryVT().getSizeInBits(); 3687 const APInt &Mask = N0.getConstantOperandAPInt(1); 3688 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3689 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3690 for (unsigned offset=0; offset<origWidth/width; offset++) { 3691 if (Mask.isSubsetOf(newMask)) { 3692 if (Layout.isLittleEndian()) 3693 bestOffset = (uint64_t)offset * (width/8); 3694 else 3695 bestOffset = (origWidth/width - offset - 1) * (width/8); 3696 bestMask = Mask.lshr(offset * (width/8) * 8); 3697 bestWidth = width; 3698 break; 3699 } 3700 newMask <<= width; 3701 } 3702 } 3703 } 3704 if (bestWidth) { 3705 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3706 if (newVT.isRound() && 3707 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3708 SDValue Ptr = Lod->getBasePtr(); 3709 if (bestOffset != 0) 3710 Ptr = 3711 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3712 SDValue NewLoad = 3713 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3714 Lod->getPointerInfo().getWithOffset(bestOffset), 3715 Lod->getOriginalAlign()); 3716 return DAG.getSetCC(dl, VT, 3717 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3718 DAG.getConstant(bestMask.trunc(bestWidth), 3719 dl, newVT)), 3720 DAG.getConstant(0LL, dl, newVT), Cond); 3721 } 3722 } 3723 } 3724 3725 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3726 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3727 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3728 3729 // If the comparison constant has bits in the upper part, the 3730 // zero-extended value could never match. 3731 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3732 C1.getBitWidth() - InSize))) { 3733 switch (Cond) { 3734 case ISD::SETUGT: 3735 case ISD::SETUGE: 3736 case ISD::SETEQ: 3737 return DAG.getConstant(0, dl, VT); 3738 case ISD::SETULT: 3739 case ISD::SETULE: 3740 case ISD::SETNE: 3741 return DAG.getConstant(1, dl, VT); 3742 case ISD::SETGT: 3743 case ISD::SETGE: 3744 // True if the sign bit of C1 is set. 3745 return DAG.getConstant(C1.isNegative(), dl, VT); 3746 case ISD::SETLT: 3747 case ISD::SETLE: 3748 // True if the sign bit of C1 isn't set. 3749 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3750 default: 3751 break; 3752 } 3753 } 3754 3755 // Otherwise, we can perform the comparison with the low bits. 3756 switch (Cond) { 3757 case ISD::SETEQ: 3758 case ISD::SETNE: 3759 case ISD::SETUGT: 3760 case ISD::SETUGE: 3761 case ISD::SETULT: 3762 case ISD::SETULE: { 3763 EVT newVT = N0.getOperand(0).getValueType(); 3764 if (DCI.isBeforeLegalizeOps() || 3765 (isOperationLegal(ISD::SETCC, newVT) && 3766 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3767 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3768 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3769 3770 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3771 NewConst, Cond); 3772 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3773 } 3774 break; 3775 } 3776 default: 3777 break; // todo, be more careful with signed comparisons 3778 } 3779 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3780 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3781 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3782 OpVT)) { 3783 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3784 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3785 EVT ExtDstTy = N0.getValueType(); 3786 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3787 3788 // If the constant doesn't fit into the number of bits for the source of 3789 // the sign extension, it is impossible for both sides to be equal. 3790 if (C1.getMinSignedBits() > ExtSrcTyBits) 3791 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3792 3793 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3794 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3795 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3796 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3797 DAG.getConstant(Imm, dl, ExtDstTy)); 3798 if (!DCI.isCalledByLegalizer()) 3799 DCI.AddToWorklist(ZextOp.getNode()); 3800 // Otherwise, make this a use of a zext. 3801 return DAG.getSetCC(dl, VT, ZextOp, 3802 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3803 } else if ((N1C->isNullValue() || N1C->isOne()) && 3804 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3805 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3806 if (N0.getOpcode() == ISD::SETCC && 3807 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3808 (N0.getValueType() == MVT::i1 || 3809 getBooleanContents(N0.getOperand(0).getValueType()) == 3810 ZeroOrOneBooleanContent)) { 3811 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3812 if (TrueWhenTrue) 3813 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3814 // Invert the condition. 3815 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3816 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3817 if (DCI.isBeforeLegalizeOps() || 3818 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3819 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3820 } 3821 3822 if ((N0.getOpcode() == ISD::XOR || 3823 (N0.getOpcode() == ISD::AND && 3824 N0.getOperand(0).getOpcode() == ISD::XOR && 3825 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3826 isOneConstant(N0.getOperand(1))) { 3827 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3828 // can only do this if the top bits are known zero. 3829 unsigned BitWidth = N0.getValueSizeInBits(); 3830 if (DAG.MaskedValueIsZero(N0, 3831 APInt::getHighBitsSet(BitWidth, 3832 BitWidth-1))) { 3833 // Okay, get the un-inverted input value. 3834 SDValue Val; 3835 if (N0.getOpcode() == ISD::XOR) { 3836 Val = N0.getOperand(0); 3837 } else { 3838 assert(N0.getOpcode() == ISD::AND && 3839 N0.getOperand(0).getOpcode() == ISD::XOR); 3840 // ((X^1)&1)^1 -> X & 1 3841 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3842 N0.getOperand(0).getOperand(0), 3843 N0.getOperand(1)); 3844 } 3845 3846 return DAG.getSetCC(dl, VT, Val, N1, 3847 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3848 } 3849 } else if (N1C->isOne()) { 3850 SDValue Op0 = N0; 3851 if (Op0.getOpcode() == ISD::TRUNCATE) 3852 Op0 = Op0.getOperand(0); 3853 3854 if ((Op0.getOpcode() == ISD::XOR) && 3855 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3856 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3857 SDValue XorLHS = Op0.getOperand(0); 3858 SDValue XorRHS = Op0.getOperand(1); 3859 // Ensure that the input setccs return an i1 type or 0/1 value. 3860 if (Op0.getValueType() == MVT::i1 || 3861 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3862 ZeroOrOneBooleanContent && 3863 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3864 ZeroOrOneBooleanContent)) { 3865 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3866 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3867 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3868 } 3869 } 3870 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3871 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3872 if (Op0.getValueType().bitsGT(VT)) 3873 Op0 = DAG.getNode(ISD::AND, dl, VT, 3874 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3875 DAG.getConstant(1, dl, VT)); 3876 else if (Op0.getValueType().bitsLT(VT)) 3877 Op0 = DAG.getNode(ISD::AND, dl, VT, 3878 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3879 DAG.getConstant(1, dl, VT)); 3880 3881 return DAG.getSetCC(dl, VT, Op0, 3882 DAG.getConstant(0, dl, Op0.getValueType()), 3883 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3884 } 3885 if (Op0.getOpcode() == ISD::AssertZext && 3886 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3887 return DAG.getSetCC(dl, VT, Op0, 3888 DAG.getConstant(0, dl, Op0.getValueType()), 3889 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3890 } 3891 } 3892 3893 // Given: 3894 // icmp eq/ne (urem %x, %y), 0 3895 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3896 // icmp eq/ne %x, 0 3897 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3898 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3899 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3900 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3901 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3902 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3903 } 3904 3905 if (SDValue V = 3906 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3907 return V; 3908 } 3909 3910 // These simplifications apply to splat vectors as well. 3911 // TODO: Handle more splat vector cases. 3912 if (auto *N1C = isConstOrConstSplat(N1)) { 3913 const APInt &C1 = N1C->getAPIntValue(); 3914 3915 APInt MinVal, MaxVal; 3916 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3917 if (ISD::isSignedIntSetCC(Cond)) { 3918 MinVal = APInt::getSignedMinValue(OperandBitSize); 3919 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3920 } else { 3921 MinVal = APInt::getMinValue(OperandBitSize); 3922 MaxVal = APInt::getMaxValue(OperandBitSize); 3923 } 3924 3925 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3926 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3927 // X >= MIN --> true 3928 if (C1 == MinVal) 3929 return DAG.getBoolConstant(true, dl, VT, OpVT); 3930 3931 if (!VT.isVector()) { // TODO: Support this for vectors. 3932 // X >= C0 --> X > (C0 - 1) 3933 APInt C = C1 - 1; 3934 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3935 if ((DCI.isBeforeLegalizeOps() || 3936 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3937 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3938 isLegalICmpImmediate(C.getSExtValue())))) { 3939 return DAG.getSetCC(dl, VT, N0, 3940 DAG.getConstant(C, dl, N1.getValueType()), 3941 NewCC); 3942 } 3943 } 3944 } 3945 3946 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3947 // X <= MAX --> true 3948 if (C1 == MaxVal) 3949 return DAG.getBoolConstant(true, dl, VT, OpVT); 3950 3951 // X <= C0 --> X < (C0 + 1) 3952 if (!VT.isVector()) { // TODO: Support this for vectors. 3953 APInt C = C1 + 1; 3954 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3955 if ((DCI.isBeforeLegalizeOps() || 3956 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3957 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3958 isLegalICmpImmediate(C.getSExtValue())))) { 3959 return DAG.getSetCC(dl, VT, N0, 3960 DAG.getConstant(C, dl, N1.getValueType()), 3961 NewCC); 3962 } 3963 } 3964 } 3965 3966 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3967 if (C1 == MinVal) 3968 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3969 3970 // TODO: Support this for vectors after legalize ops. 3971 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3972 // Canonicalize setlt X, Max --> setne X, Max 3973 if (C1 == MaxVal) 3974 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3975 3976 // If we have setult X, 1, turn it into seteq X, 0 3977 if (C1 == MinVal+1) 3978 return DAG.getSetCC(dl, VT, N0, 3979 DAG.getConstant(MinVal, dl, N0.getValueType()), 3980 ISD::SETEQ); 3981 } 3982 } 3983 3984 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3985 if (C1 == MaxVal) 3986 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3987 3988 // TODO: Support this for vectors after legalize ops. 3989 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3990 // Canonicalize setgt X, Min --> setne X, Min 3991 if (C1 == MinVal) 3992 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3993 3994 // If we have setugt X, Max-1, turn it into seteq X, Max 3995 if (C1 == MaxVal-1) 3996 return DAG.getSetCC(dl, VT, N0, 3997 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3998 ISD::SETEQ); 3999 } 4000 } 4001 4002 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4003 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4004 if (C1.isNullValue()) 4005 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4006 VT, N0, N1, Cond, DCI, dl)) 4007 return CC; 4008 4009 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4010 // For example, when high 32-bits of i64 X are known clear: 4011 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4012 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4013 bool CmpZero = N1C->getAPIntValue().isNullValue(); 4014 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 4015 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4016 // Match or(lo,shl(hi,bw/2)) pattern. 4017 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4018 unsigned EltBits = V.getScalarValueSizeInBits(); 4019 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4020 return false; 4021 SDValue LHS = V.getOperand(0); 4022 SDValue RHS = V.getOperand(1); 4023 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4024 // Unshifted element must have zero upperbits. 4025 if (RHS.getOpcode() == ISD::SHL && 4026 isa<ConstantSDNode>(RHS.getOperand(1)) && 4027 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4028 DAG.MaskedValueIsZero(LHS, HiBits)) { 4029 Lo = LHS; 4030 Hi = RHS.getOperand(0); 4031 return true; 4032 } 4033 if (LHS.getOpcode() == ISD::SHL && 4034 isa<ConstantSDNode>(LHS.getOperand(1)) && 4035 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4036 DAG.MaskedValueIsZero(RHS, HiBits)) { 4037 Lo = RHS; 4038 Hi = LHS.getOperand(0); 4039 return true; 4040 } 4041 return false; 4042 }; 4043 4044 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4045 unsigned EltBits = N0.getScalarValueSizeInBits(); 4046 unsigned HalfBits = EltBits / 2; 4047 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4048 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4049 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4050 SDValue NewN0 = 4051 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4052 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4053 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4054 }; 4055 4056 SDValue Lo, Hi; 4057 if (IsConcat(N0, Lo, Hi)) 4058 return MergeConcat(Lo, Hi); 4059 4060 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4061 SDValue Lo0, Lo1, Hi0, Hi1; 4062 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4063 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4064 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4065 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4066 } 4067 } 4068 } 4069 } 4070 4071 // If we have "setcc X, C0", check to see if we can shrink the immediate 4072 // by changing cc. 4073 // TODO: Support this for vectors after legalize ops. 4074 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4075 // SETUGT X, SINTMAX -> SETLT X, 0 4076 // SETUGE X, SINTMIN -> SETLT X, 0 4077 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4078 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4079 return DAG.getSetCC(dl, VT, N0, 4080 DAG.getConstant(0, dl, N1.getValueType()), 4081 ISD::SETLT); 4082 4083 // SETULT X, SINTMIN -> SETGT X, -1 4084 // SETULE X, SINTMAX -> SETGT X, -1 4085 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4086 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4087 return DAG.getSetCC(dl, VT, N0, 4088 DAG.getAllOnesConstant(dl, N1.getValueType()), 4089 ISD::SETGT); 4090 } 4091 } 4092 4093 // Back to non-vector simplifications. 4094 // TODO: Can we do these for vector splats? 4095 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4097 const APInt &C1 = N1C->getAPIntValue(); 4098 EVT ShValTy = N0.getValueType(); 4099 4100 // Fold bit comparisons when we can. This will result in an 4101 // incorrect value when boolean false is negative one, unless 4102 // the bitsize is 1 in which case the false value is the same 4103 // in practice regardless of the representation. 4104 if ((VT.getSizeInBits() == 1 || 4105 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4106 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4107 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4108 N0.getOpcode() == ISD::AND) { 4109 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4110 EVT ShiftTy = 4111 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4112 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4113 // Perform the xform if the AND RHS is a single bit. 4114 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4115 if (AndRHS->getAPIntValue().isPowerOf2() && 4116 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4117 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4118 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4119 DAG.getConstant(ShCt, dl, ShiftTy))); 4120 } 4121 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4122 // (X & 8) == 8 --> (X & 8) >> 3 4123 // Perform the xform if C1 is a single bit. 4124 unsigned ShCt = C1.logBase2(); 4125 if (C1.isPowerOf2() && 4126 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4127 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4128 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4129 DAG.getConstant(ShCt, dl, ShiftTy))); 4130 } 4131 } 4132 } 4133 } 4134 4135 if (C1.getMinSignedBits() <= 64 && 4136 !isLegalICmpImmediate(C1.getSExtValue())) { 4137 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4138 // (X & -256) == 256 -> (X >> 8) == 1 4139 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4140 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4141 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4142 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4143 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4144 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4145 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4146 SDValue Shift = 4147 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4148 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4149 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4150 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4151 } 4152 } 4153 } 4154 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4155 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4156 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4157 // X < 0x100000000 -> (X >> 32) < 1 4158 // X >= 0x100000000 -> (X >> 32) >= 1 4159 // X <= 0x0ffffffff -> (X >> 32) < 1 4160 // X > 0x0ffffffff -> (X >> 32) >= 1 4161 unsigned ShiftBits; 4162 APInt NewC = C1; 4163 ISD::CondCode NewCond = Cond; 4164 if (AdjOne) { 4165 ShiftBits = C1.countTrailingOnes(); 4166 NewC = NewC + 1; 4167 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4168 } else { 4169 ShiftBits = C1.countTrailingZeros(); 4170 } 4171 NewC.lshrInPlace(ShiftBits); 4172 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4173 isLegalICmpImmediate(NewC.getSExtValue()) && 4174 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4175 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4176 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4177 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4178 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4179 } 4180 } 4181 } 4182 } 4183 4184 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4185 auto *CFP = cast<ConstantFPSDNode>(N1); 4186 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4187 4188 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4189 // constant if knowing that the operand is non-nan is enough. We prefer to 4190 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4191 // materialize 0.0. 4192 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4193 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4194 4195 // setcc (fneg x), C -> setcc swap(pred) x, -C 4196 if (N0.getOpcode() == ISD::FNEG) { 4197 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4198 if (DCI.isBeforeLegalizeOps() || 4199 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4200 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4201 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4202 } 4203 } 4204 4205 // If the condition is not legal, see if we can find an equivalent one 4206 // which is legal. 4207 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4208 // If the comparison was an awkward floating-point == or != and one of 4209 // the comparison operands is infinity or negative infinity, convert the 4210 // condition to a less-awkward <= or >=. 4211 if (CFP->getValueAPF().isInfinity()) { 4212 bool IsNegInf = CFP->getValueAPF().isNegative(); 4213 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4214 switch (Cond) { 4215 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4216 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4217 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4218 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4219 default: break; 4220 } 4221 if (NewCond != ISD::SETCC_INVALID && 4222 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4223 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4224 } 4225 } 4226 } 4227 4228 if (N0 == N1) { 4229 // The sext(setcc()) => setcc() optimization relies on the appropriate 4230 // constant being emitted. 4231 assert(!N0.getValueType().isInteger() && 4232 "Integer types should be handled by FoldSetCC"); 4233 4234 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4235 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4236 if (UOF == 2) // FP operators that are undefined on NaNs. 4237 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4238 if (UOF == unsigned(EqTrue)) 4239 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4240 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4241 // if it is not already. 4242 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4243 if (NewCond != Cond && 4244 (DCI.isBeforeLegalizeOps() || 4245 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4246 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4247 } 4248 4249 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4250 N0.getValueType().isInteger()) { 4251 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4252 N0.getOpcode() == ISD::XOR) { 4253 // Simplify (X+Y) == (X+Z) --> Y == Z 4254 if (N0.getOpcode() == N1.getOpcode()) { 4255 if (N0.getOperand(0) == N1.getOperand(0)) 4256 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4257 if (N0.getOperand(1) == N1.getOperand(1)) 4258 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4259 if (isCommutativeBinOp(N0.getOpcode())) { 4260 // If X op Y == Y op X, try other combinations. 4261 if (N0.getOperand(0) == N1.getOperand(1)) 4262 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4263 Cond); 4264 if (N0.getOperand(1) == N1.getOperand(0)) 4265 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4266 Cond); 4267 } 4268 } 4269 4270 // If RHS is a legal immediate value for a compare instruction, we need 4271 // to be careful about increasing register pressure needlessly. 4272 bool LegalRHSImm = false; 4273 4274 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4275 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4276 // Turn (X+C1) == C2 --> X == C2-C1 4277 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4278 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4279 DAG.getConstant(RHSC->getAPIntValue()- 4280 LHSR->getAPIntValue(), 4281 dl, N0.getValueType()), Cond); 4282 } 4283 4284 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4285 if (N0.getOpcode() == ISD::XOR) 4286 // If we know that all of the inverted bits are zero, don't bother 4287 // performing the inversion. 4288 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4289 return 4290 DAG.getSetCC(dl, VT, N0.getOperand(0), 4291 DAG.getConstant(LHSR->getAPIntValue() ^ 4292 RHSC->getAPIntValue(), 4293 dl, N0.getValueType()), 4294 Cond); 4295 } 4296 4297 // Turn (C1-X) == C2 --> X == C1-C2 4298 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4299 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4300 return 4301 DAG.getSetCC(dl, VT, N0.getOperand(1), 4302 DAG.getConstant(SUBC->getAPIntValue() - 4303 RHSC->getAPIntValue(), 4304 dl, N0.getValueType()), 4305 Cond); 4306 } 4307 } 4308 4309 // Could RHSC fold directly into a compare? 4310 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4311 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4312 } 4313 4314 // (X+Y) == X --> Y == 0 and similar folds. 4315 // Don't do this if X is an immediate that can fold into a cmp 4316 // instruction and X+Y has other uses. It could be an induction variable 4317 // chain, and the transform would increase register pressure. 4318 if (!LegalRHSImm || N0.hasOneUse()) 4319 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4320 return V; 4321 } 4322 4323 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4324 N1.getOpcode() == ISD::XOR) 4325 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4326 return V; 4327 4328 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4329 return V; 4330 } 4331 4332 // Fold remainder of division by a constant. 4333 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4334 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4335 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4336 4337 // When division is cheap or optimizing for minimum size, 4338 // fall through to DIVREM creation by skipping this fold. 4339 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4340 if (N0.getOpcode() == ISD::UREM) { 4341 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4342 return Folded; 4343 } else if (N0.getOpcode() == ISD::SREM) { 4344 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4345 return Folded; 4346 } 4347 } 4348 } 4349 4350 // Fold away ALL boolean setcc's. 4351 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4352 SDValue Temp; 4353 switch (Cond) { 4354 default: llvm_unreachable("Unknown integer setcc!"); 4355 case ISD::SETEQ: // X == Y -> ~(X^Y) 4356 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4357 N0 = DAG.getNOT(dl, Temp, OpVT); 4358 if (!DCI.isCalledByLegalizer()) 4359 DCI.AddToWorklist(Temp.getNode()); 4360 break; 4361 case ISD::SETNE: // X != Y --> (X^Y) 4362 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4363 break; 4364 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4365 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4366 Temp = DAG.getNOT(dl, N0, OpVT); 4367 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4368 if (!DCI.isCalledByLegalizer()) 4369 DCI.AddToWorklist(Temp.getNode()); 4370 break; 4371 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4372 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4373 Temp = DAG.getNOT(dl, N1, OpVT); 4374 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4375 if (!DCI.isCalledByLegalizer()) 4376 DCI.AddToWorklist(Temp.getNode()); 4377 break; 4378 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4379 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4380 Temp = DAG.getNOT(dl, N0, OpVT); 4381 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4382 if (!DCI.isCalledByLegalizer()) 4383 DCI.AddToWorklist(Temp.getNode()); 4384 break; 4385 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4386 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4387 Temp = DAG.getNOT(dl, N1, OpVT); 4388 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4389 break; 4390 } 4391 if (VT.getScalarType() != MVT::i1) { 4392 if (!DCI.isCalledByLegalizer()) 4393 DCI.AddToWorklist(N0.getNode()); 4394 // FIXME: If running after legalize, we probably can't do this. 4395 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4396 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4397 } 4398 return N0; 4399 } 4400 4401 // Could not fold it. 4402 return SDValue(); 4403 } 4404 4405 /// Returns true (and the GlobalValue and the offset) if the node is a 4406 /// GlobalAddress + offset. 4407 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4408 int64_t &Offset) const { 4409 4410 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4411 4412 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4413 GA = GASD->getGlobal(); 4414 Offset += GASD->getOffset(); 4415 return true; 4416 } 4417 4418 if (N->getOpcode() == ISD::ADD) { 4419 SDValue N1 = N->getOperand(0); 4420 SDValue N2 = N->getOperand(1); 4421 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4422 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4423 Offset += V->getSExtValue(); 4424 return true; 4425 } 4426 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4427 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4428 Offset += V->getSExtValue(); 4429 return true; 4430 } 4431 } 4432 } 4433 4434 return false; 4435 } 4436 4437 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4438 DAGCombinerInfo &DCI) const { 4439 // Default implementation: no optimization. 4440 return SDValue(); 4441 } 4442 4443 //===----------------------------------------------------------------------===// 4444 // Inline Assembler Implementation Methods 4445 //===----------------------------------------------------------------------===// 4446 4447 TargetLowering::ConstraintType 4448 TargetLowering::getConstraintType(StringRef Constraint) const { 4449 unsigned S = Constraint.size(); 4450 4451 if (S == 1) { 4452 switch (Constraint[0]) { 4453 default: break; 4454 case 'r': 4455 return C_RegisterClass; 4456 case 'm': // memory 4457 case 'o': // offsetable 4458 case 'V': // not offsetable 4459 return C_Memory; 4460 case 'n': // Simple Integer 4461 case 'E': // Floating Point Constant 4462 case 'F': // Floating Point Constant 4463 return C_Immediate; 4464 case 'i': // Simple Integer or Relocatable Constant 4465 case 's': // Relocatable Constant 4466 case 'p': // Address. 4467 case 'X': // Allow ANY value. 4468 case 'I': // Target registers. 4469 case 'J': 4470 case 'K': 4471 case 'L': 4472 case 'M': 4473 case 'N': 4474 case 'O': 4475 case 'P': 4476 case '<': 4477 case '>': 4478 return C_Other; 4479 } 4480 } 4481 4482 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4483 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4484 return C_Memory; 4485 return C_Register; 4486 } 4487 return C_Unknown; 4488 } 4489 4490 /// Try to replace an X constraint, which matches anything, with another that 4491 /// has more specific requirements based on the type of the corresponding 4492 /// operand. 4493 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4494 if (ConstraintVT.isInteger()) 4495 return "r"; 4496 if (ConstraintVT.isFloatingPoint()) 4497 return "f"; // works for many targets 4498 return nullptr; 4499 } 4500 4501 SDValue TargetLowering::LowerAsmOutputForConstraint( 4502 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4503 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4504 return SDValue(); 4505 } 4506 4507 /// Lower the specified operand into the Ops vector. 4508 /// If it is invalid, don't add anything to Ops. 4509 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4510 std::string &Constraint, 4511 std::vector<SDValue> &Ops, 4512 SelectionDAG &DAG) const { 4513 4514 if (Constraint.length() > 1) return; 4515 4516 char ConstraintLetter = Constraint[0]; 4517 switch (ConstraintLetter) { 4518 default: break; 4519 case 'X': // Allows any operand; labels (basic block) use this. 4520 if (Op.getOpcode() == ISD::BasicBlock || 4521 Op.getOpcode() == ISD::TargetBlockAddress) { 4522 Ops.push_back(Op); 4523 return; 4524 } 4525 LLVM_FALLTHROUGH; 4526 case 'i': // Simple Integer or Relocatable Constant 4527 case 'n': // Simple Integer 4528 case 's': { // Relocatable Constant 4529 4530 GlobalAddressSDNode *GA; 4531 ConstantSDNode *C; 4532 BlockAddressSDNode *BA; 4533 uint64_t Offset = 0; 4534 4535 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4536 // etc., since getelementpointer is variadic. We can't use 4537 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4538 // while in this case the GA may be furthest from the root node which is 4539 // likely an ISD::ADD. 4540 while (1) { 4541 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4542 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4543 GA->getValueType(0), 4544 Offset + GA->getOffset())); 4545 return; 4546 } 4547 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4548 // gcc prints these as sign extended. Sign extend value to 64 bits 4549 // now; without this it would get ZExt'd later in 4550 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4551 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4552 BooleanContent BCont = getBooleanContents(MVT::i64); 4553 ISD::NodeType ExtOpc = 4554 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4555 int64_t ExtVal = 4556 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4557 Ops.push_back( 4558 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4559 return; 4560 } 4561 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4562 Ops.push_back(DAG.getTargetBlockAddress( 4563 BA->getBlockAddress(), BA->getValueType(0), 4564 Offset + BA->getOffset(), BA->getTargetFlags())); 4565 return; 4566 } 4567 const unsigned OpCode = Op.getOpcode(); 4568 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4569 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4570 Op = Op.getOperand(1); 4571 // Subtraction is not commutative. 4572 else if (OpCode == ISD::ADD && 4573 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4574 Op = Op.getOperand(0); 4575 else 4576 return; 4577 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4578 continue; 4579 } 4580 return; 4581 } 4582 break; 4583 } 4584 } 4585 } 4586 4587 std::pair<unsigned, const TargetRegisterClass *> 4588 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4589 StringRef Constraint, 4590 MVT VT) const { 4591 if (Constraint.empty() || Constraint[0] != '{') 4592 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4593 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4594 4595 // Remove the braces from around the name. 4596 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4597 4598 std::pair<unsigned, const TargetRegisterClass *> R = 4599 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4600 4601 // Figure out which register class contains this reg. 4602 for (const TargetRegisterClass *RC : RI->regclasses()) { 4603 // If none of the value types for this register class are valid, we 4604 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4605 if (!isLegalRC(*RI, *RC)) 4606 continue; 4607 4608 for (const MCPhysReg &PR : *RC) { 4609 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4610 std::pair<unsigned, const TargetRegisterClass *> S = 4611 std::make_pair(PR, RC); 4612 4613 // If this register class has the requested value type, return it, 4614 // otherwise keep searching and return the first class found 4615 // if no other is found which explicitly has the requested type. 4616 if (RI->isTypeLegalForClass(*RC, VT)) 4617 return S; 4618 if (!R.second) 4619 R = S; 4620 } 4621 } 4622 } 4623 4624 return R; 4625 } 4626 4627 //===----------------------------------------------------------------------===// 4628 // Constraint Selection. 4629 4630 /// Return true of this is an input operand that is a matching constraint like 4631 /// "4". 4632 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4633 assert(!ConstraintCode.empty() && "No known constraint!"); 4634 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4635 } 4636 4637 /// If this is an input matching constraint, this method returns the output 4638 /// operand it matches. 4639 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4640 assert(!ConstraintCode.empty() && "No known constraint!"); 4641 return atoi(ConstraintCode.c_str()); 4642 } 4643 4644 /// Split up the constraint string from the inline assembly value into the 4645 /// specific constraints and their prefixes, and also tie in the associated 4646 /// operand values. 4647 /// If this returns an empty vector, and if the constraint string itself 4648 /// isn't empty, there was an error parsing. 4649 TargetLowering::AsmOperandInfoVector 4650 TargetLowering::ParseConstraints(const DataLayout &DL, 4651 const TargetRegisterInfo *TRI, 4652 const CallBase &Call) const { 4653 /// Information about all of the constraints. 4654 AsmOperandInfoVector ConstraintOperands; 4655 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4656 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4657 4658 // Do a prepass over the constraints, canonicalizing them, and building up the 4659 // ConstraintOperands list. 4660 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4661 unsigned ResNo = 0; // ResNo - The result number of the next output. 4662 4663 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4664 ConstraintOperands.emplace_back(std::move(CI)); 4665 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4666 4667 // Update multiple alternative constraint count. 4668 if (OpInfo.multipleAlternatives.size() > maCount) 4669 maCount = OpInfo.multipleAlternatives.size(); 4670 4671 OpInfo.ConstraintVT = MVT::Other; 4672 4673 // Compute the value type for each operand. 4674 switch (OpInfo.Type) { 4675 case InlineAsm::isOutput: 4676 // Indirect outputs just consume an argument. 4677 if (OpInfo.isIndirect) { 4678 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4679 break; 4680 } 4681 4682 // The return value of the call is this value. As such, there is no 4683 // corresponding argument. 4684 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4685 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4686 OpInfo.ConstraintVT = 4687 getSimpleValueType(DL, STy->getElementType(ResNo)); 4688 } else { 4689 assert(ResNo == 0 && "Asm only has one result!"); 4690 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4691 } 4692 ++ResNo; 4693 break; 4694 case InlineAsm::isInput: 4695 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4696 break; 4697 case InlineAsm::isClobber: 4698 // Nothing to do. 4699 break; 4700 } 4701 4702 if (OpInfo.CallOperandVal) { 4703 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4704 if (OpInfo.isIndirect) { 4705 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4706 if (!PtrTy) 4707 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4708 OpTy = PtrTy->getElementType(); 4709 } 4710 4711 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4712 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4713 if (STy->getNumElements() == 1) 4714 OpTy = STy->getElementType(0); 4715 4716 // If OpTy is not a single value, it may be a struct/union that we 4717 // can tile with integers. 4718 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4719 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4720 switch (BitSize) { 4721 default: break; 4722 case 1: 4723 case 8: 4724 case 16: 4725 case 32: 4726 case 64: 4727 case 128: 4728 OpInfo.ConstraintVT = 4729 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4730 break; 4731 } 4732 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4733 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4734 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4735 } else { 4736 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4737 } 4738 } 4739 } 4740 4741 // If we have multiple alternative constraints, select the best alternative. 4742 if (!ConstraintOperands.empty()) { 4743 if (maCount) { 4744 unsigned bestMAIndex = 0; 4745 int bestWeight = -1; 4746 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4747 int weight = -1; 4748 unsigned maIndex; 4749 // Compute the sums of the weights for each alternative, keeping track 4750 // of the best (highest weight) one so far. 4751 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4752 int weightSum = 0; 4753 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4754 cIndex != eIndex; ++cIndex) { 4755 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4756 if (OpInfo.Type == InlineAsm::isClobber) 4757 continue; 4758 4759 // If this is an output operand with a matching input operand, 4760 // look up the matching input. If their types mismatch, e.g. one 4761 // is an integer, the other is floating point, or their sizes are 4762 // different, flag it as an maCantMatch. 4763 if (OpInfo.hasMatchingInput()) { 4764 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4765 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4766 if ((OpInfo.ConstraintVT.isInteger() != 4767 Input.ConstraintVT.isInteger()) || 4768 (OpInfo.ConstraintVT.getSizeInBits() != 4769 Input.ConstraintVT.getSizeInBits())) { 4770 weightSum = -1; // Can't match. 4771 break; 4772 } 4773 } 4774 } 4775 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4776 if (weight == -1) { 4777 weightSum = -1; 4778 break; 4779 } 4780 weightSum += weight; 4781 } 4782 // Update best. 4783 if (weightSum > bestWeight) { 4784 bestWeight = weightSum; 4785 bestMAIndex = maIndex; 4786 } 4787 } 4788 4789 // Now select chosen alternative in each constraint. 4790 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4791 cIndex != eIndex; ++cIndex) { 4792 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4793 if (cInfo.Type == InlineAsm::isClobber) 4794 continue; 4795 cInfo.selectAlternative(bestMAIndex); 4796 } 4797 } 4798 } 4799 4800 // Check and hook up tied operands, choose constraint code to use. 4801 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4802 cIndex != eIndex; ++cIndex) { 4803 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4804 4805 // If this is an output operand with a matching input operand, look up the 4806 // matching input. If their types mismatch, e.g. one is an integer, the 4807 // other is floating point, or their sizes are different, flag it as an 4808 // error. 4809 if (OpInfo.hasMatchingInput()) { 4810 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4811 4812 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4813 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4814 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4815 OpInfo.ConstraintVT); 4816 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4817 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4818 Input.ConstraintVT); 4819 if ((OpInfo.ConstraintVT.isInteger() != 4820 Input.ConstraintVT.isInteger()) || 4821 (MatchRC.second != InputRC.second)) { 4822 report_fatal_error("Unsupported asm: input constraint" 4823 " with a matching output constraint of" 4824 " incompatible type!"); 4825 } 4826 } 4827 } 4828 } 4829 4830 return ConstraintOperands; 4831 } 4832 4833 /// Return an integer indicating how general CT is. 4834 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4835 switch (CT) { 4836 case TargetLowering::C_Immediate: 4837 case TargetLowering::C_Other: 4838 case TargetLowering::C_Unknown: 4839 return 0; 4840 case TargetLowering::C_Register: 4841 return 1; 4842 case TargetLowering::C_RegisterClass: 4843 return 2; 4844 case TargetLowering::C_Memory: 4845 return 3; 4846 } 4847 llvm_unreachable("Invalid constraint type"); 4848 } 4849 4850 /// Examine constraint type and operand type and determine a weight value. 4851 /// This object must already have been set up with the operand type 4852 /// and the current alternative constraint selected. 4853 TargetLowering::ConstraintWeight 4854 TargetLowering::getMultipleConstraintMatchWeight( 4855 AsmOperandInfo &info, int maIndex) const { 4856 InlineAsm::ConstraintCodeVector *rCodes; 4857 if (maIndex >= (int)info.multipleAlternatives.size()) 4858 rCodes = &info.Codes; 4859 else 4860 rCodes = &info.multipleAlternatives[maIndex].Codes; 4861 ConstraintWeight BestWeight = CW_Invalid; 4862 4863 // Loop over the options, keeping track of the most general one. 4864 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4865 ConstraintWeight weight = 4866 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4867 if (weight > BestWeight) 4868 BestWeight = weight; 4869 } 4870 4871 return BestWeight; 4872 } 4873 4874 /// Examine constraint type and operand type and determine a weight value. 4875 /// This object must already have been set up with the operand type 4876 /// and the current alternative constraint selected. 4877 TargetLowering::ConstraintWeight 4878 TargetLowering::getSingleConstraintMatchWeight( 4879 AsmOperandInfo &info, const char *constraint) const { 4880 ConstraintWeight weight = CW_Invalid; 4881 Value *CallOperandVal = info.CallOperandVal; 4882 // If we don't have a value, we can't do a match, 4883 // but allow it at the lowest weight. 4884 if (!CallOperandVal) 4885 return CW_Default; 4886 // Look at the constraint type. 4887 switch (*constraint) { 4888 case 'i': // immediate integer. 4889 case 'n': // immediate integer with a known value. 4890 if (isa<ConstantInt>(CallOperandVal)) 4891 weight = CW_Constant; 4892 break; 4893 case 's': // non-explicit intregal immediate. 4894 if (isa<GlobalValue>(CallOperandVal)) 4895 weight = CW_Constant; 4896 break; 4897 case 'E': // immediate float if host format. 4898 case 'F': // immediate float. 4899 if (isa<ConstantFP>(CallOperandVal)) 4900 weight = CW_Constant; 4901 break; 4902 case '<': // memory operand with autodecrement. 4903 case '>': // memory operand with autoincrement. 4904 case 'm': // memory operand. 4905 case 'o': // offsettable memory operand 4906 case 'V': // non-offsettable memory operand 4907 weight = CW_Memory; 4908 break; 4909 case 'r': // general register. 4910 case 'g': // general register, memory operand or immediate integer. 4911 // note: Clang converts "g" to "imr". 4912 if (CallOperandVal->getType()->isIntegerTy()) 4913 weight = CW_Register; 4914 break; 4915 case 'X': // any operand. 4916 default: 4917 weight = CW_Default; 4918 break; 4919 } 4920 return weight; 4921 } 4922 4923 /// If there are multiple different constraints that we could pick for this 4924 /// operand (e.g. "imr") try to pick the 'best' one. 4925 /// This is somewhat tricky: constraints fall into four classes: 4926 /// Other -> immediates and magic values 4927 /// Register -> one specific register 4928 /// RegisterClass -> a group of regs 4929 /// Memory -> memory 4930 /// Ideally, we would pick the most specific constraint possible: if we have 4931 /// something that fits into a register, we would pick it. The problem here 4932 /// is that if we have something that could either be in a register or in 4933 /// memory that use of the register could cause selection of *other* 4934 /// operands to fail: they might only succeed if we pick memory. Because of 4935 /// this the heuristic we use is: 4936 /// 4937 /// 1) If there is an 'other' constraint, and if the operand is valid for 4938 /// that constraint, use it. This makes us take advantage of 'i' 4939 /// constraints when available. 4940 /// 2) Otherwise, pick the most general constraint present. This prefers 4941 /// 'm' over 'r', for example. 4942 /// 4943 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4944 const TargetLowering &TLI, 4945 SDValue Op, SelectionDAG *DAG) { 4946 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4947 unsigned BestIdx = 0; 4948 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4949 int BestGenerality = -1; 4950 4951 // Loop over the options, keeping track of the most general one. 4952 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4953 TargetLowering::ConstraintType CType = 4954 TLI.getConstraintType(OpInfo.Codes[i]); 4955 4956 // Indirect 'other' or 'immediate' constraints are not allowed. 4957 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4958 CType == TargetLowering::C_Register || 4959 CType == TargetLowering::C_RegisterClass)) 4960 continue; 4961 4962 // If this is an 'other' or 'immediate' constraint, see if the operand is 4963 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4964 // the operand is an integer in the range [0..31] we want to use I (saving a 4965 // load of a register), otherwise we must use 'r'. 4966 if ((CType == TargetLowering::C_Other || 4967 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4968 assert(OpInfo.Codes[i].size() == 1 && 4969 "Unhandled multi-letter 'other' constraint"); 4970 std::vector<SDValue> ResultOps; 4971 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4972 ResultOps, *DAG); 4973 if (!ResultOps.empty()) { 4974 BestType = CType; 4975 BestIdx = i; 4976 break; 4977 } 4978 } 4979 4980 // Things with matching constraints can only be registers, per gcc 4981 // documentation. This mainly affects "g" constraints. 4982 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4983 continue; 4984 4985 // This constraint letter is more general than the previous one, use it. 4986 int Generality = getConstraintGenerality(CType); 4987 if (Generality > BestGenerality) { 4988 BestType = CType; 4989 BestIdx = i; 4990 BestGenerality = Generality; 4991 } 4992 } 4993 4994 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4995 OpInfo.ConstraintType = BestType; 4996 } 4997 4998 /// Determines the constraint code and constraint type to use for the specific 4999 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5000 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5001 SDValue Op, 5002 SelectionDAG *DAG) const { 5003 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5004 5005 // Single-letter constraints ('r') are very common. 5006 if (OpInfo.Codes.size() == 1) { 5007 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5008 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5009 } else { 5010 ChooseConstraint(OpInfo, *this, Op, DAG); 5011 } 5012 5013 // 'X' matches anything. 5014 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5015 // Labels and constants are handled elsewhere ('X' is the only thing 5016 // that matches labels). For Functions, the type here is the type of 5017 // the result, which is not what we want to look at; leave them alone. 5018 Value *v = OpInfo.CallOperandVal; 5019 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5020 OpInfo.CallOperandVal = v; 5021 return; 5022 } 5023 5024 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5025 return; 5026 5027 // Otherwise, try to resolve it to something we know about by looking at 5028 // the actual operand type. 5029 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5030 OpInfo.ConstraintCode = Repl; 5031 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5032 } 5033 } 5034 } 5035 5036 /// Given an exact SDIV by a constant, create a multiplication 5037 /// with the multiplicative inverse of the constant. 5038 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5039 const SDLoc &dl, SelectionDAG &DAG, 5040 SmallVectorImpl<SDNode *> &Created) { 5041 SDValue Op0 = N->getOperand(0); 5042 SDValue Op1 = N->getOperand(1); 5043 EVT VT = N->getValueType(0); 5044 EVT SVT = VT.getScalarType(); 5045 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5046 EVT ShSVT = ShVT.getScalarType(); 5047 5048 bool UseSRA = false; 5049 SmallVector<SDValue, 16> Shifts, Factors; 5050 5051 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5052 if (C->isNullValue()) 5053 return false; 5054 APInt Divisor = C->getAPIntValue(); 5055 unsigned Shift = Divisor.countTrailingZeros(); 5056 if (Shift) { 5057 Divisor.ashrInPlace(Shift); 5058 UseSRA = true; 5059 } 5060 // Calculate the multiplicative inverse, using Newton's method. 5061 APInt t; 5062 APInt Factor = Divisor; 5063 while ((t = Divisor * Factor) != 1) 5064 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5065 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5066 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5067 return true; 5068 }; 5069 5070 // Collect all magic values from the build vector. 5071 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5072 return SDValue(); 5073 5074 SDValue Shift, Factor; 5075 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5076 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5077 Factor = DAG.getBuildVector(VT, dl, Factors); 5078 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5079 assert(Shifts.size() == 1 && Factors.size() == 1 && 5080 "Expected matchUnaryPredicate to return one element for scalable " 5081 "vectors"); 5082 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5083 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5084 } else { 5085 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5086 Shift = Shifts[0]; 5087 Factor = Factors[0]; 5088 } 5089 5090 SDValue Res = Op0; 5091 5092 // Shift the value upfront if it is even, so the LSB is one. 5093 if (UseSRA) { 5094 // TODO: For UDIV use SRL instead of SRA. 5095 SDNodeFlags Flags; 5096 Flags.setExact(true); 5097 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5098 Created.push_back(Res.getNode()); 5099 } 5100 5101 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5102 } 5103 5104 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5105 SelectionDAG &DAG, 5106 SmallVectorImpl<SDNode *> &Created) const { 5107 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5109 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5110 return SDValue(N, 0); // Lower SDIV as SDIV 5111 return SDValue(); 5112 } 5113 5114 /// Given an ISD::SDIV node expressing a divide by constant, 5115 /// return a DAG expression to select that will generate the same value by 5116 /// multiplying by a magic number. 5117 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5118 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5119 bool IsAfterLegalization, 5120 SmallVectorImpl<SDNode *> &Created) const { 5121 SDLoc dl(N); 5122 EVT VT = N->getValueType(0); 5123 EVT SVT = VT.getScalarType(); 5124 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5125 EVT ShSVT = ShVT.getScalarType(); 5126 unsigned EltBits = VT.getScalarSizeInBits(); 5127 EVT MulVT; 5128 5129 // Check to see if we can do this. 5130 // FIXME: We should be more aggressive here. 5131 if (!isTypeLegal(VT)) { 5132 // Limit this to simple scalars for now. 5133 if (VT.isVector() || !VT.isSimple()) 5134 return SDValue(); 5135 5136 // If this type will be promoted to a large enough type with a legal 5137 // multiply operation, we can go ahead and do this transform. 5138 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5139 return SDValue(); 5140 5141 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5142 if (MulVT.getSizeInBits() < (2 * EltBits) || 5143 !isOperationLegal(ISD::MUL, MulVT)) 5144 return SDValue(); 5145 } 5146 5147 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5148 if (N->getFlags().hasExact()) 5149 return BuildExactSDIV(*this, N, dl, DAG, Created); 5150 5151 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5152 5153 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5154 if (C->isNullValue()) 5155 return false; 5156 5157 const APInt &Divisor = C->getAPIntValue(); 5158 APInt::ms magics = Divisor.magic(); 5159 int NumeratorFactor = 0; 5160 int ShiftMask = -1; 5161 5162 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5163 // If d is +1/-1, we just multiply the numerator by +1/-1. 5164 NumeratorFactor = Divisor.getSExtValue(); 5165 magics.m = 0; 5166 magics.s = 0; 5167 ShiftMask = 0; 5168 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5169 // If d > 0 and m < 0, add the numerator. 5170 NumeratorFactor = 1; 5171 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5172 // If d < 0 and m > 0, subtract the numerator. 5173 NumeratorFactor = -1; 5174 } 5175 5176 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5177 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5178 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5179 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5180 return true; 5181 }; 5182 5183 SDValue N0 = N->getOperand(0); 5184 SDValue N1 = N->getOperand(1); 5185 5186 // Collect the shifts / magic values from each element. 5187 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5188 return SDValue(); 5189 5190 SDValue MagicFactor, Factor, Shift, ShiftMask; 5191 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5192 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5193 Factor = DAG.getBuildVector(VT, dl, Factors); 5194 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5195 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5196 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5197 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5198 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5199 "Expected matchUnaryPredicate to return one element for scalable " 5200 "vectors"); 5201 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5202 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5203 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5204 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5205 } else { 5206 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5207 MagicFactor = MagicFactors[0]; 5208 Factor = Factors[0]; 5209 Shift = Shifts[0]; 5210 ShiftMask = ShiftMasks[0]; 5211 } 5212 5213 // Multiply the numerator (operand 0) by the magic value. 5214 // FIXME: We should support doing a MUL in a wider type. 5215 auto GetMULHS = [&](SDValue X, SDValue Y) { 5216 // If the type isn't legal, use a wider mul of the the type calculated 5217 // earlier. 5218 if (!isTypeLegal(VT)) { 5219 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5220 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5221 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5222 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5223 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5224 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5225 } 5226 5227 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5228 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5229 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5230 SDValue LoHi = 5231 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5232 return SDValue(LoHi.getNode(), 1); 5233 } 5234 return SDValue(); 5235 }; 5236 5237 SDValue Q = GetMULHS(N0, MagicFactor); 5238 if (!Q) 5239 return SDValue(); 5240 5241 Created.push_back(Q.getNode()); 5242 5243 // (Optionally) Add/subtract the numerator using Factor. 5244 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5245 Created.push_back(Factor.getNode()); 5246 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5247 Created.push_back(Q.getNode()); 5248 5249 // Shift right algebraic by shift value. 5250 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5251 Created.push_back(Q.getNode()); 5252 5253 // Extract the sign bit, mask it and add it to the quotient. 5254 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5255 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5256 Created.push_back(T.getNode()); 5257 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5258 Created.push_back(T.getNode()); 5259 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5260 } 5261 5262 /// Given an ISD::UDIV node expressing a divide by constant, 5263 /// return a DAG expression to select that will generate the same value by 5264 /// multiplying by a magic number. 5265 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5266 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5267 bool IsAfterLegalization, 5268 SmallVectorImpl<SDNode *> &Created) const { 5269 SDLoc dl(N); 5270 EVT VT = N->getValueType(0); 5271 EVT SVT = VT.getScalarType(); 5272 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5273 EVT ShSVT = ShVT.getScalarType(); 5274 unsigned EltBits = VT.getScalarSizeInBits(); 5275 EVT MulVT; 5276 5277 // Check to see if we can do this. 5278 // FIXME: We should be more aggressive here. 5279 if (!isTypeLegal(VT)) { 5280 // Limit this to simple scalars for now. 5281 if (VT.isVector() || !VT.isSimple()) 5282 return SDValue(); 5283 5284 // If this type will be promoted to a large enough type with a legal 5285 // multiply operation, we can go ahead and do this transform. 5286 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5287 return SDValue(); 5288 5289 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5290 if (MulVT.getSizeInBits() < (2 * EltBits) || 5291 !isOperationLegal(ISD::MUL, MulVT)) 5292 return SDValue(); 5293 } 5294 5295 bool UseNPQ = false; 5296 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5297 5298 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5299 if (C->isNullValue()) 5300 return false; 5301 // FIXME: We should use a narrower constant when the upper 5302 // bits are known to be zero. 5303 const APInt& Divisor = C->getAPIntValue(); 5304 APInt::mu magics = Divisor.magicu(); 5305 unsigned PreShift = 0, PostShift = 0; 5306 5307 // If the divisor is even, we can avoid using the expensive fixup by 5308 // shifting the divided value upfront. 5309 if (magics.a != 0 && !Divisor[0]) { 5310 PreShift = Divisor.countTrailingZeros(); 5311 // Get magic number for the shifted divisor. 5312 magics = Divisor.lshr(PreShift).magicu(PreShift); 5313 assert(magics.a == 0 && "Should use cheap fixup now"); 5314 } 5315 5316 APInt Magic = magics.m; 5317 5318 unsigned SelNPQ; 5319 if (magics.a == 0 || Divisor.isOneValue()) { 5320 assert(magics.s < Divisor.getBitWidth() && 5321 "We shouldn't generate an undefined shift!"); 5322 PostShift = magics.s; 5323 SelNPQ = false; 5324 } else { 5325 PostShift = magics.s - 1; 5326 SelNPQ = true; 5327 } 5328 5329 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5330 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5331 NPQFactors.push_back( 5332 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5333 : APInt::getNullValue(EltBits), 5334 dl, SVT)); 5335 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5336 UseNPQ |= SelNPQ; 5337 return true; 5338 }; 5339 5340 SDValue N0 = N->getOperand(0); 5341 SDValue N1 = N->getOperand(1); 5342 5343 // Collect the shifts/magic values from each element. 5344 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5345 return SDValue(); 5346 5347 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5348 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5349 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5350 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5351 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5352 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5353 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5354 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5355 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5356 "Expected matchUnaryPredicate to return one for scalable vectors"); 5357 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5358 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5359 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5360 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5361 } else { 5362 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5363 PreShift = PreShifts[0]; 5364 MagicFactor = MagicFactors[0]; 5365 PostShift = PostShifts[0]; 5366 } 5367 5368 SDValue Q = N0; 5369 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5370 Created.push_back(Q.getNode()); 5371 5372 // FIXME: We should support doing a MUL in a wider type. 5373 auto GetMULHU = [&](SDValue X, SDValue Y) { 5374 // If the type isn't legal, use a wider mul of the the type calculated 5375 // earlier. 5376 if (!isTypeLegal(VT)) { 5377 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5378 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5379 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5380 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5381 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5382 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5383 } 5384 5385 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5386 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5387 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5388 SDValue LoHi = 5389 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5390 return SDValue(LoHi.getNode(), 1); 5391 } 5392 return SDValue(); // No mulhu or equivalent 5393 }; 5394 5395 // Multiply the numerator (operand 0) by the magic value. 5396 Q = GetMULHU(Q, MagicFactor); 5397 if (!Q) 5398 return SDValue(); 5399 5400 Created.push_back(Q.getNode()); 5401 5402 if (UseNPQ) { 5403 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5404 Created.push_back(NPQ.getNode()); 5405 5406 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5407 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5408 if (VT.isVector()) 5409 NPQ = GetMULHU(NPQ, NPQFactor); 5410 else 5411 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5412 5413 Created.push_back(NPQ.getNode()); 5414 5415 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5416 Created.push_back(Q.getNode()); 5417 } 5418 5419 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5420 Created.push_back(Q.getNode()); 5421 5422 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5423 5424 SDValue One = DAG.getConstant(1, dl, VT); 5425 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5426 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5427 } 5428 5429 /// If all values in Values that *don't* match the predicate are same 'splat' 5430 /// value, then replace all values with that splat value. 5431 /// Else, if AlternativeReplacement was provided, then replace all values that 5432 /// do match predicate with AlternativeReplacement value. 5433 static void 5434 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5435 std::function<bool(SDValue)> Predicate, 5436 SDValue AlternativeReplacement = SDValue()) { 5437 SDValue Replacement; 5438 // Is there a value for which the Predicate does *NOT* match? What is it? 5439 auto SplatValue = llvm::find_if_not(Values, Predicate); 5440 if (SplatValue != Values.end()) { 5441 // Does Values consist only of SplatValue's and values matching Predicate? 5442 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5443 return Value == *SplatValue || Predicate(Value); 5444 })) // Then we shall replace values matching predicate with SplatValue. 5445 Replacement = *SplatValue; 5446 } 5447 if (!Replacement) { 5448 // Oops, we did not find the "baseline" splat value. 5449 if (!AlternativeReplacement) 5450 return; // Nothing to do. 5451 // Let's replace with provided value then. 5452 Replacement = AlternativeReplacement; 5453 } 5454 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5455 } 5456 5457 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5458 /// where the divisor is constant and the comparison target is zero, 5459 /// return a DAG expression that will generate the same comparison result 5460 /// using only multiplications, additions and shifts/rotations. 5461 /// Ref: "Hacker's Delight" 10-17. 5462 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5463 SDValue CompTargetNode, 5464 ISD::CondCode Cond, 5465 DAGCombinerInfo &DCI, 5466 const SDLoc &DL) const { 5467 SmallVector<SDNode *, 5> Built; 5468 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5469 DCI, DL, Built)) { 5470 for (SDNode *N : Built) 5471 DCI.AddToWorklist(N); 5472 return Folded; 5473 } 5474 5475 return SDValue(); 5476 } 5477 5478 SDValue 5479 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5480 SDValue CompTargetNode, ISD::CondCode Cond, 5481 DAGCombinerInfo &DCI, const SDLoc &DL, 5482 SmallVectorImpl<SDNode *> &Created) const { 5483 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5484 // - D must be constant, with D = D0 * 2^K where D0 is odd 5485 // - P is the multiplicative inverse of D0 modulo 2^W 5486 // - Q = floor(((2^W) - 1) / D) 5487 // where W is the width of the common type of N and D. 5488 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5489 "Only applicable for (in)equality comparisons."); 5490 5491 SelectionDAG &DAG = DCI.DAG; 5492 5493 EVT VT = REMNode.getValueType(); 5494 EVT SVT = VT.getScalarType(); 5495 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5496 EVT ShSVT = ShVT.getScalarType(); 5497 5498 // If MUL is unavailable, we cannot proceed in any case. 5499 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5500 return SDValue(); 5501 5502 bool ComparingWithAllZeros = true; 5503 bool AllComparisonsWithNonZerosAreTautological = true; 5504 bool HadTautologicalLanes = false; 5505 bool AllLanesAreTautological = true; 5506 bool HadEvenDivisor = false; 5507 bool AllDivisorsArePowerOfTwo = true; 5508 bool HadTautologicalInvertedLanes = false; 5509 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5510 5511 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5512 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5513 if (CDiv->isNullValue()) 5514 return false; 5515 5516 const APInt &D = CDiv->getAPIntValue(); 5517 const APInt &Cmp = CCmp->getAPIntValue(); 5518 5519 ComparingWithAllZeros &= Cmp.isNullValue(); 5520 5521 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5522 // if C2 is not less than C1, the comparison is always false. 5523 // But we will only be able to produce the comparison that will give the 5524 // opposive tautological answer. So this lane would need to be fixed up. 5525 bool TautologicalInvertedLane = D.ule(Cmp); 5526 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5527 5528 // If all lanes are tautological (either all divisors are ones, or divisor 5529 // is not greater than the constant we are comparing with), 5530 // we will prefer to avoid the fold. 5531 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5532 HadTautologicalLanes |= TautologicalLane; 5533 AllLanesAreTautological &= TautologicalLane; 5534 5535 // If we are comparing with non-zero, we need'll need to subtract said 5536 // comparison value from the LHS. But there is no point in doing that if 5537 // every lane where we are comparing with non-zero is tautological.. 5538 if (!Cmp.isNullValue()) 5539 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5540 5541 // Decompose D into D0 * 2^K 5542 unsigned K = D.countTrailingZeros(); 5543 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5544 APInt D0 = D.lshr(K); 5545 5546 // D is even if it has trailing zeros. 5547 HadEvenDivisor |= (K != 0); 5548 // D is a power-of-two if D0 is one. 5549 // If all divisors are power-of-two, we will prefer to avoid the fold. 5550 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5551 5552 // P = inv(D0, 2^W) 5553 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5554 unsigned W = D.getBitWidth(); 5555 APInt P = D0.zext(W + 1) 5556 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5557 .trunc(W); 5558 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5559 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5560 5561 // Q = floor((2^W - 1) u/ D) 5562 // R = ((2^W - 1) u% D) 5563 APInt Q, R; 5564 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5565 5566 // If we are comparing with zero, then that comparison constant is okay, 5567 // else it may need to be one less than that. 5568 if (Cmp.ugt(R)) 5569 Q -= 1; 5570 5571 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5572 "We are expecting that K is always less than all-ones for ShSVT"); 5573 5574 // If the lane is tautological the result can be constant-folded. 5575 if (TautologicalLane) { 5576 // Set P and K amount to a bogus values so we can try to splat them. 5577 P = 0; 5578 K = -1; 5579 // And ensure that comparison constant is tautological, 5580 // it will always compare true/false. 5581 Q = -1; 5582 } 5583 5584 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5585 KAmts.push_back( 5586 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5587 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5588 return true; 5589 }; 5590 5591 SDValue N = REMNode.getOperand(0); 5592 SDValue D = REMNode.getOperand(1); 5593 5594 // Collect the values from each element. 5595 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5596 return SDValue(); 5597 5598 // If all lanes are tautological, the result can be constant-folded. 5599 if (AllLanesAreTautological) 5600 return SDValue(); 5601 5602 // If this is a urem by a powers-of-two, avoid the fold since it can be 5603 // best implemented as a bit test. 5604 if (AllDivisorsArePowerOfTwo) 5605 return SDValue(); 5606 5607 SDValue PVal, KVal, QVal; 5608 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5609 if (HadTautologicalLanes) { 5610 // Try to turn PAmts into a splat, since we don't care about the values 5611 // that are currently '0'. If we can't, just keep '0'`s. 5612 turnVectorIntoSplatVector(PAmts, isNullConstant); 5613 // Try to turn KAmts into a splat, since we don't care about the values 5614 // that are currently '-1'. If we can't, change them to '0'`s. 5615 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5616 DAG.getConstant(0, DL, ShSVT)); 5617 } 5618 5619 PVal = DAG.getBuildVector(VT, DL, PAmts); 5620 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5621 QVal = DAG.getBuildVector(VT, DL, QAmts); 5622 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5623 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5624 "Expected matchBinaryPredicate to return one element for " 5625 "SPLAT_VECTORs"); 5626 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5627 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5628 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5629 } else { 5630 PVal = PAmts[0]; 5631 KVal = KAmts[0]; 5632 QVal = QAmts[0]; 5633 } 5634 5635 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5636 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5637 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5638 assert(CompTargetNode.getValueType() == N.getValueType() && 5639 "Expecting that the types on LHS and RHS of comparisons match."); 5640 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5641 } 5642 5643 // (mul N, P) 5644 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5645 Created.push_back(Op0.getNode()); 5646 5647 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5648 // divisors as a performance improvement, since rotating by 0 is a no-op. 5649 if (HadEvenDivisor) { 5650 // We need ROTR to do this. 5651 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5652 return SDValue(); 5653 // UREM: (rotr (mul N, P), K) 5654 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5655 Created.push_back(Op0.getNode()); 5656 } 5657 5658 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5659 SDValue NewCC = 5660 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5661 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5662 if (!HadTautologicalInvertedLanes) 5663 return NewCC; 5664 5665 // If any lanes previously compared always-false, the NewCC will give 5666 // always-true result for them, so we need to fixup those lanes. 5667 // Or the other way around for inequality predicate. 5668 assert(VT.isVector() && "Can/should only get here for vectors."); 5669 Created.push_back(NewCC.getNode()); 5670 5671 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5672 // if C2 is not less than C1, the comparison is always false. 5673 // But we have produced the comparison that will give the 5674 // opposive tautological answer. So these lanes would need to be fixed up. 5675 SDValue TautologicalInvertedChannels = 5676 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5677 Created.push_back(TautologicalInvertedChannels.getNode()); 5678 5679 // NOTE: we avoid letting illegal types through even if we're before legalize 5680 // ops – legalization has a hard time producing good code for this. 5681 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5682 // If we have a vector select, let's replace the comparison results in the 5683 // affected lanes with the correct tautological result. 5684 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5685 DL, SETCCVT, SETCCVT); 5686 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5687 Replacement, NewCC); 5688 } 5689 5690 // Else, we can just invert the comparison result in the appropriate lanes. 5691 // 5692 // NOTE: see the note above VSELECT above. 5693 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5694 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5695 TautologicalInvertedChannels); 5696 5697 return SDValue(); // Don't know how to lower. 5698 } 5699 5700 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5701 /// where the divisor is constant and the comparison target is zero, 5702 /// return a DAG expression that will generate the same comparison result 5703 /// using only multiplications, additions and shifts/rotations. 5704 /// Ref: "Hacker's Delight" 10-17. 5705 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5706 SDValue CompTargetNode, 5707 ISD::CondCode Cond, 5708 DAGCombinerInfo &DCI, 5709 const SDLoc &DL) const { 5710 SmallVector<SDNode *, 7> Built; 5711 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5712 DCI, DL, Built)) { 5713 assert(Built.size() <= 7 && "Max size prediction failed."); 5714 for (SDNode *N : Built) 5715 DCI.AddToWorklist(N); 5716 return Folded; 5717 } 5718 5719 return SDValue(); 5720 } 5721 5722 SDValue 5723 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5724 SDValue CompTargetNode, ISD::CondCode Cond, 5725 DAGCombinerInfo &DCI, const SDLoc &DL, 5726 SmallVectorImpl<SDNode *> &Created) const { 5727 // Fold: 5728 // (seteq/ne (srem N, D), 0) 5729 // To: 5730 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5731 // 5732 // - D must be constant, with D = D0 * 2^K where D0 is odd 5733 // - P is the multiplicative inverse of D0 modulo 2^W 5734 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5735 // - Q = floor((2 * A) / (2^K)) 5736 // where W is the width of the common type of N and D. 5737 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5738 "Only applicable for (in)equality comparisons."); 5739 5740 SelectionDAG &DAG = DCI.DAG; 5741 5742 EVT VT = REMNode.getValueType(); 5743 EVT SVT = VT.getScalarType(); 5744 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5745 EVT ShSVT = ShVT.getScalarType(); 5746 5747 // If we are after ops legalization, and MUL is unavailable, we can not 5748 // proceed. 5749 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5750 return SDValue(); 5751 5752 // TODO: Could support comparing with non-zero too. 5753 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5754 if (!CompTarget || !CompTarget->isNullValue()) 5755 return SDValue(); 5756 5757 bool HadIntMinDivisor = false; 5758 bool HadOneDivisor = false; 5759 bool AllDivisorsAreOnes = true; 5760 bool HadEvenDivisor = false; 5761 bool NeedToApplyOffset = false; 5762 bool AllDivisorsArePowerOfTwo = true; 5763 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5764 5765 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5766 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5767 if (C->isNullValue()) 5768 return false; 5769 5770 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5771 5772 // WARNING: this fold is only valid for positive divisors! 5773 APInt D = C->getAPIntValue(); 5774 if (D.isNegative()) 5775 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5776 5777 HadIntMinDivisor |= D.isMinSignedValue(); 5778 5779 // If all divisors are ones, we will prefer to avoid the fold. 5780 HadOneDivisor |= D.isOneValue(); 5781 AllDivisorsAreOnes &= D.isOneValue(); 5782 5783 // Decompose D into D0 * 2^K 5784 unsigned K = D.countTrailingZeros(); 5785 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5786 APInt D0 = D.lshr(K); 5787 5788 if (!D.isMinSignedValue()) { 5789 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5790 // we don't care about this lane in this fold, we'll special-handle it. 5791 HadEvenDivisor |= (K != 0); 5792 } 5793 5794 // D is a power-of-two if D0 is one. This includes INT_MIN. 5795 // If all divisors are power-of-two, we will prefer to avoid the fold. 5796 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5797 5798 // P = inv(D0, 2^W) 5799 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5800 unsigned W = D.getBitWidth(); 5801 APInt P = D0.zext(W + 1) 5802 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5803 .trunc(W); 5804 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5805 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5806 5807 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5808 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5809 A.clearLowBits(K); 5810 5811 if (!D.isMinSignedValue()) { 5812 // If divisor INT_MIN, then we don't care about this lane in this fold, 5813 // we'll special-handle it. 5814 NeedToApplyOffset |= A != 0; 5815 } 5816 5817 // Q = floor((2 * A) / (2^K)) 5818 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5819 5820 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5821 "We are expecting that A is always less than all-ones for SVT"); 5822 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5823 "We are expecting that K is always less than all-ones for ShSVT"); 5824 5825 // If the divisor is 1 the result can be constant-folded. Likewise, we 5826 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5827 if (D.isOneValue()) { 5828 // Set P, A and K to a bogus values so we can try to splat them. 5829 P = 0; 5830 A = -1; 5831 K = -1; 5832 5833 // x ?% 1 == 0 <--> true <--> x u<= -1 5834 Q = -1; 5835 } 5836 5837 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5838 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5839 KAmts.push_back( 5840 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5841 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5842 return true; 5843 }; 5844 5845 SDValue N = REMNode.getOperand(0); 5846 SDValue D = REMNode.getOperand(1); 5847 5848 // Collect the values from each element. 5849 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5850 return SDValue(); 5851 5852 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5853 if (AllDivisorsAreOnes) 5854 return SDValue(); 5855 5856 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5857 // since it can be best implemented as a bit test. 5858 if (AllDivisorsArePowerOfTwo) 5859 return SDValue(); 5860 5861 SDValue PVal, AVal, KVal, QVal; 5862 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5863 if (HadOneDivisor) { 5864 // Try to turn PAmts into a splat, since we don't care about the values 5865 // that are currently '0'. If we can't, just keep '0'`s. 5866 turnVectorIntoSplatVector(PAmts, isNullConstant); 5867 // Try to turn AAmts into a splat, since we don't care about the 5868 // values that are currently '-1'. If we can't, change them to '0'`s. 5869 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5870 DAG.getConstant(0, DL, SVT)); 5871 // Try to turn KAmts into a splat, since we don't care about the values 5872 // that are currently '-1'. If we can't, change them to '0'`s. 5873 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5874 DAG.getConstant(0, DL, ShSVT)); 5875 } 5876 5877 PVal = DAG.getBuildVector(VT, DL, PAmts); 5878 AVal = DAG.getBuildVector(VT, DL, AAmts); 5879 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5880 QVal = DAG.getBuildVector(VT, DL, QAmts); 5881 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5882 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5883 QAmts.size() == 1 && 5884 "Expected matchUnaryPredicate to return one element for scalable " 5885 "vectors"); 5886 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5887 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5888 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5889 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5890 } else { 5891 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5892 PVal = PAmts[0]; 5893 AVal = AAmts[0]; 5894 KVal = KAmts[0]; 5895 QVal = QAmts[0]; 5896 } 5897 5898 // (mul N, P) 5899 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5900 Created.push_back(Op0.getNode()); 5901 5902 if (NeedToApplyOffset) { 5903 // We need ADD to do this. 5904 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5905 return SDValue(); 5906 5907 // (add (mul N, P), A) 5908 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5909 Created.push_back(Op0.getNode()); 5910 } 5911 5912 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5913 // divisors as a performance improvement, since rotating by 0 is a no-op. 5914 if (HadEvenDivisor) { 5915 // We need ROTR to do this. 5916 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5917 return SDValue(); 5918 // SREM: (rotr (add (mul N, P), A), K) 5919 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5920 Created.push_back(Op0.getNode()); 5921 } 5922 5923 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5924 SDValue Fold = 5925 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5926 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5927 5928 // If we didn't have lanes with INT_MIN divisor, then we're done. 5929 if (!HadIntMinDivisor) 5930 return Fold; 5931 5932 // That fold is only valid for positive divisors. Which effectively means, 5933 // it is invalid for INT_MIN divisors. So if we have such a lane, 5934 // we must fix-up results for said lanes. 5935 assert(VT.isVector() && "Can/should only get here for vectors."); 5936 5937 // NOTE: we avoid letting illegal types through even if we're before legalize 5938 // ops – legalization has a hard time producing good code for the code that 5939 // follows. 5940 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5941 !isOperationLegalOrCustom(ISD::AND, VT) || 5942 !isOperationLegalOrCustom(Cond, VT) || 5943 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 5944 return SDValue(); 5945 5946 Created.push_back(Fold.getNode()); 5947 5948 SDValue IntMin = DAG.getConstant( 5949 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5950 SDValue IntMax = DAG.getConstant( 5951 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5952 SDValue Zero = 5953 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5954 5955 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5956 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5957 Created.push_back(DivisorIsIntMin.getNode()); 5958 5959 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5960 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5961 Created.push_back(Masked.getNode()); 5962 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5963 Created.push_back(MaskedIsZero.getNode()); 5964 5965 // To produce final result we need to blend 2 vectors: 'SetCC' and 5966 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5967 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5968 // constant-folded, select can get lowered to a shuffle with constant mask. 5969 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 5970 MaskedIsZero, Fold); 5971 5972 return Blended; 5973 } 5974 5975 bool TargetLowering:: 5976 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5977 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5978 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5979 "be a constant integer"); 5980 return true; 5981 } 5982 5983 return false; 5984 } 5985 5986 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5987 const DenormalMode &Mode) const { 5988 SDLoc DL(Op); 5989 EVT VT = Op.getValueType(); 5990 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5991 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5992 // Testing it with denormal inputs to avoid wrong estimate. 5993 if (Mode.Input == DenormalMode::IEEE) { 5994 // This is specifically a check for the handling of denormal inputs, 5995 // not the result. 5996 5997 // Test = fabs(X) < SmallestNormal 5998 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5999 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6000 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6001 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6002 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6003 } 6004 // Test = X == 0.0 6005 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6006 } 6007 6008 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6009 bool LegalOps, bool OptForSize, 6010 NegatibleCost &Cost, 6011 unsigned Depth) const { 6012 // fneg is removable even if it has multiple uses. 6013 if (Op.getOpcode() == ISD::FNEG) { 6014 Cost = NegatibleCost::Cheaper; 6015 return Op.getOperand(0); 6016 } 6017 6018 // Don't recurse exponentially. 6019 if (Depth > SelectionDAG::MaxRecursionDepth) 6020 return SDValue(); 6021 6022 // Pre-increment recursion depth for use in recursive calls. 6023 ++Depth; 6024 const SDNodeFlags Flags = Op->getFlags(); 6025 const TargetOptions &Options = DAG.getTarget().Options; 6026 EVT VT = Op.getValueType(); 6027 unsigned Opcode = Op.getOpcode(); 6028 6029 // Don't allow anything with multiple uses unless we know it is free. 6030 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6031 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6032 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6033 if (!IsFreeExtend) 6034 return SDValue(); 6035 } 6036 6037 auto RemoveDeadNode = [&](SDValue N) { 6038 if (N && N.getNode()->use_empty()) 6039 DAG.RemoveDeadNode(N.getNode()); 6040 }; 6041 6042 SDLoc DL(Op); 6043 6044 // Because getNegatedExpression can delete nodes we need a handle to keep 6045 // temporary nodes alive in case the recursion manages to create an identical 6046 // node. 6047 std::list<HandleSDNode> Handles; 6048 6049 switch (Opcode) { 6050 case ISD::ConstantFP: { 6051 // Don't invert constant FP values after legalization unless the target says 6052 // the negated constant is legal. 6053 bool IsOpLegal = 6054 isOperationLegal(ISD::ConstantFP, VT) || 6055 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6056 OptForSize); 6057 6058 if (LegalOps && !IsOpLegal) 6059 break; 6060 6061 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6062 V.changeSign(); 6063 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6064 6065 // If we already have the use of the negated floating constant, it is free 6066 // to negate it even it has multiple uses. 6067 if (!Op.hasOneUse() && CFP.use_empty()) 6068 break; 6069 Cost = NegatibleCost::Neutral; 6070 return CFP; 6071 } 6072 case ISD::BUILD_VECTOR: { 6073 // Only permit BUILD_VECTOR of constants. 6074 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6075 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6076 })) 6077 break; 6078 6079 bool IsOpLegal = 6080 (isOperationLegal(ISD::ConstantFP, VT) && 6081 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6082 llvm::all_of(Op->op_values(), [&](SDValue N) { 6083 return N.isUndef() || 6084 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6085 OptForSize); 6086 }); 6087 6088 if (LegalOps && !IsOpLegal) 6089 break; 6090 6091 SmallVector<SDValue, 4> Ops; 6092 for (SDValue C : Op->op_values()) { 6093 if (C.isUndef()) { 6094 Ops.push_back(C); 6095 continue; 6096 } 6097 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6098 V.changeSign(); 6099 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6100 } 6101 Cost = NegatibleCost::Neutral; 6102 return DAG.getBuildVector(VT, DL, Ops); 6103 } 6104 case ISD::FADD: { 6105 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6106 break; 6107 6108 // After operation legalization, it might not be legal to create new FSUBs. 6109 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6110 break; 6111 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6112 6113 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6114 NegatibleCost CostX = NegatibleCost::Expensive; 6115 SDValue NegX = 6116 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6117 // Prevent this node from being deleted by the next call. 6118 if (NegX) 6119 Handles.emplace_back(NegX); 6120 6121 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6122 NegatibleCost CostY = NegatibleCost::Expensive; 6123 SDValue NegY = 6124 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6125 6126 // We're done with the handles. 6127 Handles.clear(); 6128 6129 // Negate the X if its cost is less or equal than Y. 6130 if (NegX && (CostX <= CostY)) { 6131 Cost = CostX; 6132 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6133 if (NegY != N) 6134 RemoveDeadNode(NegY); 6135 return N; 6136 } 6137 6138 // Negate the Y if it is not expensive. 6139 if (NegY) { 6140 Cost = CostY; 6141 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6142 if (NegX != N) 6143 RemoveDeadNode(NegX); 6144 return N; 6145 } 6146 break; 6147 } 6148 case ISD::FSUB: { 6149 // We can't turn -(A-B) into B-A when we honor signed zeros. 6150 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6151 break; 6152 6153 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6154 // fold (fneg (fsub 0, Y)) -> Y 6155 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6156 if (C->isZero()) { 6157 Cost = NegatibleCost::Cheaper; 6158 return Y; 6159 } 6160 6161 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6162 Cost = NegatibleCost::Neutral; 6163 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6164 } 6165 case ISD::FMUL: 6166 case ISD::FDIV: { 6167 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6168 6169 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6170 NegatibleCost CostX = NegatibleCost::Expensive; 6171 SDValue NegX = 6172 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6173 // Prevent this node from being deleted by the next call. 6174 if (NegX) 6175 Handles.emplace_back(NegX); 6176 6177 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6178 NegatibleCost CostY = NegatibleCost::Expensive; 6179 SDValue NegY = 6180 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6181 6182 // We're done with the handles. 6183 Handles.clear(); 6184 6185 // Negate the X if its cost is less or equal than Y. 6186 if (NegX && (CostX <= CostY)) { 6187 Cost = CostX; 6188 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6189 if (NegY != N) 6190 RemoveDeadNode(NegY); 6191 return N; 6192 } 6193 6194 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6195 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6196 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6197 break; 6198 6199 // Negate the Y if it is not expensive. 6200 if (NegY) { 6201 Cost = CostY; 6202 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6203 if (NegX != N) 6204 RemoveDeadNode(NegX); 6205 return N; 6206 } 6207 break; 6208 } 6209 case ISD::FMA: 6210 case ISD::FMAD: { 6211 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6212 break; 6213 6214 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6215 NegatibleCost CostZ = NegatibleCost::Expensive; 6216 SDValue NegZ = 6217 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6218 // Give up if fail to negate the Z. 6219 if (!NegZ) 6220 break; 6221 6222 // Prevent this node from being deleted by the next two calls. 6223 Handles.emplace_back(NegZ); 6224 6225 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6226 NegatibleCost CostX = NegatibleCost::Expensive; 6227 SDValue NegX = 6228 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6229 // Prevent this node from being deleted by the next call. 6230 if (NegX) 6231 Handles.emplace_back(NegX); 6232 6233 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6234 NegatibleCost CostY = NegatibleCost::Expensive; 6235 SDValue NegY = 6236 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6237 6238 // We're done with the handles. 6239 Handles.clear(); 6240 6241 // Negate the X if its cost is less or equal than Y. 6242 if (NegX && (CostX <= CostY)) { 6243 Cost = std::min(CostX, CostZ); 6244 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6245 if (NegY != N) 6246 RemoveDeadNode(NegY); 6247 return N; 6248 } 6249 6250 // Negate the Y if it is not expensive. 6251 if (NegY) { 6252 Cost = std::min(CostY, CostZ); 6253 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6254 if (NegX != N) 6255 RemoveDeadNode(NegX); 6256 return N; 6257 } 6258 break; 6259 } 6260 6261 case ISD::FP_EXTEND: 6262 case ISD::FSIN: 6263 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6264 OptForSize, Cost, Depth)) 6265 return DAG.getNode(Opcode, DL, VT, NegV); 6266 break; 6267 case ISD::FP_ROUND: 6268 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6269 OptForSize, Cost, Depth)) 6270 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6271 break; 6272 } 6273 6274 return SDValue(); 6275 } 6276 6277 //===----------------------------------------------------------------------===// 6278 // Legalization Utilities 6279 //===----------------------------------------------------------------------===// 6280 6281 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6282 SDValue LHS, SDValue RHS, 6283 SmallVectorImpl<SDValue> &Result, 6284 EVT HiLoVT, SelectionDAG &DAG, 6285 MulExpansionKind Kind, SDValue LL, 6286 SDValue LH, SDValue RL, SDValue RH) const { 6287 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6288 Opcode == ISD::SMUL_LOHI); 6289 6290 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6291 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6292 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6293 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6294 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6295 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6296 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6297 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6298 6299 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6300 return false; 6301 6302 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6303 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6304 6305 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6306 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6307 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6308 6309 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6310 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6311 bool Signed) -> bool { 6312 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6313 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6314 Hi = SDValue(Lo.getNode(), 1); 6315 return true; 6316 } 6317 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6318 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6319 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6320 return true; 6321 } 6322 return false; 6323 }; 6324 6325 SDValue Lo, Hi; 6326 6327 if (!LL.getNode() && !RL.getNode() && 6328 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6329 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6330 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6331 } 6332 6333 if (!LL.getNode()) 6334 return false; 6335 6336 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6337 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6338 DAG.MaskedValueIsZero(RHS, HighMask)) { 6339 // The inputs are both zero-extended. 6340 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6341 Result.push_back(Lo); 6342 Result.push_back(Hi); 6343 if (Opcode != ISD::MUL) { 6344 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6345 Result.push_back(Zero); 6346 Result.push_back(Zero); 6347 } 6348 return true; 6349 } 6350 } 6351 6352 if (!VT.isVector() && Opcode == ISD::MUL && 6353 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6354 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6355 // The input values are both sign-extended. 6356 // TODO non-MUL case? 6357 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6358 Result.push_back(Lo); 6359 Result.push_back(Hi); 6360 return true; 6361 } 6362 } 6363 6364 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6365 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6366 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6367 // FIXME getShiftAmountTy does not always return a sensible result when VT 6368 // is an illegal type, and so the type may be too small to fit the shift 6369 // amount. Override it with i32. The shift will have to be legalized. 6370 ShiftAmountTy = MVT::i32; 6371 } 6372 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6373 6374 if (!LH.getNode() && !RH.getNode() && 6375 isOperationLegalOrCustom(ISD::SRL, VT) && 6376 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6377 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6378 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6379 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6380 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6381 } 6382 6383 if (!LH.getNode()) 6384 return false; 6385 6386 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6387 return false; 6388 6389 Result.push_back(Lo); 6390 6391 if (Opcode == ISD::MUL) { 6392 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6393 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6394 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6395 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6396 Result.push_back(Hi); 6397 return true; 6398 } 6399 6400 // Compute the full width result. 6401 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6402 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6403 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6404 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6405 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6406 }; 6407 6408 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6409 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6410 return false; 6411 6412 // This is effectively the add part of a multiply-add of half-sized operands, 6413 // so it cannot overflow. 6414 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6415 6416 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6417 return false; 6418 6419 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6420 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6421 6422 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6423 isOperationLegalOrCustom(ISD::ADDE, VT)); 6424 if (UseGlue) 6425 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6426 Merge(Lo, Hi)); 6427 else 6428 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6429 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6430 6431 SDValue Carry = Next.getValue(1); 6432 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6433 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6434 6435 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6436 return false; 6437 6438 if (UseGlue) 6439 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6440 Carry); 6441 else 6442 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6443 Zero, Carry); 6444 6445 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6446 6447 if (Opcode == ISD::SMUL_LOHI) { 6448 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6449 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6450 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6451 6452 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6453 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6454 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6455 } 6456 6457 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6458 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6459 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6460 return true; 6461 } 6462 6463 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6464 SelectionDAG &DAG, MulExpansionKind Kind, 6465 SDValue LL, SDValue LH, SDValue RL, 6466 SDValue RH) const { 6467 SmallVector<SDValue, 2> Result; 6468 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6469 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6470 DAG, Kind, LL, LH, RL, RH); 6471 if (Ok) { 6472 assert(Result.size() == 2); 6473 Lo = Result[0]; 6474 Hi = Result[1]; 6475 } 6476 return Ok; 6477 } 6478 6479 // Check that (every element of) Z is undef or not an exact multiple of BW. 6480 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6481 return ISD::matchUnaryPredicate( 6482 Z, 6483 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6484 true); 6485 } 6486 6487 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6488 SelectionDAG &DAG) const { 6489 EVT VT = Node->getValueType(0); 6490 6491 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6492 !isOperationLegalOrCustom(ISD::SRL, VT) || 6493 !isOperationLegalOrCustom(ISD::SUB, VT) || 6494 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6495 return false; 6496 6497 SDValue X = Node->getOperand(0); 6498 SDValue Y = Node->getOperand(1); 6499 SDValue Z = Node->getOperand(2); 6500 6501 unsigned BW = VT.getScalarSizeInBits(); 6502 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6503 SDLoc DL(SDValue(Node, 0)); 6504 6505 EVT ShVT = Z.getValueType(); 6506 6507 // If a funnel shift in the other direction is more supported, use it. 6508 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6509 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6510 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6511 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6512 // fshl X, Y, Z -> fshr X, Y, -Z 6513 // fshr X, Y, Z -> fshl X, Y, -Z 6514 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6515 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6516 } else { 6517 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6518 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6519 SDValue One = DAG.getConstant(1, DL, ShVT); 6520 if (IsFSHL) { 6521 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6522 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6523 } else { 6524 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6525 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6526 } 6527 Z = DAG.getNOT(DL, Z, ShVT); 6528 } 6529 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6530 return true; 6531 } 6532 6533 SDValue ShX, ShY; 6534 SDValue ShAmt, InvShAmt; 6535 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6536 // fshl: X << C | Y >> (BW - C) 6537 // fshr: X << (BW - C) | Y >> C 6538 // where C = Z % BW is not zero 6539 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6540 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6541 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6542 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6543 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6544 } else { 6545 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6546 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6547 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6548 if (isPowerOf2_32(BW)) { 6549 // Z % BW -> Z & (BW - 1) 6550 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6551 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6552 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6553 } else { 6554 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6555 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6556 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6557 } 6558 6559 SDValue One = DAG.getConstant(1, DL, ShVT); 6560 if (IsFSHL) { 6561 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6562 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6563 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6564 } else { 6565 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6566 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6567 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6568 } 6569 } 6570 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6571 return true; 6572 } 6573 6574 // TODO: Merge with expandFunnelShift. 6575 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6576 SDValue &Result, SelectionDAG &DAG) const { 6577 EVT VT = Node->getValueType(0); 6578 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6579 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6580 SDValue Op0 = Node->getOperand(0); 6581 SDValue Op1 = Node->getOperand(1); 6582 SDLoc DL(SDValue(Node, 0)); 6583 6584 EVT ShVT = Op1.getValueType(); 6585 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6586 6587 // If a rotate in the other direction is supported, use it. 6588 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6589 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6590 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6591 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6592 return true; 6593 } 6594 6595 if (!AllowVectorOps && VT.isVector() && 6596 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6597 !isOperationLegalOrCustom(ISD::SRL, VT) || 6598 !isOperationLegalOrCustom(ISD::SUB, VT) || 6599 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6600 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6601 return false; 6602 6603 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6604 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6605 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6606 SDValue ShVal; 6607 SDValue HsVal; 6608 if (isPowerOf2_32(EltSizeInBits)) { 6609 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6610 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6611 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6612 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6613 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6614 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6615 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6616 } else { 6617 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6618 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6619 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6620 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6621 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6622 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6623 SDValue One = DAG.getConstant(1, DL, ShVT); 6624 HsVal = 6625 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6626 } 6627 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6628 return true; 6629 } 6630 6631 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6632 SelectionDAG &DAG) const { 6633 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6634 EVT VT = Node->getValueType(0); 6635 unsigned VTBits = VT.getScalarSizeInBits(); 6636 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6637 6638 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6639 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6640 SDValue ShOpLo = Node->getOperand(0); 6641 SDValue ShOpHi = Node->getOperand(1); 6642 SDValue ShAmt = Node->getOperand(2); 6643 EVT ShAmtVT = ShAmt.getValueType(); 6644 EVT ShAmtCCVT = 6645 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6646 SDLoc dl(Node); 6647 6648 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6649 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6650 // away during isel. 6651 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6652 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6653 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6654 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6655 : DAG.getConstant(0, dl, VT); 6656 6657 SDValue Tmp2, Tmp3; 6658 if (IsSHL) { 6659 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6660 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6661 } else { 6662 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6663 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6664 } 6665 6666 // If the shift amount is larger or equal than the width of a part we don't 6667 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6668 // values for large shift amounts. 6669 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6670 DAG.getConstant(VTBits, dl, ShAmtVT)); 6671 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6672 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6673 6674 if (IsSHL) { 6675 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6676 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6677 } else { 6678 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6679 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6680 } 6681 } 6682 6683 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6684 SelectionDAG &DAG) const { 6685 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6686 SDValue Src = Node->getOperand(OpNo); 6687 EVT SrcVT = Src.getValueType(); 6688 EVT DstVT = Node->getValueType(0); 6689 SDLoc dl(SDValue(Node, 0)); 6690 6691 // FIXME: Only f32 to i64 conversions are supported. 6692 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6693 return false; 6694 6695 if (Node->isStrictFPOpcode()) 6696 // When a NaN is converted to an integer a trap is allowed. We can't 6697 // use this expansion here because it would eliminate that trap. Other 6698 // traps are also allowed and cannot be eliminated. See 6699 // IEEE 754-2008 sec 5.8. 6700 return false; 6701 6702 // Expand f32 -> i64 conversion 6703 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6704 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6705 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6706 EVT IntVT = SrcVT.changeTypeToInteger(); 6707 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6708 6709 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6710 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6711 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6712 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6713 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6714 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6715 6716 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6717 6718 SDValue ExponentBits = DAG.getNode( 6719 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6720 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6721 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6722 6723 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6724 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6725 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6726 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6727 6728 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6729 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6730 DAG.getConstant(0x00800000, dl, IntVT)); 6731 6732 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6733 6734 R = DAG.getSelectCC( 6735 dl, Exponent, ExponentLoBit, 6736 DAG.getNode(ISD::SHL, dl, DstVT, R, 6737 DAG.getZExtOrTrunc( 6738 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6739 dl, IntShVT)), 6740 DAG.getNode(ISD::SRL, dl, DstVT, R, 6741 DAG.getZExtOrTrunc( 6742 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6743 dl, IntShVT)), 6744 ISD::SETGT); 6745 6746 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6747 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6748 6749 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6750 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6751 return true; 6752 } 6753 6754 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6755 SDValue &Chain, 6756 SelectionDAG &DAG) const { 6757 SDLoc dl(SDValue(Node, 0)); 6758 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6759 SDValue Src = Node->getOperand(OpNo); 6760 6761 EVT SrcVT = Src.getValueType(); 6762 EVT DstVT = Node->getValueType(0); 6763 EVT SetCCVT = 6764 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6765 EVT DstSetCCVT = 6766 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6767 6768 // Only expand vector types if we have the appropriate vector bit operations. 6769 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6770 ISD::FP_TO_SINT; 6771 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6772 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6773 return false; 6774 6775 // If the maximum float value is smaller then the signed integer range, 6776 // the destination signmask can't be represented by the float, so we can 6777 // just use FP_TO_SINT directly. 6778 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6779 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6780 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6781 if (APFloat::opOverflow & 6782 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6783 if (Node->isStrictFPOpcode()) { 6784 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6785 { Node->getOperand(0), Src }); 6786 Chain = Result.getValue(1); 6787 } else 6788 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6789 return true; 6790 } 6791 6792 // Don't expand it if there isn't cheap fsub instruction. 6793 if (!isOperationLegalOrCustom( 6794 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6795 return false; 6796 6797 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6798 SDValue Sel; 6799 6800 if (Node->isStrictFPOpcode()) { 6801 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6802 Node->getOperand(0), /*IsSignaling*/ true); 6803 Chain = Sel.getValue(1); 6804 } else { 6805 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6806 } 6807 6808 bool Strict = Node->isStrictFPOpcode() || 6809 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6810 6811 if (Strict) { 6812 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6813 // signmask then offset (the result of which should be fully representable). 6814 // Sel = Src < 0x8000000000000000 6815 // FltOfs = select Sel, 0, 0x8000000000000000 6816 // IntOfs = select Sel, 0, 0x8000000000000000 6817 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6818 6819 // TODO: Should any fast-math-flags be set for the FSUB? 6820 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6821 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6822 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6823 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6824 DAG.getConstant(0, dl, DstVT), 6825 DAG.getConstant(SignMask, dl, DstVT)); 6826 SDValue SInt; 6827 if (Node->isStrictFPOpcode()) { 6828 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6829 { Chain, Src, FltOfs }); 6830 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6831 { Val.getValue(1), Val }); 6832 Chain = SInt.getValue(1); 6833 } else { 6834 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6835 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6836 } 6837 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6838 } else { 6839 // Expand based on maximum range of FP_TO_SINT: 6840 // True = fp_to_sint(Src) 6841 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6842 // Result = select (Src < 0x8000000000000000), True, False 6843 6844 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6845 // TODO: Should any fast-math-flags be set for the FSUB? 6846 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6847 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6848 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6849 DAG.getConstant(SignMask, dl, DstVT)); 6850 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6851 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6852 } 6853 return true; 6854 } 6855 6856 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6857 SDValue &Chain, 6858 SelectionDAG &DAG) const { 6859 // This transform is not correct for converting 0 when rounding mode is set 6860 // to round toward negative infinity which will produce -0.0. So disable under 6861 // strictfp. 6862 if (Node->isStrictFPOpcode()) 6863 return false; 6864 6865 SDValue Src = Node->getOperand(0); 6866 EVT SrcVT = Src.getValueType(); 6867 EVT DstVT = Node->getValueType(0); 6868 6869 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6870 return false; 6871 6872 // Only expand vector types if we have the appropriate vector bit operations. 6873 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6874 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6875 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6876 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6877 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6878 return false; 6879 6880 SDLoc dl(SDValue(Node, 0)); 6881 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6882 6883 // Implementation of unsigned i64 to f64 following the algorithm in 6884 // __floatundidf in compiler_rt. This implementation performs rounding 6885 // correctly in all rounding modes with the exception of converting 0 6886 // when rounding toward negative infinity. In that case the fsub will produce 6887 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6888 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6889 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6890 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6891 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6892 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6893 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6894 6895 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6896 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6897 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6898 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6899 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6900 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6901 SDValue HiSub = 6902 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6903 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6904 return true; 6905 } 6906 6907 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6908 SelectionDAG &DAG) const { 6909 SDLoc dl(Node); 6910 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6911 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6912 EVT VT = Node->getValueType(0); 6913 6914 if (VT.isScalableVector()) 6915 report_fatal_error( 6916 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6917 6918 if (isOperationLegalOrCustom(NewOp, VT)) { 6919 SDValue Quiet0 = Node->getOperand(0); 6920 SDValue Quiet1 = Node->getOperand(1); 6921 6922 if (!Node->getFlags().hasNoNaNs()) { 6923 // Insert canonicalizes if it's possible we need to quiet to get correct 6924 // sNaN behavior. 6925 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6926 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6927 Node->getFlags()); 6928 } 6929 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6930 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6931 Node->getFlags()); 6932 } 6933 } 6934 6935 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6936 } 6937 6938 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6939 // instead if there are no NaNs. 6940 if (Node->getFlags().hasNoNaNs()) { 6941 unsigned IEEE2018Op = 6942 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6943 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6944 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6945 Node->getOperand(1), Node->getFlags()); 6946 } 6947 } 6948 6949 // If none of the above worked, but there are no NaNs, then expand to 6950 // a compare/select sequence. This is required for correctness since 6951 // InstCombine might have canonicalized a fcmp+select sequence to a 6952 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6953 // expansion to libcall, we might introduce a link-time dependency 6954 // on libm into a file that originally did not have one. 6955 if (Node->getFlags().hasNoNaNs()) { 6956 ISD::CondCode Pred = 6957 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6958 SDValue Op1 = Node->getOperand(0); 6959 SDValue Op2 = Node->getOperand(1); 6960 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6961 // Copy FMF flags, but always set the no-signed-zeros flag 6962 // as this is implied by the FMINNUM/FMAXNUM semantics. 6963 SDNodeFlags Flags = Node->getFlags(); 6964 Flags.setNoSignedZeros(true); 6965 SelCC->setFlags(Flags); 6966 return SelCC; 6967 } 6968 6969 return SDValue(); 6970 } 6971 6972 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6973 SelectionDAG &DAG) const { 6974 SDLoc dl(Node); 6975 EVT VT = Node->getValueType(0); 6976 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6977 SDValue Op = Node->getOperand(0); 6978 unsigned Len = VT.getScalarSizeInBits(); 6979 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6980 6981 // TODO: Add support for irregular type lengths. 6982 if (!(Len <= 128 && Len % 8 == 0)) 6983 return false; 6984 6985 // Only expand vector types if we have the appropriate vector bit operations. 6986 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6987 !isOperationLegalOrCustom(ISD::SUB, VT) || 6988 !isOperationLegalOrCustom(ISD::SRL, VT) || 6989 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6990 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6991 return false; 6992 6993 // This is the "best" algorithm from 6994 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6995 SDValue Mask55 = 6996 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6997 SDValue Mask33 = 6998 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6999 SDValue Mask0F = 7000 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7001 SDValue Mask01 = 7002 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7003 7004 // v = v - ((v >> 1) & 0x55555555...) 7005 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7006 DAG.getNode(ISD::AND, dl, VT, 7007 DAG.getNode(ISD::SRL, dl, VT, Op, 7008 DAG.getConstant(1, dl, ShVT)), 7009 Mask55)); 7010 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7011 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7012 DAG.getNode(ISD::AND, dl, VT, 7013 DAG.getNode(ISD::SRL, dl, VT, Op, 7014 DAG.getConstant(2, dl, ShVT)), 7015 Mask33)); 7016 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7017 Op = DAG.getNode(ISD::AND, dl, VT, 7018 DAG.getNode(ISD::ADD, dl, VT, Op, 7019 DAG.getNode(ISD::SRL, dl, VT, Op, 7020 DAG.getConstant(4, dl, ShVT))), 7021 Mask0F); 7022 // v = (v * 0x01010101...) >> (Len - 8) 7023 if (Len > 8) 7024 Op = 7025 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7026 DAG.getConstant(Len - 8, dl, ShVT)); 7027 7028 Result = Op; 7029 return true; 7030 } 7031 7032 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7033 SelectionDAG &DAG) const { 7034 SDLoc dl(Node); 7035 EVT VT = Node->getValueType(0); 7036 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7037 SDValue Op = Node->getOperand(0); 7038 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7039 7040 // If the non-ZERO_UNDEF version is supported we can use that instead. 7041 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7042 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7043 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7044 return true; 7045 } 7046 7047 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7048 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7049 EVT SetCCVT = 7050 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7051 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7052 SDValue Zero = DAG.getConstant(0, dl, VT); 7053 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7054 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7055 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7056 return true; 7057 } 7058 7059 // Only expand vector types if we have the appropriate vector bit operations. 7060 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7061 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7062 !isOperationLegalOrCustom(ISD::SRL, VT) || 7063 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7064 return false; 7065 7066 // for now, we do this: 7067 // x = x | (x >> 1); 7068 // x = x | (x >> 2); 7069 // ... 7070 // x = x | (x >>16); 7071 // x = x | (x >>32); // for 64-bit input 7072 // return popcount(~x); 7073 // 7074 // Ref: "Hacker's Delight" by Henry Warren 7075 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7076 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7077 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7078 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7079 } 7080 Op = DAG.getNOT(dl, Op, VT); 7081 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7082 return true; 7083 } 7084 7085 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7086 SelectionDAG &DAG) const { 7087 SDLoc dl(Node); 7088 EVT VT = Node->getValueType(0); 7089 SDValue Op = Node->getOperand(0); 7090 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7091 7092 // If the non-ZERO_UNDEF version is supported we can use that instead. 7093 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7094 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7095 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7096 return true; 7097 } 7098 7099 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7100 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7101 EVT SetCCVT = 7102 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7103 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7104 SDValue Zero = DAG.getConstant(0, dl, VT); 7105 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7106 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7107 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7108 return true; 7109 } 7110 7111 // Only expand vector types if we have the appropriate vector bit operations. 7112 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7113 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7114 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7115 !isOperationLegalOrCustom(ISD::SUB, VT) || 7116 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7117 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7118 return false; 7119 7120 // for now, we use: { return popcount(~x & (x - 1)); } 7121 // unless the target has ctlz but not ctpop, in which case we use: 7122 // { return 32 - nlz(~x & (x-1)); } 7123 // Ref: "Hacker's Delight" by Henry Warren 7124 SDValue Tmp = DAG.getNode( 7125 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7126 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7127 7128 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7129 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7130 Result = 7131 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7132 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7133 return true; 7134 } 7135 7136 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7137 return true; 7138 } 7139 7140 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7141 SelectionDAG &DAG, bool IsNegative) const { 7142 SDLoc dl(N); 7143 EVT VT = N->getValueType(0); 7144 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7145 SDValue Op = N->getOperand(0); 7146 7147 // abs(x) -> smax(x,sub(0,x)) 7148 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7149 isOperationLegal(ISD::SMAX, VT)) { 7150 SDValue Zero = DAG.getConstant(0, dl, VT); 7151 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7152 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7153 return true; 7154 } 7155 7156 // abs(x) -> umin(x,sub(0,x)) 7157 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7158 isOperationLegal(ISD::UMIN, VT)) { 7159 SDValue Zero = DAG.getConstant(0, dl, VT); 7160 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7161 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7162 return true; 7163 } 7164 7165 // 0 - abs(x) -> smin(x, sub(0,x)) 7166 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7167 isOperationLegal(ISD::SMIN, VT)) { 7168 SDValue Zero = DAG.getConstant(0, dl, VT); 7169 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7170 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7171 return true; 7172 } 7173 7174 // Only expand vector types if we have the appropriate vector operations. 7175 if (VT.isVector() && 7176 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7177 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7178 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7179 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7180 return false; 7181 7182 SDValue Shift = 7183 DAG.getNode(ISD::SRA, dl, VT, Op, 7184 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7185 if (!IsNegative) { 7186 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7187 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7188 } else { 7189 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7190 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7191 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7192 } 7193 return true; 7194 } 7195 7196 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7197 SDLoc dl(N); 7198 EVT VT = N->getValueType(0); 7199 SDValue Op = N->getOperand(0); 7200 7201 if (!VT.isSimple()) 7202 return SDValue(); 7203 7204 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7205 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7206 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7207 default: 7208 return SDValue(); 7209 case MVT::i16: 7210 // Use a rotate by 8. This can be further expanded if necessary. 7211 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7212 case MVT::i32: 7213 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7214 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7215 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7216 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7217 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7218 DAG.getConstant(0xFF0000, dl, VT)); 7219 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7220 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7221 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7222 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7223 case MVT::i64: 7224 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7225 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7226 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7227 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7228 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7229 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7230 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7231 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7232 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7233 DAG.getConstant(255ULL<<48, dl, VT)); 7234 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7235 DAG.getConstant(255ULL<<40, dl, VT)); 7236 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7237 DAG.getConstant(255ULL<<32, dl, VT)); 7238 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7239 DAG.getConstant(255ULL<<24, dl, VT)); 7240 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7241 DAG.getConstant(255ULL<<16, dl, VT)); 7242 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7243 DAG.getConstant(255ULL<<8 , dl, VT)); 7244 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7245 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7246 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7247 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7248 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7249 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7250 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7251 } 7252 } 7253 7254 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7255 SDLoc dl(N); 7256 EVT VT = N->getValueType(0); 7257 SDValue Op = N->getOperand(0); 7258 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7259 unsigned Sz = VT.getScalarSizeInBits(); 7260 7261 SDValue Tmp, Tmp2, Tmp3; 7262 7263 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7264 // and finally the i1 pairs. 7265 // TODO: We can easily support i4/i2 legal types if any target ever does. 7266 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7267 // Create the masks - repeating the pattern every byte. 7268 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7269 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7270 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7271 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7272 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7273 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7274 7275 // BSWAP if the type is wider than a single byte. 7276 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7277 7278 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7279 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7280 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7281 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7282 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7283 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7284 7285 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7286 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7287 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7288 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7289 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7290 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7291 7292 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7293 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7294 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7295 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7296 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7297 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7298 return Tmp; 7299 } 7300 7301 Tmp = DAG.getConstant(0, dl, VT); 7302 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7303 if (I < J) 7304 Tmp2 = 7305 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7306 else 7307 Tmp2 = 7308 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7309 7310 APInt Shift(Sz, 1); 7311 Shift <<= J; 7312 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7313 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7314 } 7315 7316 return Tmp; 7317 } 7318 7319 std::pair<SDValue, SDValue> 7320 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7321 SelectionDAG &DAG) const { 7322 SDLoc SL(LD); 7323 SDValue Chain = LD->getChain(); 7324 SDValue BasePTR = LD->getBasePtr(); 7325 EVT SrcVT = LD->getMemoryVT(); 7326 EVT DstVT = LD->getValueType(0); 7327 ISD::LoadExtType ExtType = LD->getExtensionType(); 7328 7329 if (SrcVT.isScalableVector()) 7330 report_fatal_error("Cannot scalarize scalable vector loads"); 7331 7332 unsigned NumElem = SrcVT.getVectorNumElements(); 7333 7334 EVT SrcEltVT = SrcVT.getScalarType(); 7335 EVT DstEltVT = DstVT.getScalarType(); 7336 7337 // A vector must always be stored in memory as-is, i.e. without any padding 7338 // between the elements, since various code depend on it, e.g. in the 7339 // handling of a bitcast of a vector type to int, which may be done with a 7340 // vector store followed by an integer load. A vector that does not have 7341 // elements that are byte-sized must therefore be stored as an integer 7342 // built out of the extracted vector elements. 7343 if (!SrcEltVT.isByteSized()) { 7344 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7345 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7346 7347 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7348 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7349 7350 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7351 SDValue SrcEltBitMask = DAG.getConstant( 7352 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7353 7354 // Load the whole vector and avoid masking off the top bits as it makes 7355 // the codegen worse. 7356 SDValue Load = 7357 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7358 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7359 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7360 7361 SmallVector<SDValue, 8> Vals; 7362 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7363 unsigned ShiftIntoIdx = 7364 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7365 SDValue ShiftAmount = 7366 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7367 LoadVT, SL, /*LegalTypes=*/false); 7368 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7369 SDValue Elt = 7370 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7371 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7372 7373 if (ExtType != ISD::NON_EXTLOAD) { 7374 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7375 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7376 } 7377 7378 Vals.push_back(Scalar); 7379 } 7380 7381 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7382 return std::make_pair(Value, Load.getValue(1)); 7383 } 7384 7385 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7386 assert(SrcEltVT.isByteSized()); 7387 7388 SmallVector<SDValue, 8> Vals; 7389 SmallVector<SDValue, 8> LoadChains; 7390 7391 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7392 SDValue ScalarLoad = 7393 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7394 LD->getPointerInfo().getWithOffset(Idx * Stride), 7395 SrcEltVT, LD->getOriginalAlign(), 7396 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7397 7398 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7399 7400 Vals.push_back(ScalarLoad.getValue(0)); 7401 LoadChains.push_back(ScalarLoad.getValue(1)); 7402 } 7403 7404 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7405 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7406 7407 return std::make_pair(Value, NewChain); 7408 } 7409 7410 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7411 SelectionDAG &DAG) const { 7412 SDLoc SL(ST); 7413 7414 SDValue Chain = ST->getChain(); 7415 SDValue BasePtr = ST->getBasePtr(); 7416 SDValue Value = ST->getValue(); 7417 EVT StVT = ST->getMemoryVT(); 7418 7419 if (StVT.isScalableVector()) 7420 report_fatal_error("Cannot scalarize scalable vector stores"); 7421 7422 // The type of the data we want to save 7423 EVT RegVT = Value.getValueType(); 7424 EVT RegSclVT = RegVT.getScalarType(); 7425 7426 // The type of data as saved in memory. 7427 EVT MemSclVT = StVT.getScalarType(); 7428 7429 unsigned NumElem = StVT.getVectorNumElements(); 7430 7431 // A vector must always be stored in memory as-is, i.e. without any padding 7432 // between the elements, since various code depend on it, e.g. in the 7433 // handling of a bitcast of a vector type to int, which may be done with a 7434 // vector store followed by an integer load. A vector that does not have 7435 // elements that are byte-sized must therefore be stored as an integer 7436 // built out of the extracted vector elements. 7437 if (!MemSclVT.isByteSized()) { 7438 unsigned NumBits = StVT.getSizeInBits(); 7439 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7440 7441 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7442 7443 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7444 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7445 DAG.getVectorIdxConstant(Idx, SL)); 7446 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7447 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7448 unsigned ShiftIntoIdx = 7449 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7450 SDValue ShiftAmount = 7451 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7452 SDValue ShiftedElt = 7453 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7454 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7455 } 7456 7457 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7458 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7459 ST->getAAInfo()); 7460 } 7461 7462 // Store Stride in bytes 7463 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7464 assert(Stride && "Zero stride!"); 7465 // Extract each of the elements from the original vector and save them into 7466 // memory individually. 7467 SmallVector<SDValue, 8> Stores; 7468 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7469 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7470 DAG.getVectorIdxConstant(Idx, SL)); 7471 7472 SDValue Ptr = 7473 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7474 7475 // This scalar TruncStore may be illegal, but we legalize it later. 7476 SDValue Store = DAG.getTruncStore( 7477 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7478 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7479 ST->getAAInfo()); 7480 7481 Stores.push_back(Store); 7482 } 7483 7484 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7485 } 7486 7487 std::pair<SDValue, SDValue> 7488 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7489 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7490 "unaligned indexed loads not implemented!"); 7491 SDValue Chain = LD->getChain(); 7492 SDValue Ptr = LD->getBasePtr(); 7493 EVT VT = LD->getValueType(0); 7494 EVT LoadedVT = LD->getMemoryVT(); 7495 SDLoc dl(LD); 7496 auto &MF = DAG.getMachineFunction(); 7497 7498 if (VT.isFloatingPoint() || VT.isVector()) { 7499 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7500 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7501 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7502 LoadedVT.isVector()) { 7503 // Scalarize the load and let the individual components be handled. 7504 return scalarizeVectorLoad(LD, DAG); 7505 } 7506 7507 // Expand to a (misaligned) integer load of the same size, 7508 // then bitconvert to floating point or vector. 7509 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7510 LD->getMemOperand()); 7511 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7512 if (LoadedVT != VT) 7513 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7514 ISD::ANY_EXTEND, dl, VT, Result); 7515 7516 return std::make_pair(Result, newLoad.getValue(1)); 7517 } 7518 7519 // Copy the value to a (aligned) stack slot using (unaligned) integer 7520 // loads and stores, then do a (aligned) load from the stack slot. 7521 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7522 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7523 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7524 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7525 7526 // Make sure the stack slot is also aligned for the register type. 7527 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7528 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7529 SmallVector<SDValue, 8> Stores; 7530 SDValue StackPtr = StackBase; 7531 unsigned Offset = 0; 7532 7533 EVT PtrVT = Ptr.getValueType(); 7534 EVT StackPtrVT = StackPtr.getValueType(); 7535 7536 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7537 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7538 7539 // Do all but one copies using the full register width. 7540 for (unsigned i = 1; i < NumRegs; i++) { 7541 // Load one integer register's worth from the original location. 7542 SDValue Load = DAG.getLoad( 7543 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7544 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7545 LD->getAAInfo()); 7546 // Follow the load with a store to the stack slot. Remember the store. 7547 Stores.push_back(DAG.getStore( 7548 Load.getValue(1), dl, Load, StackPtr, 7549 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7550 // Increment the pointers. 7551 Offset += RegBytes; 7552 7553 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7554 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7555 } 7556 7557 // The last copy may be partial. Do an extending load. 7558 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7559 8 * (LoadedBytes - Offset)); 7560 SDValue Load = 7561 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7562 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7563 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7564 LD->getAAInfo()); 7565 // Follow the load with a store to the stack slot. Remember the store. 7566 // On big-endian machines this requires a truncating store to ensure 7567 // that the bits end up in the right place. 7568 Stores.push_back(DAG.getTruncStore( 7569 Load.getValue(1), dl, Load, StackPtr, 7570 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7571 7572 // The order of the stores doesn't matter - say it with a TokenFactor. 7573 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7574 7575 // Finally, perform the original load only redirected to the stack slot. 7576 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7577 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7578 LoadedVT); 7579 7580 // Callers expect a MERGE_VALUES node. 7581 return std::make_pair(Load, TF); 7582 } 7583 7584 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7585 "Unaligned load of unsupported type."); 7586 7587 // Compute the new VT that is half the size of the old one. This is an 7588 // integer MVT. 7589 unsigned NumBits = LoadedVT.getSizeInBits(); 7590 EVT NewLoadedVT; 7591 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7592 NumBits >>= 1; 7593 7594 Align Alignment = LD->getOriginalAlign(); 7595 unsigned IncrementSize = NumBits / 8; 7596 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7597 7598 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7599 if (HiExtType == ISD::NON_EXTLOAD) 7600 HiExtType = ISD::ZEXTLOAD; 7601 7602 // Load the value in two parts 7603 SDValue Lo, Hi; 7604 if (DAG.getDataLayout().isLittleEndian()) { 7605 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7606 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7607 LD->getAAInfo()); 7608 7609 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7610 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7611 LD->getPointerInfo().getWithOffset(IncrementSize), 7612 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7613 LD->getAAInfo()); 7614 } else { 7615 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7616 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7617 LD->getAAInfo()); 7618 7619 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7620 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7621 LD->getPointerInfo().getWithOffset(IncrementSize), 7622 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7623 LD->getAAInfo()); 7624 } 7625 7626 // aggregate the two parts 7627 SDValue ShiftAmount = 7628 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7629 DAG.getDataLayout())); 7630 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7631 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7632 7633 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7634 Hi.getValue(1)); 7635 7636 return std::make_pair(Result, TF); 7637 } 7638 7639 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7640 SelectionDAG &DAG) const { 7641 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7642 "unaligned indexed stores not implemented!"); 7643 SDValue Chain = ST->getChain(); 7644 SDValue Ptr = ST->getBasePtr(); 7645 SDValue Val = ST->getValue(); 7646 EVT VT = Val.getValueType(); 7647 Align Alignment = ST->getOriginalAlign(); 7648 auto &MF = DAG.getMachineFunction(); 7649 EVT StoreMemVT = ST->getMemoryVT(); 7650 7651 SDLoc dl(ST); 7652 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7653 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7654 if (isTypeLegal(intVT)) { 7655 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7656 StoreMemVT.isVector()) { 7657 // Scalarize the store and let the individual components be handled. 7658 SDValue Result = scalarizeVectorStore(ST, DAG); 7659 return Result; 7660 } 7661 // Expand to a bitconvert of the value to the integer type of the 7662 // same size, then a (misaligned) int store. 7663 // FIXME: Does not handle truncating floating point stores! 7664 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7665 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7666 Alignment, ST->getMemOperand()->getFlags()); 7667 return Result; 7668 } 7669 // Do a (aligned) store to a stack slot, then copy from the stack slot 7670 // to the final destination using (unaligned) integer loads and stores. 7671 MVT RegVT = getRegisterType( 7672 *DAG.getContext(), 7673 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7674 EVT PtrVT = Ptr.getValueType(); 7675 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7676 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7677 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7678 7679 // Make sure the stack slot is also aligned for the register type. 7680 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7681 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7682 7683 // Perform the original store, only redirected to the stack slot. 7684 SDValue Store = DAG.getTruncStore( 7685 Chain, dl, Val, StackPtr, 7686 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7687 7688 EVT StackPtrVT = StackPtr.getValueType(); 7689 7690 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7691 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7692 SmallVector<SDValue, 8> Stores; 7693 unsigned Offset = 0; 7694 7695 // Do all but one copies using the full register width. 7696 for (unsigned i = 1; i < NumRegs; i++) { 7697 // Load one integer register's worth from the stack slot. 7698 SDValue Load = DAG.getLoad( 7699 RegVT, dl, Store, StackPtr, 7700 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7701 // Store it to the final location. Remember the store. 7702 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7703 ST->getPointerInfo().getWithOffset(Offset), 7704 ST->getOriginalAlign(), 7705 ST->getMemOperand()->getFlags())); 7706 // Increment the pointers. 7707 Offset += RegBytes; 7708 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7709 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7710 } 7711 7712 // The last store may be partial. Do a truncating store. On big-endian 7713 // machines this requires an extending load from the stack slot to ensure 7714 // that the bits are in the right place. 7715 EVT LoadMemVT = 7716 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7717 7718 // Load from the stack slot. 7719 SDValue Load = DAG.getExtLoad( 7720 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7721 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7722 7723 Stores.push_back( 7724 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7725 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7726 ST->getOriginalAlign(), 7727 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7728 // The order of the stores doesn't matter - say it with a TokenFactor. 7729 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7730 return Result; 7731 } 7732 7733 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7734 "Unaligned store of unknown type."); 7735 // Get the half-size VT 7736 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7737 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7738 unsigned IncrementSize = NumBits / 8; 7739 7740 // Divide the stored value in two parts. 7741 SDValue ShiftAmount = DAG.getConstant( 7742 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7743 SDValue Lo = Val; 7744 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7745 7746 // Store the two parts 7747 SDValue Store1, Store2; 7748 Store1 = DAG.getTruncStore(Chain, dl, 7749 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7750 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7751 ST->getMemOperand()->getFlags()); 7752 7753 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7754 Store2 = DAG.getTruncStore( 7755 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7756 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7757 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7758 7759 SDValue Result = 7760 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7761 return Result; 7762 } 7763 7764 SDValue 7765 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7766 const SDLoc &DL, EVT DataVT, 7767 SelectionDAG &DAG, 7768 bool IsCompressedMemory) const { 7769 SDValue Increment; 7770 EVT AddrVT = Addr.getValueType(); 7771 EVT MaskVT = Mask.getValueType(); 7772 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7773 "Incompatible types of Data and Mask"); 7774 if (IsCompressedMemory) { 7775 if (DataVT.isScalableVector()) 7776 report_fatal_error( 7777 "Cannot currently handle compressed memory with scalable vectors"); 7778 // Incrementing the pointer according to number of '1's in the mask. 7779 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7780 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7781 if (MaskIntVT.getSizeInBits() < 32) { 7782 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7783 MaskIntVT = MVT::i32; 7784 } 7785 7786 // Count '1's with POPCNT. 7787 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7788 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7789 // Scale is an element size in bytes. 7790 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7791 AddrVT); 7792 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7793 } else if (DataVT.isScalableVector()) { 7794 Increment = DAG.getVScale(DL, AddrVT, 7795 APInt(AddrVT.getFixedSizeInBits(), 7796 DataVT.getStoreSize().getKnownMinSize())); 7797 } else 7798 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7799 7800 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7801 } 7802 7803 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7804 EVT VecVT, const SDLoc &dl, 7805 unsigned NumSubElts) { 7806 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7807 return Idx; 7808 7809 EVT IdxVT = Idx.getValueType(); 7810 unsigned NElts = VecVT.getVectorMinNumElements(); 7811 if (VecVT.isScalableVector()) { 7812 // If this is a constant index and we know the value plus the number of the 7813 // elements in the subvector minus one is less than the minimum number of 7814 // elements then it's safe to return Idx. 7815 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7816 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7817 return Idx; 7818 SDValue VS = 7819 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7820 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7821 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7822 DAG.getConstant(NumSubElts, dl, IdxVT)); 7823 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7824 } 7825 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7826 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7827 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7828 DAG.getConstant(Imm, dl, IdxVT)); 7829 } 7830 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7831 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7832 DAG.getConstant(MaxIndex, dl, IdxVT)); 7833 } 7834 7835 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7836 SDValue VecPtr, EVT VecVT, 7837 SDValue Index) const { 7838 return getVectorSubVecPointer( 7839 DAG, VecPtr, VecVT, 7840 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7841 Index); 7842 } 7843 7844 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7845 SDValue VecPtr, EVT VecVT, 7846 EVT SubVecVT, 7847 SDValue Index) const { 7848 SDLoc dl(Index); 7849 // Make sure the index type is big enough to compute in. 7850 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7851 7852 EVT EltVT = VecVT.getVectorElementType(); 7853 7854 // Calculate the element offset and add it to the pointer. 7855 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7856 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7857 "Converting bits to bytes lost precision"); 7858 7859 // Scalable vectors don't need clamping as these are checked at compile time 7860 if (SubVecVT.isFixedLengthVector()) { 7861 assert(SubVecVT.getVectorElementType() == EltVT && 7862 "Sub-vector must be a fixed vector with matching element type"); 7863 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7864 SubVecVT.getVectorNumElements()); 7865 } 7866 7867 EVT IdxVT = Index.getValueType(); 7868 7869 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7870 DAG.getConstant(EltSize, dl, IdxVT)); 7871 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7872 } 7873 7874 //===----------------------------------------------------------------------===// 7875 // Implementation of Emulated TLS Model 7876 //===----------------------------------------------------------------------===// 7877 7878 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7879 SelectionDAG &DAG) const { 7880 // Access to address of TLS varialbe xyz is lowered to a function call: 7881 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7882 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7883 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7884 SDLoc dl(GA); 7885 7886 ArgListTy Args; 7887 ArgListEntry Entry; 7888 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7889 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7890 StringRef EmuTlsVarName(NameString); 7891 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7892 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7893 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7894 Entry.Ty = VoidPtrType; 7895 Args.push_back(Entry); 7896 7897 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7898 7899 TargetLowering::CallLoweringInfo CLI(DAG); 7900 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7901 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7902 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7903 7904 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7905 // At last for X86 targets, maybe good for other targets too? 7906 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7907 MFI.setAdjustsStack(true); // Is this only for X86 target? 7908 MFI.setHasCalls(true); 7909 7910 assert((GA->getOffset() == 0) && 7911 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7912 return CallResult.first; 7913 } 7914 7915 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7916 SelectionDAG &DAG) const { 7917 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7918 if (!isCtlzFast()) 7919 return SDValue(); 7920 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7921 SDLoc dl(Op); 7922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7923 if (C->isNullValue() && CC == ISD::SETEQ) { 7924 EVT VT = Op.getOperand(0).getValueType(); 7925 SDValue Zext = Op.getOperand(0); 7926 if (VT.bitsLT(MVT::i32)) { 7927 VT = MVT::i32; 7928 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7929 } 7930 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7931 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7932 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7933 DAG.getConstant(Log2b, dl, MVT::i32)); 7934 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7935 } 7936 } 7937 return SDValue(); 7938 } 7939 7940 // Convert redundant addressing modes (e.g. scaling is redundant 7941 // when accessing bytes). 7942 ISD::MemIndexType 7943 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7944 SDValue Offsets) const { 7945 bool IsScaledIndex = 7946 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7947 bool IsSignedIndex = 7948 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7949 7950 // Scaling is unimportant for bytes, canonicalize to unscaled. 7951 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7952 IsScaledIndex = false; 7953 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7954 } 7955 7956 return IndexType; 7957 } 7958 7959 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7960 SDValue Op0 = Node->getOperand(0); 7961 SDValue Op1 = Node->getOperand(1); 7962 EVT VT = Op0.getValueType(); 7963 unsigned Opcode = Node->getOpcode(); 7964 SDLoc DL(Node); 7965 7966 // umin(x,y) -> sub(x,usubsat(x,y)) 7967 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7968 isOperationLegal(ISD::USUBSAT, VT)) { 7969 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7970 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7971 } 7972 7973 // umax(x,y) -> add(x,usubsat(y,x)) 7974 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7975 isOperationLegal(ISD::USUBSAT, VT)) { 7976 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7977 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7978 } 7979 7980 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7981 ISD::CondCode CC; 7982 switch (Opcode) { 7983 default: llvm_unreachable("How did we get here?"); 7984 case ISD::SMAX: CC = ISD::SETGT; break; 7985 case ISD::SMIN: CC = ISD::SETLT; break; 7986 case ISD::UMAX: CC = ISD::SETUGT; break; 7987 case ISD::UMIN: CC = ISD::SETULT; break; 7988 } 7989 7990 // FIXME: Should really try to split the vector in case it's legal on a 7991 // subvector. 7992 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7993 return DAG.UnrollVectorOp(Node); 7994 7995 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7996 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7997 } 7998 7999 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8000 unsigned Opcode = Node->getOpcode(); 8001 SDValue LHS = Node->getOperand(0); 8002 SDValue RHS = Node->getOperand(1); 8003 EVT VT = LHS.getValueType(); 8004 SDLoc dl(Node); 8005 8006 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8007 assert(VT.isInteger() && "Expected operands to be integers"); 8008 8009 // usub.sat(a, b) -> umax(a, b) - b 8010 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8011 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8012 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8013 } 8014 8015 // uadd.sat(a, b) -> umin(a, ~b) + b 8016 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8017 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8018 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8019 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8020 } 8021 8022 unsigned OverflowOp; 8023 switch (Opcode) { 8024 case ISD::SADDSAT: 8025 OverflowOp = ISD::SADDO; 8026 break; 8027 case ISD::UADDSAT: 8028 OverflowOp = ISD::UADDO; 8029 break; 8030 case ISD::SSUBSAT: 8031 OverflowOp = ISD::SSUBO; 8032 break; 8033 case ISD::USUBSAT: 8034 OverflowOp = ISD::USUBO; 8035 break; 8036 default: 8037 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8038 "addition or subtraction node."); 8039 } 8040 8041 // FIXME: Should really try to split the vector in case it's legal on a 8042 // subvector. 8043 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8044 return DAG.UnrollVectorOp(Node); 8045 8046 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8047 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8048 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8049 SDValue SumDiff = Result.getValue(0); 8050 SDValue Overflow = Result.getValue(1); 8051 SDValue Zero = DAG.getConstant(0, dl, VT); 8052 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8053 8054 if (Opcode == ISD::UADDSAT) { 8055 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8056 // (LHS + RHS) | OverflowMask 8057 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8058 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8059 } 8060 // Overflow ? 0xffff.... : (LHS + RHS) 8061 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8062 } 8063 8064 if (Opcode == ISD::USUBSAT) { 8065 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8066 // (LHS - RHS) & ~OverflowMask 8067 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8068 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8069 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8070 } 8071 // Overflow ? 0 : (LHS - RHS) 8072 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8073 } 8074 8075 // SatMax -> Overflow && SumDiff < 0 8076 // SatMin -> Overflow && SumDiff >= 0 8077 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8078 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8079 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8080 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8081 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8082 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8083 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8084 } 8085 8086 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8087 unsigned Opcode = Node->getOpcode(); 8088 bool IsSigned = Opcode == ISD::SSHLSAT; 8089 SDValue LHS = Node->getOperand(0); 8090 SDValue RHS = Node->getOperand(1); 8091 EVT VT = LHS.getValueType(); 8092 SDLoc dl(Node); 8093 8094 assert((Node->getOpcode() == ISD::SSHLSAT || 8095 Node->getOpcode() == ISD::USHLSAT) && 8096 "Expected a SHLSAT opcode"); 8097 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8098 assert(VT.isInteger() && "Expected operands to be integers"); 8099 8100 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8101 8102 unsigned BW = VT.getScalarSizeInBits(); 8103 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8104 SDValue Orig = 8105 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8106 8107 SDValue SatVal; 8108 if (IsSigned) { 8109 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8110 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8111 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8112 SatMin, SatMax, ISD::SETLT); 8113 } else { 8114 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8115 } 8116 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8117 8118 return Result; 8119 } 8120 8121 SDValue 8122 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8123 assert((Node->getOpcode() == ISD::SMULFIX || 8124 Node->getOpcode() == ISD::UMULFIX || 8125 Node->getOpcode() == ISD::SMULFIXSAT || 8126 Node->getOpcode() == ISD::UMULFIXSAT) && 8127 "Expected a fixed point multiplication opcode"); 8128 8129 SDLoc dl(Node); 8130 SDValue LHS = Node->getOperand(0); 8131 SDValue RHS = Node->getOperand(1); 8132 EVT VT = LHS.getValueType(); 8133 unsigned Scale = Node->getConstantOperandVal(2); 8134 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8135 Node->getOpcode() == ISD::UMULFIXSAT); 8136 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8137 Node->getOpcode() == ISD::SMULFIXSAT); 8138 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8139 unsigned VTSize = VT.getScalarSizeInBits(); 8140 8141 if (!Scale) { 8142 // [us]mul.fix(a, b, 0) -> mul(a, b) 8143 if (!Saturating) { 8144 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8145 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8146 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8147 SDValue Result = 8148 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8149 SDValue Product = Result.getValue(0); 8150 SDValue Overflow = Result.getValue(1); 8151 SDValue Zero = DAG.getConstant(0, dl, VT); 8152 8153 APInt MinVal = APInt::getSignedMinValue(VTSize); 8154 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8155 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8156 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8157 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8158 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8159 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8160 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8161 SDValue Result = 8162 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8163 SDValue Product = Result.getValue(0); 8164 SDValue Overflow = Result.getValue(1); 8165 8166 APInt MaxVal = APInt::getMaxValue(VTSize); 8167 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8168 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8169 } 8170 } 8171 8172 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8173 "Expected scale to be less than the number of bits if signed or at " 8174 "most the number of bits if unsigned."); 8175 assert(LHS.getValueType() == RHS.getValueType() && 8176 "Expected both operands to be the same type"); 8177 8178 // Get the upper and lower bits of the result. 8179 SDValue Lo, Hi; 8180 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8181 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8182 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8183 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8184 Lo = Result.getValue(0); 8185 Hi = Result.getValue(1); 8186 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8187 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8188 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8189 } else if (VT.isVector()) { 8190 return SDValue(); 8191 } else { 8192 report_fatal_error("Unable to expand fixed point multiplication."); 8193 } 8194 8195 if (Scale == VTSize) 8196 // Result is just the top half since we'd be shifting by the width of the 8197 // operand. Overflow impossible so this works for both UMULFIX and 8198 // UMULFIXSAT. 8199 return Hi; 8200 8201 // The result will need to be shifted right by the scale since both operands 8202 // are scaled. The result is given to us in 2 halves, so we only want part of 8203 // both in the result. 8204 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8205 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8206 DAG.getConstant(Scale, dl, ShiftTy)); 8207 if (!Saturating) 8208 return Result; 8209 8210 if (!Signed) { 8211 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8212 // widened multiplication) aren't all zeroes. 8213 8214 // Saturate to max if ((Hi >> Scale) != 0), 8215 // which is the same as if (Hi > ((1 << Scale) - 1)) 8216 APInt MaxVal = APInt::getMaxValue(VTSize); 8217 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8218 dl, VT); 8219 Result = DAG.getSelectCC(dl, Hi, LowMask, 8220 DAG.getConstant(MaxVal, dl, VT), Result, 8221 ISD::SETUGT); 8222 8223 return Result; 8224 } 8225 8226 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8227 // widened multiplication) aren't all ones or all zeroes. 8228 8229 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8230 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8231 8232 if (Scale == 0) { 8233 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8234 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8235 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8236 // Saturated to SatMin if wide product is negative, and SatMax if wide 8237 // product is positive ... 8238 SDValue Zero = DAG.getConstant(0, dl, VT); 8239 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8240 ISD::SETLT); 8241 // ... but only if we overflowed. 8242 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8243 } 8244 8245 // We handled Scale==0 above so all the bits to examine is in Hi. 8246 8247 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8248 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8249 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8250 dl, VT); 8251 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8252 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8253 // which is the same as if (HI < (-1 << (Scale - 1)) 8254 SDValue HighMask = 8255 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8256 dl, VT); 8257 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8258 return Result; 8259 } 8260 8261 SDValue 8262 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8263 SDValue LHS, SDValue RHS, 8264 unsigned Scale, SelectionDAG &DAG) const { 8265 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8266 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8267 "Expected a fixed point division opcode"); 8268 8269 EVT VT = LHS.getValueType(); 8270 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8271 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8272 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8273 8274 // If there is enough room in the type to upscale the LHS or downscale the 8275 // RHS before the division, we can perform it in this type without having to 8276 // resize. For signed operations, the LHS headroom is the number of 8277 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8278 // The headroom for the RHS is the number of trailing zeroes. 8279 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8280 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8281 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8282 8283 // For signed saturating operations, we need to be able to detect true integer 8284 // division overflow; that is, when you have MIN / -EPS. However, this 8285 // is undefined behavior and if we emit divisions that could take such 8286 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8287 // example). 8288 // Avoid this by requiring an extra bit so that we never get this case. 8289 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8290 // signed saturating division, we need to emit a whopping 32-bit division. 8291 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8292 return SDValue(); 8293 8294 unsigned LHSShift = std::min(LHSLead, Scale); 8295 unsigned RHSShift = Scale - LHSShift; 8296 8297 // At this point, we know that if we shift the LHS up by LHSShift and the 8298 // RHS down by RHSShift, we can emit a regular division with a final scaling 8299 // factor of Scale. 8300 8301 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8302 if (LHSShift) 8303 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8304 DAG.getConstant(LHSShift, dl, ShiftTy)); 8305 if (RHSShift) 8306 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8307 DAG.getConstant(RHSShift, dl, ShiftTy)); 8308 8309 SDValue Quot; 8310 if (Signed) { 8311 // For signed operations, if the resulting quotient is negative and the 8312 // remainder is nonzero, subtract 1 from the quotient to round towards 8313 // negative infinity. 8314 SDValue Rem; 8315 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8316 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8317 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8318 if (isTypeLegal(VT) && 8319 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8320 Quot = DAG.getNode(ISD::SDIVREM, dl, 8321 DAG.getVTList(VT, VT), 8322 LHS, RHS); 8323 Rem = Quot.getValue(1); 8324 Quot = Quot.getValue(0); 8325 } else { 8326 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8327 LHS, RHS); 8328 Rem = DAG.getNode(ISD::SREM, dl, VT, 8329 LHS, RHS); 8330 } 8331 SDValue Zero = DAG.getConstant(0, dl, VT); 8332 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8333 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8334 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8335 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8336 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8337 DAG.getConstant(1, dl, VT)); 8338 Quot = DAG.getSelect(dl, VT, 8339 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8340 Sub1, Quot); 8341 } else 8342 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8343 LHS, RHS); 8344 8345 return Quot; 8346 } 8347 8348 void TargetLowering::expandUADDSUBO( 8349 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8350 SDLoc dl(Node); 8351 SDValue LHS = Node->getOperand(0); 8352 SDValue RHS = Node->getOperand(1); 8353 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8354 8355 // If ADD/SUBCARRY is legal, use that instead. 8356 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8357 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8358 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8359 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8360 { LHS, RHS, CarryIn }); 8361 Result = SDValue(NodeCarry.getNode(), 0); 8362 Overflow = SDValue(NodeCarry.getNode(), 1); 8363 return; 8364 } 8365 8366 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8367 LHS.getValueType(), LHS, RHS); 8368 8369 EVT ResultType = Node->getValueType(1); 8370 EVT SetCCType = getSetCCResultType( 8371 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8372 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8373 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8374 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8375 } 8376 8377 void TargetLowering::expandSADDSUBO( 8378 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8379 SDLoc dl(Node); 8380 SDValue LHS = Node->getOperand(0); 8381 SDValue RHS = Node->getOperand(1); 8382 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8383 8384 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8385 LHS.getValueType(), LHS, RHS); 8386 8387 EVT ResultType = Node->getValueType(1); 8388 EVT OType = getSetCCResultType( 8389 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8390 8391 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8392 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8393 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8394 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8395 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8396 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8397 return; 8398 } 8399 8400 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8401 8402 // For an addition, the result should be less than one of the operands (LHS) 8403 // if and only if the other operand (RHS) is negative, otherwise there will 8404 // be overflow. 8405 // For a subtraction, the result should be less than one of the operands 8406 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8407 // otherwise there will be overflow. 8408 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8409 SDValue ConditionRHS = 8410 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8411 8412 Overflow = DAG.getBoolExtOrTrunc( 8413 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8414 ResultType, ResultType); 8415 } 8416 8417 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8418 SDValue &Overflow, SelectionDAG &DAG) const { 8419 SDLoc dl(Node); 8420 EVT VT = Node->getValueType(0); 8421 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8422 SDValue LHS = Node->getOperand(0); 8423 SDValue RHS = Node->getOperand(1); 8424 bool isSigned = Node->getOpcode() == ISD::SMULO; 8425 8426 // For power-of-two multiplications we can use a simpler shift expansion. 8427 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8428 const APInt &C = RHSC->getAPIntValue(); 8429 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8430 if (C.isPowerOf2()) { 8431 // smulo(x, signed_min) is same as umulo(x, signed_min). 8432 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8433 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8434 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8435 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8436 Overflow = DAG.getSetCC(dl, SetCCVT, 8437 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8438 dl, VT, Result, ShiftAmt), 8439 LHS, ISD::SETNE); 8440 return true; 8441 } 8442 } 8443 8444 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8445 if (VT.isVector()) 8446 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8447 VT.getVectorNumElements()); 8448 8449 SDValue BottomHalf; 8450 SDValue TopHalf; 8451 static const unsigned Ops[2][3] = 8452 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8453 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8454 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8455 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8456 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8457 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8458 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8459 RHS); 8460 TopHalf = BottomHalf.getValue(1); 8461 } else if (isTypeLegal(WideVT)) { 8462 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8463 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8464 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8465 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8466 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8467 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8468 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8469 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8470 } else { 8471 if (VT.isVector()) 8472 return false; 8473 8474 // We can fall back to a libcall with an illegal type for the MUL if we 8475 // have a libcall big enough. 8476 // Also, we can fall back to a division in some cases, but that's a big 8477 // performance hit in the general case. 8478 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8479 if (WideVT == MVT::i16) 8480 LC = RTLIB::MUL_I16; 8481 else if (WideVT == MVT::i32) 8482 LC = RTLIB::MUL_I32; 8483 else if (WideVT == MVT::i64) 8484 LC = RTLIB::MUL_I64; 8485 else if (WideVT == MVT::i128) 8486 LC = RTLIB::MUL_I128; 8487 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8488 8489 SDValue HiLHS; 8490 SDValue HiRHS; 8491 if (isSigned) { 8492 // The high part is obtained by SRA'ing all but one of the bits of low 8493 // part. 8494 unsigned LoSize = VT.getFixedSizeInBits(); 8495 HiLHS = 8496 DAG.getNode(ISD::SRA, dl, VT, LHS, 8497 DAG.getConstant(LoSize - 1, dl, 8498 getPointerTy(DAG.getDataLayout()))); 8499 HiRHS = 8500 DAG.getNode(ISD::SRA, dl, VT, RHS, 8501 DAG.getConstant(LoSize - 1, dl, 8502 getPointerTy(DAG.getDataLayout()))); 8503 } else { 8504 HiLHS = DAG.getConstant(0, dl, VT); 8505 HiRHS = DAG.getConstant(0, dl, VT); 8506 } 8507 8508 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8509 // pre-lowered to the correct types. This all depends upon WideVT not 8510 // being a legal type for the architecture and thus has to be split to 8511 // two arguments. 8512 SDValue Ret; 8513 TargetLowering::MakeLibCallOptions CallOptions; 8514 CallOptions.setSExt(isSigned); 8515 CallOptions.setIsPostTypeLegalization(true); 8516 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8517 // Halves of WideVT are packed into registers in different order 8518 // depending on platform endianness. This is usually handled by 8519 // the C calling convention, but we can't defer to it in 8520 // the legalizer. 8521 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8522 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8523 } else { 8524 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8525 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8526 } 8527 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8528 "Ret value is a collection of constituent nodes holding result."); 8529 if (DAG.getDataLayout().isLittleEndian()) { 8530 // Same as above. 8531 BottomHalf = Ret.getOperand(0); 8532 TopHalf = Ret.getOperand(1); 8533 } else { 8534 BottomHalf = Ret.getOperand(1); 8535 TopHalf = Ret.getOperand(0); 8536 } 8537 } 8538 8539 Result = BottomHalf; 8540 if (isSigned) { 8541 SDValue ShiftAmt = DAG.getConstant( 8542 VT.getScalarSizeInBits() - 1, dl, 8543 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8544 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8545 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8546 } else { 8547 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8548 DAG.getConstant(0, dl, VT), ISD::SETNE); 8549 } 8550 8551 // Truncate the result if SetCC returns a larger type than needed. 8552 EVT RType = Node->getValueType(1); 8553 if (RType.bitsLT(Overflow.getValueType())) 8554 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8555 8556 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8557 "Unexpected result type for S/UMULO legalization"); 8558 return true; 8559 } 8560 8561 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8562 SDLoc dl(Node); 8563 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8564 SDValue Op = Node->getOperand(0); 8565 EVT VT = Op.getValueType(); 8566 8567 if (VT.isScalableVector()) 8568 report_fatal_error( 8569 "Expanding reductions for scalable vectors is undefined."); 8570 8571 // Try to use a shuffle reduction for power of two vectors. 8572 if (VT.isPow2VectorType()) { 8573 while (VT.getVectorNumElements() > 1) { 8574 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8575 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8576 break; 8577 8578 SDValue Lo, Hi; 8579 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8580 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8581 VT = HalfVT; 8582 } 8583 } 8584 8585 EVT EltVT = VT.getVectorElementType(); 8586 unsigned NumElts = VT.getVectorNumElements(); 8587 8588 SmallVector<SDValue, 8> Ops; 8589 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8590 8591 SDValue Res = Ops[0]; 8592 for (unsigned i = 1; i < NumElts; i++) 8593 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8594 8595 // Result type may be wider than element type. 8596 if (EltVT != Node->getValueType(0)) 8597 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8598 return Res; 8599 } 8600 8601 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8602 SDLoc dl(Node); 8603 SDValue AccOp = Node->getOperand(0); 8604 SDValue VecOp = Node->getOperand(1); 8605 SDNodeFlags Flags = Node->getFlags(); 8606 8607 EVT VT = VecOp.getValueType(); 8608 EVT EltVT = VT.getVectorElementType(); 8609 8610 if (VT.isScalableVector()) 8611 report_fatal_error( 8612 "Expanding reductions for scalable vectors is undefined."); 8613 8614 unsigned NumElts = VT.getVectorNumElements(); 8615 8616 SmallVector<SDValue, 8> Ops; 8617 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8618 8619 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8620 8621 SDValue Res = AccOp; 8622 for (unsigned i = 0; i < NumElts; i++) 8623 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8624 8625 return Res; 8626 } 8627 8628 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8629 SelectionDAG &DAG) const { 8630 EVT VT = Node->getValueType(0); 8631 SDLoc dl(Node); 8632 bool isSigned = Node->getOpcode() == ISD::SREM; 8633 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8634 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8635 SDValue Dividend = Node->getOperand(0); 8636 SDValue Divisor = Node->getOperand(1); 8637 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8638 SDVTList VTs = DAG.getVTList(VT, VT); 8639 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8640 return true; 8641 } 8642 if (isOperationLegalOrCustom(DivOpc, VT)) { 8643 // X % Y -> X-X/Y*Y 8644 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8645 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8646 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8647 return true; 8648 } 8649 return false; 8650 } 8651 8652 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8653 SelectionDAG &DAG) const { 8654 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8655 SDLoc dl(SDValue(Node, 0)); 8656 SDValue Src = Node->getOperand(0); 8657 8658 // DstVT is the result type, while SatVT is the size to which we saturate 8659 EVT SrcVT = Src.getValueType(); 8660 EVT DstVT = Node->getValueType(0); 8661 8662 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8663 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8664 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8665 assert(SatWidth <= DstWidth && 8666 "Expected saturation width smaller than result width"); 8667 8668 // Determine minimum and maximum integer values and their corresponding 8669 // floating-point values. 8670 APInt MinInt, MaxInt; 8671 if (IsSigned) { 8672 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8673 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8674 } else { 8675 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8676 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8677 } 8678 8679 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8680 // libcall emission cannot handle this. Large result types will fail. 8681 if (SrcVT == MVT::f16) { 8682 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8683 SrcVT = Src.getValueType(); 8684 } 8685 8686 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8687 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8688 8689 APFloat::opStatus MinStatus = 8690 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8691 APFloat::opStatus MaxStatus = 8692 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8693 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8694 !(MaxStatus & APFloat::opStatus::opInexact); 8695 8696 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8697 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8698 8699 // If the integer bounds are exactly representable as floats and min/max are 8700 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8701 // of comparisons and selects. 8702 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8703 isOperationLegal(ISD::FMAXNUM, SrcVT); 8704 if (AreExactFloatBounds && MinMaxLegal) { 8705 SDValue Clamped = Src; 8706 8707 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8708 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8709 // Clamp by MaxFloat from above. NaN cannot occur. 8710 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8711 // Convert clamped value to integer. 8712 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8713 dl, DstVT, Clamped); 8714 8715 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8716 // which will cast to zero. 8717 if (!IsSigned) 8718 return FpToInt; 8719 8720 // Otherwise, select 0 if Src is NaN. 8721 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8722 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8723 ISD::CondCode::SETUO); 8724 } 8725 8726 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8727 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8728 8729 // Result of direct conversion. The assumption here is that the operation is 8730 // non-trapping and it's fine to apply it to an out-of-range value if we 8731 // select it away later. 8732 SDValue FpToInt = 8733 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8734 8735 SDValue Select = FpToInt; 8736 8737 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8738 // MinInt if Src is NaN. 8739 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8740 ISD::CondCode::SETULT); 8741 // If Src OGT MaxFloat, select MaxInt. 8742 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8743 ISD::CondCode::SETOGT); 8744 8745 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8746 // is already zero. 8747 if (!IsSigned) 8748 return Select; 8749 8750 // Otherwise, select 0 if Src is NaN. 8751 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8752 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8753 } 8754 8755 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8756 SelectionDAG &DAG) const { 8757 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8758 assert(Node->getValueType(0).isScalableVector() && 8759 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8760 8761 EVT VT = Node->getValueType(0); 8762 SDValue V1 = Node->getOperand(0); 8763 SDValue V2 = Node->getOperand(1); 8764 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8765 SDLoc DL(Node); 8766 8767 // Expand through memory thusly: 8768 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8769 // Store V1, Ptr 8770 // Store V2, Ptr + sizeof(V1) 8771 // If (Imm < 0) 8772 // TrailingElts = -Imm 8773 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8774 // else 8775 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8776 // Res = Load Ptr 8777 8778 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8779 8780 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8781 VT.getVectorElementCount() * 2); 8782 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8783 EVT PtrVT = StackPtr.getValueType(); 8784 auto &MF = DAG.getMachineFunction(); 8785 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8786 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8787 8788 // Store the lo part of CONCAT_VECTORS(V1, V2) 8789 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8790 // Store the hi part of CONCAT_VECTORS(V1, V2) 8791 SDValue OffsetToV2 = DAG.getVScale( 8792 DL, PtrVT, 8793 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8794 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8795 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8796 8797 if (Imm >= 0) { 8798 // Load back the required element. getVectorElementPointer takes care of 8799 // clamping the index if it's out-of-bounds. 8800 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8801 // Load the spliced result 8802 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8803 MachinePointerInfo::getUnknownStack(MF)); 8804 } 8805 8806 uint64_t TrailingElts = -Imm; 8807 8808 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8809 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8810 SDValue TrailingBytes = 8811 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8812 8813 if (TrailingElts > VT.getVectorMinNumElements()) { 8814 SDValue VLBytes = DAG.getVScale( 8815 DL, PtrVT, 8816 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8817 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8818 } 8819 8820 // Calculate the start address of the spliced result. 8821 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8822 8823 // Load the spliced result 8824 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8825 MachinePointerInfo::getUnknownStack(MF)); 8826 } 8827 8828 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8829 SDValue &LHS, SDValue &RHS, 8830 SDValue &CC, bool &NeedInvert, 8831 const SDLoc &dl, SDValue &Chain, 8832 bool IsSignaling) const { 8833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8834 MVT OpVT = LHS.getSimpleValueType(); 8835 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8836 NeedInvert = false; 8837 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8838 default: 8839 llvm_unreachable("Unknown condition code action!"); 8840 case TargetLowering::Legal: 8841 // Nothing to do. 8842 break; 8843 case TargetLowering::Expand: { 8844 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8845 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8846 std::swap(LHS, RHS); 8847 CC = DAG.getCondCode(InvCC); 8848 return true; 8849 } 8850 // Swapping operands didn't work. Try inverting the condition. 8851 bool NeedSwap = false; 8852 InvCC = getSetCCInverse(CCCode, OpVT); 8853 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8854 // If inverting the condition is not enough, try swapping operands 8855 // on top of it. 8856 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8857 NeedSwap = true; 8858 } 8859 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8860 CC = DAG.getCondCode(InvCC); 8861 NeedInvert = true; 8862 if (NeedSwap) 8863 std::swap(LHS, RHS); 8864 return true; 8865 } 8866 8867 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8868 unsigned Opc = 0; 8869 switch (CCCode) { 8870 default: 8871 llvm_unreachable("Don't know how to expand this condition!"); 8872 case ISD::SETUO: 8873 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8874 CC1 = ISD::SETUNE; 8875 CC2 = ISD::SETUNE; 8876 Opc = ISD::OR; 8877 break; 8878 } 8879 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8880 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8881 NeedInvert = true; 8882 LLVM_FALLTHROUGH; 8883 case ISD::SETO: 8884 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8885 "If SETO is expanded, SETOEQ must be legal!"); 8886 CC1 = ISD::SETOEQ; 8887 CC2 = ISD::SETOEQ; 8888 Opc = ISD::AND; 8889 break; 8890 case ISD::SETONE: 8891 case ISD::SETUEQ: 8892 // If the SETUO or SETO CC isn't legal, we might be able to use 8893 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8894 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8895 // the operands. 8896 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8897 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8898 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8899 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8900 CC1 = ISD::SETOGT; 8901 CC2 = ISD::SETOLT; 8902 Opc = ISD::OR; 8903 NeedInvert = ((unsigned)CCCode & 0x8U); 8904 break; 8905 } 8906 LLVM_FALLTHROUGH; 8907 case ISD::SETOEQ: 8908 case ISD::SETOGT: 8909 case ISD::SETOGE: 8910 case ISD::SETOLT: 8911 case ISD::SETOLE: 8912 case ISD::SETUNE: 8913 case ISD::SETUGT: 8914 case ISD::SETUGE: 8915 case ISD::SETULT: 8916 case ISD::SETULE: 8917 // If we are floating point, assign and break, otherwise fall through. 8918 if (!OpVT.isInteger()) { 8919 // We can use the 4th bit to tell if we are the unordered 8920 // or ordered version of the opcode. 8921 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8922 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8923 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8924 break; 8925 } 8926 // Fallthrough if we are unsigned integer. 8927 LLVM_FALLTHROUGH; 8928 case ISD::SETLE: 8929 case ISD::SETGT: 8930 case ISD::SETGE: 8931 case ISD::SETLT: 8932 case ISD::SETNE: 8933 case ISD::SETEQ: 8934 // If all combinations of inverting the condition and swapping operands 8935 // didn't work then we have no means to expand the condition. 8936 llvm_unreachable("Don't know how to expand this condition!"); 8937 } 8938 8939 SDValue SetCC1, SetCC2; 8940 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8941 // If we aren't the ordered or unorder operation, 8942 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8943 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8944 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8945 } else { 8946 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8947 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8948 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8949 } 8950 if (Chain) 8951 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8952 SetCC2.getValue(1)); 8953 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8954 RHS = SDValue(); 8955 CC = SDValue(); 8956 return true; 8957 } 8958 } 8959 return false; 8960 } 8961