1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 909 /// result of Op are ever used downstream. If we can use this information to 910 /// simplify Op, create a new simplified DAG node and return true, returning the 911 /// original and new nodes in Old and New. Otherwise, analyze the expression and 912 /// return a mask of Known bits for the expression (used to simplify the 913 /// caller). The Known bits may only be accurate for those bits in the 914 /// OriginalDemandedBits and OriginalDemandedElts. 915 bool TargetLowering::SimplifyDemandedBits( 916 SDValue Op, const APInt &OriginalDemandedBits, 917 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 918 unsigned Depth, bool AssumeSingleUse) const { 919 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 920 assert(Op.getScalarValueSizeInBits() == BitWidth && 921 "Mask size mismatches value type size!"); 922 923 // Don't know anything. 924 Known = KnownBits(BitWidth); 925 926 // TODO: We can probably do more work on calculating the known bits and 927 // simplifying the operations for scalable vectors, but for now we just 928 // bail out. 929 if (Op.getValueType().isScalableVector()) 930 return false; 931 932 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 933 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 934 assert((!Op.getValueType().isVector() || 935 NumElts == Op.getValueType().getVectorNumElements()) && 936 "Unexpected vector size"); 937 938 APInt DemandedBits = OriginalDemandedBits; 939 APInt DemandedElts = OriginalDemandedElts; 940 SDLoc dl(Op); 941 auto &DL = TLO.DAG.getDataLayout(); 942 943 // Undef operand. 944 if (Op.isUndef()) 945 return false; 946 947 if (Op.getOpcode() == ISD::Constant) { 948 // We know all of the bits for a constant! 949 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 950 return false; 951 } 952 953 if (Op.getOpcode() == ISD::ConstantFP) { 954 // We know all of the bits for a floating point constant! 955 Known = KnownBits::makeConstant( 956 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 957 return false; 958 } 959 960 // Other users may use these bits. 961 EVT VT = Op.getValueType(); 962 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 963 if (Depth != 0) { 964 // If not at the root, Just compute the Known bits to 965 // simplify things downstream. 966 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 967 return false; 968 } 969 // If this is the root being simplified, allow it to have multiple uses, 970 // just set the DemandedBits/Elts to all bits. 971 DemandedBits = APInt::getAllOnes(BitWidth); 972 DemandedElts = APInt::getAllOnes(NumElts); 973 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 974 // Not demanding any bits/elts from Op. 975 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 976 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 977 // Limit search depth. 978 return false; 979 } 980 981 KnownBits Known2; 982 switch (Op.getOpcode()) { 983 case ISD::TargetConstant: 984 llvm_unreachable("Can't simplify this node"); 985 case ISD::SCALAR_TO_VECTOR: { 986 if (!DemandedElts[0]) 987 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 988 989 KnownBits SrcKnown; 990 SDValue Src = Op.getOperand(0); 991 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 992 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 993 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 994 return true; 995 996 // Upper elements are undef, so only get the knownbits if we just demand 997 // the bottom element. 998 if (DemandedElts == 1) 999 Known = SrcKnown.anyextOrTrunc(BitWidth); 1000 break; 1001 } 1002 case ISD::BUILD_VECTOR: 1003 // Collect the known bits that are shared by every demanded element. 1004 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1006 return false; // Don't fall through, will infinitely loop. 1007 case ISD::LOAD: { 1008 auto *LD = cast<LoadSDNode>(Op); 1009 if (getTargetConstantFromLoad(LD)) { 1010 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1011 return false; // Don't fall through, will infinitely loop. 1012 } 1013 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1014 // If this is a ZEXTLoad and we are looking at the loaded value. 1015 EVT MemVT = LD->getMemoryVT(); 1016 unsigned MemBits = MemVT.getScalarSizeInBits(); 1017 Known.Zero.setBitsFrom(MemBits); 1018 return false; // Don't fall through, will infinitely loop. 1019 } 1020 break; 1021 } 1022 case ISD::INSERT_VECTOR_ELT: { 1023 SDValue Vec = Op.getOperand(0); 1024 SDValue Scl = Op.getOperand(1); 1025 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1026 EVT VecVT = Vec.getValueType(); 1027 1028 // If index isn't constant, assume we need all vector elements AND the 1029 // inserted element. 1030 APInt DemandedVecElts(DemandedElts); 1031 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1032 unsigned Idx = CIdx->getZExtValue(); 1033 DemandedVecElts.clearBit(Idx); 1034 1035 // Inserted element is not required. 1036 if (!DemandedElts[Idx]) 1037 return TLO.CombineTo(Op, Vec); 1038 } 1039 1040 KnownBits KnownScl; 1041 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1042 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1043 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1044 return true; 1045 1046 Known = KnownScl.anyextOrTrunc(BitWidth); 1047 1048 KnownBits KnownVec; 1049 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1050 Depth + 1)) 1051 return true; 1052 1053 if (!!DemandedVecElts) 1054 Known = KnownBits::commonBits(Known, KnownVec); 1055 1056 return false; 1057 } 1058 case ISD::INSERT_SUBVECTOR: { 1059 // Demand any elements from the subvector and the remainder from the src its 1060 // inserted into. 1061 SDValue Src = Op.getOperand(0); 1062 SDValue Sub = Op.getOperand(1); 1063 uint64_t Idx = Op.getConstantOperandVal(2); 1064 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1065 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1066 APInt DemandedSrcElts = DemandedElts; 1067 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1068 1069 KnownBits KnownSub, KnownSrc; 1070 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1071 Depth + 1)) 1072 return true; 1073 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1074 Depth + 1)) 1075 return true; 1076 1077 Known.Zero.setAllBits(); 1078 Known.One.setAllBits(); 1079 if (!!DemandedSubElts) 1080 Known = KnownBits::commonBits(Known, KnownSub); 1081 if (!!DemandedSrcElts) 1082 Known = KnownBits::commonBits(Known, KnownSrc); 1083 1084 // Attempt to avoid multi-use src if we don't need anything from it. 1085 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1086 !DemandedSrcElts.isAllOnes()) { 1087 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1088 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1089 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1090 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1091 if (NewSub || NewSrc) { 1092 NewSub = NewSub ? NewSub : Sub; 1093 NewSrc = NewSrc ? NewSrc : Src; 1094 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1095 Op.getOperand(2)); 1096 return TLO.CombineTo(Op, NewOp); 1097 } 1098 } 1099 break; 1100 } 1101 case ISD::EXTRACT_SUBVECTOR: { 1102 // Offset the demanded elts by the subvector index. 1103 SDValue Src = Op.getOperand(0); 1104 if (Src.getValueType().isScalableVector()) 1105 break; 1106 uint64_t Idx = Op.getConstantOperandVal(1); 1107 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1108 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1109 1110 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1111 Depth + 1)) 1112 return true; 1113 1114 // Attempt to avoid multi-use src if we don't need anything from it. 1115 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1116 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1117 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1118 if (DemandedSrc) { 1119 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1120 Op.getOperand(1)); 1121 return TLO.CombineTo(Op, NewOp); 1122 } 1123 } 1124 break; 1125 } 1126 case ISD::CONCAT_VECTORS: { 1127 Known.Zero.setAllBits(); 1128 Known.One.setAllBits(); 1129 EVT SubVT = Op.getOperand(0).getValueType(); 1130 unsigned NumSubVecs = Op.getNumOperands(); 1131 unsigned NumSubElts = SubVT.getVectorNumElements(); 1132 for (unsigned i = 0; i != NumSubVecs; ++i) { 1133 APInt DemandedSubElts = 1134 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1135 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1136 Known2, TLO, Depth + 1)) 1137 return true; 1138 // Known bits are shared by every demanded subvector element. 1139 if (!!DemandedSubElts) 1140 Known = KnownBits::commonBits(Known, Known2); 1141 } 1142 break; 1143 } 1144 case ISD::VECTOR_SHUFFLE: { 1145 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1146 1147 // Collect demanded elements from shuffle operands.. 1148 APInt DemandedLHS(NumElts, 0); 1149 APInt DemandedRHS(NumElts, 0); 1150 for (unsigned i = 0; i != NumElts; ++i) { 1151 if (!DemandedElts[i]) 1152 continue; 1153 int M = ShuffleMask[i]; 1154 if (M < 0) { 1155 // For UNDEF elements, we don't know anything about the common state of 1156 // the shuffle result. 1157 DemandedLHS.clearAllBits(); 1158 DemandedRHS.clearAllBits(); 1159 break; 1160 } 1161 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1162 if (M < (int)NumElts) 1163 DemandedLHS.setBit(M); 1164 else 1165 DemandedRHS.setBit(M - NumElts); 1166 } 1167 1168 if (!!DemandedLHS || !!DemandedRHS) { 1169 SDValue Op0 = Op.getOperand(0); 1170 SDValue Op1 = Op.getOperand(1); 1171 1172 Known.Zero.setAllBits(); 1173 Known.One.setAllBits(); 1174 if (!!DemandedLHS) { 1175 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1176 Depth + 1)) 1177 return true; 1178 Known = KnownBits::commonBits(Known, Known2); 1179 } 1180 if (!!DemandedRHS) { 1181 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1182 Depth + 1)) 1183 return true; 1184 Known = KnownBits::commonBits(Known, Known2); 1185 } 1186 1187 // Attempt to avoid multi-use ops if we don't need anything from them. 1188 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1189 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1190 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1191 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1192 if (DemandedOp0 || DemandedOp1) { 1193 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1194 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1195 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1196 return TLO.CombineTo(Op, NewOp); 1197 } 1198 } 1199 break; 1200 } 1201 case ISD::AND: { 1202 SDValue Op0 = Op.getOperand(0); 1203 SDValue Op1 = Op.getOperand(1); 1204 1205 // If the RHS is a constant, check to see if the LHS would be zero without 1206 // using the bits from the RHS. Below, we use knowledge about the RHS to 1207 // simplify the LHS, here we're using information from the LHS to simplify 1208 // the RHS. 1209 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1210 // Do not increment Depth here; that can cause an infinite loop. 1211 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1212 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1213 if ((LHSKnown.Zero & DemandedBits) == 1214 (~RHSC->getAPIntValue() & DemandedBits)) 1215 return TLO.CombineTo(Op, Op0); 1216 1217 // If any of the set bits in the RHS are known zero on the LHS, shrink 1218 // the constant. 1219 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1220 DemandedElts, TLO)) 1221 return true; 1222 1223 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1224 // constant, but if this 'and' is only clearing bits that were just set by 1225 // the xor, then this 'and' can be eliminated by shrinking the mask of 1226 // the xor. For example, for a 32-bit X: 1227 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1228 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1229 LHSKnown.One == ~RHSC->getAPIntValue()) { 1230 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1231 return TLO.CombineTo(Op, Xor); 1232 } 1233 } 1234 1235 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1236 Depth + 1)) 1237 return true; 1238 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1239 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1240 Known2, TLO, Depth + 1)) 1241 return true; 1242 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1243 1244 // Attempt to avoid multi-use ops if we don't need anything from them. 1245 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1246 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1247 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1248 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1249 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1250 if (DemandedOp0 || DemandedOp1) { 1251 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1252 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1253 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1254 return TLO.CombineTo(Op, NewOp); 1255 } 1256 } 1257 1258 // If all of the demanded bits are known one on one side, return the other. 1259 // These bits cannot contribute to the result of the 'and'. 1260 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1261 return TLO.CombineTo(Op, Op0); 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1263 return TLO.CombineTo(Op, Op1); 1264 // If all of the demanded bits in the inputs are known zeros, return zero. 1265 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1266 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1267 // If the RHS is a constant, see if we can simplify it. 1268 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1269 TLO)) 1270 return true; 1271 // If the operation can be done in a smaller type, do so. 1272 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1273 return true; 1274 1275 Known &= Known2; 1276 break; 1277 } 1278 case ISD::OR: { 1279 SDValue Op0 = Op.getOperand(0); 1280 SDValue Op1 = Op.getOperand(1); 1281 1282 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1283 Depth + 1)) 1284 return true; 1285 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1286 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1287 Known2, TLO, Depth + 1)) 1288 return true; 1289 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1290 1291 // Attempt to avoid multi-use ops if we don't need anything from them. 1292 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1293 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1294 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1295 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1296 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1297 if (DemandedOp0 || DemandedOp1) { 1298 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1299 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1300 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1301 return TLO.CombineTo(Op, NewOp); 1302 } 1303 } 1304 1305 // If all of the demanded bits are known zero on one side, return the other. 1306 // These bits cannot contribute to the result of the 'or'. 1307 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1308 return TLO.CombineTo(Op, Op0); 1309 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1310 return TLO.CombineTo(Op, Op1); 1311 // If the RHS is a constant, see if we can simplify it. 1312 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1313 return true; 1314 // If the operation can be done in a smaller type, do so. 1315 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1316 return true; 1317 1318 Known |= Known2; 1319 break; 1320 } 1321 case ISD::XOR: { 1322 SDValue Op0 = Op.getOperand(0); 1323 SDValue Op1 = Op.getOperand(1); 1324 1325 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1326 Depth + 1)) 1327 return true; 1328 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1329 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1330 Depth + 1)) 1331 return true; 1332 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1333 1334 // Attempt to avoid multi-use ops if we don't need anything from them. 1335 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1336 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1337 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1338 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1339 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1340 if (DemandedOp0 || DemandedOp1) { 1341 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1342 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1343 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1344 return TLO.CombineTo(Op, NewOp); 1345 } 1346 } 1347 1348 // If all of the demanded bits are known zero on one side, return the other. 1349 // These bits cannot contribute to the result of the 'xor'. 1350 if (DemandedBits.isSubsetOf(Known.Zero)) 1351 return TLO.CombineTo(Op, Op0); 1352 if (DemandedBits.isSubsetOf(Known2.Zero)) 1353 return TLO.CombineTo(Op, Op1); 1354 // If the operation can be done in a smaller type, do so. 1355 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1356 return true; 1357 1358 // If all of the unknown bits are known to be zero on one side or the other 1359 // turn this into an *inclusive* or. 1360 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1361 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1362 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1363 1364 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1365 if (C) { 1366 // If one side is a constant, and all of the set bits in the constant are 1367 // also known set on the other side, turn this into an AND, as we know 1368 // the bits will be cleared. 1369 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1370 // NB: it is okay if more bits are known than are requested 1371 if (C->getAPIntValue() == Known2.One) { 1372 SDValue ANDC = 1373 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1374 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1375 } 1376 1377 // If the RHS is a constant, see if we can change it. Don't alter a -1 1378 // constant because that's a 'not' op, and that is better for combining 1379 // and codegen. 1380 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1381 // We're flipping all demanded bits. Flip the undemanded bits too. 1382 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1383 return TLO.CombineTo(Op, New); 1384 } 1385 } 1386 1387 // If we can't turn this into a 'not', try to shrink the constant. 1388 if (!C || !C->isAllOnes()) 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 Known ^= Known2; 1393 break; 1394 } 1395 case ISD::SELECT: 1396 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SELECT_CC: 1413 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1414 Depth + 1)) 1415 return true; 1416 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1417 Depth + 1)) 1418 return true; 1419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1420 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1421 1422 // If the operands are constants, see if we can simplify them. 1423 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1424 return true; 1425 1426 // Only known if known in both the LHS and RHS. 1427 Known = KnownBits::commonBits(Known, Known2); 1428 break; 1429 case ISD::SETCC: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1433 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1434 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1435 // -1, we may be able to bypass the setcc. 1436 if (DemandedBits.isSignMask() && 1437 Op0.getScalarValueSizeInBits() == BitWidth && 1438 getBooleanContents(Op0.getValueType()) == 1439 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1440 // If we're testing X < 0, then this compare isn't needed - just use X! 1441 // FIXME: We're limiting to integer types here, but this should also work 1442 // if we don't care about FP signed-zero. The use of SETLT with FP means 1443 // that we don't care about NaNs. 1444 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1445 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1446 return TLO.CombineTo(Op, Op0); 1447 1448 // TODO: Should we check for other forms of sign-bit comparisons? 1449 // Examples: X <= -1, X >= 0 1450 } 1451 if (getBooleanContents(Op0.getValueType()) == 1452 TargetLowering::ZeroOrOneBooleanContent && 1453 BitWidth > 1) 1454 Known.Zero.setBitsFrom(1); 1455 break; 1456 } 1457 case ISD::SHL: { 1458 SDValue Op0 = Op.getOperand(0); 1459 SDValue Op1 = Op.getOperand(1); 1460 EVT ShiftVT = Op1.getValueType(); 1461 1462 if (const APInt *SA = 1463 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1464 unsigned ShAmt = SA->getZExtValue(); 1465 if (ShAmt == 0) 1466 return TLO.CombineTo(Op, Op0); 1467 1468 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1469 // single shift. We can do this if the bottom bits (which are shifted 1470 // out) are never demanded. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::SRL) { 1473 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1474 if (const APInt *SA2 = 1475 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1476 unsigned C1 = SA2->getZExtValue(); 1477 unsigned Opc = ISD::SHL; 1478 int Diff = ShAmt - C1; 1479 if (Diff < 0) { 1480 Diff = -Diff; 1481 Opc = ISD::SRL; 1482 } 1483 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1486 } 1487 } 1488 } 1489 1490 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1491 // are not demanded. This will likely allow the anyext to be folded away. 1492 // TODO - support non-uniform vector amounts. 1493 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1494 SDValue InnerOp = Op0.getOperand(0); 1495 EVT InnerVT = InnerOp.getValueType(); 1496 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1497 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1498 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1499 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1500 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1501 ShTy = InnerVT; 1502 SDValue NarrowShl = 1503 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1504 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1505 return TLO.CombineTo( 1506 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1507 } 1508 1509 // Repeat the SHL optimization above in cases where an extension 1510 // intervenes: (shl (anyext (shr x, c1)), c2) to 1511 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1512 // aren't demanded (as above) and that the shifted upper c1 bits of 1513 // x aren't demanded. 1514 // TODO - support non-uniform vector amounts. 1515 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1516 InnerOp.hasOneUse()) { 1517 if (const APInt *SA2 = 1518 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1519 unsigned InnerShAmt = SA2->getZExtValue(); 1520 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1521 DemandedBits.getActiveBits() <= 1522 (InnerBits - InnerShAmt + ShAmt) && 1523 DemandedBits.countTrailingZeros() >= ShAmt) { 1524 SDValue NewSA = 1525 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1526 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1527 InnerOp.getOperand(0)); 1528 return TLO.CombineTo( 1529 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1530 } 1531 } 1532 } 1533 } 1534 1535 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1536 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1537 Depth + 1)) 1538 return true; 1539 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1540 Known.Zero <<= ShAmt; 1541 Known.One <<= ShAmt; 1542 // low bits known zero. 1543 Known.Zero.setLowBits(ShAmt); 1544 1545 // Try shrinking the operation as long as the shift amount will still be 1546 // in range. 1547 if ((ShAmt < DemandedBits.getActiveBits()) && 1548 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1549 return true; 1550 } 1551 1552 // If we are only demanding sign bits then we can use the shift source 1553 // directly. 1554 if (const APInt *MaxSA = 1555 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1556 unsigned ShAmt = MaxSA->getZExtValue(); 1557 unsigned NumSignBits = 1558 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1559 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1560 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1561 return TLO.CombineTo(Op, Op0); 1562 } 1563 break; 1564 } 1565 case ISD::SRL: { 1566 SDValue Op0 = Op.getOperand(0); 1567 SDValue Op1 = Op.getOperand(1); 1568 EVT ShiftVT = Op1.getValueType(); 1569 1570 if (const APInt *SA = 1571 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1572 unsigned ShAmt = SA->getZExtValue(); 1573 if (ShAmt == 0) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1577 // single shift. We can do this if the top bits (which are shifted out) 1578 // are never demanded. 1579 // TODO - support non-uniform vector amounts. 1580 if (Op0.getOpcode() == ISD::SHL) { 1581 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1582 if (const APInt *SA2 = 1583 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1584 unsigned C1 = SA2->getZExtValue(); 1585 unsigned Opc = ISD::SRL; 1586 int Diff = ShAmt - C1; 1587 if (Diff < 0) { 1588 Diff = -Diff; 1589 Opc = ISD::SHL; 1590 } 1591 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1592 return TLO.CombineTo( 1593 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1594 } 1595 } 1596 } 1597 1598 APInt InDemandedMask = (DemandedBits << ShAmt); 1599 1600 // If the shift is exact, then it does demand the low bits (and knows that 1601 // they are zero). 1602 if (Op->getFlags().hasExact()) 1603 InDemandedMask.setLowBits(ShAmt); 1604 1605 // Compute the new bits that are at the top now. 1606 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1607 Depth + 1)) 1608 return true; 1609 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1610 Known.Zero.lshrInPlace(ShAmt); 1611 Known.One.lshrInPlace(ShAmt); 1612 // High bits known zero. 1613 Known.Zero.setHighBits(ShAmt); 1614 } 1615 break; 1616 } 1617 case ISD::SRA: { 1618 SDValue Op0 = Op.getOperand(0); 1619 SDValue Op1 = Op.getOperand(1); 1620 EVT ShiftVT = Op1.getValueType(); 1621 1622 // If we only want bits that already match the signbit then we don't need 1623 // to shift. 1624 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1625 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1626 NumHiDemandedBits) 1627 return TLO.CombineTo(Op, Op0); 1628 1629 // If this is an arithmetic shift right and only the low-bit is set, we can 1630 // always convert this into a logical shr, even if the shift amount is 1631 // variable. The low bit of the shift cannot be an input sign bit unless 1632 // the shift amount is >= the size of the datatype, which is undefined. 1633 if (DemandedBits.isOne()) 1634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1635 1636 if (const APInt *SA = 1637 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1638 unsigned ShAmt = SA->getZExtValue(); 1639 if (ShAmt == 0) 1640 return TLO.CombineTo(Op, Op0); 1641 1642 APInt InDemandedMask = (DemandedBits << ShAmt); 1643 1644 // If the shift is exact, then it does demand the low bits (and knows that 1645 // they are zero). 1646 if (Op->getFlags().hasExact()) 1647 InDemandedMask.setLowBits(ShAmt); 1648 1649 // If any of the demanded bits are produced by the sign extension, we also 1650 // demand the input sign bit. 1651 if (DemandedBits.countLeadingZeros() < ShAmt) 1652 InDemandedMask.setSignBit(); 1653 1654 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1655 Depth + 1)) 1656 return true; 1657 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1658 Known.Zero.lshrInPlace(ShAmt); 1659 Known.One.lshrInPlace(ShAmt); 1660 1661 // If the input sign bit is known to be zero, or if none of the top bits 1662 // are demanded, turn this into an unsigned shift right. 1663 if (Known.Zero[BitWidth - ShAmt - 1] || 1664 DemandedBits.countLeadingZeros() >= ShAmt) { 1665 SDNodeFlags Flags; 1666 Flags.setExact(Op->getFlags().hasExact()); 1667 return TLO.CombineTo( 1668 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1669 } 1670 1671 int Log2 = DemandedBits.exactLogBase2(); 1672 if (Log2 >= 0) { 1673 // The bit must come from the sign. 1674 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1675 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1676 } 1677 1678 if (Known.One[BitWidth - ShAmt - 1]) 1679 // New bits are known one. 1680 Known.One.setHighBits(ShAmt); 1681 1682 // Attempt to avoid multi-use ops if we don't need anything from them. 1683 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1684 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1685 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1686 if (DemandedOp0) { 1687 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1688 return TLO.CombineTo(Op, NewOp); 1689 } 1690 } 1691 } 1692 break; 1693 } 1694 case ISD::FSHL: 1695 case ISD::FSHR: { 1696 SDValue Op0 = Op.getOperand(0); 1697 SDValue Op1 = Op.getOperand(1); 1698 SDValue Op2 = Op.getOperand(2); 1699 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1700 1701 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1702 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1703 1704 // For fshl, 0-shift returns the 1st arg. 1705 // For fshr, 0-shift returns the 2nd arg. 1706 if (Amt == 0) { 1707 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1708 Known, TLO, Depth + 1)) 1709 return true; 1710 break; 1711 } 1712 1713 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1714 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1715 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1716 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1717 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1718 Depth + 1)) 1719 return true; 1720 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1721 Depth + 1)) 1722 return true; 1723 1724 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1725 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1726 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1727 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1728 Known.One |= Known2.One; 1729 Known.Zero |= Known2.Zero; 1730 } 1731 1732 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1733 if (isPowerOf2_32(BitWidth)) { 1734 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1735 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1736 Known2, TLO, Depth + 1)) 1737 return true; 1738 } 1739 break; 1740 } 1741 case ISD::ROTL: 1742 case ISD::ROTR: { 1743 SDValue Op0 = Op.getOperand(0); 1744 SDValue Op1 = Op.getOperand(1); 1745 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1746 1747 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1748 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1749 return TLO.CombineTo(Op, Op0); 1750 1751 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1752 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1753 unsigned RevAmt = BitWidth - Amt; 1754 1755 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1756 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1757 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1758 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1759 Depth + 1)) 1760 return true; 1761 1762 // rot*(x, 0) --> x 1763 if (Amt == 0) 1764 return TLO.CombineTo(Op, Op0); 1765 1766 // See if we don't demand either half of the rotated bits. 1767 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1768 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1769 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1770 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1771 } 1772 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1773 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1774 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1776 } 1777 } 1778 1779 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1780 if (isPowerOf2_32(BitWidth)) { 1781 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1782 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1783 Depth + 1)) 1784 return true; 1785 } 1786 break; 1787 } 1788 case ISD::UMIN: { 1789 // Check if one arg is always less than (or equal) to the other arg. 1790 SDValue Op0 = Op.getOperand(0); 1791 SDValue Op1 = Op.getOperand(1); 1792 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1793 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1794 Known = KnownBits::umin(Known0, Known1); 1795 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1796 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1797 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1798 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1799 break; 1800 } 1801 case ISD::UMAX: { 1802 // Check if one arg is always greater than (or equal) to the other arg. 1803 SDValue Op0 = Op.getOperand(0); 1804 SDValue Op1 = Op.getOperand(1); 1805 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1806 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1807 Known = KnownBits::umax(Known0, Known1); 1808 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1809 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1810 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1811 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1812 break; 1813 } 1814 case ISD::BITREVERSE: { 1815 SDValue Src = Op.getOperand(0); 1816 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1818 Depth + 1)) 1819 return true; 1820 Known.One = Known2.One.reverseBits(); 1821 Known.Zero = Known2.Zero.reverseBits(); 1822 break; 1823 } 1824 case ISD::BSWAP: { 1825 SDValue Src = Op.getOperand(0); 1826 1827 // If the only bits demanded come from one byte of the bswap result, 1828 // just shift the input byte into position to eliminate the bswap. 1829 unsigned NLZ = DemandedBits.countLeadingZeros(); 1830 unsigned NTZ = DemandedBits.countTrailingZeros(); 1831 1832 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1833 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1834 // have 14 leading zeros, round to 8. 1835 NLZ = alignDown(NLZ, 8); 1836 NTZ = alignDown(NTZ, 8); 1837 // If we need exactly one byte, we can do this transformation. 1838 if (BitWidth - NLZ - NTZ == 8) { 1839 // Replace this with either a left or right shift to get the byte into 1840 // the right place. 1841 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1842 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1843 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1844 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1845 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1846 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1847 return TLO.CombineTo(Op, NewOp); 1848 } 1849 } 1850 1851 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1852 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1853 Depth + 1)) 1854 return true; 1855 Known.One = Known2.One.byteSwap(); 1856 Known.Zero = Known2.Zero.byteSwap(); 1857 break; 1858 } 1859 case ISD::CTPOP: { 1860 // If only 1 bit is demanded, replace with PARITY as long as we're before 1861 // op legalization. 1862 // FIXME: Limit to scalars for now. 1863 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1865 Op.getOperand(0))); 1866 1867 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1868 break; 1869 } 1870 case ISD::SIGN_EXTEND_INREG: { 1871 SDValue Op0 = Op.getOperand(0); 1872 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1873 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1874 1875 // If we only care about the highest bit, don't bother shifting right. 1876 if (DemandedBits.isSignMask()) { 1877 unsigned MinSignedBits = 1878 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1879 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1880 // However if the input is already sign extended we expect the sign 1881 // extension to be dropped altogether later and do not simplify. 1882 if (!AlreadySignExtended) { 1883 // Compute the correct shift amount type, which must be getShiftAmountTy 1884 // for scalar types after legalization. 1885 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1886 getShiftAmountTy(VT, DL)); 1887 return TLO.CombineTo(Op, 1888 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1889 } 1890 } 1891 1892 // If none of the extended bits are demanded, eliminate the sextinreg. 1893 if (DemandedBits.getActiveBits() <= ExVTBits) 1894 return TLO.CombineTo(Op, Op0); 1895 1896 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1897 1898 // Since the sign extended bits are demanded, we know that the sign 1899 // bit is demanded. 1900 InputDemandedBits.setBit(ExVTBits - 1); 1901 1902 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1903 return true; 1904 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1905 1906 // If the sign bit of the input is known set or clear, then we know the 1907 // top bits of the result. 1908 1909 // If the input sign bit is known zero, convert this into a zero extension. 1910 if (Known.Zero[ExVTBits - 1]) 1911 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1912 1913 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1914 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1915 Known.One.setBitsFrom(ExVTBits); 1916 Known.Zero &= Mask; 1917 } else { // Input sign bit unknown 1918 Known.Zero &= Mask; 1919 Known.One &= Mask; 1920 } 1921 break; 1922 } 1923 case ISD::BUILD_PAIR: { 1924 EVT HalfVT = Op.getOperand(0).getValueType(); 1925 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1926 1927 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1928 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1929 1930 KnownBits KnownLo, KnownHi; 1931 1932 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1933 return true; 1934 1935 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1936 return true; 1937 1938 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1939 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1940 1941 Known.One = KnownLo.One.zext(BitWidth) | 1942 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1943 break; 1944 } 1945 case ISD::ZERO_EXTEND: 1946 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1947 SDValue Src = Op.getOperand(0); 1948 EVT SrcVT = Src.getValueType(); 1949 unsigned InBits = SrcVT.getScalarSizeInBits(); 1950 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1951 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1952 1953 // If none of the top bits are demanded, convert this into an any_extend. 1954 if (DemandedBits.getActiveBits() <= InBits) { 1955 // If we only need the non-extended bits of the bottom element 1956 // then we can just bitcast to the result. 1957 if (IsLE && IsVecInReg && DemandedElts == 1 && 1958 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1959 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1960 1961 unsigned Opc = 1962 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1963 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1964 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1965 } 1966 1967 APInt InDemandedBits = DemandedBits.trunc(InBits); 1968 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1969 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1970 Depth + 1)) 1971 return true; 1972 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1973 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1974 Known = Known.zext(BitWidth); 1975 1976 // Attempt to avoid multi-use ops if we don't need anything from them. 1977 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1978 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1979 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1980 break; 1981 } 1982 case ISD::SIGN_EXTEND: 1983 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1984 SDValue Src = Op.getOperand(0); 1985 EVT SrcVT = Src.getValueType(); 1986 unsigned InBits = SrcVT.getScalarSizeInBits(); 1987 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1988 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1989 1990 // If none of the top bits are demanded, convert this into an any_extend. 1991 if (DemandedBits.getActiveBits() <= InBits) { 1992 // If we only need the non-extended bits of the bottom element 1993 // then we can just bitcast to the result. 1994 if (IsLE && IsVecInReg && DemandedElts == 1 && 1995 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1996 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1997 1998 unsigned Opc = 1999 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2000 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2001 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2002 } 2003 2004 APInt InDemandedBits = DemandedBits.trunc(InBits); 2005 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2006 2007 // Since some of the sign extended bits are demanded, we know that the sign 2008 // bit is demanded. 2009 InDemandedBits.setBit(InBits - 1); 2010 2011 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2012 Depth + 1)) 2013 return true; 2014 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2015 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2016 2017 // If the sign bit is known one, the top bits match. 2018 Known = Known.sext(BitWidth); 2019 2020 // If the sign bit is known zero, convert this to a zero extend. 2021 if (Known.isNonNegative()) { 2022 unsigned Opc = 2023 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2024 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2025 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2026 } 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2030 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2031 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2032 break; 2033 } 2034 case ISD::ANY_EXTEND: 2035 case ISD::ANY_EXTEND_VECTOR_INREG: { 2036 SDValue Src = Op.getOperand(0); 2037 EVT SrcVT = Src.getValueType(); 2038 unsigned InBits = SrcVT.getScalarSizeInBits(); 2039 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2040 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2041 2042 // If we only need the bottom element then we can just bitcast. 2043 // TODO: Handle ANY_EXTEND? 2044 if (IsLE && IsVecInReg && DemandedElts == 1 && 2045 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2046 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2047 2048 APInt InDemandedBits = DemandedBits.trunc(InBits); 2049 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2050 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2051 Depth + 1)) 2052 return true; 2053 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2054 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2055 Known = Known.anyext(BitWidth); 2056 2057 // Attempt to avoid multi-use ops if we don't need anything from them. 2058 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2059 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2060 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2061 break; 2062 } 2063 case ISD::TRUNCATE: { 2064 SDValue Src = Op.getOperand(0); 2065 2066 // Simplify the input, using demanded bit information, and compute the known 2067 // zero/one bits live out. 2068 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2069 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2070 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2071 Depth + 1)) 2072 return true; 2073 Known = Known.trunc(BitWidth); 2074 2075 // Attempt to avoid multi-use ops if we don't need anything from them. 2076 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2077 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2078 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2079 2080 // If the input is only used by this truncate, see if we can shrink it based 2081 // on the known demanded bits. 2082 if (Src.getNode()->hasOneUse()) { 2083 switch (Src.getOpcode()) { 2084 default: 2085 break; 2086 case ISD::SRL: 2087 // Shrink SRL by a constant if none of the high bits shifted in are 2088 // demanded. 2089 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2090 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2091 // undesirable. 2092 break; 2093 2094 const APInt *ShAmtC = 2095 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2096 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2097 break; 2098 uint64_t ShVal = ShAmtC->getZExtValue(); 2099 2100 APInt HighBits = 2101 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2102 HighBits.lshrInPlace(ShVal); 2103 HighBits = HighBits.trunc(BitWidth); 2104 2105 if (!(HighBits & DemandedBits)) { 2106 // None of the shifted in bits are needed. Add a truncate of the 2107 // shift input, then shift it. 2108 SDValue NewShAmt = TLO.DAG.getConstant( 2109 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2110 SDValue NewTrunc = 2111 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2112 return TLO.CombineTo( 2113 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2114 } 2115 break; 2116 } 2117 } 2118 2119 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2120 break; 2121 } 2122 case ISD::AssertZext: { 2123 // AssertZext demands all of the high bits, plus any of the low bits 2124 // demanded by its users. 2125 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2126 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2127 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2128 TLO, Depth + 1)) 2129 return true; 2130 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2131 2132 Known.Zero |= ~InMask; 2133 break; 2134 } 2135 case ISD::EXTRACT_VECTOR_ELT: { 2136 SDValue Src = Op.getOperand(0); 2137 SDValue Idx = Op.getOperand(1); 2138 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2139 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2140 2141 if (SrcEltCnt.isScalable()) 2142 return false; 2143 2144 // Demand the bits from every vector element without a constant index. 2145 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2146 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2147 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2148 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2149 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2150 2151 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2152 // anything about the extended bits. 2153 APInt DemandedSrcBits = DemandedBits; 2154 if (BitWidth > EltBitWidth) 2155 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2156 2157 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2158 Depth + 1)) 2159 return true; 2160 2161 // Attempt to avoid multi-use ops if we don't need anything from them. 2162 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2163 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2164 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2165 SDValue NewOp = 2166 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2167 return TLO.CombineTo(Op, NewOp); 2168 } 2169 } 2170 2171 Known = Known2; 2172 if (BitWidth > EltBitWidth) 2173 Known = Known.anyext(BitWidth); 2174 break; 2175 } 2176 case ISD::BITCAST: { 2177 SDValue Src = Op.getOperand(0); 2178 EVT SrcVT = Src.getValueType(); 2179 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2180 2181 // If this is an FP->Int bitcast and if the sign bit is the only 2182 // thing demanded, turn this into a FGETSIGN. 2183 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2184 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2185 SrcVT.isFloatingPoint()) { 2186 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2187 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2188 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2189 SrcVT != MVT::f128) { 2190 // Cannot eliminate/lower SHL for f128 yet. 2191 EVT Ty = OpVTLegal ? VT : MVT::i32; 2192 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2193 // place. We expect the SHL to be eliminated by other optimizations. 2194 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2195 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2196 if (!OpVTLegal && OpVTSizeInBits > 32) 2197 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2198 unsigned ShVal = Op.getValueSizeInBits() - 1; 2199 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2200 return TLO.CombineTo(Op, 2201 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2202 } 2203 } 2204 2205 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2206 // Demand the elt/bit if any of the original elts/bits are demanded. 2207 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2208 unsigned Scale = BitWidth / NumSrcEltBits; 2209 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2210 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2211 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2212 for (unsigned i = 0; i != Scale; ++i) { 2213 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2214 unsigned BitOffset = EltOffset * NumSrcEltBits; 2215 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2216 if (!Sub.isZero()) { 2217 DemandedSrcBits |= Sub; 2218 for (unsigned j = 0; j != NumElts; ++j) 2219 if (DemandedElts[j]) 2220 DemandedSrcElts.setBit((j * Scale) + i); 2221 } 2222 } 2223 2224 APInt KnownSrcUndef, KnownSrcZero; 2225 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2226 KnownSrcZero, TLO, Depth + 1)) 2227 return true; 2228 2229 KnownBits KnownSrcBits; 2230 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2231 KnownSrcBits, TLO, Depth + 1)) 2232 return true; 2233 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2234 // TODO - bigendian once we have test coverage. 2235 unsigned Scale = NumSrcEltBits / BitWidth; 2236 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2237 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2238 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2239 for (unsigned i = 0; i != NumElts; ++i) 2240 if (DemandedElts[i]) { 2241 unsigned Offset = (i % Scale) * BitWidth; 2242 DemandedSrcBits.insertBits(DemandedBits, Offset); 2243 DemandedSrcElts.setBit(i / Scale); 2244 } 2245 2246 if (SrcVT.isVector()) { 2247 APInt KnownSrcUndef, KnownSrcZero; 2248 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2249 KnownSrcZero, TLO, Depth + 1)) 2250 return true; 2251 } 2252 2253 KnownBits KnownSrcBits; 2254 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2255 KnownSrcBits, TLO, Depth + 1)) 2256 return true; 2257 } 2258 2259 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2260 // recursive call where Known may be useful to the caller. 2261 if (Depth > 0) { 2262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2263 return false; 2264 } 2265 break; 2266 } 2267 case ISD::MUL: 2268 // 'Quadratic Reciprocity': mul(x,x) -> 0 if we're only demanding bit[1] 2269 if (DemandedBits == 2 && Op.getOperand(0) == Op.getOperand(1)) 2270 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 2271 LLVM_FALLTHROUGH; 2272 case ISD::ADD: 2273 case ISD::SUB: { 2274 // Add, Sub, and Mul don't demand any bits in positions beyond that 2275 // of the highest bit demanded of them. 2276 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2277 SDNodeFlags Flags = Op.getNode()->getFlags(); 2278 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2279 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2280 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2281 Depth + 1) || 2282 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2283 Depth + 1) || 2284 // See if the operation should be performed at a smaller bit width. 2285 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2286 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2287 // Disable the nsw and nuw flags. We can no longer guarantee that we 2288 // won't wrap after simplification. 2289 Flags.setNoSignedWrap(false); 2290 Flags.setNoUnsignedWrap(false); 2291 SDValue NewOp = 2292 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2293 return TLO.CombineTo(Op, NewOp); 2294 } 2295 return true; 2296 } 2297 2298 // Attempt to avoid multi-use ops if we don't need anything from them. 2299 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2300 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2301 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2302 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2303 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2304 if (DemandedOp0 || DemandedOp1) { 2305 Flags.setNoSignedWrap(false); 2306 Flags.setNoUnsignedWrap(false); 2307 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2308 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2309 SDValue NewOp = 2310 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2311 return TLO.CombineTo(Op, NewOp); 2312 } 2313 } 2314 2315 // If we have a constant operand, we may be able to turn it into -1 if we 2316 // do not demand the high bits. This can make the constant smaller to 2317 // encode, allow more general folding, or match specialized instruction 2318 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2319 // is probably not useful (and could be detrimental). 2320 ConstantSDNode *C = isConstOrConstSplat(Op1); 2321 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2322 if (C && !C->isAllOnes() && !C->isOne() && 2323 (C->getAPIntValue() | HighMask).isAllOnes()) { 2324 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2325 // Disable the nsw and nuw flags. We can no longer guarantee that we 2326 // won't wrap after simplification. 2327 Flags.setNoSignedWrap(false); 2328 Flags.setNoUnsignedWrap(false); 2329 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2330 return TLO.CombineTo(Op, NewOp); 2331 } 2332 2333 LLVM_FALLTHROUGH; 2334 } 2335 default: 2336 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2337 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2338 Known, TLO, Depth)) 2339 return true; 2340 break; 2341 } 2342 2343 // Just use computeKnownBits to compute output bits. 2344 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2345 break; 2346 } 2347 2348 // If we know the value of all of the demanded bits, return this as a 2349 // constant. 2350 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2351 // Avoid folding to a constant if any OpaqueConstant is involved. 2352 const SDNode *N = Op.getNode(); 2353 for (SDNode *Op : 2354 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2355 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2356 if (C->isOpaque()) 2357 return false; 2358 } 2359 if (VT.isInteger()) 2360 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2361 if (VT.isFloatingPoint()) 2362 return TLO.CombineTo( 2363 Op, 2364 TLO.DAG.getConstantFP( 2365 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2366 } 2367 2368 return false; 2369 } 2370 2371 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2372 const APInt &DemandedElts, 2373 APInt &KnownUndef, 2374 APInt &KnownZero, 2375 DAGCombinerInfo &DCI) const { 2376 SelectionDAG &DAG = DCI.DAG; 2377 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2378 !DCI.isBeforeLegalizeOps()); 2379 2380 bool Simplified = 2381 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2382 if (Simplified) { 2383 DCI.AddToWorklist(Op.getNode()); 2384 DCI.CommitTargetLoweringOpt(TLO); 2385 } 2386 2387 return Simplified; 2388 } 2389 2390 /// Given a vector binary operation and known undefined elements for each input 2391 /// operand, compute whether each element of the output is undefined. 2392 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2393 const APInt &UndefOp0, 2394 const APInt &UndefOp1) { 2395 EVT VT = BO.getValueType(); 2396 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2397 "Vector binop only"); 2398 2399 EVT EltVT = VT.getVectorElementType(); 2400 unsigned NumElts = VT.getVectorNumElements(); 2401 assert(UndefOp0.getBitWidth() == NumElts && 2402 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2403 2404 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2405 const APInt &UndefVals) { 2406 if (UndefVals[Index]) 2407 return DAG.getUNDEF(EltVT); 2408 2409 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2410 // Try hard to make sure that the getNode() call is not creating temporary 2411 // nodes. Ignore opaque integers because they do not constant fold. 2412 SDValue Elt = BV->getOperand(Index); 2413 auto *C = dyn_cast<ConstantSDNode>(Elt); 2414 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2415 return Elt; 2416 } 2417 2418 return SDValue(); 2419 }; 2420 2421 APInt KnownUndef = APInt::getZero(NumElts); 2422 for (unsigned i = 0; i != NumElts; ++i) { 2423 // If both inputs for this element are either constant or undef and match 2424 // the element type, compute the constant/undef result for this element of 2425 // the vector. 2426 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2427 // not handle FP constants. The code within getNode() should be refactored 2428 // to avoid the danger of creating a bogus temporary node here. 2429 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2430 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2431 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2432 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2433 KnownUndef.setBit(i); 2434 } 2435 return KnownUndef; 2436 } 2437 2438 bool TargetLowering::SimplifyDemandedVectorElts( 2439 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2440 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2441 bool AssumeSingleUse) const { 2442 EVT VT = Op.getValueType(); 2443 unsigned Opcode = Op.getOpcode(); 2444 APInt DemandedElts = OriginalDemandedElts; 2445 unsigned NumElts = DemandedElts.getBitWidth(); 2446 assert(VT.isVector() && "Expected vector op"); 2447 2448 KnownUndef = KnownZero = APInt::getZero(NumElts); 2449 2450 // TODO: For now we assume we know nothing about scalable vectors. 2451 if (VT.isScalableVector()) 2452 return false; 2453 2454 assert(VT.getVectorNumElements() == NumElts && 2455 "Mask size mismatches value type element count!"); 2456 2457 // Undef operand. 2458 if (Op.isUndef()) { 2459 KnownUndef.setAllBits(); 2460 return false; 2461 } 2462 2463 // If Op has other users, assume that all elements are needed. 2464 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2465 DemandedElts.setAllBits(); 2466 2467 // Not demanding any elements from Op. 2468 if (DemandedElts == 0) { 2469 KnownUndef.setAllBits(); 2470 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2471 } 2472 2473 // Limit search depth. 2474 if (Depth >= SelectionDAG::MaxRecursionDepth) 2475 return false; 2476 2477 SDLoc DL(Op); 2478 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2479 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2480 2481 // Helper for demanding the specified elements and all the bits of both binary 2482 // operands. 2483 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2484 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2485 TLO.DAG, Depth + 1); 2486 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2487 TLO.DAG, Depth + 1); 2488 if (NewOp0 || NewOp1) { 2489 SDValue NewOp = TLO.DAG.getNode( 2490 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2491 return TLO.CombineTo(Op, NewOp); 2492 } 2493 return false; 2494 }; 2495 2496 switch (Opcode) { 2497 case ISD::SCALAR_TO_VECTOR: { 2498 if (!DemandedElts[0]) { 2499 KnownUndef.setAllBits(); 2500 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2501 } 2502 SDValue ScalarSrc = Op.getOperand(0); 2503 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2504 SDValue Src = ScalarSrc.getOperand(0); 2505 SDValue Idx = ScalarSrc.getOperand(1); 2506 EVT SrcVT = Src.getValueType(); 2507 2508 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2509 2510 if (SrcEltCnt.isScalable()) 2511 return false; 2512 2513 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2514 if (isNullConstant(Idx)) { 2515 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2516 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2517 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2518 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2519 TLO, Depth + 1)) 2520 return true; 2521 } 2522 } 2523 KnownUndef.setHighBits(NumElts - 1); 2524 break; 2525 } 2526 case ISD::BITCAST: { 2527 SDValue Src = Op.getOperand(0); 2528 EVT SrcVT = Src.getValueType(); 2529 2530 // We only handle vectors here. 2531 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2532 if (!SrcVT.isVector()) 2533 break; 2534 2535 // Fast handling of 'identity' bitcasts. 2536 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2537 if (NumSrcElts == NumElts) 2538 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2539 KnownZero, TLO, Depth + 1); 2540 2541 APInt SrcDemandedElts, SrcZero, SrcUndef; 2542 2543 // Bitcast from 'large element' src vector to 'small element' vector, we 2544 // must demand a source element if any DemandedElt maps to it. 2545 if ((NumElts % NumSrcElts) == 0) { 2546 unsigned Scale = NumElts / NumSrcElts; 2547 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2548 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2549 TLO, Depth + 1)) 2550 return true; 2551 2552 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2553 // of the large element. 2554 // TODO - bigendian once we have test coverage. 2555 if (IsLE) { 2556 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2557 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2558 for (unsigned i = 0; i != NumElts; ++i) 2559 if (DemandedElts[i]) { 2560 unsigned Ofs = (i % Scale) * EltSizeInBits; 2561 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2562 } 2563 2564 KnownBits Known; 2565 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2566 TLO, Depth + 1)) 2567 return true; 2568 } 2569 2570 // If the src element is zero/undef then all the output elements will be - 2571 // only demanded elements are guaranteed to be correct. 2572 for (unsigned i = 0; i != NumSrcElts; ++i) { 2573 if (SrcDemandedElts[i]) { 2574 if (SrcZero[i]) 2575 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2576 if (SrcUndef[i]) 2577 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2578 } 2579 } 2580 } 2581 2582 // Bitcast from 'small element' src vector to 'large element' vector, we 2583 // demand all smaller source elements covered by the larger demanded element 2584 // of this vector. 2585 if ((NumSrcElts % NumElts) == 0) { 2586 unsigned Scale = NumSrcElts / NumElts; 2587 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2588 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2589 TLO, Depth + 1)) 2590 return true; 2591 2592 // If all the src elements covering an output element are zero/undef, then 2593 // the output element will be as well, assuming it was demanded. 2594 for (unsigned i = 0; i != NumElts; ++i) { 2595 if (DemandedElts[i]) { 2596 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2597 KnownZero.setBit(i); 2598 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2599 KnownUndef.setBit(i); 2600 } 2601 } 2602 } 2603 break; 2604 } 2605 case ISD::BUILD_VECTOR: { 2606 // Check all elements and simplify any unused elements with UNDEF. 2607 if (!DemandedElts.isAllOnes()) { 2608 // Don't simplify BROADCASTS. 2609 if (llvm::any_of(Op->op_values(), 2610 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2611 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2612 bool Updated = false; 2613 for (unsigned i = 0; i != NumElts; ++i) { 2614 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2615 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2616 KnownUndef.setBit(i); 2617 Updated = true; 2618 } 2619 } 2620 if (Updated) 2621 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2622 } 2623 } 2624 for (unsigned i = 0; i != NumElts; ++i) { 2625 SDValue SrcOp = Op.getOperand(i); 2626 if (SrcOp.isUndef()) { 2627 KnownUndef.setBit(i); 2628 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2629 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2630 KnownZero.setBit(i); 2631 } 2632 } 2633 break; 2634 } 2635 case ISD::CONCAT_VECTORS: { 2636 EVT SubVT = Op.getOperand(0).getValueType(); 2637 unsigned NumSubVecs = Op.getNumOperands(); 2638 unsigned NumSubElts = SubVT.getVectorNumElements(); 2639 for (unsigned i = 0; i != NumSubVecs; ++i) { 2640 SDValue SubOp = Op.getOperand(i); 2641 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2642 APInt SubUndef, SubZero; 2643 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2644 Depth + 1)) 2645 return true; 2646 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2647 KnownZero.insertBits(SubZero, i * NumSubElts); 2648 } 2649 break; 2650 } 2651 case ISD::INSERT_SUBVECTOR: { 2652 // Demand any elements from the subvector and the remainder from the src its 2653 // inserted into. 2654 SDValue Src = Op.getOperand(0); 2655 SDValue Sub = Op.getOperand(1); 2656 uint64_t Idx = Op.getConstantOperandVal(2); 2657 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2658 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2659 APInt DemandedSrcElts = DemandedElts; 2660 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2661 2662 APInt SubUndef, SubZero; 2663 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2664 Depth + 1)) 2665 return true; 2666 2667 // If none of the src operand elements are demanded, replace it with undef. 2668 if (!DemandedSrcElts && !Src.isUndef()) 2669 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2670 TLO.DAG.getUNDEF(VT), Sub, 2671 Op.getOperand(2))); 2672 2673 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2674 TLO, Depth + 1)) 2675 return true; 2676 KnownUndef.insertBits(SubUndef, Idx); 2677 KnownZero.insertBits(SubZero, Idx); 2678 2679 // Attempt to avoid multi-use ops if we don't need anything from them. 2680 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2681 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2682 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2683 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2684 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2685 if (NewSrc || NewSub) { 2686 NewSrc = NewSrc ? NewSrc : Src; 2687 NewSub = NewSub ? NewSub : Sub; 2688 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2689 NewSub, Op.getOperand(2)); 2690 return TLO.CombineTo(Op, NewOp); 2691 } 2692 } 2693 break; 2694 } 2695 case ISD::EXTRACT_SUBVECTOR: { 2696 // Offset the demanded elts by the subvector index. 2697 SDValue Src = Op.getOperand(0); 2698 if (Src.getValueType().isScalableVector()) 2699 break; 2700 uint64_t Idx = Op.getConstantOperandVal(1); 2701 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2702 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2703 2704 APInt SrcUndef, SrcZero; 2705 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2706 Depth + 1)) 2707 return true; 2708 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2709 KnownZero = SrcZero.extractBits(NumElts, Idx); 2710 2711 // Attempt to avoid multi-use ops if we don't need anything from them. 2712 if (!DemandedElts.isAllOnes()) { 2713 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2714 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2715 if (NewSrc) { 2716 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2717 Op.getOperand(1)); 2718 return TLO.CombineTo(Op, NewOp); 2719 } 2720 } 2721 break; 2722 } 2723 case ISD::INSERT_VECTOR_ELT: { 2724 SDValue Vec = Op.getOperand(0); 2725 SDValue Scl = Op.getOperand(1); 2726 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2727 2728 // For a legal, constant insertion index, if we don't need this insertion 2729 // then strip it, else remove it from the demanded elts. 2730 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2731 unsigned Idx = CIdx->getZExtValue(); 2732 if (!DemandedElts[Idx]) 2733 return TLO.CombineTo(Op, Vec); 2734 2735 APInt DemandedVecElts(DemandedElts); 2736 DemandedVecElts.clearBit(Idx); 2737 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2738 KnownZero, TLO, Depth + 1)) 2739 return true; 2740 2741 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2742 2743 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2744 break; 2745 } 2746 2747 APInt VecUndef, VecZero; 2748 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2749 Depth + 1)) 2750 return true; 2751 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2752 break; 2753 } 2754 case ISD::VSELECT: { 2755 // Try to transform the select condition based on the current demanded 2756 // elements. 2757 // TODO: If a condition element is undef, we can choose from one arm of the 2758 // select (and if one arm is undef, then we can propagate that to the 2759 // result). 2760 // TODO - add support for constant vselect masks (see IR version of this). 2761 APInt UnusedUndef, UnusedZero; 2762 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2763 UnusedZero, TLO, Depth + 1)) 2764 return true; 2765 2766 // See if we can simplify either vselect operand. 2767 APInt DemandedLHS(DemandedElts); 2768 APInt DemandedRHS(DemandedElts); 2769 APInt UndefLHS, ZeroLHS; 2770 APInt UndefRHS, ZeroRHS; 2771 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2772 ZeroLHS, TLO, Depth + 1)) 2773 return true; 2774 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2775 ZeroRHS, TLO, Depth + 1)) 2776 return true; 2777 2778 KnownUndef = UndefLHS & UndefRHS; 2779 KnownZero = ZeroLHS & ZeroRHS; 2780 break; 2781 } 2782 case ISD::VECTOR_SHUFFLE: { 2783 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2784 2785 // Collect demanded elements from shuffle operands.. 2786 APInt DemandedLHS(NumElts, 0); 2787 APInt DemandedRHS(NumElts, 0); 2788 for (unsigned i = 0; i != NumElts; ++i) { 2789 int M = ShuffleMask[i]; 2790 if (M < 0 || !DemandedElts[i]) 2791 continue; 2792 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2793 if (M < (int)NumElts) 2794 DemandedLHS.setBit(M); 2795 else 2796 DemandedRHS.setBit(M - NumElts); 2797 } 2798 2799 // See if we can simplify either shuffle operand. 2800 APInt UndefLHS, ZeroLHS; 2801 APInt UndefRHS, ZeroRHS; 2802 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2803 ZeroLHS, TLO, Depth + 1)) 2804 return true; 2805 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2806 ZeroRHS, TLO, Depth + 1)) 2807 return true; 2808 2809 // Simplify mask using undef elements from LHS/RHS. 2810 bool Updated = false; 2811 bool IdentityLHS = true, IdentityRHS = true; 2812 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2813 for (unsigned i = 0; i != NumElts; ++i) { 2814 int &M = NewMask[i]; 2815 if (M < 0) 2816 continue; 2817 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2818 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2819 Updated = true; 2820 M = -1; 2821 } 2822 IdentityLHS &= (M < 0) || (M == (int)i); 2823 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2824 } 2825 2826 // Update legal shuffle masks based on demanded elements if it won't reduce 2827 // to Identity which can cause premature removal of the shuffle mask. 2828 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2829 SDValue LegalShuffle = 2830 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2831 NewMask, TLO.DAG); 2832 if (LegalShuffle) 2833 return TLO.CombineTo(Op, LegalShuffle); 2834 } 2835 2836 // Propagate undef/zero elements from LHS/RHS. 2837 for (unsigned i = 0; i != NumElts; ++i) { 2838 int M = ShuffleMask[i]; 2839 if (M < 0) { 2840 KnownUndef.setBit(i); 2841 } else if (M < (int)NumElts) { 2842 if (UndefLHS[M]) 2843 KnownUndef.setBit(i); 2844 if (ZeroLHS[M]) 2845 KnownZero.setBit(i); 2846 } else { 2847 if (UndefRHS[M - NumElts]) 2848 KnownUndef.setBit(i); 2849 if (ZeroRHS[M - NumElts]) 2850 KnownZero.setBit(i); 2851 } 2852 } 2853 break; 2854 } 2855 case ISD::ANY_EXTEND_VECTOR_INREG: 2856 case ISD::SIGN_EXTEND_VECTOR_INREG: 2857 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2858 APInt SrcUndef, SrcZero; 2859 SDValue Src = Op.getOperand(0); 2860 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2861 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2862 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2863 Depth + 1)) 2864 return true; 2865 KnownZero = SrcZero.zextOrTrunc(NumElts); 2866 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2867 2868 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2869 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2870 DemandedSrcElts == 1) { 2871 // aext - if we just need the bottom element then we can bitcast. 2872 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2873 } 2874 2875 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2876 // zext(undef) upper bits are guaranteed to be zero. 2877 if (DemandedElts.isSubsetOf(KnownUndef)) 2878 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2879 KnownUndef.clearAllBits(); 2880 2881 // zext - if we just need the bottom element then we can mask: 2882 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2883 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2884 Op->isOnlyUserOf(Src.getNode()) && 2885 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2886 SDLoc DL(Op); 2887 EVT SrcVT = Src.getValueType(); 2888 EVT SrcSVT = SrcVT.getScalarType(); 2889 SmallVector<SDValue> MaskElts; 2890 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2891 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2892 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2893 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2894 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2895 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2896 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2897 } 2898 } 2899 } 2900 break; 2901 } 2902 2903 // TODO: There are more binop opcodes that could be handled here - MIN, 2904 // MAX, saturated math, etc. 2905 case ISD::ADD: { 2906 SDValue Op0 = Op.getOperand(0); 2907 SDValue Op1 = Op.getOperand(1); 2908 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2909 APInt UndefLHS, ZeroLHS; 2910 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2911 Depth + 1, /*AssumeSingleUse*/ true)) 2912 return true; 2913 } 2914 LLVM_FALLTHROUGH; 2915 } 2916 case ISD::OR: 2917 case ISD::XOR: 2918 case ISD::SUB: 2919 case ISD::FADD: 2920 case ISD::FSUB: 2921 case ISD::FMUL: 2922 case ISD::FDIV: 2923 case ISD::FREM: { 2924 SDValue Op0 = Op.getOperand(0); 2925 SDValue Op1 = Op.getOperand(1); 2926 2927 APInt UndefRHS, ZeroRHS; 2928 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2929 Depth + 1)) 2930 return true; 2931 APInt UndefLHS, ZeroLHS; 2932 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2933 Depth + 1)) 2934 return true; 2935 2936 KnownZero = ZeroLHS & ZeroRHS; 2937 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2938 2939 // Attempt to avoid multi-use ops if we don't need anything from them. 2940 // TODO - use KnownUndef to relax the demandedelts? 2941 if (!DemandedElts.isAllOnes()) 2942 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2943 return true; 2944 break; 2945 } 2946 case ISD::SHL: 2947 case ISD::SRL: 2948 case ISD::SRA: 2949 case ISD::ROTL: 2950 case ISD::ROTR: { 2951 SDValue Op0 = Op.getOperand(0); 2952 SDValue Op1 = Op.getOperand(1); 2953 2954 APInt UndefRHS, ZeroRHS; 2955 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2956 Depth + 1)) 2957 return true; 2958 APInt UndefLHS, ZeroLHS; 2959 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2960 Depth + 1)) 2961 return true; 2962 2963 KnownZero = ZeroLHS; 2964 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2965 2966 // Attempt to avoid multi-use ops if we don't need anything from them. 2967 // TODO - use KnownUndef to relax the demandedelts? 2968 if (!DemandedElts.isAllOnes()) 2969 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2970 return true; 2971 break; 2972 } 2973 case ISD::MUL: 2974 case ISD::AND: { 2975 SDValue Op0 = Op.getOperand(0); 2976 SDValue Op1 = Op.getOperand(1); 2977 2978 APInt SrcUndef, SrcZero; 2979 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2980 Depth + 1)) 2981 return true; 2982 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2983 TLO, Depth + 1)) 2984 return true; 2985 2986 // If either side has a zero element, then the result element is zero, even 2987 // if the other is an UNDEF. 2988 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2989 // and then handle 'and' nodes with the rest of the binop opcodes. 2990 KnownZero |= SrcZero; 2991 KnownUndef &= SrcUndef; 2992 KnownUndef &= ~KnownZero; 2993 2994 // Attempt to avoid multi-use ops if we don't need anything from them. 2995 // TODO - use KnownUndef to relax the demandedelts? 2996 if (!DemandedElts.isAllOnes()) 2997 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2998 return true; 2999 break; 3000 } 3001 case ISD::TRUNCATE: 3002 case ISD::SIGN_EXTEND: 3003 case ISD::ZERO_EXTEND: 3004 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3005 KnownZero, TLO, Depth + 1)) 3006 return true; 3007 3008 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3009 // zext(undef) upper bits are guaranteed to be zero. 3010 if (DemandedElts.isSubsetOf(KnownUndef)) 3011 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3012 KnownUndef.clearAllBits(); 3013 } 3014 break; 3015 default: { 3016 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3017 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3018 KnownZero, TLO, Depth)) 3019 return true; 3020 } else { 3021 KnownBits Known; 3022 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3023 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3024 TLO, Depth, AssumeSingleUse)) 3025 return true; 3026 } 3027 break; 3028 } 3029 } 3030 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3031 3032 // Constant fold all undef cases. 3033 // TODO: Handle zero cases as well. 3034 if (DemandedElts.isSubsetOf(KnownUndef)) 3035 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3036 3037 return false; 3038 } 3039 3040 /// Determine which of the bits specified in Mask are known to be either zero or 3041 /// one and return them in the Known. 3042 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3043 KnownBits &Known, 3044 const APInt &DemandedElts, 3045 const SelectionDAG &DAG, 3046 unsigned Depth) const { 3047 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3048 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3049 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3050 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3051 "Should use MaskedValueIsZero if you don't know whether Op" 3052 " is a target node!"); 3053 Known.resetAll(); 3054 } 3055 3056 void TargetLowering::computeKnownBitsForTargetInstr( 3057 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3058 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3059 unsigned Depth) const { 3060 Known.resetAll(); 3061 } 3062 3063 void TargetLowering::computeKnownBitsForFrameIndex( 3064 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3065 // The low bits are known zero if the pointer is aligned. 3066 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3067 } 3068 3069 Align TargetLowering::computeKnownAlignForTargetInstr( 3070 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3071 unsigned Depth) const { 3072 return Align(1); 3073 } 3074 3075 /// This method can be implemented by targets that want to expose additional 3076 /// information about sign bits to the DAG Combiner. 3077 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3078 const APInt &, 3079 const SelectionDAG &, 3080 unsigned Depth) const { 3081 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3082 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3083 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3084 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3085 "Should use ComputeNumSignBits if you don't know whether Op" 3086 " is a target node!"); 3087 return 1; 3088 } 3089 3090 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3091 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3092 const MachineRegisterInfo &MRI, unsigned Depth) const { 3093 return 1; 3094 } 3095 3096 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3097 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3098 TargetLoweringOpt &TLO, unsigned Depth) const { 3099 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3100 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3101 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3102 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3103 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3104 " is a target node!"); 3105 return false; 3106 } 3107 3108 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3109 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3110 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3111 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3112 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3113 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3114 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3115 "Should use SimplifyDemandedBits if you don't know whether Op" 3116 " is a target node!"); 3117 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3118 return false; 3119 } 3120 3121 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3122 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3123 SelectionDAG &DAG, unsigned Depth) const { 3124 assert( 3125 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3126 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3127 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3128 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3129 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3130 " is a target node!"); 3131 return SDValue(); 3132 } 3133 3134 SDValue 3135 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3136 SDValue N1, MutableArrayRef<int> Mask, 3137 SelectionDAG &DAG) const { 3138 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3139 if (!LegalMask) { 3140 std::swap(N0, N1); 3141 ShuffleVectorSDNode::commuteMask(Mask); 3142 LegalMask = isShuffleMaskLegal(Mask, VT); 3143 } 3144 3145 if (!LegalMask) 3146 return SDValue(); 3147 3148 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3149 } 3150 3151 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3152 return nullptr; 3153 } 3154 3155 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3156 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3157 bool PoisonOnly, unsigned Depth) const { 3158 assert( 3159 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3160 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3161 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3162 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3163 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3164 " is a target node!"); 3165 return false; 3166 } 3167 3168 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3169 const SelectionDAG &DAG, 3170 bool SNaN, 3171 unsigned Depth) const { 3172 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3173 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3174 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3175 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3176 "Should use isKnownNeverNaN if you don't know whether Op" 3177 " is a target node!"); 3178 return false; 3179 } 3180 3181 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3182 const APInt &DemandedElts, 3183 APInt &UndefElts, 3184 unsigned Depth) const { 3185 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3186 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3187 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3188 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3189 "Should use isSplatValue if you don't know whether Op" 3190 " is a target node!"); 3191 return false; 3192 } 3193 3194 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3195 // work with truncating build vectors and vectors with elements of less than 3196 // 8 bits. 3197 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3198 if (!N) 3199 return false; 3200 3201 APInt CVal; 3202 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3203 CVal = CN->getAPIntValue(); 3204 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3205 auto *CN = BV->getConstantSplatNode(); 3206 if (!CN) 3207 return false; 3208 3209 // If this is a truncating build vector, truncate the splat value. 3210 // Otherwise, we may fail to match the expected values below. 3211 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3212 CVal = CN->getAPIntValue(); 3213 if (BVEltWidth < CVal.getBitWidth()) 3214 CVal = CVal.trunc(BVEltWidth); 3215 } else { 3216 return false; 3217 } 3218 3219 switch (getBooleanContents(N->getValueType(0))) { 3220 case UndefinedBooleanContent: 3221 return CVal[0]; 3222 case ZeroOrOneBooleanContent: 3223 return CVal.isOne(); 3224 case ZeroOrNegativeOneBooleanContent: 3225 return CVal.isAllOnes(); 3226 } 3227 3228 llvm_unreachable("Invalid boolean contents"); 3229 } 3230 3231 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3232 if (!N) 3233 return false; 3234 3235 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3236 if (!CN) { 3237 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3238 if (!BV) 3239 return false; 3240 3241 // Only interested in constant splats, we don't care about undef 3242 // elements in identifying boolean constants and getConstantSplatNode 3243 // returns NULL if all ops are undef; 3244 CN = BV->getConstantSplatNode(); 3245 if (!CN) 3246 return false; 3247 } 3248 3249 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3250 return !CN->getAPIntValue()[0]; 3251 3252 return CN->isZero(); 3253 } 3254 3255 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3256 bool SExt) const { 3257 if (VT == MVT::i1) 3258 return N->isOne(); 3259 3260 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3261 switch (Cnt) { 3262 case TargetLowering::ZeroOrOneBooleanContent: 3263 // An extended value of 1 is always true, unless its original type is i1, 3264 // in which case it will be sign extended to -1. 3265 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3266 case TargetLowering::UndefinedBooleanContent: 3267 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3268 return N->isAllOnes() && SExt; 3269 } 3270 llvm_unreachable("Unexpected enumeration."); 3271 } 3272 3273 /// This helper function of SimplifySetCC tries to optimize the comparison when 3274 /// either operand of the SetCC node is a bitwise-and instruction. 3275 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3276 ISD::CondCode Cond, const SDLoc &DL, 3277 DAGCombinerInfo &DCI) const { 3278 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3279 std::swap(N0, N1); 3280 3281 SelectionDAG &DAG = DCI.DAG; 3282 EVT OpVT = N0.getValueType(); 3283 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3284 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3285 return SDValue(); 3286 3287 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3288 // iff everything but LSB is known zero: 3289 if (Cond == ISD::SETNE && isNullConstant(N1) && 3290 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3291 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3292 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3293 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3294 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3295 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3296 } 3297 3298 // Match these patterns in any of their permutations: 3299 // (X & Y) == Y 3300 // (X & Y) != Y 3301 SDValue X, Y; 3302 if (N0.getOperand(0) == N1) { 3303 X = N0.getOperand(1); 3304 Y = N0.getOperand(0); 3305 } else if (N0.getOperand(1) == N1) { 3306 X = N0.getOperand(0); 3307 Y = N0.getOperand(1); 3308 } else { 3309 return SDValue(); 3310 } 3311 3312 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3313 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3314 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3315 // Note that where Y is variable and is known to have at most one bit set 3316 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3317 // equivalent when Y == 0. 3318 assert(OpVT.isInteger()); 3319 Cond = ISD::getSetCCInverse(Cond, OpVT); 3320 if (DCI.isBeforeLegalizeOps() || 3321 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3322 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3323 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3324 // If the target supports an 'and-not' or 'and-complement' logic operation, 3325 // try to use that to make a comparison operation more efficient. 3326 // But don't do this transform if the mask is a single bit because there are 3327 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3328 // 'rlwinm' on PPC). 3329 3330 // Bail out if the compare operand that we want to turn into a zero is 3331 // already a zero (otherwise, infinite loop). 3332 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3333 if (YConst && YConst->isZero()) 3334 return SDValue(); 3335 3336 // Transform this into: ~X & Y == 0. 3337 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3338 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3339 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3340 } 3341 3342 return SDValue(); 3343 } 3344 3345 /// There are multiple IR patterns that could be checking whether certain 3346 /// truncation of a signed number would be lossy or not. The pattern which is 3347 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3348 /// We are looking for the following pattern: (KeptBits is a constant) 3349 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3350 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3351 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3352 /// We will unfold it into the natural trunc+sext pattern: 3353 /// ((%x << C) a>> C) dstcond %x 3354 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3355 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3356 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3357 const SDLoc &DL) const { 3358 // We must be comparing with a constant. 3359 ConstantSDNode *C1; 3360 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3361 return SDValue(); 3362 3363 // N0 should be: add %x, (1 << (KeptBits-1)) 3364 if (N0->getOpcode() != ISD::ADD) 3365 return SDValue(); 3366 3367 // And we must be 'add'ing a constant. 3368 ConstantSDNode *C01; 3369 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3370 return SDValue(); 3371 3372 SDValue X = N0->getOperand(0); 3373 EVT XVT = X.getValueType(); 3374 3375 // Validate constants ... 3376 3377 APInt I1 = C1->getAPIntValue(); 3378 3379 ISD::CondCode NewCond; 3380 if (Cond == ISD::CondCode::SETULT) { 3381 NewCond = ISD::CondCode::SETEQ; 3382 } else if (Cond == ISD::CondCode::SETULE) { 3383 NewCond = ISD::CondCode::SETEQ; 3384 // But need to 'canonicalize' the constant. 3385 I1 += 1; 3386 } else if (Cond == ISD::CondCode::SETUGT) { 3387 NewCond = ISD::CondCode::SETNE; 3388 // But need to 'canonicalize' the constant. 3389 I1 += 1; 3390 } else if (Cond == ISD::CondCode::SETUGE) { 3391 NewCond = ISD::CondCode::SETNE; 3392 } else 3393 return SDValue(); 3394 3395 APInt I01 = C01->getAPIntValue(); 3396 3397 auto checkConstants = [&I1, &I01]() -> bool { 3398 // Both of them must be power-of-two, and the constant from setcc is bigger. 3399 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3400 }; 3401 3402 if (checkConstants()) { 3403 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3404 } else { 3405 // What if we invert constants? (and the target predicate) 3406 I1.negate(); 3407 I01.negate(); 3408 assert(XVT.isInteger()); 3409 NewCond = getSetCCInverse(NewCond, XVT); 3410 if (!checkConstants()) 3411 return SDValue(); 3412 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3413 } 3414 3415 // They are power-of-two, so which bit is set? 3416 const unsigned KeptBits = I1.logBase2(); 3417 const unsigned KeptBitsMinusOne = I01.logBase2(); 3418 3419 // Magic! 3420 if (KeptBits != (KeptBitsMinusOne + 1)) 3421 return SDValue(); 3422 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3423 3424 // We don't want to do this in every single case. 3425 SelectionDAG &DAG = DCI.DAG; 3426 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3427 XVT, KeptBits)) 3428 return SDValue(); 3429 3430 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3431 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3432 3433 // Unfold into: ((%x << C) a>> C) cond %x 3434 // Where 'cond' will be either 'eq' or 'ne'. 3435 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3436 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3437 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3438 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3439 3440 return T2; 3441 } 3442 3443 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3444 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3445 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3446 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3447 assert(isConstOrConstSplat(N1C) && 3448 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3449 "Should be a comparison with 0."); 3450 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3451 "Valid only for [in]equality comparisons."); 3452 3453 unsigned NewShiftOpcode; 3454 SDValue X, C, Y; 3455 3456 SelectionDAG &DAG = DCI.DAG; 3457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3458 3459 // Look for '(C l>>/<< Y)'. 3460 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3461 // The shift should be one-use. 3462 if (!V.hasOneUse()) 3463 return false; 3464 unsigned OldShiftOpcode = V.getOpcode(); 3465 switch (OldShiftOpcode) { 3466 case ISD::SHL: 3467 NewShiftOpcode = ISD::SRL; 3468 break; 3469 case ISD::SRL: 3470 NewShiftOpcode = ISD::SHL; 3471 break; 3472 default: 3473 return false; // must be a logical shift. 3474 } 3475 // We should be shifting a constant. 3476 // FIXME: best to use isConstantOrConstantVector(). 3477 C = V.getOperand(0); 3478 ConstantSDNode *CC = 3479 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3480 if (!CC) 3481 return false; 3482 Y = V.getOperand(1); 3483 3484 ConstantSDNode *XC = 3485 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3486 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3487 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3488 }; 3489 3490 // LHS of comparison should be an one-use 'and'. 3491 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3492 return SDValue(); 3493 3494 X = N0.getOperand(0); 3495 SDValue Mask = N0.getOperand(1); 3496 3497 // 'and' is commutative! 3498 if (!Match(Mask)) { 3499 std::swap(X, Mask); 3500 if (!Match(Mask)) 3501 return SDValue(); 3502 } 3503 3504 EVT VT = X.getValueType(); 3505 3506 // Produce: 3507 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3508 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3509 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3510 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3511 return T2; 3512 } 3513 3514 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3515 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3516 /// handle the commuted versions of these patterns. 3517 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3518 ISD::CondCode Cond, const SDLoc &DL, 3519 DAGCombinerInfo &DCI) const { 3520 unsigned BOpcode = N0.getOpcode(); 3521 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3522 "Unexpected binop"); 3523 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3524 3525 // (X + Y) == X --> Y == 0 3526 // (X - Y) == X --> Y == 0 3527 // (X ^ Y) == X --> Y == 0 3528 SelectionDAG &DAG = DCI.DAG; 3529 EVT OpVT = N0.getValueType(); 3530 SDValue X = N0.getOperand(0); 3531 SDValue Y = N0.getOperand(1); 3532 if (X == N1) 3533 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3534 3535 if (Y != N1) 3536 return SDValue(); 3537 3538 // (X + Y) == Y --> X == 0 3539 // (X ^ Y) == Y --> X == 0 3540 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3541 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3542 3543 // The shift would not be valid if the operands are boolean (i1). 3544 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3545 return SDValue(); 3546 3547 // (X - Y) == Y --> X == Y << 1 3548 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3549 !DCI.isBeforeLegalize()); 3550 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3551 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3552 if (!DCI.isCalledByLegalizer()) 3553 DCI.AddToWorklist(YShl1.getNode()); 3554 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3555 } 3556 3557 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3558 SDValue N0, const APInt &C1, 3559 ISD::CondCode Cond, const SDLoc &dl, 3560 SelectionDAG &DAG) { 3561 // Look through truncs that don't change the value of a ctpop. 3562 // FIXME: Add vector support? Need to be careful with setcc result type below. 3563 SDValue CTPOP = N0; 3564 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3565 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3566 CTPOP = N0.getOperand(0); 3567 3568 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3569 return SDValue(); 3570 3571 EVT CTVT = CTPOP.getValueType(); 3572 SDValue CTOp = CTPOP.getOperand(0); 3573 3574 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3575 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3576 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3577 return SDValue(); 3578 3579 // (ctpop x) u< 2 -> (x & x-1) == 0 3580 // (ctpop x) u> 1 -> (x & x-1) != 0 3581 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3582 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3583 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3584 return SDValue(); 3585 if (C1 == 0 && (Cond == ISD::SETULT)) 3586 return SDValue(); // This is handled elsewhere. 3587 3588 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3589 3590 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3591 SDValue Result = CTOp; 3592 for (unsigned i = 0; i < Passes; i++) { 3593 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3594 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3595 } 3596 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3597 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3598 } 3599 3600 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3601 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3602 // For scalars, keep CTPOP if it is legal or custom. 3603 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3604 return SDValue(); 3605 // This is based on X86's custom lowering for CTPOP which produces more 3606 // instructions than the expansion here. 3607 3608 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3609 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3610 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3611 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3612 assert(CTVT.isInteger()); 3613 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3614 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3615 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3616 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3617 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3618 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3619 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3620 } 3621 3622 return SDValue(); 3623 } 3624 3625 /// Try to simplify a setcc built with the specified operands and cc. If it is 3626 /// unable to simplify it, return a null SDValue. 3627 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3628 ISD::CondCode Cond, bool foldBooleans, 3629 DAGCombinerInfo &DCI, 3630 const SDLoc &dl) const { 3631 SelectionDAG &DAG = DCI.DAG; 3632 const DataLayout &Layout = DAG.getDataLayout(); 3633 EVT OpVT = N0.getValueType(); 3634 3635 // Constant fold or commute setcc. 3636 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3637 return Fold; 3638 3639 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3640 // TODO: Handle non-splat vector constants. All undef causes trouble. 3641 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3642 // infinite loop here when we encounter one. 3643 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3644 if (isConstOrConstSplat(N0) && 3645 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3646 (DCI.isBeforeLegalizeOps() || 3647 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3648 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3649 3650 // If we have a subtract with the same 2 non-constant operands as this setcc 3651 // -- but in reverse order -- then try to commute the operands of this setcc 3652 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3653 // instruction on some targets. 3654 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3655 (DCI.isBeforeLegalizeOps() || 3656 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3657 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3658 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3659 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3660 3661 if (auto *N1C = isConstOrConstSplat(N1)) { 3662 const APInt &C1 = N1C->getAPIntValue(); 3663 3664 // Optimize some CTPOP cases. 3665 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3666 return V; 3667 3668 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3669 // equality comparison, then we're just comparing whether X itself is 3670 // zero. 3671 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3672 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3673 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3674 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3675 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3676 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3677 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3678 // (srl (ctlz x), 5) == 0 -> X != 0 3679 // (srl (ctlz x), 5) != 1 -> X != 0 3680 Cond = ISD::SETNE; 3681 } else { 3682 // (srl (ctlz x), 5) != 0 -> X == 0 3683 // (srl (ctlz x), 5) == 1 -> X == 0 3684 Cond = ISD::SETEQ; 3685 } 3686 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3687 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3688 Cond); 3689 } 3690 } 3691 } 3692 } 3693 3694 // FIXME: Support vectors. 3695 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3696 const APInt &C1 = N1C->getAPIntValue(); 3697 3698 // (zext x) == C --> x == (trunc C) 3699 // (sext x) == C --> x == (trunc C) 3700 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3701 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3702 unsigned MinBits = N0.getValueSizeInBits(); 3703 SDValue PreExt; 3704 bool Signed = false; 3705 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3706 // ZExt 3707 MinBits = N0->getOperand(0).getValueSizeInBits(); 3708 PreExt = N0->getOperand(0); 3709 } else if (N0->getOpcode() == ISD::AND) { 3710 // DAGCombine turns costly ZExts into ANDs 3711 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3712 if ((C->getAPIntValue()+1).isPowerOf2()) { 3713 MinBits = C->getAPIntValue().countTrailingOnes(); 3714 PreExt = N0->getOperand(0); 3715 } 3716 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3717 // SExt 3718 MinBits = N0->getOperand(0).getValueSizeInBits(); 3719 PreExt = N0->getOperand(0); 3720 Signed = true; 3721 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3722 // ZEXTLOAD / SEXTLOAD 3723 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3724 MinBits = LN0->getMemoryVT().getSizeInBits(); 3725 PreExt = N0; 3726 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3727 Signed = true; 3728 MinBits = LN0->getMemoryVT().getSizeInBits(); 3729 PreExt = N0; 3730 } 3731 } 3732 3733 // Figure out how many bits we need to preserve this constant. 3734 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3735 3736 // Make sure we're not losing bits from the constant. 3737 if (MinBits > 0 && 3738 MinBits < C1.getBitWidth() && 3739 MinBits >= ReqdBits) { 3740 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3741 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3742 // Will get folded away. 3743 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3744 if (MinBits == 1 && C1 == 1) 3745 // Invert the condition. 3746 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3747 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3748 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3749 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3750 } 3751 3752 // If truncating the setcc operands is not desirable, we can still 3753 // simplify the expression in some cases: 3754 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3755 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3756 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3757 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3758 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3759 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3760 SDValue TopSetCC = N0->getOperand(0); 3761 unsigned N0Opc = N0->getOpcode(); 3762 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3763 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3764 TopSetCC.getOpcode() == ISD::SETCC && 3765 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3766 (isConstFalseVal(N1C) || 3767 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3768 3769 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3770 (!N1C->isZero() && Cond == ISD::SETNE); 3771 3772 if (!Inverse) 3773 return TopSetCC; 3774 3775 ISD::CondCode InvCond = ISD::getSetCCInverse( 3776 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3777 TopSetCC.getOperand(0).getValueType()); 3778 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3779 TopSetCC.getOperand(1), 3780 InvCond); 3781 } 3782 } 3783 } 3784 3785 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3786 // equality or unsigned, and all 1 bits of the const are in the same 3787 // partial word, see if we can shorten the load. 3788 if (DCI.isBeforeLegalize() && 3789 !ISD::isSignedIntSetCC(Cond) && 3790 N0.getOpcode() == ISD::AND && C1 == 0 && 3791 N0.getNode()->hasOneUse() && 3792 isa<LoadSDNode>(N0.getOperand(0)) && 3793 N0.getOperand(0).getNode()->hasOneUse() && 3794 isa<ConstantSDNode>(N0.getOperand(1))) { 3795 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3796 APInt bestMask; 3797 unsigned bestWidth = 0, bestOffset = 0; 3798 if (Lod->isSimple() && Lod->isUnindexed()) { 3799 unsigned origWidth = N0.getValueSizeInBits(); 3800 unsigned maskWidth = origWidth; 3801 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3802 // 8 bits, but have to be careful... 3803 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3804 origWidth = Lod->getMemoryVT().getSizeInBits(); 3805 const APInt &Mask = N0.getConstantOperandAPInt(1); 3806 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3807 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3808 for (unsigned offset=0; offset<origWidth/width; offset++) { 3809 if (Mask.isSubsetOf(newMask)) { 3810 if (Layout.isLittleEndian()) 3811 bestOffset = (uint64_t)offset * (width/8); 3812 else 3813 bestOffset = (origWidth/width - offset - 1) * (width/8); 3814 bestMask = Mask.lshr(offset * (width/8) * 8); 3815 bestWidth = width; 3816 break; 3817 } 3818 newMask <<= width; 3819 } 3820 } 3821 } 3822 if (bestWidth) { 3823 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3824 if (newVT.isRound() && 3825 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3826 SDValue Ptr = Lod->getBasePtr(); 3827 if (bestOffset != 0) 3828 Ptr = 3829 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3830 SDValue NewLoad = 3831 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3832 Lod->getPointerInfo().getWithOffset(bestOffset), 3833 Lod->getOriginalAlign()); 3834 return DAG.getSetCC(dl, VT, 3835 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3836 DAG.getConstant(bestMask.trunc(bestWidth), 3837 dl, newVT)), 3838 DAG.getConstant(0LL, dl, newVT), Cond); 3839 } 3840 } 3841 } 3842 3843 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3844 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3845 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3846 3847 // If the comparison constant has bits in the upper part, the 3848 // zero-extended value could never match. 3849 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3850 C1.getBitWidth() - InSize))) { 3851 switch (Cond) { 3852 case ISD::SETUGT: 3853 case ISD::SETUGE: 3854 case ISD::SETEQ: 3855 return DAG.getConstant(0, dl, VT); 3856 case ISD::SETULT: 3857 case ISD::SETULE: 3858 case ISD::SETNE: 3859 return DAG.getConstant(1, dl, VT); 3860 case ISD::SETGT: 3861 case ISD::SETGE: 3862 // True if the sign bit of C1 is set. 3863 return DAG.getConstant(C1.isNegative(), dl, VT); 3864 case ISD::SETLT: 3865 case ISD::SETLE: 3866 // True if the sign bit of C1 isn't set. 3867 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3868 default: 3869 break; 3870 } 3871 } 3872 3873 // Otherwise, we can perform the comparison with the low bits. 3874 switch (Cond) { 3875 case ISD::SETEQ: 3876 case ISD::SETNE: 3877 case ISD::SETUGT: 3878 case ISD::SETUGE: 3879 case ISD::SETULT: 3880 case ISD::SETULE: { 3881 EVT newVT = N0.getOperand(0).getValueType(); 3882 if (DCI.isBeforeLegalizeOps() || 3883 (isOperationLegal(ISD::SETCC, newVT) && 3884 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3885 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3886 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3887 3888 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3889 NewConst, Cond); 3890 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3891 } 3892 break; 3893 } 3894 default: 3895 break; // todo, be more careful with signed comparisons 3896 } 3897 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3898 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3899 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3900 OpVT)) { 3901 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3902 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3903 EVT ExtDstTy = N0.getValueType(); 3904 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3905 3906 // If the constant doesn't fit into the number of bits for the source of 3907 // the sign extension, it is impossible for both sides to be equal. 3908 if (C1.getMinSignedBits() > ExtSrcTyBits) 3909 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3910 3911 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3912 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3913 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3914 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3915 DAG.getConstant(Imm, dl, ExtDstTy)); 3916 if (!DCI.isCalledByLegalizer()) 3917 DCI.AddToWorklist(ZextOp.getNode()); 3918 // Otherwise, make this a use of a zext. 3919 return DAG.getSetCC(dl, VT, ZextOp, 3920 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3921 } else if ((N1C->isZero() || N1C->isOne()) && 3922 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3923 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3924 if (N0.getOpcode() == ISD::SETCC && 3925 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3926 (N0.getValueType() == MVT::i1 || 3927 getBooleanContents(N0.getOperand(0).getValueType()) == 3928 ZeroOrOneBooleanContent)) { 3929 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3930 if (TrueWhenTrue) 3931 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3932 // Invert the condition. 3933 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3934 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3935 if (DCI.isBeforeLegalizeOps() || 3936 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3937 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3938 } 3939 3940 if ((N0.getOpcode() == ISD::XOR || 3941 (N0.getOpcode() == ISD::AND && 3942 N0.getOperand(0).getOpcode() == ISD::XOR && 3943 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3944 isOneConstant(N0.getOperand(1))) { 3945 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3946 // can only do this if the top bits are known zero. 3947 unsigned BitWidth = N0.getValueSizeInBits(); 3948 if (DAG.MaskedValueIsZero(N0, 3949 APInt::getHighBitsSet(BitWidth, 3950 BitWidth-1))) { 3951 // Okay, get the un-inverted input value. 3952 SDValue Val; 3953 if (N0.getOpcode() == ISD::XOR) { 3954 Val = N0.getOperand(0); 3955 } else { 3956 assert(N0.getOpcode() == ISD::AND && 3957 N0.getOperand(0).getOpcode() == ISD::XOR); 3958 // ((X^1)&1)^1 -> X & 1 3959 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3960 N0.getOperand(0).getOperand(0), 3961 N0.getOperand(1)); 3962 } 3963 3964 return DAG.getSetCC(dl, VT, Val, N1, 3965 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3966 } 3967 } else if (N1C->isOne()) { 3968 SDValue Op0 = N0; 3969 if (Op0.getOpcode() == ISD::TRUNCATE) 3970 Op0 = Op0.getOperand(0); 3971 3972 if ((Op0.getOpcode() == ISD::XOR) && 3973 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3974 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3975 SDValue XorLHS = Op0.getOperand(0); 3976 SDValue XorRHS = Op0.getOperand(1); 3977 // Ensure that the input setccs return an i1 type or 0/1 value. 3978 if (Op0.getValueType() == MVT::i1 || 3979 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3980 ZeroOrOneBooleanContent && 3981 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3982 ZeroOrOneBooleanContent)) { 3983 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3984 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3985 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3986 } 3987 } 3988 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3989 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3990 if (Op0.getValueType().bitsGT(VT)) 3991 Op0 = DAG.getNode(ISD::AND, dl, VT, 3992 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3993 DAG.getConstant(1, dl, VT)); 3994 else if (Op0.getValueType().bitsLT(VT)) 3995 Op0 = DAG.getNode(ISD::AND, dl, VT, 3996 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3997 DAG.getConstant(1, dl, VT)); 3998 3999 return DAG.getSetCC(dl, VT, Op0, 4000 DAG.getConstant(0, dl, Op0.getValueType()), 4001 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4002 } 4003 if (Op0.getOpcode() == ISD::AssertZext && 4004 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4005 return DAG.getSetCC(dl, VT, Op0, 4006 DAG.getConstant(0, dl, Op0.getValueType()), 4007 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4008 } 4009 } 4010 4011 // Given: 4012 // icmp eq/ne (urem %x, %y), 0 4013 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4014 // icmp eq/ne %x, 0 4015 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4016 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4017 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4018 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4019 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4020 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4021 } 4022 4023 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4024 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4025 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4026 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4027 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4028 N1C && N1C->isAllOnes()) { 4029 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4030 DAG.getConstant(0, dl, OpVT), 4031 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4032 } 4033 4034 if (SDValue V = 4035 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4036 return V; 4037 } 4038 4039 // These simplifications apply to splat vectors as well. 4040 // TODO: Handle more splat vector cases. 4041 if (auto *N1C = isConstOrConstSplat(N1)) { 4042 const APInt &C1 = N1C->getAPIntValue(); 4043 4044 APInt MinVal, MaxVal; 4045 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4046 if (ISD::isSignedIntSetCC(Cond)) { 4047 MinVal = APInt::getSignedMinValue(OperandBitSize); 4048 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4049 } else { 4050 MinVal = APInt::getMinValue(OperandBitSize); 4051 MaxVal = APInt::getMaxValue(OperandBitSize); 4052 } 4053 4054 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4055 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4056 // X >= MIN --> true 4057 if (C1 == MinVal) 4058 return DAG.getBoolConstant(true, dl, VT, OpVT); 4059 4060 if (!VT.isVector()) { // TODO: Support this for vectors. 4061 // X >= C0 --> X > (C0 - 1) 4062 APInt C = C1 - 1; 4063 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4064 if ((DCI.isBeforeLegalizeOps() || 4065 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4066 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4067 isLegalICmpImmediate(C.getSExtValue())))) { 4068 return DAG.getSetCC(dl, VT, N0, 4069 DAG.getConstant(C, dl, N1.getValueType()), 4070 NewCC); 4071 } 4072 } 4073 } 4074 4075 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4076 // X <= MAX --> true 4077 if (C1 == MaxVal) 4078 return DAG.getBoolConstant(true, dl, VT, OpVT); 4079 4080 // X <= C0 --> X < (C0 + 1) 4081 if (!VT.isVector()) { // TODO: Support this for vectors. 4082 APInt C = C1 + 1; 4083 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4084 if ((DCI.isBeforeLegalizeOps() || 4085 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4086 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4087 isLegalICmpImmediate(C.getSExtValue())))) { 4088 return DAG.getSetCC(dl, VT, N0, 4089 DAG.getConstant(C, dl, N1.getValueType()), 4090 NewCC); 4091 } 4092 } 4093 } 4094 4095 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4096 if (C1 == MinVal) 4097 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4098 4099 // TODO: Support this for vectors after legalize ops. 4100 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4101 // Canonicalize setlt X, Max --> setne X, Max 4102 if (C1 == MaxVal) 4103 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4104 4105 // If we have setult X, 1, turn it into seteq X, 0 4106 if (C1 == MinVal+1) 4107 return DAG.getSetCC(dl, VT, N0, 4108 DAG.getConstant(MinVal, dl, N0.getValueType()), 4109 ISD::SETEQ); 4110 } 4111 } 4112 4113 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4114 if (C1 == MaxVal) 4115 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4116 4117 // TODO: Support this for vectors after legalize ops. 4118 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4119 // Canonicalize setgt X, Min --> setne X, Min 4120 if (C1 == MinVal) 4121 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4122 4123 // If we have setugt X, Max-1, turn it into seteq X, Max 4124 if (C1 == MaxVal-1) 4125 return DAG.getSetCC(dl, VT, N0, 4126 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4127 ISD::SETEQ); 4128 } 4129 } 4130 4131 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4132 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4133 if (C1.isZero()) 4134 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4135 VT, N0, N1, Cond, DCI, dl)) 4136 return CC; 4137 4138 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4139 // For example, when high 32-bits of i64 X are known clear: 4140 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4141 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4142 bool CmpZero = N1C->getAPIntValue().isZero(); 4143 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4144 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4145 // Match or(lo,shl(hi,bw/2)) pattern. 4146 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4147 unsigned EltBits = V.getScalarValueSizeInBits(); 4148 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4149 return false; 4150 SDValue LHS = V.getOperand(0); 4151 SDValue RHS = V.getOperand(1); 4152 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4153 // Unshifted element must have zero upperbits. 4154 if (RHS.getOpcode() == ISD::SHL && 4155 isa<ConstantSDNode>(RHS.getOperand(1)) && 4156 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4157 DAG.MaskedValueIsZero(LHS, HiBits)) { 4158 Lo = LHS; 4159 Hi = RHS.getOperand(0); 4160 return true; 4161 } 4162 if (LHS.getOpcode() == ISD::SHL && 4163 isa<ConstantSDNode>(LHS.getOperand(1)) && 4164 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4165 DAG.MaskedValueIsZero(RHS, HiBits)) { 4166 Lo = RHS; 4167 Hi = LHS.getOperand(0); 4168 return true; 4169 } 4170 return false; 4171 }; 4172 4173 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4174 unsigned EltBits = N0.getScalarValueSizeInBits(); 4175 unsigned HalfBits = EltBits / 2; 4176 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4177 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4178 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4179 SDValue NewN0 = 4180 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4181 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4182 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4183 }; 4184 4185 SDValue Lo, Hi; 4186 if (IsConcat(N0, Lo, Hi)) 4187 return MergeConcat(Lo, Hi); 4188 4189 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4190 SDValue Lo0, Lo1, Hi0, Hi1; 4191 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4192 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4193 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4194 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4195 } 4196 } 4197 } 4198 } 4199 4200 // If we have "setcc X, C0", check to see if we can shrink the immediate 4201 // by changing cc. 4202 // TODO: Support this for vectors after legalize ops. 4203 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4204 // SETUGT X, SINTMAX -> SETLT X, 0 4205 // SETUGE X, SINTMIN -> SETLT X, 0 4206 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4207 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4208 return DAG.getSetCC(dl, VT, N0, 4209 DAG.getConstant(0, dl, N1.getValueType()), 4210 ISD::SETLT); 4211 4212 // SETULT X, SINTMIN -> SETGT X, -1 4213 // SETULE X, SINTMAX -> SETGT X, -1 4214 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4215 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4216 return DAG.getSetCC(dl, VT, N0, 4217 DAG.getAllOnesConstant(dl, N1.getValueType()), 4218 ISD::SETGT); 4219 } 4220 } 4221 4222 // Back to non-vector simplifications. 4223 // TODO: Can we do these for vector splats? 4224 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4226 const APInt &C1 = N1C->getAPIntValue(); 4227 EVT ShValTy = N0.getValueType(); 4228 4229 // Fold bit comparisons when we can. This will result in an 4230 // incorrect value when boolean false is negative one, unless 4231 // the bitsize is 1 in which case the false value is the same 4232 // in practice regardless of the representation. 4233 if ((VT.getSizeInBits() == 1 || 4234 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4235 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4236 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4237 N0.getOpcode() == ISD::AND) { 4238 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4239 EVT ShiftTy = 4240 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4241 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4242 // Perform the xform if the AND RHS is a single bit. 4243 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4244 if (AndRHS->getAPIntValue().isPowerOf2() && 4245 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4246 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4247 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4248 DAG.getConstant(ShCt, dl, ShiftTy))); 4249 } 4250 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4251 // (X & 8) == 8 --> (X & 8) >> 3 4252 // Perform the xform if C1 is a single bit. 4253 unsigned ShCt = C1.logBase2(); 4254 if (C1.isPowerOf2() && 4255 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4256 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4257 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4258 DAG.getConstant(ShCt, dl, ShiftTy))); 4259 } 4260 } 4261 } 4262 } 4263 4264 if (C1.getMinSignedBits() <= 64 && 4265 !isLegalICmpImmediate(C1.getSExtValue())) { 4266 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4267 // (X & -256) == 256 -> (X >> 8) == 1 4268 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4269 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4270 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4271 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4272 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4273 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4274 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4275 SDValue Shift = 4276 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4277 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4278 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4279 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4280 } 4281 } 4282 } 4283 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4284 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4285 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4286 // X < 0x100000000 -> (X >> 32) < 1 4287 // X >= 0x100000000 -> (X >> 32) >= 1 4288 // X <= 0x0ffffffff -> (X >> 32) < 1 4289 // X > 0x0ffffffff -> (X >> 32) >= 1 4290 unsigned ShiftBits; 4291 APInt NewC = C1; 4292 ISD::CondCode NewCond = Cond; 4293 if (AdjOne) { 4294 ShiftBits = C1.countTrailingOnes(); 4295 NewC = NewC + 1; 4296 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4297 } else { 4298 ShiftBits = C1.countTrailingZeros(); 4299 } 4300 NewC.lshrInPlace(ShiftBits); 4301 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4302 isLegalICmpImmediate(NewC.getSExtValue()) && 4303 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4304 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4305 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4306 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4307 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4308 } 4309 } 4310 } 4311 } 4312 4313 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4314 auto *CFP = cast<ConstantFPSDNode>(N1); 4315 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4316 4317 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4318 // constant if knowing that the operand is non-nan is enough. We prefer to 4319 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4320 // materialize 0.0. 4321 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4322 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4323 4324 // setcc (fneg x), C -> setcc swap(pred) x, -C 4325 if (N0.getOpcode() == ISD::FNEG) { 4326 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4327 if (DCI.isBeforeLegalizeOps() || 4328 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4329 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4330 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4331 } 4332 } 4333 4334 // If the condition is not legal, see if we can find an equivalent one 4335 // which is legal. 4336 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4337 // If the comparison was an awkward floating-point == or != and one of 4338 // the comparison operands is infinity or negative infinity, convert the 4339 // condition to a less-awkward <= or >=. 4340 if (CFP->getValueAPF().isInfinity()) { 4341 bool IsNegInf = CFP->getValueAPF().isNegative(); 4342 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4343 switch (Cond) { 4344 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4345 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4346 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4347 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4348 default: break; 4349 } 4350 if (NewCond != ISD::SETCC_INVALID && 4351 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4352 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4353 } 4354 } 4355 } 4356 4357 if (N0 == N1) { 4358 // The sext(setcc()) => setcc() optimization relies on the appropriate 4359 // constant being emitted. 4360 assert(!N0.getValueType().isInteger() && 4361 "Integer types should be handled by FoldSetCC"); 4362 4363 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4364 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4365 if (UOF == 2) // FP operators that are undefined on NaNs. 4366 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4367 if (UOF == unsigned(EqTrue)) 4368 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4369 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4370 // if it is not already. 4371 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4372 if (NewCond != Cond && 4373 (DCI.isBeforeLegalizeOps() || 4374 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4375 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4376 } 4377 4378 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4379 N0.getValueType().isInteger()) { 4380 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4381 N0.getOpcode() == ISD::XOR) { 4382 // Simplify (X+Y) == (X+Z) --> Y == Z 4383 if (N0.getOpcode() == N1.getOpcode()) { 4384 if (N0.getOperand(0) == N1.getOperand(0)) 4385 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4386 if (N0.getOperand(1) == N1.getOperand(1)) 4387 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4388 if (isCommutativeBinOp(N0.getOpcode())) { 4389 // If X op Y == Y op X, try other combinations. 4390 if (N0.getOperand(0) == N1.getOperand(1)) 4391 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4392 Cond); 4393 if (N0.getOperand(1) == N1.getOperand(0)) 4394 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4395 Cond); 4396 } 4397 } 4398 4399 // If RHS is a legal immediate value for a compare instruction, we need 4400 // to be careful about increasing register pressure needlessly. 4401 bool LegalRHSImm = false; 4402 4403 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4404 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4405 // Turn (X+C1) == C2 --> X == C2-C1 4406 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4407 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4408 DAG.getConstant(RHSC->getAPIntValue()- 4409 LHSR->getAPIntValue(), 4410 dl, N0.getValueType()), Cond); 4411 } 4412 4413 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4414 if (N0.getOpcode() == ISD::XOR) 4415 // If we know that all of the inverted bits are zero, don't bother 4416 // performing the inversion. 4417 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4418 return 4419 DAG.getSetCC(dl, VT, N0.getOperand(0), 4420 DAG.getConstant(LHSR->getAPIntValue() ^ 4421 RHSC->getAPIntValue(), 4422 dl, N0.getValueType()), 4423 Cond); 4424 } 4425 4426 // Turn (C1-X) == C2 --> X == C1-C2 4427 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4428 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4429 return 4430 DAG.getSetCC(dl, VT, N0.getOperand(1), 4431 DAG.getConstant(SUBC->getAPIntValue() - 4432 RHSC->getAPIntValue(), 4433 dl, N0.getValueType()), 4434 Cond); 4435 } 4436 } 4437 4438 // Could RHSC fold directly into a compare? 4439 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4440 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4441 } 4442 4443 // (X+Y) == X --> Y == 0 and similar folds. 4444 // Don't do this if X is an immediate that can fold into a cmp 4445 // instruction and X+Y has other uses. It could be an induction variable 4446 // chain, and the transform would increase register pressure. 4447 if (!LegalRHSImm || N0.hasOneUse()) 4448 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4449 return V; 4450 } 4451 4452 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4453 N1.getOpcode() == ISD::XOR) 4454 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4455 return V; 4456 4457 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4458 return V; 4459 } 4460 4461 // Fold remainder of division by a constant. 4462 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4463 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4464 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4465 4466 // When division is cheap or optimizing for minimum size, 4467 // fall through to DIVREM creation by skipping this fold. 4468 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4469 if (N0.getOpcode() == ISD::UREM) { 4470 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4471 return Folded; 4472 } else if (N0.getOpcode() == ISD::SREM) { 4473 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4474 return Folded; 4475 } 4476 } 4477 } 4478 4479 // Fold away ALL boolean setcc's. 4480 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4481 SDValue Temp; 4482 switch (Cond) { 4483 default: llvm_unreachable("Unknown integer setcc!"); 4484 case ISD::SETEQ: // X == Y -> ~(X^Y) 4485 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4486 N0 = DAG.getNOT(dl, Temp, OpVT); 4487 if (!DCI.isCalledByLegalizer()) 4488 DCI.AddToWorklist(Temp.getNode()); 4489 break; 4490 case ISD::SETNE: // X != Y --> (X^Y) 4491 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4492 break; 4493 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4494 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4495 Temp = DAG.getNOT(dl, N0, OpVT); 4496 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4497 if (!DCI.isCalledByLegalizer()) 4498 DCI.AddToWorklist(Temp.getNode()); 4499 break; 4500 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4501 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4502 Temp = DAG.getNOT(dl, N1, OpVT); 4503 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4504 if (!DCI.isCalledByLegalizer()) 4505 DCI.AddToWorklist(Temp.getNode()); 4506 break; 4507 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4508 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4509 Temp = DAG.getNOT(dl, N0, OpVT); 4510 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4511 if (!DCI.isCalledByLegalizer()) 4512 DCI.AddToWorklist(Temp.getNode()); 4513 break; 4514 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4515 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4516 Temp = DAG.getNOT(dl, N1, OpVT); 4517 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4518 break; 4519 } 4520 if (VT.getScalarType() != MVT::i1) { 4521 if (!DCI.isCalledByLegalizer()) 4522 DCI.AddToWorklist(N0.getNode()); 4523 // FIXME: If running after legalize, we probably can't do this. 4524 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4525 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4526 } 4527 return N0; 4528 } 4529 4530 // Could not fold it. 4531 return SDValue(); 4532 } 4533 4534 /// Returns true (and the GlobalValue and the offset) if the node is a 4535 /// GlobalAddress + offset. 4536 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4537 int64_t &Offset) const { 4538 4539 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4540 4541 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4542 GA = GASD->getGlobal(); 4543 Offset += GASD->getOffset(); 4544 return true; 4545 } 4546 4547 if (N->getOpcode() == ISD::ADD) { 4548 SDValue N1 = N->getOperand(0); 4549 SDValue N2 = N->getOperand(1); 4550 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4551 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4552 Offset += V->getSExtValue(); 4553 return true; 4554 } 4555 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4556 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4557 Offset += V->getSExtValue(); 4558 return true; 4559 } 4560 } 4561 } 4562 4563 return false; 4564 } 4565 4566 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4567 DAGCombinerInfo &DCI) const { 4568 // Default implementation: no optimization. 4569 return SDValue(); 4570 } 4571 4572 //===----------------------------------------------------------------------===// 4573 // Inline Assembler Implementation Methods 4574 //===----------------------------------------------------------------------===// 4575 4576 TargetLowering::ConstraintType 4577 TargetLowering::getConstraintType(StringRef Constraint) const { 4578 unsigned S = Constraint.size(); 4579 4580 if (S == 1) { 4581 switch (Constraint[0]) { 4582 default: break; 4583 case 'r': 4584 return C_RegisterClass; 4585 case 'm': // memory 4586 case 'o': // offsetable 4587 case 'V': // not offsetable 4588 return C_Memory; 4589 case 'n': // Simple Integer 4590 case 'E': // Floating Point Constant 4591 case 'F': // Floating Point Constant 4592 return C_Immediate; 4593 case 'i': // Simple Integer or Relocatable Constant 4594 case 's': // Relocatable Constant 4595 case 'p': // Address. 4596 case 'X': // Allow ANY value. 4597 case 'I': // Target registers. 4598 case 'J': 4599 case 'K': 4600 case 'L': 4601 case 'M': 4602 case 'N': 4603 case 'O': 4604 case 'P': 4605 case '<': 4606 case '>': 4607 return C_Other; 4608 } 4609 } 4610 4611 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4612 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4613 return C_Memory; 4614 return C_Register; 4615 } 4616 return C_Unknown; 4617 } 4618 4619 /// Try to replace an X constraint, which matches anything, with another that 4620 /// has more specific requirements based on the type of the corresponding 4621 /// operand. 4622 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4623 if (ConstraintVT.isInteger()) 4624 return "r"; 4625 if (ConstraintVT.isFloatingPoint()) 4626 return "f"; // works for many targets 4627 return nullptr; 4628 } 4629 4630 SDValue TargetLowering::LowerAsmOutputForConstraint( 4631 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4632 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4633 return SDValue(); 4634 } 4635 4636 /// Lower the specified operand into the Ops vector. 4637 /// If it is invalid, don't add anything to Ops. 4638 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4639 std::string &Constraint, 4640 std::vector<SDValue> &Ops, 4641 SelectionDAG &DAG) const { 4642 4643 if (Constraint.length() > 1) return; 4644 4645 char ConstraintLetter = Constraint[0]; 4646 switch (ConstraintLetter) { 4647 default: break; 4648 case 'X': // Allows any operand 4649 case 'i': // Simple Integer or Relocatable Constant 4650 case 'n': // Simple Integer 4651 case 's': { // Relocatable Constant 4652 4653 ConstantSDNode *C; 4654 uint64_t Offset = 0; 4655 4656 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4657 // etc., since getelementpointer is variadic. We can't use 4658 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4659 // while in this case the GA may be furthest from the root node which is 4660 // likely an ISD::ADD. 4661 while (true) { 4662 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4663 // gcc prints these as sign extended. Sign extend value to 64 bits 4664 // now; without this it would get ZExt'd later in 4665 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4666 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4667 BooleanContent BCont = getBooleanContents(MVT::i64); 4668 ISD::NodeType ExtOpc = 4669 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4670 int64_t ExtVal = 4671 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4672 Ops.push_back( 4673 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4674 return; 4675 } 4676 if (ConstraintLetter != 'n') { 4677 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4678 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4679 GA->getValueType(0), 4680 Offset + GA->getOffset())); 4681 return; 4682 } 4683 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4684 Ops.push_back(DAG.getTargetBlockAddress( 4685 BA->getBlockAddress(), BA->getValueType(0), 4686 Offset + BA->getOffset(), BA->getTargetFlags())); 4687 return; 4688 } 4689 if (isa<BasicBlockSDNode>(Op)) { 4690 Ops.push_back(Op); 4691 return; 4692 } 4693 } 4694 const unsigned OpCode = Op.getOpcode(); 4695 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4696 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4697 Op = Op.getOperand(1); 4698 // Subtraction is not commutative. 4699 else if (OpCode == ISD::ADD && 4700 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4701 Op = Op.getOperand(0); 4702 else 4703 return; 4704 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4705 continue; 4706 } 4707 return; 4708 } 4709 break; 4710 } 4711 } 4712 } 4713 4714 std::pair<unsigned, const TargetRegisterClass *> 4715 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4716 StringRef Constraint, 4717 MVT VT) const { 4718 if (Constraint.empty() || Constraint[0] != '{') 4719 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4720 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4721 4722 // Remove the braces from around the name. 4723 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4724 4725 std::pair<unsigned, const TargetRegisterClass *> R = 4726 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4727 4728 // Figure out which register class contains this reg. 4729 for (const TargetRegisterClass *RC : RI->regclasses()) { 4730 // If none of the value types for this register class are valid, we 4731 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4732 if (!isLegalRC(*RI, *RC)) 4733 continue; 4734 4735 for (const MCPhysReg &PR : *RC) { 4736 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4737 std::pair<unsigned, const TargetRegisterClass *> S = 4738 std::make_pair(PR, RC); 4739 4740 // If this register class has the requested value type, return it, 4741 // otherwise keep searching and return the first class found 4742 // if no other is found which explicitly has the requested type. 4743 if (RI->isTypeLegalForClass(*RC, VT)) 4744 return S; 4745 if (!R.second) 4746 R = S; 4747 } 4748 } 4749 } 4750 4751 return R; 4752 } 4753 4754 //===----------------------------------------------------------------------===// 4755 // Constraint Selection. 4756 4757 /// Return true of this is an input operand that is a matching constraint like 4758 /// "4". 4759 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4760 assert(!ConstraintCode.empty() && "No known constraint!"); 4761 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4762 } 4763 4764 /// If this is an input matching constraint, this method returns the output 4765 /// operand it matches. 4766 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4767 assert(!ConstraintCode.empty() && "No known constraint!"); 4768 return atoi(ConstraintCode.c_str()); 4769 } 4770 4771 /// Split up the constraint string from the inline assembly value into the 4772 /// specific constraints and their prefixes, and also tie in the associated 4773 /// operand values. 4774 /// If this returns an empty vector, and if the constraint string itself 4775 /// isn't empty, there was an error parsing. 4776 TargetLowering::AsmOperandInfoVector 4777 TargetLowering::ParseConstraints(const DataLayout &DL, 4778 const TargetRegisterInfo *TRI, 4779 const CallBase &Call) const { 4780 /// Information about all of the constraints. 4781 AsmOperandInfoVector ConstraintOperands; 4782 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4783 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4784 4785 // Do a prepass over the constraints, canonicalizing them, and building up the 4786 // ConstraintOperands list. 4787 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4788 unsigned ResNo = 0; // ResNo - The result number of the next output. 4789 4790 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4791 ConstraintOperands.emplace_back(std::move(CI)); 4792 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4793 4794 // Update multiple alternative constraint count. 4795 if (OpInfo.multipleAlternatives.size() > maCount) 4796 maCount = OpInfo.multipleAlternatives.size(); 4797 4798 OpInfo.ConstraintVT = MVT::Other; 4799 4800 // Compute the value type for each operand. 4801 switch (OpInfo.Type) { 4802 case InlineAsm::isOutput: 4803 // Indirect outputs just consume an argument. 4804 if (OpInfo.isIndirect) { 4805 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4806 break; 4807 } 4808 4809 // The return value of the call is this value. As such, there is no 4810 // corresponding argument. 4811 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4812 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4813 OpInfo.ConstraintVT = 4814 getSimpleValueType(DL, STy->getElementType(ResNo)); 4815 } else { 4816 assert(ResNo == 0 && "Asm only has one result!"); 4817 OpInfo.ConstraintVT = 4818 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4819 } 4820 ++ResNo; 4821 break; 4822 case InlineAsm::isInput: 4823 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4824 break; 4825 case InlineAsm::isClobber: 4826 // Nothing to do. 4827 break; 4828 } 4829 4830 if (OpInfo.CallOperandVal) { 4831 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4832 if (OpInfo.isIndirect) { 4833 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4834 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4835 } 4836 4837 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4838 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4839 if (STy->getNumElements() == 1) 4840 OpTy = STy->getElementType(0); 4841 4842 // If OpTy is not a single value, it may be a struct/union that we 4843 // can tile with integers. 4844 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4845 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4846 switch (BitSize) { 4847 default: break; 4848 case 1: 4849 case 8: 4850 case 16: 4851 case 32: 4852 case 64: 4853 case 128: 4854 OpInfo.ConstraintVT = 4855 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4856 break; 4857 } 4858 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4859 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4860 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4861 } else { 4862 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4863 } 4864 4865 ArgNo++; 4866 } 4867 } 4868 4869 // If we have multiple alternative constraints, select the best alternative. 4870 if (!ConstraintOperands.empty()) { 4871 if (maCount) { 4872 unsigned bestMAIndex = 0; 4873 int bestWeight = -1; 4874 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4875 int weight = -1; 4876 unsigned maIndex; 4877 // Compute the sums of the weights for each alternative, keeping track 4878 // of the best (highest weight) one so far. 4879 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4880 int weightSum = 0; 4881 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4882 cIndex != eIndex; ++cIndex) { 4883 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4884 if (OpInfo.Type == InlineAsm::isClobber) 4885 continue; 4886 4887 // If this is an output operand with a matching input operand, 4888 // look up the matching input. If their types mismatch, e.g. one 4889 // is an integer, the other is floating point, or their sizes are 4890 // different, flag it as an maCantMatch. 4891 if (OpInfo.hasMatchingInput()) { 4892 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4893 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4894 if ((OpInfo.ConstraintVT.isInteger() != 4895 Input.ConstraintVT.isInteger()) || 4896 (OpInfo.ConstraintVT.getSizeInBits() != 4897 Input.ConstraintVT.getSizeInBits())) { 4898 weightSum = -1; // Can't match. 4899 break; 4900 } 4901 } 4902 } 4903 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4904 if (weight == -1) { 4905 weightSum = -1; 4906 break; 4907 } 4908 weightSum += weight; 4909 } 4910 // Update best. 4911 if (weightSum > bestWeight) { 4912 bestWeight = weightSum; 4913 bestMAIndex = maIndex; 4914 } 4915 } 4916 4917 // Now select chosen alternative in each constraint. 4918 for (AsmOperandInfo &cInfo : ConstraintOperands) 4919 if (cInfo.Type != InlineAsm::isClobber) 4920 cInfo.selectAlternative(bestMAIndex); 4921 } 4922 } 4923 4924 // Check and hook up tied operands, choose constraint code to use. 4925 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4926 cIndex != eIndex; ++cIndex) { 4927 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4928 4929 // If this is an output operand with a matching input operand, look up the 4930 // matching input. If their types mismatch, e.g. one is an integer, the 4931 // other is floating point, or their sizes are different, flag it as an 4932 // error. 4933 if (OpInfo.hasMatchingInput()) { 4934 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4935 4936 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4937 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4938 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4939 OpInfo.ConstraintVT); 4940 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4941 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4942 Input.ConstraintVT); 4943 if ((OpInfo.ConstraintVT.isInteger() != 4944 Input.ConstraintVT.isInteger()) || 4945 (MatchRC.second != InputRC.second)) { 4946 report_fatal_error("Unsupported asm: input constraint" 4947 " with a matching output constraint of" 4948 " incompatible type!"); 4949 } 4950 } 4951 } 4952 } 4953 4954 return ConstraintOperands; 4955 } 4956 4957 /// Return an integer indicating how general CT is. 4958 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4959 switch (CT) { 4960 case TargetLowering::C_Immediate: 4961 case TargetLowering::C_Other: 4962 case TargetLowering::C_Unknown: 4963 return 0; 4964 case TargetLowering::C_Register: 4965 return 1; 4966 case TargetLowering::C_RegisterClass: 4967 return 2; 4968 case TargetLowering::C_Memory: 4969 return 3; 4970 } 4971 llvm_unreachable("Invalid constraint type"); 4972 } 4973 4974 /// Examine constraint type and operand type and determine a weight value. 4975 /// This object must already have been set up with the operand type 4976 /// and the current alternative constraint selected. 4977 TargetLowering::ConstraintWeight 4978 TargetLowering::getMultipleConstraintMatchWeight( 4979 AsmOperandInfo &info, int maIndex) const { 4980 InlineAsm::ConstraintCodeVector *rCodes; 4981 if (maIndex >= (int)info.multipleAlternatives.size()) 4982 rCodes = &info.Codes; 4983 else 4984 rCodes = &info.multipleAlternatives[maIndex].Codes; 4985 ConstraintWeight BestWeight = CW_Invalid; 4986 4987 // Loop over the options, keeping track of the most general one. 4988 for (const std::string &rCode : *rCodes) { 4989 ConstraintWeight weight = 4990 getSingleConstraintMatchWeight(info, rCode.c_str()); 4991 if (weight > BestWeight) 4992 BestWeight = weight; 4993 } 4994 4995 return BestWeight; 4996 } 4997 4998 /// Examine constraint type and operand type and determine a weight value. 4999 /// This object must already have been set up with the operand type 5000 /// and the current alternative constraint selected. 5001 TargetLowering::ConstraintWeight 5002 TargetLowering::getSingleConstraintMatchWeight( 5003 AsmOperandInfo &info, const char *constraint) const { 5004 ConstraintWeight weight = CW_Invalid; 5005 Value *CallOperandVal = info.CallOperandVal; 5006 // If we don't have a value, we can't do a match, 5007 // but allow it at the lowest weight. 5008 if (!CallOperandVal) 5009 return CW_Default; 5010 // Look at the constraint type. 5011 switch (*constraint) { 5012 case 'i': // immediate integer. 5013 case 'n': // immediate integer with a known value. 5014 if (isa<ConstantInt>(CallOperandVal)) 5015 weight = CW_Constant; 5016 break; 5017 case 's': // non-explicit intregal immediate. 5018 if (isa<GlobalValue>(CallOperandVal)) 5019 weight = CW_Constant; 5020 break; 5021 case 'E': // immediate float if host format. 5022 case 'F': // immediate float. 5023 if (isa<ConstantFP>(CallOperandVal)) 5024 weight = CW_Constant; 5025 break; 5026 case '<': // memory operand with autodecrement. 5027 case '>': // memory operand with autoincrement. 5028 case 'm': // memory operand. 5029 case 'o': // offsettable memory operand 5030 case 'V': // non-offsettable memory operand 5031 weight = CW_Memory; 5032 break; 5033 case 'r': // general register. 5034 case 'g': // general register, memory operand or immediate integer. 5035 // note: Clang converts "g" to "imr". 5036 if (CallOperandVal->getType()->isIntegerTy()) 5037 weight = CW_Register; 5038 break; 5039 case 'X': // any operand. 5040 default: 5041 weight = CW_Default; 5042 break; 5043 } 5044 return weight; 5045 } 5046 5047 /// If there are multiple different constraints that we could pick for this 5048 /// operand (e.g. "imr") try to pick the 'best' one. 5049 /// This is somewhat tricky: constraints fall into four classes: 5050 /// Other -> immediates and magic values 5051 /// Register -> one specific register 5052 /// RegisterClass -> a group of regs 5053 /// Memory -> memory 5054 /// Ideally, we would pick the most specific constraint possible: if we have 5055 /// something that fits into a register, we would pick it. The problem here 5056 /// is that if we have something that could either be in a register or in 5057 /// memory that use of the register could cause selection of *other* 5058 /// operands to fail: they might only succeed if we pick memory. Because of 5059 /// this the heuristic we use is: 5060 /// 5061 /// 1) If there is an 'other' constraint, and if the operand is valid for 5062 /// that constraint, use it. This makes us take advantage of 'i' 5063 /// constraints when available. 5064 /// 2) Otherwise, pick the most general constraint present. This prefers 5065 /// 'm' over 'r', for example. 5066 /// 5067 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5068 const TargetLowering &TLI, 5069 SDValue Op, SelectionDAG *DAG) { 5070 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5071 unsigned BestIdx = 0; 5072 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5073 int BestGenerality = -1; 5074 5075 // Loop over the options, keeping track of the most general one. 5076 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5077 TargetLowering::ConstraintType CType = 5078 TLI.getConstraintType(OpInfo.Codes[i]); 5079 5080 // Indirect 'other' or 'immediate' constraints are not allowed. 5081 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5082 CType == TargetLowering::C_Register || 5083 CType == TargetLowering::C_RegisterClass)) 5084 continue; 5085 5086 // If this is an 'other' or 'immediate' constraint, see if the operand is 5087 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5088 // the operand is an integer in the range [0..31] we want to use I (saving a 5089 // load of a register), otherwise we must use 'r'. 5090 if ((CType == TargetLowering::C_Other || 5091 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5092 assert(OpInfo.Codes[i].size() == 1 && 5093 "Unhandled multi-letter 'other' constraint"); 5094 std::vector<SDValue> ResultOps; 5095 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5096 ResultOps, *DAG); 5097 if (!ResultOps.empty()) { 5098 BestType = CType; 5099 BestIdx = i; 5100 break; 5101 } 5102 } 5103 5104 // Things with matching constraints can only be registers, per gcc 5105 // documentation. This mainly affects "g" constraints. 5106 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5107 continue; 5108 5109 // This constraint letter is more general than the previous one, use it. 5110 int Generality = getConstraintGenerality(CType); 5111 if (Generality > BestGenerality) { 5112 BestType = CType; 5113 BestIdx = i; 5114 BestGenerality = Generality; 5115 } 5116 } 5117 5118 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5119 OpInfo.ConstraintType = BestType; 5120 } 5121 5122 /// Determines the constraint code and constraint type to use for the specific 5123 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5124 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5125 SDValue Op, 5126 SelectionDAG *DAG) const { 5127 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5128 5129 // Single-letter constraints ('r') are very common. 5130 if (OpInfo.Codes.size() == 1) { 5131 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5132 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5133 } else { 5134 ChooseConstraint(OpInfo, *this, Op, DAG); 5135 } 5136 5137 // 'X' matches anything. 5138 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5139 // Constants are handled elsewhere. For Functions, the type here is the 5140 // type of the result, which is not what we want to look at; leave them 5141 // alone. 5142 Value *v = OpInfo.CallOperandVal; 5143 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5144 return; 5145 } 5146 5147 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5148 OpInfo.ConstraintCode = "i"; 5149 return; 5150 } 5151 5152 // Otherwise, try to resolve it to something we know about by looking at 5153 // the actual operand type. 5154 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5155 OpInfo.ConstraintCode = Repl; 5156 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5157 } 5158 } 5159 } 5160 5161 /// Given an exact SDIV by a constant, create a multiplication 5162 /// with the multiplicative inverse of the constant. 5163 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5164 const SDLoc &dl, SelectionDAG &DAG, 5165 SmallVectorImpl<SDNode *> &Created) { 5166 SDValue Op0 = N->getOperand(0); 5167 SDValue Op1 = N->getOperand(1); 5168 EVT VT = N->getValueType(0); 5169 EVT SVT = VT.getScalarType(); 5170 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5171 EVT ShSVT = ShVT.getScalarType(); 5172 5173 bool UseSRA = false; 5174 SmallVector<SDValue, 16> Shifts, Factors; 5175 5176 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5177 if (C->isZero()) 5178 return false; 5179 APInt Divisor = C->getAPIntValue(); 5180 unsigned Shift = Divisor.countTrailingZeros(); 5181 if (Shift) { 5182 Divisor.ashrInPlace(Shift); 5183 UseSRA = true; 5184 } 5185 // Calculate the multiplicative inverse, using Newton's method. 5186 APInt t; 5187 APInt Factor = Divisor; 5188 while ((t = Divisor * Factor) != 1) 5189 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5190 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5191 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5192 return true; 5193 }; 5194 5195 // Collect all magic values from the build vector. 5196 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5197 return SDValue(); 5198 5199 SDValue Shift, Factor; 5200 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5201 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5202 Factor = DAG.getBuildVector(VT, dl, Factors); 5203 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5204 assert(Shifts.size() == 1 && Factors.size() == 1 && 5205 "Expected matchUnaryPredicate to return one element for scalable " 5206 "vectors"); 5207 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5208 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5209 } else { 5210 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5211 Shift = Shifts[0]; 5212 Factor = Factors[0]; 5213 } 5214 5215 SDValue Res = Op0; 5216 5217 // Shift the value upfront if it is even, so the LSB is one. 5218 if (UseSRA) { 5219 // TODO: For UDIV use SRL instead of SRA. 5220 SDNodeFlags Flags; 5221 Flags.setExact(true); 5222 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5223 Created.push_back(Res.getNode()); 5224 } 5225 5226 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5227 } 5228 5229 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5230 SelectionDAG &DAG, 5231 SmallVectorImpl<SDNode *> &Created) const { 5232 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5234 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5235 return SDValue(N, 0); // Lower SDIV as SDIV 5236 return SDValue(); 5237 } 5238 5239 /// Given an ISD::SDIV node expressing a divide by constant, 5240 /// return a DAG expression to select that will generate the same value by 5241 /// multiplying by a magic number. 5242 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5243 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5244 bool IsAfterLegalization, 5245 SmallVectorImpl<SDNode *> &Created) const { 5246 SDLoc dl(N); 5247 EVT VT = N->getValueType(0); 5248 EVT SVT = VT.getScalarType(); 5249 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5250 EVT ShSVT = ShVT.getScalarType(); 5251 unsigned EltBits = VT.getScalarSizeInBits(); 5252 EVT MulVT; 5253 5254 // Check to see if we can do this. 5255 // FIXME: We should be more aggressive here. 5256 if (!isTypeLegal(VT)) { 5257 // Limit this to simple scalars for now. 5258 if (VT.isVector() || !VT.isSimple()) 5259 return SDValue(); 5260 5261 // If this type will be promoted to a large enough type with a legal 5262 // multiply operation, we can go ahead and do this transform. 5263 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5264 return SDValue(); 5265 5266 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5267 if (MulVT.getSizeInBits() < (2 * EltBits) || 5268 !isOperationLegal(ISD::MUL, MulVT)) 5269 return SDValue(); 5270 } 5271 5272 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5273 if (N->getFlags().hasExact()) 5274 return BuildExactSDIV(*this, N, dl, DAG, Created); 5275 5276 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5277 5278 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5279 if (C->isZero()) 5280 return false; 5281 5282 const APInt &Divisor = C->getAPIntValue(); 5283 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5284 int NumeratorFactor = 0; 5285 int ShiftMask = -1; 5286 5287 if (Divisor.isOne() || Divisor.isAllOnes()) { 5288 // If d is +1/-1, we just multiply the numerator by +1/-1. 5289 NumeratorFactor = Divisor.getSExtValue(); 5290 magics.Magic = 0; 5291 magics.ShiftAmount = 0; 5292 ShiftMask = 0; 5293 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5294 // If d > 0 and m < 0, add the numerator. 5295 NumeratorFactor = 1; 5296 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5297 // If d < 0 and m > 0, subtract the numerator. 5298 NumeratorFactor = -1; 5299 } 5300 5301 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5302 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5303 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5304 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5305 return true; 5306 }; 5307 5308 SDValue N0 = N->getOperand(0); 5309 SDValue N1 = N->getOperand(1); 5310 5311 // Collect the shifts / magic values from each element. 5312 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5313 return SDValue(); 5314 5315 SDValue MagicFactor, Factor, Shift, ShiftMask; 5316 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5317 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5318 Factor = DAG.getBuildVector(VT, dl, Factors); 5319 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5320 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5321 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5322 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5323 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5324 "Expected matchUnaryPredicate to return one element for scalable " 5325 "vectors"); 5326 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5327 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5328 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5329 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5330 } else { 5331 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5332 MagicFactor = MagicFactors[0]; 5333 Factor = Factors[0]; 5334 Shift = Shifts[0]; 5335 ShiftMask = ShiftMasks[0]; 5336 } 5337 5338 // Multiply the numerator (operand 0) by the magic value. 5339 // FIXME: We should support doing a MUL in a wider type. 5340 auto GetMULHS = [&](SDValue X, SDValue Y) { 5341 // If the type isn't legal, use a wider mul of the the type calculated 5342 // earlier. 5343 if (!isTypeLegal(VT)) { 5344 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5345 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5346 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5347 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5348 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5349 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5350 } 5351 5352 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5353 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5354 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5355 SDValue LoHi = 5356 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5357 return SDValue(LoHi.getNode(), 1); 5358 } 5359 return SDValue(); 5360 }; 5361 5362 SDValue Q = GetMULHS(N0, MagicFactor); 5363 if (!Q) 5364 return SDValue(); 5365 5366 Created.push_back(Q.getNode()); 5367 5368 // (Optionally) Add/subtract the numerator using Factor. 5369 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5370 Created.push_back(Factor.getNode()); 5371 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5372 Created.push_back(Q.getNode()); 5373 5374 // Shift right algebraic by shift value. 5375 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5376 Created.push_back(Q.getNode()); 5377 5378 // Extract the sign bit, mask it and add it to the quotient. 5379 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5380 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5381 Created.push_back(T.getNode()); 5382 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5383 Created.push_back(T.getNode()); 5384 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5385 } 5386 5387 /// Given an ISD::UDIV node expressing a divide by constant, 5388 /// return a DAG expression to select that will generate the same value by 5389 /// multiplying by a magic number. 5390 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5391 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5392 bool IsAfterLegalization, 5393 SmallVectorImpl<SDNode *> &Created) const { 5394 SDLoc dl(N); 5395 EVT VT = N->getValueType(0); 5396 EVT SVT = VT.getScalarType(); 5397 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5398 EVT ShSVT = ShVT.getScalarType(); 5399 unsigned EltBits = VT.getScalarSizeInBits(); 5400 EVT MulVT; 5401 5402 // Check to see if we can do this. 5403 // FIXME: We should be more aggressive here. 5404 if (!isTypeLegal(VT)) { 5405 // Limit this to simple scalars for now. 5406 if (VT.isVector() || !VT.isSimple()) 5407 return SDValue(); 5408 5409 // If this type will be promoted to a large enough type with a legal 5410 // multiply operation, we can go ahead and do this transform. 5411 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5412 return SDValue(); 5413 5414 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5415 if (MulVT.getSizeInBits() < (2 * EltBits) || 5416 !isOperationLegal(ISD::MUL, MulVT)) 5417 return SDValue(); 5418 } 5419 5420 bool UseNPQ = false; 5421 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5422 5423 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5424 if (C->isZero()) 5425 return false; 5426 // FIXME: We should use a narrower constant when the upper 5427 // bits are known to be zero. 5428 const APInt& Divisor = C->getAPIntValue(); 5429 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5430 unsigned PreShift = 0, PostShift = 0; 5431 5432 // If the divisor is even, we can avoid using the expensive fixup by 5433 // shifting the divided value upfront. 5434 if (magics.IsAdd != 0 && !Divisor[0]) { 5435 PreShift = Divisor.countTrailingZeros(); 5436 // Get magic number for the shifted divisor. 5437 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5438 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5439 } 5440 5441 APInt Magic = magics.Magic; 5442 5443 unsigned SelNPQ; 5444 if (magics.IsAdd == 0 || Divisor.isOne()) { 5445 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5446 "We shouldn't generate an undefined shift!"); 5447 PostShift = magics.ShiftAmount; 5448 SelNPQ = false; 5449 } else { 5450 PostShift = magics.ShiftAmount - 1; 5451 SelNPQ = true; 5452 } 5453 5454 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5455 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5456 NPQFactors.push_back( 5457 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5458 : APInt::getZero(EltBits), 5459 dl, SVT)); 5460 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5461 UseNPQ |= SelNPQ; 5462 return true; 5463 }; 5464 5465 SDValue N0 = N->getOperand(0); 5466 SDValue N1 = N->getOperand(1); 5467 5468 // Collect the shifts/magic values from each element. 5469 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5470 return SDValue(); 5471 5472 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5473 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5474 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5475 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5476 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5477 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5478 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5479 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5480 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5481 "Expected matchUnaryPredicate to return one for scalable vectors"); 5482 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5483 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5484 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5485 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5486 } else { 5487 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5488 PreShift = PreShifts[0]; 5489 MagicFactor = MagicFactors[0]; 5490 PostShift = PostShifts[0]; 5491 } 5492 5493 SDValue Q = N0; 5494 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5495 Created.push_back(Q.getNode()); 5496 5497 // FIXME: We should support doing a MUL in a wider type. 5498 auto GetMULHU = [&](SDValue X, SDValue Y) { 5499 // If the type isn't legal, use a wider mul of the the type calculated 5500 // earlier. 5501 if (!isTypeLegal(VT)) { 5502 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5503 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5504 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5505 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5506 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5507 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5508 } 5509 5510 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5511 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5512 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5513 SDValue LoHi = 5514 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5515 return SDValue(LoHi.getNode(), 1); 5516 } 5517 return SDValue(); // No mulhu or equivalent 5518 }; 5519 5520 // Multiply the numerator (operand 0) by the magic value. 5521 Q = GetMULHU(Q, MagicFactor); 5522 if (!Q) 5523 return SDValue(); 5524 5525 Created.push_back(Q.getNode()); 5526 5527 if (UseNPQ) { 5528 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5529 Created.push_back(NPQ.getNode()); 5530 5531 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5532 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5533 if (VT.isVector()) 5534 NPQ = GetMULHU(NPQ, NPQFactor); 5535 else 5536 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5537 5538 Created.push_back(NPQ.getNode()); 5539 5540 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5541 Created.push_back(Q.getNode()); 5542 } 5543 5544 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5545 Created.push_back(Q.getNode()); 5546 5547 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5548 5549 SDValue One = DAG.getConstant(1, dl, VT); 5550 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5551 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5552 } 5553 5554 /// If all values in Values that *don't* match the predicate are same 'splat' 5555 /// value, then replace all values with that splat value. 5556 /// Else, if AlternativeReplacement was provided, then replace all values that 5557 /// do match predicate with AlternativeReplacement value. 5558 static void 5559 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5560 std::function<bool(SDValue)> Predicate, 5561 SDValue AlternativeReplacement = SDValue()) { 5562 SDValue Replacement; 5563 // Is there a value for which the Predicate does *NOT* match? What is it? 5564 auto SplatValue = llvm::find_if_not(Values, Predicate); 5565 if (SplatValue != Values.end()) { 5566 // Does Values consist only of SplatValue's and values matching Predicate? 5567 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5568 return Value == *SplatValue || Predicate(Value); 5569 })) // Then we shall replace values matching predicate with SplatValue. 5570 Replacement = *SplatValue; 5571 } 5572 if (!Replacement) { 5573 // Oops, we did not find the "baseline" splat value. 5574 if (!AlternativeReplacement) 5575 return; // Nothing to do. 5576 // Let's replace with provided value then. 5577 Replacement = AlternativeReplacement; 5578 } 5579 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5580 } 5581 5582 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5583 /// where the divisor is constant and the comparison target is zero, 5584 /// return a DAG expression that will generate the same comparison result 5585 /// using only multiplications, additions and shifts/rotations. 5586 /// Ref: "Hacker's Delight" 10-17. 5587 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5588 SDValue CompTargetNode, 5589 ISD::CondCode Cond, 5590 DAGCombinerInfo &DCI, 5591 const SDLoc &DL) const { 5592 SmallVector<SDNode *, 5> Built; 5593 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5594 DCI, DL, Built)) { 5595 for (SDNode *N : Built) 5596 DCI.AddToWorklist(N); 5597 return Folded; 5598 } 5599 5600 return SDValue(); 5601 } 5602 5603 SDValue 5604 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5605 SDValue CompTargetNode, ISD::CondCode Cond, 5606 DAGCombinerInfo &DCI, const SDLoc &DL, 5607 SmallVectorImpl<SDNode *> &Created) const { 5608 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5609 // - D must be constant, with D = D0 * 2^K where D0 is odd 5610 // - P is the multiplicative inverse of D0 modulo 2^W 5611 // - Q = floor(((2^W) - 1) / D) 5612 // where W is the width of the common type of N and D. 5613 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5614 "Only applicable for (in)equality comparisons."); 5615 5616 SelectionDAG &DAG = DCI.DAG; 5617 5618 EVT VT = REMNode.getValueType(); 5619 EVT SVT = VT.getScalarType(); 5620 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5621 EVT ShSVT = ShVT.getScalarType(); 5622 5623 // If MUL is unavailable, we cannot proceed in any case. 5624 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5625 return SDValue(); 5626 5627 bool ComparingWithAllZeros = true; 5628 bool AllComparisonsWithNonZerosAreTautological = true; 5629 bool HadTautologicalLanes = false; 5630 bool AllLanesAreTautological = true; 5631 bool HadEvenDivisor = false; 5632 bool AllDivisorsArePowerOfTwo = true; 5633 bool HadTautologicalInvertedLanes = false; 5634 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5635 5636 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5637 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5638 if (CDiv->isZero()) 5639 return false; 5640 5641 const APInt &D = CDiv->getAPIntValue(); 5642 const APInt &Cmp = CCmp->getAPIntValue(); 5643 5644 ComparingWithAllZeros &= Cmp.isZero(); 5645 5646 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5647 // if C2 is not less than C1, the comparison is always false. 5648 // But we will only be able to produce the comparison that will give the 5649 // opposive tautological answer. So this lane would need to be fixed up. 5650 bool TautologicalInvertedLane = D.ule(Cmp); 5651 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5652 5653 // If all lanes are tautological (either all divisors are ones, or divisor 5654 // is not greater than the constant we are comparing with), 5655 // we will prefer to avoid the fold. 5656 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5657 HadTautologicalLanes |= TautologicalLane; 5658 AllLanesAreTautological &= TautologicalLane; 5659 5660 // If we are comparing with non-zero, we need'll need to subtract said 5661 // comparison value from the LHS. But there is no point in doing that if 5662 // every lane where we are comparing with non-zero is tautological.. 5663 if (!Cmp.isZero()) 5664 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5665 5666 // Decompose D into D0 * 2^K 5667 unsigned K = D.countTrailingZeros(); 5668 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5669 APInt D0 = D.lshr(K); 5670 5671 // D is even if it has trailing zeros. 5672 HadEvenDivisor |= (K != 0); 5673 // D is a power-of-two if D0 is one. 5674 // If all divisors are power-of-two, we will prefer to avoid the fold. 5675 AllDivisorsArePowerOfTwo &= D0.isOne(); 5676 5677 // P = inv(D0, 2^W) 5678 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5679 unsigned W = D.getBitWidth(); 5680 APInt P = D0.zext(W + 1) 5681 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5682 .trunc(W); 5683 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5684 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5685 5686 // Q = floor((2^W - 1) u/ D) 5687 // R = ((2^W - 1) u% D) 5688 APInt Q, R; 5689 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5690 5691 // If we are comparing with zero, then that comparison constant is okay, 5692 // else it may need to be one less than that. 5693 if (Cmp.ugt(R)) 5694 Q -= 1; 5695 5696 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5697 "We are expecting that K is always less than all-ones for ShSVT"); 5698 5699 // If the lane is tautological the result can be constant-folded. 5700 if (TautologicalLane) { 5701 // Set P and K amount to a bogus values so we can try to splat them. 5702 P = 0; 5703 K = -1; 5704 // And ensure that comparison constant is tautological, 5705 // it will always compare true/false. 5706 Q = -1; 5707 } 5708 5709 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5710 KAmts.push_back( 5711 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5712 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5713 return true; 5714 }; 5715 5716 SDValue N = REMNode.getOperand(0); 5717 SDValue D = REMNode.getOperand(1); 5718 5719 // Collect the values from each element. 5720 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5721 return SDValue(); 5722 5723 // If all lanes are tautological, the result can be constant-folded. 5724 if (AllLanesAreTautological) 5725 return SDValue(); 5726 5727 // If this is a urem by a powers-of-two, avoid the fold since it can be 5728 // best implemented as a bit test. 5729 if (AllDivisorsArePowerOfTwo) 5730 return SDValue(); 5731 5732 SDValue PVal, KVal, QVal; 5733 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5734 if (HadTautologicalLanes) { 5735 // Try to turn PAmts into a splat, since we don't care about the values 5736 // that are currently '0'. If we can't, just keep '0'`s. 5737 turnVectorIntoSplatVector(PAmts, isNullConstant); 5738 // Try to turn KAmts into a splat, since we don't care about the values 5739 // that are currently '-1'. If we can't, change them to '0'`s. 5740 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5741 DAG.getConstant(0, DL, ShSVT)); 5742 } 5743 5744 PVal = DAG.getBuildVector(VT, DL, PAmts); 5745 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5746 QVal = DAG.getBuildVector(VT, DL, QAmts); 5747 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5748 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5749 "Expected matchBinaryPredicate to return one element for " 5750 "SPLAT_VECTORs"); 5751 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5752 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5753 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5754 } else { 5755 PVal = PAmts[0]; 5756 KVal = KAmts[0]; 5757 QVal = QAmts[0]; 5758 } 5759 5760 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5761 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5762 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5763 assert(CompTargetNode.getValueType() == N.getValueType() && 5764 "Expecting that the types on LHS and RHS of comparisons match."); 5765 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5766 } 5767 5768 // (mul N, P) 5769 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5770 Created.push_back(Op0.getNode()); 5771 5772 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5773 // divisors as a performance improvement, since rotating by 0 is a no-op. 5774 if (HadEvenDivisor) { 5775 // We need ROTR to do this. 5776 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5777 return SDValue(); 5778 // UREM: (rotr (mul N, P), K) 5779 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5780 Created.push_back(Op0.getNode()); 5781 } 5782 5783 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5784 SDValue NewCC = 5785 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5786 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5787 if (!HadTautologicalInvertedLanes) 5788 return NewCC; 5789 5790 // If any lanes previously compared always-false, the NewCC will give 5791 // always-true result for them, so we need to fixup those lanes. 5792 // Or the other way around for inequality predicate. 5793 assert(VT.isVector() && "Can/should only get here for vectors."); 5794 Created.push_back(NewCC.getNode()); 5795 5796 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5797 // if C2 is not less than C1, the comparison is always false. 5798 // But we have produced the comparison that will give the 5799 // opposive tautological answer. So these lanes would need to be fixed up. 5800 SDValue TautologicalInvertedChannels = 5801 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5802 Created.push_back(TautologicalInvertedChannels.getNode()); 5803 5804 // NOTE: we avoid letting illegal types through even if we're before legalize 5805 // ops – legalization has a hard time producing good code for this. 5806 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5807 // If we have a vector select, let's replace the comparison results in the 5808 // affected lanes with the correct tautological result. 5809 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5810 DL, SETCCVT, SETCCVT); 5811 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5812 Replacement, NewCC); 5813 } 5814 5815 // Else, we can just invert the comparison result in the appropriate lanes. 5816 // 5817 // NOTE: see the note above VSELECT above. 5818 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5819 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5820 TautologicalInvertedChannels); 5821 5822 return SDValue(); // Don't know how to lower. 5823 } 5824 5825 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5826 /// where the divisor is constant and the comparison target is zero, 5827 /// return a DAG expression that will generate the same comparison result 5828 /// using only multiplications, additions and shifts/rotations. 5829 /// Ref: "Hacker's Delight" 10-17. 5830 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5831 SDValue CompTargetNode, 5832 ISD::CondCode Cond, 5833 DAGCombinerInfo &DCI, 5834 const SDLoc &DL) const { 5835 SmallVector<SDNode *, 7> Built; 5836 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5837 DCI, DL, Built)) { 5838 assert(Built.size() <= 7 && "Max size prediction failed."); 5839 for (SDNode *N : Built) 5840 DCI.AddToWorklist(N); 5841 return Folded; 5842 } 5843 5844 return SDValue(); 5845 } 5846 5847 SDValue 5848 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5849 SDValue CompTargetNode, ISD::CondCode Cond, 5850 DAGCombinerInfo &DCI, const SDLoc &DL, 5851 SmallVectorImpl<SDNode *> &Created) const { 5852 // Fold: 5853 // (seteq/ne (srem N, D), 0) 5854 // To: 5855 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5856 // 5857 // - D must be constant, with D = D0 * 2^K where D0 is odd 5858 // - P is the multiplicative inverse of D0 modulo 2^W 5859 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5860 // - Q = floor((2 * A) / (2^K)) 5861 // where W is the width of the common type of N and D. 5862 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5863 "Only applicable for (in)equality comparisons."); 5864 5865 SelectionDAG &DAG = DCI.DAG; 5866 5867 EVT VT = REMNode.getValueType(); 5868 EVT SVT = VT.getScalarType(); 5869 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5870 EVT ShSVT = ShVT.getScalarType(); 5871 5872 // If we are after ops legalization, and MUL is unavailable, we can not 5873 // proceed. 5874 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5875 return SDValue(); 5876 5877 // TODO: Could support comparing with non-zero too. 5878 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5879 if (!CompTarget || !CompTarget->isZero()) 5880 return SDValue(); 5881 5882 bool HadIntMinDivisor = false; 5883 bool HadOneDivisor = false; 5884 bool AllDivisorsAreOnes = true; 5885 bool HadEvenDivisor = false; 5886 bool NeedToApplyOffset = false; 5887 bool AllDivisorsArePowerOfTwo = true; 5888 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5889 5890 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5891 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5892 if (C->isZero()) 5893 return false; 5894 5895 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5896 5897 // WARNING: this fold is only valid for positive divisors! 5898 APInt D = C->getAPIntValue(); 5899 if (D.isNegative()) 5900 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5901 5902 HadIntMinDivisor |= D.isMinSignedValue(); 5903 5904 // If all divisors are ones, we will prefer to avoid the fold. 5905 HadOneDivisor |= D.isOne(); 5906 AllDivisorsAreOnes &= D.isOne(); 5907 5908 // Decompose D into D0 * 2^K 5909 unsigned K = D.countTrailingZeros(); 5910 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5911 APInt D0 = D.lshr(K); 5912 5913 if (!D.isMinSignedValue()) { 5914 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5915 // we don't care about this lane in this fold, we'll special-handle it. 5916 HadEvenDivisor |= (K != 0); 5917 } 5918 5919 // D is a power-of-two if D0 is one. This includes INT_MIN. 5920 // If all divisors are power-of-two, we will prefer to avoid the fold. 5921 AllDivisorsArePowerOfTwo &= D0.isOne(); 5922 5923 // P = inv(D0, 2^W) 5924 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5925 unsigned W = D.getBitWidth(); 5926 APInt P = D0.zext(W + 1) 5927 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5928 .trunc(W); 5929 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5930 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5931 5932 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5933 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5934 A.clearLowBits(K); 5935 5936 if (!D.isMinSignedValue()) { 5937 // If divisor INT_MIN, then we don't care about this lane in this fold, 5938 // we'll special-handle it. 5939 NeedToApplyOffset |= A != 0; 5940 } 5941 5942 // Q = floor((2 * A) / (2^K)) 5943 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5944 5945 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5946 "We are expecting that A is always less than all-ones for SVT"); 5947 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5948 "We are expecting that K is always less than all-ones for ShSVT"); 5949 5950 // If the divisor is 1 the result can be constant-folded. Likewise, we 5951 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5952 if (D.isOne()) { 5953 // Set P, A and K to a bogus values so we can try to splat them. 5954 P = 0; 5955 A = -1; 5956 K = -1; 5957 5958 // x ?% 1 == 0 <--> true <--> x u<= -1 5959 Q = -1; 5960 } 5961 5962 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5963 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5964 KAmts.push_back( 5965 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5966 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5967 return true; 5968 }; 5969 5970 SDValue N = REMNode.getOperand(0); 5971 SDValue D = REMNode.getOperand(1); 5972 5973 // Collect the values from each element. 5974 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5975 return SDValue(); 5976 5977 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5978 if (AllDivisorsAreOnes) 5979 return SDValue(); 5980 5981 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5982 // since it can be best implemented as a bit test. 5983 if (AllDivisorsArePowerOfTwo) 5984 return SDValue(); 5985 5986 SDValue PVal, AVal, KVal, QVal; 5987 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5988 if (HadOneDivisor) { 5989 // Try to turn PAmts into a splat, since we don't care about the values 5990 // that are currently '0'. If we can't, just keep '0'`s. 5991 turnVectorIntoSplatVector(PAmts, isNullConstant); 5992 // Try to turn AAmts into a splat, since we don't care about the 5993 // values that are currently '-1'. If we can't, change them to '0'`s. 5994 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5995 DAG.getConstant(0, DL, SVT)); 5996 // Try to turn KAmts into a splat, since we don't care about the values 5997 // that are currently '-1'. If we can't, change them to '0'`s. 5998 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5999 DAG.getConstant(0, DL, ShSVT)); 6000 } 6001 6002 PVal = DAG.getBuildVector(VT, DL, PAmts); 6003 AVal = DAG.getBuildVector(VT, DL, AAmts); 6004 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6005 QVal = DAG.getBuildVector(VT, DL, QAmts); 6006 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6007 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6008 QAmts.size() == 1 && 6009 "Expected matchUnaryPredicate to return one element for scalable " 6010 "vectors"); 6011 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6012 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6013 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6014 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6015 } else { 6016 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6017 PVal = PAmts[0]; 6018 AVal = AAmts[0]; 6019 KVal = KAmts[0]; 6020 QVal = QAmts[0]; 6021 } 6022 6023 // (mul N, P) 6024 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6025 Created.push_back(Op0.getNode()); 6026 6027 if (NeedToApplyOffset) { 6028 // We need ADD to do this. 6029 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6030 return SDValue(); 6031 6032 // (add (mul N, P), A) 6033 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6034 Created.push_back(Op0.getNode()); 6035 } 6036 6037 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6038 // divisors as a performance improvement, since rotating by 0 is a no-op. 6039 if (HadEvenDivisor) { 6040 // We need ROTR to do this. 6041 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6042 return SDValue(); 6043 // SREM: (rotr (add (mul N, P), A), K) 6044 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6045 Created.push_back(Op0.getNode()); 6046 } 6047 6048 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6049 SDValue Fold = 6050 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6051 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6052 6053 // If we didn't have lanes with INT_MIN divisor, then we're done. 6054 if (!HadIntMinDivisor) 6055 return Fold; 6056 6057 // That fold is only valid for positive divisors. Which effectively means, 6058 // it is invalid for INT_MIN divisors. So if we have such a lane, 6059 // we must fix-up results for said lanes. 6060 assert(VT.isVector() && "Can/should only get here for vectors."); 6061 6062 // NOTE: we avoid letting illegal types through even if we're before legalize 6063 // ops – legalization has a hard time producing good code for the code that 6064 // follows. 6065 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6066 !isOperationLegalOrCustom(ISD::AND, VT) || 6067 !isOperationLegalOrCustom(Cond, VT) || 6068 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6069 return SDValue(); 6070 6071 Created.push_back(Fold.getNode()); 6072 6073 SDValue IntMin = DAG.getConstant( 6074 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6075 SDValue IntMax = DAG.getConstant( 6076 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6077 SDValue Zero = 6078 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6079 6080 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6081 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6082 Created.push_back(DivisorIsIntMin.getNode()); 6083 6084 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6085 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6086 Created.push_back(Masked.getNode()); 6087 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6088 Created.push_back(MaskedIsZero.getNode()); 6089 6090 // To produce final result we need to blend 2 vectors: 'SetCC' and 6091 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6092 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6093 // constant-folded, select can get lowered to a shuffle with constant mask. 6094 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6095 MaskedIsZero, Fold); 6096 6097 return Blended; 6098 } 6099 6100 bool TargetLowering:: 6101 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6102 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6103 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6104 "be a constant integer"); 6105 return true; 6106 } 6107 6108 return false; 6109 } 6110 6111 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6112 const DenormalMode &Mode) const { 6113 SDLoc DL(Op); 6114 EVT VT = Op.getValueType(); 6115 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6116 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6117 // Testing it with denormal inputs to avoid wrong estimate. 6118 if (Mode.Input == DenormalMode::IEEE) { 6119 // This is specifically a check for the handling of denormal inputs, 6120 // not the result. 6121 6122 // Test = fabs(X) < SmallestNormal 6123 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6124 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6125 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6126 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6127 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6128 } 6129 // Test = X == 0.0 6130 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6131 } 6132 6133 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6134 bool LegalOps, bool OptForSize, 6135 NegatibleCost &Cost, 6136 unsigned Depth) const { 6137 // fneg is removable even if it has multiple uses. 6138 if (Op.getOpcode() == ISD::FNEG) { 6139 Cost = NegatibleCost::Cheaper; 6140 return Op.getOperand(0); 6141 } 6142 6143 // Don't recurse exponentially. 6144 if (Depth > SelectionDAG::MaxRecursionDepth) 6145 return SDValue(); 6146 6147 // Pre-increment recursion depth for use in recursive calls. 6148 ++Depth; 6149 const SDNodeFlags Flags = Op->getFlags(); 6150 const TargetOptions &Options = DAG.getTarget().Options; 6151 EVT VT = Op.getValueType(); 6152 unsigned Opcode = Op.getOpcode(); 6153 6154 // Don't allow anything with multiple uses unless we know it is free. 6155 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6156 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6157 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6158 if (!IsFreeExtend) 6159 return SDValue(); 6160 } 6161 6162 auto RemoveDeadNode = [&](SDValue N) { 6163 if (N && N.getNode()->use_empty()) 6164 DAG.RemoveDeadNode(N.getNode()); 6165 }; 6166 6167 SDLoc DL(Op); 6168 6169 // Because getNegatedExpression can delete nodes we need a handle to keep 6170 // temporary nodes alive in case the recursion manages to create an identical 6171 // node. 6172 std::list<HandleSDNode> Handles; 6173 6174 switch (Opcode) { 6175 case ISD::ConstantFP: { 6176 // Don't invert constant FP values after legalization unless the target says 6177 // the negated constant is legal. 6178 bool IsOpLegal = 6179 isOperationLegal(ISD::ConstantFP, VT) || 6180 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6181 OptForSize); 6182 6183 if (LegalOps && !IsOpLegal) 6184 break; 6185 6186 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6187 V.changeSign(); 6188 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6189 6190 // If we already have the use of the negated floating constant, it is free 6191 // to negate it even it has multiple uses. 6192 if (!Op.hasOneUse() && CFP.use_empty()) 6193 break; 6194 Cost = NegatibleCost::Neutral; 6195 return CFP; 6196 } 6197 case ISD::BUILD_VECTOR: { 6198 // Only permit BUILD_VECTOR of constants. 6199 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6200 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6201 })) 6202 break; 6203 6204 bool IsOpLegal = 6205 (isOperationLegal(ISD::ConstantFP, VT) && 6206 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6207 llvm::all_of(Op->op_values(), [&](SDValue N) { 6208 return N.isUndef() || 6209 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6210 OptForSize); 6211 }); 6212 6213 if (LegalOps && !IsOpLegal) 6214 break; 6215 6216 SmallVector<SDValue, 4> Ops; 6217 for (SDValue C : Op->op_values()) { 6218 if (C.isUndef()) { 6219 Ops.push_back(C); 6220 continue; 6221 } 6222 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6223 V.changeSign(); 6224 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6225 } 6226 Cost = NegatibleCost::Neutral; 6227 return DAG.getBuildVector(VT, DL, Ops); 6228 } 6229 case ISD::FADD: { 6230 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6231 break; 6232 6233 // After operation legalization, it might not be legal to create new FSUBs. 6234 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6235 break; 6236 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6237 6238 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6239 NegatibleCost CostX = NegatibleCost::Expensive; 6240 SDValue NegX = 6241 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6242 // Prevent this node from being deleted by the next call. 6243 if (NegX) 6244 Handles.emplace_back(NegX); 6245 6246 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6247 NegatibleCost CostY = NegatibleCost::Expensive; 6248 SDValue NegY = 6249 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6250 6251 // We're done with the handles. 6252 Handles.clear(); 6253 6254 // Negate the X if its cost is less or equal than Y. 6255 if (NegX && (CostX <= CostY)) { 6256 Cost = CostX; 6257 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6258 if (NegY != N) 6259 RemoveDeadNode(NegY); 6260 return N; 6261 } 6262 6263 // Negate the Y if it is not expensive. 6264 if (NegY) { 6265 Cost = CostY; 6266 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6267 if (NegX != N) 6268 RemoveDeadNode(NegX); 6269 return N; 6270 } 6271 break; 6272 } 6273 case ISD::FSUB: { 6274 // We can't turn -(A-B) into B-A when we honor signed zeros. 6275 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6276 break; 6277 6278 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6279 // fold (fneg (fsub 0, Y)) -> Y 6280 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6281 if (C->isZero()) { 6282 Cost = NegatibleCost::Cheaper; 6283 return Y; 6284 } 6285 6286 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6287 Cost = NegatibleCost::Neutral; 6288 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6289 } 6290 case ISD::FMUL: 6291 case ISD::FDIV: { 6292 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6293 6294 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6295 NegatibleCost CostX = NegatibleCost::Expensive; 6296 SDValue NegX = 6297 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6298 // Prevent this node from being deleted by the next call. 6299 if (NegX) 6300 Handles.emplace_back(NegX); 6301 6302 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6303 NegatibleCost CostY = NegatibleCost::Expensive; 6304 SDValue NegY = 6305 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6306 6307 // We're done with the handles. 6308 Handles.clear(); 6309 6310 // Negate the X if its cost is less or equal than Y. 6311 if (NegX && (CostX <= CostY)) { 6312 Cost = CostX; 6313 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6314 if (NegY != N) 6315 RemoveDeadNode(NegY); 6316 return N; 6317 } 6318 6319 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6320 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6321 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6322 break; 6323 6324 // Negate the Y if it is not expensive. 6325 if (NegY) { 6326 Cost = CostY; 6327 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6328 if (NegX != N) 6329 RemoveDeadNode(NegX); 6330 return N; 6331 } 6332 break; 6333 } 6334 case ISD::FMA: 6335 case ISD::FMAD: { 6336 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6337 break; 6338 6339 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6340 NegatibleCost CostZ = NegatibleCost::Expensive; 6341 SDValue NegZ = 6342 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6343 // Give up if fail to negate the Z. 6344 if (!NegZ) 6345 break; 6346 6347 // Prevent this node from being deleted by the next two calls. 6348 Handles.emplace_back(NegZ); 6349 6350 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6351 NegatibleCost CostX = NegatibleCost::Expensive; 6352 SDValue NegX = 6353 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6354 // Prevent this node from being deleted by the next call. 6355 if (NegX) 6356 Handles.emplace_back(NegX); 6357 6358 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6359 NegatibleCost CostY = NegatibleCost::Expensive; 6360 SDValue NegY = 6361 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6362 6363 // We're done with the handles. 6364 Handles.clear(); 6365 6366 // Negate the X if its cost is less or equal than Y. 6367 if (NegX && (CostX <= CostY)) { 6368 Cost = std::min(CostX, CostZ); 6369 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6370 if (NegY != N) 6371 RemoveDeadNode(NegY); 6372 return N; 6373 } 6374 6375 // Negate the Y if it is not expensive. 6376 if (NegY) { 6377 Cost = std::min(CostY, CostZ); 6378 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6379 if (NegX != N) 6380 RemoveDeadNode(NegX); 6381 return N; 6382 } 6383 break; 6384 } 6385 6386 case ISD::FP_EXTEND: 6387 case ISD::FSIN: 6388 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6389 OptForSize, Cost, Depth)) 6390 return DAG.getNode(Opcode, DL, VT, NegV); 6391 break; 6392 case ISD::FP_ROUND: 6393 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6394 OptForSize, Cost, Depth)) 6395 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6396 break; 6397 } 6398 6399 return SDValue(); 6400 } 6401 6402 //===----------------------------------------------------------------------===// 6403 // Legalization Utilities 6404 //===----------------------------------------------------------------------===// 6405 6406 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6407 SDValue LHS, SDValue RHS, 6408 SmallVectorImpl<SDValue> &Result, 6409 EVT HiLoVT, SelectionDAG &DAG, 6410 MulExpansionKind Kind, SDValue LL, 6411 SDValue LH, SDValue RL, SDValue RH) const { 6412 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6413 Opcode == ISD::SMUL_LOHI); 6414 6415 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6416 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6417 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6418 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6419 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6420 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6421 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6422 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6423 6424 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6425 return false; 6426 6427 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6428 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6429 6430 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6431 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6432 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6433 6434 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6435 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6436 bool Signed) -> bool { 6437 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6438 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6439 Hi = SDValue(Lo.getNode(), 1); 6440 return true; 6441 } 6442 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6443 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6444 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6445 return true; 6446 } 6447 return false; 6448 }; 6449 6450 SDValue Lo, Hi; 6451 6452 if (!LL.getNode() && !RL.getNode() && 6453 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6454 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6455 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6456 } 6457 6458 if (!LL.getNode()) 6459 return false; 6460 6461 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6462 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6463 DAG.MaskedValueIsZero(RHS, HighMask)) { 6464 // The inputs are both zero-extended. 6465 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6466 Result.push_back(Lo); 6467 Result.push_back(Hi); 6468 if (Opcode != ISD::MUL) { 6469 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6470 Result.push_back(Zero); 6471 Result.push_back(Zero); 6472 } 6473 return true; 6474 } 6475 } 6476 6477 if (!VT.isVector() && Opcode == ISD::MUL && 6478 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6479 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6480 // The input values are both sign-extended. 6481 // TODO non-MUL case? 6482 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6483 Result.push_back(Lo); 6484 Result.push_back(Hi); 6485 return true; 6486 } 6487 } 6488 6489 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6490 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6491 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6492 6493 if (!LH.getNode() && !RH.getNode() && 6494 isOperationLegalOrCustom(ISD::SRL, VT) && 6495 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6496 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6497 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6498 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6499 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6500 } 6501 6502 if (!LH.getNode()) 6503 return false; 6504 6505 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6506 return false; 6507 6508 Result.push_back(Lo); 6509 6510 if (Opcode == ISD::MUL) { 6511 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6512 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6513 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6514 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6515 Result.push_back(Hi); 6516 return true; 6517 } 6518 6519 // Compute the full width result. 6520 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6521 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6522 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6523 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6524 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6525 }; 6526 6527 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6528 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6529 return false; 6530 6531 // This is effectively the add part of a multiply-add of half-sized operands, 6532 // so it cannot overflow. 6533 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6534 6535 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6536 return false; 6537 6538 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6539 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6540 6541 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6542 isOperationLegalOrCustom(ISD::ADDE, VT)); 6543 if (UseGlue) 6544 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6545 Merge(Lo, Hi)); 6546 else 6547 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6548 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6549 6550 SDValue Carry = Next.getValue(1); 6551 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6552 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6553 6554 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6555 return false; 6556 6557 if (UseGlue) 6558 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6559 Carry); 6560 else 6561 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6562 Zero, Carry); 6563 6564 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6565 6566 if (Opcode == ISD::SMUL_LOHI) { 6567 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6568 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6569 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6570 6571 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6572 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6573 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6574 } 6575 6576 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6577 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6578 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6579 return true; 6580 } 6581 6582 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6583 SelectionDAG &DAG, MulExpansionKind Kind, 6584 SDValue LL, SDValue LH, SDValue RL, 6585 SDValue RH) const { 6586 SmallVector<SDValue, 2> Result; 6587 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6588 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6589 DAG, Kind, LL, LH, RL, RH); 6590 if (Ok) { 6591 assert(Result.size() == 2); 6592 Lo = Result[0]; 6593 Hi = Result[1]; 6594 } 6595 return Ok; 6596 } 6597 6598 // Check that (every element of) Z is undef or not an exact multiple of BW. 6599 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6600 return ISD::matchUnaryPredicate( 6601 Z, 6602 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6603 true); 6604 } 6605 6606 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6607 SelectionDAG &DAG) const { 6608 EVT VT = Node->getValueType(0); 6609 6610 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6611 !isOperationLegalOrCustom(ISD::SRL, VT) || 6612 !isOperationLegalOrCustom(ISD::SUB, VT) || 6613 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6614 return SDValue(); 6615 6616 SDValue X = Node->getOperand(0); 6617 SDValue Y = Node->getOperand(1); 6618 SDValue Z = Node->getOperand(2); 6619 6620 unsigned BW = VT.getScalarSizeInBits(); 6621 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6622 SDLoc DL(SDValue(Node, 0)); 6623 6624 EVT ShVT = Z.getValueType(); 6625 6626 // If a funnel shift in the other direction is more supported, use it. 6627 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6628 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6629 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6630 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6631 // fshl X, Y, Z -> fshr X, Y, -Z 6632 // fshr X, Y, Z -> fshl X, Y, -Z 6633 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6634 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6635 } else { 6636 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6637 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6638 SDValue One = DAG.getConstant(1, DL, ShVT); 6639 if (IsFSHL) { 6640 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6641 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6642 } else { 6643 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6644 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6645 } 6646 Z = DAG.getNOT(DL, Z, ShVT); 6647 } 6648 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6649 } 6650 6651 SDValue ShX, ShY; 6652 SDValue ShAmt, InvShAmt; 6653 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6654 // fshl: X << C | Y >> (BW - C) 6655 // fshr: X << (BW - C) | Y >> C 6656 // where C = Z % BW is not zero 6657 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6658 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6659 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6660 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6661 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6662 } else { 6663 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6664 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6665 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6666 if (isPowerOf2_32(BW)) { 6667 // Z % BW -> Z & (BW - 1) 6668 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6669 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6670 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6671 } else { 6672 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6673 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6674 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6675 } 6676 6677 SDValue One = DAG.getConstant(1, DL, ShVT); 6678 if (IsFSHL) { 6679 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6680 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6681 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6682 } else { 6683 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6684 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6685 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6686 } 6687 } 6688 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6689 } 6690 6691 // TODO: Merge with expandFunnelShift. 6692 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6693 SelectionDAG &DAG) const { 6694 EVT VT = Node->getValueType(0); 6695 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6696 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6697 SDValue Op0 = Node->getOperand(0); 6698 SDValue Op1 = Node->getOperand(1); 6699 SDLoc DL(SDValue(Node, 0)); 6700 6701 EVT ShVT = Op1.getValueType(); 6702 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6703 6704 // If a rotate in the other direction is more supported, use it. 6705 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6706 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6707 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6708 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6709 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6710 } 6711 6712 if (!AllowVectorOps && VT.isVector() && 6713 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6714 !isOperationLegalOrCustom(ISD::SRL, VT) || 6715 !isOperationLegalOrCustom(ISD::SUB, VT) || 6716 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6717 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6718 return SDValue(); 6719 6720 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6721 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6722 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6723 SDValue ShVal; 6724 SDValue HsVal; 6725 if (isPowerOf2_32(EltSizeInBits)) { 6726 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6727 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6728 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6729 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6730 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6731 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6732 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6733 } else { 6734 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6735 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6736 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6737 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6738 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6739 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6740 SDValue One = DAG.getConstant(1, DL, ShVT); 6741 HsVal = 6742 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6743 } 6744 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6745 } 6746 6747 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6748 SelectionDAG &DAG) const { 6749 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6750 EVT VT = Node->getValueType(0); 6751 unsigned VTBits = VT.getScalarSizeInBits(); 6752 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6753 6754 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6755 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6756 SDValue ShOpLo = Node->getOperand(0); 6757 SDValue ShOpHi = Node->getOperand(1); 6758 SDValue ShAmt = Node->getOperand(2); 6759 EVT ShAmtVT = ShAmt.getValueType(); 6760 EVT ShAmtCCVT = 6761 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6762 SDLoc dl(Node); 6763 6764 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6765 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6766 // away during isel. 6767 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6768 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6769 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6770 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6771 : DAG.getConstant(0, dl, VT); 6772 6773 SDValue Tmp2, Tmp3; 6774 if (IsSHL) { 6775 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6776 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6777 } else { 6778 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6779 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6780 } 6781 6782 // If the shift amount is larger or equal than the width of a part we don't 6783 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6784 // values for large shift amounts. 6785 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6786 DAG.getConstant(VTBits, dl, ShAmtVT)); 6787 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6788 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6789 6790 if (IsSHL) { 6791 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6792 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6793 } else { 6794 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6795 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6796 } 6797 } 6798 6799 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6800 SelectionDAG &DAG) const { 6801 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6802 SDValue Src = Node->getOperand(OpNo); 6803 EVT SrcVT = Src.getValueType(); 6804 EVT DstVT = Node->getValueType(0); 6805 SDLoc dl(SDValue(Node, 0)); 6806 6807 // FIXME: Only f32 to i64 conversions are supported. 6808 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6809 return false; 6810 6811 if (Node->isStrictFPOpcode()) 6812 // When a NaN is converted to an integer a trap is allowed. We can't 6813 // use this expansion here because it would eliminate that trap. Other 6814 // traps are also allowed and cannot be eliminated. See 6815 // IEEE 754-2008 sec 5.8. 6816 return false; 6817 6818 // Expand f32 -> i64 conversion 6819 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6820 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6821 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6822 EVT IntVT = SrcVT.changeTypeToInteger(); 6823 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6824 6825 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6826 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6827 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6828 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6829 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6830 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6831 6832 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6833 6834 SDValue ExponentBits = DAG.getNode( 6835 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6836 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6837 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6838 6839 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6840 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6841 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6842 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6843 6844 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6845 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6846 DAG.getConstant(0x00800000, dl, IntVT)); 6847 6848 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6849 6850 R = DAG.getSelectCC( 6851 dl, Exponent, ExponentLoBit, 6852 DAG.getNode(ISD::SHL, dl, DstVT, R, 6853 DAG.getZExtOrTrunc( 6854 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6855 dl, IntShVT)), 6856 DAG.getNode(ISD::SRL, dl, DstVT, R, 6857 DAG.getZExtOrTrunc( 6858 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6859 dl, IntShVT)), 6860 ISD::SETGT); 6861 6862 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6863 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6864 6865 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6866 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6867 return true; 6868 } 6869 6870 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6871 SDValue &Chain, 6872 SelectionDAG &DAG) const { 6873 SDLoc dl(SDValue(Node, 0)); 6874 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6875 SDValue Src = Node->getOperand(OpNo); 6876 6877 EVT SrcVT = Src.getValueType(); 6878 EVT DstVT = Node->getValueType(0); 6879 EVT SetCCVT = 6880 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6881 EVT DstSetCCVT = 6882 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6883 6884 // Only expand vector types if we have the appropriate vector bit operations. 6885 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6886 ISD::FP_TO_SINT; 6887 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6888 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6889 return false; 6890 6891 // If the maximum float value is smaller then the signed integer range, 6892 // the destination signmask can't be represented by the float, so we can 6893 // just use FP_TO_SINT directly. 6894 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6895 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6896 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6897 if (APFloat::opOverflow & 6898 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6899 if (Node->isStrictFPOpcode()) { 6900 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6901 { Node->getOperand(0), Src }); 6902 Chain = Result.getValue(1); 6903 } else 6904 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6905 return true; 6906 } 6907 6908 // Don't expand it if there isn't cheap fsub instruction. 6909 if (!isOperationLegalOrCustom( 6910 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6911 return false; 6912 6913 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6914 SDValue Sel; 6915 6916 if (Node->isStrictFPOpcode()) { 6917 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6918 Node->getOperand(0), /*IsSignaling*/ true); 6919 Chain = Sel.getValue(1); 6920 } else { 6921 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6922 } 6923 6924 bool Strict = Node->isStrictFPOpcode() || 6925 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6926 6927 if (Strict) { 6928 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6929 // signmask then offset (the result of which should be fully representable). 6930 // Sel = Src < 0x8000000000000000 6931 // FltOfs = select Sel, 0, 0x8000000000000000 6932 // IntOfs = select Sel, 0, 0x8000000000000000 6933 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6934 6935 // TODO: Should any fast-math-flags be set for the FSUB? 6936 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6937 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6938 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6939 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6940 DAG.getConstant(0, dl, DstVT), 6941 DAG.getConstant(SignMask, dl, DstVT)); 6942 SDValue SInt; 6943 if (Node->isStrictFPOpcode()) { 6944 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6945 { Chain, Src, FltOfs }); 6946 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6947 { Val.getValue(1), Val }); 6948 Chain = SInt.getValue(1); 6949 } else { 6950 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6951 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6952 } 6953 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6954 } else { 6955 // Expand based on maximum range of FP_TO_SINT: 6956 // True = fp_to_sint(Src) 6957 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6958 // Result = select (Src < 0x8000000000000000), True, False 6959 6960 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6961 // TODO: Should any fast-math-flags be set for the FSUB? 6962 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6963 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6964 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6965 DAG.getConstant(SignMask, dl, DstVT)); 6966 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6967 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6968 } 6969 return true; 6970 } 6971 6972 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6973 SDValue &Chain, 6974 SelectionDAG &DAG) const { 6975 // This transform is not correct for converting 0 when rounding mode is set 6976 // to round toward negative infinity which will produce -0.0. So disable under 6977 // strictfp. 6978 if (Node->isStrictFPOpcode()) 6979 return false; 6980 6981 SDValue Src = Node->getOperand(0); 6982 EVT SrcVT = Src.getValueType(); 6983 EVT DstVT = Node->getValueType(0); 6984 6985 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6986 return false; 6987 6988 // Only expand vector types if we have the appropriate vector bit operations. 6989 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6990 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6991 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6992 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6993 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6994 return false; 6995 6996 SDLoc dl(SDValue(Node, 0)); 6997 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6998 6999 // Implementation of unsigned i64 to f64 following the algorithm in 7000 // __floatundidf in compiler_rt. This implementation performs rounding 7001 // correctly in all rounding modes with the exception of converting 0 7002 // when rounding toward negative infinity. In that case the fsub will produce 7003 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7004 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7005 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7006 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7007 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7008 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7009 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7010 7011 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7012 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7013 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7014 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7015 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7016 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7017 SDValue HiSub = 7018 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7019 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7020 return true; 7021 } 7022 7023 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7024 SelectionDAG &DAG) const { 7025 SDLoc dl(Node); 7026 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7027 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7028 EVT VT = Node->getValueType(0); 7029 7030 if (VT.isScalableVector()) 7031 report_fatal_error( 7032 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7033 7034 if (isOperationLegalOrCustom(NewOp, VT)) { 7035 SDValue Quiet0 = Node->getOperand(0); 7036 SDValue Quiet1 = Node->getOperand(1); 7037 7038 if (!Node->getFlags().hasNoNaNs()) { 7039 // Insert canonicalizes if it's possible we need to quiet to get correct 7040 // sNaN behavior. 7041 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7042 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7043 Node->getFlags()); 7044 } 7045 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7046 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7047 Node->getFlags()); 7048 } 7049 } 7050 7051 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7052 } 7053 7054 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7055 // instead if there are no NaNs. 7056 if (Node->getFlags().hasNoNaNs()) { 7057 unsigned IEEE2018Op = 7058 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7059 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7060 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7061 Node->getOperand(1), Node->getFlags()); 7062 } 7063 } 7064 7065 // If none of the above worked, but there are no NaNs, then expand to 7066 // a compare/select sequence. This is required for correctness since 7067 // InstCombine might have canonicalized a fcmp+select sequence to a 7068 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7069 // expansion to libcall, we might introduce a link-time dependency 7070 // on libm into a file that originally did not have one. 7071 if (Node->getFlags().hasNoNaNs()) { 7072 ISD::CondCode Pred = 7073 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7074 SDValue Op1 = Node->getOperand(0); 7075 SDValue Op2 = Node->getOperand(1); 7076 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7077 // Copy FMF flags, but always set the no-signed-zeros flag 7078 // as this is implied by the FMINNUM/FMAXNUM semantics. 7079 SDNodeFlags Flags = Node->getFlags(); 7080 Flags.setNoSignedZeros(true); 7081 SelCC->setFlags(Flags); 7082 return SelCC; 7083 } 7084 7085 return SDValue(); 7086 } 7087 7088 // Only expand vector types if we have the appropriate vector bit operations. 7089 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7090 assert(VT.isVector() && "Expected vector type"); 7091 unsigned Len = VT.getScalarSizeInBits(); 7092 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7093 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7094 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7095 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7096 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7097 } 7098 7099 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7100 SDLoc dl(Node); 7101 EVT VT = Node->getValueType(0); 7102 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7103 SDValue Op = Node->getOperand(0); 7104 unsigned Len = VT.getScalarSizeInBits(); 7105 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7106 7107 // TODO: Add support for irregular type lengths. 7108 if (!(Len <= 128 && Len % 8 == 0)) 7109 return SDValue(); 7110 7111 // Only expand vector types if we have the appropriate vector bit operations. 7112 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7113 return SDValue(); 7114 7115 // This is the "best" algorithm from 7116 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7117 SDValue Mask55 = 7118 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7119 SDValue Mask33 = 7120 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7121 SDValue Mask0F = 7122 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7123 SDValue Mask01 = 7124 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7125 7126 // v = v - ((v >> 1) & 0x55555555...) 7127 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7128 DAG.getNode(ISD::AND, dl, VT, 7129 DAG.getNode(ISD::SRL, dl, VT, Op, 7130 DAG.getConstant(1, dl, ShVT)), 7131 Mask55)); 7132 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7133 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7134 DAG.getNode(ISD::AND, dl, VT, 7135 DAG.getNode(ISD::SRL, dl, VT, Op, 7136 DAG.getConstant(2, dl, ShVT)), 7137 Mask33)); 7138 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7139 Op = DAG.getNode(ISD::AND, dl, VT, 7140 DAG.getNode(ISD::ADD, dl, VT, Op, 7141 DAG.getNode(ISD::SRL, dl, VT, Op, 7142 DAG.getConstant(4, dl, ShVT))), 7143 Mask0F); 7144 // v = (v * 0x01010101...) >> (Len - 8) 7145 if (Len > 8) 7146 Op = 7147 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7148 DAG.getConstant(Len - 8, dl, ShVT)); 7149 7150 return Op; 7151 } 7152 7153 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7154 SDLoc dl(Node); 7155 EVT VT = Node->getValueType(0); 7156 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7157 SDValue Op = Node->getOperand(0); 7158 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7159 7160 // If the non-ZERO_UNDEF version is supported we can use that instead. 7161 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7162 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7163 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7164 7165 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7166 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7167 EVT SetCCVT = 7168 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7169 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7170 SDValue Zero = DAG.getConstant(0, dl, VT); 7171 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7172 return DAG.getSelect(dl, VT, SrcIsZero, 7173 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7174 } 7175 7176 // Only expand vector types if we have the appropriate vector bit operations. 7177 // This includes the operations needed to expand CTPOP if it isn't supported. 7178 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7179 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7180 !canExpandVectorCTPOP(*this, VT)) || 7181 !isOperationLegalOrCustom(ISD::SRL, VT) || 7182 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7183 return SDValue(); 7184 7185 // for now, we do this: 7186 // x = x | (x >> 1); 7187 // x = x | (x >> 2); 7188 // ... 7189 // x = x | (x >>16); 7190 // x = x | (x >>32); // for 64-bit input 7191 // return popcount(~x); 7192 // 7193 // Ref: "Hacker's Delight" by Henry Warren 7194 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7195 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7196 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7197 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7198 } 7199 Op = DAG.getNOT(dl, Op, VT); 7200 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7201 } 7202 7203 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7204 SDLoc dl(Node); 7205 EVT VT = Node->getValueType(0); 7206 SDValue Op = Node->getOperand(0); 7207 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7208 7209 // If the non-ZERO_UNDEF version is supported we can use that instead. 7210 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7211 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7212 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7213 7214 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7215 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7216 EVT SetCCVT = 7217 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7218 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7219 SDValue Zero = DAG.getConstant(0, dl, VT); 7220 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7221 return DAG.getSelect(dl, VT, SrcIsZero, 7222 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7223 } 7224 7225 // Only expand vector types if we have the appropriate vector bit operations. 7226 // This includes the operations needed to expand CTPOP if it isn't supported. 7227 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7228 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7229 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7230 !canExpandVectorCTPOP(*this, VT)) || 7231 !isOperationLegalOrCustom(ISD::SUB, VT) || 7232 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7233 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7234 return SDValue(); 7235 7236 // for now, we use: { return popcount(~x & (x - 1)); } 7237 // unless the target has ctlz but not ctpop, in which case we use: 7238 // { return 32 - nlz(~x & (x-1)); } 7239 // Ref: "Hacker's Delight" by Henry Warren 7240 SDValue Tmp = DAG.getNode( 7241 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7242 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7243 7244 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7245 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7246 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7247 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7248 } 7249 7250 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7251 } 7252 7253 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7254 bool IsNegative) const { 7255 SDLoc dl(N); 7256 EVT VT = N->getValueType(0); 7257 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7258 SDValue Op = N->getOperand(0); 7259 7260 // abs(x) -> smax(x,sub(0,x)) 7261 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7262 isOperationLegal(ISD::SMAX, VT)) { 7263 SDValue Zero = DAG.getConstant(0, dl, VT); 7264 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7265 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7266 } 7267 7268 // abs(x) -> umin(x,sub(0,x)) 7269 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7270 isOperationLegal(ISD::UMIN, VT)) { 7271 SDValue Zero = DAG.getConstant(0, dl, VT); 7272 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7273 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7274 } 7275 7276 // 0 - abs(x) -> smin(x, sub(0,x)) 7277 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7278 isOperationLegal(ISD::SMIN, VT)) { 7279 SDValue Zero = DAG.getConstant(0, dl, VT); 7280 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7281 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7282 } 7283 7284 // Only expand vector types if we have the appropriate vector operations. 7285 if (VT.isVector() && 7286 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7287 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7288 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7289 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7290 return SDValue(); 7291 7292 SDValue Shift = 7293 DAG.getNode(ISD::SRA, dl, VT, Op, 7294 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7295 if (!IsNegative) { 7296 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7297 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7298 } 7299 7300 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7301 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7302 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7303 } 7304 7305 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7306 SDLoc dl(N); 7307 EVT VT = N->getValueType(0); 7308 SDValue Op = N->getOperand(0); 7309 7310 if (!VT.isSimple()) 7311 return SDValue(); 7312 7313 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7314 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7315 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7316 default: 7317 return SDValue(); 7318 case MVT::i16: 7319 // Use a rotate by 8. This can be further expanded if necessary. 7320 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7321 case MVT::i32: 7322 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7323 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7324 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7325 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7326 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7327 DAG.getConstant(0xFF0000, dl, VT)); 7328 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7329 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7330 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7331 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7332 case MVT::i64: 7333 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7334 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7335 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7336 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7337 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7338 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7339 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7340 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7341 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7342 DAG.getConstant(255ULL<<48, dl, VT)); 7343 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7344 DAG.getConstant(255ULL<<40, dl, VT)); 7345 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7346 DAG.getConstant(255ULL<<32, dl, VT)); 7347 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7348 DAG.getConstant(255ULL<<24, dl, VT)); 7349 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7350 DAG.getConstant(255ULL<<16, dl, VT)); 7351 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7352 DAG.getConstant(255ULL<<8 , dl, VT)); 7353 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7354 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7355 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7356 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7357 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7358 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7359 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7360 } 7361 } 7362 7363 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7364 SDLoc dl(N); 7365 EVT VT = N->getValueType(0); 7366 SDValue Op = N->getOperand(0); 7367 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7368 unsigned Sz = VT.getScalarSizeInBits(); 7369 7370 SDValue Tmp, Tmp2, Tmp3; 7371 7372 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7373 // and finally the i1 pairs. 7374 // TODO: We can easily support i4/i2 legal types if any target ever does. 7375 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7376 // Create the masks - repeating the pattern every byte. 7377 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7378 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7379 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7380 7381 // BSWAP if the type is wider than a single byte. 7382 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7383 7384 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7385 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7386 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7387 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7388 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7389 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7390 7391 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7392 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7393 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7394 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7395 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7396 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7397 7398 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7399 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7400 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7401 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7402 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7403 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7404 return Tmp; 7405 } 7406 7407 Tmp = DAG.getConstant(0, dl, VT); 7408 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7409 if (I < J) 7410 Tmp2 = 7411 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7412 else 7413 Tmp2 = 7414 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7415 7416 APInt Shift(Sz, 1); 7417 Shift <<= J; 7418 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7419 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7420 } 7421 7422 return Tmp; 7423 } 7424 7425 std::pair<SDValue, SDValue> 7426 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7427 SelectionDAG &DAG) const { 7428 SDLoc SL(LD); 7429 SDValue Chain = LD->getChain(); 7430 SDValue BasePTR = LD->getBasePtr(); 7431 EVT SrcVT = LD->getMemoryVT(); 7432 EVT DstVT = LD->getValueType(0); 7433 ISD::LoadExtType ExtType = LD->getExtensionType(); 7434 7435 if (SrcVT.isScalableVector()) 7436 report_fatal_error("Cannot scalarize scalable vector loads"); 7437 7438 unsigned NumElem = SrcVT.getVectorNumElements(); 7439 7440 EVT SrcEltVT = SrcVT.getScalarType(); 7441 EVT DstEltVT = DstVT.getScalarType(); 7442 7443 // A vector must always be stored in memory as-is, i.e. without any padding 7444 // between the elements, since various code depend on it, e.g. in the 7445 // handling of a bitcast of a vector type to int, which may be done with a 7446 // vector store followed by an integer load. A vector that does not have 7447 // elements that are byte-sized must therefore be stored as an integer 7448 // built out of the extracted vector elements. 7449 if (!SrcEltVT.isByteSized()) { 7450 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7451 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7452 7453 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7454 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7455 7456 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7457 SDValue SrcEltBitMask = DAG.getConstant( 7458 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7459 7460 // Load the whole vector and avoid masking off the top bits as it makes 7461 // the codegen worse. 7462 SDValue Load = 7463 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7464 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7465 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7466 7467 SmallVector<SDValue, 8> Vals; 7468 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7469 unsigned ShiftIntoIdx = 7470 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7471 SDValue ShiftAmount = 7472 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7473 LoadVT, SL, /*LegalTypes=*/false); 7474 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7475 SDValue Elt = 7476 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7477 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7478 7479 if (ExtType != ISD::NON_EXTLOAD) { 7480 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7481 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7482 } 7483 7484 Vals.push_back(Scalar); 7485 } 7486 7487 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7488 return std::make_pair(Value, Load.getValue(1)); 7489 } 7490 7491 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7492 assert(SrcEltVT.isByteSized()); 7493 7494 SmallVector<SDValue, 8> Vals; 7495 SmallVector<SDValue, 8> LoadChains; 7496 7497 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7498 SDValue ScalarLoad = 7499 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7500 LD->getPointerInfo().getWithOffset(Idx * Stride), 7501 SrcEltVT, LD->getOriginalAlign(), 7502 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7503 7504 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7505 7506 Vals.push_back(ScalarLoad.getValue(0)); 7507 LoadChains.push_back(ScalarLoad.getValue(1)); 7508 } 7509 7510 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7511 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7512 7513 return std::make_pair(Value, NewChain); 7514 } 7515 7516 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7517 SelectionDAG &DAG) const { 7518 SDLoc SL(ST); 7519 7520 SDValue Chain = ST->getChain(); 7521 SDValue BasePtr = ST->getBasePtr(); 7522 SDValue Value = ST->getValue(); 7523 EVT StVT = ST->getMemoryVT(); 7524 7525 if (StVT.isScalableVector()) 7526 report_fatal_error("Cannot scalarize scalable vector stores"); 7527 7528 // The type of the data we want to save 7529 EVT RegVT = Value.getValueType(); 7530 EVT RegSclVT = RegVT.getScalarType(); 7531 7532 // The type of data as saved in memory. 7533 EVT MemSclVT = StVT.getScalarType(); 7534 7535 unsigned NumElem = StVT.getVectorNumElements(); 7536 7537 // A vector must always be stored in memory as-is, i.e. without any padding 7538 // between the elements, since various code depend on it, e.g. in the 7539 // handling of a bitcast of a vector type to int, which may be done with a 7540 // vector store followed by an integer load. A vector that does not have 7541 // elements that are byte-sized must therefore be stored as an integer 7542 // built out of the extracted vector elements. 7543 if (!MemSclVT.isByteSized()) { 7544 unsigned NumBits = StVT.getSizeInBits(); 7545 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7546 7547 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7548 7549 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7550 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7551 DAG.getVectorIdxConstant(Idx, SL)); 7552 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7553 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7554 unsigned ShiftIntoIdx = 7555 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7556 SDValue ShiftAmount = 7557 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7558 SDValue ShiftedElt = 7559 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7560 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7561 } 7562 7563 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7564 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7565 ST->getAAInfo()); 7566 } 7567 7568 // Store Stride in bytes 7569 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7570 assert(Stride && "Zero stride!"); 7571 // Extract each of the elements from the original vector and save them into 7572 // memory individually. 7573 SmallVector<SDValue, 8> Stores; 7574 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7575 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7576 DAG.getVectorIdxConstant(Idx, SL)); 7577 7578 SDValue Ptr = 7579 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7580 7581 // This scalar TruncStore may be illegal, but we legalize it later. 7582 SDValue Store = DAG.getTruncStore( 7583 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7584 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7585 ST->getAAInfo()); 7586 7587 Stores.push_back(Store); 7588 } 7589 7590 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7591 } 7592 7593 std::pair<SDValue, SDValue> 7594 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7595 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7596 "unaligned indexed loads not implemented!"); 7597 SDValue Chain = LD->getChain(); 7598 SDValue Ptr = LD->getBasePtr(); 7599 EVT VT = LD->getValueType(0); 7600 EVT LoadedVT = LD->getMemoryVT(); 7601 SDLoc dl(LD); 7602 auto &MF = DAG.getMachineFunction(); 7603 7604 if (VT.isFloatingPoint() || VT.isVector()) { 7605 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7606 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7607 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7608 LoadedVT.isVector()) { 7609 // Scalarize the load and let the individual components be handled. 7610 return scalarizeVectorLoad(LD, DAG); 7611 } 7612 7613 // Expand to a (misaligned) integer load of the same size, 7614 // then bitconvert to floating point or vector. 7615 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7616 LD->getMemOperand()); 7617 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7618 if (LoadedVT != VT) 7619 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7620 ISD::ANY_EXTEND, dl, VT, Result); 7621 7622 return std::make_pair(Result, newLoad.getValue(1)); 7623 } 7624 7625 // Copy the value to a (aligned) stack slot using (unaligned) integer 7626 // loads and stores, then do a (aligned) load from the stack slot. 7627 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7628 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7629 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7630 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7631 7632 // Make sure the stack slot is also aligned for the register type. 7633 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7634 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7635 SmallVector<SDValue, 8> Stores; 7636 SDValue StackPtr = StackBase; 7637 unsigned Offset = 0; 7638 7639 EVT PtrVT = Ptr.getValueType(); 7640 EVT StackPtrVT = StackPtr.getValueType(); 7641 7642 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7643 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7644 7645 // Do all but one copies using the full register width. 7646 for (unsigned i = 1; i < NumRegs; i++) { 7647 // Load one integer register's worth from the original location. 7648 SDValue Load = DAG.getLoad( 7649 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7650 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7651 LD->getAAInfo()); 7652 // Follow the load with a store to the stack slot. Remember the store. 7653 Stores.push_back(DAG.getStore( 7654 Load.getValue(1), dl, Load, StackPtr, 7655 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7656 // Increment the pointers. 7657 Offset += RegBytes; 7658 7659 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7660 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7661 } 7662 7663 // The last copy may be partial. Do an extending load. 7664 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7665 8 * (LoadedBytes - Offset)); 7666 SDValue Load = 7667 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7668 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7669 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7670 LD->getAAInfo()); 7671 // Follow the load with a store to the stack slot. Remember the store. 7672 // On big-endian machines this requires a truncating store to ensure 7673 // that the bits end up in the right place. 7674 Stores.push_back(DAG.getTruncStore( 7675 Load.getValue(1), dl, Load, StackPtr, 7676 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7677 7678 // The order of the stores doesn't matter - say it with a TokenFactor. 7679 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7680 7681 // Finally, perform the original load only redirected to the stack slot. 7682 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7683 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7684 LoadedVT); 7685 7686 // Callers expect a MERGE_VALUES node. 7687 return std::make_pair(Load, TF); 7688 } 7689 7690 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7691 "Unaligned load of unsupported type."); 7692 7693 // Compute the new VT that is half the size of the old one. This is an 7694 // integer MVT. 7695 unsigned NumBits = LoadedVT.getSizeInBits(); 7696 EVT NewLoadedVT; 7697 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7698 NumBits >>= 1; 7699 7700 Align Alignment = LD->getOriginalAlign(); 7701 unsigned IncrementSize = NumBits / 8; 7702 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7703 7704 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7705 if (HiExtType == ISD::NON_EXTLOAD) 7706 HiExtType = ISD::ZEXTLOAD; 7707 7708 // Load the value in two parts 7709 SDValue Lo, Hi; 7710 if (DAG.getDataLayout().isLittleEndian()) { 7711 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7712 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7713 LD->getAAInfo()); 7714 7715 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7716 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7717 LD->getPointerInfo().getWithOffset(IncrementSize), 7718 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7719 LD->getAAInfo()); 7720 } else { 7721 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7722 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7723 LD->getAAInfo()); 7724 7725 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7726 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7727 LD->getPointerInfo().getWithOffset(IncrementSize), 7728 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7729 LD->getAAInfo()); 7730 } 7731 7732 // aggregate the two parts 7733 SDValue ShiftAmount = 7734 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7735 DAG.getDataLayout())); 7736 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7737 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7738 7739 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7740 Hi.getValue(1)); 7741 7742 return std::make_pair(Result, TF); 7743 } 7744 7745 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7746 SelectionDAG &DAG) const { 7747 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7748 "unaligned indexed stores not implemented!"); 7749 SDValue Chain = ST->getChain(); 7750 SDValue Ptr = ST->getBasePtr(); 7751 SDValue Val = ST->getValue(); 7752 EVT VT = Val.getValueType(); 7753 Align Alignment = ST->getOriginalAlign(); 7754 auto &MF = DAG.getMachineFunction(); 7755 EVT StoreMemVT = ST->getMemoryVT(); 7756 7757 SDLoc dl(ST); 7758 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7759 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7760 if (isTypeLegal(intVT)) { 7761 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7762 StoreMemVT.isVector()) { 7763 // Scalarize the store and let the individual components be handled. 7764 SDValue Result = scalarizeVectorStore(ST, DAG); 7765 return Result; 7766 } 7767 // Expand to a bitconvert of the value to the integer type of the 7768 // same size, then a (misaligned) int store. 7769 // FIXME: Does not handle truncating floating point stores! 7770 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7771 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7772 Alignment, ST->getMemOperand()->getFlags()); 7773 return Result; 7774 } 7775 // Do a (aligned) store to a stack slot, then copy from the stack slot 7776 // to the final destination using (unaligned) integer loads and stores. 7777 MVT RegVT = getRegisterType( 7778 *DAG.getContext(), 7779 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7780 EVT PtrVT = Ptr.getValueType(); 7781 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7782 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7783 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7784 7785 // Make sure the stack slot is also aligned for the register type. 7786 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7787 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7788 7789 // Perform the original store, only redirected to the stack slot. 7790 SDValue Store = DAG.getTruncStore( 7791 Chain, dl, Val, StackPtr, 7792 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7793 7794 EVT StackPtrVT = StackPtr.getValueType(); 7795 7796 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7797 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7798 SmallVector<SDValue, 8> Stores; 7799 unsigned Offset = 0; 7800 7801 // Do all but one copies using the full register width. 7802 for (unsigned i = 1; i < NumRegs; i++) { 7803 // Load one integer register's worth from the stack slot. 7804 SDValue Load = DAG.getLoad( 7805 RegVT, dl, Store, StackPtr, 7806 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7807 // Store it to the final location. Remember the store. 7808 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7809 ST->getPointerInfo().getWithOffset(Offset), 7810 ST->getOriginalAlign(), 7811 ST->getMemOperand()->getFlags())); 7812 // Increment the pointers. 7813 Offset += RegBytes; 7814 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7815 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7816 } 7817 7818 // The last store may be partial. Do a truncating store. On big-endian 7819 // machines this requires an extending load from the stack slot to ensure 7820 // that the bits are in the right place. 7821 EVT LoadMemVT = 7822 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7823 7824 // Load from the stack slot. 7825 SDValue Load = DAG.getExtLoad( 7826 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7827 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7828 7829 Stores.push_back( 7830 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7831 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7832 ST->getOriginalAlign(), 7833 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7834 // The order of the stores doesn't matter - say it with a TokenFactor. 7835 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7836 return Result; 7837 } 7838 7839 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7840 "Unaligned store of unknown type."); 7841 // Get the half-size VT 7842 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7843 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7844 unsigned IncrementSize = NumBits / 8; 7845 7846 // Divide the stored value in two parts. 7847 SDValue ShiftAmount = DAG.getConstant( 7848 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7849 SDValue Lo = Val; 7850 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7851 7852 // Store the two parts 7853 SDValue Store1, Store2; 7854 Store1 = DAG.getTruncStore(Chain, dl, 7855 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7856 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7857 ST->getMemOperand()->getFlags()); 7858 7859 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7860 Store2 = DAG.getTruncStore( 7861 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7862 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7863 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7864 7865 SDValue Result = 7866 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7867 return Result; 7868 } 7869 7870 SDValue 7871 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7872 const SDLoc &DL, EVT DataVT, 7873 SelectionDAG &DAG, 7874 bool IsCompressedMemory) const { 7875 SDValue Increment; 7876 EVT AddrVT = Addr.getValueType(); 7877 EVT MaskVT = Mask.getValueType(); 7878 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7879 "Incompatible types of Data and Mask"); 7880 if (IsCompressedMemory) { 7881 if (DataVT.isScalableVector()) 7882 report_fatal_error( 7883 "Cannot currently handle compressed memory with scalable vectors"); 7884 // Incrementing the pointer according to number of '1's in the mask. 7885 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7886 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7887 if (MaskIntVT.getSizeInBits() < 32) { 7888 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7889 MaskIntVT = MVT::i32; 7890 } 7891 7892 // Count '1's with POPCNT. 7893 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7894 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7895 // Scale is an element size in bytes. 7896 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7897 AddrVT); 7898 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7899 } else if (DataVT.isScalableVector()) { 7900 Increment = DAG.getVScale(DL, AddrVT, 7901 APInt(AddrVT.getFixedSizeInBits(), 7902 DataVT.getStoreSize().getKnownMinSize())); 7903 } else 7904 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7905 7906 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7907 } 7908 7909 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7910 EVT VecVT, const SDLoc &dl, 7911 ElementCount SubEC) { 7912 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7913 "Cannot index a scalable vector within a fixed-width vector"); 7914 7915 unsigned NElts = VecVT.getVectorMinNumElements(); 7916 unsigned NumSubElts = SubEC.getKnownMinValue(); 7917 EVT IdxVT = Idx.getValueType(); 7918 7919 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7920 // If this is a constant index and we know the value plus the number of the 7921 // elements in the subvector minus one is less than the minimum number of 7922 // elements then it's safe to return Idx. 7923 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7924 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7925 return Idx; 7926 SDValue VS = 7927 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7928 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7929 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7930 DAG.getConstant(NumSubElts, dl, IdxVT)); 7931 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7932 } 7933 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7934 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7935 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7936 DAG.getConstant(Imm, dl, IdxVT)); 7937 } 7938 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7939 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7940 DAG.getConstant(MaxIndex, dl, IdxVT)); 7941 } 7942 7943 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7944 SDValue VecPtr, EVT VecVT, 7945 SDValue Index) const { 7946 return getVectorSubVecPointer( 7947 DAG, VecPtr, VecVT, 7948 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7949 Index); 7950 } 7951 7952 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7953 SDValue VecPtr, EVT VecVT, 7954 EVT SubVecVT, 7955 SDValue Index) const { 7956 SDLoc dl(Index); 7957 // Make sure the index type is big enough to compute in. 7958 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7959 7960 EVT EltVT = VecVT.getVectorElementType(); 7961 7962 // Calculate the element offset and add it to the pointer. 7963 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7964 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7965 "Converting bits to bytes lost precision"); 7966 assert(SubVecVT.getVectorElementType() == EltVT && 7967 "Sub-vector must be a vector with matching element type"); 7968 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7969 SubVecVT.getVectorElementCount()); 7970 7971 EVT IdxVT = Index.getValueType(); 7972 if (SubVecVT.isScalableVector()) 7973 Index = 7974 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7975 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7976 7977 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7978 DAG.getConstant(EltSize, dl, IdxVT)); 7979 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7980 } 7981 7982 //===----------------------------------------------------------------------===// 7983 // Implementation of Emulated TLS Model 7984 //===----------------------------------------------------------------------===// 7985 7986 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7987 SelectionDAG &DAG) const { 7988 // Access to address of TLS varialbe xyz is lowered to a function call: 7989 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7990 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7991 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7992 SDLoc dl(GA); 7993 7994 ArgListTy Args; 7995 ArgListEntry Entry; 7996 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7997 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7998 StringRef EmuTlsVarName(NameString); 7999 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8000 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8001 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8002 Entry.Ty = VoidPtrType; 8003 Args.push_back(Entry); 8004 8005 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8006 8007 TargetLowering::CallLoweringInfo CLI(DAG); 8008 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8009 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8010 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8011 8012 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8013 // At last for X86 targets, maybe good for other targets too? 8014 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8015 MFI.setAdjustsStack(true); // Is this only for X86 target? 8016 MFI.setHasCalls(true); 8017 8018 assert((GA->getOffset() == 0) && 8019 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8020 return CallResult.first; 8021 } 8022 8023 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8024 SelectionDAG &DAG) const { 8025 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8026 if (!isCtlzFast()) 8027 return SDValue(); 8028 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8029 SDLoc dl(Op); 8030 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8031 if (C->isZero() && CC == ISD::SETEQ) { 8032 EVT VT = Op.getOperand(0).getValueType(); 8033 SDValue Zext = Op.getOperand(0); 8034 if (VT.bitsLT(MVT::i32)) { 8035 VT = MVT::i32; 8036 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8037 } 8038 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8039 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8040 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8041 DAG.getConstant(Log2b, dl, MVT::i32)); 8042 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8043 } 8044 } 8045 return SDValue(); 8046 } 8047 8048 // Convert redundant addressing modes (e.g. scaling is redundant 8049 // when accessing bytes). 8050 ISD::MemIndexType 8051 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8052 SDValue Offsets) const { 8053 bool IsScaledIndex = 8054 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8055 bool IsSignedIndex = 8056 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8057 8058 // Scaling is unimportant for bytes, canonicalize to unscaled. 8059 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8060 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8061 8062 return IndexType; 8063 } 8064 8065 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8066 SDValue Op0 = Node->getOperand(0); 8067 SDValue Op1 = Node->getOperand(1); 8068 EVT VT = Op0.getValueType(); 8069 unsigned Opcode = Node->getOpcode(); 8070 SDLoc DL(Node); 8071 8072 // umin(x,y) -> sub(x,usubsat(x,y)) 8073 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8074 isOperationLegal(ISD::USUBSAT, VT)) { 8075 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8076 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8077 } 8078 8079 // umax(x,y) -> add(x,usubsat(y,x)) 8080 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8081 isOperationLegal(ISD::USUBSAT, VT)) { 8082 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8083 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8084 } 8085 8086 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8087 ISD::CondCode CC; 8088 switch (Opcode) { 8089 default: llvm_unreachable("How did we get here?"); 8090 case ISD::SMAX: CC = ISD::SETGT; break; 8091 case ISD::SMIN: CC = ISD::SETLT; break; 8092 case ISD::UMAX: CC = ISD::SETUGT; break; 8093 case ISD::UMIN: CC = ISD::SETULT; break; 8094 } 8095 8096 // FIXME: Should really try to split the vector in case it's legal on a 8097 // subvector. 8098 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8099 return DAG.UnrollVectorOp(Node); 8100 8101 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8102 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8103 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8104 } 8105 8106 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8107 unsigned Opcode = Node->getOpcode(); 8108 SDValue LHS = Node->getOperand(0); 8109 SDValue RHS = Node->getOperand(1); 8110 EVT VT = LHS.getValueType(); 8111 SDLoc dl(Node); 8112 8113 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8114 assert(VT.isInteger() && "Expected operands to be integers"); 8115 8116 // usub.sat(a, b) -> umax(a, b) - b 8117 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8118 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8119 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8120 } 8121 8122 // uadd.sat(a, b) -> umin(a, ~b) + b 8123 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8124 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8125 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8126 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8127 } 8128 8129 unsigned OverflowOp; 8130 switch (Opcode) { 8131 case ISD::SADDSAT: 8132 OverflowOp = ISD::SADDO; 8133 break; 8134 case ISD::UADDSAT: 8135 OverflowOp = ISD::UADDO; 8136 break; 8137 case ISD::SSUBSAT: 8138 OverflowOp = ISD::SSUBO; 8139 break; 8140 case ISD::USUBSAT: 8141 OverflowOp = ISD::USUBO; 8142 break; 8143 default: 8144 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8145 "addition or subtraction node."); 8146 } 8147 8148 // FIXME: Should really try to split the vector in case it's legal on a 8149 // subvector. 8150 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8151 return DAG.UnrollVectorOp(Node); 8152 8153 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8154 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8155 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8156 SDValue SumDiff = Result.getValue(0); 8157 SDValue Overflow = Result.getValue(1); 8158 SDValue Zero = DAG.getConstant(0, dl, VT); 8159 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8160 8161 if (Opcode == ISD::UADDSAT) { 8162 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8163 // (LHS + RHS) | OverflowMask 8164 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8165 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8166 } 8167 // Overflow ? 0xffff.... : (LHS + RHS) 8168 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8169 } 8170 8171 if (Opcode == ISD::USUBSAT) { 8172 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8173 // (LHS - RHS) & ~OverflowMask 8174 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8175 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8176 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8177 } 8178 // Overflow ? 0 : (LHS - RHS) 8179 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8180 } 8181 8182 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8183 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8184 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8185 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8186 DAG.getConstant(BitWidth - 1, dl, VT)); 8187 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8188 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8189 } 8190 8191 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8192 unsigned Opcode = Node->getOpcode(); 8193 bool IsSigned = Opcode == ISD::SSHLSAT; 8194 SDValue LHS = Node->getOperand(0); 8195 SDValue RHS = Node->getOperand(1); 8196 EVT VT = LHS.getValueType(); 8197 SDLoc dl(Node); 8198 8199 assert((Node->getOpcode() == ISD::SSHLSAT || 8200 Node->getOpcode() == ISD::USHLSAT) && 8201 "Expected a SHLSAT opcode"); 8202 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8203 assert(VT.isInteger() && "Expected operands to be integers"); 8204 8205 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8206 8207 unsigned BW = VT.getScalarSizeInBits(); 8208 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8209 SDValue Orig = 8210 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8211 8212 SDValue SatVal; 8213 if (IsSigned) { 8214 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8215 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8216 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8217 SatMin, SatMax, ISD::SETLT); 8218 } else { 8219 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8220 } 8221 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8222 8223 return Result; 8224 } 8225 8226 SDValue 8227 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8228 assert((Node->getOpcode() == ISD::SMULFIX || 8229 Node->getOpcode() == ISD::UMULFIX || 8230 Node->getOpcode() == ISD::SMULFIXSAT || 8231 Node->getOpcode() == ISD::UMULFIXSAT) && 8232 "Expected a fixed point multiplication opcode"); 8233 8234 SDLoc dl(Node); 8235 SDValue LHS = Node->getOperand(0); 8236 SDValue RHS = Node->getOperand(1); 8237 EVT VT = LHS.getValueType(); 8238 unsigned Scale = Node->getConstantOperandVal(2); 8239 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8240 Node->getOpcode() == ISD::UMULFIXSAT); 8241 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8242 Node->getOpcode() == ISD::SMULFIXSAT); 8243 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8244 unsigned VTSize = VT.getScalarSizeInBits(); 8245 8246 if (!Scale) { 8247 // [us]mul.fix(a, b, 0) -> mul(a, b) 8248 if (!Saturating) { 8249 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8250 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8251 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8252 SDValue Result = 8253 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8254 SDValue Product = Result.getValue(0); 8255 SDValue Overflow = Result.getValue(1); 8256 SDValue Zero = DAG.getConstant(0, dl, VT); 8257 8258 APInt MinVal = APInt::getSignedMinValue(VTSize); 8259 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8260 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8261 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8262 // Xor the inputs, if resulting sign bit is 0 the product will be 8263 // positive, else negative. 8264 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8265 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8266 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8267 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8268 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8269 SDValue Result = 8270 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8271 SDValue Product = Result.getValue(0); 8272 SDValue Overflow = Result.getValue(1); 8273 8274 APInt MaxVal = APInt::getMaxValue(VTSize); 8275 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8276 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8277 } 8278 } 8279 8280 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8281 "Expected scale to be less than the number of bits if signed or at " 8282 "most the number of bits if unsigned."); 8283 assert(LHS.getValueType() == RHS.getValueType() && 8284 "Expected both operands to be the same type"); 8285 8286 // Get the upper and lower bits of the result. 8287 SDValue Lo, Hi; 8288 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8289 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8290 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8291 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8292 Lo = Result.getValue(0); 8293 Hi = Result.getValue(1); 8294 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8295 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8296 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8297 } else if (VT.isVector()) { 8298 return SDValue(); 8299 } else { 8300 report_fatal_error("Unable to expand fixed point multiplication."); 8301 } 8302 8303 if (Scale == VTSize) 8304 // Result is just the top half since we'd be shifting by the width of the 8305 // operand. Overflow impossible so this works for both UMULFIX and 8306 // UMULFIXSAT. 8307 return Hi; 8308 8309 // The result will need to be shifted right by the scale since both operands 8310 // are scaled. The result is given to us in 2 halves, so we only want part of 8311 // both in the result. 8312 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8313 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8314 DAG.getConstant(Scale, dl, ShiftTy)); 8315 if (!Saturating) 8316 return Result; 8317 8318 if (!Signed) { 8319 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8320 // widened multiplication) aren't all zeroes. 8321 8322 // Saturate to max if ((Hi >> Scale) != 0), 8323 // which is the same as if (Hi > ((1 << Scale) - 1)) 8324 APInt MaxVal = APInt::getMaxValue(VTSize); 8325 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8326 dl, VT); 8327 Result = DAG.getSelectCC(dl, Hi, LowMask, 8328 DAG.getConstant(MaxVal, dl, VT), Result, 8329 ISD::SETUGT); 8330 8331 return Result; 8332 } 8333 8334 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8335 // widened multiplication) aren't all ones or all zeroes. 8336 8337 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8338 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8339 8340 if (Scale == 0) { 8341 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8342 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8343 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8344 // Saturated to SatMin if wide product is negative, and SatMax if wide 8345 // product is positive ... 8346 SDValue Zero = DAG.getConstant(0, dl, VT); 8347 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8348 ISD::SETLT); 8349 // ... but only if we overflowed. 8350 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8351 } 8352 8353 // We handled Scale==0 above so all the bits to examine is in Hi. 8354 8355 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8356 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8357 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8358 dl, VT); 8359 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8360 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8361 // which is the same as if (HI < (-1 << (Scale - 1)) 8362 SDValue HighMask = 8363 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8364 dl, VT); 8365 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8366 return Result; 8367 } 8368 8369 SDValue 8370 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8371 SDValue LHS, SDValue RHS, 8372 unsigned Scale, SelectionDAG &DAG) const { 8373 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8374 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8375 "Expected a fixed point division opcode"); 8376 8377 EVT VT = LHS.getValueType(); 8378 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8379 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8380 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8381 8382 // If there is enough room in the type to upscale the LHS or downscale the 8383 // RHS before the division, we can perform it in this type without having to 8384 // resize. For signed operations, the LHS headroom is the number of 8385 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8386 // The headroom for the RHS is the number of trailing zeroes. 8387 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8388 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8389 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8390 8391 // For signed saturating operations, we need to be able to detect true integer 8392 // division overflow; that is, when you have MIN / -EPS. However, this 8393 // is undefined behavior and if we emit divisions that could take such 8394 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8395 // example). 8396 // Avoid this by requiring an extra bit so that we never get this case. 8397 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8398 // signed saturating division, we need to emit a whopping 32-bit division. 8399 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8400 return SDValue(); 8401 8402 unsigned LHSShift = std::min(LHSLead, Scale); 8403 unsigned RHSShift = Scale - LHSShift; 8404 8405 // At this point, we know that if we shift the LHS up by LHSShift and the 8406 // RHS down by RHSShift, we can emit a regular division with a final scaling 8407 // factor of Scale. 8408 8409 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8410 if (LHSShift) 8411 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8412 DAG.getConstant(LHSShift, dl, ShiftTy)); 8413 if (RHSShift) 8414 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8415 DAG.getConstant(RHSShift, dl, ShiftTy)); 8416 8417 SDValue Quot; 8418 if (Signed) { 8419 // For signed operations, if the resulting quotient is negative and the 8420 // remainder is nonzero, subtract 1 from the quotient to round towards 8421 // negative infinity. 8422 SDValue Rem; 8423 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8424 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8425 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8426 if (isTypeLegal(VT) && 8427 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8428 Quot = DAG.getNode(ISD::SDIVREM, dl, 8429 DAG.getVTList(VT, VT), 8430 LHS, RHS); 8431 Rem = Quot.getValue(1); 8432 Quot = Quot.getValue(0); 8433 } else { 8434 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8435 LHS, RHS); 8436 Rem = DAG.getNode(ISD::SREM, dl, VT, 8437 LHS, RHS); 8438 } 8439 SDValue Zero = DAG.getConstant(0, dl, VT); 8440 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8441 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8442 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8443 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8444 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8445 DAG.getConstant(1, dl, VT)); 8446 Quot = DAG.getSelect(dl, VT, 8447 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8448 Sub1, Quot); 8449 } else 8450 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8451 LHS, RHS); 8452 8453 return Quot; 8454 } 8455 8456 void TargetLowering::expandUADDSUBO( 8457 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8458 SDLoc dl(Node); 8459 SDValue LHS = Node->getOperand(0); 8460 SDValue RHS = Node->getOperand(1); 8461 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8462 8463 // If ADD/SUBCARRY is legal, use that instead. 8464 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8465 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8466 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8467 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8468 { LHS, RHS, CarryIn }); 8469 Result = SDValue(NodeCarry.getNode(), 0); 8470 Overflow = SDValue(NodeCarry.getNode(), 1); 8471 return; 8472 } 8473 8474 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8475 LHS.getValueType(), LHS, RHS); 8476 8477 EVT ResultType = Node->getValueType(1); 8478 EVT SetCCType = getSetCCResultType( 8479 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8480 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8481 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8482 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8483 } 8484 8485 void TargetLowering::expandSADDSUBO( 8486 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8487 SDLoc dl(Node); 8488 SDValue LHS = Node->getOperand(0); 8489 SDValue RHS = Node->getOperand(1); 8490 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8491 8492 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8493 LHS.getValueType(), LHS, RHS); 8494 8495 EVT ResultType = Node->getValueType(1); 8496 EVT OType = getSetCCResultType( 8497 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8498 8499 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8500 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8501 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8502 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8503 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8504 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8505 return; 8506 } 8507 8508 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8509 8510 // For an addition, the result should be less than one of the operands (LHS) 8511 // if and only if the other operand (RHS) is negative, otherwise there will 8512 // be overflow. 8513 // For a subtraction, the result should be less than one of the operands 8514 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8515 // otherwise there will be overflow. 8516 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8517 SDValue ConditionRHS = 8518 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8519 8520 Overflow = DAG.getBoolExtOrTrunc( 8521 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8522 ResultType, ResultType); 8523 } 8524 8525 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8526 SDValue &Overflow, SelectionDAG &DAG) const { 8527 SDLoc dl(Node); 8528 EVT VT = Node->getValueType(0); 8529 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8530 SDValue LHS = Node->getOperand(0); 8531 SDValue RHS = Node->getOperand(1); 8532 bool isSigned = Node->getOpcode() == ISD::SMULO; 8533 8534 // For power-of-two multiplications we can use a simpler shift expansion. 8535 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8536 const APInt &C = RHSC->getAPIntValue(); 8537 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8538 if (C.isPowerOf2()) { 8539 // smulo(x, signed_min) is same as umulo(x, signed_min). 8540 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8541 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8542 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8543 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8544 Overflow = DAG.getSetCC(dl, SetCCVT, 8545 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8546 dl, VT, Result, ShiftAmt), 8547 LHS, ISD::SETNE); 8548 return true; 8549 } 8550 } 8551 8552 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8553 if (VT.isVector()) 8554 WideVT = 8555 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8556 8557 SDValue BottomHalf; 8558 SDValue TopHalf; 8559 static const unsigned Ops[2][3] = 8560 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8561 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8562 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8563 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8564 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8565 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8566 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8567 RHS); 8568 TopHalf = BottomHalf.getValue(1); 8569 } else if (isTypeLegal(WideVT)) { 8570 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8571 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8572 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8573 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8574 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8575 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8576 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8577 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8578 } else { 8579 if (VT.isVector()) 8580 return false; 8581 8582 // We can fall back to a libcall with an illegal type for the MUL if we 8583 // have a libcall big enough. 8584 // Also, we can fall back to a division in some cases, but that's a big 8585 // performance hit in the general case. 8586 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8587 if (WideVT == MVT::i16) 8588 LC = RTLIB::MUL_I16; 8589 else if (WideVT == MVT::i32) 8590 LC = RTLIB::MUL_I32; 8591 else if (WideVT == MVT::i64) 8592 LC = RTLIB::MUL_I64; 8593 else if (WideVT == MVT::i128) 8594 LC = RTLIB::MUL_I128; 8595 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8596 8597 SDValue HiLHS; 8598 SDValue HiRHS; 8599 if (isSigned) { 8600 // The high part is obtained by SRA'ing all but one of the bits of low 8601 // part. 8602 unsigned LoSize = VT.getFixedSizeInBits(); 8603 HiLHS = 8604 DAG.getNode(ISD::SRA, dl, VT, LHS, 8605 DAG.getConstant(LoSize - 1, dl, 8606 getPointerTy(DAG.getDataLayout()))); 8607 HiRHS = 8608 DAG.getNode(ISD::SRA, dl, VT, RHS, 8609 DAG.getConstant(LoSize - 1, dl, 8610 getPointerTy(DAG.getDataLayout()))); 8611 } else { 8612 HiLHS = DAG.getConstant(0, dl, VT); 8613 HiRHS = DAG.getConstant(0, dl, VT); 8614 } 8615 8616 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8617 // pre-lowered to the correct types. This all depends upon WideVT not 8618 // being a legal type for the architecture and thus has to be split to 8619 // two arguments. 8620 SDValue Ret; 8621 TargetLowering::MakeLibCallOptions CallOptions; 8622 CallOptions.setSExt(isSigned); 8623 CallOptions.setIsPostTypeLegalization(true); 8624 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8625 // Halves of WideVT are packed into registers in different order 8626 // depending on platform endianness. This is usually handled by 8627 // the C calling convention, but we can't defer to it in 8628 // the legalizer. 8629 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8630 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8631 } else { 8632 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8633 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8634 } 8635 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8636 "Ret value is a collection of constituent nodes holding result."); 8637 if (DAG.getDataLayout().isLittleEndian()) { 8638 // Same as above. 8639 BottomHalf = Ret.getOperand(0); 8640 TopHalf = Ret.getOperand(1); 8641 } else { 8642 BottomHalf = Ret.getOperand(1); 8643 TopHalf = Ret.getOperand(0); 8644 } 8645 } 8646 8647 Result = BottomHalf; 8648 if (isSigned) { 8649 SDValue ShiftAmt = DAG.getConstant( 8650 VT.getScalarSizeInBits() - 1, dl, 8651 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8652 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8653 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8654 } else { 8655 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8656 DAG.getConstant(0, dl, VT), ISD::SETNE); 8657 } 8658 8659 // Truncate the result if SetCC returns a larger type than needed. 8660 EVT RType = Node->getValueType(1); 8661 if (RType.bitsLT(Overflow.getValueType())) 8662 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8663 8664 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8665 "Unexpected result type for S/UMULO legalization"); 8666 return true; 8667 } 8668 8669 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8670 SDLoc dl(Node); 8671 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8672 SDValue Op = Node->getOperand(0); 8673 EVT VT = Op.getValueType(); 8674 8675 if (VT.isScalableVector()) 8676 report_fatal_error( 8677 "Expanding reductions for scalable vectors is undefined."); 8678 8679 // Try to use a shuffle reduction for power of two vectors. 8680 if (VT.isPow2VectorType()) { 8681 while (VT.getVectorNumElements() > 1) { 8682 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8683 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8684 break; 8685 8686 SDValue Lo, Hi; 8687 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8688 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8689 VT = HalfVT; 8690 } 8691 } 8692 8693 EVT EltVT = VT.getVectorElementType(); 8694 unsigned NumElts = VT.getVectorNumElements(); 8695 8696 SmallVector<SDValue, 8> Ops; 8697 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8698 8699 SDValue Res = Ops[0]; 8700 for (unsigned i = 1; i < NumElts; i++) 8701 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8702 8703 // Result type may be wider than element type. 8704 if (EltVT != Node->getValueType(0)) 8705 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8706 return Res; 8707 } 8708 8709 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8710 SDLoc dl(Node); 8711 SDValue AccOp = Node->getOperand(0); 8712 SDValue VecOp = Node->getOperand(1); 8713 SDNodeFlags Flags = Node->getFlags(); 8714 8715 EVT VT = VecOp.getValueType(); 8716 EVT EltVT = VT.getVectorElementType(); 8717 8718 if (VT.isScalableVector()) 8719 report_fatal_error( 8720 "Expanding reductions for scalable vectors is undefined."); 8721 8722 unsigned NumElts = VT.getVectorNumElements(); 8723 8724 SmallVector<SDValue, 8> Ops; 8725 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8726 8727 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8728 8729 SDValue Res = AccOp; 8730 for (unsigned i = 0; i < NumElts; i++) 8731 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8732 8733 return Res; 8734 } 8735 8736 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8737 SelectionDAG &DAG) const { 8738 EVT VT = Node->getValueType(0); 8739 SDLoc dl(Node); 8740 bool isSigned = Node->getOpcode() == ISD::SREM; 8741 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8742 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8743 SDValue Dividend = Node->getOperand(0); 8744 SDValue Divisor = Node->getOperand(1); 8745 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8746 SDVTList VTs = DAG.getVTList(VT, VT); 8747 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8748 return true; 8749 } 8750 if (isOperationLegalOrCustom(DivOpc, VT)) { 8751 // X % Y -> X-X/Y*Y 8752 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8753 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8754 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8755 return true; 8756 } 8757 return false; 8758 } 8759 8760 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8761 SelectionDAG &DAG) const { 8762 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8763 SDLoc dl(SDValue(Node, 0)); 8764 SDValue Src = Node->getOperand(0); 8765 8766 // DstVT is the result type, while SatVT is the size to which we saturate 8767 EVT SrcVT = Src.getValueType(); 8768 EVT DstVT = Node->getValueType(0); 8769 8770 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8771 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8772 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8773 assert(SatWidth <= DstWidth && 8774 "Expected saturation width smaller than result width"); 8775 8776 // Determine minimum and maximum integer values and their corresponding 8777 // floating-point values. 8778 APInt MinInt, MaxInt; 8779 if (IsSigned) { 8780 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8781 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8782 } else { 8783 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8784 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8785 } 8786 8787 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8788 // libcall emission cannot handle this. Large result types will fail. 8789 if (SrcVT == MVT::f16) { 8790 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8791 SrcVT = Src.getValueType(); 8792 } 8793 8794 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8795 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8796 8797 APFloat::opStatus MinStatus = 8798 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8799 APFloat::opStatus MaxStatus = 8800 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8801 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8802 !(MaxStatus & APFloat::opStatus::opInexact); 8803 8804 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8805 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8806 8807 // If the integer bounds are exactly representable as floats and min/max are 8808 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8809 // of comparisons and selects. 8810 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8811 isOperationLegal(ISD::FMAXNUM, SrcVT); 8812 if (AreExactFloatBounds && MinMaxLegal) { 8813 SDValue Clamped = Src; 8814 8815 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8816 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8817 // Clamp by MaxFloat from above. NaN cannot occur. 8818 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8819 // Convert clamped value to integer. 8820 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8821 dl, DstVT, Clamped); 8822 8823 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8824 // which will cast to zero. 8825 if (!IsSigned) 8826 return FpToInt; 8827 8828 // Otherwise, select 0 if Src is NaN. 8829 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8830 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8831 ISD::CondCode::SETUO); 8832 } 8833 8834 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8835 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8836 8837 // Result of direct conversion. The assumption here is that the operation is 8838 // non-trapping and it's fine to apply it to an out-of-range value if we 8839 // select it away later. 8840 SDValue FpToInt = 8841 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8842 8843 SDValue Select = FpToInt; 8844 8845 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8846 // MinInt if Src is NaN. 8847 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8848 ISD::CondCode::SETULT); 8849 // If Src OGT MaxFloat, select MaxInt. 8850 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8851 ISD::CondCode::SETOGT); 8852 8853 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8854 // is already zero. 8855 if (!IsSigned) 8856 return Select; 8857 8858 // Otherwise, select 0 if Src is NaN. 8859 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8860 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8861 } 8862 8863 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8864 SelectionDAG &DAG) const { 8865 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8866 assert(Node->getValueType(0).isScalableVector() && 8867 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8868 8869 EVT VT = Node->getValueType(0); 8870 SDValue V1 = Node->getOperand(0); 8871 SDValue V2 = Node->getOperand(1); 8872 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8873 SDLoc DL(Node); 8874 8875 // Expand through memory thusly: 8876 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8877 // Store V1, Ptr 8878 // Store V2, Ptr + sizeof(V1) 8879 // If (Imm < 0) 8880 // TrailingElts = -Imm 8881 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8882 // else 8883 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8884 // Res = Load Ptr 8885 8886 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8887 8888 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8889 VT.getVectorElementCount() * 2); 8890 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8891 EVT PtrVT = StackPtr.getValueType(); 8892 auto &MF = DAG.getMachineFunction(); 8893 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8894 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8895 8896 // Store the lo part of CONCAT_VECTORS(V1, V2) 8897 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8898 // Store the hi part of CONCAT_VECTORS(V1, V2) 8899 SDValue OffsetToV2 = DAG.getVScale( 8900 DL, PtrVT, 8901 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8902 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8903 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8904 8905 if (Imm >= 0) { 8906 // Load back the required element. getVectorElementPointer takes care of 8907 // clamping the index if it's out-of-bounds. 8908 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8909 // Load the spliced result 8910 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8911 MachinePointerInfo::getUnknownStack(MF)); 8912 } 8913 8914 uint64_t TrailingElts = -Imm; 8915 8916 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8917 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8918 SDValue TrailingBytes = 8919 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8920 8921 if (TrailingElts > VT.getVectorMinNumElements()) { 8922 SDValue VLBytes = DAG.getVScale( 8923 DL, PtrVT, 8924 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8925 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8926 } 8927 8928 // Calculate the start address of the spliced result. 8929 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8930 8931 // Load the spliced result 8932 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8933 MachinePointerInfo::getUnknownStack(MF)); 8934 } 8935 8936 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8937 SDValue &LHS, SDValue &RHS, 8938 SDValue &CC, bool &NeedInvert, 8939 const SDLoc &dl, SDValue &Chain, 8940 bool IsSignaling) const { 8941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8942 MVT OpVT = LHS.getSimpleValueType(); 8943 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8944 NeedInvert = false; 8945 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8946 default: 8947 llvm_unreachable("Unknown condition code action!"); 8948 case TargetLowering::Legal: 8949 // Nothing to do. 8950 break; 8951 case TargetLowering::Expand: { 8952 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8953 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8954 std::swap(LHS, RHS); 8955 CC = DAG.getCondCode(InvCC); 8956 return true; 8957 } 8958 // Swapping operands didn't work. Try inverting the condition. 8959 bool NeedSwap = false; 8960 InvCC = getSetCCInverse(CCCode, OpVT); 8961 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8962 // If inverting the condition is not enough, try swapping operands 8963 // on top of it. 8964 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8965 NeedSwap = true; 8966 } 8967 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8968 CC = DAG.getCondCode(InvCC); 8969 NeedInvert = true; 8970 if (NeedSwap) 8971 std::swap(LHS, RHS); 8972 return true; 8973 } 8974 8975 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8976 unsigned Opc = 0; 8977 switch (CCCode) { 8978 default: 8979 llvm_unreachable("Don't know how to expand this condition!"); 8980 case ISD::SETUO: 8981 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8982 CC1 = ISD::SETUNE; 8983 CC2 = ISD::SETUNE; 8984 Opc = ISD::OR; 8985 break; 8986 } 8987 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8988 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8989 NeedInvert = true; 8990 LLVM_FALLTHROUGH; 8991 case ISD::SETO: 8992 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8993 "If SETO is expanded, SETOEQ must be legal!"); 8994 CC1 = ISD::SETOEQ; 8995 CC2 = ISD::SETOEQ; 8996 Opc = ISD::AND; 8997 break; 8998 case ISD::SETONE: 8999 case ISD::SETUEQ: 9000 // If the SETUO or SETO CC isn't legal, we might be able to use 9001 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9002 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9003 // the operands. 9004 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9005 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9006 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9007 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9008 CC1 = ISD::SETOGT; 9009 CC2 = ISD::SETOLT; 9010 Opc = ISD::OR; 9011 NeedInvert = ((unsigned)CCCode & 0x8U); 9012 break; 9013 } 9014 LLVM_FALLTHROUGH; 9015 case ISD::SETOEQ: 9016 case ISD::SETOGT: 9017 case ISD::SETOGE: 9018 case ISD::SETOLT: 9019 case ISD::SETOLE: 9020 case ISD::SETUNE: 9021 case ISD::SETUGT: 9022 case ISD::SETUGE: 9023 case ISD::SETULT: 9024 case ISD::SETULE: 9025 // If we are floating point, assign and break, otherwise fall through. 9026 if (!OpVT.isInteger()) { 9027 // We can use the 4th bit to tell if we are the unordered 9028 // or ordered version of the opcode. 9029 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9030 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9031 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9032 break; 9033 } 9034 // Fallthrough if we are unsigned integer. 9035 LLVM_FALLTHROUGH; 9036 case ISD::SETLE: 9037 case ISD::SETGT: 9038 case ISD::SETGE: 9039 case ISD::SETLT: 9040 case ISD::SETNE: 9041 case ISD::SETEQ: 9042 // If all combinations of inverting the condition and swapping operands 9043 // didn't work then we have no means to expand the condition. 9044 llvm_unreachable("Don't know how to expand this condition!"); 9045 } 9046 9047 SDValue SetCC1, SetCC2; 9048 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9049 // If we aren't the ordered or unorder operation, 9050 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9051 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9052 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9053 } else { 9054 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9055 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9056 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9057 } 9058 if (Chain) 9059 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9060 SetCC2.getValue(1)); 9061 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9062 RHS = SDValue(); 9063 CC = SDValue(); 9064 return true; 9065 } 9066 } 9067 return false; 9068 } 9069