1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
289          && "Unsupported setcc type!");
290 
291   // Expand into one or more soft-fp libcall(s).
292   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
293   bool ShouldInvertCC = false;
294   switch (CCCode) {
295   case ISD::SETEQ:
296   case ISD::SETOEQ:
297     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
298           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
299           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
300     break;
301   case ISD::SETNE:
302   case ISD::SETUNE:
303     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
304           (VT == MVT::f64) ? RTLIB::UNE_F64 :
305           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
306     break;
307   case ISD::SETGE:
308   case ISD::SETOGE:
309     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
310           (VT == MVT::f64) ? RTLIB::OGE_F64 :
311           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
312     break;
313   case ISD::SETLT:
314   case ISD::SETOLT:
315     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
316           (VT == MVT::f64) ? RTLIB::OLT_F64 :
317           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
318     break;
319   case ISD::SETLE:
320   case ISD::SETOLE:
321     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
322           (VT == MVT::f64) ? RTLIB::OLE_F64 :
323           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
324     break;
325   case ISD::SETGT:
326   case ISD::SETOGT:
327     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
328           (VT == MVT::f64) ? RTLIB::OGT_F64 :
329           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
330     break;
331   case ISD::SETUO:
332     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
333           (VT == MVT::f64) ? RTLIB::UO_F64 :
334           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
335     break;
336   case ISD::SETO:
337     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
338           (VT == MVT::f64) ? RTLIB::O_F64 :
339           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
340     break;
341   case ISD::SETONE:
342     // SETONE = SETOLT | SETOGT
343     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
344           (VT == MVT::f64) ? RTLIB::OLT_F64 :
345           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
346     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETUEQ:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
355           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
356           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
357     break;
358   default:
359     // Invert CC for unordered comparisons
360     ShouldInvertCC = true;
361     switch (CCCode) {
362     case ISD::SETULT:
363       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
364             (VT == MVT::f64) ? RTLIB::OGE_F64 :
365             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
366       break;
367     case ISD::SETULE:
368       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
369             (VT == MVT::f64) ? RTLIB::OGT_F64 :
370             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
371       break;
372     case ISD::SETUGT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
374             (VT == MVT::f64) ? RTLIB::OLE_F64 :
375             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
376       break;
377     case ISD::SETUGE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
379             (VT == MVT::f64) ? RTLIB::OLT_F64 :
380             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
381       break;
382     default: llvm_unreachable("Do not know how to soften this setcc!");
383     }
384   }
385 
386   // Use the target specific return value for comparions lib calls.
387   EVT RetVT = getCmpLibcallReturnType();
388   SDValue Ops[2] = {NewLHS, NewRHS};
389   TargetLowering::MakeLibCallOptions CallOptions;
390   EVT OpsVT[2] = { OldLHS.getValueType(),
391                    OldRHS.getValueType() };
392   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
393   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
394   NewRHS = DAG.getConstant(0, dl, RetVT);
395 
396   CCCode = getCmpLibcallCC(LC1);
397   if (ShouldInvertCC) {
398     assert(RetVT.isInteger());
399     CCCode = getSetCCInverse(CCCode, RetVT);
400   }
401 
402   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
403     SDValue Tmp = DAG.getNode(
404         ISD::SETCC, dl,
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
406         NewLHS, NewRHS, DAG.getCondCode(CCCode));
407     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
408     NewLHS = DAG.getNode(
409         ISD::SETCC, dl,
410         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
411         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
412     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
413     NewRHS = SDValue();
414   }
415 }
416 
417 /// Return the entry encoding for a jump table in the current function. The
418 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
419 unsigned TargetLowering::getJumpTableEncoding() const {
420   // In non-pic modes, just use the address of a block.
421   if (!isPositionIndependent())
422     return MachineJumpTableInfo::EK_BlockAddress;
423 
424   // In PIC mode, if the target supports a GPRel32 directive, use it.
425   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
426     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
427 
428   // Otherwise, use a label difference.
429   return MachineJumpTableInfo::EK_LabelDifference32;
430 }
431 
432 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
433                                                  SelectionDAG &DAG) const {
434   // If our PIC model is GP relative, use the global offset table as the base.
435   unsigned JTEncoding = getJumpTableEncoding();
436 
437   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
438       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
439     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
440 
441   return Table;
442 }
443 
444 /// This returns the relocation base for the given PIC jumptable, the same as
445 /// getPICJumpTableRelocBase, but as an MCExpr.
446 const MCExpr *
447 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
448                                              unsigned JTI,MCContext &Ctx) const{
449   // The normal PIC reloc base is the label at the start of the jump table.
450   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
451 }
452 
453 bool
454 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
455   const TargetMachine &TM = getTargetMachine();
456   const GlobalValue *GV = GA->getGlobal();
457 
458   // If the address is not even local to this DSO we will have to load it from
459   // a got and then add the offset.
460   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
461     return false;
462 
463   // If the code is position independent we will have to add a base register.
464   if (isPositionIndependent())
465     return false;
466 
467   // Otherwise we can do it.
468   return true;
469 }
470 
471 //===----------------------------------------------------------------------===//
472 //  Optimization Methods
473 //===----------------------------------------------------------------------===//
474 
475 /// If the specified instruction has a constant integer operand and there are
476 /// bits set in that constant that are not demanded, then clear those bits and
477 /// return true.
478 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
479                                             TargetLoweringOpt &TLO) const {
480   SDLoc DL(Op);
481   unsigned Opcode = Op.getOpcode();
482 
483   // Do target-specific constant optimization.
484   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
485     return TLO.New.getNode();
486 
487   // FIXME: ISD::SELECT, ISD::SELECT_CC
488   switch (Opcode) {
489   default:
490     break;
491   case ISD::XOR:
492   case ISD::AND:
493   case ISD::OR: {
494     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
495     if (!Op1C)
496       return false;
497 
498     // If this is a 'not' op, don't touch it because that's a canonical form.
499     const APInt &C = Op1C->getAPIntValue();
500     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
501       return false;
502 
503     if (!C.isSubsetOf(Demanded)) {
504       EVT VT = Op.getValueType();
505       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
506       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
507       return TLO.CombineTo(Op, NewOp);
508     }
509 
510     break;
511   }
512   }
513 
514   return false;
515 }
516 
517 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
518 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
519 /// generalized for targets with other types of implicit widening casts.
520 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
521                                       const APInt &Demanded,
522                                       TargetLoweringOpt &TLO) const {
523   assert(Op.getNumOperands() == 2 &&
524          "ShrinkDemandedOp only supports binary operators!");
525   assert(Op.getNode()->getNumValues() == 1 &&
526          "ShrinkDemandedOp only supports nodes with one result!");
527 
528   SelectionDAG &DAG = TLO.DAG;
529   SDLoc dl(Op);
530 
531   // Early return, as this function cannot handle vector types.
532   if (Op.getValueType().isVector())
533     return false;
534 
535   // Don't do this if the node has another user, which may require the
536   // full value.
537   if (!Op.getNode()->hasOneUse())
538     return false;
539 
540   // Search for the smallest integer type with free casts to and from
541   // Op's type. For expedience, just check power-of-2 integer types.
542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
543   unsigned DemandedSize = Demanded.getActiveBits();
544   unsigned SmallVTBits = DemandedSize;
545   if (!isPowerOf2_32(SmallVTBits))
546     SmallVTBits = NextPowerOf2(SmallVTBits);
547   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
548     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
549     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
550         TLI.isZExtFree(SmallVT, Op.getValueType())) {
551       // We found a type with free casts.
552       SDValue X = DAG.getNode(
553           Op.getOpcode(), dl, SmallVT,
554           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
555           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
556       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
557       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
558       return TLO.CombineTo(Op, Z);
559     }
560   }
561   return false;
562 }
563 
564 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
565                                           DAGCombinerInfo &DCI) const {
566   SelectionDAG &DAG = DCI.DAG;
567   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
568                         !DCI.isBeforeLegalizeOps());
569   KnownBits Known;
570 
571   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
572   if (Simplified) {
573     DCI.AddToWorklist(Op.getNode());
574     DCI.CommitTargetLoweringOpt(TLO);
575   }
576   return Simplified;
577 }
578 
579 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
580                                           KnownBits &Known,
581                                           TargetLoweringOpt &TLO,
582                                           unsigned Depth,
583                                           bool AssumeSingleUse) const {
584   EVT VT = Op.getValueType();
585   APInt DemandedElts = VT.isVector()
586                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
587                            : APInt(1, 1);
588   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
589                               AssumeSingleUse);
590 }
591 
592 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
593 // TODO: Under what circumstances can we create nodes? Constant folding?
594 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
595     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
596     SelectionDAG &DAG, unsigned Depth) const {
597   // Limit search depth.
598   if (Depth >= SelectionDAG::MaxRecursionDepth)
599     return SDValue();
600 
601   // Ignore UNDEFs.
602   if (Op.isUndef())
603     return SDValue();
604 
605   // Not demanding any bits/elts from Op.
606   if (DemandedBits == 0 || DemandedElts == 0)
607     return DAG.getUNDEF(Op.getValueType());
608 
609   unsigned NumElts = DemandedElts.getBitWidth();
610   KnownBits LHSKnown, RHSKnown;
611   switch (Op.getOpcode()) {
612   case ISD::BITCAST: {
613     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
614     EVT SrcVT = Src.getValueType();
615     EVT DstVT = Op.getValueType();
616     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
617     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
618 
619     if (NumSrcEltBits == NumDstEltBits)
620       if (SDValue V = SimplifyMultipleUseDemandedBits(
621               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
622         return DAG.getBitcast(DstVT, V);
623 
624     // TODO - bigendian once we have test coverage.
625     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
626         DAG.getDataLayout().isLittleEndian()) {
627       unsigned Scale = NumDstEltBits / NumSrcEltBits;
628       unsigned NumSrcElts = SrcVT.getVectorNumElements();
629       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
630       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
631       for (unsigned i = 0; i != Scale; ++i) {
632         unsigned Offset = i * NumSrcEltBits;
633         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
634         if (!Sub.isNullValue()) {
635           DemandedSrcBits |= Sub;
636           for (unsigned j = 0; j != NumElts; ++j)
637             if (DemandedElts[j])
638               DemandedSrcElts.setBit((j * Scale) + i);
639         }
640       }
641 
642       if (SDValue V = SimplifyMultipleUseDemandedBits(
643               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
644         return DAG.getBitcast(DstVT, V);
645     }
646 
647     // TODO - bigendian once we have test coverage.
648     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
649         DAG.getDataLayout().isLittleEndian()) {
650       unsigned Scale = NumSrcEltBits / NumDstEltBits;
651       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
652       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
653       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
654       for (unsigned i = 0; i != NumElts; ++i)
655         if (DemandedElts[i]) {
656           unsigned Offset = (i % Scale) * NumDstEltBits;
657           DemandedSrcBits.insertBits(DemandedBits, Offset);
658           DemandedSrcElts.setBit(i / Scale);
659         }
660 
661       if (SDValue V = SimplifyMultipleUseDemandedBits(
662               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
663         return DAG.getBitcast(DstVT, V);
664     }
665 
666     break;
667   }
668   case ISD::AND: {
669     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
670     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
671 
672     // If all of the demanded bits are known 1 on one side, return the other.
673     // These bits cannot contribute to the result of the 'and' in this
674     // context.
675     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
676       return Op.getOperand(0);
677     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
678       return Op.getOperand(1);
679     break;
680   }
681   case ISD::OR: {
682     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
683     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
684 
685     // If all of the demanded bits are known zero on one side, return the
686     // other.  These bits cannot contribute to the result of the 'or' in this
687     // context.
688     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
689       return Op.getOperand(0);
690     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
691       return Op.getOperand(1);
692     break;
693   }
694   case ISD::XOR: {
695     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
696     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
697 
698     // If all of the demanded bits are known zero on one side, return the
699     // other.
700     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
701       return Op.getOperand(0);
702     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
703       return Op.getOperand(1);
704     break;
705   }
706   case ISD::SIGN_EXTEND_INREG: {
707     // If none of the extended bits are demanded, eliminate the sextinreg.
708     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
709     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
710       return Op.getOperand(0);
711     break;
712   }
713   case ISD::INSERT_VECTOR_ELT: {
714     // If we don't demand the inserted element, return the base vector.
715     SDValue Vec = Op.getOperand(0);
716     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
717     EVT VecVT = Vec.getValueType();
718     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
719         !DemandedElts[CIdx->getZExtValue()])
720       return Vec;
721     break;
722   }
723   case ISD::VECTOR_SHUFFLE: {
724     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
725 
726     // If all the demanded elts are from one operand and are inline,
727     // then we can use the operand directly.
728     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
729     for (unsigned i = 0; i != NumElts; ++i) {
730       int M = ShuffleMask[i];
731       if (M < 0 || !DemandedElts[i])
732         continue;
733       AllUndef = false;
734       IdentityLHS &= (M == (int)i);
735       IdentityRHS &= ((M - NumElts) == i);
736     }
737 
738     if (AllUndef)
739       return DAG.getUNDEF(Op.getValueType());
740     if (IdentityLHS)
741       return Op.getOperand(0);
742     if (IdentityRHS)
743       return Op.getOperand(1);
744     break;
745   }
746   default:
747     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
748       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
749               Op, DemandedBits, DemandedElts, DAG, Depth))
750         return V;
751     break;
752   }
753   return SDValue();
754 }
755 
756 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
757 /// result of Op are ever used downstream. If we can use this information to
758 /// simplify Op, create a new simplified DAG node and return true, returning the
759 /// original and new nodes in Old and New. Otherwise, analyze the expression and
760 /// return a mask of Known bits for the expression (used to simplify the
761 /// caller).  The Known bits may only be accurate for those bits in the
762 /// OriginalDemandedBits and OriginalDemandedElts.
763 bool TargetLowering::SimplifyDemandedBits(
764     SDValue Op, const APInt &OriginalDemandedBits,
765     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
766     unsigned Depth, bool AssumeSingleUse) const {
767   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
768   assert(Op.getScalarValueSizeInBits() == BitWidth &&
769          "Mask size mismatches value type size!");
770 
771   unsigned NumElts = OriginalDemandedElts.getBitWidth();
772   assert((!Op.getValueType().isVector() ||
773           NumElts == Op.getValueType().getVectorNumElements()) &&
774          "Unexpected vector size");
775 
776   APInt DemandedBits = OriginalDemandedBits;
777   APInt DemandedElts = OriginalDemandedElts;
778   SDLoc dl(Op);
779   auto &DL = TLO.DAG.getDataLayout();
780 
781   // Don't know anything.
782   Known = KnownBits(BitWidth);
783 
784   // Undef operand.
785   if (Op.isUndef())
786     return false;
787 
788   if (Op.getOpcode() == ISD::Constant) {
789     // We know all of the bits for a constant!
790     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
791     Known.Zero = ~Known.One;
792     return false;
793   }
794 
795   // Other users may use these bits.
796   EVT VT = Op.getValueType();
797   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
798     if (Depth != 0) {
799       // If not at the root, Just compute the Known bits to
800       // simplify things downstream.
801       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
802       return false;
803     }
804     // If this is the root being simplified, allow it to have multiple uses,
805     // just set the DemandedBits/Elts to all bits.
806     DemandedBits = APInt::getAllOnesValue(BitWidth);
807     DemandedElts = APInt::getAllOnesValue(NumElts);
808   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
809     // Not demanding any bits/elts from Op.
810     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
811   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
812     // Limit search depth.
813     return false;
814   }
815 
816   KnownBits Known2, KnownOut;
817   switch (Op.getOpcode()) {
818   case ISD::TargetConstant:
819     llvm_unreachable("Can't simplify this node");
820   case ISD::SCALAR_TO_VECTOR: {
821     if (!DemandedElts[0])
822       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
823 
824     KnownBits SrcKnown;
825     SDValue Src = Op.getOperand(0);
826     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
827     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
828     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
829       return true;
830     Known = SrcKnown.zextOrTrunc(BitWidth, false);
831     break;
832   }
833   case ISD::BUILD_VECTOR:
834     // Collect the known bits that are shared by every demanded element.
835     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
836     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
837     return false; // Don't fall through, will infinitely loop.
838   case ISD::LOAD: {
839     LoadSDNode *LD = cast<LoadSDNode>(Op);
840     if (getTargetConstantFromLoad(LD)) {
841       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
842       return false; // Don't fall through, will infinitely loop.
843     }
844     break;
845   }
846   case ISD::INSERT_VECTOR_ELT: {
847     SDValue Vec = Op.getOperand(0);
848     SDValue Scl = Op.getOperand(1);
849     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
850     EVT VecVT = Vec.getValueType();
851 
852     // If index isn't constant, assume we need all vector elements AND the
853     // inserted element.
854     APInt DemandedVecElts(DemandedElts);
855     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
856       unsigned Idx = CIdx->getZExtValue();
857       DemandedVecElts.clearBit(Idx);
858 
859       // Inserted element is not required.
860       if (!DemandedElts[Idx])
861         return TLO.CombineTo(Op, Vec);
862     }
863 
864     KnownBits KnownScl;
865     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
866     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
867     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
868       return true;
869 
870     Known = KnownScl.zextOrTrunc(BitWidth, false);
871 
872     KnownBits KnownVec;
873     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
874                              Depth + 1))
875       return true;
876 
877     if (!!DemandedVecElts) {
878       Known.One &= KnownVec.One;
879       Known.Zero &= KnownVec.Zero;
880     }
881 
882     return false;
883   }
884   case ISD::INSERT_SUBVECTOR: {
885     SDValue Base = Op.getOperand(0);
886     SDValue Sub = Op.getOperand(1);
887     EVT SubVT = Sub.getValueType();
888     unsigned NumSubElts = SubVT.getVectorNumElements();
889 
890     // If index isn't constant, assume we need the original demanded base
891     // elements and ALL the inserted subvector elements.
892     APInt BaseElts = DemandedElts;
893     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
894     if (isa<ConstantSDNode>(Op.getOperand(2))) {
895       const APInt &Idx = Op.getConstantOperandAPInt(2);
896       if (Idx.ule(NumElts - NumSubElts)) {
897         unsigned SubIdx = Idx.getZExtValue();
898         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
899         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
900       }
901     }
902 
903     KnownBits KnownSub, KnownBase;
904     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
905                              Depth + 1))
906       return true;
907     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
908                              Depth + 1))
909       return true;
910 
911     Known.Zero.setAllBits();
912     Known.One.setAllBits();
913     if (!!SubElts) {
914         Known.One &= KnownSub.One;
915         Known.Zero &= KnownSub.Zero;
916     }
917     if (!!BaseElts) {
918         Known.One &= KnownBase.One;
919         Known.Zero &= KnownBase.Zero;
920     }
921     break;
922   }
923   case ISD::EXTRACT_SUBVECTOR: {
924     // If index isn't constant, assume we need all the source vector elements.
925     SDValue Src = Op.getOperand(0);
926     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
927     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
928     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
929     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
930       // Offset the demanded elts by the subvector index.
931       uint64_t Idx = SubIdx->getZExtValue();
932       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
933     }
934     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
935       return true;
936     break;
937   }
938   case ISD::CONCAT_VECTORS: {
939     Known.Zero.setAllBits();
940     Known.One.setAllBits();
941     EVT SubVT = Op.getOperand(0).getValueType();
942     unsigned NumSubVecs = Op.getNumOperands();
943     unsigned NumSubElts = SubVT.getVectorNumElements();
944     for (unsigned i = 0; i != NumSubVecs; ++i) {
945       APInt DemandedSubElts =
946           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
947       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
948                                Known2, TLO, Depth + 1))
949         return true;
950       // Known bits are shared by every demanded subvector element.
951       if (!!DemandedSubElts) {
952         Known.One &= Known2.One;
953         Known.Zero &= Known2.Zero;
954       }
955     }
956     break;
957   }
958   case ISD::VECTOR_SHUFFLE: {
959     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
960 
961     // Collect demanded elements from shuffle operands..
962     APInt DemandedLHS(NumElts, 0);
963     APInt DemandedRHS(NumElts, 0);
964     for (unsigned i = 0; i != NumElts; ++i) {
965       if (!DemandedElts[i])
966         continue;
967       int M = ShuffleMask[i];
968       if (M < 0) {
969         // For UNDEF elements, we don't know anything about the common state of
970         // the shuffle result.
971         DemandedLHS.clearAllBits();
972         DemandedRHS.clearAllBits();
973         break;
974       }
975       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
976       if (M < (int)NumElts)
977         DemandedLHS.setBit(M);
978       else
979         DemandedRHS.setBit(M - NumElts);
980     }
981 
982     if (!!DemandedLHS || !!DemandedRHS) {
983       SDValue Op0 = Op.getOperand(0);
984       SDValue Op1 = Op.getOperand(1);
985 
986       Known.Zero.setAllBits();
987       Known.One.setAllBits();
988       if (!!DemandedLHS) {
989         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
990                                  Depth + 1))
991           return true;
992         Known.One &= Known2.One;
993         Known.Zero &= Known2.Zero;
994       }
995       if (!!DemandedRHS) {
996         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
997                                  Depth + 1))
998           return true;
999         Known.One &= Known2.One;
1000         Known.Zero &= Known2.Zero;
1001       }
1002 
1003       // Attempt to avoid multi-use ops if we don't need anything from them.
1004       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1005           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1006       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1007           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1008       if (DemandedOp0 || DemandedOp1) {
1009         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1010         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1011         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1012         return TLO.CombineTo(Op, NewOp);
1013       }
1014     }
1015     break;
1016   }
1017   case ISD::AND: {
1018     SDValue Op0 = Op.getOperand(0);
1019     SDValue Op1 = Op.getOperand(1);
1020 
1021     // If the RHS is a constant, check to see if the LHS would be zero without
1022     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1023     // simplify the LHS, here we're using information from the LHS to simplify
1024     // the RHS.
1025     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1026       // Do not increment Depth here; that can cause an infinite loop.
1027       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1028       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1029       if ((LHSKnown.Zero & DemandedBits) ==
1030           (~RHSC->getAPIntValue() & DemandedBits))
1031         return TLO.CombineTo(Op, Op0);
1032 
1033       // If any of the set bits in the RHS are known zero on the LHS, shrink
1034       // the constant.
1035       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1036         return true;
1037 
1038       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1039       // constant, but if this 'and' is only clearing bits that were just set by
1040       // the xor, then this 'and' can be eliminated by shrinking the mask of
1041       // the xor. For example, for a 32-bit X:
1042       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1043       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1044           LHSKnown.One == ~RHSC->getAPIntValue()) {
1045         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1046         return TLO.CombineTo(Op, Xor);
1047       }
1048     }
1049 
1050     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1051                              Depth + 1))
1052       return true;
1053     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1054     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1055                              Known2, TLO, Depth + 1))
1056       return true;
1057     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1058 
1059     // Attempt to avoid multi-use ops if we don't need anything from them.
1060     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1061       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1062           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1063       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1064           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1065       if (DemandedOp0 || DemandedOp1) {
1066         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1067         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1068         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1069         return TLO.CombineTo(Op, NewOp);
1070       }
1071     }
1072 
1073     // If all of the demanded bits are known one on one side, return the other.
1074     // These bits cannot contribute to the result of the 'and'.
1075     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1076       return TLO.CombineTo(Op, Op0);
1077     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1078       return TLO.CombineTo(Op, Op1);
1079     // If all of the demanded bits in the inputs are known zeros, return zero.
1080     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1081       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1082     // If the RHS is a constant, see if we can simplify it.
1083     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1084       return true;
1085     // If the operation can be done in a smaller type, do so.
1086     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1087       return true;
1088 
1089     // Output known-1 bits are only known if set in both the LHS & RHS.
1090     Known.One &= Known2.One;
1091     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1092     Known.Zero |= Known2.Zero;
1093     break;
1094   }
1095   case ISD::OR: {
1096     SDValue Op0 = Op.getOperand(0);
1097     SDValue Op1 = Op.getOperand(1);
1098 
1099     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1100                              Depth + 1))
1101       return true;
1102     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1103     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1104                              Known2, TLO, Depth + 1))
1105       return true;
1106     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1107 
1108     // Attempt to avoid multi-use ops if we don't need anything from them.
1109     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1110       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1111           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1112       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1113           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1114       if (DemandedOp0 || DemandedOp1) {
1115         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1116         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1117         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1118         return TLO.CombineTo(Op, NewOp);
1119       }
1120     }
1121 
1122     // If all of the demanded bits are known zero on one side, return the other.
1123     // These bits cannot contribute to the result of the 'or'.
1124     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1125       return TLO.CombineTo(Op, Op0);
1126     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1127       return TLO.CombineTo(Op, Op1);
1128     // If the RHS is a constant, see if we can simplify it.
1129     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1130       return true;
1131     // If the operation can be done in a smaller type, do so.
1132     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1133       return true;
1134 
1135     // Output known-0 bits are only known if clear in both the LHS & RHS.
1136     Known.Zero &= Known2.Zero;
1137     // Output known-1 are known to be set if set in either the LHS | RHS.
1138     Known.One |= Known2.One;
1139     break;
1140   }
1141   case ISD::XOR: {
1142     SDValue Op0 = Op.getOperand(0);
1143     SDValue Op1 = Op.getOperand(1);
1144 
1145     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1146                              Depth + 1))
1147       return true;
1148     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1149     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1150                              Depth + 1))
1151       return true;
1152     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1153 
1154     // Attempt to avoid multi-use ops if we don't need anything from them.
1155     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1156       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1157           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1158       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1159           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1160       if (DemandedOp0 || DemandedOp1) {
1161         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1162         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1163         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1164         return TLO.CombineTo(Op, NewOp);
1165       }
1166     }
1167 
1168     // If all of the demanded bits are known zero on one side, return the other.
1169     // These bits cannot contribute to the result of the 'xor'.
1170     if (DemandedBits.isSubsetOf(Known.Zero))
1171       return TLO.CombineTo(Op, Op0);
1172     if (DemandedBits.isSubsetOf(Known2.Zero))
1173       return TLO.CombineTo(Op, Op1);
1174     // If the operation can be done in a smaller type, do so.
1175     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1176       return true;
1177 
1178     // If all of the unknown bits are known to be zero on one side or the other
1179     // (but not both) turn this into an *inclusive* or.
1180     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1181     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1182       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1183 
1184     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1185     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1186     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1187     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1188 
1189     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1190       // If one side is a constant, and all of the known set bits on the other
1191       // side are also set in the constant, turn this into an AND, as we know
1192       // the bits will be cleared.
1193       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1194       // NB: it is okay if more bits are known than are requested
1195       if (C->getAPIntValue() == Known2.One) {
1196         SDValue ANDC =
1197             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1198         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1199       }
1200 
1201       // If the RHS is a constant, see if we can change it. Don't alter a -1
1202       // constant because that's a 'not' op, and that is better for combining
1203       // and codegen.
1204       if (!C->isAllOnesValue()) {
1205         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1206           // We're flipping all demanded bits. Flip the undemanded bits too.
1207           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1208           return TLO.CombineTo(Op, New);
1209         }
1210         // If we can't turn this into a 'not', try to shrink the constant.
1211         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1212           return true;
1213       }
1214     }
1215 
1216     Known = std::move(KnownOut);
1217     break;
1218   }
1219   case ISD::SELECT:
1220     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1221                              Depth + 1))
1222       return true;
1223     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1224                              Depth + 1))
1225       return true;
1226     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1227     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1228 
1229     // If the operands are constants, see if we can simplify them.
1230     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1231       return true;
1232 
1233     // Only known if known in both the LHS and RHS.
1234     Known.One &= Known2.One;
1235     Known.Zero &= Known2.Zero;
1236     break;
1237   case ISD::SELECT_CC:
1238     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1242                              Depth + 1))
1243       return true;
1244     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1245     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1246 
1247     // If the operands are constants, see if we can simplify them.
1248     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1249       return true;
1250 
1251     // Only known if known in both the LHS and RHS.
1252     Known.One &= Known2.One;
1253     Known.Zero &= Known2.Zero;
1254     break;
1255   case ISD::SETCC: {
1256     SDValue Op0 = Op.getOperand(0);
1257     SDValue Op1 = Op.getOperand(1);
1258     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1259     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1260     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1261     // -1, we may be able to bypass the setcc.
1262     if (DemandedBits.isSignMask() &&
1263         Op0.getScalarValueSizeInBits() == BitWidth &&
1264         getBooleanContents(Op0.getValueType()) ==
1265             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1266       // If we're testing X < 0, then this compare isn't needed - just use X!
1267       // FIXME: We're limiting to integer types here, but this should also work
1268       // if we don't care about FP signed-zero. The use of SETLT with FP means
1269       // that we don't care about NaNs.
1270       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1271           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1272         return TLO.CombineTo(Op, Op0);
1273 
1274       // TODO: Should we check for other forms of sign-bit comparisons?
1275       // Examples: X <= -1, X >= 0
1276     }
1277     if (getBooleanContents(Op0.getValueType()) ==
1278             TargetLowering::ZeroOrOneBooleanContent &&
1279         BitWidth > 1)
1280       Known.Zero.setBitsFrom(1);
1281     break;
1282   }
1283   case ISD::SHL: {
1284     SDValue Op0 = Op.getOperand(0);
1285     SDValue Op1 = Op.getOperand(1);
1286 
1287     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1288       // If the shift count is an invalid immediate, don't do anything.
1289       if (SA->getAPIntValue().uge(BitWidth))
1290         break;
1291 
1292       unsigned ShAmt = SA->getZExtValue();
1293       if (ShAmt == 0)
1294         return TLO.CombineTo(Op, Op0);
1295 
1296       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1297       // single shift.  We can do this if the bottom bits (which are shifted
1298       // out) are never demanded.
1299       // TODO - support non-uniform vector amounts.
1300       if (Op0.getOpcode() == ISD::SRL) {
1301         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1302           if (ConstantSDNode *SA2 =
1303                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1304             if (SA2->getAPIntValue().ult(BitWidth)) {
1305               unsigned C1 = SA2->getZExtValue();
1306               unsigned Opc = ISD::SHL;
1307               int Diff = ShAmt - C1;
1308               if (Diff < 0) {
1309                 Diff = -Diff;
1310                 Opc = ISD::SRL;
1311               }
1312 
1313               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1314               return TLO.CombineTo(
1315                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1316             }
1317           }
1318         }
1319       }
1320 
1321       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1322                                Known, TLO, Depth + 1))
1323         return true;
1324 
1325       // Try shrinking the operation as long as the shift amount will still be
1326       // in range.
1327       if ((ShAmt < DemandedBits.getActiveBits()) &&
1328           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1329         return true;
1330 
1331       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1332       // are not demanded. This will likely allow the anyext to be folded away.
1333       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1334         SDValue InnerOp = Op0.getOperand(0);
1335         EVT InnerVT = InnerOp.getValueType();
1336         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1337         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1338             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1339           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1340           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1341             ShTy = InnerVT;
1342           SDValue NarrowShl =
1343               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1344                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1345           return TLO.CombineTo(
1346               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1347         }
1348         // Repeat the SHL optimization above in cases where an extension
1349         // intervenes: (shl (anyext (shr x, c1)), c2) to
1350         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1351         // aren't demanded (as above) and that the shifted upper c1 bits of
1352         // x aren't demanded.
1353         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1354             InnerOp.hasOneUse()) {
1355           if (ConstantSDNode *SA2 =
1356                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1357             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1358             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1359                 DemandedBits.getActiveBits() <=
1360                     (InnerBits - InnerShAmt + ShAmt) &&
1361                 DemandedBits.countTrailingZeros() >= ShAmt) {
1362               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1363                                                   Op1.getValueType());
1364               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1365                                                InnerOp.getOperand(0));
1366               return TLO.CombineTo(
1367                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1368             }
1369           }
1370         }
1371       }
1372 
1373       Known.Zero <<= ShAmt;
1374       Known.One <<= ShAmt;
1375       // low bits known zero.
1376       Known.Zero.setLowBits(ShAmt);
1377     }
1378     break;
1379   }
1380   case ISD::SRL: {
1381     SDValue Op0 = Op.getOperand(0);
1382     SDValue Op1 = Op.getOperand(1);
1383 
1384     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1385       // If the shift count is an invalid immediate, don't do anything.
1386       if (SA->getAPIntValue().uge(BitWidth))
1387         break;
1388 
1389       unsigned ShAmt = SA->getZExtValue();
1390       if (ShAmt == 0)
1391         return TLO.CombineTo(Op, Op0);
1392 
1393       EVT ShiftVT = Op1.getValueType();
1394       APInt InDemandedMask = (DemandedBits << ShAmt);
1395 
1396       // If the shift is exact, then it does demand the low bits (and knows that
1397       // they are zero).
1398       if (Op->getFlags().hasExact())
1399         InDemandedMask.setLowBits(ShAmt);
1400 
1401       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1402       // single shift.  We can do this if the top bits (which are shifted out)
1403       // are never demanded.
1404       // TODO - support non-uniform vector amounts.
1405       if (Op0.getOpcode() == ISD::SHL) {
1406         if (ConstantSDNode *SA2 =
1407                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1408           if (!DemandedBits.intersects(
1409                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1410             if (SA2->getAPIntValue().ult(BitWidth)) {
1411               unsigned C1 = SA2->getZExtValue();
1412               unsigned Opc = ISD::SRL;
1413               int Diff = ShAmt - C1;
1414               if (Diff < 0) {
1415                 Diff = -Diff;
1416                 Opc = ISD::SHL;
1417               }
1418 
1419               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1420               return TLO.CombineTo(
1421                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1422             }
1423           }
1424         }
1425       }
1426 
1427       // Compute the new bits that are at the top now.
1428       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1429                                Depth + 1))
1430         return true;
1431       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1432       Known.Zero.lshrInPlace(ShAmt);
1433       Known.One.lshrInPlace(ShAmt);
1434 
1435       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1436     }
1437     break;
1438   }
1439   case ISD::SRA: {
1440     SDValue Op0 = Op.getOperand(0);
1441     SDValue Op1 = Op.getOperand(1);
1442 
1443     // If this is an arithmetic shift right and only the low-bit is set, we can
1444     // always convert this into a logical shr, even if the shift amount is
1445     // variable.  The low bit of the shift cannot be an input sign bit unless
1446     // the shift amount is >= the size of the datatype, which is undefined.
1447     if (DemandedBits.isOneValue())
1448       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1449 
1450     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1451       // If the shift count is an invalid immediate, don't do anything.
1452       if (SA->getAPIntValue().uge(BitWidth))
1453         break;
1454 
1455       unsigned ShAmt = SA->getZExtValue();
1456       if (ShAmt == 0)
1457         return TLO.CombineTo(Op, Op0);
1458 
1459       APInt InDemandedMask = (DemandedBits << ShAmt);
1460 
1461       // If the shift is exact, then it does demand the low bits (and knows that
1462       // they are zero).
1463       if (Op->getFlags().hasExact())
1464         InDemandedMask.setLowBits(ShAmt);
1465 
1466       // If any of the demanded bits are produced by the sign extension, we also
1467       // demand the input sign bit.
1468       if (DemandedBits.countLeadingZeros() < ShAmt)
1469         InDemandedMask.setSignBit();
1470 
1471       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1472                                Depth + 1))
1473         return true;
1474       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1475       Known.Zero.lshrInPlace(ShAmt);
1476       Known.One.lshrInPlace(ShAmt);
1477 
1478       // If the input sign bit is known to be zero, or if none of the top bits
1479       // are demanded, turn this into an unsigned shift right.
1480       if (Known.Zero[BitWidth - ShAmt - 1] ||
1481           DemandedBits.countLeadingZeros() >= ShAmt) {
1482         SDNodeFlags Flags;
1483         Flags.setExact(Op->getFlags().hasExact());
1484         return TLO.CombineTo(
1485             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1486       }
1487 
1488       int Log2 = DemandedBits.exactLogBase2();
1489       if (Log2 >= 0) {
1490         // The bit must come from the sign.
1491         SDValue NewSA =
1492             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1493         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1494       }
1495 
1496       if (Known.One[BitWidth - ShAmt - 1])
1497         // New bits are known one.
1498         Known.One.setHighBits(ShAmt);
1499     }
1500     break;
1501   }
1502   case ISD::FSHL:
1503   case ISD::FSHR: {
1504     SDValue Op0 = Op.getOperand(0);
1505     SDValue Op1 = Op.getOperand(1);
1506     SDValue Op2 = Op.getOperand(2);
1507     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1508 
1509     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1510       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1511 
1512       // For fshl, 0-shift returns the 1st arg.
1513       // For fshr, 0-shift returns the 2nd arg.
1514       if (Amt == 0) {
1515         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1516                                  Known, TLO, Depth + 1))
1517           return true;
1518         break;
1519       }
1520 
1521       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1522       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1523       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1524       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1525       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1526                                Depth + 1))
1527         return true;
1528       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1529                                Depth + 1))
1530         return true;
1531 
1532       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1533       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1534       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1535       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1536       Known.One |= Known2.One;
1537       Known.Zero |= Known2.Zero;
1538     }
1539     break;
1540   }
1541   case ISD::BITREVERSE: {
1542     SDValue Src = Op.getOperand(0);
1543     APInt DemandedSrcBits = DemandedBits.reverseBits();
1544     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     Known.One = Known2.One.reverseBits();
1548     Known.Zero = Known2.Zero.reverseBits();
1549     break;
1550   }
1551   case ISD::BSWAP: {
1552     SDValue Src = Op.getOperand(0);
1553     APInt DemandedSrcBits = DemandedBits.byteSwap();
1554     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1555                              Depth + 1))
1556       return true;
1557     Known.One = Known2.One.byteSwap();
1558     Known.Zero = Known2.Zero.byteSwap();
1559     break;
1560   }
1561   case ISD::SIGN_EXTEND_INREG: {
1562     SDValue Op0 = Op.getOperand(0);
1563     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1564     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1565 
1566     // If we only care about the highest bit, don't bother shifting right.
1567     if (DemandedBits.isSignMask()) {
1568       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1569       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1570       // However if the input is already sign extended we expect the sign
1571       // extension to be dropped altogether later and do not simplify.
1572       if (!AlreadySignExtended) {
1573         // Compute the correct shift amount type, which must be getShiftAmountTy
1574         // for scalar types after legalization.
1575         EVT ShiftAmtTy = VT;
1576         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1577           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1578 
1579         SDValue ShiftAmt =
1580             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1581         return TLO.CombineTo(Op,
1582                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1583       }
1584     }
1585 
1586     // If none of the extended bits are demanded, eliminate the sextinreg.
1587     if (DemandedBits.getActiveBits() <= ExVTBits)
1588       return TLO.CombineTo(Op, Op0);
1589 
1590     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1591 
1592     // Since the sign extended bits are demanded, we know that the sign
1593     // bit is demanded.
1594     InputDemandedBits.setBit(ExVTBits - 1);
1595 
1596     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1597       return true;
1598     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1599 
1600     // If the sign bit of the input is known set or clear, then we know the
1601     // top bits of the result.
1602 
1603     // If the input sign bit is known zero, convert this into a zero extension.
1604     if (Known.Zero[ExVTBits - 1])
1605       return TLO.CombineTo(
1606           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1607 
1608     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1609     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1610       Known.One.setBitsFrom(ExVTBits);
1611       Known.Zero &= Mask;
1612     } else { // Input sign bit unknown
1613       Known.Zero &= Mask;
1614       Known.One &= Mask;
1615     }
1616     break;
1617   }
1618   case ISD::BUILD_PAIR: {
1619     EVT HalfVT = Op.getOperand(0).getValueType();
1620     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1621 
1622     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1623     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1624 
1625     KnownBits KnownLo, KnownHi;
1626 
1627     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1628       return true;
1629 
1630     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1631       return true;
1632 
1633     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1634                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1635 
1636     Known.One = KnownLo.One.zext(BitWidth) |
1637                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1638     break;
1639   }
1640   case ISD::ZERO_EXTEND:
1641   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1642     SDValue Src = Op.getOperand(0);
1643     EVT SrcVT = Src.getValueType();
1644     unsigned InBits = SrcVT.getScalarSizeInBits();
1645     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1646     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1647 
1648     // If none of the top bits are demanded, convert this into an any_extend.
1649     if (DemandedBits.getActiveBits() <= InBits) {
1650       // If we only need the non-extended bits of the bottom element
1651       // then we can just bitcast to the result.
1652       if (IsVecInReg && DemandedElts == 1 &&
1653           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1654           TLO.DAG.getDataLayout().isLittleEndian())
1655         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1656 
1657       unsigned Opc =
1658           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1659       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1660         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1661     }
1662 
1663     APInt InDemandedBits = DemandedBits.trunc(InBits);
1664     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1665     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1666                              Depth + 1))
1667       return true;
1668     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1669     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1670     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1671     break;
1672   }
1673   case ISD::SIGN_EXTEND:
1674   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1675     SDValue Src = Op.getOperand(0);
1676     EVT SrcVT = Src.getValueType();
1677     unsigned InBits = SrcVT.getScalarSizeInBits();
1678     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1679     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1680 
1681     // If none of the top bits are demanded, convert this into an any_extend.
1682     if (DemandedBits.getActiveBits() <= InBits) {
1683       // If we only need the non-extended bits of the bottom element
1684       // then we can just bitcast to the result.
1685       if (IsVecInReg && DemandedElts == 1 &&
1686           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1687           TLO.DAG.getDataLayout().isLittleEndian())
1688         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1689 
1690       unsigned Opc =
1691           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1692       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1693         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1694     }
1695 
1696     APInt InDemandedBits = DemandedBits.trunc(InBits);
1697     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1698 
1699     // Since some of the sign extended bits are demanded, we know that the sign
1700     // bit is demanded.
1701     InDemandedBits.setBit(InBits - 1);
1702 
1703     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1704                              Depth + 1))
1705       return true;
1706     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1707     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1708 
1709     // If the sign bit is known one, the top bits match.
1710     Known = Known.sext(BitWidth);
1711 
1712     // If the sign bit is known zero, convert this to a zero extend.
1713     if (Known.isNonNegative()) {
1714       unsigned Opc =
1715           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1716       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1717         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1718     }
1719     break;
1720   }
1721   case ISD::ANY_EXTEND:
1722   case ISD::ANY_EXTEND_VECTOR_INREG: {
1723     SDValue Src = Op.getOperand(0);
1724     EVT SrcVT = Src.getValueType();
1725     unsigned InBits = SrcVT.getScalarSizeInBits();
1726     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1727     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1728 
1729     // If we only need the bottom element then we can just bitcast.
1730     // TODO: Handle ANY_EXTEND?
1731     if (IsVecInReg && DemandedElts == 1 &&
1732         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1733         TLO.DAG.getDataLayout().isLittleEndian())
1734       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1735 
1736     APInt InDemandedBits = DemandedBits.trunc(InBits);
1737     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1738     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1739                              Depth + 1))
1740       return true;
1741     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1742     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1743     Known = Known.zext(BitWidth, false /* => any extend */);
1744     break;
1745   }
1746   case ISD::TRUNCATE: {
1747     SDValue Src = Op.getOperand(0);
1748 
1749     // Simplify the input, using demanded bit information, and compute the known
1750     // zero/one bits live out.
1751     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1752     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1753     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1754       return true;
1755     Known = Known.trunc(BitWidth);
1756 
1757     // Attempt to avoid multi-use ops if we don't need anything from them.
1758     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1759             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1760       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1761 
1762     // If the input is only used by this truncate, see if we can shrink it based
1763     // on the known demanded bits.
1764     if (Src.getNode()->hasOneUse()) {
1765       switch (Src.getOpcode()) {
1766       default:
1767         break;
1768       case ISD::SRL:
1769         // Shrink SRL by a constant if none of the high bits shifted in are
1770         // demanded.
1771         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1772           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1773           // undesirable.
1774           break;
1775 
1776         SDValue ShAmt = Src.getOperand(1);
1777         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1778         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1779           break;
1780         uint64_t ShVal = ShAmtC->getZExtValue();
1781 
1782         APInt HighBits =
1783             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1784         HighBits.lshrInPlace(ShVal);
1785         HighBits = HighBits.trunc(BitWidth);
1786 
1787         if (!(HighBits & DemandedBits)) {
1788           // None of the shifted in bits are needed.  Add a truncate of the
1789           // shift input, then shift it.
1790           if (TLO.LegalTypes())
1791             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1792           SDValue NewTrunc =
1793               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1794           return TLO.CombineTo(
1795               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1796         }
1797         break;
1798       }
1799     }
1800 
1801     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1802     break;
1803   }
1804   case ISD::AssertZext: {
1805     // AssertZext demands all of the high bits, plus any of the low bits
1806     // demanded by its users.
1807     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1808     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1809     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1810                              TLO, Depth + 1))
1811       return true;
1812     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1813 
1814     Known.Zero |= ~InMask;
1815     break;
1816   }
1817   case ISD::EXTRACT_VECTOR_ELT: {
1818     SDValue Src = Op.getOperand(0);
1819     SDValue Idx = Op.getOperand(1);
1820     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1821     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1822 
1823     // Demand the bits from every vector element without a constant index.
1824     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1825     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1826       if (CIdx->getAPIntValue().ult(NumSrcElts))
1827         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1828 
1829     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1830     // anything about the extended bits.
1831     APInt DemandedSrcBits = DemandedBits;
1832     if (BitWidth > EltBitWidth)
1833       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1834 
1835     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1836                              Depth + 1))
1837       return true;
1838 
1839     // Attempt to avoid multi-use ops if we don't need anything from them.
1840     if (!DemandedSrcBits.isAllOnesValue() ||
1841         !DemandedSrcElts.isAllOnesValue()) {
1842       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1843               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1844         SDValue NewOp =
1845             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1846         return TLO.CombineTo(Op, NewOp);
1847       }
1848     }
1849 
1850     Known = Known2;
1851     if (BitWidth > EltBitWidth)
1852       Known = Known.zext(BitWidth, false /* => any extend */);
1853     break;
1854   }
1855   case ISD::BITCAST: {
1856     SDValue Src = Op.getOperand(0);
1857     EVT SrcVT = Src.getValueType();
1858     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1859 
1860     // If this is an FP->Int bitcast and if the sign bit is the only
1861     // thing demanded, turn this into a FGETSIGN.
1862     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1863         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1864         SrcVT.isFloatingPoint()) {
1865       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1866       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1867       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1868           SrcVT != MVT::f128) {
1869         // Cannot eliminate/lower SHL for f128 yet.
1870         EVT Ty = OpVTLegal ? VT : MVT::i32;
1871         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1872         // place.  We expect the SHL to be eliminated by other optimizations.
1873         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1874         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1875         if (!OpVTLegal && OpVTSizeInBits > 32)
1876           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1877         unsigned ShVal = Op.getValueSizeInBits() - 1;
1878         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1879         return TLO.CombineTo(Op,
1880                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1881       }
1882     }
1883 
1884     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1885     // Demand the elt/bit if any of the original elts/bits are demanded.
1886     // TODO - bigendian once we have test coverage.
1887     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1888         TLO.DAG.getDataLayout().isLittleEndian()) {
1889       unsigned Scale = BitWidth / NumSrcEltBits;
1890       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1891       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1892       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1893       for (unsigned i = 0; i != Scale; ++i) {
1894         unsigned Offset = i * NumSrcEltBits;
1895         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1896         if (!Sub.isNullValue()) {
1897           DemandedSrcBits |= Sub;
1898           for (unsigned j = 0; j != NumElts; ++j)
1899             if (DemandedElts[j])
1900               DemandedSrcElts.setBit((j * Scale) + i);
1901         }
1902       }
1903 
1904       APInt KnownSrcUndef, KnownSrcZero;
1905       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1906                                      KnownSrcZero, TLO, Depth + 1))
1907         return true;
1908 
1909       KnownBits KnownSrcBits;
1910       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1911                                KnownSrcBits, TLO, Depth + 1))
1912         return true;
1913     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1914                TLO.DAG.getDataLayout().isLittleEndian()) {
1915       unsigned Scale = NumSrcEltBits / BitWidth;
1916       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1917       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1918       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1919       for (unsigned i = 0; i != NumElts; ++i)
1920         if (DemandedElts[i]) {
1921           unsigned Offset = (i % Scale) * BitWidth;
1922           DemandedSrcBits.insertBits(DemandedBits, Offset);
1923           DemandedSrcElts.setBit(i / Scale);
1924         }
1925 
1926       if (SrcVT.isVector()) {
1927         APInt KnownSrcUndef, KnownSrcZero;
1928         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1929                                        KnownSrcZero, TLO, Depth + 1))
1930           return true;
1931       }
1932 
1933       KnownBits KnownSrcBits;
1934       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1935                                KnownSrcBits, TLO, Depth + 1))
1936         return true;
1937     }
1938 
1939     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1940     // recursive call where Known may be useful to the caller.
1941     if (Depth > 0) {
1942       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1943       return false;
1944     }
1945     break;
1946   }
1947   case ISD::ADD:
1948   case ISD::MUL:
1949   case ISD::SUB: {
1950     // Add, Sub, and Mul don't demand any bits in positions beyond that
1951     // of the highest bit demanded of them.
1952     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1953     SDNodeFlags Flags = Op.getNode()->getFlags();
1954     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1955     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1956     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1957                              Depth + 1) ||
1958         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1959                              Depth + 1) ||
1960         // See if the operation should be performed at a smaller bit width.
1961         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1962       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1963         // Disable the nsw and nuw flags. We can no longer guarantee that we
1964         // won't wrap after simplification.
1965         Flags.setNoSignedWrap(false);
1966         Flags.setNoUnsignedWrap(false);
1967         SDValue NewOp =
1968             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1969         return TLO.CombineTo(Op, NewOp);
1970       }
1971       return true;
1972     }
1973 
1974     // Attempt to avoid multi-use ops if we don't need anything from them.
1975     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1976       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1977           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1978       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1979           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1980       if (DemandedOp0 || DemandedOp1) {
1981         Flags.setNoSignedWrap(false);
1982         Flags.setNoUnsignedWrap(false);
1983         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1984         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1985         SDValue NewOp =
1986             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1987         return TLO.CombineTo(Op, NewOp);
1988       }
1989     }
1990 
1991     // If we have a constant operand, we may be able to turn it into -1 if we
1992     // do not demand the high bits. This can make the constant smaller to
1993     // encode, allow more general folding, or match specialized instruction
1994     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1995     // is probably not useful (and could be detrimental).
1996     ConstantSDNode *C = isConstOrConstSplat(Op1);
1997     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1998     if (C && !C->isAllOnesValue() && !C->isOne() &&
1999         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2000       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2001       // Disable the nsw and nuw flags. We can no longer guarantee that we
2002       // won't wrap after simplification.
2003       Flags.setNoSignedWrap(false);
2004       Flags.setNoUnsignedWrap(false);
2005       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2006       return TLO.CombineTo(Op, NewOp);
2007     }
2008 
2009     LLVM_FALLTHROUGH;
2010   }
2011   default:
2012     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2013       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2014                                             Known, TLO, Depth))
2015         return true;
2016       break;
2017     }
2018 
2019     // Just use computeKnownBits to compute output bits.
2020     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2021     break;
2022   }
2023 
2024   // If we know the value of all of the demanded bits, return this as a
2025   // constant.
2026   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2027     // Avoid folding to a constant if any OpaqueConstant is involved.
2028     const SDNode *N = Op.getNode();
2029     for (SDNodeIterator I = SDNodeIterator::begin(N),
2030                         E = SDNodeIterator::end(N);
2031          I != E; ++I) {
2032       SDNode *Op = *I;
2033       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2034         if (C->isOpaque())
2035           return false;
2036     }
2037     // TODO: Handle float bits as well.
2038     if (VT.isInteger())
2039       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2040   }
2041 
2042   return false;
2043 }
2044 
2045 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2046                                                 const APInt &DemandedElts,
2047                                                 APInt &KnownUndef,
2048                                                 APInt &KnownZero,
2049                                                 DAGCombinerInfo &DCI) const {
2050   SelectionDAG &DAG = DCI.DAG;
2051   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2052                         !DCI.isBeforeLegalizeOps());
2053 
2054   bool Simplified =
2055       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2056   if (Simplified) {
2057     DCI.AddToWorklist(Op.getNode());
2058     DCI.CommitTargetLoweringOpt(TLO);
2059   }
2060 
2061   return Simplified;
2062 }
2063 
2064 /// Given a vector binary operation and known undefined elements for each input
2065 /// operand, compute whether each element of the output is undefined.
2066 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2067                                          const APInt &UndefOp0,
2068                                          const APInt &UndefOp1) {
2069   EVT VT = BO.getValueType();
2070   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2071          "Vector binop only");
2072 
2073   EVT EltVT = VT.getVectorElementType();
2074   unsigned NumElts = VT.getVectorNumElements();
2075   assert(UndefOp0.getBitWidth() == NumElts &&
2076          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2077 
2078   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2079                                    const APInt &UndefVals) {
2080     if (UndefVals[Index])
2081       return DAG.getUNDEF(EltVT);
2082 
2083     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2084       // Try hard to make sure that the getNode() call is not creating temporary
2085       // nodes. Ignore opaque integers because they do not constant fold.
2086       SDValue Elt = BV->getOperand(Index);
2087       auto *C = dyn_cast<ConstantSDNode>(Elt);
2088       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2089         return Elt;
2090     }
2091 
2092     return SDValue();
2093   };
2094 
2095   APInt KnownUndef = APInt::getNullValue(NumElts);
2096   for (unsigned i = 0; i != NumElts; ++i) {
2097     // If both inputs for this element are either constant or undef and match
2098     // the element type, compute the constant/undef result for this element of
2099     // the vector.
2100     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2101     // not handle FP constants. The code within getNode() should be refactored
2102     // to avoid the danger of creating a bogus temporary node here.
2103     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2104     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2105     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2106       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2107         KnownUndef.setBit(i);
2108   }
2109   return KnownUndef;
2110 }
2111 
2112 bool TargetLowering::SimplifyDemandedVectorElts(
2113     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2114     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2115     bool AssumeSingleUse) const {
2116   EVT VT = Op.getValueType();
2117   APInt DemandedElts = OriginalDemandedElts;
2118   unsigned NumElts = DemandedElts.getBitWidth();
2119   assert(VT.isVector() && "Expected vector op");
2120   assert(VT.getVectorNumElements() == NumElts &&
2121          "Mask size mismatches value type element count!");
2122 
2123   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2124 
2125   // Undef operand.
2126   if (Op.isUndef()) {
2127     KnownUndef.setAllBits();
2128     return false;
2129   }
2130 
2131   // If Op has other users, assume that all elements are needed.
2132   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2133     DemandedElts.setAllBits();
2134 
2135   // Not demanding any elements from Op.
2136   if (DemandedElts == 0) {
2137     KnownUndef.setAllBits();
2138     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2139   }
2140 
2141   // Limit search depth.
2142   if (Depth >= SelectionDAG::MaxRecursionDepth)
2143     return false;
2144 
2145   SDLoc DL(Op);
2146   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2147 
2148   switch (Op.getOpcode()) {
2149   case ISD::SCALAR_TO_VECTOR: {
2150     if (!DemandedElts[0]) {
2151       KnownUndef.setAllBits();
2152       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2153     }
2154     KnownUndef.setHighBits(NumElts - 1);
2155     break;
2156   }
2157   case ISD::BITCAST: {
2158     SDValue Src = Op.getOperand(0);
2159     EVT SrcVT = Src.getValueType();
2160 
2161     // We only handle vectors here.
2162     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2163     if (!SrcVT.isVector())
2164       break;
2165 
2166     // Fast handling of 'identity' bitcasts.
2167     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2168     if (NumSrcElts == NumElts)
2169       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2170                                         KnownZero, TLO, Depth + 1);
2171 
2172     APInt SrcZero, SrcUndef;
2173     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2174 
2175     // Bitcast from 'large element' src vector to 'small element' vector, we
2176     // must demand a source element if any DemandedElt maps to it.
2177     if ((NumElts % NumSrcElts) == 0) {
2178       unsigned Scale = NumElts / NumSrcElts;
2179       for (unsigned i = 0; i != NumElts; ++i)
2180         if (DemandedElts[i])
2181           SrcDemandedElts.setBit(i / Scale);
2182 
2183       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2184                                      TLO, Depth + 1))
2185         return true;
2186 
2187       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2188       // of the large element.
2189       // TODO - bigendian once we have test coverage.
2190       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2191         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2192         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2193         for (unsigned i = 0; i != NumElts; ++i)
2194           if (DemandedElts[i]) {
2195             unsigned Ofs = (i % Scale) * EltSizeInBits;
2196             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2197           }
2198 
2199         KnownBits Known;
2200         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2201           return true;
2202       }
2203 
2204       // If the src element is zero/undef then all the output elements will be -
2205       // only demanded elements are guaranteed to be correct.
2206       for (unsigned i = 0; i != NumSrcElts; ++i) {
2207         if (SrcDemandedElts[i]) {
2208           if (SrcZero[i])
2209             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2210           if (SrcUndef[i])
2211             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2212         }
2213       }
2214     }
2215 
2216     // Bitcast from 'small element' src vector to 'large element' vector, we
2217     // demand all smaller source elements covered by the larger demanded element
2218     // of this vector.
2219     if ((NumSrcElts % NumElts) == 0) {
2220       unsigned Scale = NumSrcElts / NumElts;
2221       for (unsigned i = 0; i != NumElts; ++i)
2222         if (DemandedElts[i])
2223           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2224 
2225       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2226                                      TLO, Depth + 1))
2227         return true;
2228 
2229       // If all the src elements covering an output element are zero/undef, then
2230       // the output element will be as well, assuming it was demanded.
2231       for (unsigned i = 0; i != NumElts; ++i) {
2232         if (DemandedElts[i]) {
2233           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2234             KnownZero.setBit(i);
2235           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2236             KnownUndef.setBit(i);
2237         }
2238       }
2239     }
2240     break;
2241   }
2242   case ISD::BUILD_VECTOR: {
2243     // Check all elements and simplify any unused elements with UNDEF.
2244     if (!DemandedElts.isAllOnesValue()) {
2245       // Don't simplify BROADCASTS.
2246       if (llvm::any_of(Op->op_values(),
2247                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2248         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2249         bool Updated = false;
2250         for (unsigned i = 0; i != NumElts; ++i) {
2251           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2252             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2253             KnownUndef.setBit(i);
2254             Updated = true;
2255           }
2256         }
2257         if (Updated)
2258           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2259       }
2260     }
2261     for (unsigned i = 0; i != NumElts; ++i) {
2262       SDValue SrcOp = Op.getOperand(i);
2263       if (SrcOp.isUndef()) {
2264         KnownUndef.setBit(i);
2265       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2266                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2267         KnownZero.setBit(i);
2268       }
2269     }
2270     break;
2271   }
2272   case ISD::CONCAT_VECTORS: {
2273     EVT SubVT = Op.getOperand(0).getValueType();
2274     unsigned NumSubVecs = Op.getNumOperands();
2275     unsigned NumSubElts = SubVT.getVectorNumElements();
2276     for (unsigned i = 0; i != NumSubVecs; ++i) {
2277       SDValue SubOp = Op.getOperand(i);
2278       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2279       APInt SubUndef, SubZero;
2280       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2281                                      Depth + 1))
2282         return true;
2283       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2284       KnownZero.insertBits(SubZero, i * NumSubElts);
2285     }
2286     break;
2287   }
2288   case ISD::INSERT_SUBVECTOR: {
2289     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2290       break;
2291     SDValue Base = Op.getOperand(0);
2292     SDValue Sub = Op.getOperand(1);
2293     EVT SubVT = Sub.getValueType();
2294     unsigned NumSubElts = SubVT.getVectorNumElements();
2295     const APInt &Idx = Op.getConstantOperandAPInt(2);
2296     if (Idx.ugt(NumElts - NumSubElts))
2297       break;
2298     unsigned SubIdx = Idx.getZExtValue();
2299     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2300     APInt SubUndef, SubZero;
2301     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2302                                    Depth + 1))
2303       return true;
2304     APInt BaseElts = DemandedElts;
2305     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2306 
2307     // If none of the base operand elements are demanded, replace it with undef.
2308     if (!BaseElts && !Base.isUndef())
2309       return TLO.CombineTo(Op,
2310                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2311                                            TLO.DAG.getUNDEF(VT),
2312                                            Op.getOperand(1),
2313                                            Op.getOperand(2)));
2314 
2315     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2316                                    Depth + 1))
2317       return true;
2318     KnownUndef.insertBits(SubUndef, SubIdx);
2319     KnownZero.insertBits(SubZero, SubIdx);
2320     break;
2321   }
2322   case ISD::EXTRACT_SUBVECTOR: {
2323     SDValue Src = Op.getOperand(0);
2324     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2325     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2326     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2327       // Offset the demanded elts by the subvector index.
2328       uint64_t Idx = SubIdx->getZExtValue();
2329       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2330       APInt SrcUndef, SrcZero;
2331       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2332                                      Depth + 1))
2333         return true;
2334       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2335       KnownZero = SrcZero.extractBits(NumElts, Idx);
2336     }
2337     break;
2338   }
2339   case ISD::INSERT_VECTOR_ELT: {
2340     SDValue Vec = Op.getOperand(0);
2341     SDValue Scl = Op.getOperand(1);
2342     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2343 
2344     // For a legal, constant insertion index, if we don't need this insertion
2345     // then strip it, else remove it from the demanded elts.
2346     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2347       unsigned Idx = CIdx->getZExtValue();
2348       if (!DemandedElts[Idx])
2349         return TLO.CombineTo(Op, Vec);
2350 
2351       APInt DemandedVecElts(DemandedElts);
2352       DemandedVecElts.clearBit(Idx);
2353       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2354                                      KnownZero, TLO, Depth + 1))
2355         return true;
2356 
2357       KnownUndef.clearBit(Idx);
2358       if (Scl.isUndef())
2359         KnownUndef.setBit(Idx);
2360 
2361       KnownZero.clearBit(Idx);
2362       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2363         KnownZero.setBit(Idx);
2364       break;
2365     }
2366 
2367     APInt VecUndef, VecZero;
2368     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2369                                    Depth + 1))
2370       return true;
2371     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2372     break;
2373   }
2374   case ISD::VSELECT: {
2375     // Try to transform the select condition based on the current demanded
2376     // elements.
2377     // TODO: If a condition element is undef, we can choose from one arm of the
2378     //       select (and if one arm is undef, then we can propagate that to the
2379     //       result).
2380     // TODO - add support for constant vselect masks (see IR version of this).
2381     APInt UnusedUndef, UnusedZero;
2382     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2383                                    UnusedZero, TLO, Depth + 1))
2384       return true;
2385 
2386     // See if we can simplify either vselect operand.
2387     APInt DemandedLHS(DemandedElts);
2388     APInt DemandedRHS(DemandedElts);
2389     APInt UndefLHS, ZeroLHS;
2390     APInt UndefRHS, ZeroRHS;
2391     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2392                                    ZeroLHS, TLO, Depth + 1))
2393       return true;
2394     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2395                                    ZeroRHS, TLO, Depth + 1))
2396       return true;
2397 
2398     KnownUndef = UndefLHS & UndefRHS;
2399     KnownZero = ZeroLHS & ZeroRHS;
2400     break;
2401   }
2402   case ISD::VECTOR_SHUFFLE: {
2403     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2404 
2405     // Collect demanded elements from shuffle operands..
2406     APInt DemandedLHS(NumElts, 0);
2407     APInt DemandedRHS(NumElts, 0);
2408     for (unsigned i = 0; i != NumElts; ++i) {
2409       int M = ShuffleMask[i];
2410       if (M < 0 || !DemandedElts[i])
2411         continue;
2412       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2413       if (M < (int)NumElts)
2414         DemandedLHS.setBit(M);
2415       else
2416         DemandedRHS.setBit(M - NumElts);
2417     }
2418 
2419     // See if we can simplify either shuffle operand.
2420     APInt UndefLHS, ZeroLHS;
2421     APInt UndefRHS, ZeroRHS;
2422     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2423                                    ZeroLHS, TLO, Depth + 1))
2424       return true;
2425     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2426                                    ZeroRHS, TLO, Depth + 1))
2427       return true;
2428 
2429     // Simplify mask using undef elements from LHS/RHS.
2430     bool Updated = false;
2431     bool IdentityLHS = true, IdentityRHS = true;
2432     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2433     for (unsigned i = 0; i != NumElts; ++i) {
2434       int &M = NewMask[i];
2435       if (M < 0)
2436         continue;
2437       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2438           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2439         Updated = true;
2440         M = -1;
2441       }
2442       IdentityLHS &= (M < 0) || (M == (int)i);
2443       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2444     }
2445 
2446     // Update legal shuffle masks based on demanded elements if it won't reduce
2447     // to Identity which can cause premature removal of the shuffle mask.
2448     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2449       SDValue LegalShuffle =
2450           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2451                                   NewMask, TLO.DAG);
2452       if (LegalShuffle)
2453         return TLO.CombineTo(Op, LegalShuffle);
2454     }
2455 
2456     // Propagate undef/zero elements from LHS/RHS.
2457     for (unsigned i = 0; i != NumElts; ++i) {
2458       int M = ShuffleMask[i];
2459       if (M < 0) {
2460         KnownUndef.setBit(i);
2461       } else if (M < (int)NumElts) {
2462         if (UndefLHS[M])
2463           KnownUndef.setBit(i);
2464         if (ZeroLHS[M])
2465           KnownZero.setBit(i);
2466       } else {
2467         if (UndefRHS[M - NumElts])
2468           KnownUndef.setBit(i);
2469         if (ZeroRHS[M - NumElts])
2470           KnownZero.setBit(i);
2471       }
2472     }
2473     break;
2474   }
2475   case ISD::ANY_EXTEND_VECTOR_INREG:
2476   case ISD::SIGN_EXTEND_VECTOR_INREG:
2477   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2478     APInt SrcUndef, SrcZero;
2479     SDValue Src = Op.getOperand(0);
2480     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2481     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2482     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2483                                    Depth + 1))
2484       return true;
2485     KnownZero = SrcZero.zextOrTrunc(NumElts);
2486     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2487 
2488     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2489         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2490         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2491       // aext - if we just need the bottom element then we can bitcast.
2492       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2493     }
2494 
2495     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2496       // zext(undef) upper bits are guaranteed to be zero.
2497       if (DemandedElts.isSubsetOf(KnownUndef))
2498         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2499       KnownUndef.clearAllBits();
2500     }
2501     break;
2502   }
2503 
2504   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2505   // MAX, saturated math, etc.
2506   case ISD::OR:
2507   case ISD::XOR:
2508   case ISD::ADD:
2509   case ISD::SUB:
2510   case ISD::FADD:
2511   case ISD::FSUB:
2512   case ISD::FMUL:
2513   case ISD::FDIV:
2514   case ISD::FREM: {
2515     APInt UndefRHS, ZeroRHS;
2516     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2517                                    ZeroRHS, TLO, Depth + 1))
2518       return true;
2519     APInt UndefLHS, ZeroLHS;
2520     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2521                                    ZeroLHS, TLO, Depth + 1))
2522       return true;
2523 
2524     KnownZero = ZeroLHS & ZeroRHS;
2525     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2526     break;
2527   }
2528   case ISD::SHL:
2529   case ISD::SRL:
2530   case ISD::SRA:
2531   case ISD::ROTL:
2532   case ISD::ROTR: {
2533     APInt UndefRHS, ZeroRHS;
2534     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2535                                    ZeroRHS, TLO, Depth + 1))
2536       return true;
2537     APInt UndefLHS, ZeroLHS;
2538     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2539                                    ZeroLHS, TLO, Depth + 1))
2540       return true;
2541 
2542     KnownZero = ZeroLHS;
2543     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2544     break;
2545   }
2546   case ISD::MUL:
2547   case ISD::AND: {
2548     APInt SrcUndef, SrcZero;
2549     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2550                                    SrcZero, TLO, Depth + 1))
2551       return true;
2552     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2553                                    KnownZero, TLO, Depth + 1))
2554       return true;
2555 
2556     // If either side has a zero element, then the result element is zero, even
2557     // if the other is an UNDEF.
2558     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2559     // and then handle 'and' nodes with the rest of the binop opcodes.
2560     KnownZero |= SrcZero;
2561     KnownUndef &= SrcUndef;
2562     KnownUndef &= ~KnownZero;
2563     break;
2564   }
2565   case ISD::TRUNCATE:
2566   case ISD::SIGN_EXTEND:
2567   case ISD::ZERO_EXTEND:
2568     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2569                                    KnownZero, TLO, Depth + 1))
2570       return true;
2571 
2572     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2573       // zext(undef) upper bits are guaranteed to be zero.
2574       if (DemandedElts.isSubsetOf(KnownUndef))
2575         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2576       KnownUndef.clearAllBits();
2577     }
2578     break;
2579   default: {
2580     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2581       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2582                                                   KnownZero, TLO, Depth))
2583         return true;
2584     } else {
2585       KnownBits Known;
2586       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2587       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2588                                TLO, Depth, AssumeSingleUse))
2589         return true;
2590     }
2591     break;
2592   }
2593   }
2594   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2595 
2596   // Constant fold all undef cases.
2597   // TODO: Handle zero cases as well.
2598   if (DemandedElts.isSubsetOf(KnownUndef))
2599     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2600 
2601   return false;
2602 }
2603 
2604 /// Determine which of the bits specified in Mask are known to be either zero or
2605 /// one and return them in the Known.
2606 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2607                                                    KnownBits &Known,
2608                                                    const APInt &DemandedElts,
2609                                                    const SelectionDAG &DAG,
2610                                                    unsigned Depth) const {
2611   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2612           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2613           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2614           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2615          "Should use MaskedValueIsZero if you don't know whether Op"
2616          " is a target node!");
2617   Known.resetAll();
2618 }
2619 
2620 void TargetLowering::computeKnownBitsForTargetInstr(
2621     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2622     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2623     unsigned Depth) const {
2624   Known.resetAll();
2625 }
2626 
2627 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2628                                                    KnownBits &Known,
2629                                                    const APInt &DemandedElts,
2630                                                    const SelectionDAG &DAG,
2631                                                    unsigned Depth) const {
2632   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2633 
2634   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2635     // The low bits are known zero if the pointer is aligned.
2636     Known.Zero.setLowBits(Log2_32(Align));
2637   }
2638 }
2639 
2640 /// This method can be implemented by targets that want to expose additional
2641 /// information about sign bits to the DAG Combiner.
2642 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2643                                                          const APInt &,
2644                                                          const SelectionDAG &,
2645                                                          unsigned Depth) const {
2646   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2647           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2648           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2649           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2650          "Should use ComputeNumSignBits if you don't know whether Op"
2651          " is a target node!");
2652   return 1;
2653 }
2654 
2655 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2656     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2657     TargetLoweringOpt &TLO, unsigned Depth) const {
2658   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2659           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2660           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2661           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2662          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2663          " is a target node!");
2664   return false;
2665 }
2666 
2667 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2668     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2669     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2670   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2671           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2672           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2673           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2674          "Should use SimplifyDemandedBits if you don't know whether Op"
2675          " is a target node!");
2676   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2677   return false;
2678 }
2679 
2680 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2681     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2682     SelectionDAG &DAG, unsigned Depth) const {
2683   assert(
2684       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2685        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2686        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2687        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2688       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2689       " is a target node!");
2690   return SDValue();
2691 }
2692 
2693 SDValue
2694 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2695                                         SDValue N1, MutableArrayRef<int> Mask,
2696                                         SelectionDAG &DAG) const {
2697   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2698   if (!LegalMask) {
2699     std::swap(N0, N1);
2700     ShuffleVectorSDNode::commuteMask(Mask);
2701     LegalMask = isShuffleMaskLegal(Mask, VT);
2702   }
2703 
2704   if (!LegalMask)
2705     return SDValue();
2706 
2707   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2708 }
2709 
2710 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2711   return nullptr;
2712 }
2713 
2714 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2715                                                   const SelectionDAG &DAG,
2716                                                   bool SNaN,
2717                                                   unsigned Depth) const {
2718   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2719           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2720           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2721           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2722          "Should use isKnownNeverNaN if you don't know whether Op"
2723          " is a target node!");
2724   return false;
2725 }
2726 
2727 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2728 // work with truncating build vectors and vectors with elements of less than
2729 // 8 bits.
2730 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2731   if (!N)
2732     return false;
2733 
2734   APInt CVal;
2735   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2736     CVal = CN->getAPIntValue();
2737   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2738     auto *CN = BV->getConstantSplatNode();
2739     if (!CN)
2740       return false;
2741 
2742     // If this is a truncating build vector, truncate the splat value.
2743     // Otherwise, we may fail to match the expected values below.
2744     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2745     CVal = CN->getAPIntValue();
2746     if (BVEltWidth < CVal.getBitWidth())
2747       CVal = CVal.trunc(BVEltWidth);
2748   } else {
2749     return false;
2750   }
2751 
2752   switch (getBooleanContents(N->getValueType(0))) {
2753   case UndefinedBooleanContent:
2754     return CVal[0];
2755   case ZeroOrOneBooleanContent:
2756     return CVal.isOneValue();
2757   case ZeroOrNegativeOneBooleanContent:
2758     return CVal.isAllOnesValue();
2759   }
2760 
2761   llvm_unreachable("Invalid boolean contents");
2762 }
2763 
2764 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2765   if (!N)
2766     return false;
2767 
2768   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2769   if (!CN) {
2770     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2771     if (!BV)
2772       return false;
2773 
2774     // Only interested in constant splats, we don't care about undef
2775     // elements in identifying boolean constants and getConstantSplatNode
2776     // returns NULL if all ops are undef;
2777     CN = BV->getConstantSplatNode();
2778     if (!CN)
2779       return false;
2780   }
2781 
2782   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2783     return !CN->getAPIntValue()[0];
2784 
2785   return CN->isNullValue();
2786 }
2787 
2788 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2789                                        bool SExt) const {
2790   if (VT == MVT::i1)
2791     return N->isOne();
2792 
2793   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2794   switch (Cnt) {
2795   case TargetLowering::ZeroOrOneBooleanContent:
2796     // An extended value of 1 is always true, unless its original type is i1,
2797     // in which case it will be sign extended to -1.
2798     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2799   case TargetLowering::UndefinedBooleanContent:
2800   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2801     return N->isAllOnesValue() && SExt;
2802   }
2803   llvm_unreachable("Unexpected enumeration.");
2804 }
2805 
2806 /// This helper function of SimplifySetCC tries to optimize the comparison when
2807 /// either operand of the SetCC node is a bitwise-and instruction.
2808 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2809                                          ISD::CondCode Cond, const SDLoc &DL,
2810                                          DAGCombinerInfo &DCI) const {
2811   // Match these patterns in any of their permutations:
2812   // (X & Y) == Y
2813   // (X & Y) != Y
2814   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2815     std::swap(N0, N1);
2816 
2817   EVT OpVT = N0.getValueType();
2818   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2819       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2820     return SDValue();
2821 
2822   SDValue X, Y;
2823   if (N0.getOperand(0) == N1) {
2824     X = N0.getOperand(1);
2825     Y = N0.getOperand(0);
2826   } else if (N0.getOperand(1) == N1) {
2827     X = N0.getOperand(0);
2828     Y = N0.getOperand(1);
2829   } else {
2830     return SDValue();
2831   }
2832 
2833   SelectionDAG &DAG = DCI.DAG;
2834   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2835   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2836     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2837     // Note that where Y is variable and is known to have at most one bit set
2838     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2839     // equivalent when Y == 0.
2840     assert(OpVT.isInteger());
2841     Cond = ISD::getSetCCInverse(Cond, OpVT);
2842     if (DCI.isBeforeLegalizeOps() ||
2843         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2844       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2845   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2846     // If the target supports an 'and-not' or 'and-complement' logic operation,
2847     // try to use that to make a comparison operation more efficient.
2848     // But don't do this transform if the mask is a single bit because there are
2849     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2850     // 'rlwinm' on PPC).
2851 
2852     // Bail out if the compare operand that we want to turn into a zero is
2853     // already a zero (otherwise, infinite loop).
2854     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2855     if (YConst && YConst->isNullValue())
2856       return SDValue();
2857 
2858     // Transform this into: ~X & Y == 0.
2859     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2860     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2861     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2862   }
2863 
2864   return SDValue();
2865 }
2866 
2867 /// There are multiple IR patterns that could be checking whether certain
2868 /// truncation of a signed number would be lossy or not. The pattern which is
2869 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2870 /// We are looking for the following pattern: (KeptBits is a constant)
2871 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2872 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2873 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2874 /// We will unfold it into the natural trunc+sext pattern:
2875 ///   ((%x << C) a>> C) dstcond %x
2876 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2877 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2878     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2879     const SDLoc &DL) const {
2880   // We must be comparing with a constant.
2881   ConstantSDNode *C1;
2882   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2883     return SDValue();
2884 
2885   // N0 should be:  add %x, (1 << (KeptBits-1))
2886   if (N0->getOpcode() != ISD::ADD)
2887     return SDValue();
2888 
2889   // And we must be 'add'ing a constant.
2890   ConstantSDNode *C01;
2891   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2892     return SDValue();
2893 
2894   SDValue X = N0->getOperand(0);
2895   EVT XVT = X.getValueType();
2896 
2897   // Validate constants ...
2898 
2899   APInt I1 = C1->getAPIntValue();
2900 
2901   ISD::CondCode NewCond;
2902   if (Cond == ISD::CondCode::SETULT) {
2903     NewCond = ISD::CondCode::SETEQ;
2904   } else if (Cond == ISD::CondCode::SETULE) {
2905     NewCond = ISD::CondCode::SETEQ;
2906     // But need to 'canonicalize' the constant.
2907     I1 += 1;
2908   } else if (Cond == ISD::CondCode::SETUGT) {
2909     NewCond = ISD::CondCode::SETNE;
2910     // But need to 'canonicalize' the constant.
2911     I1 += 1;
2912   } else if (Cond == ISD::CondCode::SETUGE) {
2913     NewCond = ISD::CondCode::SETNE;
2914   } else
2915     return SDValue();
2916 
2917   APInt I01 = C01->getAPIntValue();
2918 
2919   auto checkConstants = [&I1, &I01]() -> bool {
2920     // Both of them must be power-of-two, and the constant from setcc is bigger.
2921     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2922   };
2923 
2924   if (checkConstants()) {
2925     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2926   } else {
2927     // What if we invert constants? (and the target predicate)
2928     I1.negate();
2929     I01.negate();
2930     assert(XVT.isInteger());
2931     NewCond = getSetCCInverse(NewCond, XVT);
2932     if (!checkConstants())
2933       return SDValue();
2934     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2935   }
2936 
2937   // They are power-of-two, so which bit is set?
2938   const unsigned KeptBits = I1.logBase2();
2939   const unsigned KeptBitsMinusOne = I01.logBase2();
2940 
2941   // Magic!
2942   if (KeptBits != (KeptBitsMinusOne + 1))
2943     return SDValue();
2944   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2945 
2946   // We don't want to do this in every single case.
2947   SelectionDAG &DAG = DCI.DAG;
2948   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2949           XVT, KeptBits))
2950     return SDValue();
2951 
2952   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2953   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2954 
2955   // Unfold into:  ((%x << C) a>> C) cond %x
2956   // Where 'cond' will be either 'eq' or 'ne'.
2957   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2958   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2959   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2960   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2961 
2962   return T2;
2963 }
2964 
2965 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2966 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2967     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2968     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2969   assert(isConstOrConstSplat(N1C) &&
2970          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2971          "Should be a comparison with 0.");
2972   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2973          "Valid only for [in]equality comparisons.");
2974 
2975   unsigned NewShiftOpcode;
2976   SDValue X, C, Y;
2977 
2978   SelectionDAG &DAG = DCI.DAG;
2979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980 
2981   // Look for '(C l>>/<< Y)'.
2982   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2983     // The shift should be one-use.
2984     if (!V.hasOneUse())
2985       return false;
2986     unsigned OldShiftOpcode = V.getOpcode();
2987     switch (OldShiftOpcode) {
2988     case ISD::SHL:
2989       NewShiftOpcode = ISD::SRL;
2990       break;
2991     case ISD::SRL:
2992       NewShiftOpcode = ISD::SHL;
2993       break;
2994     default:
2995       return false; // must be a logical shift.
2996     }
2997     // We should be shifting a constant.
2998     // FIXME: best to use isConstantOrConstantVector().
2999     C = V.getOperand(0);
3000     ConstantSDNode *CC =
3001         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3002     if (!CC)
3003       return false;
3004     Y = V.getOperand(1);
3005 
3006     ConstantSDNode *XC =
3007         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3008     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3009         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3010   };
3011 
3012   // LHS of comparison should be an one-use 'and'.
3013   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3014     return SDValue();
3015 
3016   X = N0.getOperand(0);
3017   SDValue Mask = N0.getOperand(1);
3018 
3019   // 'and' is commutative!
3020   if (!Match(Mask)) {
3021     std::swap(X, Mask);
3022     if (!Match(Mask))
3023       return SDValue();
3024   }
3025 
3026   EVT VT = X.getValueType();
3027 
3028   // Produce:
3029   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3030   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3031   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3032   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3033   return T2;
3034 }
3035 
3036 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3037 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3038 /// handle the commuted versions of these patterns.
3039 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3040                                            ISD::CondCode Cond, const SDLoc &DL,
3041                                            DAGCombinerInfo &DCI) const {
3042   unsigned BOpcode = N0.getOpcode();
3043   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3044          "Unexpected binop");
3045   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3046 
3047   // (X + Y) == X --> Y == 0
3048   // (X - Y) == X --> Y == 0
3049   // (X ^ Y) == X --> Y == 0
3050   SelectionDAG &DAG = DCI.DAG;
3051   EVT OpVT = N0.getValueType();
3052   SDValue X = N0.getOperand(0);
3053   SDValue Y = N0.getOperand(1);
3054   if (X == N1)
3055     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3056 
3057   if (Y != N1)
3058     return SDValue();
3059 
3060   // (X + Y) == Y --> X == 0
3061   // (X ^ Y) == Y --> X == 0
3062   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3063     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3064 
3065   // The shift would not be valid if the operands are boolean (i1).
3066   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3067     return SDValue();
3068 
3069   // (X - Y) == Y --> X == Y << 1
3070   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3071                                  !DCI.isBeforeLegalize());
3072   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3073   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3074   if (!DCI.isCalledByLegalizer())
3075     DCI.AddToWorklist(YShl1.getNode());
3076   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3077 }
3078 
3079 /// Try to simplify a setcc built with the specified operands and cc. If it is
3080 /// unable to simplify it, return a null SDValue.
3081 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3082                                       ISD::CondCode Cond, bool foldBooleans,
3083                                       DAGCombinerInfo &DCI,
3084                                       const SDLoc &dl) const {
3085   SelectionDAG &DAG = DCI.DAG;
3086   const DataLayout &Layout = DAG.getDataLayout();
3087   EVT OpVT = N0.getValueType();
3088 
3089   // Constant fold or commute setcc.
3090   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3091     return Fold;
3092 
3093   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3094   // TODO: Handle non-splat vector constants. All undef causes trouble.
3095   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3096   if (isConstOrConstSplat(N0) &&
3097       (DCI.isBeforeLegalizeOps() ||
3098        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3099     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3100 
3101   // If we have a subtract with the same 2 non-constant operands as this setcc
3102   // -- but in reverse order -- then try to commute the operands of this setcc
3103   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3104   // instruction on some targets.
3105   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3106       (DCI.isBeforeLegalizeOps() ||
3107        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3108       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3109       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3110     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3111 
3112   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3113     const APInt &C1 = N1C->getAPIntValue();
3114 
3115     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3116     // equality comparison, then we're just comparing whether X itself is
3117     // zero.
3118     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3119         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3120         N0.getOperand(1).getOpcode() == ISD::Constant) {
3121       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3122       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3123           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3124         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3125           // (srl (ctlz x), 5) == 0  -> X != 0
3126           // (srl (ctlz x), 5) != 1  -> X != 0
3127           Cond = ISD::SETNE;
3128         } else {
3129           // (srl (ctlz x), 5) != 0  -> X == 0
3130           // (srl (ctlz x), 5) == 1  -> X == 0
3131           Cond = ISD::SETEQ;
3132         }
3133         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3134         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3135                             Zero, Cond);
3136       }
3137     }
3138 
3139     SDValue CTPOP = N0;
3140     // Look through truncs that don't change the value of a ctpop.
3141     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3142       CTPOP = N0.getOperand(0);
3143 
3144     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3145         (N0 == CTPOP ||
3146          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3147       EVT CTVT = CTPOP.getValueType();
3148       SDValue CTOp = CTPOP.getOperand(0);
3149 
3150       // (ctpop x) u< 2 -> (x & x-1) == 0
3151       // (ctpop x) u> 1 -> (x & x-1) != 0
3152       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3153         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3154         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3155         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3156         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3157         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3158       }
3159 
3160       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3161       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3162           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3163         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3164         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3165         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3166         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3167         assert(CTVT.isInteger());
3168         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3169         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3170         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3171         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3172         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3173         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3174         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3175       }
3176     }
3177 
3178     // (zext x) == C --> x == (trunc C)
3179     // (sext x) == C --> x == (trunc C)
3180     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3181         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3182       unsigned MinBits = N0.getValueSizeInBits();
3183       SDValue PreExt;
3184       bool Signed = false;
3185       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3186         // ZExt
3187         MinBits = N0->getOperand(0).getValueSizeInBits();
3188         PreExt = N0->getOperand(0);
3189       } else if (N0->getOpcode() == ISD::AND) {
3190         // DAGCombine turns costly ZExts into ANDs
3191         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3192           if ((C->getAPIntValue()+1).isPowerOf2()) {
3193             MinBits = C->getAPIntValue().countTrailingOnes();
3194             PreExt = N0->getOperand(0);
3195           }
3196       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3197         // SExt
3198         MinBits = N0->getOperand(0).getValueSizeInBits();
3199         PreExt = N0->getOperand(0);
3200         Signed = true;
3201       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3202         // ZEXTLOAD / SEXTLOAD
3203         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3204           MinBits = LN0->getMemoryVT().getSizeInBits();
3205           PreExt = N0;
3206         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3207           Signed = true;
3208           MinBits = LN0->getMemoryVT().getSizeInBits();
3209           PreExt = N0;
3210         }
3211       }
3212 
3213       // Figure out how many bits we need to preserve this constant.
3214       unsigned ReqdBits = Signed ?
3215         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3216         C1.getActiveBits();
3217 
3218       // Make sure we're not losing bits from the constant.
3219       if (MinBits > 0 &&
3220           MinBits < C1.getBitWidth() &&
3221           MinBits >= ReqdBits) {
3222         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3223         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3224           // Will get folded away.
3225           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3226           if (MinBits == 1 && C1 == 1)
3227             // Invert the condition.
3228             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3229                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3230           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3231           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3232         }
3233 
3234         // If truncating the setcc operands is not desirable, we can still
3235         // simplify the expression in some cases:
3236         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3237         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3238         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3239         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3240         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3241         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3242         SDValue TopSetCC = N0->getOperand(0);
3243         unsigned N0Opc = N0->getOpcode();
3244         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3245         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3246             TopSetCC.getOpcode() == ISD::SETCC &&
3247             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3248             (isConstFalseVal(N1C) ||
3249              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3250 
3251           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3252                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3253 
3254           if (!Inverse)
3255             return TopSetCC;
3256 
3257           ISD::CondCode InvCond = ISD::getSetCCInverse(
3258               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3259               TopSetCC.getOperand(0).getValueType());
3260           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3261                                       TopSetCC.getOperand(1),
3262                                       InvCond);
3263         }
3264       }
3265     }
3266 
3267     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3268     // equality or unsigned, and all 1 bits of the const are in the same
3269     // partial word, see if we can shorten the load.
3270     if (DCI.isBeforeLegalize() &&
3271         !ISD::isSignedIntSetCC(Cond) &&
3272         N0.getOpcode() == ISD::AND && C1 == 0 &&
3273         N0.getNode()->hasOneUse() &&
3274         isa<LoadSDNode>(N0.getOperand(0)) &&
3275         N0.getOperand(0).getNode()->hasOneUse() &&
3276         isa<ConstantSDNode>(N0.getOperand(1))) {
3277       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3278       APInt bestMask;
3279       unsigned bestWidth = 0, bestOffset = 0;
3280       if (Lod->isSimple() && Lod->isUnindexed()) {
3281         unsigned origWidth = N0.getValueSizeInBits();
3282         unsigned maskWidth = origWidth;
3283         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3284         // 8 bits, but have to be careful...
3285         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3286           origWidth = Lod->getMemoryVT().getSizeInBits();
3287         const APInt &Mask = N0.getConstantOperandAPInt(1);
3288         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3289           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3290           for (unsigned offset=0; offset<origWidth/width; offset++) {
3291             if (Mask.isSubsetOf(newMask)) {
3292               if (Layout.isLittleEndian())
3293                 bestOffset = (uint64_t)offset * (width/8);
3294               else
3295                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3296               bestMask = Mask.lshr(offset * (width/8) * 8);
3297               bestWidth = width;
3298               break;
3299             }
3300             newMask <<= width;
3301           }
3302         }
3303       }
3304       if (bestWidth) {
3305         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3306         if (newVT.isRound() &&
3307             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3308           SDValue Ptr = Lod->getBasePtr();
3309           if (bestOffset != 0)
3310             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3311           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3312           SDValue NewLoad = DAG.getLoad(
3313               newVT, dl, Lod->getChain(), Ptr,
3314               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3315           return DAG.getSetCC(dl, VT,
3316                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3317                                       DAG.getConstant(bestMask.trunc(bestWidth),
3318                                                       dl, newVT)),
3319                               DAG.getConstant(0LL, dl, newVT), Cond);
3320         }
3321       }
3322     }
3323 
3324     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3325     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3326       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3327 
3328       // If the comparison constant has bits in the upper part, the
3329       // zero-extended value could never match.
3330       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3331                                               C1.getBitWidth() - InSize))) {
3332         switch (Cond) {
3333         case ISD::SETUGT:
3334         case ISD::SETUGE:
3335         case ISD::SETEQ:
3336           return DAG.getConstant(0, dl, VT);
3337         case ISD::SETULT:
3338         case ISD::SETULE:
3339         case ISD::SETNE:
3340           return DAG.getConstant(1, dl, VT);
3341         case ISD::SETGT:
3342         case ISD::SETGE:
3343           // True if the sign bit of C1 is set.
3344           return DAG.getConstant(C1.isNegative(), dl, VT);
3345         case ISD::SETLT:
3346         case ISD::SETLE:
3347           // True if the sign bit of C1 isn't set.
3348           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3349         default:
3350           break;
3351         }
3352       }
3353 
3354       // Otherwise, we can perform the comparison with the low bits.
3355       switch (Cond) {
3356       case ISD::SETEQ:
3357       case ISD::SETNE:
3358       case ISD::SETUGT:
3359       case ISD::SETUGE:
3360       case ISD::SETULT:
3361       case ISD::SETULE: {
3362         EVT newVT = N0.getOperand(0).getValueType();
3363         if (DCI.isBeforeLegalizeOps() ||
3364             (isOperationLegal(ISD::SETCC, newVT) &&
3365              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3366           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3367           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3368 
3369           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3370                                           NewConst, Cond);
3371           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3372         }
3373         break;
3374       }
3375       default:
3376         break; // todo, be more careful with signed comparisons
3377       }
3378     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3379                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3380       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3381       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3382       EVT ExtDstTy = N0.getValueType();
3383       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3384 
3385       // If the constant doesn't fit into the number of bits for the source of
3386       // the sign extension, it is impossible for both sides to be equal.
3387       if (C1.getMinSignedBits() > ExtSrcTyBits)
3388         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3389 
3390       SDValue ZextOp;
3391       EVT Op0Ty = N0.getOperand(0).getValueType();
3392       if (Op0Ty == ExtSrcTy) {
3393         ZextOp = N0.getOperand(0);
3394       } else {
3395         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3396         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3397                              DAG.getConstant(Imm, dl, Op0Ty));
3398       }
3399       if (!DCI.isCalledByLegalizer())
3400         DCI.AddToWorklist(ZextOp.getNode());
3401       // Otherwise, make this a use of a zext.
3402       return DAG.getSetCC(dl, VT, ZextOp,
3403                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3404                                                               ExtDstTyBits,
3405                                                               ExtSrcTyBits),
3406                                           dl, ExtDstTy),
3407                           Cond);
3408     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3409                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3410       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3411       if (N0.getOpcode() == ISD::SETCC &&
3412           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3413           (N0.getValueType() == MVT::i1 ||
3414            getBooleanContents(N0.getOperand(0).getValueType()) ==
3415                        ZeroOrOneBooleanContent)) {
3416         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3417         if (TrueWhenTrue)
3418           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3419         // Invert the condition.
3420         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3421         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3422         if (DCI.isBeforeLegalizeOps() ||
3423             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3424           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3425       }
3426 
3427       if ((N0.getOpcode() == ISD::XOR ||
3428            (N0.getOpcode() == ISD::AND &&
3429             N0.getOperand(0).getOpcode() == ISD::XOR &&
3430             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3431           isa<ConstantSDNode>(N0.getOperand(1)) &&
3432           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3433         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3434         // can only do this if the top bits are known zero.
3435         unsigned BitWidth = N0.getValueSizeInBits();
3436         if (DAG.MaskedValueIsZero(N0,
3437                                   APInt::getHighBitsSet(BitWidth,
3438                                                         BitWidth-1))) {
3439           // Okay, get the un-inverted input value.
3440           SDValue Val;
3441           if (N0.getOpcode() == ISD::XOR) {
3442             Val = N0.getOperand(0);
3443           } else {
3444             assert(N0.getOpcode() == ISD::AND &&
3445                     N0.getOperand(0).getOpcode() == ISD::XOR);
3446             // ((X^1)&1)^1 -> X & 1
3447             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3448                               N0.getOperand(0).getOperand(0),
3449                               N0.getOperand(1));
3450           }
3451 
3452           return DAG.getSetCC(dl, VT, Val, N1,
3453                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3454         }
3455       } else if (N1C->isOne()) {
3456         SDValue Op0 = N0;
3457         if (Op0.getOpcode() == ISD::TRUNCATE)
3458           Op0 = Op0.getOperand(0);
3459 
3460         if ((Op0.getOpcode() == ISD::XOR) &&
3461             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3462             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3463           SDValue XorLHS = Op0.getOperand(0);
3464           SDValue XorRHS = Op0.getOperand(1);
3465           // Ensure that the input setccs return an i1 type or 0/1 value.
3466           if (Op0.getValueType() == MVT::i1 ||
3467               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3468                       ZeroOrOneBooleanContent &&
3469                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3470                         ZeroOrOneBooleanContent)) {
3471             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3472             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3473             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3474           }
3475         }
3476         if (Op0.getOpcode() == ISD::AND &&
3477             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3478             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3479           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3480           if (Op0.getValueType().bitsGT(VT))
3481             Op0 = DAG.getNode(ISD::AND, dl, VT,
3482                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3483                           DAG.getConstant(1, dl, VT));
3484           else if (Op0.getValueType().bitsLT(VT))
3485             Op0 = DAG.getNode(ISD::AND, dl, VT,
3486                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3487                         DAG.getConstant(1, dl, VT));
3488 
3489           return DAG.getSetCC(dl, VT, Op0,
3490                               DAG.getConstant(0, dl, Op0.getValueType()),
3491                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3492         }
3493         if (Op0.getOpcode() == ISD::AssertZext &&
3494             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3495           return DAG.getSetCC(dl, VT, Op0,
3496                               DAG.getConstant(0, dl, Op0.getValueType()),
3497                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3498       }
3499     }
3500 
3501     // Given:
3502     //   icmp eq/ne (urem %x, %y), 0
3503     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3504     //   icmp eq/ne %x, 0
3505     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3506         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3507       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3508       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3509       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3510         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3511     }
3512 
3513     if (SDValue V =
3514             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3515       return V;
3516   }
3517 
3518   // These simplifications apply to splat vectors as well.
3519   // TODO: Handle more splat vector cases.
3520   if (auto *N1C = isConstOrConstSplat(N1)) {
3521     const APInt &C1 = N1C->getAPIntValue();
3522 
3523     APInt MinVal, MaxVal;
3524     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3525     if (ISD::isSignedIntSetCC(Cond)) {
3526       MinVal = APInt::getSignedMinValue(OperandBitSize);
3527       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3528     } else {
3529       MinVal = APInt::getMinValue(OperandBitSize);
3530       MaxVal = APInt::getMaxValue(OperandBitSize);
3531     }
3532 
3533     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3534     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3535       // X >= MIN --> true
3536       if (C1 == MinVal)
3537         return DAG.getBoolConstant(true, dl, VT, OpVT);
3538 
3539       if (!VT.isVector()) { // TODO: Support this for vectors.
3540         // X >= C0 --> X > (C0 - 1)
3541         APInt C = C1 - 1;
3542         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3543         if ((DCI.isBeforeLegalizeOps() ||
3544              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3545             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3546                                   isLegalICmpImmediate(C.getSExtValue())))) {
3547           return DAG.getSetCC(dl, VT, N0,
3548                               DAG.getConstant(C, dl, N1.getValueType()),
3549                               NewCC);
3550         }
3551       }
3552     }
3553 
3554     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3555       // X <= MAX --> true
3556       if (C1 == MaxVal)
3557         return DAG.getBoolConstant(true, dl, VT, OpVT);
3558 
3559       // X <= C0 --> X < (C0 + 1)
3560       if (!VT.isVector()) { // TODO: Support this for vectors.
3561         APInt C = C1 + 1;
3562         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3563         if ((DCI.isBeforeLegalizeOps() ||
3564              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3565             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3566                                   isLegalICmpImmediate(C.getSExtValue())))) {
3567           return DAG.getSetCC(dl, VT, N0,
3568                               DAG.getConstant(C, dl, N1.getValueType()),
3569                               NewCC);
3570         }
3571       }
3572     }
3573 
3574     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3575       if (C1 == MinVal)
3576         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3577 
3578       // TODO: Support this for vectors after legalize ops.
3579       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3580         // Canonicalize setlt X, Max --> setne X, Max
3581         if (C1 == MaxVal)
3582           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3583 
3584         // If we have setult X, 1, turn it into seteq X, 0
3585         if (C1 == MinVal+1)
3586           return DAG.getSetCC(dl, VT, N0,
3587                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3588                               ISD::SETEQ);
3589       }
3590     }
3591 
3592     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3593       if (C1 == MaxVal)
3594         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3595 
3596       // TODO: Support this for vectors after legalize ops.
3597       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3598         // Canonicalize setgt X, Min --> setne X, Min
3599         if (C1 == MinVal)
3600           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3601 
3602         // If we have setugt X, Max-1, turn it into seteq X, Max
3603         if (C1 == MaxVal-1)
3604           return DAG.getSetCC(dl, VT, N0,
3605                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3606                               ISD::SETEQ);
3607       }
3608     }
3609 
3610     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3611       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3612       if (C1.isNullValue())
3613         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3614                 VT, N0, N1, Cond, DCI, dl))
3615           return CC;
3616     }
3617 
3618     // If we have "setcc X, C0", check to see if we can shrink the immediate
3619     // by changing cc.
3620     // TODO: Support this for vectors after legalize ops.
3621     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3622       // SETUGT X, SINTMAX  -> SETLT X, 0
3623       if (Cond == ISD::SETUGT &&
3624           C1 == APInt::getSignedMaxValue(OperandBitSize))
3625         return DAG.getSetCC(dl, VT, N0,
3626                             DAG.getConstant(0, dl, N1.getValueType()),
3627                             ISD::SETLT);
3628 
3629       // SETULT X, SINTMIN  -> SETGT X, -1
3630       if (Cond == ISD::SETULT &&
3631           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3632         SDValue ConstMinusOne =
3633             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3634                             N1.getValueType());
3635         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3636       }
3637     }
3638   }
3639 
3640   // Back to non-vector simplifications.
3641   // TODO: Can we do these for vector splats?
3642   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3643     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3644     const APInt &C1 = N1C->getAPIntValue();
3645     EVT ShValTy = N0.getValueType();
3646 
3647     // Fold bit comparisons when we can.
3648     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3649         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3650         N0.getOpcode() == ISD::AND) {
3651       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3652         EVT ShiftTy =
3653             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3654         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3655           // Perform the xform if the AND RHS is a single bit.
3656           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3657           if (AndRHS->getAPIntValue().isPowerOf2() &&
3658               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3659             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3660                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3661                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3662           }
3663         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3664           // (X & 8) == 8  -->  (X & 8) >> 3
3665           // Perform the xform if C1 is a single bit.
3666           unsigned ShCt = C1.logBase2();
3667           if (C1.isPowerOf2() &&
3668               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3669             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3670                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3671                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3672           }
3673         }
3674       }
3675     }
3676 
3677     if (C1.getMinSignedBits() <= 64 &&
3678         !isLegalICmpImmediate(C1.getSExtValue())) {
3679       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3680       // (X & -256) == 256 -> (X >> 8) == 1
3681       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3682           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3683         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3684           const APInt &AndRHSC = AndRHS->getAPIntValue();
3685           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3686             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3687             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3688               SDValue Shift =
3689                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3690                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3691               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3692               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3693             }
3694           }
3695         }
3696       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3697                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3698         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3699         // X <  0x100000000 -> (X >> 32) <  1
3700         // X >= 0x100000000 -> (X >> 32) >= 1
3701         // X <= 0x0ffffffff -> (X >> 32) <  1
3702         // X >  0x0ffffffff -> (X >> 32) >= 1
3703         unsigned ShiftBits;
3704         APInt NewC = C1;
3705         ISD::CondCode NewCond = Cond;
3706         if (AdjOne) {
3707           ShiftBits = C1.countTrailingOnes();
3708           NewC = NewC + 1;
3709           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3710         } else {
3711           ShiftBits = C1.countTrailingZeros();
3712         }
3713         NewC.lshrInPlace(ShiftBits);
3714         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3715             isLegalICmpImmediate(NewC.getSExtValue()) &&
3716             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3717           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3718                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3719           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3720           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3721         }
3722       }
3723     }
3724   }
3725 
3726   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3727     auto *CFP = cast<ConstantFPSDNode>(N1);
3728     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3729 
3730     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3731     // constant if knowing that the operand is non-nan is enough.  We prefer to
3732     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3733     // materialize 0.0.
3734     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3735       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3736 
3737     // setcc (fneg x), C -> setcc swap(pred) x, -C
3738     if (N0.getOpcode() == ISD::FNEG) {
3739       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3740       if (DCI.isBeforeLegalizeOps() ||
3741           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3742         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3743         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3744       }
3745     }
3746 
3747     // If the condition is not legal, see if we can find an equivalent one
3748     // which is legal.
3749     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3750       // If the comparison was an awkward floating-point == or != and one of
3751       // the comparison operands is infinity or negative infinity, convert the
3752       // condition to a less-awkward <= or >=.
3753       if (CFP->getValueAPF().isInfinity()) {
3754         if (CFP->getValueAPF().isNegative()) {
3755           if (Cond == ISD::SETOEQ &&
3756               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3757             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3758           if (Cond == ISD::SETUEQ &&
3759               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3760             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3761           if (Cond == ISD::SETUNE &&
3762               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3763             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3764           if (Cond == ISD::SETONE &&
3765               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3766             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3767         } else {
3768           if (Cond == ISD::SETOEQ &&
3769               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3770             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3771           if (Cond == ISD::SETUEQ &&
3772               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3773             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3774           if (Cond == ISD::SETUNE &&
3775               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3776             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3777           if (Cond == ISD::SETONE &&
3778               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3779             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3780         }
3781       }
3782     }
3783   }
3784 
3785   if (N0 == N1) {
3786     // The sext(setcc()) => setcc() optimization relies on the appropriate
3787     // constant being emitted.
3788     assert(!N0.getValueType().isInteger() &&
3789            "Integer types should be handled by FoldSetCC");
3790 
3791     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3792     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3793     if (UOF == 2) // FP operators that are undefined on NaNs.
3794       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3795     if (UOF == unsigned(EqTrue))
3796       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3797     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3798     // if it is not already.
3799     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3800     if (NewCond != Cond &&
3801         (DCI.isBeforeLegalizeOps() ||
3802                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3803       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3804   }
3805 
3806   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3807       N0.getValueType().isInteger()) {
3808     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3809         N0.getOpcode() == ISD::XOR) {
3810       // Simplify (X+Y) == (X+Z) -->  Y == Z
3811       if (N0.getOpcode() == N1.getOpcode()) {
3812         if (N0.getOperand(0) == N1.getOperand(0))
3813           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3814         if (N0.getOperand(1) == N1.getOperand(1))
3815           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3816         if (isCommutativeBinOp(N0.getOpcode())) {
3817           // If X op Y == Y op X, try other combinations.
3818           if (N0.getOperand(0) == N1.getOperand(1))
3819             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3820                                 Cond);
3821           if (N0.getOperand(1) == N1.getOperand(0))
3822             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3823                                 Cond);
3824         }
3825       }
3826 
3827       // If RHS is a legal immediate value for a compare instruction, we need
3828       // to be careful about increasing register pressure needlessly.
3829       bool LegalRHSImm = false;
3830 
3831       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3832         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3833           // Turn (X+C1) == C2 --> X == C2-C1
3834           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3835             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3836                                 DAG.getConstant(RHSC->getAPIntValue()-
3837                                                 LHSR->getAPIntValue(),
3838                                 dl, N0.getValueType()), Cond);
3839           }
3840 
3841           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3842           if (N0.getOpcode() == ISD::XOR)
3843             // If we know that all of the inverted bits are zero, don't bother
3844             // performing the inversion.
3845             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3846               return
3847                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3848                              DAG.getConstant(LHSR->getAPIntValue() ^
3849                                                RHSC->getAPIntValue(),
3850                                              dl, N0.getValueType()),
3851                              Cond);
3852         }
3853 
3854         // Turn (C1-X) == C2 --> X == C1-C2
3855         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3856           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3857             return
3858               DAG.getSetCC(dl, VT, N0.getOperand(1),
3859                            DAG.getConstant(SUBC->getAPIntValue() -
3860                                              RHSC->getAPIntValue(),
3861                                            dl, N0.getValueType()),
3862                            Cond);
3863           }
3864         }
3865 
3866         // Could RHSC fold directly into a compare?
3867         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3868           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3869       }
3870 
3871       // (X+Y) == X --> Y == 0 and similar folds.
3872       // Don't do this if X is an immediate that can fold into a cmp
3873       // instruction and X+Y has other uses. It could be an induction variable
3874       // chain, and the transform would increase register pressure.
3875       if (!LegalRHSImm || N0.hasOneUse())
3876         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3877           return V;
3878     }
3879 
3880     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3881         N1.getOpcode() == ISD::XOR)
3882       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3883         return V;
3884 
3885     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3886       return V;
3887   }
3888 
3889   // Fold remainder of division by a constant.
3890   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3891       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3892     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3893 
3894     // When division is cheap or optimizing for minimum size,
3895     // fall through to DIVREM creation by skipping this fold.
3896     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3897       if (N0.getOpcode() == ISD::UREM) {
3898         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3899           return Folded;
3900       } else if (N0.getOpcode() == ISD::SREM) {
3901         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3902           return Folded;
3903       }
3904     }
3905   }
3906 
3907   // Fold away ALL boolean setcc's.
3908   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3909     SDValue Temp;
3910     switch (Cond) {
3911     default: llvm_unreachable("Unknown integer setcc!");
3912     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3913       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3914       N0 = DAG.getNOT(dl, Temp, OpVT);
3915       if (!DCI.isCalledByLegalizer())
3916         DCI.AddToWorklist(Temp.getNode());
3917       break;
3918     case ISD::SETNE:  // X != Y   -->  (X^Y)
3919       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3920       break;
3921     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3922     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3923       Temp = DAG.getNOT(dl, N0, OpVT);
3924       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3925       if (!DCI.isCalledByLegalizer())
3926         DCI.AddToWorklist(Temp.getNode());
3927       break;
3928     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3929     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3930       Temp = DAG.getNOT(dl, N1, OpVT);
3931       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3932       if (!DCI.isCalledByLegalizer())
3933         DCI.AddToWorklist(Temp.getNode());
3934       break;
3935     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3936     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3937       Temp = DAG.getNOT(dl, N0, OpVT);
3938       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3939       if (!DCI.isCalledByLegalizer())
3940         DCI.AddToWorklist(Temp.getNode());
3941       break;
3942     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3943     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3944       Temp = DAG.getNOT(dl, N1, OpVT);
3945       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3946       break;
3947     }
3948     if (VT.getScalarType() != MVT::i1) {
3949       if (!DCI.isCalledByLegalizer())
3950         DCI.AddToWorklist(N0.getNode());
3951       // FIXME: If running after legalize, we probably can't do this.
3952       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3953       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3954     }
3955     return N0;
3956   }
3957 
3958   // Could not fold it.
3959   return SDValue();
3960 }
3961 
3962 /// Returns true (and the GlobalValue and the offset) if the node is a
3963 /// GlobalAddress + offset.
3964 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3965                                     int64_t &Offset) const {
3966 
3967   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3968 
3969   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3970     GA = GASD->getGlobal();
3971     Offset += GASD->getOffset();
3972     return true;
3973   }
3974 
3975   if (N->getOpcode() == ISD::ADD) {
3976     SDValue N1 = N->getOperand(0);
3977     SDValue N2 = N->getOperand(1);
3978     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3979       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3980         Offset += V->getSExtValue();
3981         return true;
3982       }
3983     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3984       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3985         Offset += V->getSExtValue();
3986         return true;
3987       }
3988     }
3989   }
3990 
3991   return false;
3992 }
3993 
3994 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3995                                           DAGCombinerInfo &DCI) const {
3996   // Default implementation: no optimization.
3997   return SDValue();
3998 }
3999 
4000 //===----------------------------------------------------------------------===//
4001 //  Inline Assembler Implementation Methods
4002 //===----------------------------------------------------------------------===//
4003 
4004 TargetLowering::ConstraintType
4005 TargetLowering::getConstraintType(StringRef Constraint) const {
4006   unsigned S = Constraint.size();
4007 
4008   if (S == 1) {
4009     switch (Constraint[0]) {
4010     default: break;
4011     case 'r':
4012       return C_RegisterClass;
4013     case 'm': // memory
4014     case 'o': // offsetable
4015     case 'V': // not offsetable
4016       return C_Memory;
4017     case 'n': // Simple Integer
4018     case 'E': // Floating Point Constant
4019     case 'F': // Floating Point Constant
4020       return C_Immediate;
4021     case 'i': // Simple Integer or Relocatable Constant
4022     case 's': // Relocatable Constant
4023     case 'p': // Address.
4024     case 'X': // Allow ANY value.
4025     case 'I': // Target registers.
4026     case 'J':
4027     case 'K':
4028     case 'L':
4029     case 'M':
4030     case 'N':
4031     case 'O':
4032     case 'P':
4033     case '<':
4034     case '>':
4035       return C_Other;
4036     }
4037   }
4038 
4039   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4040     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4041       return C_Memory;
4042     return C_Register;
4043   }
4044   return C_Unknown;
4045 }
4046 
4047 /// Try to replace an X constraint, which matches anything, with another that
4048 /// has more specific requirements based on the type of the corresponding
4049 /// operand.
4050 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4051   if (ConstraintVT.isInteger())
4052     return "r";
4053   if (ConstraintVT.isFloatingPoint())
4054     return "f"; // works for many targets
4055   return nullptr;
4056 }
4057 
4058 SDValue TargetLowering::LowerAsmOutputForConstraint(
4059     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4060     SelectionDAG &DAG) const {
4061   return SDValue();
4062 }
4063 
4064 /// Lower the specified operand into the Ops vector.
4065 /// If it is invalid, don't add anything to Ops.
4066 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4067                                                   std::string &Constraint,
4068                                                   std::vector<SDValue> &Ops,
4069                                                   SelectionDAG &DAG) const {
4070 
4071   if (Constraint.length() > 1) return;
4072 
4073   char ConstraintLetter = Constraint[0];
4074   switch (ConstraintLetter) {
4075   default: break;
4076   case 'X':     // Allows any operand; labels (basic block) use this.
4077     if (Op.getOpcode() == ISD::BasicBlock ||
4078         Op.getOpcode() == ISD::TargetBlockAddress) {
4079       Ops.push_back(Op);
4080       return;
4081     }
4082     LLVM_FALLTHROUGH;
4083   case 'i':    // Simple Integer or Relocatable Constant
4084   case 'n':    // Simple Integer
4085   case 's': {  // Relocatable Constant
4086 
4087     GlobalAddressSDNode *GA;
4088     ConstantSDNode *C;
4089     BlockAddressSDNode *BA;
4090     uint64_t Offset = 0;
4091 
4092     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4093     // etc., since getelementpointer is variadic. We can't use
4094     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4095     // while in this case the GA may be furthest from the root node which is
4096     // likely an ISD::ADD.
4097     while (1) {
4098       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4099         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4100                                                  GA->getValueType(0),
4101                                                  Offset + GA->getOffset()));
4102         return;
4103       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4104                  ConstraintLetter != 's') {
4105         // gcc prints these as sign extended.  Sign extend value to 64 bits
4106         // now; without this it would get ZExt'd later in
4107         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4108         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4109         BooleanContent BCont = getBooleanContents(MVT::i64);
4110         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4111                                       : ISD::SIGN_EXTEND;
4112         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4113                                                     : C->getSExtValue();
4114         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4115                                             SDLoc(C), MVT::i64));
4116         return;
4117       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4118                  ConstraintLetter != 'n') {
4119         Ops.push_back(DAG.getTargetBlockAddress(
4120             BA->getBlockAddress(), BA->getValueType(0),
4121             Offset + BA->getOffset(), BA->getTargetFlags()));
4122         return;
4123       } else {
4124         const unsigned OpCode = Op.getOpcode();
4125         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4126           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4127             Op = Op.getOperand(1);
4128           // Subtraction is not commutative.
4129           else if (OpCode == ISD::ADD &&
4130                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4131             Op = Op.getOperand(0);
4132           else
4133             return;
4134           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4135           continue;
4136         }
4137       }
4138       return;
4139     }
4140     break;
4141   }
4142   }
4143 }
4144 
4145 std::pair<unsigned, const TargetRegisterClass *>
4146 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4147                                              StringRef Constraint,
4148                                              MVT VT) const {
4149   if (Constraint.empty() || Constraint[0] != '{')
4150     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4151   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4152 
4153   // Remove the braces from around the name.
4154   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4155 
4156   std::pair<unsigned, const TargetRegisterClass *> R =
4157       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4158 
4159   // Figure out which register class contains this reg.
4160   for (const TargetRegisterClass *RC : RI->regclasses()) {
4161     // If none of the value types for this register class are valid, we
4162     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4163     if (!isLegalRC(*RI, *RC))
4164       continue;
4165 
4166     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4167          I != E; ++I) {
4168       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4169         std::pair<unsigned, const TargetRegisterClass *> S =
4170             std::make_pair(*I, RC);
4171 
4172         // If this register class has the requested value type, return it,
4173         // otherwise keep searching and return the first class found
4174         // if no other is found which explicitly has the requested type.
4175         if (RI->isTypeLegalForClass(*RC, VT))
4176           return S;
4177         if (!R.second)
4178           R = S;
4179       }
4180     }
4181   }
4182 
4183   return R;
4184 }
4185 
4186 //===----------------------------------------------------------------------===//
4187 // Constraint Selection.
4188 
4189 /// Return true of this is an input operand that is a matching constraint like
4190 /// "4".
4191 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4192   assert(!ConstraintCode.empty() && "No known constraint!");
4193   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4194 }
4195 
4196 /// If this is an input matching constraint, this method returns the output
4197 /// operand it matches.
4198 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4199   assert(!ConstraintCode.empty() && "No known constraint!");
4200   return atoi(ConstraintCode.c_str());
4201 }
4202 
4203 /// Split up the constraint string from the inline assembly value into the
4204 /// specific constraints and their prefixes, and also tie in the associated
4205 /// operand values.
4206 /// If this returns an empty vector, and if the constraint string itself
4207 /// isn't empty, there was an error parsing.
4208 TargetLowering::AsmOperandInfoVector
4209 TargetLowering::ParseConstraints(const DataLayout &DL,
4210                                  const TargetRegisterInfo *TRI,
4211                                  ImmutableCallSite CS) const {
4212   /// Information about all of the constraints.
4213   AsmOperandInfoVector ConstraintOperands;
4214   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4215   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4216 
4217   // Do a prepass over the constraints, canonicalizing them, and building up the
4218   // ConstraintOperands list.
4219   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4220   unsigned ResNo = 0; // ResNo - The result number of the next output.
4221 
4222   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4223     ConstraintOperands.emplace_back(std::move(CI));
4224     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4225 
4226     // Update multiple alternative constraint count.
4227     if (OpInfo.multipleAlternatives.size() > maCount)
4228       maCount = OpInfo.multipleAlternatives.size();
4229 
4230     OpInfo.ConstraintVT = MVT::Other;
4231 
4232     // Compute the value type for each operand.
4233     switch (OpInfo.Type) {
4234     case InlineAsm::isOutput:
4235       // Indirect outputs just consume an argument.
4236       if (OpInfo.isIndirect) {
4237         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4238         break;
4239       }
4240 
4241       // The return value of the call is this value.  As such, there is no
4242       // corresponding argument.
4243       assert(!CS.getType()->isVoidTy() &&
4244              "Bad inline asm!");
4245       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4246         OpInfo.ConstraintVT =
4247             getSimpleValueType(DL, STy->getElementType(ResNo));
4248       } else {
4249         assert(ResNo == 0 && "Asm only has one result!");
4250         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4251       }
4252       ++ResNo;
4253       break;
4254     case InlineAsm::isInput:
4255       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4256       break;
4257     case InlineAsm::isClobber:
4258       // Nothing to do.
4259       break;
4260     }
4261 
4262     if (OpInfo.CallOperandVal) {
4263       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4264       if (OpInfo.isIndirect) {
4265         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4266         if (!PtrTy)
4267           report_fatal_error("Indirect operand for inline asm not a pointer!");
4268         OpTy = PtrTy->getElementType();
4269       }
4270 
4271       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4272       if (StructType *STy = dyn_cast<StructType>(OpTy))
4273         if (STy->getNumElements() == 1)
4274           OpTy = STy->getElementType(0);
4275 
4276       // If OpTy is not a single value, it may be a struct/union that we
4277       // can tile with integers.
4278       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4279         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4280         switch (BitSize) {
4281         default: break;
4282         case 1:
4283         case 8:
4284         case 16:
4285         case 32:
4286         case 64:
4287         case 128:
4288           OpInfo.ConstraintVT =
4289               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4290           break;
4291         }
4292       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4293         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4294         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4295       } else {
4296         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4297       }
4298     }
4299   }
4300 
4301   // If we have multiple alternative constraints, select the best alternative.
4302   if (!ConstraintOperands.empty()) {
4303     if (maCount) {
4304       unsigned bestMAIndex = 0;
4305       int bestWeight = -1;
4306       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4307       int weight = -1;
4308       unsigned maIndex;
4309       // Compute the sums of the weights for each alternative, keeping track
4310       // of the best (highest weight) one so far.
4311       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4312         int weightSum = 0;
4313         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4314              cIndex != eIndex; ++cIndex) {
4315           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4316           if (OpInfo.Type == InlineAsm::isClobber)
4317             continue;
4318 
4319           // If this is an output operand with a matching input operand,
4320           // look up the matching input. If their types mismatch, e.g. one
4321           // is an integer, the other is floating point, or their sizes are
4322           // different, flag it as an maCantMatch.
4323           if (OpInfo.hasMatchingInput()) {
4324             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4325             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4326               if ((OpInfo.ConstraintVT.isInteger() !=
4327                    Input.ConstraintVT.isInteger()) ||
4328                   (OpInfo.ConstraintVT.getSizeInBits() !=
4329                    Input.ConstraintVT.getSizeInBits())) {
4330                 weightSum = -1; // Can't match.
4331                 break;
4332               }
4333             }
4334           }
4335           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4336           if (weight == -1) {
4337             weightSum = -1;
4338             break;
4339           }
4340           weightSum += weight;
4341         }
4342         // Update best.
4343         if (weightSum > bestWeight) {
4344           bestWeight = weightSum;
4345           bestMAIndex = maIndex;
4346         }
4347       }
4348 
4349       // Now select chosen alternative in each constraint.
4350       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4351            cIndex != eIndex; ++cIndex) {
4352         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4353         if (cInfo.Type == InlineAsm::isClobber)
4354           continue;
4355         cInfo.selectAlternative(bestMAIndex);
4356       }
4357     }
4358   }
4359 
4360   // Check and hook up tied operands, choose constraint code to use.
4361   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4362        cIndex != eIndex; ++cIndex) {
4363     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4364 
4365     // If this is an output operand with a matching input operand, look up the
4366     // matching input. If their types mismatch, e.g. one is an integer, the
4367     // other is floating point, or their sizes are different, flag it as an
4368     // error.
4369     if (OpInfo.hasMatchingInput()) {
4370       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4371 
4372       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4373         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4374             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4375                                          OpInfo.ConstraintVT);
4376         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4377             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4378                                          Input.ConstraintVT);
4379         if ((OpInfo.ConstraintVT.isInteger() !=
4380              Input.ConstraintVT.isInteger()) ||
4381             (MatchRC.second != InputRC.second)) {
4382           report_fatal_error("Unsupported asm: input constraint"
4383                              " with a matching output constraint of"
4384                              " incompatible type!");
4385         }
4386       }
4387     }
4388   }
4389 
4390   return ConstraintOperands;
4391 }
4392 
4393 /// Return an integer indicating how general CT is.
4394 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4395   switch (CT) {
4396   case TargetLowering::C_Immediate:
4397   case TargetLowering::C_Other:
4398   case TargetLowering::C_Unknown:
4399     return 0;
4400   case TargetLowering::C_Register:
4401     return 1;
4402   case TargetLowering::C_RegisterClass:
4403     return 2;
4404   case TargetLowering::C_Memory:
4405     return 3;
4406   }
4407   llvm_unreachable("Invalid constraint type");
4408 }
4409 
4410 /// Examine constraint type and operand type and determine a weight value.
4411 /// This object must already have been set up with the operand type
4412 /// and the current alternative constraint selected.
4413 TargetLowering::ConstraintWeight
4414   TargetLowering::getMultipleConstraintMatchWeight(
4415     AsmOperandInfo &info, int maIndex) const {
4416   InlineAsm::ConstraintCodeVector *rCodes;
4417   if (maIndex >= (int)info.multipleAlternatives.size())
4418     rCodes = &info.Codes;
4419   else
4420     rCodes = &info.multipleAlternatives[maIndex].Codes;
4421   ConstraintWeight BestWeight = CW_Invalid;
4422 
4423   // Loop over the options, keeping track of the most general one.
4424   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4425     ConstraintWeight weight =
4426       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4427     if (weight > BestWeight)
4428       BestWeight = weight;
4429   }
4430 
4431   return BestWeight;
4432 }
4433 
4434 /// Examine constraint type and operand type and determine a weight value.
4435 /// This object must already have been set up with the operand type
4436 /// and the current alternative constraint selected.
4437 TargetLowering::ConstraintWeight
4438   TargetLowering::getSingleConstraintMatchWeight(
4439     AsmOperandInfo &info, const char *constraint) const {
4440   ConstraintWeight weight = CW_Invalid;
4441   Value *CallOperandVal = info.CallOperandVal;
4442     // If we don't have a value, we can't do a match,
4443     // but allow it at the lowest weight.
4444   if (!CallOperandVal)
4445     return CW_Default;
4446   // Look at the constraint type.
4447   switch (*constraint) {
4448     case 'i': // immediate integer.
4449     case 'n': // immediate integer with a known value.
4450       if (isa<ConstantInt>(CallOperandVal))
4451         weight = CW_Constant;
4452       break;
4453     case 's': // non-explicit intregal immediate.
4454       if (isa<GlobalValue>(CallOperandVal))
4455         weight = CW_Constant;
4456       break;
4457     case 'E': // immediate float if host format.
4458     case 'F': // immediate float.
4459       if (isa<ConstantFP>(CallOperandVal))
4460         weight = CW_Constant;
4461       break;
4462     case '<': // memory operand with autodecrement.
4463     case '>': // memory operand with autoincrement.
4464     case 'm': // memory operand.
4465     case 'o': // offsettable memory operand
4466     case 'V': // non-offsettable memory operand
4467       weight = CW_Memory;
4468       break;
4469     case 'r': // general register.
4470     case 'g': // general register, memory operand or immediate integer.
4471               // note: Clang converts "g" to "imr".
4472       if (CallOperandVal->getType()->isIntegerTy())
4473         weight = CW_Register;
4474       break;
4475     case 'X': // any operand.
4476   default:
4477     weight = CW_Default;
4478     break;
4479   }
4480   return weight;
4481 }
4482 
4483 /// If there are multiple different constraints that we could pick for this
4484 /// operand (e.g. "imr") try to pick the 'best' one.
4485 /// This is somewhat tricky: constraints fall into four classes:
4486 ///    Other         -> immediates and magic values
4487 ///    Register      -> one specific register
4488 ///    RegisterClass -> a group of regs
4489 ///    Memory        -> memory
4490 /// Ideally, we would pick the most specific constraint possible: if we have
4491 /// something that fits into a register, we would pick it.  The problem here
4492 /// is that if we have something that could either be in a register or in
4493 /// memory that use of the register could cause selection of *other*
4494 /// operands to fail: they might only succeed if we pick memory.  Because of
4495 /// this the heuristic we use is:
4496 ///
4497 ///  1) If there is an 'other' constraint, and if the operand is valid for
4498 ///     that constraint, use it.  This makes us take advantage of 'i'
4499 ///     constraints when available.
4500 ///  2) Otherwise, pick the most general constraint present.  This prefers
4501 ///     'm' over 'r', for example.
4502 ///
4503 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4504                              const TargetLowering &TLI,
4505                              SDValue Op, SelectionDAG *DAG) {
4506   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4507   unsigned BestIdx = 0;
4508   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4509   int BestGenerality = -1;
4510 
4511   // Loop over the options, keeping track of the most general one.
4512   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4513     TargetLowering::ConstraintType CType =
4514       TLI.getConstraintType(OpInfo.Codes[i]);
4515 
4516     // Indirect 'other' or 'immediate' constraints are not allowed.
4517     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4518                                CType == TargetLowering::C_Register ||
4519                                CType == TargetLowering::C_RegisterClass))
4520       continue;
4521 
4522     // If this is an 'other' or 'immediate' constraint, see if the operand is
4523     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4524     // the operand is an integer in the range [0..31] we want to use I (saving a
4525     // load of a register), otherwise we must use 'r'.
4526     if ((CType == TargetLowering::C_Other ||
4527          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4528       assert(OpInfo.Codes[i].size() == 1 &&
4529              "Unhandled multi-letter 'other' constraint");
4530       std::vector<SDValue> ResultOps;
4531       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4532                                        ResultOps, *DAG);
4533       if (!ResultOps.empty()) {
4534         BestType = CType;
4535         BestIdx = i;
4536         break;
4537       }
4538     }
4539 
4540     // Things with matching constraints can only be registers, per gcc
4541     // documentation.  This mainly affects "g" constraints.
4542     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4543       continue;
4544 
4545     // This constraint letter is more general than the previous one, use it.
4546     int Generality = getConstraintGenerality(CType);
4547     if (Generality > BestGenerality) {
4548       BestType = CType;
4549       BestIdx = i;
4550       BestGenerality = Generality;
4551     }
4552   }
4553 
4554   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4555   OpInfo.ConstraintType = BestType;
4556 }
4557 
4558 /// Determines the constraint code and constraint type to use for the specific
4559 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4560 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4561                                             SDValue Op,
4562                                             SelectionDAG *DAG) const {
4563   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4564 
4565   // Single-letter constraints ('r') are very common.
4566   if (OpInfo.Codes.size() == 1) {
4567     OpInfo.ConstraintCode = OpInfo.Codes[0];
4568     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4569   } else {
4570     ChooseConstraint(OpInfo, *this, Op, DAG);
4571   }
4572 
4573   // 'X' matches anything.
4574   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4575     // Labels and constants are handled elsewhere ('X' is the only thing
4576     // that matches labels).  For Functions, the type here is the type of
4577     // the result, which is not what we want to look at; leave them alone.
4578     Value *v = OpInfo.CallOperandVal;
4579     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4580       OpInfo.CallOperandVal = v;
4581       return;
4582     }
4583 
4584     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4585       return;
4586 
4587     // Otherwise, try to resolve it to something we know about by looking at
4588     // the actual operand type.
4589     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4590       OpInfo.ConstraintCode = Repl;
4591       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4592     }
4593   }
4594 }
4595 
4596 /// Given an exact SDIV by a constant, create a multiplication
4597 /// with the multiplicative inverse of the constant.
4598 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4599                               const SDLoc &dl, SelectionDAG &DAG,
4600                               SmallVectorImpl<SDNode *> &Created) {
4601   SDValue Op0 = N->getOperand(0);
4602   SDValue Op1 = N->getOperand(1);
4603   EVT VT = N->getValueType(0);
4604   EVT SVT = VT.getScalarType();
4605   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4606   EVT ShSVT = ShVT.getScalarType();
4607 
4608   bool UseSRA = false;
4609   SmallVector<SDValue, 16> Shifts, Factors;
4610 
4611   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4612     if (C->isNullValue())
4613       return false;
4614     APInt Divisor = C->getAPIntValue();
4615     unsigned Shift = Divisor.countTrailingZeros();
4616     if (Shift) {
4617       Divisor.ashrInPlace(Shift);
4618       UseSRA = true;
4619     }
4620     // Calculate the multiplicative inverse, using Newton's method.
4621     APInt t;
4622     APInt Factor = Divisor;
4623     while ((t = Divisor * Factor) != 1)
4624       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4625     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4626     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4627     return true;
4628   };
4629 
4630   // Collect all magic values from the build vector.
4631   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4632     return SDValue();
4633 
4634   SDValue Shift, Factor;
4635   if (VT.isVector()) {
4636     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4637     Factor = DAG.getBuildVector(VT, dl, Factors);
4638   } else {
4639     Shift = Shifts[0];
4640     Factor = Factors[0];
4641   }
4642 
4643   SDValue Res = Op0;
4644 
4645   // Shift the value upfront if it is even, so the LSB is one.
4646   if (UseSRA) {
4647     // TODO: For UDIV use SRL instead of SRA.
4648     SDNodeFlags Flags;
4649     Flags.setExact(true);
4650     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4651     Created.push_back(Res.getNode());
4652   }
4653 
4654   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4655 }
4656 
4657 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4658                               SelectionDAG &DAG,
4659                               SmallVectorImpl<SDNode *> &Created) const {
4660   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4662   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4663     return SDValue(N, 0); // Lower SDIV as SDIV
4664   return SDValue();
4665 }
4666 
4667 /// Given an ISD::SDIV node expressing a divide by constant,
4668 /// return a DAG expression to select that will generate the same value by
4669 /// multiplying by a magic number.
4670 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4671 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4672                                   bool IsAfterLegalization,
4673                                   SmallVectorImpl<SDNode *> &Created) const {
4674   SDLoc dl(N);
4675   EVT VT = N->getValueType(0);
4676   EVT SVT = VT.getScalarType();
4677   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4678   EVT ShSVT = ShVT.getScalarType();
4679   unsigned EltBits = VT.getScalarSizeInBits();
4680 
4681   // Check to see if we can do this.
4682   // FIXME: We should be more aggressive here.
4683   if (!isTypeLegal(VT))
4684     return SDValue();
4685 
4686   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4687   if (N->getFlags().hasExact())
4688     return BuildExactSDIV(*this, N, dl, DAG, Created);
4689 
4690   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4691 
4692   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4693     if (C->isNullValue())
4694       return false;
4695 
4696     const APInt &Divisor = C->getAPIntValue();
4697     APInt::ms magics = Divisor.magic();
4698     int NumeratorFactor = 0;
4699     int ShiftMask = -1;
4700 
4701     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4702       // If d is +1/-1, we just multiply the numerator by +1/-1.
4703       NumeratorFactor = Divisor.getSExtValue();
4704       magics.m = 0;
4705       magics.s = 0;
4706       ShiftMask = 0;
4707     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4708       // If d > 0 and m < 0, add the numerator.
4709       NumeratorFactor = 1;
4710     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4711       // If d < 0 and m > 0, subtract the numerator.
4712       NumeratorFactor = -1;
4713     }
4714 
4715     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4716     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4717     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4718     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4719     return true;
4720   };
4721 
4722   SDValue N0 = N->getOperand(0);
4723   SDValue N1 = N->getOperand(1);
4724 
4725   // Collect the shifts / magic values from each element.
4726   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4727     return SDValue();
4728 
4729   SDValue MagicFactor, Factor, Shift, ShiftMask;
4730   if (VT.isVector()) {
4731     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4732     Factor = DAG.getBuildVector(VT, dl, Factors);
4733     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4734     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4735   } else {
4736     MagicFactor = MagicFactors[0];
4737     Factor = Factors[0];
4738     Shift = Shifts[0];
4739     ShiftMask = ShiftMasks[0];
4740   }
4741 
4742   // Multiply the numerator (operand 0) by the magic value.
4743   // FIXME: We should support doing a MUL in a wider type.
4744   SDValue Q;
4745   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4746                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4747     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4748   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4749                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4750     SDValue LoHi =
4751         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4752     Q = SDValue(LoHi.getNode(), 1);
4753   } else
4754     return SDValue(); // No mulhs or equivalent.
4755   Created.push_back(Q.getNode());
4756 
4757   // (Optionally) Add/subtract the numerator using Factor.
4758   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4759   Created.push_back(Factor.getNode());
4760   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4761   Created.push_back(Q.getNode());
4762 
4763   // Shift right algebraic by shift value.
4764   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4765   Created.push_back(Q.getNode());
4766 
4767   // Extract the sign bit, mask it and add it to the quotient.
4768   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4769   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4770   Created.push_back(T.getNode());
4771   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4772   Created.push_back(T.getNode());
4773   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4774 }
4775 
4776 /// Given an ISD::UDIV node expressing a divide by constant,
4777 /// return a DAG expression to select that will generate the same value by
4778 /// multiplying by a magic number.
4779 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4780 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4781                                   bool IsAfterLegalization,
4782                                   SmallVectorImpl<SDNode *> &Created) const {
4783   SDLoc dl(N);
4784   EVT VT = N->getValueType(0);
4785   EVT SVT = VT.getScalarType();
4786   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4787   EVT ShSVT = ShVT.getScalarType();
4788   unsigned EltBits = VT.getScalarSizeInBits();
4789 
4790   // Check to see if we can do this.
4791   // FIXME: We should be more aggressive here.
4792   if (!isTypeLegal(VT))
4793     return SDValue();
4794 
4795   bool UseNPQ = false;
4796   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4797 
4798   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4799     if (C->isNullValue())
4800       return false;
4801     // FIXME: We should use a narrower constant when the upper
4802     // bits are known to be zero.
4803     APInt Divisor = C->getAPIntValue();
4804     APInt::mu magics = Divisor.magicu();
4805     unsigned PreShift = 0, PostShift = 0;
4806 
4807     // If the divisor is even, we can avoid using the expensive fixup by
4808     // shifting the divided value upfront.
4809     if (magics.a != 0 && !Divisor[0]) {
4810       PreShift = Divisor.countTrailingZeros();
4811       // Get magic number for the shifted divisor.
4812       magics = Divisor.lshr(PreShift).magicu(PreShift);
4813       assert(magics.a == 0 && "Should use cheap fixup now");
4814     }
4815 
4816     APInt Magic = magics.m;
4817 
4818     unsigned SelNPQ;
4819     if (magics.a == 0 || Divisor.isOneValue()) {
4820       assert(magics.s < Divisor.getBitWidth() &&
4821              "We shouldn't generate an undefined shift!");
4822       PostShift = magics.s;
4823       SelNPQ = false;
4824     } else {
4825       PostShift = magics.s - 1;
4826       SelNPQ = true;
4827     }
4828 
4829     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4830     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4831     NPQFactors.push_back(
4832         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4833                                : APInt::getNullValue(EltBits),
4834                         dl, SVT));
4835     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4836     UseNPQ |= SelNPQ;
4837     return true;
4838   };
4839 
4840   SDValue N0 = N->getOperand(0);
4841   SDValue N1 = N->getOperand(1);
4842 
4843   // Collect the shifts/magic values from each element.
4844   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4845     return SDValue();
4846 
4847   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4848   if (VT.isVector()) {
4849     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4850     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4851     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4852     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4853   } else {
4854     PreShift = PreShifts[0];
4855     MagicFactor = MagicFactors[0];
4856     PostShift = PostShifts[0];
4857   }
4858 
4859   SDValue Q = N0;
4860   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4861   Created.push_back(Q.getNode());
4862 
4863   // FIXME: We should support doing a MUL in a wider type.
4864   auto GetMULHU = [&](SDValue X, SDValue Y) {
4865     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4866                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4867       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4868     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4869                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4870       SDValue LoHi =
4871           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4872       return SDValue(LoHi.getNode(), 1);
4873     }
4874     return SDValue(); // No mulhu or equivalent
4875   };
4876 
4877   // Multiply the numerator (operand 0) by the magic value.
4878   Q = GetMULHU(Q, MagicFactor);
4879   if (!Q)
4880     return SDValue();
4881 
4882   Created.push_back(Q.getNode());
4883 
4884   if (UseNPQ) {
4885     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4886     Created.push_back(NPQ.getNode());
4887 
4888     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4889     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4890     if (VT.isVector())
4891       NPQ = GetMULHU(NPQ, NPQFactor);
4892     else
4893       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4894 
4895     Created.push_back(NPQ.getNode());
4896 
4897     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4898     Created.push_back(Q.getNode());
4899   }
4900 
4901   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4902   Created.push_back(Q.getNode());
4903 
4904   SDValue One = DAG.getConstant(1, dl, VT);
4905   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4906   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4907 }
4908 
4909 /// If all values in Values that *don't* match the predicate are same 'splat'
4910 /// value, then replace all values with that splat value.
4911 /// Else, if AlternativeReplacement was provided, then replace all values that
4912 /// do match predicate with AlternativeReplacement value.
4913 static void
4914 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4915                           std::function<bool(SDValue)> Predicate,
4916                           SDValue AlternativeReplacement = SDValue()) {
4917   SDValue Replacement;
4918   // Is there a value for which the Predicate does *NOT* match? What is it?
4919   auto SplatValue = llvm::find_if_not(Values, Predicate);
4920   if (SplatValue != Values.end()) {
4921     // Does Values consist only of SplatValue's and values matching Predicate?
4922     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4923           return Value == *SplatValue || Predicate(Value);
4924         })) // Then we shall replace values matching predicate with SplatValue.
4925       Replacement = *SplatValue;
4926   }
4927   if (!Replacement) {
4928     // Oops, we did not find the "baseline" splat value.
4929     if (!AlternativeReplacement)
4930       return; // Nothing to do.
4931     // Let's replace with provided value then.
4932     Replacement = AlternativeReplacement;
4933   }
4934   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4935 }
4936 
4937 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4938 /// where the divisor is constant and the comparison target is zero,
4939 /// return a DAG expression that will generate the same comparison result
4940 /// using only multiplications, additions and shifts/rotations.
4941 /// Ref: "Hacker's Delight" 10-17.
4942 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4943                                         SDValue CompTargetNode,
4944                                         ISD::CondCode Cond,
4945                                         DAGCombinerInfo &DCI,
4946                                         const SDLoc &DL) const {
4947   SmallVector<SDNode *, 5> Built;
4948   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4949                                          DCI, DL, Built)) {
4950     for (SDNode *N : Built)
4951       DCI.AddToWorklist(N);
4952     return Folded;
4953   }
4954 
4955   return SDValue();
4956 }
4957 
4958 SDValue
4959 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4960                                   SDValue CompTargetNode, ISD::CondCode Cond,
4961                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4962                                   SmallVectorImpl<SDNode *> &Created) const {
4963   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4964   // - D must be constant, with D = D0 * 2^K where D0 is odd
4965   // - P is the multiplicative inverse of D0 modulo 2^W
4966   // - Q = floor(((2^W) - 1) / D)
4967   // where W is the width of the common type of N and D.
4968   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4969          "Only applicable for (in)equality comparisons.");
4970 
4971   SelectionDAG &DAG = DCI.DAG;
4972 
4973   EVT VT = REMNode.getValueType();
4974   EVT SVT = VT.getScalarType();
4975   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4976   EVT ShSVT = ShVT.getScalarType();
4977 
4978   // If MUL is unavailable, we cannot proceed in any case.
4979   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4980     return SDValue();
4981 
4982   bool ComparingWithAllZeros = true;
4983   bool AllComparisonsWithNonZerosAreTautological = true;
4984   bool HadTautologicalLanes = false;
4985   bool AllLanesAreTautological = true;
4986   bool HadEvenDivisor = false;
4987   bool AllDivisorsArePowerOfTwo = true;
4988   bool HadTautologicalInvertedLanes = false;
4989   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
4990 
4991   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
4992     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4993     if (CDiv->isNullValue())
4994       return false;
4995 
4996     const APInt &D = CDiv->getAPIntValue();
4997     const APInt &Cmp = CCmp->getAPIntValue();
4998 
4999     ComparingWithAllZeros &= Cmp.isNullValue();
5000 
5001     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5002     // if C2 is not less than C1, the comparison is always false.
5003     // But we will only be able to produce the comparison that will give the
5004     // opposive tautological answer. So this lane would need to be fixed up.
5005     bool TautologicalInvertedLane = D.ule(Cmp);
5006     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5007 
5008     // If all lanes are tautological (either all divisors are ones, or divisor
5009     // is not greater than the constant we are comparing with),
5010     // we will prefer to avoid the fold.
5011     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5012     HadTautologicalLanes |= TautologicalLane;
5013     AllLanesAreTautological &= TautologicalLane;
5014 
5015     // If we are comparing with non-zero, we need'll need  to subtract said
5016     // comparison value from the LHS. But there is no point in doing that if
5017     // every lane where we are comparing with non-zero is tautological..
5018     if (!Cmp.isNullValue())
5019       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5020 
5021     // Decompose D into D0 * 2^K
5022     unsigned K = D.countTrailingZeros();
5023     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5024     APInt D0 = D.lshr(K);
5025 
5026     // D is even if it has trailing zeros.
5027     HadEvenDivisor |= (K != 0);
5028     // D is a power-of-two if D0 is one.
5029     // If all divisors are power-of-two, we will prefer to avoid the fold.
5030     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5031 
5032     // P = inv(D0, 2^W)
5033     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5034     unsigned W = D.getBitWidth();
5035     APInt P = D0.zext(W + 1)
5036                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5037                   .trunc(W);
5038     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5039     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5040 
5041     // Q = floor((2^W - 1) u/ D)
5042     // R = ((2^W - 1) u% D)
5043     APInt Q, R;
5044     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5045 
5046     // If we are comparing with zero, then that comparison constant is okay,
5047     // else it may need to be one less than that.
5048     if (Cmp.ugt(R))
5049       Q -= 1;
5050 
5051     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5052            "We are expecting that K is always less than all-ones for ShSVT");
5053 
5054     // If the lane is tautological the result can be constant-folded.
5055     if (TautologicalLane) {
5056       // Set P and K amount to a bogus values so we can try to splat them.
5057       P = 0;
5058       K = -1;
5059       // And ensure that comparison constant is tautological,
5060       // it will always compare true/false.
5061       Q = -1;
5062     }
5063 
5064     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5065     KAmts.push_back(
5066         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5067     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5068     return true;
5069   };
5070 
5071   SDValue N = REMNode.getOperand(0);
5072   SDValue D = REMNode.getOperand(1);
5073 
5074   // Collect the values from each element.
5075   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5076     return SDValue();
5077 
5078   // If all lanes are tautological, the result can be constant-folded.
5079   if (AllLanesAreTautological)
5080     return SDValue();
5081 
5082   // If this is a urem by a powers-of-two, avoid the fold since it can be
5083   // best implemented as a bit test.
5084   if (AllDivisorsArePowerOfTwo)
5085     return SDValue();
5086 
5087   SDValue PVal, KVal, QVal;
5088   if (VT.isVector()) {
5089     if (HadTautologicalLanes) {
5090       // Try to turn PAmts into a splat, since we don't care about the values
5091       // that are currently '0'. If we can't, just keep '0'`s.
5092       turnVectorIntoSplatVector(PAmts, isNullConstant);
5093       // Try to turn KAmts into a splat, since we don't care about the values
5094       // that are currently '-1'. If we can't, change them to '0'`s.
5095       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5096                                 DAG.getConstant(0, DL, ShSVT));
5097     }
5098 
5099     PVal = DAG.getBuildVector(VT, DL, PAmts);
5100     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5101     QVal = DAG.getBuildVector(VT, DL, QAmts);
5102   } else {
5103     PVal = PAmts[0];
5104     KVal = KAmts[0];
5105     QVal = QAmts[0];
5106   }
5107 
5108   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5109     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5110       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5111     assert(CompTargetNode.getValueType() == N.getValueType() &&
5112            "Expecting that the types on LHS and RHS of comparisons match.");
5113     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5114   }
5115 
5116   // (mul N, P)
5117   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5118   Created.push_back(Op0.getNode());
5119 
5120   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5121   // divisors as a performance improvement, since rotating by 0 is a no-op.
5122   if (HadEvenDivisor) {
5123     // We need ROTR to do this.
5124     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5125       return SDValue();
5126     SDNodeFlags Flags;
5127     Flags.setExact(true);
5128     // UREM: (rotr (mul N, P), K)
5129     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5130     Created.push_back(Op0.getNode());
5131   }
5132 
5133   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5134   SDValue NewCC =
5135       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5136                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5137   if (!HadTautologicalInvertedLanes)
5138     return NewCC;
5139 
5140   // If any lanes previously compared always-false, the NewCC will give
5141   // always-true result for them, so we need to fixup those lanes.
5142   // Or the other way around for inequality predicate.
5143   assert(VT.isVector() && "Can/should only get here for vectors.");
5144   Created.push_back(NewCC.getNode());
5145 
5146   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5147   // if C2 is not less than C1, the comparison is always false.
5148   // But we have produced the comparison that will give the
5149   // opposive tautological answer. So these lanes would need to be fixed up.
5150   SDValue TautologicalInvertedChannels =
5151       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5152   Created.push_back(TautologicalInvertedChannels.getNode());
5153 
5154   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5155     // If we have a vector select, let's replace the comparison results in the
5156     // affected lanes with the correct tautological result.
5157     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5158                                               DL, SETCCVT, SETCCVT);
5159     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5160                        Replacement, NewCC);
5161   }
5162 
5163   // Else, we can just invert the comparison result in the appropriate lanes.
5164   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5165     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5166                        TautologicalInvertedChannels);
5167 
5168   return SDValue(); // Don't know how to lower.
5169 }
5170 
5171 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5172 /// where the divisor is constant and the comparison target is zero,
5173 /// return a DAG expression that will generate the same comparison result
5174 /// using only multiplications, additions and shifts/rotations.
5175 /// Ref: "Hacker's Delight" 10-17.
5176 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5177                                         SDValue CompTargetNode,
5178                                         ISD::CondCode Cond,
5179                                         DAGCombinerInfo &DCI,
5180                                         const SDLoc &DL) const {
5181   SmallVector<SDNode *, 7> Built;
5182   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5183                                          DCI, DL, Built)) {
5184     assert(Built.size() <= 7 && "Max size prediction failed.");
5185     for (SDNode *N : Built)
5186       DCI.AddToWorklist(N);
5187     return Folded;
5188   }
5189 
5190   return SDValue();
5191 }
5192 
5193 SDValue
5194 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5195                                   SDValue CompTargetNode, ISD::CondCode Cond,
5196                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5197                                   SmallVectorImpl<SDNode *> &Created) const {
5198   // Fold:
5199   //   (seteq/ne (srem N, D), 0)
5200   // To:
5201   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5202   //
5203   // - D must be constant, with D = D0 * 2^K where D0 is odd
5204   // - P is the multiplicative inverse of D0 modulo 2^W
5205   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5206   // - Q = floor((2 * A) / (2^K))
5207   // where W is the width of the common type of N and D.
5208   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5209          "Only applicable for (in)equality comparisons.");
5210 
5211   SelectionDAG &DAG = DCI.DAG;
5212 
5213   EVT VT = REMNode.getValueType();
5214   EVT SVT = VT.getScalarType();
5215   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5216   EVT ShSVT = ShVT.getScalarType();
5217 
5218   // If MUL is unavailable, we cannot proceed in any case.
5219   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5220     return SDValue();
5221 
5222   // TODO: Could support comparing with non-zero too.
5223   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5224   if (!CompTarget || !CompTarget->isNullValue())
5225     return SDValue();
5226 
5227   bool HadIntMinDivisor = false;
5228   bool HadOneDivisor = false;
5229   bool AllDivisorsAreOnes = true;
5230   bool HadEvenDivisor = false;
5231   bool NeedToApplyOffset = false;
5232   bool AllDivisorsArePowerOfTwo = true;
5233   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5234 
5235   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5236     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5237     if (C->isNullValue())
5238       return false;
5239 
5240     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5241 
5242     // WARNING: this fold is only valid for positive divisors!
5243     APInt D = C->getAPIntValue();
5244     if (D.isNegative())
5245       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5246 
5247     HadIntMinDivisor |= D.isMinSignedValue();
5248 
5249     // If all divisors are ones, we will prefer to avoid the fold.
5250     HadOneDivisor |= D.isOneValue();
5251     AllDivisorsAreOnes &= D.isOneValue();
5252 
5253     // Decompose D into D0 * 2^K
5254     unsigned K = D.countTrailingZeros();
5255     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5256     APInt D0 = D.lshr(K);
5257 
5258     if (!D.isMinSignedValue()) {
5259       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5260       // we don't care about this lane in this fold, we'll special-handle it.
5261       HadEvenDivisor |= (K != 0);
5262     }
5263 
5264     // D is a power-of-two if D0 is one. This includes INT_MIN.
5265     // If all divisors are power-of-two, we will prefer to avoid the fold.
5266     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5267 
5268     // P = inv(D0, 2^W)
5269     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5270     unsigned W = D.getBitWidth();
5271     APInt P = D0.zext(W + 1)
5272                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5273                   .trunc(W);
5274     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5275     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5276 
5277     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5278     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5279     A.clearLowBits(K);
5280 
5281     if (!D.isMinSignedValue()) {
5282       // If divisor INT_MIN, then we don't care about this lane in this fold,
5283       // we'll special-handle it.
5284       NeedToApplyOffset |= A != 0;
5285     }
5286 
5287     // Q = floor((2 * A) / (2^K))
5288     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5289 
5290     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5291            "We are expecting that A is always less than all-ones for SVT");
5292     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5293            "We are expecting that K is always less than all-ones for ShSVT");
5294 
5295     // If the divisor is 1 the result can be constant-folded. Likewise, we
5296     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5297     if (D.isOneValue()) {
5298       // Set P, A and K to a bogus values so we can try to splat them.
5299       P = 0;
5300       A = -1;
5301       K = -1;
5302 
5303       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5304       Q = -1;
5305     }
5306 
5307     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5308     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5309     KAmts.push_back(
5310         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5311     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5312     return true;
5313   };
5314 
5315   SDValue N = REMNode.getOperand(0);
5316   SDValue D = REMNode.getOperand(1);
5317 
5318   // Collect the values from each element.
5319   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5320     return SDValue();
5321 
5322   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5323   if (AllDivisorsAreOnes)
5324     return SDValue();
5325 
5326   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5327   // since it can be best implemented as a bit test.
5328   if (AllDivisorsArePowerOfTwo)
5329     return SDValue();
5330 
5331   SDValue PVal, AVal, KVal, QVal;
5332   if (VT.isVector()) {
5333     if (HadOneDivisor) {
5334       // Try to turn PAmts into a splat, since we don't care about the values
5335       // that are currently '0'. If we can't, just keep '0'`s.
5336       turnVectorIntoSplatVector(PAmts, isNullConstant);
5337       // Try to turn AAmts into a splat, since we don't care about the
5338       // values that are currently '-1'. If we can't, change them to '0'`s.
5339       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5340                                 DAG.getConstant(0, DL, SVT));
5341       // Try to turn KAmts into a splat, since we don't care about the values
5342       // that are currently '-1'. If we can't, change them to '0'`s.
5343       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5344                                 DAG.getConstant(0, DL, ShSVT));
5345     }
5346 
5347     PVal = DAG.getBuildVector(VT, DL, PAmts);
5348     AVal = DAG.getBuildVector(VT, DL, AAmts);
5349     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5350     QVal = DAG.getBuildVector(VT, DL, QAmts);
5351   } else {
5352     PVal = PAmts[0];
5353     AVal = AAmts[0];
5354     KVal = KAmts[0];
5355     QVal = QAmts[0];
5356   }
5357 
5358   // (mul N, P)
5359   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5360   Created.push_back(Op0.getNode());
5361 
5362   if (NeedToApplyOffset) {
5363     // We need ADD to do this.
5364     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5365       return SDValue();
5366 
5367     // (add (mul N, P), A)
5368     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5369     Created.push_back(Op0.getNode());
5370   }
5371 
5372   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5373   // divisors as a performance improvement, since rotating by 0 is a no-op.
5374   if (HadEvenDivisor) {
5375     // We need ROTR to do this.
5376     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5377       return SDValue();
5378     SDNodeFlags Flags;
5379     Flags.setExact(true);
5380     // SREM: (rotr (add (mul N, P), A), K)
5381     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5382     Created.push_back(Op0.getNode());
5383   }
5384 
5385   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5386   SDValue Fold =
5387       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5388                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5389 
5390   // If we didn't have lanes with INT_MIN divisor, then we're done.
5391   if (!HadIntMinDivisor)
5392     return Fold;
5393 
5394   // That fold is only valid for positive divisors. Which effectively means,
5395   // it is invalid for INT_MIN divisors. So if we have such a lane,
5396   // we must fix-up results for said lanes.
5397   assert(VT.isVector() && "Can/should only get here for vectors.");
5398 
5399   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5400       !isOperationLegalOrCustom(ISD::AND, VT) ||
5401       !isOperationLegalOrCustom(Cond, VT) ||
5402       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5403     return SDValue();
5404 
5405   Created.push_back(Fold.getNode());
5406 
5407   SDValue IntMin = DAG.getConstant(
5408       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5409   SDValue IntMax = DAG.getConstant(
5410       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5411   SDValue Zero =
5412       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5413 
5414   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5415   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5416   Created.push_back(DivisorIsIntMin.getNode());
5417 
5418   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5419   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5420   Created.push_back(Masked.getNode());
5421   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5422   Created.push_back(MaskedIsZero.getNode());
5423 
5424   // To produce final result we need to blend 2 vectors: 'SetCC' and
5425   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5426   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5427   // constant-folded, select can get lowered to a shuffle with constant mask.
5428   SDValue Blended =
5429       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5430 
5431   return Blended;
5432 }
5433 
5434 bool TargetLowering::
5435 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5436   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5437     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5438                                 "be a constant integer");
5439     return true;
5440   }
5441 
5442   return false;
5443 }
5444 
5445 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5446                                         bool LegalOperations, bool ForCodeSize,
5447                                         unsigned Depth) const {
5448   // fneg is removable even if it has multiple uses.
5449   if (Op.getOpcode() == ISD::FNEG)
5450     return 2;
5451 
5452   // Don't allow anything with multiple uses unless we know it is free.
5453   EVT VT = Op.getValueType();
5454   const SDNodeFlags Flags = Op->getFlags();
5455   const TargetOptions &Options = DAG.getTarget().Options;
5456   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5457                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5458     return 0;
5459 
5460   // Don't recurse exponentially.
5461   if (Depth > SelectionDAG::MaxRecursionDepth)
5462     return 0;
5463 
5464   switch (Op.getOpcode()) {
5465   case ISD::ConstantFP: {
5466     if (!LegalOperations)
5467       return 1;
5468 
5469     // Don't invert constant FP values after legalization unless the target says
5470     // the negated constant is legal.
5471     return isOperationLegal(ISD::ConstantFP, VT) ||
5472            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5473                         ForCodeSize);
5474   }
5475   case ISD::BUILD_VECTOR: {
5476     // Only permit BUILD_VECTOR of constants.
5477     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5478           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5479         }))
5480       return 0;
5481     if (!LegalOperations)
5482       return 1;
5483     if (isOperationLegal(ISD::ConstantFP, VT) &&
5484         isOperationLegal(ISD::BUILD_VECTOR, VT))
5485       return 1;
5486     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5487       return N.isUndef() ||
5488              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5489                           ForCodeSize);
5490     });
5491   }
5492   case ISD::FADD:
5493     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5494       return 0;
5495 
5496     // After operation legalization, it might not be legal to create new FSUBs.
5497     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5498       return 0;
5499 
5500     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5501     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5502                                     ForCodeSize, Depth + 1))
5503       return V;
5504     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5505     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5506                               ForCodeSize, Depth + 1);
5507   case ISD::FSUB:
5508     // We can't turn -(A-B) into B-A when we honor signed zeros.
5509     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5510       return 0;
5511 
5512     // fold (fneg (fsub A, B)) -> (fsub B, A)
5513     return 1;
5514 
5515   case ISD::FMUL:
5516   case ISD::FDIV:
5517     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5518     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5519                                     ForCodeSize, Depth + 1))
5520       return V;
5521 
5522     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5523     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5524       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5525         return 0;
5526 
5527     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5528                               ForCodeSize, Depth + 1);
5529 
5530   case ISD::FMA:
5531   case ISD::FMAD: {
5532     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5533       return 0;
5534 
5535     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5536     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5537     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5538                                  ForCodeSize, Depth + 1);
5539     if (!V2)
5540       return 0;
5541 
5542     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5543     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5544                                  ForCodeSize, Depth + 1);
5545     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5546                                  ForCodeSize, Depth + 1);
5547     char V01 = std::max(V0, V1);
5548     return V01 ? std::max(V01, V2) : 0;
5549   }
5550 
5551   case ISD::FP_EXTEND:
5552   case ISD::FP_ROUND:
5553   case ISD::FSIN:
5554     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5555                               ForCodeSize, Depth + 1);
5556   }
5557 
5558   return 0;
5559 }
5560 
5561 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5562                                              bool LegalOperations,
5563                                              bool ForCodeSize,
5564                                              unsigned Depth) const {
5565   // fneg is removable even if it has multiple uses.
5566   if (Op.getOpcode() == ISD::FNEG)
5567     return Op.getOperand(0);
5568 
5569   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5570          "getNegatedExpression doesn't match isNegatibleForFree");
5571   const SDNodeFlags Flags = Op->getFlags();
5572 
5573   switch (Op.getOpcode()) {
5574   case ISD::ConstantFP: {
5575     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5576     V.changeSign();
5577     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5578   }
5579   case ISD::BUILD_VECTOR: {
5580     SmallVector<SDValue, 4> Ops;
5581     for (SDValue C : Op->op_values()) {
5582       if (C.isUndef()) {
5583         Ops.push_back(C);
5584         continue;
5585       }
5586       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5587       V.changeSign();
5588       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5589     }
5590     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5591   }
5592   case ISD::FADD:
5593     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5594             Flags.hasNoSignedZeros()) &&
5595            "Expected NSZ fp-flag");
5596 
5597     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5598     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5599                            Depth + 1))
5600       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5601                          getNegatedExpression(Op.getOperand(0), DAG,
5602                                               LegalOperations, ForCodeSize,
5603                                               Depth + 1),
5604                          Op.getOperand(1), Flags);
5605     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5606     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5607                        getNegatedExpression(Op.getOperand(1), DAG,
5608                                             LegalOperations, ForCodeSize,
5609                                             Depth + 1),
5610                        Op.getOperand(0), Flags);
5611   case ISD::FSUB:
5612     // fold (fneg (fsub 0, B)) -> B
5613     if (ConstantFPSDNode *N0CFP =
5614             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5615       if (N0CFP->isZero())
5616         return Op.getOperand(1);
5617 
5618     // fold (fneg (fsub A, B)) -> (fsub B, A)
5619     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5620                        Op.getOperand(1), Op.getOperand(0), Flags);
5621 
5622   case ISD::FMUL:
5623   case ISD::FDIV:
5624     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5625     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5626                            Depth + 1))
5627       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5628                          getNegatedExpression(Op.getOperand(0), DAG,
5629                                               LegalOperations, ForCodeSize,
5630                                               Depth + 1),
5631                          Op.getOperand(1), Flags);
5632 
5633     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5634     return DAG.getNode(
5635         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5636         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5637                              ForCodeSize, Depth + 1),
5638         Flags);
5639 
5640   case ISD::FMA:
5641   case ISD::FMAD: {
5642     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5643             Flags.hasNoSignedZeros()) &&
5644            "Expected NSZ fp-flag");
5645 
5646     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5647                                         ForCodeSize, Depth + 1);
5648 
5649     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5650                                  ForCodeSize, Depth + 1);
5651     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5652                                  ForCodeSize, Depth + 1);
5653     // TODO: This is a hack. It is possible that costs have changed between now
5654     //       and the initial calls to isNegatibleForFree(). That is because we
5655     //       are rewriting the expression, and that may change the number of
5656     //       uses (and therefore the cost) of values. If the negation costs are
5657     //       equal, only negate this value if it is a constant. Otherwise, try
5658     //       operand 1. A better fix would eliminate uses as a cost factor or
5659     //       track the change in uses as we rewrite the expression.
5660     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5661       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5662       SDValue Neg0 = getNegatedExpression(
5663           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5664       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5665                          Op.getOperand(1), Neg2, Flags);
5666     }
5667 
5668     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5669     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5670                                         ForCodeSize, Depth + 1);
5671     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5672                        Op.getOperand(0), Neg1, Neg2, Flags);
5673   }
5674 
5675   case ISD::FP_EXTEND:
5676   case ISD::FSIN:
5677     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5678                        getNegatedExpression(Op.getOperand(0), DAG,
5679                                             LegalOperations, ForCodeSize,
5680                                             Depth + 1));
5681   case ISD::FP_ROUND:
5682     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5683                        getNegatedExpression(Op.getOperand(0), DAG,
5684                                             LegalOperations, ForCodeSize,
5685                                             Depth + 1),
5686                        Op.getOperand(1));
5687   }
5688 
5689   llvm_unreachable("Unknown code");
5690 }
5691 
5692 //===----------------------------------------------------------------------===//
5693 // Legalization Utilities
5694 //===----------------------------------------------------------------------===//
5695 
5696 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5697                                     SDValue LHS, SDValue RHS,
5698                                     SmallVectorImpl<SDValue> &Result,
5699                                     EVT HiLoVT, SelectionDAG &DAG,
5700                                     MulExpansionKind Kind, SDValue LL,
5701                                     SDValue LH, SDValue RL, SDValue RH) const {
5702   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5703          Opcode == ISD::SMUL_LOHI);
5704 
5705   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5706                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5707   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5708                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5709   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5710                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5711   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5712                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5713 
5714   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5715     return false;
5716 
5717   unsigned OuterBitSize = VT.getScalarSizeInBits();
5718   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5719   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5720   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5721 
5722   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5723   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5724          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5725 
5726   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5727   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5728                           bool Signed) -> bool {
5729     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5730       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5731       Hi = SDValue(Lo.getNode(), 1);
5732       return true;
5733     }
5734     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5735       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5736       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5737       return true;
5738     }
5739     return false;
5740   };
5741 
5742   SDValue Lo, Hi;
5743 
5744   if (!LL.getNode() && !RL.getNode() &&
5745       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5746     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5747     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5748   }
5749 
5750   if (!LL.getNode())
5751     return false;
5752 
5753   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5754   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5755       DAG.MaskedValueIsZero(RHS, HighMask)) {
5756     // The inputs are both zero-extended.
5757     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5758       Result.push_back(Lo);
5759       Result.push_back(Hi);
5760       if (Opcode != ISD::MUL) {
5761         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5762         Result.push_back(Zero);
5763         Result.push_back(Zero);
5764       }
5765       return true;
5766     }
5767   }
5768 
5769   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5770       RHSSB > InnerBitSize) {
5771     // The input values are both sign-extended.
5772     // TODO non-MUL case?
5773     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5774       Result.push_back(Lo);
5775       Result.push_back(Hi);
5776       return true;
5777     }
5778   }
5779 
5780   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5781   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5782   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5783     // FIXME getShiftAmountTy does not always return a sensible result when VT
5784     // is an illegal type, and so the type may be too small to fit the shift
5785     // amount. Override it with i32. The shift will have to be legalized.
5786     ShiftAmountTy = MVT::i32;
5787   }
5788   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5789 
5790   if (!LH.getNode() && !RH.getNode() &&
5791       isOperationLegalOrCustom(ISD::SRL, VT) &&
5792       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5793     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5794     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5795     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5796     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5797   }
5798 
5799   if (!LH.getNode())
5800     return false;
5801 
5802   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5803     return false;
5804 
5805   Result.push_back(Lo);
5806 
5807   if (Opcode == ISD::MUL) {
5808     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5809     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5810     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5811     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5812     Result.push_back(Hi);
5813     return true;
5814   }
5815 
5816   // Compute the full width result.
5817   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5818     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5819     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5820     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5821     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5822   };
5823 
5824   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5825   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5826     return false;
5827 
5828   // This is effectively the add part of a multiply-add of half-sized operands,
5829   // so it cannot overflow.
5830   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5831 
5832   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5833     return false;
5834 
5835   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5836   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5837 
5838   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5839                   isOperationLegalOrCustom(ISD::ADDE, VT));
5840   if (UseGlue)
5841     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5842                        Merge(Lo, Hi));
5843   else
5844     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5845                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5846 
5847   SDValue Carry = Next.getValue(1);
5848   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5849   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5850 
5851   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5852     return false;
5853 
5854   if (UseGlue)
5855     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5856                      Carry);
5857   else
5858     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5859                      Zero, Carry);
5860 
5861   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5862 
5863   if (Opcode == ISD::SMUL_LOHI) {
5864     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5865                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5866     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5867 
5868     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5869                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5870     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5871   }
5872 
5873   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5874   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5875   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5876   return true;
5877 }
5878 
5879 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5880                                SelectionDAG &DAG, MulExpansionKind Kind,
5881                                SDValue LL, SDValue LH, SDValue RL,
5882                                SDValue RH) const {
5883   SmallVector<SDValue, 2> Result;
5884   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5885                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5886                            DAG, Kind, LL, LH, RL, RH);
5887   if (Ok) {
5888     assert(Result.size() == 2);
5889     Lo = Result[0];
5890     Hi = Result[1];
5891   }
5892   return Ok;
5893 }
5894 
5895 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5896                                        SelectionDAG &DAG) const {
5897   EVT VT = Node->getValueType(0);
5898 
5899   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5900                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5901                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5902                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5903     return false;
5904 
5905   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5906   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5907   SDValue X = Node->getOperand(0);
5908   SDValue Y = Node->getOperand(1);
5909   SDValue Z = Node->getOperand(2);
5910 
5911   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5912   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5913   SDLoc DL(SDValue(Node, 0));
5914 
5915   EVT ShVT = Z.getValueType();
5916   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5917   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5918 
5919   SDValue ShAmt;
5920   if (isPowerOf2_32(EltSizeInBits)) {
5921     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5922     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5923   } else {
5924     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5925   }
5926 
5927   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5928   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5929   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5930   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5931 
5932   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5933   // and that is undefined. We must compare and select to avoid UB.
5934   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5935 
5936   // For fshl, 0-shift returns the 1st arg (X).
5937   // For fshr, 0-shift returns the 2nd arg (Y).
5938   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5939   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5940   return true;
5941 }
5942 
5943 // TODO: Merge with expandFunnelShift.
5944 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5945                                SelectionDAG &DAG) const {
5946   EVT VT = Node->getValueType(0);
5947   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5948   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5949   SDValue Op0 = Node->getOperand(0);
5950   SDValue Op1 = Node->getOperand(1);
5951   SDLoc DL(SDValue(Node, 0));
5952 
5953   EVT ShVT = Op1.getValueType();
5954   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5955 
5956   // If a rotate in the other direction is legal, use it.
5957   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5958   if (isOperationLegal(RevRot, VT)) {
5959     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5960     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5961     return true;
5962   }
5963 
5964   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5965                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5966                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5967                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5968                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5969     return false;
5970 
5971   // Otherwise,
5972   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5973   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5974   //
5975   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5976          "Expecting the type bitwidth to be a power of 2");
5977   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5978   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5979   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5980   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5981   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5982   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5983   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5984                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5985   return true;
5986 }
5987 
5988 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5989                                       SelectionDAG &DAG) const {
5990   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5991   SDValue Src = Node->getOperand(OpNo);
5992   EVT SrcVT = Src.getValueType();
5993   EVT DstVT = Node->getValueType(0);
5994   SDLoc dl(SDValue(Node, 0));
5995 
5996   // FIXME: Only f32 to i64 conversions are supported.
5997   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5998     return false;
5999 
6000   if (Node->isStrictFPOpcode())
6001     // When a NaN is converted to an integer a trap is allowed. We can't
6002     // use this expansion here because it would eliminate that trap. Other
6003     // traps are also allowed and cannot be eliminated. See
6004     // IEEE 754-2008 sec 5.8.
6005     return false;
6006 
6007   // Expand f32 -> i64 conversion
6008   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6009   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6010   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6011   EVT IntVT = SrcVT.changeTypeToInteger();
6012   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6013 
6014   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6015   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6016   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6017   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6018   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6019   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6020 
6021   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6022 
6023   SDValue ExponentBits = DAG.getNode(
6024       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6025       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6026   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6027 
6028   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6029                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6030                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6031   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6032 
6033   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6034                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6035                           DAG.getConstant(0x00800000, dl, IntVT));
6036 
6037   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6038 
6039   R = DAG.getSelectCC(
6040       dl, Exponent, ExponentLoBit,
6041       DAG.getNode(ISD::SHL, dl, DstVT, R,
6042                   DAG.getZExtOrTrunc(
6043                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6044                       dl, IntShVT)),
6045       DAG.getNode(ISD::SRL, dl, DstVT, R,
6046                   DAG.getZExtOrTrunc(
6047                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6048                       dl, IntShVT)),
6049       ISD::SETGT);
6050 
6051   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6052                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6053 
6054   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6055                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6056   return true;
6057 }
6058 
6059 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6060                                       SDValue &Chain,
6061                                       SelectionDAG &DAG) const {
6062   SDLoc dl(SDValue(Node, 0));
6063   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6064   SDValue Src = Node->getOperand(OpNo);
6065 
6066   EVT SrcVT = Src.getValueType();
6067   EVT DstVT = Node->getValueType(0);
6068   EVT SetCCVT =
6069       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6070   EVT DstSetCCVT =
6071       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6072 
6073   // Only expand vector types if we have the appropriate vector bit operations.
6074   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6075                                                    ISD::FP_TO_SINT;
6076   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6077                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6078     return false;
6079 
6080   // If the maximum float value is smaller then the signed integer range,
6081   // the destination signmask can't be represented by the float, so we can
6082   // just use FP_TO_SINT directly.
6083   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6084   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6085   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6086   if (APFloat::opOverflow &
6087       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6088     if (Node->isStrictFPOpcode()) {
6089       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6090                            { Node->getOperand(0), Src });
6091       Chain = Result.getValue(1);
6092     } else
6093       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6094     return true;
6095   }
6096 
6097   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6098   SDValue Sel;
6099 
6100   if (Node->isStrictFPOpcode())
6101     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6102                        Node->getOperand(0), /*IsSignaling*/ true);
6103   else
6104     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6105 
6106   bool Strict = Node->isStrictFPOpcode() ||
6107                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6108 
6109   if (Strict) {
6110     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6111     // signmask then offset (the result of which should be fully representable).
6112     // Sel = Src < 0x8000000000000000
6113     // FltOfs = select Sel, 0, 0x8000000000000000
6114     // IntOfs = select Sel, 0, 0x8000000000000000
6115     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6116 
6117     // TODO: Should any fast-math-flags be set for the FSUB?
6118     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6119                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6120     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6121     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6122                                    DAG.getConstant(0, dl, DstVT),
6123                                    DAG.getConstant(SignMask, dl, DstVT));
6124     SDValue SInt;
6125     if (Node->isStrictFPOpcode()) {
6126       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6127                                 { Node->getOperand(0), Src, FltOfs });
6128       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6129                          { Val.getValue(1), Val });
6130       Chain = SInt.getValue(1);
6131     } else {
6132       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6133       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6134     }
6135     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6136   } else {
6137     // Expand based on maximum range of FP_TO_SINT:
6138     // True = fp_to_sint(Src)
6139     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6140     // Result = select (Src < 0x8000000000000000), True, False
6141 
6142     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6143     // TODO: Should any fast-math-flags be set for the FSUB?
6144     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6145                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6146     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6147                         DAG.getConstant(SignMask, dl, DstVT));
6148     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6149     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6150   }
6151   return true;
6152 }
6153 
6154 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6155                                       SDValue &Chain,
6156                                       SelectionDAG &DAG) const {
6157   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6158   SDValue Src = Node->getOperand(OpNo);
6159   EVT SrcVT = Src.getValueType();
6160   EVT DstVT = Node->getValueType(0);
6161 
6162   if (SrcVT.getScalarType() != MVT::i64)
6163     return false;
6164 
6165   SDLoc dl(SDValue(Node, 0));
6166   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6167 
6168   if (DstVT.getScalarType() == MVT::f32) {
6169     // Only expand vector types if we have the appropriate vector bit
6170     // operations.
6171     if (SrcVT.isVector() &&
6172         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6173          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6174          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6175          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6176          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6177       return false;
6178 
6179     // For unsigned conversions, convert them to signed conversions using the
6180     // algorithm from the x86_64 __floatundisf in compiler_rt.
6181 
6182     // TODO: This really should be implemented using a branch rather than a
6183     // select.  We happen to get lucky and machinesink does the right
6184     // thing most of the time.  This would be a good candidate for a
6185     // pseudo-op, or, even better, for whole-function isel.
6186     EVT SetCCVT =
6187         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6188 
6189     SDValue SignBitTest = DAG.getSetCC(
6190         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6191 
6192     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6193     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6194     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6195     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6196     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6197 
6198     SDValue Slow, Fast;
6199     if (Node->isStrictFPOpcode()) {
6200       // In strict mode, we must avoid spurious exceptions, and therefore
6201       // must make sure to only emit a single STRICT_SINT_TO_FP.
6202       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src);
6203       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other },
6204                          { Node->getOperand(0), InCvt });
6205       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other },
6206                          { Fast.getValue(1), Fast, Fast });
6207       Chain = Slow.getValue(1);
6208       // The STRICT_SINT_TO_FP inherits the exception mode from the
6209       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
6210       // never raise any exception.
6211       SDNodeFlags Flags;
6212       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
6213       Fast->setFlags(Flags);
6214       Flags.setNoFPExcept(true);
6215       Slow->setFlags(Flags);
6216     } else {
6217       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6218       Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6219       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6220     }
6221 
6222     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6223     return true;
6224   }
6225 
6226   if (DstVT.getScalarType() == MVT::f64) {
6227     // Only expand vector types if we have the appropriate vector bit
6228     // operations.
6229     if (SrcVT.isVector() &&
6230         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6231          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6232          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6233          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6234          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6235       return false;
6236 
6237     // Implementation of unsigned i64 to f64 following the algorithm in
6238     // __floatundidf in compiler_rt. This implementation has the advantage
6239     // of performing rounding correctly, both in the default rounding mode
6240     // and in all alternate rounding modes.
6241     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6242     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6243         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6244     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6245     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6246     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6247 
6248     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6249     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6250     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6251     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6252     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6253     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6254     if (Node->isStrictFPOpcode()) {
6255       SDValue HiSub =
6256           DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6257                       {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6258       Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6259                            {HiSub.getValue(1), LoFlt, HiSub});
6260       Chain = Result.getValue(1);
6261     } else {
6262       SDValue HiSub =
6263           DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6264       Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6265     }
6266     return true;
6267   }
6268 
6269   return false;
6270 }
6271 
6272 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6273                                               SelectionDAG &DAG) const {
6274   SDLoc dl(Node);
6275   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6276     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6277   EVT VT = Node->getValueType(0);
6278   if (isOperationLegalOrCustom(NewOp, VT)) {
6279     SDValue Quiet0 = Node->getOperand(0);
6280     SDValue Quiet1 = Node->getOperand(1);
6281 
6282     if (!Node->getFlags().hasNoNaNs()) {
6283       // Insert canonicalizes if it's possible we need to quiet to get correct
6284       // sNaN behavior.
6285       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6286         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6287                              Node->getFlags());
6288       }
6289       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6290         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6291                              Node->getFlags());
6292       }
6293     }
6294 
6295     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6296   }
6297 
6298   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6299   // instead if there are no NaNs.
6300   if (Node->getFlags().hasNoNaNs()) {
6301     unsigned IEEE2018Op =
6302         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6303     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6304       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6305                          Node->getOperand(1), Node->getFlags());
6306     }
6307   }
6308 
6309   // If none of the above worked, but there are no NaNs, then expand to
6310   // a compare/select sequence.  This is required for correctness since
6311   // InstCombine might have canonicalized a fcmp+select sequence to a
6312   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6313   // expansion to libcall, we might introduce a link-time dependency
6314   // on libm into a file that originally did not have one.
6315   if (Node->getFlags().hasNoNaNs()) {
6316     ISD::CondCode Pred =
6317         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6318     SDValue Op1 = Node->getOperand(0);
6319     SDValue Op2 = Node->getOperand(1);
6320     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6321     // Copy FMF flags, but always set the no-signed-zeros flag
6322     // as this is implied by the FMINNUM/FMAXNUM semantics.
6323     SDNodeFlags Flags = Node->getFlags();
6324     Flags.setNoSignedZeros(true);
6325     SelCC->setFlags(Flags);
6326     return SelCC;
6327   }
6328 
6329   return SDValue();
6330 }
6331 
6332 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6333                                  SelectionDAG &DAG) const {
6334   SDLoc dl(Node);
6335   EVT VT = Node->getValueType(0);
6336   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6337   SDValue Op = Node->getOperand(0);
6338   unsigned Len = VT.getScalarSizeInBits();
6339   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6340 
6341   // TODO: Add support for irregular type lengths.
6342   if (!(Len <= 128 && Len % 8 == 0))
6343     return false;
6344 
6345   // Only expand vector types if we have the appropriate vector bit operations.
6346   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6347                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6348                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6349                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6350                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6351     return false;
6352 
6353   // This is the "best" algorithm from
6354   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6355   SDValue Mask55 =
6356       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6357   SDValue Mask33 =
6358       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6359   SDValue Mask0F =
6360       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6361   SDValue Mask01 =
6362       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6363 
6364   // v = v - ((v >> 1) & 0x55555555...)
6365   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6366                    DAG.getNode(ISD::AND, dl, VT,
6367                                DAG.getNode(ISD::SRL, dl, VT, Op,
6368                                            DAG.getConstant(1, dl, ShVT)),
6369                                Mask55));
6370   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6371   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6372                    DAG.getNode(ISD::AND, dl, VT,
6373                                DAG.getNode(ISD::SRL, dl, VT, Op,
6374                                            DAG.getConstant(2, dl, ShVT)),
6375                                Mask33));
6376   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6377   Op = DAG.getNode(ISD::AND, dl, VT,
6378                    DAG.getNode(ISD::ADD, dl, VT, Op,
6379                                DAG.getNode(ISD::SRL, dl, VT, Op,
6380                                            DAG.getConstant(4, dl, ShVT))),
6381                    Mask0F);
6382   // v = (v * 0x01010101...) >> (Len - 8)
6383   if (Len > 8)
6384     Op =
6385         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6386                     DAG.getConstant(Len - 8, dl, ShVT));
6387 
6388   Result = Op;
6389   return true;
6390 }
6391 
6392 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6393                                 SelectionDAG &DAG) const {
6394   SDLoc dl(Node);
6395   EVT VT = Node->getValueType(0);
6396   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6397   SDValue Op = Node->getOperand(0);
6398   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6399 
6400   // If the non-ZERO_UNDEF version is supported we can use that instead.
6401   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6402       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6403     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6404     return true;
6405   }
6406 
6407   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6408   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6409     EVT SetCCVT =
6410         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6411     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6412     SDValue Zero = DAG.getConstant(0, dl, VT);
6413     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6414     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6415                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6416     return true;
6417   }
6418 
6419   // Only expand vector types if we have the appropriate vector bit operations.
6420   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6421                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6422                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6423                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6424     return false;
6425 
6426   // for now, we do this:
6427   // x = x | (x >> 1);
6428   // x = x | (x >> 2);
6429   // ...
6430   // x = x | (x >>16);
6431   // x = x | (x >>32); // for 64-bit input
6432   // return popcount(~x);
6433   //
6434   // Ref: "Hacker's Delight" by Henry Warren
6435   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6436     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6437     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6438                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6439   }
6440   Op = DAG.getNOT(dl, Op, VT);
6441   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6442   return true;
6443 }
6444 
6445 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6446                                 SelectionDAG &DAG) const {
6447   SDLoc dl(Node);
6448   EVT VT = Node->getValueType(0);
6449   SDValue Op = Node->getOperand(0);
6450   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6451 
6452   // If the non-ZERO_UNDEF version is supported we can use that instead.
6453   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6454       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6455     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6456     return true;
6457   }
6458 
6459   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6460   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6461     EVT SetCCVT =
6462         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6463     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6464     SDValue Zero = DAG.getConstant(0, dl, VT);
6465     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6466     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6467                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6468     return true;
6469   }
6470 
6471   // Only expand vector types if we have the appropriate vector bit operations.
6472   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6473                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6474                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6475                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6476                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6477                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6478     return false;
6479 
6480   // for now, we use: { return popcount(~x & (x - 1)); }
6481   // unless the target has ctlz but not ctpop, in which case we use:
6482   // { return 32 - nlz(~x & (x-1)); }
6483   // Ref: "Hacker's Delight" by Henry Warren
6484   SDValue Tmp = DAG.getNode(
6485       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6486       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6487 
6488   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6489   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6490     Result =
6491         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6492                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6493     return true;
6494   }
6495 
6496   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6497   return true;
6498 }
6499 
6500 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6501                                SelectionDAG &DAG) const {
6502   SDLoc dl(N);
6503   EVT VT = N->getValueType(0);
6504   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6505   SDValue Op = N->getOperand(0);
6506 
6507   // Only expand vector types if we have the appropriate vector operations.
6508   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6509                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6510                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6511     return false;
6512 
6513   SDValue Shift =
6514       DAG.getNode(ISD::SRA, dl, VT, Op,
6515                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6516   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6517   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6518   return true;
6519 }
6520 
6521 std::pair<SDValue, SDValue>
6522 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6523                                     SelectionDAG &DAG) const {
6524   SDLoc SL(LD);
6525   SDValue Chain = LD->getChain();
6526   SDValue BasePTR = LD->getBasePtr();
6527   EVT SrcVT = LD->getMemoryVT();
6528   ISD::LoadExtType ExtType = LD->getExtensionType();
6529 
6530   unsigned NumElem = SrcVT.getVectorNumElements();
6531 
6532   EVT SrcEltVT = SrcVT.getScalarType();
6533   EVT DstEltVT = LD->getValueType(0).getScalarType();
6534 
6535   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6536   assert(SrcEltVT.isByteSized());
6537 
6538   SmallVector<SDValue, 8> Vals;
6539   SmallVector<SDValue, 8> LoadChains;
6540 
6541   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6542     SDValue ScalarLoad =
6543         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6544                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6545                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6546                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6547 
6548     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6549 
6550     Vals.push_back(ScalarLoad.getValue(0));
6551     LoadChains.push_back(ScalarLoad.getValue(1));
6552   }
6553 
6554   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6555   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6556 
6557   return std::make_pair(Value, NewChain);
6558 }
6559 
6560 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6561                                              SelectionDAG &DAG) const {
6562   SDLoc SL(ST);
6563 
6564   SDValue Chain = ST->getChain();
6565   SDValue BasePtr = ST->getBasePtr();
6566   SDValue Value = ST->getValue();
6567   EVT StVT = ST->getMemoryVT();
6568 
6569   // The type of the data we want to save
6570   EVT RegVT = Value.getValueType();
6571   EVT RegSclVT = RegVT.getScalarType();
6572 
6573   // The type of data as saved in memory.
6574   EVT MemSclVT = StVT.getScalarType();
6575 
6576   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6577   unsigned NumElem = StVT.getVectorNumElements();
6578 
6579   // A vector must always be stored in memory as-is, i.e. without any padding
6580   // between the elements, since various code depend on it, e.g. in the
6581   // handling of a bitcast of a vector type to int, which may be done with a
6582   // vector store followed by an integer load. A vector that does not have
6583   // elements that are byte-sized must therefore be stored as an integer
6584   // built out of the extracted vector elements.
6585   if (!MemSclVT.isByteSized()) {
6586     unsigned NumBits = StVT.getSizeInBits();
6587     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6588 
6589     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6590 
6591     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6592       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6593                                 DAG.getConstant(Idx, SL, IdxVT));
6594       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6595       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6596       unsigned ShiftIntoIdx =
6597           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6598       SDValue ShiftAmount =
6599           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6600       SDValue ShiftedElt =
6601           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6602       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6603     }
6604 
6605     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6606                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6607                         ST->getAAInfo());
6608   }
6609 
6610   // Store Stride in bytes
6611   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6612   assert(Stride && "Zero stride!");
6613   // Extract each of the elements from the original vector and save them into
6614   // memory individually.
6615   SmallVector<SDValue, 8> Stores;
6616   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6617     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6618                               DAG.getConstant(Idx, SL, IdxVT));
6619 
6620     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6621 
6622     // This scalar TruncStore may be illegal, but we legalize it later.
6623     SDValue Store = DAG.getTruncStore(
6624         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6625         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6626         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6627 
6628     Stores.push_back(Store);
6629   }
6630 
6631   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6632 }
6633 
6634 std::pair<SDValue, SDValue>
6635 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6636   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6637          "unaligned indexed loads not implemented!");
6638   SDValue Chain = LD->getChain();
6639   SDValue Ptr = LD->getBasePtr();
6640   EVT VT = LD->getValueType(0);
6641   EVT LoadedVT = LD->getMemoryVT();
6642   SDLoc dl(LD);
6643   auto &MF = DAG.getMachineFunction();
6644 
6645   if (VT.isFloatingPoint() || VT.isVector()) {
6646     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6647     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6648       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6649           LoadedVT.isVector()) {
6650         // Scalarize the load and let the individual components be handled.
6651         return scalarizeVectorLoad(LD, DAG);
6652       }
6653 
6654       // Expand to a (misaligned) integer load of the same size,
6655       // then bitconvert to floating point or vector.
6656       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6657                                     LD->getMemOperand());
6658       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6659       if (LoadedVT != VT)
6660         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6661                              ISD::ANY_EXTEND, dl, VT, Result);
6662 
6663       return std::make_pair(Result, newLoad.getValue(1));
6664     }
6665 
6666     // Copy the value to a (aligned) stack slot using (unaligned) integer
6667     // loads and stores, then do a (aligned) load from the stack slot.
6668     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6669     unsigned LoadedBytes = LoadedVT.getStoreSize();
6670     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6671     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6672 
6673     // Make sure the stack slot is also aligned for the register type.
6674     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6675     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6676     SmallVector<SDValue, 8> Stores;
6677     SDValue StackPtr = StackBase;
6678     unsigned Offset = 0;
6679 
6680     EVT PtrVT = Ptr.getValueType();
6681     EVT StackPtrVT = StackPtr.getValueType();
6682 
6683     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6684     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6685 
6686     // Do all but one copies using the full register width.
6687     for (unsigned i = 1; i < NumRegs; i++) {
6688       // Load one integer register's worth from the original location.
6689       SDValue Load = DAG.getLoad(
6690           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6691           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6692           LD->getAAInfo());
6693       // Follow the load with a store to the stack slot.  Remember the store.
6694       Stores.push_back(DAG.getStore(
6695           Load.getValue(1), dl, Load, StackPtr,
6696           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6697       // Increment the pointers.
6698       Offset += RegBytes;
6699 
6700       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6701       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6702     }
6703 
6704     // The last copy may be partial.  Do an extending load.
6705     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6706                                   8 * (LoadedBytes - Offset));
6707     SDValue Load =
6708         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6709                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6710                        MinAlign(LD->getAlignment(), Offset),
6711                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6712     // Follow the load with a store to the stack slot.  Remember the store.
6713     // On big-endian machines this requires a truncating store to ensure
6714     // that the bits end up in the right place.
6715     Stores.push_back(DAG.getTruncStore(
6716         Load.getValue(1), dl, Load, StackPtr,
6717         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6718 
6719     // The order of the stores doesn't matter - say it with a TokenFactor.
6720     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6721 
6722     // Finally, perform the original load only redirected to the stack slot.
6723     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6724                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6725                           LoadedVT);
6726 
6727     // Callers expect a MERGE_VALUES node.
6728     return std::make_pair(Load, TF);
6729   }
6730 
6731   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6732          "Unaligned load of unsupported type.");
6733 
6734   // Compute the new VT that is half the size of the old one.  This is an
6735   // integer MVT.
6736   unsigned NumBits = LoadedVT.getSizeInBits();
6737   EVT NewLoadedVT;
6738   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6739   NumBits >>= 1;
6740 
6741   unsigned Alignment = LD->getAlignment();
6742   unsigned IncrementSize = NumBits / 8;
6743   ISD::LoadExtType HiExtType = LD->getExtensionType();
6744 
6745   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6746   if (HiExtType == ISD::NON_EXTLOAD)
6747     HiExtType = ISD::ZEXTLOAD;
6748 
6749   // Load the value in two parts
6750   SDValue Lo, Hi;
6751   if (DAG.getDataLayout().isLittleEndian()) {
6752     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6753                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6754                         LD->getAAInfo());
6755 
6756     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6757     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6758                         LD->getPointerInfo().getWithOffset(IncrementSize),
6759                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6760                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6761   } else {
6762     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6763                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6764                         LD->getAAInfo());
6765 
6766     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6767     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6768                         LD->getPointerInfo().getWithOffset(IncrementSize),
6769                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6770                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6771   }
6772 
6773   // aggregate the two parts
6774   SDValue ShiftAmount =
6775       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6776                                                     DAG.getDataLayout()));
6777   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6778   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6779 
6780   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6781                              Hi.getValue(1));
6782 
6783   return std::make_pair(Result, TF);
6784 }
6785 
6786 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6787                                              SelectionDAG &DAG) const {
6788   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6789          "unaligned indexed stores not implemented!");
6790   SDValue Chain = ST->getChain();
6791   SDValue Ptr = ST->getBasePtr();
6792   SDValue Val = ST->getValue();
6793   EVT VT = Val.getValueType();
6794   int Alignment = ST->getAlignment();
6795   auto &MF = DAG.getMachineFunction();
6796   EVT StoreMemVT = ST->getMemoryVT();
6797 
6798   SDLoc dl(ST);
6799   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6800     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6801     if (isTypeLegal(intVT)) {
6802       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6803           StoreMemVT.isVector()) {
6804         // Scalarize the store and let the individual components be handled.
6805         SDValue Result = scalarizeVectorStore(ST, DAG);
6806         return Result;
6807       }
6808       // Expand to a bitconvert of the value to the integer type of the
6809       // same size, then a (misaligned) int store.
6810       // FIXME: Does not handle truncating floating point stores!
6811       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6812       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6813                             Alignment, ST->getMemOperand()->getFlags());
6814       return Result;
6815     }
6816     // Do a (aligned) store to a stack slot, then copy from the stack slot
6817     // to the final destination using (unaligned) integer loads and stores.
6818     MVT RegVT = getRegisterType(
6819         *DAG.getContext(),
6820         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6821     EVT PtrVT = Ptr.getValueType();
6822     unsigned StoredBytes = StoreMemVT.getStoreSize();
6823     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6824     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6825 
6826     // Make sure the stack slot is also aligned for the register type.
6827     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6828     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6829 
6830     // Perform the original store, only redirected to the stack slot.
6831     SDValue Store = DAG.getTruncStore(
6832         Chain, dl, Val, StackPtr,
6833         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6834 
6835     EVT StackPtrVT = StackPtr.getValueType();
6836 
6837     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6838     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6839     SmallVector<SDValue, 8> Stores;
6840     unsigned Offset = 0;
6841 
6842     // Do all but one copies using the full register width.
6843     for (unsigned i = 1; i < NumRegs; i++) {
6844       // Load one integer register's worth from the stack slot.
6845       SDValue Load = DAG.getLoad(
6846           RegVT, dl, Store, StackPtr,
6847           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6848       // Store it to the final location.  Remember the store.
6849       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6850                                     ST->getPointerInfo().getWithOffset(Offset),
6851                                     MinAlign(ST->getAlignment(), Offset),
6852                                     ST->getMemOperand()->getFlags()));
6853       // Increment the pointers.
6854       Offset += RegBytes;
6855       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6856       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6857     }
6858 
6859     // The last store may be partial.  Do a truncating store.  On big-endian
6860     // machines this requires an extending load from the stack slot to ensure
6861     // that the bits are in the right place.
6862     EVT LoadMemVT =
6863         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6864 
6865     // Load from the stack slot.
6866     SDValue Load = DAG.getExtLoad(
6867         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6868         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6869 
6870     Stores.push_back(
6871         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6872                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6873                           MinAlign(ST->getAlignment(), Offset),
6874                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6875     // The order of the stores doesn't matter - say it with a TokenFactor.
6876     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6877     return Result;
6878   }
6879 
6880   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6881          "Unaligned store of unknown type.");
6882   // Get the half-size VT
6883   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6884   int NumBits = NewStoredVT.getSizeInBits();
6885   int IncrementSize = NumBits / 8;
6886 
6887   // Divide the stored value in two parts.
6888   SDValue ShiftAmount = DAG.getConstant(
6889       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6890   SDValue Lo = Val;
6891   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6892 
6893   // Store the two parts
6894   SDValue Store1, Store2;
6895   Store1 = DAG.getTruncStore(Chain, dl,
6896                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6897                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6898                              ST->getMemOperand()->getFlags());
6899 
6900   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6901   Alignment = MinAlign(Alignment, IncrementSize);
6902   Store2 = DAG.getTruncStore(
6903       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6904       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6905       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6906 
6907   SDValue Result =
6908       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6909   return Result;
6910 }
6911 
6912 SDValue
6913 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6914                                        const SDLoc &DL, EVT DataVT,
6915                                        SelectionDAG &DAG,
6916                                        bool IsCompressedMemory) const {
6917   SDValue Increment;
6918   EVT AddrVT = Addr.getValueType();
6919   EVT MaskVT = Mask.getValueType();
6920   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6921          "Incompatible types of Data and Mask");
6922   if (IsCompressedMemory) {
6923     // Incrementing the pointer according to number of '1's in the mask.
6924     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6925     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6926     if (MaskIntVT.getSizeInBits() < 32) {
6927       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6928       MaskIntVT = MVT::i32;
6929     }
6930 
6931     // Count '1's with POPCNT.
6932     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6933     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6934     // Scale is an element size in bytes.
6935     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6936                                     AddrVT);
6937     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6938   } else
6939     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6940 
6941   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6942 }
6943 
6944 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6945                                        SDValue Idx,
6946                                        EVT VecVT,
6947                                        const SDLoc &dl) {
6948   if (isa<ConstantSDNode>(Idx))
6949     return Idx;
6950 
6951   EVT IdxVT = Idx.getValueType();
6952   unsigned NElts = VecVT.getVectorNumElements();
6953   if (isPowerOf2_32(NElts)) {
6954     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6955                                      Log2_32(NElts));
6956     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6957                        DAG.getConstant(Imm, dl, IdxVT));
6958   }
6959 
6960   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6961                      DAG.getConstant(NElts - 1, dl, IdxVT));
6962 }
6963 
6964 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6965                                                 SDValue VecPtr, EVT VecVT,
6966                                                 SDValue Index) const {
6967   SDLoc dl(Index);
6968   // Make sure the index type is big enough to compute in.
6969   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6970 
6971   EVT EltVT = VecVT.getVectorElementType();
6972 
6973   // Calculate the element offset and add it to the pointer.
6974   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6975   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6976          "Converting bits to bytes lost precision");
6977 
6978   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6979 
6980   EVT IdxVT = Index.getValueType();
6981 
6982   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6983                       DAG.getConstant(EltSize, dl, IdxVT));
6984   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
6985 }
6986 
6987 //===----------------------------------------------------------------------===//
6988 // Implementation of Emulated TLS Model
6989 //===----------------------------------------------------------------------===//
6990 
6991 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6992                                                 SelectionDAG &DAG) const {
6993   // Access to address of TLS varialbe xyz is lowered to a function call:
6994   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6995   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6996   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6997   SDLoc dl(GA);
6998 
6999   ArgListTy Args;
7000   ArgListEntry Entry;
7001   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7002   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7003   StringRef EmuTlsVarName(NameString);
7004   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7005   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7006   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7007   Entry.Ty = VoidPtrType;
7008   Args.push_back(Entry);
7009 
7010   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7011 
7012   TargetLowering::CallLoweringInfo CLI(DAG);
7013   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7014   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7015   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7016 
7017   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7018   // At last for X86 targets, maybe good for other targets too?
7019   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7020   MFI.setAdjustsStack(true); // Is this only for X86 target?
7021   MFI.setHasCalls(true);
7022 
7023   assert((GA->getOffset() == 0) &&
7024          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7025   return CallResult.first;
7026 }
7027 
7028 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7029                                                 SelectionDAG &DAG) const {
7030   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7031   if (!isCtlzFast())
7032     return SDValue();
7033   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7034   SDLoc dl(Op);
7035   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7036     if (C->isNullValue() && CC == ISD::SETEQ) {
7037       EVT VT = Op.getOperand(0).getValueType();
7038       SDValue Zext = Op.getOperand(0);
7039       if (VT.bitsLT(MVT::i32)) {
7040         VT = MVT::i32;
7041         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7042       }
7043       unsigned Log2b = Log2_32(VT.getSizeInBits());
7044       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7045       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7046                                 DAG.getConstant(Log2b, dl, MVT::i32));
7047       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7048     }
7049   }
7050   return SDValue();
7051 }
7052 
7053 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7054   unsigned Opcode = Node->getOpcode();
7055   SDValue LHS = Node->getOperand(0);
7056   SDValue RHS = Node->getOperand(1);
7057   EVT VT = LHS.getValueType();
7058   SDLoc dl(Node);
7059 
7060   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7061   assert(VT.isInteger() && "Expected operands to be integers");
7062 
7063   // usub.sat(a, b) -> umax(a, b) - b
7064   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7065     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7066     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7067   }
7068 
7069   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7070     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7071     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7072     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7073   }
7074 
7075   unsigned OverflowOp;
7076   switch (Opcode) {
7077   case ISD::SADDSAT:
7078     OverflowOp = ISD::SADDO;
7079     break;
7080   case ISD::UADDSAT:
7081     OverflowOp = ISD::UADDO;
7082     break;
7083   case ISD::SSUBSAT:
7084     OverflowOp = ISD::SSUBO;
7085     break;
7086   case ISD::USUBSAT:
7087     OverflowOp = ISD::USUBO;
7088     break;
7089   default:
7090     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7091                      "addition or subtraction node.");
7092   }
7093 
7094   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7095   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7096   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7097                                LHS, RHS);
7098   SDValue SumDiff = Result.getValue(0);
7099   SDValue Overflow = Result.getValue(1);
7100   SDValue Zero = DAG.getConstant(0, dl, VT);
7101   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7102 
7103   if (Opcode == ISD::UADDSAT) {
7104     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7105       // (LHS + RHS) | OverflowMask
7106       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7107       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7108     }
7109     // Overflow ? 0xffff.... : (LHS + RHS)
7110     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7111   } else if (Opcode == ISD::USUBSAT) {
7112     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7113       // (LHS - RHS) & ~OverflowMask
7114       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7115       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7116       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7117     }
7118     // Overflow ? 0 : (LHS - RHS)
7119     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7120   } else {
7121     // SatMax -> Overflow && SumDiff < 0
7122     // SatMin -> Overflow && SumDiff >= 0
7123     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7124     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7125     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7126     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7127     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7128     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7129     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7130   }
7131 }
7132 
7133 SDValue
7134 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7135   assert((Node->getOpcode() == ISD::SMULFIX ||
7136           Node->getOpcode() == ISD::UMULFIX ||
7137           Node->getOpcode() == ISD::SMULFIXSAT ||
7138           Node->getOpcode() == ISD::UMULFIXSAT) &&
7139          "Expected a fixed point multiplication opcode");
7140 
7141   SDLoc dl(Node);
7142   SDValue LHS = Node->getOperand(0);
7143   SDValue RHS = Node->getOperand(1);
7144   EVT VT = LHS.getValueType();
7145   unsigned Scale = Node->getConstantOperandVal(2);
7146   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7147                      Node->getOpcode() == ISD::UMULFIXSAT);
7148   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7149                  Node->getOpcode() == ISD::SMULFIXSAT);
7150   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7151   unsigned VTSize = VT.getScalarSizeInBits();
7152 
7153   if (!Scale) {
7154     // [us]mul.fix(a, b, 0) -> mul(a, b)
7155     if (!Saturating) {
7156       if (isOperationLegalOrCustom(ISD::MUL, VT))
7157         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7158     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7159       SDValue Result =
7160           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7161       SDValue Product = Result.getValue(0);
7162       SDValue Overflow = Result.getValue(1);
7163       SDValue Zero = DAG.getConstant(0, dl, VT);
7164 
7165       APInt MinVal = APInt::getSignedMinValue(VTSize);
7166       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7167       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7168       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7169       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7170       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7171       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7172     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7173       SDValue Result =
7174           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7175       SDValue Product = Result.getValue(0);
7176       SDValue Overflow = Result.getValue(1);
7177 
7178       APInt MaxVal = APInt::getMaxValue(VTSize);
7179       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7180       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7181     }
7182   }
7183 
7184   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7185          "Expected scale to be less than the number of bits if signed or at "
7186          "most the number of bits if unsigned.");
7187   assert(LHS.getValueType() == RHS.getValueType() &&
7188          "Expected both operands to be the same type");
7189 
7190   // Get the upper and lower bits of the result.
7191   SDValue Lo, Hi;
7192   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7193   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7194   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7195     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7196     Lo = Result.getValue(0);
7197     Hi = Result.getValue(1);
7198   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7199     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7200     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7201   } else if (VT.isVector()) {
7202     return SDValue();
7203   } else {
7204     report_fatal_error("Unable to expand fixed point multiplication.");
7205   }
7206 
7207   if (Scale == VTSize)
7208     // Result is just the top half since we'd be shifting by the width of the
7209     // operand. Overflow impossible so this works for both UMULFIX and
7210     // UMULFIXSAT.
7211     return Hi;
7212 
7213   // The result will need to be shifted right by the scale since both operands
7214   // are scaled. The result is given to us in 2 halves, so we only want part of
7215   // both in the result.
7216   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7217   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7218                                DAG.getConstant(Scale, dl, ShiftTy));
7219   if (!Saturating)
7220     return Result;
7221 
7222   if (!Signed) {
7223     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7224     // widened multiplication) aren't all zeroes.
7225 
7226     // Saturate to max if ((Hi >> Scale) != 0),
7227     // which is the same as if (Hi > ((1 << Scale) - 1))
7228     APInt MaxVal = APInt::getMaxValue(VTSize);
7229     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7230                                       dl, VT);
7231     Result = DAG.getSelectCC(dl, Hi, LowMask,
7232                              DAG.getConstant(MaxVal, dl, VT), Result,
7233                              ISD::SETUGT);
7234 
7235     return Result;
7236   }
7237 
7238   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7239   // widened multiplication) aren't all ones or all zeroes.
7240 
7241   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7242   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7243 
7244   if (Scale == 0) {
7245     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7246                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7247     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7248     // Saturated to SatMin if wide product is negative, and SatMax if wide
7249     // product is positive ...
7250     SDValue Zero = DAG.getConstant(0, dl, VT);
7251     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7252                                                ISD::SETLT);
7253     // ... but only if we overflowed.
7254     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7255   }
7256 
7257   //  We handled Scale==0 above so all the bits to examine is in Hi.
7258 
7259   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7260   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7261   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7262                                     dl, VT);
7263   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7264   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7265   // which is the same as if (HI < (-1 << (Scale - 1))
7266   SDValue HighMask =
7267       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7268                       dl, VT);
7269   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7270   return Result;
7271 }
7272 
7273 void TargetLowering::expandUADDSUBO(
7274     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7275   SDLoc dl(Node);
7276   SDValue LHS = Node->getOperand(0);
7277   SDValue RHS = Node->getOperand(1);
7278   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7279 
7280   // If ADD/SUBCARRY is legal, use that instead.
7281   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7282   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7283     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7284     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7285                                     { LHS, RHS, CarryIn });
7286     Result = SDValue(NodeCarry.getNode(), 0);
7287     Overflow = SDValue(NodeCarry.getNode(), 1);
7288     return;
7289   }
7290 
7291   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7292                             LHS.getValueType(), LHS, RHS);
7293 
7294   EVT ResultType = Node->getValueType(1);
7295   EVT SetCCType = getSetCCResultType(
7296       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7297   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7298   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7299   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7300 }
7301 
7302 void TargetLowering::expandSADDSUBO(
7303     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7304   SDLoc dl(Node);
7305   SDValue LHS = Node->getOperand(0);
7306   SDValue RHS = Node->getOperand(1);
7307   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7308 
7309   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7310                             LHS.getValueType(), LHS, RHS);
7311 
7312   EVT ResultType = Node->getValueType(1);
7313   EVT OType = getSetCCResultType(
7314       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7315 
7316   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7317   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7318   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7319     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7320     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7321     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7322     return;
7323   }
7324 
7325   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7326 
7327   // For an addition, the result should be less than one of the operands (LHS)
7328   // if and only if the other operand (RHS) is negative, otherwise there will
7329   // be overflow.
7330   // For a subtraction, the result should be less than one of the operands
7331   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7332   // otherwise there will be overflow.
7333   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7334   SDValue ConditionRHS =
7335       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7336 
7337   Overflow = DAG.getBoolExtOrTrunc(
7338       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7339       ResultType, ResultType);
7340 }
7341 
7342 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7343                                 SDValue &Overflow, SelectionDAG &DAG) const {
7344   SDLoc dl(Node);
7345   EVT VT = Node->getValueType(0);
7346   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7347   SDValue LHS = Node->getOperand(0);
7348   SDValue RHS = Node->getOperand(1);
7349   bool isSigned = Node->getOpcode() == ISD::SMULO;
7350 
7351   // For power-of-two multiplications we can use a simpler shift expansion.
7352   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7353     const APInt &C = RHSC->getAPIntValue();
7354     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7355     if (C.isPowerOf2()) {
7356       // smulo(x, signed_min) is same as umulo(x, signed_min).
7357       bool UseArithShift = isSigned && !C.isMinSignedValue();
7358       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7359       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7360       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7361       Overflow = DAG.getSetCC(dl, SetCCVT,
7362           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7363                       dl, VT, Result, ShiftAmt),
7364           LHS, ISD::SETNE);
7365       return true;
7366     }
7367   }
7368 
7369   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7370   if (VT.isVector())
7371     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7372                               VT.getVectorNumElements());
7373 
7374   SDValue BottomHalf;
7375   SDValue TopHalf;
7376   static const unsigned Ops[2][3] =
7377       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7378         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7379   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7380     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7381     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7382   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7383     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7384                              RHS);
7385     TopHalf = BottomHalf.getValue(1);
7386   } else if (isTypeLegal(WideVT)) {
7387     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7388     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7389     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7390     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7391     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7392         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7393     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7394                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7395   } else {
7396     if (VT.isVector())
7397       return false;
7398 
7399     // We can fall back to a libcall with an illegal type for the MUL if we
7400     // have a libcall big enough.
7401     // Also, we can fall back to a division in some cases, but that's a big
7402     // performance hit in the general case.
7403     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7404     if (WideVT == MVT::i16)
7405       LC = RTLIB::MUL_I16;
7406     else if (WideVT == MVT::i32)
7407       LC = RTLIB::MUL_I32;
7408     else if (WideVT == MVT::i64)
7409       LC = RTLIB::MUL_I64;
7410     else if (WideVT == MVT::i128)
7411       LC = RTLIB::MUL_I128;
7412     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7413 
7414     SDValue HiLHS;
7415     SDValue HiRHS;
7416     if (isSigned) {
7417       // The high part is obtained by SRA'ing all but one of the bits of low
7418       // part.
7419       unsigned LoSize = VT.getSizeInBits();
7420       HiLHS =
7421           DAG.getNode(ISD::SRA, dl, VT, LHS,
7422                       DAG.getConstant(LoSize - 1, dl,
7423                                       getPointerTy(DAG.getDataLayout())));
7424       HiRHS =
7425           DAG.getNode(ISD::SRA, dl, VT, RHS,
7426                       DAG.getConstant(LoSize - 1, dl,
7427                                       getPointerTy(DAG.getDataLayout())));
7428     } else {
7429         HiLHS = DAG.getConstant(0, dl, VT);
7430         HiRHS = DAG.getConstant(0, dl, VT);
7431     }
7432 
7433     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7434     // pre-lowered to the correct types. This all depends upon WideVT not
7435     // being a legal type for the architecture and thus has to be split to
7436     // two arguments.
7437     SDValue Ret;
7438     TargetLowering::MakeLibCallOptions CallOptions;
7439     CallOptions.setSExt(isSigned);
7440     CallOptions.setIsPostTypeLegalization(true);
7441     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7442       // Halves of WideVT are packed into registers in different order
7443       // depending on platform endianness. This is usually handled by
7444       // the C calling convention, but we can't defer to it in
7445       // the legalizer.
7446       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7447       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7448     } else {
7449       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7450       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7451     }
7452     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7453            "Ret value is a collection of constituent nodes holding result.");
7454     if (DAG.getDataLayout().isLittleEndian()) {
7455       // Same as above.
7456       BottomHalf = Ret.getOperand(0);
7457       TopHalf = Ret.getOperand(1);
7458     } else {
7459       BottomHalf = Ret.getOperand(1);
7460       TopHalf = Ret.getOperand(0);
7461     }
7462   }
7463 
7464   Result = BottomHalf;
7465   if (isSigned) {
7466     SDValue ShiftAmt = DAG.getConstant(
7467         VT.getScalarSizeInBits() - 1, dl,
7468         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7469     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7470     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7471   } else {
7472     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7473                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7474   }
7475 
7476   // Truncate the result if SetCC returns a larger type than needed.
7477   EVT RType = Node->getValueType(1);
7478   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7479     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7480 
7481   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7482          "Unexpected result type for S/UMULO legalization");
7483   return true;
7484 }
7485 
7486 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7487   SDLoc dl(Node);
7488   bool NoNaN = Node->getFlags().hasNoNaNs();
7489   unsigned BaseOpcode = 0;
7490   switch (Node->getOpcode()) {
7491   default: llvm_unreachable("Expected VECREDUCE opcode");
7492   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7493   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7494   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7495   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7496   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7497   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7498   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7499   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7500   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7501   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7502   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7503   case ISD::VECREDUCE_FMAX:
7504     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7505     break;
7506   case ISD::VECREDUCE_FMIN:
7507     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7508     break;
7509   }
7510 
7511   SDValue Op = Node->getOperand(0);
7512   EVT VT = Op.getValueType();
7513 
7514   // Try to use a shuffle reduction for power of two vectors.
7515   if (VT.isPow2VectorType()) {
7516     while (VT.getVectorNumElements() > 1) {
7517       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7518       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7519         break;
7520 
7521       SDValue Lo, Hi;
7522       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7523       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7524       VT = HalfVT;
7525     }
7526   }
7527 
7528   EVT EltVT = VT.getVectorElementType();
7529   unsigned NumElts = VT.getVectorNumElements();
7530 
7531   SmallVector<SDValue, 8> Ops;
7532   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7533 
7534   SDValue Res = Ops[0];
7535   for (unsigned i = 1; i < NumElts; i++)
7536     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7537 
7538   // Result type may be wider than element type.
7539   if (EltVT != Node->getValueType(0))
7540     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7541   return Res;
7542 }
7543