1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 369 return false; 370 371 if (!C.isSubsetOf(Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = Demanded.getActiveBits(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode( 421 Op.getOpcode(), dl, SmallVT, 422 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 424 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 425 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 426 return TLO.CombineTo(Op, Z); 427 } 428 } 429 return false; 430 } 431 432 bool 433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 434 const APInt &Demanded, 435 DAGCombinerInfo &DCI, 436 TargetLoweringOpt &TLO) const { 437 SDValue Op = User->getOperand(OpIdx); 438 KnownBits Known; 439 440 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 441 return false; 442 443 444 // Old will not always be the same as Op. For example: 445 // 446 // Demanded = 0xffffff 447 // Op = i64 truncate (i32 and x, 0xffffff) 448 // In this case simplify demand bits will want to replace the 'and' node 449 // with the value 'x', which will give us: 450 // Old = i32 and x, 0xffffff 451 // New = x 452 if (TLO.Old.hasOneUse()) { 453 // For the one use case, we just commit the change. 454 DCI.CommitTargetLoweringOpt(TLO); 455 return true; 456 } 457 458 // If Old has more than one use then it must be Op, because the 459 // AssumeSingleUse flag is not propogated to recursive calls of 460 // SimplifyDemanded bits, so the only node with multiple use that 461 // it will attempt to combine will be Op. 462 assert(TLO.Old == Op); 463 464 SmallVector <SDValue, 4> NewOps; 465 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 466 if (i == OpIdx) { 467 NewOps.push_back(TLO.New); 468 continue; 469 } 470 NewOps.push_back(User->getOperand(i)); 471 } 472 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 473 // Op has less users now, so we may be able to perform additional combines 474 // with it. 475 DCI.AddToWorklist(Op.getNode()); 476 // User's operands have been updated, so we may be able to do new combines 477 // with it. 478 DCI.AddToWorklist(User); 479 return true; 480 } 481 482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 483 DAGCombinerInfo &DCI) const { 484 485 SelectionDAG &DAG = DCI.DAG; 486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 487 !DCI.isBeforeLegalizeOps()); 488 KnownBits Known; 489 490 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 491 if (Simplified) 492 DCI.CommitTargetLoweringOpt(TLO); 493 return Simplified; 494 } 495 496 /// Look at Op. At this point, we know that only the DemandedMask bits of the 497 /// result of Op are ever used downstream. If we can use this information to 498 /// simplify Op, create a new simplified DAG node and return true, returning the 499 /// original and new nodes in Old and New. Otherwise, analyze the expression and 500 /// return a mask of Known bits for the expression (used to simplify the 501 /// caller). The Known bits may only be accurate for those bits in the 502 /// DemandedMask. 503 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 504 const APInt &DemandedMask, 505 KnownBits &Known, 506 TargetLoweringOpt &TLO, 507 unsigned Depth, 508 bool AssumeSingleUse) const { 509 unsigned BitWidth = DemandedMask.getBitWidth(); 510 assert(Op.getScalarValueSizeInBits() == BitWidth && 511 "Mask size mismatches value type size!"); 512 APInt NewMask = DemandedMask; 513 SDLoc dl(Op); 514 auto &DL = TLO.DAG.getDataLayout(); 515 516 // Don't know anything. 517 Known = KnownBits(BitWidth); 518 519 if (Op.getOpcode() == ISD::Constant) { 520 // We know all of the bits for a constant! 521 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 Known.Zero = ~Known.One; 523 return false; 524 } 525 526 // Other users may use these bits. 527 EVT VT = Op.getValueType(); 528 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 529 if (Depth != 0) { 530 // If not at the root, Just compute the Known bits to 531 // simplify things downstream. 532 TLO.DAG.computeKnownBits(Op, Known, Depth); 533 return false; 534 } 535 // If this is the root being simplified, allow it to have multiple uses, 536 // just set the NewMask to all bits. 537 NewMask = APInt::getAllOnesValue(BitWidth); 538 } else if (DemandedMask == 0) { 539 // Not demanding any bits from Op. 540 if (!Op.isUndef()) 541 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 542 return false; 543 } else if (Depth == 6) { // Limit search depth. 544 return false; 545 } 546 547 KnownBits Known2, KnownOut; 548 switch (Op.getOpcode()) { 549 case ISD::BUILD_VECTOR: 550 // Collect the known bits that are shared by every constant vector element. 551 Known.Zero.setAllBits(); Known.One.setAllBits(); 552 for (SDValue SrcOp : Op->ops()) { 553 if (!isa<ConstantSDNode>(SrcOp)) { 554 // We can only handle all constant values - bail out with no known bits. 555 Known = KnownBits(BitWidth); 556 return false; 557 } 558 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 559 Known2.Zero = ~Known2.One; 560 561 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 562 if (Known2.One.getBitWidth() != BitWidth) { 563 assert(Known2.getBitWidth() > BitWidth && 564 "Expected BUILD_VECTOR implicit truncation"); 565 Known2 = Known2.trunc(BitWidth); 566 } 567 568 // Known bits are the values that are shared by every element. 569 // TODO: support per-element known bits. 570 Known.One &= Known2.One; 571 Known.Zero &= Known2.Zero; 572 } 573 return false; // Don't fall through, will infinitely loop. 574 case ISD::AND: 575 // If the RHS is a constant, check to see if the LHS would be zero without 576 // using the bits from the RHS. Below, we use knowledge about the RHS to 577 // simplify the LHS, here we're using information from the LHS to simplify 578 // the RHS. 579 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 580 SDValue Op0 = Op.getOperand(0); 581 KnownBits LHSKnown; 582 // Do not increment Depth here; that can cause an infinite loop. 583 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 584 // If the LHS already has zeros where RHSC does, this 'and' is dead. 585 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 586 return TLO.CombineTo(Op, Op0); 587 588 // If any of the set bits in the RHS are known zero on the LHS, shrink 589 // the constant. 590 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 591 return true; 592 593 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 594 // constant, but if this 'and' is only clearing bits that were just set by 595 // the xor, then this 'and' can be eliminated by shrinking the mask of 596 // the xor. For example, for a 32-bit X: 597 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 598 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 599 LHSKnown.One == ~RHSC->getAPIntValue()) { 600 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), 601 Op.getOperand(1)); 602 return TLO.CombineTo(Op, Xor); 603 } 604 } 605 606 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 607 return true; 608 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 609 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 610 Known2, TLO, Depth+1)) 611 return true; 612 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 613 614 // If all of the demanded bits are known one on one side, return the other. 615 // These bits cannot contribute to the result of the 'and'. 616 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 617 return TLO.CombineTo(Op, Op.getOperand(0)); 618 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 619 return TLO.CombineTo(Op, Op.getOperand(1)); 620 // If all of the demanded bits in the inputs are known zeros, return zero. 621 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 622 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 623 // If the RHS is a constant, see if we can simplify it. 624 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 625 return true; 626 // If the operation can be done in a smaller type, do so. 627 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 628 return true; 629 630 // Output known-1 bits are only known if set in both the LHS & RHS. 631 Known.One &= Known2.One; 632 // Output known-0 are known to be clear if zero in either the LHS | RHS. 633 Known.Zero |= Known2.Zero; 634 break; 635 case ISD::OR: 636 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 637 return true; 638 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 639 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 640 Known2, TLO, Depth+1)) 641 return true; 642 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 643 644 // If all of the demanded bits are known zero on one side, return the other. 645 // These bits cannot contribute to the result of the 'or'. 646 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 647 return TLO.CombineTo(Op, Op.getOperand(0)); 648 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 649 return TLO.CombineTo(Op, Op.getOperand(1)); 650 // If the RHS is a constant, see if we can simplify it. 651 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 652 return true; 653 // If the operation can be done in a smaller type, do so. 654 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 655 return true; 656 657 // Output known-0 bits are only known if clear in both the LHS & RHS. 658 Known.Zero &= Known2.Zero; 659 // Output known-1 are known to be set if set in either the LHS | RHS. 660 Known.One |= Known2.One; 661 break; 662 case ISD::XOR: { 663 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 664 return true; 665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 666 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 667 return true; 668 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 669 670 // If all of the demanded bits are known zero on one side, return the other. 671 // These bits cannot contribute to the result of the 'xor'. 672 if (NewMask.isSubsetOf(Known.Zero)) 673 return TLO.CombineTo(Op, Op.getOperand(0)); 674 if (NewMask.isSubsetOf(Known2.Zero)) 675 return TLO.CombineTo(Op, Op.getOperand(1)); 676 // If the operation can be done in a smaller type, do so. 677 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 678 return true; 679 680 // If all of the unknown bits are known to be zero on one side or the other 681 // (but not both) turn this into an *inclusive* or. 682 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 683 if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) 684 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, 685 Op.getOperand(0), 686 Op.getOperand(1))); 687 688 // Output known-0 bits are known if clear or set in both the LHS & RHS. 689 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 690 // Output known-1 are known to be set if set in only one of the LHS, RHS. 691 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 692 693 // If all of the demanded bits on one side are known, and all of the set 694 // bits on that side are also known to be set on the other side, turn this 695 // into an AND, as we know the bits will be cleared. 696 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 697 // NB: it is okay if more bits are known than are requested 698 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side 699 if (Known.One == Known2.One) { // set bits are the same on both sides 700 SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); 701 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 702 Op.getOperand(0), ANDC)); 703 } 704 } 705 706 // If the RHS is a constant, see if we can change it. Don't alter a -1 707 // constant because that's a 'not' op, and that is better for combining and 708 // codegen. 709 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); 710 if (C && !C->isAllOnesValue()) { 711 if (NewMask.isSubsetOf(C->getAPIntValue())) { 712 // We're flipping all demanded bits. Flip the undemanded bits too. 713 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT); 714 return TLO.CombineTo(Op, New); 715 } 716 // If we can't turn this into a 'not', try to shrink the constant. 717 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 718 return true; 719 } 720 721 Known = std::move(KnownOut); 722 break; 723 } 724 case ISD::SELECT: 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 726 return true; 727 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 728 return true; 729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 730 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 731 732 // If the operands are constants, see if we can simplify them. 733 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 734 return true; 735 736 // Only known if known in both the LHS and RHS. 737 Known.One &= Known2.One; 738 Known.Zero &= Known2.Zero; 739 break; 740 case ISD::SELECT_CC: 741 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 742 return true; 743 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 744 return true; 745 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 746 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 747 748 // If the operands are constants, see if we can simplify them. 749 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 750 return true; 751 752 // Only known if known in both the LHS and RHS. 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 break; 756 case ISD::SETCC: { 757 SDValue Op0 = Op.getOperand(0); 758 SDValue Op1 = Op.getOperand(1); 759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 760 // If (1) we only need the sign-bit, (2) the setcc operands are the same 761 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 762 // -1, we may be able to bypass the setcc. 763 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 764 getBooleanContents(VT) == 765 BooleanContent::ZeroOrNegativeOneBooleanContent) { 766 // If we're testing X < 0, then this compare isn't needed - just use X! 767 // FIXME: We're limiting to integer types here, but this should also work 768 // if we don't care about FP signed-zero. The use of SETLT with FP means 769 // that we don't care about NaNs. 770 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 771 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 772 return TLO.CombineTo(Op, Op0); 773 774 // TODO: Should we check for other forms of sign-bit comparisons? 775 // Examples: X <= -1, X >= 0 776 } 777 if (getBooleanContents(Op0.getValueType()) == 778 TargetLowering::ZeroOrOneBooleanContent && 779 BitWidth > 1) 780 Known.Zero.setBitsFrom(1); 781 break; 782 } 783 case ISD::SHL: 784 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 785 SDValue InOp = Op.getOperand(0); 786 787 // If the shift count is an invalid immediate, don't do anything. 788 if (SA->getAPIntValue().uge(BitWidth)) 789 break; 790 791 unsigned ShAmt = SA->getZExtValue(); 792 793 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 794 // single shift. We can do this if the bottom bits (which are shifted 795 // out) are never demanded. 796 if (InOp.getOpcode() == ISD::SRL) { 797 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 798 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 799 if (SA2->getAPIntValue().ult(BitWidth)) { 800 unsigned C1 = SA2->getZExtValue(); 801 unsigned Opc = ISD::SHL; 802 int Diff = ShAmt-C1; 803 if (Diff < 0) { 804 Diff = -Diff; 805 Opc = ISD::SRL; 806 } 807 808 SDValue NewSA = 809 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 810 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 811 InOp.getOperand(0), 812 NewSA)); 813 } 814 } 815 } 816 } 817 818 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 819 return true; 820 821 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 822 // are not demanded. This will likely allow the anyext to be folded away. 823 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 824 SDValue InnerOp = InOp.getOperand(0); 825 EVT InnerVT = InnerOp.getValueType(); 826 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 827 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 828 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 829 EVT ShTy = getShiftAmountTy(InnerVT, DL); 830 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 831 ShTy = InnerVT; 832 SDValue NarrowShl = 833 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 834 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 835 return 836 TLO.CombineTo(Op, 837 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 838 } 839 // Repeat the SHL optimization above in cases where an extension 840 // intervenes: (shl (anyext (shr x, c1)), c2) to 841 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 842 // aren't demanded (as above) and that the shifted upper c1 bits of 843 // x aren't demanded. 844 if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 845 InnerOp.hasOneUse()) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { 847 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 848 if (InnerShAmt < ShAmt && 849 InnerShAmt < InnerBits && 850 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 851 NewMask.countTrailingZeros() >= ShAmt) { 852 SDValue NewSA = 853 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 854 Op.getOperand(1).getValueType()); 855 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 856 InnerOp.getOperand(0)); 857 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 858 NewExt, NewSA)); 859 } 860 } 861 } 862 } 863 864 Known.Zero <<= ShAmt; 865 Known.One <<= ShAmt; 866 // low bits known zero. 867 Known.Zero.setLowBits(ShAmt); 868 } 869 break; 870 case ISD::SRL: 871 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 872 SDValue InOp = Op.getOperand(0); 873 874 // If the shift count is an invalid immediate, don't do anything. 875 if (SA->getAPIntValue().uge(BitWidth)) 876 break; 877 878 unsigned ShAmt = SA->getZExtValue(); 879 APInt InDemandedMask = (NewMask << ShAmt); 880 881 // If the shift is exact, then it does demand the low bits (and knows that 882 // they are zero). 883 if (Op->getFlags().hasExact()) 884 InDemandedMask.setLowBits(ShAmt); 885 886 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 887 // single shift. We can do this if the top bits (which are shifted out) 888 // are never demanded. 889 if (InOp.getOpcode() == ISD::SHL) { 890 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 891 if (ShAmt && 892 (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 893 if (SA2->getAPIntValue().ult(BitWidth)) { 894 unsigned C1 = SA2->getZExtValue(); 895 unsigned Opc = ISD::SRL; 896 int Diff = ShAmt-C1; 897 if (Diff < 0) { 898 Diff = -Diff; 899 Opc = ISD::SHL; 900 } 901 902 SDValue NewSA = 903 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 904 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 905 InOp.getOperand(0), 906 NewSA)); 907 } 908 } 909 } 910 } 911 912 // Compute the new bits that are at the top now. 913 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 914 return true; 915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 916 Known.Zero.lshrInPlace(ShAmt); 917 Known.One.lshrInPlace(ShAmt); 918 919 Known.Zero.setHighBits(ShAmt); // High bits known zero. 920 } 921 break; 922 case ISD::SRA: 923 // If this is an arithmetic shift right and only the low-bit is set, we can 924 // always convert this into a logical shr, even if the shift amount is 925 // variable. The low bit of the shift cannot be an input sign bit unless 926 // the shift amount is >= the size of the datatype, which is undefined. 927 if (NewMask.isOneValue()) 928 return TLO.CombineTo(Op, 929 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 930 Op.getOperand(1))); 931 932 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 933 // If the shift count is an invalid immediate, don't do anything. 934 if (SA->getAPIntValue().uge(BitWidth)) 935 break; 936 937 unsigned ShAmt = SA->getZExtValue(); 938 APInt InDemandedMask = (NewMask << ShAmt); 939 940 // If the shift is exact, then it does demand the low bits (and knows that 941 // they are zero). 942 if (Op->getFlags().hasExact()) 943 InDemandedMask.setLowBits(ShAmt); 944 945 // If any of the demanded bits are produced by the sign extension, we also 946 // demand the input sign bit. 947 if (NewMask.countLeadingZeros() < ShAmt) 948 InDemandedMask.setSignBit(); 949 950 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 951 Depth+1)) 952 return true; 953 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 954 Known.Zero.lshrInPlace(ShAmt); 955 Known.One.lshrInPlace(ShAmt); 956 957 // If the input sign bit is known to be zero, or if none of the top bits 958 // are demanded, turn this into an unsigned shift right. 959 if (Known.Zero[BitWidth - ShAmt - 1] || 960 NewMask.countLeadingZeros() >= ShAmt) { 961 SDNodeFlags Flags; 962 Flags.setExact(Op->getFlags().hasExact()); 963 return TLO.CombineTo(Op, 964 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 965 Op.getOperand(1), Flags)); 966 } 967 968 int Log2 = NewMask.exactLogBase2(); 969 if (Log2 >= 0) { 970 // The bit must come from the sign. 971 SDValue NewSA = 972 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 973 Op.getOperand(1).getValueType()); 974 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 975 Op.getOperand(0), NewSA)); 976 } 977 978 if (Known.One[BitWidth - ShAmt - 1]) 979 // New bits are known one. 980 Known.One.setHighBits(ShAmt); 981 } 982 break; 983 case ISD::SIGN_EXTEND_INREG: { 984 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 985 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 986 987 // If we only care about the highest bit, don't bother shifting right. 988 if (NewMask.isSignMask()) { 989 SDValue InOp = Op.getOperand(0); 990 bool AlreadySignExtended = 991 TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; 992 // However if the input is already sign extended we expect the sign 993 // extension to be dropped altogether later and do not simplify. 994 if (!AlreadySignExtended) { 995 // Compute the correct shift amount type, which must be getShiftAmountTy 996 // for scalar types after legalization. 997 EVT ShiftAmtTy = VT; 998 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 999 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1000 1001 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1002 ShiftAmtTy); 1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp, 1004 ShiftAmt)); 1005 } 1006 } 1007 1008 // If none of the extended bits are demanded, eliminate the sextinreg. 1009 if (NewMask.getActiveBits() <= ExVTBits) 1010 return TLO.CombineTo(Op, Op.getOperand(0)); 1011 1012 APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); 1013 1014 // Since the sign extended bits are demanded, we know that the sign 1015 // bit is demanded. 1016 InputDemandedBits.setBit(ExVTBits - 1); 1017 1018 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1019 Known, TLO, Depth+1)) 1020 return true; 1021 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1022 1023 // If the sign bit of the input is known set or clear, then we know the 1024 // top bits of the result. 1025 1026 // If the input sign bit is known zero, convert this into a zero extension. 1027 if (Known.Zero[ExVTBits - 1]) 1028 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1029 Op.getOperand(0), dl, ExVT.getScalarType())); 1030 1031 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1032 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1033 Known.One.setBitsFrom(ExVTBits); 1034 Known.Zero &= Mask; 1035 } else { // Input sign bit unknown 1036 Known.Zero &= Mask; 1037 Known.One &= Mask; 1038 } 1039 break; 1040 } 1041 case ISD::BUILD_PAIR: { 1042 EVT HalfVT = Op.getOperand(0).getValueType(); 1043 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1044 1045 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1046 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1047 1048 KnownBits KnownLo, KnownHi; 1049 1050 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1051 return true; 1052 1053 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1054 return true; 1055 1056 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1057 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1058 1059 Known.One = KnownLo.One.zext(BitWidth) | 1060 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1061 break; 1062 } 1063 case ISD::ZERO_EXTEND: { 1064 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1065 1066 // If none of the top bits are demanded, convert this into an any_extend. 1067 if (NewMask.getActiveBits() <= OperandBitWidth) 1068 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1069 Op.getOperand(0))); 1070 1071 APInt InMask = NewMask.trunc(OperandBitWidth); 1072 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1073 return true; 1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1075 Known = Known.zext(BitWidth); 1076 Known.Zero.setBitsFrom(OperandBitWidth); 1077 break; 1078 } 1079 case ISD::SIGN_EXTEND: { 1080 unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); 1081 1082 // If none of the top bits are demanded, convert this into an any_extend. 1083 if (NewMask.getActiveBits() <= InBits) 1084 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1085 Op.getOperand(0))); 1086 1087 // Since some of the sign extended bits are demanded, we know that the sign 1088 // bit is demanded. 1089 APInt InDemandedBits = NewMask.trunc(InBits); 1090 InDemandedBits.setBit(InBits - 1); 1091 1092 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1093 Depth+1)) 1094 return true; 1095 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1096 // If the sign bit is known one, the top bits match. 1097 Known = Known.sext(BitWidth); 1098 1099 // If the sign bit is known zero, convert this to a zero extend. 1100 if (Known.isNonNegative()) 1101 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, 1102 Op.getOperand(0))); 1103 break; 1104 } 1105 case ISD::ANY_EXTEND: { 1106 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1107 APInt InMask = NewMask.trunc(OperandBitWidth); 1108 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1109 return true; 1110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1111 Known = Known.zext(BitWidth); 1112 break; 1113 } 1114 case ISD::TRUNCATE: { 1115 // Simplify the input, using demanded bit information, and compute the known 1116 // zero/one bits live out. 1117 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1118 APInt TruncMask = NewMask.zext(OperandBitWidth); 1119 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1120 return true; 1121 Known = Known.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1133 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1134 // undesirable. 1135 break; 1136 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1137 if (!ShAmt) 1138 break; 1139 SDValue Shift = In.getOperand(1); 1140 if (TLO.LegalTypes()) { 1141 uint64_t ShVal = ShAmt->getZExtValue(); 1142 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1143 } 1144 1145 if (ShAmt->getZExtValue() < BitWidth) { 1146 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1147 OperandBitWidth - BitWidth); 1148 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1149 HighBits = HighBits.trunc(BitWidth); 1150 1151 if (!(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, 1155 In.getOperand(0)); 1156 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, 1157 Shift)); 1158 } 1159 } 1160 break; 1161 } 1162 } 1163 1164 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1165 break; 1166 } 1167 case ISD::AssertZext: { 1168 // AssertZext demands all of the high bits, plus any of the low bits 1169 // demanded by its users. 1170 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1171 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1172 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1173 Known, TLO, Depth+1)) 1174 return true; 1175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1176 1177 Known.Zero |= ~InMask; 1178 break; 1179 } 1180 case ISD::BITCAST: 1181 // If this is an FP->Int bitcast and if the sign bit is the only 1182 // thing demanded, turn this into a FGETSIGN. 1183 if (!TLO.LegalOperations() && !VT.isVector() && 1184 !Op.getOperand(0).getValueType().isVector() && 1185 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1186 Op.getOperand(0).getValueType().isFloatingPoint()) { 1187 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1188 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1189 if ((OpVTLegal || i32Legal) && VT.isSimple() && 1190 Op.getOperand(0).getValueType() != MVT::f128) { 1191 // Cannot eliminate/lower SHL for f128 yet. 1192 EVT Ty = OpVTLegal ? VT : MVT::i32; 1193 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1194 // place. We expect the SHL to be eliminated by other optimizations. 1195 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1196 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1197 if (!OpVTLegal && OpVTSizeInBits > 32) 1198 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1199 unsigned ShVal = Op.getValueSizeInBits() - 1; 1200 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1201 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1202 } 1203 } 1204 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1205 // recursive call where Known may be useful to the caller. 1206 if (Depth > 0) { 1207 TLO.DAG.computeKnownBits(Op, Known, Depth); 1208 return false; 1209 } 1210 break; 1211 case ISD::ADD: 1212 case ISD::MUL: 1213 case ISD::SUB: { 1214 // Add, Sub, and Mul don't demand any bits in positions beyond that 1215 // of the highest bit demanded of them. 1216 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1217 unsigned NewMaskLZ = NewMask.countLeadingZeros(); 1218 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ); 1219 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1220 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1221 // See if the operation should be performed at a smaller bit width. 1222 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1223 SDNodeFlags Flags = Op.getNode()->getFlags(); 1224 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1225 // Disable the nsw and nuw flags. We can no longer guarantee that we 1226 // won't wrap after simplification. 1227 Flags.setNoSignedWrap(false); 1228 Flags.setNoUnsignedWrap(false); 1229 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1230 Flags); 1231 return TLO.CombineTo(Op, NewOp); 1232 } 1233 return true; 1234 } 1235 1236 // If we have a constant operand, we may be able to turn it into -1 if we 1237 // do not demand the high bits. This can make the constant smaller to 1238 // encode, allow more general folding, or match specialized instruction 1239 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1240 // is probably not useful (and could be detrimental). 1241 ConstantSDNode *C = isConstOrConstSplat(Op1); 1242 APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ); 1243 if (C && !C->isAllOnesValue() && !C->isOne() && 1244 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1245 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1246 // We can't guarantee that the new math op doesn't wrap, so explicitly 1247 // clear those flags to prevent folding with a potential existing node 1248 // that has those flags set. 1249 SDNodeFlags Flags; 1250 Flags.setNoSignedWrap(false); 1251 Flags.setNoUnsignedWrap(false); 1252 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1253 return TLO.CombineTo(Op, NewOp); 1254 } 1255 1256 LLVM_FALLTHROUGH; 1257 } 1258 default: 1259 // Just use computeKnownBits to compute output bits. 1260 TLO.DAG.computeKnownBits(Op, Known, Depth); 1261 break; 1262 } 1263 1264 // If we know the value of all of the demanded bits, return this as a 1265 // constant. 1266 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1267 // Avoid folding to a constant if any OpaqueConstant is involved. 1268 const SDNode *N = Op.getNode(); 1269 for (SDNodeIterator I = SDNodeIterator::begin(N), 1270 E = SDNodeIterator::end(N); I != E; ++I) { 1271 SDNode *Op = *I; 1272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1273 if (C->isOpaque()) 1274 return false; 1275 } 1276 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1277 } 1278 1279 return false; 1280 } 1281 1282 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1283 const APInt &DemandedElts, 1284 APInt &KnownUndef, 1285 APInt &KnownZero, 1286 DAGCombinerInfo &DCI) const { 1287 SelectionDAG &DAG = DCI.DAG; 1288 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1289 !DCI.isBeforeLegalizeOps()); 1290 1291 bool Simplified = 1292 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1293 if (Simplified) 1294 DCI.CommitTargetLoweringOpt(TLO); 1295 return Simplified; 1296 } 1297 1298 bool TargetLowering::SimplifyDemandedVectorElts( 1299 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1300 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1301 bool AssumeSingleUse) const { 1302 EVT VT = Op.getValueType(); 1303 APInt DemandedElts = DemandedEltMask; 1304 unsigned NumElts = DemandedElts.getBitWidth(); 1305 assert(VT.isVector() && "Expected vector op"); 1306 assert(VT.getVectorNumElements() == NumElts && 1307 "Mask size mismatches value type element count!"); 1308 1309 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1310 1311 // Undef operand. 1312 if (Op.isUndef()) { 1313 KnownUndef.setAllBits(); 1314 return false; 1315 } 1316 1317 // If Op has other users, assume that all elements are needed. 1318 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1319 DemandedElts.setAllBits(); 1320 1321 // Not demanding any elements from Op. 1322 if (DemandedElts == 0) { 1323 KnownUndef.setAllBits(); 1324 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1325 } 1326 1327 // Limit search depth. 1328 if (Depth >= 6) 1329 return false; 1330 1331 SDLoc DL(Op); 1332 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1333 1334 switch (Op.getOpcode()) { 1335 case ISD::SCALAR_TO_VECTOR: { 1336 if (!DemandedElts[0]) { 1337 KnownUndef.setAllBits(); 1338 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1339 } 1340 KnownUndef.setHighBits(NumElts - 1); 1341 break; 1342 } 1343 case ISD::BITCAST: { 1344 SDValue Src = Op.getOperand(0); 1345 EVT SrcVT = Src.getValueType(); 1346 1347 // We only handle vectors here. 1348 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1349 if (!SrcVT.isVector()) 1350 break; 1351 1352 // Fast handling of 'identity' bitcasts. 1353 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1354 if (NumSrcElts == NumElts) 1355 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1356 KnownZero, TLO, Depth + 1); 1357 1358 APInt SrcZero, SrcUndef; 1359 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1360 1361 // Bitcast from 'large element' src vector to 'small element' vector, we 1362 // must demand a source element if any DemandedElt maps to it. 1363 if ((NumElts % NumSrcElts) == 0) { 1364 unsigned Scale = NumElts / NumSrcElts; 1365 for (unsigned i = 0; i != NumElts; ++i) 1366 if (DemandedElts[i]) 1367 SrcDemandedElts.setBit(i / Scale); 1368 1369 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1370 TLO, Depth + 1)) 1371 return true; 1372 1373 // If the src element is zero/undef then all the output elements will be - 1374 // only demanded elements are guaranteed to be correct. 1375 for (unsigned i = 0; i != NumSrcElts; ++i) { 1376 if (SrcDemandedElts[i]) { 1377 if (SrcZero[i]) 1378 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1379 if (SrcUndef[i]) 1380 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1381 } 1382 } 1383 } 1384 1385 // Bitcast from 'small element' src vector to 'large element' vector, we 1386 // demand all smaller source elements covered by the larger demanded element 1387 // of this vector. 1388 if ((NumSrcElts % NumElts) == 0) { 1389 unsigned Scale = NumSrcElts / NumElts; 1390 for (unsigned i = 0; i != NumElts; ++i) 1391 if (DemandedElts[i]) 1392 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1393 1394 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1395 TLO, Depth + 1)) 1396 return true; 1397 1398 // If all the src elements covering an output element are zero/undef, then 1399 // the output element will be as well, assuming it was demanded. 1400 for (unsigned i = 0; i != NumElts; ++i) { 1401 if (DemandedElts[i]) { 1402 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1403 KnownZero.setBit(i); 1404 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1405 KnownUndef.setBit(i); 1406 } 1407 } 1408 } 1409 break; 1410 } 1411 case ISD::BUILD_VECTOR: { 1412 // Check all elements and simplify any unused elements with UNDEF. 1413 if (!DemandedElts.isAllOnesValue()) { 1414 // Don't simplify BROADCASTS. 1415 if (llvm::any_of(Op->op_values(), 1416 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1417 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1418 bool Updated = false; 1419 for (unsigned i = 0; i != NumElts; ++i) { 1420 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1421 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1422 KnownUndef.setBit(i); 1423 Updated = true; 1424 } 1425 } 1426 if (Updated) 1427 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1428 } 1429 } 1430 for (unsigned i = 0; i != NumElts; ++i) { 1431 SDValue SrcOp = Op.getOperand(i); 1432 if (SrcOp.isUndef()) { 1433 KnownUndef.setBit(i); 1434 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1435 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1436 KnownZero.setBit(i); 1437 } 1438 } 1439 break; 1440 } 1441 case ISD::CONCAT_VECTORS: { 1442 EVT SubVT = Op.getOperand(0).getValueType(); 1443 unsigned NumSubVecs = Op.getNumOperands(); 1444 unsigned NumSubElts = SubVT.getVectorNumElements(); 1445 for (unsigned i = 0; i != NumSubVecs; ++i) { 1446 SDValue SubOp = Op.getOperand(i); 1447 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1448 APInt SubUndef, SubZero; 1449 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1450 Depth + 1)) 1451 return true; 1452 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1453 KnownZero.insertBits(SubZero, i * NumSubElts); 1454 } 1455 break; 1456 } 1457 case ISD::INSERT_SUBVECTOR: { 1458 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1459 break; 1460 SDValue Base = Op.getOperand(0); 1461 SDValue Sub = Op.getOperand(1); 1462 EVT SubVT = Sub.getValueType(); 1463 unsigned NumSubElts = SubVT.getVectorNumElements(); 1464 APInt Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1465 if (Idx.uge(NumElts - NumSubElts)) 1466 break; 1467 unsigned SubIdx = Idx.getZExtValue(); 1468 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1469 APInt SubUndef, SubZero; 1470 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1471 Depth + 1)) 1472 return true; 1473 APInt BaseElts = DemandedElts; 1474 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1475 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1476 Depth + 1)) 1477 return true; 1478 KnownUndef.insertBits(SubUndef, SubIdx); 1479 KnownZero.insertBits(SubZero, SubIdx); 1480 break; 1481 } 1482 case ISD::INSERT_VECTOR_ELT: { 1483 SDValue Vec = Op.getOperand(0); 1484 SDValue Scl = Op.getOperand(1); 1485 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1486 1487 // For a legal, constant insertion index, if we don't need this insertion 1488 // then strip it, else remove it from the demanded elts. 1489 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1490 unsigned Idx = CIdx->getZExtValue(); 1491 if (!DemandedElts[Idx]) 1492 return TLO.CombineTo(Op, Vec); 1493 DemandedElts.clearBit(Idx); 1494 1495 if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, 1496 KnownZero, TLO, Depth + 1)) 1497 return true; 1498 1499 KnownUndef.clearBit(Idx); 1500 if (Scl.isUndef()) 1501 KnownUndef.setBit(Idx); 1502 1503 KnownZero.clearBit(Idx); 1504 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1505 KnownZero.setBit(Idx); 1506 break; 1507 } 1508 1509 APInt VecUndef, VecZero; 1510 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1511 Depth + 1)) 1512 return true; 1513 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1514 break; 1515 } 1516 case ISD::VSELECT: { 1517 APInt DemandedLHS(DemandedElts); 1518 APInt DemandedRHS(DemandedElts); 1519 1520 // TODO - add support for constant vselect masks. 1521 1522 // See if we can simplify either vselect operand. 1523 APInt UndefLHS, ZeroLHS; 1524 APInt UndefRHS, ZeroRHS; 1525 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1526 ZeroLHS, TLO, Depth + 1)) 1527 return true; 1528 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1529 ZeroRHS, TLO, Depth + 1)) 1530 return true; 1531 1532 KnownUndef = UndefLHS & UndefRHS; 1533 KnownZero = ZeroLHS & ZeroRHS; 1534 break; 1535 } 1536 case ISD::VECTOR_SHUFFLE: { 1537 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1538 1539 // Collect demanded elements from shuffle operands.. 1540 APInt DemandedLHS(NumElts, 0); 1541 APInt DemandedRHS(NumElts, 0); 1542 for (unsigned i = 0; i != NumElts; ++i) { 1543 int M = ShuffleMask[i]; 1544 if (M < 0 || !DemandedElts[i]) 1545 continue; 1546 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1547 if (M < (int)NumElts) 1548 DemandedLHS.setBit(M); 1549 else 1550 DemandedRHS.setBit(M - NumElts); 1551 } 1552 1553 // See if we can simplify either shuffle operand. 1554 APInt UndefLHS, ZeroLHS; 1555 APInt UndefRHS, ZeroRHS; 1556 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1557 ZeroLHS, TLO, Depth + 1)) 1558 return true; 1559 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1560 ZeroRHS, TLO, Depth + 1)) 1561 return true; 1562 1563 // Simplify mask using undef elements from LHS/RHS. 1564 bool Updated = false; 1565 bool IdentityLHS = true, IdentityRHS = true; 1566 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1567 for (unsigned i = 0; i != NumElts; ++i) { 1568 int &M = NewMask[i]; 1569 if (M < 0) 1570 continue; 1571 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1572 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1573 Updated = true; 1574 M = -1; 1575 } 1576 IdentityLHS &= (M < 0) || (M == (int)i); 1577 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1578 } 1579 1580 // Update legal shuffle masks based on demanded elements if it won't reduce 1581 // to Identity which can cause premature removal of the shuffle mask. 1582 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1583 isShuffleMaskLegal(NewMask, VT)) 1584 return TLO.CombineTo(Op, 1585 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1586 Op.getOperand(1), NewMask)); 1587 1588 // Propagate undef/zero elements from LHS/RHS. 1589 for (unsigned i = 0; i != NumElts; ++i) { 1590 int M = ShuffleMask[i]; 1591 if (M < 0) { 1592 KnownUndef.setBit(i); 1593 } else if (M < (int)NumElts) { 1594 if (UndefLHS[M]) 1595 KnownUndef.setBit(i); 1596 if (ZeroLHS[M]) 1597 KnownZero.setBit(i); 1598 } else { 1599 if (UndefRHS[M - NumElts]) 1600 KnownUndef.setBit(i); 1601 if (ZeroRHS[M - NumElts]) 1602 KnownZero.setBit(i); 1603 } 1604 } 1605 break; 1606 } 1607 case ISD::ADD: 1608 case ISD::SUB: { 1609 APInt SrcUndef, SrcZero; 1610 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1611 SrcZero, TLO, Depth + 1)) 1612 return true; 1613 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1614 KnownZero, TLO, Depth + 1)) 1615 return true; 1616 KnownZero &= SrcZero; 1617 KnownUndef &= SrcUndef; 1618 break; 1619 } 1620 case ISD::TRUNCATE: 1621 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1622 KnownZero, TLO, Depth + 1)) 1623 return true; 1624 break; 1625 default: { 1626 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1627 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1628 KnownZero, TLO, Depth)) 1629 return true; 1630 break; 1631 } 1632 } 1633 1634 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1635 return false; 1636 } 1637 1638 /// Determine which of the bits specified in Mask are known to be either zero or 1639 /// one and return them in the Known. 1640 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1641 KnownBits &Known, 1642 const APInt &DemandedElts, 1643 const SelectionDAG &DAG, 1644 unsigned Depth) const { 1645 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1646 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1647 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1648 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1649 "Should use MaskedValueIsZero if you don't know whether Op" 1650 " is a target node!"); 1651 Known.resetAll(); 1652 } 1653 1654 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1655 KnownBits &Known, 1656 const APInt &DemandedElts, 1657 const SelectionDAG &DAG, 1658 unsigned Depth) const { 1659 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1660 1661 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1662 // The low bits are known zero if the pointer is aligned. 1663 Known.Zero.setLowBits(Log2_32(Align)); 1664 } 1665 } 1666 1667 /// This method can be implemented by targets that want to expose additional 1668 /// information about sign bits to the DAG Combiner. 1669 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1670 const APInt &, 1671 const SelectionDAG &, 1672 unsigned Depth) const { 1673 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1674 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1675 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1676 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1677 "Should use ComputeNumSignBits if you don't know whether Op" 1678 " is a target node!"); 1679 return 1; 1680 } 1681 1682 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1683 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1684 TargetLoweringOpt &TLO, unsigned Depth) const { 1685 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1686 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1687 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1688 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1689 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1690 " is a target node!"); 1691 return false; 1692 } 1693 1694 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1695 // work with truncating build vectors and vectors with elements of less than 1696 // 8 bits. 1697 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1698 if (!N) 1699 return false; 1700 1701 APInt CVal; 1702 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1703 CVal = CN->getAPIntValue(); 1704 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1705 auto *CN = BV->getConstantSplatNode(); 1706 if (!CN) 1707 return false; 1708 1709 // If this is a truncating build vector, truncate the splat value. 1710 // Otherwise, we may fail to match the expected values below. 1711 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1712 CVal = CN->getAPIntValue(); 1713 if (BVEltWidth < CVal.getBitWidth()) 1714 CVal = CVal.trunc(BVEltWidth); 1715 } else { 1716 return false; 1717 } 1718 1719 switch (getBooleanContents(N->getValueType(0))) { 1720 case UndefinedBooleanContent: 1721 return CVal[0]; 1722 case ZeroOrOneBooleanContent: 1723 return CVal.isOneValue(); 1724 case ZeroOrNegativeOneBooleanContent: 1725 return CVal.isAllOnesValue(); 1726 } 1727 1728 llvm_unreachable("Invalid boolean contents"); 1729 } 1730 1731 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1732 if (!N) 1733 return false; 1734 1735 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1736 if (!CN) { 1737 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1738 if (!BV) 1739 return false; 1740 1741 // Only interested in constant splats, we don't care about undef 1742 // elements in identifying boolean constants and getConstantSplatNode 1743 // returns NULL if all ops are undef; 1744 CN = BV->getConstantSplatNode(); 1745 if (!CN) 1746 return false; 1747 } 1748 1749 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1750 return !CN->getAPIntValue()[0]; 1751 1752 return CN->isNullValue(); 1753 } 1754 1755 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1756 bool SExt) const { 1757 if (VT == MVT::i1) 1758 return N->isOne(); 1759 1760 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1761 switch (Cnt) { 1762 case TargetLowering::ZeroOrOneBooleanContent: 1763 // An extended value of 1 is always true, unless its original type is i1, 1764 // in which case it will be sign extended to -1. 1765 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1766 case TargetLowering::UndefinedBooleanContent: 1767 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1768 return N->isAllOnesValue() && SExt; 1769 } 1770 llvm_unreachable("Unexpected enumeration."); 1771 } 1772 1773 /// This helper function of SimplifySetCC tries to optimize the comparison when 1774 /// either operand of the SetCC node is a bitwise-and instruction. 1775 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1776 ISD::CondCode Cond, 1777 DAGCombinerInfo &DCI, 1778 const SDLoc &DL) const { 1779 // Match these patterns in any of their permutations: 1780 // (X & Y) == Y 1781 // (X & Y) != Y 1782 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1783 std::swap(N0, N1); 1784 1785 EVT OpVT = N0.getValueType(); 1786 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1787 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1788 return SDValue(); 1789 1790 SDValue X, Y; 1791 if (N0.getOperand(0) == N1) { 1792 X = N0.getOperand(1); 1793 Y = N0.getOperand(0); 1794 } else if (N0.getOperand(1) == N1) { 1795 X = N0.getOperand(0); 1796 Y = N0.getOperand(1); 1797 } else { 1798 return SDValue(); 1799 } 1800 1801 SelectionDAG &DAG = DCI.DAG; 1802 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1803 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1804 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1805 // Note that where Y is variable and is known to have at most one bit set 1806 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1807 // equivalent when Y == 0. 1808 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1809 if (DCI.isBeforeLegalizeOps() || 1810 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1811 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1812 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1813 // If the target supports an 'and-not' or 'and-complement' logic operation, 1814 // try to use that to make a comparison operation more efficient. 1815 // But don't do this transform if the mask is a single bit because there are 1816 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1817 // 'rlwinm' on PPC). 1818 1819 // Bail out if the compare operand that we want to turn into a zero is 1820 // already a zero (otherwise, infinite loop). 1821 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1822 if (YConst && YConst->isNullValue()) 1823 return SDValue(); 1824 1825 // Transform this into: ~X & Y == 0. 1826 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1827 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1828 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1829 } 1830 1831 return SDValue(); 1832 } 1833 1834 /// Try to simplify a setcc built with the specified operands and cc. If it is 1835 /// unable to simplify it, return a null SDValue. 1836 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1837 ISD::CondCode Cond, bool foldBooleans, 1838 DAGCombinerInfo &DCI, 1839 const SDLoc &dl) const { 1840 SelectionDAG &DAG = DCI.DAG; 1841 EVT OpVT = N0.getValueType(); 1842 1843 // These setcc operations always fold. 1844 switch (Cond) { 1845 default: break; 1846 case ISD::SETFALSE: 1847 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 1848 case ISD::SETTRUE: 1849 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 1850 } 1851 1852 // Ensure that the constant occurs on the RHS and fold constant comparisons. 1853 // TODO: Handle non-splat vector constants. All undef causes trouble. 1854 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1855 if (isConstOrConstSplat(N0) && 1856 (DCI.isBeforeLegalizeOps() || 1857 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1858 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1859 1860 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1861 const APInt &C1 = N1C->getAPIntValue(); 1862 1863 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1864 // equality comparison, then we're just comparing whether X itself is 1865 // zero. 1866 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 1867 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1868 N0.getOperand(1).getOpcode() == ISD::Constant) { 1869 const APInt &ShAmt 1870 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1871 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1872 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1873 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1874 // (srl (ctlz x), 5) == 0 -> X != 0 1875 // (srl (ctlz x), 5) != 1 -> X != 0 1876 Cond = ISD::SETNE; 1877 } else { 1878 // (srl (ctlz x), 5) != 0 -> X == 0 1879 // (srl (ctlz x), 5) == 1 -> X == 0 1880 Cond = ISD::SETEQ; 1881 } 1882 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1883 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1884 Zero, Cond); 1885 } 1886 } 1887 1888 SDValue CTPOP = N0; 1889 // Look through truncs that don't change the value of a ctpop. 1890 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1891 CTPOP = N0.getOperand(0); 1892 1893 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1894 (N0 == CTPOP || 1895 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1896 EVT CTVT = CTPOP.getValueType(); 1897 SDValue CTOp = CTPOP.getOperand(0); 1898 1899 // (ctpop x) u< 2 -> (x & x-1) == 0 1900 // (ctpop x) u> 1 -> (x & x-1) != 0 1901 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1902 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1903 DAG.getConstant(1, dl, CTVT)); 1904 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1905 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1906 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1907 } 1908 1909 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1910 } 1911 1912 // (zext x) == C --> x == (trunc C) 1913 // (sext x) == C --> x == (trunc C) 1914 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1915 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1916 unsigned MinBits = N0.getValueSizeInBits(); 1917 SDValue PreExt; 1918 bool Signed = false; 1919 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1920 // ZExt 1921 MinBits = N0->getOperand(0).getValueSizeInBits(); 1922 PreExt = N0->getOperand(0); 1923 } else if (N0->getOpcode() == ISD::AND) { 1924 // DAGCombine turns costly ZExts into ANDs 1925 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1926 if ((C->getAPIntValue()+1).isPowerOf2()) { 1927 MinBits = C->getAPIntValue().countTrailingOnes(); 1928 PreExt = N0->getOperand(0); 1929 } 1930 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1931 // SExt 1932 MinBits = N0->getOperand(0).getValueSizeInBits(); 1933 PreExt = N0->getOperand(0); 1934 Signed = true; 1935 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1936 // ZEXTLOAD / SEXTLOAD 1937 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1938 MinBits = LN0->getMemoryVT().getSizeInBits(); 1939 PreExt = N0; 1940 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1941 Signed = true; 1942 MinBits = LN0->getMemoryVT().getSizeInBits(); 1943 PreExt = N0; 1944 } 1945 } 1946 1947 // Figure out how many bits we need to preserve this constant. 1948 unsigned ReqdBits = Signed ? 1949 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1950 C1.getActiveBits(); 1951 1952 // Make sure we're not losing bits from the constant. 1953 if (MinBits > 0 && 1954 MinBits < C1.getBitWidth() && 1955 MinBits >= ReqdBits) { 1956 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1957 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1958 // Will get folded away. 1959 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1960 if (MinBits == 1 && C1 == 1) 1961 // Invert the condition. 1962 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1963 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1964 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1965 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1966 } 1967 1968 // If truncating the setcc operands is not desirable, we can still 1969 // simplify the expression in some cases: 1970 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1971 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1972 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1973 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1974 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1975 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1976 SDValue TopSetCC = N0->getOperand(0); 1977 unsigned N0Opc = N0->getOpcode(); 1978 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1979 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1980 TopSetCC.getOpcode() == ISD::SETCC && 1981 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1982 (isConstFalseVal(N1C) || 1983 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1984 1985 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1986 (!N1C->isNullValue() && Cond == ISD::SETNE); 1987 1988 if (!Inverse) 1989 return TopSetCC; 1990 1991 ISD::CondCode InvCond = ISD::getSetCCInverse( 1992 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1993 TopSetCC.getOperand(0).getValueType().isInteger()); 1994 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1995 TopSetCC.getOperand(1), 1996 InvCond); 1997 } 1998 } 1999 } 2000 2001 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2002 // equality or unsigned, and all 1 bits of the const are in the same 2003 // partial word, see if we can shorten the load. 2004 if (DCI.isBeforeLegalize() && 2005 !ISD::isSignedIntSetCC(Cond) && 2006 N0.getOpcode() == ISD::AND && C1 == 0 && 2007 N0.getNode()->hasOneUse() && 2008 isa<LoadSDNode>(N0.getOperand(0)) && 2009 N0.getOperand(0).getNode()->hasOneUse() && 2010 isa<ConstantSDNode>(N0.getOperand(1))) { 2011 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2012 APInt bestMask; 2013 unsigned bestWidth = 0, bestOffset = 0; 2014 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2015 unsigned origWidth = N0.getValueSizeInBits(); 2016 unsigned maskWidth = origWidth; 2017 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2018 // 8 bits, but have to be careful... 2019 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2020 origWidth = Lod->getMemoryVT().getSizeInBits(); 2021 const APInt &Mask = 2022 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2023 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2024 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2025 for (unsigned offset=0; offset<origWidth/width; offset++) { 2026 if (Mask.isSubsetOf(newMask)) { 2027 if (DAG.getDataLayout().isLittleEndian()) 2028 bestOffset = (uint64_t)offset * (width/8); 2029 else 2030 bestOffset = (origWidth/width - offset - 1) * (width/8); 2031 bestMask = Mask.lshr(offset * (width/8) * 8); 2032 bestWidth = width; 2033 break; 2034 } 2035 newMask <<= width; 2036 } 2037 } 2038 } 2039 if (bestWidth) { 2040 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2041 if (newVT.isRound()) { 2042 EVT PtrType = Lod->getOperand(1).getValueType(); 2043 SDValue Ptr = Lod->getBasePtr(); 2044 if (bestOffset != 0) 2045 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2046 DAG.getConstant(bestOffset, dl, PtrType)); 2047 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2048 SDValue NewLoad = DAG.getLoad( 2049 newVT, dl, Lod->getChain(), Ptr, 2050 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2051 return DAG.getSetCC(dl, VT, 2052 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2053 DAG.getConstant(bestMask.trunc(bestWidth), 2054 dl, newVT)), 2055 DAG.getConstant(0LL, dl, newVT), Cond); 2056 } 2057 } 2058 } 2059 2060 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2061 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2062 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2063 2064 // If the comparison constant has bits in the upper part, the 2065 // zero-extended value could never match. 2066 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2067 C1.getBitWidth() - InSize))) { 2068 switch (Cond) { 2069 case ISD::SETUGT: 2070 case ISD::SETUGE: 2071 case ISD::SETEQ: 2072 return DAG.getConstant(0, dl, VT); 2073 case ISD::SETULT: 2074 case ISD::SETULE: 2075 case ISD::SETNE: 2076 return DAG.getConstant(1, dl, VT); 2077 case ISD::SETGT: 2078 case ISD::SETGE: 2079 // True if the sign bit of C1 is set. 2080 return DAG.getConstant(C1.isNegative(), dl, VT); 2081 case ISD::SETLT: 2082 case ISD::SETLE: 2083 // True if the sign bit of C1 isn't set. 2084 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2085 default: 2086 break; 2087 } 2088 } 2089 2090 // Otherwise, we can perform the comparison with the low bits. 2091 switch (Cond) { 2092 case ISD::SETEQ: 2093 case ISD::SETNE: 2094 case ISD::SETUGT: 2095 case ISD::SETUGE: 2096 case ISD::SETULT: 2097 case ISD::SETULE: { 2098 EVT newVT = N0.getOperand(0).getValueType(); 2099 if (DCI.isBeforeLegalizeOps() || 2100 (isOperationLegal(ISD::SETCC, newVT) && 2101 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2102 EVT NewSetCCVT = 2103 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2104 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2105 2106 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2107 NewConst, Cond); 2108 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2109 } 2110 break; 2111 } 2112 default: 2113 break; // todo, be more careful with signed comparisons 2114 } 2115 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2116 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2117 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2118 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2119 EVT ExtDstTy = N0.getValueType(); 2120 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2121 2122 // If the constant doesn't fit into the number of bits for the source of 2123 // the sign extension, it is impossible for both sides to be equal. 2124 if (C1.getMinSignedBits() > ExtSrcTyBits) 2125 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2126 2127 SDValue ZextOp; 2128 EVT Op0Ty = N0.getOperand(0).getValueType(); 2129 if (Op0Ty == ExtSrcTy) { 2130 ZextOp = N0.getOperand(0); 2131 } else { 2132 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2133 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2134 DAG.getConstant(Imm, dl, Op0Ty)); 2135 } 2136 if (!DCI.isCalledByLegalizer()) 2137 DCI.AddToWorklist(ZextOp.getNode()); 2138 // Otherwise, make this a use of a zext. 2139 return DAG.getSetCC(dl, VT, ZextOp, 2140 DAG.getConstant(C1 & APInt::getLowBitsSet( 2141 ExtDstTyBits, 2142 ExtSrcTyBits), 2143 dl, ExtDstTy), 2144 Cond); 2145 } else if ((N1C->isNullValue() || N1C->isOne()) && 2146 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2147 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2148 if (N0.getOpcode() == ISD::SETCC && 2149 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2150 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2151 if (TrueWhenTrue) 2152 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2153 // Invert the condition. 2154 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2155 CC = ISD::getSetCCInverse(CC, 2156 N0.getOperand(0).getValueType().isInteger()); 2157 if (DCI.isBeforeLegalizeOps() || 2158 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2159 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2160 } 2161 2162 if ((N0.getOpcode() == ISD::XOR || 2163 (N0.getOpcode() == ISD::AND && 2164 N0.getOperand(0).getOpcode() == ISD::XOR && 2165 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2166 isa<ConstantSDNode>(N0.getOperand(1)) && 2167 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2168 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2169 // can only do this if the top bits are known zero. 2170 unsigned BitWidth = N0.getValueSizeInBits(); 2171 if (DAG.MaskedValueIsZero(N0, 2172 APInt::getHighBitsSet(BitWidth, 2173 BitWidth-1))) { 2174 // Okay, get the un-inverted input value. 2175 SDValue Val; 2176 if (N0.getOpcode() == ISD::XOR) { 2177 Val = N0.getOperand(0); 2178 } else { 2179 assert(N0.getOpcode() == ISD::AND && 2180 N0.getOperand(0).getOpcode() == ISD::XOR); 2181 // ((X^1)&1)^1 -> X & 1 2182 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2183 N0.getOperand(0).getOperand(0), 2184 N0.getOperand(1)); 2185 } 2186 2187 return DAG.getSetCC(dl, VT, Val, N1, 2188 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2189 } 2190 } else if (N1C->isOne() && 2191 (VT == MVT::i1 || 2192 getBooleanContents(N0->getValueType(0)) == 2193 ZeroOrOneBooleanContent)) { 2194 SDValue Op0 = N0; 2195 if (Op0.getOpcode() == ISD::TRUNCATE) 2196 Op0 = Op0.getOperand(0); 2197 2198 if ((Op0.getOpcode() == ISD::XOR) && 2199 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2200 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2201 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2202 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2203 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2204 Cond); 2205 } 2206 if (Op0.getOpcode() == ISD::AND && 2207 isa<ConstantSDNode>(Op0.getOperand(1)) && 2208 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2209 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2210 if (Op0.getValueType().bitsGT(VT)) 2211 Op0 = DAG.getNode(ISD::AND, dl, VT, 2212 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2213 DAG.getConstant(1, dl, VT)); 2214 else if (Op0.getValueType().bitsLT(VT)) 2215 Op0 = DAG.getNode(ISD::AND, dl, VT, 2216 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2217 DAG.getConstant(1, dl, VT)); 2218 2219 return DAG.getSetCC(dl, VT, Op0, 2220 DAG.getConstant(0, dl, Op0.getValueType()), 2221 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2222 } 2223 if (Op0.getOpcode() == ISD::AssertZext && 2224 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2225 return DAG.getSetCC(dl, VT, Op0, 2226 DAG.getConstant(0, dl, Op0.getValueType()), 2227 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2228 } 2229 } 2230 } 2231 2232 // These simplifications apply to splat vectors as well. 2233 // TODO: Handle more splat vector cases. 2234 if (auto *N1C = isConstOrConstSplat(N1)) { 2235 const APInt &C1 = N1C->getAPIntValue(); 2236 2237 APInt MinVal, MaxVal; 2238 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2239 if (ISD::isSignedIntSetCC(Cond)) { 2240 MinVal = APInt::getSignedMinValue(OperandBitSize); 2241 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2242 } else { 2243 MinVal = APInt::getMinValue(OperandBitSize); 2244 MaxVal = APInt::getMaxValue(OperandBitSize); 2245 } 2246 2247 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2248 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2249 // X >= MIN --> true 2250 if (C1 == MinVal) 2251 return DAG.getBoolConstant(true, dl, VT, OpVT); 2252 2253 if (!VT.isVector()) { // TODO: Support this for vectors. 2254 // X >= C0 --> X > (C0 - 1) 2255 APInt C = C1 - 1; 2256 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2257 if ((DCI.isBeforeLegalizeOps() || 2258 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2259 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2260 isLegalICmpImmediate(C.getSExtValue())))) { 2261 return DAG.getSetCC(dl, VT, N0, 2262 DAG.getConstant(C, dl, N1.getValueType()), 2263 NewCC); 2264 } 2265 } 2266 } 2267 2268 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2269 // X <= MAX --> true 2270 if (C1 == MaxVal) 2271 return DAG.getBoolConstant(true, dl, VT, OpVT); 2272 2273 // X <= C0 --> X < (C0 + 1) 2274 if (!VT.isVector()) { // TODO: Support this for vectors. 2275 APInt C = C1 + 1; 2276 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2277 if ((DCI.isBeforeLegalizeOps() || 2278 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2279 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2280 isLegalICmpImmediate(C.getSExtValue())))) { 2281 return DAG.getSetCC(dl, VT, N0, 2282 DAG.getConstant(C, dl, N1.getValueType()), 2283 NewCC); 2284 } 2285 } 2286 } 2287 2288 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2289 if (C1 == MinVal) 2290 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2291 2292 // TODO: Support this for vectors after legalize ops. 2293 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2294 // Canonicalize setlt X, Max --> setne X, Max 2295 if (C1 == MaxVal) 2296 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2297 2298 // If we have setult X, 1, turn it into seteq X, 0 2299 if (C1 == MinVal+1) 2300 return DAG.getSetCC(dl, VT, N0, 2301 DAG.getConstant(MinVal, dl, N0.getValueType()), 2302 ISD::SETEQ); 2303 } 2304 } 2305 2306 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2307 if (C1 == MaxVal) 2308 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2309 2310 // TODO: Support this for vectors after legalize ops. 2311 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2312 // Canonicalize setgt X, Min --> setne X, Min 2313 if (C1 == MinVal) 2314 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2315 2316 // If we have setugt X, Max-1, turn it into seteq X, Max 2317 if (C1 == MaxVal-1) 2318 return DAG.getSetCC(dl, VT, N0, 2319 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2320 ISD::SETEQ); 2321 } 2322 } 2323 2324 // If we have "setcc X, C0", check to see if we can shrink the immediate 2325 // by changing cc. 2326 // TODO: Support this for vectors after legalize ops. 2327 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2328 // SETUGT X, SINTMAX -> SETLT X, 0 2329 if (Cond == ISD::SETUGT && 2330 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2331 return DAG.getSetCC(dl, VT, N0, 2332 DAG.getConstant(0, dl, N1.getValueType()), 2333 ISD::SETLT); 2334 2335 // SETULT X, SINTMIN -> SETGT X, -1 2336 if (Cond == ISD::SETULT && 2337 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2338 SDValue ConstMinusOne = 2339 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2340 N1.getValueType()); 2341 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2342 } 2343 } 2344 } 2345 2346 // Back to non-vector simplifications. 2347 // TODO: Can we do these for vector splats? 2348 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2349 const APInt &C1 = N1C->getAPIntValue(); 2350 2351 // Fold bit comparisons when we can. 2352 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2353 (VT == N0.getValueType() || 2354 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2355 N0.getOpcode() == ISD::AND) { 2356 auto &DL = DAG.getDataLayout(); 2357 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2358 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2359 !DCI.isBeforeLegalize()); 2360 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2361 // Perform the xform if the AND RHS is a single bit. 2362 if (AndRHS->getAPIntValue().isPowerOf2()) { 2363 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2364 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2365 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2366 ShiftTy))); 2367 } 2368 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2369 // (X & 8) == 8 --> (X & 8) >> 3 2370 // Perform the xform if C1 is a single bit. 2371 if (C1.isPowerOf2()) { 2372 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2373 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2374 DAG.getConstant(C1.logBase2(), dl, 2375 ShiftTy))); 2376 } 2377 } 2378 } 2379 } 2380 2381 if (C1.getMinSignedBits() <= 64 && 2382 !isLegalICmpImmediate(C1.getSExtValue())) { 2383 // (X & -256) == 256 -> (X >> 8) == 1 2384 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2385 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2386 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2387 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2388 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2389 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2390 auto &DL = DAG.getDataLayout(); 2391 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2392 !DCI.isBeforeLegalize()); 2393 EVT CmpTy = N0.getValueType(); 2394 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2395 DAG.getConstant(ShiftBits, dl, 2396 ShiftTy)); 2397 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2398 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2399 } 2400 } 2401 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2402 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2403 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2404 // X < 0x100000000 -> (X >> 32) < 1 2405 // X >= 0x100000000 -> (X >> 32) >= 1 2406 // X <= 0x0ffffffff -> (X >> 32) < 1 2407 // X > 0x0ffffffff -> (X >> 32) >= 1 2408 unsigned ShiftBits; 2409 APInt NewC = C1; 2410 ISD::CondCode NewCond = Cond; 2411 if (AdjOne) { 2412 ShiftBits = C1.countTrailingOnes(); 2413 NewC = NewC + 1; 2414 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2415 } else { 2416 ShiftBits = C1.countTrailingZeros(); 2417 } 2418 NewC.lshrInPlace(ShiftBits); 2419 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2420 isLegalICmpImmediate(NewC.getSExtValue())) { 2421 auto &DL = DAG.getDataLayout(); 2422 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2423 !DCI.isBeforeLegalize()); 2424 EVT CmpTy = N0.getValueType(); 2425 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2426 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2427 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2428 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2429 } 2430 } 2431 } 2432 } 2433 2434 if (isa<ConstantFPSDNode>(N0.getNode())) { 2435 // Constant fold or commute setcc. 2436 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2437 if (O.getNode()) return O; 2438 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2439 // If the RHS of an FP comparison is a constant, simplify it away in 2440 // some cases. 2441 if (CFP->getValueAPF().isNaN()) { 2442 // If an operand is known to be a nan, we can fold it. 2443 switch (ISD::getUnorderedFlavor(Cond)) { 2444 default: llvm_unreachable("Unknown flavor!"); 2445 case 0: // Known false. 2446 return DAG.getBoolConstant(false, dl, VT, OpVT); 2447 case 1: // Known true. 2448 return DAG.getBoolConstant(true, dl, VT, OpVT); 2449 case 2: // Undefined. 2450 return DAG.getUNDEF(VT); 2451 } 2452 } 2453 2454 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2455 // constant if knowing that the operand is non-nan is enough. We prefer to 2456 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2457 // materialize 0.0. 2458 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2459 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2460 2461 // setcc (fneg x), C -> setcc swap(pred) x, -C 2462 if (N0.getOpcode() == ISD::FNEG) { 2463 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2464 if (DCI.isBeforeLegalizeOps() || 2465 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2466 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2467 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2468 } 2469 } 2470 2471 // If the condition is not legal, see if we can find an equivalent one 2472 // which is legal. 2473 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2474 // If the comparison was an awkward floating-point == or != and one of 2475 // the comparison operands is infinity or negative infinity, convert the 2476 // condition to a less-awkward <= or >=. 2477 if (CFP->getValueAPF().isInfinity()) { 2478 if (CFP->getValueAPF().isNegative()) { 2479 if (Cond == ISD::SETOEQ && 2480 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2481 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2482 if (Cond == ISD::SETUEQ && 2483 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2484 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2485 if (Cond == ISD::SETUNE && 2486 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2487 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2488 if (Cond == ISD::SETONE && 2489 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2490 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2491 } else { 2492 if (Cond == ISD::SETOEQ && 2493 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2494 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2495 if (Cond == ISD::SETUEQ && 2496 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2497 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2498 if (Cond == ISD::SETUNE && 2499 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2500 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2501 if (Cond == ISD::SETONE && 2502 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2503 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2504 } 2505 } 2506 } 2507 } 2508 2509 if (N0 == N1) { 2510 // The sext(setcc()) => setcc() optimization relies on the appropriate 2511 // constant being emitted. 2512 2513 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2514 2515 // We can always fold X == X for integer setcc's. 2516 if (N0.getValueType().isInteger()) 2517 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2518 2519 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2520 if (UOF == 2) // FP operators that are undefined on NaNs. 2521 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2522 if (UOF == unsigned(EqTrue)) 2523 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2524 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2525 // if it is not already. 2526 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2527 if (NewCond != Cond && 2528 (DCI.isBeforeLegalizeOps() || 2529 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2530 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2531 } 2532 2533 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2534 N0.getValueType().isInteger()) { 2535 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2536 N0.getOpcode() == ISD::XOR) { 2537 // Simplify (X+Y) == (X+Z) --> Y == Z 2538 if (N0.getOpcode() == N1.getOpcode()) { 2539 if (N0.getOperand(0) == N1.getOperand(0)) 2540 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2541 if (N0.getOperand(1) == N1.getOperand(1)) 2542 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2543 if (isCommutativeBinOp(N0.getOpcode())) { 2544 // If X op Y == Y op X, try other combinations. 2545 if (N0.getOperand(0) == N1.getOperand(1)) 2546 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2547 Cond); 2548 if (N0.getOperand(1) == N1.getOperand(0)) 2549 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2550 Cond); 2551 } 2552 } 2553 2554 // If RHS is a legal immediate value for a compare instruction, we need 2555 // to be careful about increasing register pressure needlessly. 2556 bool LegalRHSImm = false; 2557 2558 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2559 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2560 // Turn (X+C1) == C2 --> X == C2-C1 2561 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2562 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2563 DAG.getConstant(RHSC->getAPIntValue()- 2564 LHSR->getAPIntValue(), 2565 dl, N0.getValueType()), Cond); 2566 } 2567 2568 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2569 if (N0.getOpcode() == ISD::XOR) 2570 // If we know that all of the inverted bits are zero, don't bother 2571 // performing the inversion. 2572 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2573 return 2574 DAG.getSetCC(dl, VT, N0.getOperand(0), 2575 DAG.getConstant(LHSR->getAPIntValue() ^ 2576 RHSC->getAPIntValue(), 2577 dl, N0.getValueType()), 2578 Cond); 2579 } 2580 2581 // Turn (C1-X) == C2 --> X == C1-C2 2582 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2583 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2584 return 2585 DAG.getSetCC(dl, VT, N0.getOperand(1), 2586 DAG.getConstant(SUBC->getAPIntValue() - 2587 RHSC->getAPIntValue(), 2588 dl, N0.getValueType()), 2589 Cond); 2590 } 2591 } 2592 2593 // Could RHSC fold directly into a compare? 2594 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2595 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2596 } 2597 2598 // Simplify (X+Z) == X --> Z == 0 2599 // Don't do this if X is an immediate that can fold into a cmp 2600 // instruction and X+Z has other uses. It could be an induction variable 2601 // chain, and the transform would increase register pressure. 2602 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2603 if (N0.getOperand(0) == N1) 2604 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2605 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2606 if (N0.getOperand(1) == N1) { 2607 if (isCommutativeBinOp(N0.getOpcode())) 2608 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2609 DAG.getConstant(0, dl, N0.getValueType()), 2610 Cond); 2611 if (N0.getNode()->hasOneUse()) { 2612 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2613 auto &DL = DAG.getDataLayout(); 2614 // (Z-X) == X --> Z == X<<1 2615 SDValue SH = DAG.getNode( 2616 ISD::SHL, dl, N1.getValueType(), N1, 2617 DAG.getConstant(1, dl, 2618 getShiftAmountTy(N1.getValueType(), DL, 2619 !DCI.isBeforeLegalize()))); 2620 if (!DCI.isCalledByLegalizer()) 2621 DCI.AddToWorklist(SH.getNode()); 2622 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2623 } 2624 } 2625 } 2626 } 2627 2628 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2629 N1.getOpcode() == ISD::XOR) { 2630 // Simplify X == (X+Z) --> Z == 0 2631 if (N1.getOperand(0) == N0) 2632 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2633 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2634 if (N1.getOperand(1) == N0) { 2635 if (isCommutativeBinOp(N1.getOpcode())) 2636 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2637 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2638 if (N1.getNode()->hasOneUse()) { 2639 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2640 auto &DL = DAG.getDataLayout(); 2641 // X == (Z-X) --> X<<1 == Z 2642 SDValue SH = DAG.getNode( 2643 ISD::SHL, dl, N1.getValueType(), N0, 2644 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2645 !DCI.isBeforeLegalize()))); 2646 if (!DCI.isCalledByLegalizer()) 2647 DCI.AddToWorklist(SH.getNode()); 2648 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2649 } 2650 } 2651 } 2652 2653 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2654 return V; 2655 } 2656 2657 // Fold away ALL boolean setcc's. 2658 SDValue Temp; 2659 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2660 EVT OpVT = N0.getValueType(); 2661 switch (Cond) { 2662 default: llvm_unreachable("Unknown integer setcc!"); 2663 case ISD::SETEQ: // X == Y -> ~(X^Y) 2664 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2665 N0 = DAG.getNOT(dl, Temp, OpVT); 2666 if (!DCI.isCalledByLegalizer()) 2667 DCI.AddToWorklist(Temp.getNode()); 2668 break; 2669 case ISD::SETNE: // X != Y --> (X^Y) 2670 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2671 break; 2672 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2673 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2674 Temp = DAG.getNOT(dl, N0, OpVT); 2675 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2676 if (!DCI.isCalledByLegalizer()) 2677 DCI.AddToWorklist(Temp.getNode()); 2678 break; 2679 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2680 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2681 Temp = DAG.getNOT(dl, N1, OpVT); 2682 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2683 if (!DCI.isCalledByLegalizer()) 2684 DCI.AddToWorklist(Temp.getNode()); 2685 break; 2686 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2687 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2688 Temp = DAG.getNOT(dl, N0, OpVT); 2689 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2690 if (!DCI.isCalledByLegalizer()) 2691 DCI.AddToWorklist(Temp.getNode()); 2692 break; 2693 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2694 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2695 Temp = DAG.getNOT(dl, N1, OpVT); 2696 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2697 break; 2698 } 2699 if (VT.getScalarType() != MVT::i1) { 2700 if (!DCI.isCalledByLegalizer()) 2701 DCI.AddToWorklist(N0.getNode()); 2702 // FIXME: If running after legalize, we probably can't do this. 2703 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2704 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2705 } 2706 return N0; 2707 } 2708 2709 // Could not fold it. 2710 return SDValue(); 2711 } 2712 2713 /// Returns true (and the GlobalValue and the offset) if the node is a 2714 /// GlobalAddress + offset. 2715 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2716 int64_t &Offset) const { 2717 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2718 GA = GASD->getGlobal(); 2719 Offset += GASD->getOffset(); 2720 return true; 2721 } 2722 2723 if (N->getOpcode() == ISD::ADD) { 2724 SDValue N1 = N->getOperand(0); 2725 SDValue N2 = N->getOperand(1); 2726 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2727 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2728 Offset += V->getSExtValue(); 2729 return true; 2730 } 2731 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2732 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2733 Offset += V->getSExtValue(); 2734 return true; 2735 } 2736 } 2737 } 2738 2739 return false; 2740 } 2741 2742 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2743 DAGCombinerInfo &DCI) const { 2744 // Default implementation: no optimization. 2745 return SDValue(); 2746 } 2747 2748 //===----------------------------------------------------------------------===// 2749 // Inline Assembler Implementation Methods 2750 //===----------------------------------------------------------------------===// 2751 2752 TargetLowering::ConstraintType 2753 TargetLowering::getConstraintType(StringRef Constraint) const { 2754 unsigned S = Constraint.size(); 2755 2756 if (S == 1) { 2757 switch (Constraint[0]) { 2758 default: break; 2759 case 'r': return C_RegisterClass; 2760 case 'm': // memory 2761 case 'o': // offsetable 2762 case 'V': // not offsetable 2763 return C_Memory; 2764 case 'i': // Simple Integer or Relocatable Constant 2765 case 'n': // Simple Integer 2766 case 'E': // Floating Point Constant 2767 case 'F': // Floating Point Constant 2768 case 's': // Relocatable Constant 2769 case 'p': // Address. 2770 case 'X': // Allow ANY value. 2771 case 'I': // Target registers. 2772 case 'J': 2773 case 'K': 2774 case 'L': 2775 case 'M': 2776 case 'N': 2777 case 'O': 2778 case 'P': 2779 case '<': 2780 case '>': 2781 return C_Other; 2782 } 2783 } 2784 2785 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2786 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2787 return C_Memory; 2788 return C_Register; 2789 } 2790 return C_Unknown; 2791 } 2792 2793 /// Try to replace an X constraint, which matches anything, with another that 2794 /// has more specific requirements based on the type of the corresponding 2795 /// operand. 2796 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2797 if (ConstraintVT.isInteger()) 2798 return "r"; 2799 if (ConstraintVT.isFloatingPoint()) 2800 return "f"; // works for many targets 2801 return nullptr; 2802 } 2803 2804 /// Lower the specified operand into the Ops vector. 2805 /// If it is invalid, don't add anything to Ops. 2806 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2807 std::string &Constraint, 2808 std::vector<SDValue> &Ops, 2809 SelectionDAG &DAG) const { 2810 2811 if (Constraint.length() > 1) return; 2812 2813 char ConstraintLetter = Constraint[0]; 2814 switch (ConstraintLetter) { 2815 default: break; 2816 case 'X': // Allows any operand; labels (basic block) use this. 2817 if (Op.getOpcode() == ISD::BasicBlock) { 2818 Ops.push_back(Op); 2819 return; 2820 } 2821 LLVM_FALLTHROUGH; 2822 case 'i': // Simple Integer or Relocatable Constant 2823 case 'n': // Simple Integer 2824 case 's': { // Relocatable Constant 2825 // These operands are interested in values of the form (GV+C), where C may 2826 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2827 // is possible and fine if either GV or C are missing. 2828 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2829 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2830 2831 // If we have "(add GV, C)", pull out GV/C 2832 if (Op.getOpcode() == ISD::ADD) { 2833 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2834 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2835 if (!C || !GA) { 2836 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2837 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2838 } 2839 if (!C || !GA) { 2840 C = nullptr; 2841 GA = nullptr; 2842 } 2843 } 2844 2845 // If we find a valid operand, map to the TargetXXX version so that the 2846 // value itself doesn't get selected. 2847 if (GA) { // Either &GV or &GV+C 2848 if (ConstraintLetter != 'n') { 2849 int64_t Offs = GA->getOffset(); 2850 if (C) Offs += C->getZExtValue(); 2851 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2852 C ? SDLoc(C) : SDLoc(), 2853 Op.getValueType(), Offs)); 2854 } 2855 return; 2856 } 2857 if (C) { // just C, no GV. 2858 // Simple constants are not allowed for 's'. 2859 if (ConstraintLetter != 's') { 2860 // gcc prints these as sign extended. Sign extend value to 64 bits 2861 // now; without this it would get ZExt'd later in 2862 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2863 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 2864 SDLoc(C), MVT::i64)); 2865 } 2866 return; 2867 } 2868 break; 2869 } 2870 } 2871 } 2872 2873 std::pair<unsigned, const TargetRegisterClass *> 2874 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2875 StringRef Constraint, 2876 MVT VT) const { 2877 if (Constraint.empty() || Constraint[0] != '{') 2878 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2879 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2880 2881 // Remove the braces from around the name. 2882 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2883 2884 std::pair<unsigned, const TargetRegisterClass*> R = 2885 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2886 2887 // Figure out which register class contains this reg. 2888 for (const TargetRegisterClass *RC : RI->regclasses()) { 2889 // If none of the value types for this register class are valid, we 2890 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2891 if (!isLegalRC(*RI, *RC)) 2892 continue; 2893 2894 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2895 I != E; ++I) { 2896 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2897 std::pair<unsigned, const TargetRegisterClass*> S = 2898 std::make_pair(*I, RC); 2899 2900 // If this register class has the requested value type, return it, 2901 // otherwise keep searching and return the first class found 2902 // if no other is found which explicitly has the requested type. 2903 if (RI->isTypeLegalForClass(*RC, VT)) 2904 return S; 2905 if (!R.second) 2906 R = S; 2907 } 2908 } 2909 } 2910 2911 return R; 2912 } 2913 2914 //===----------------------------------------------------------------------===// 2915 // Constraint Selection. 2916 2917 /// Return true of this is an input operand that is a matching constraint like 2918 /// "4". 2919 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2920 assert(!ConstraintCode.empty() && "No known constraint!"); 2921 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2922 } 2923 2924 /// If this is an input matching constraint, this method returns the output 2925 /// operand it matches. 2926 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2927 assert(!ConstraintCode.empty() && "No known constraint!"); 2928 return atoi(ConstraintCode.c_str()); 2929 } 2930 2931 /// Split up the constraint string from the inline assembly value into the 2932 /// specific constraints and their prefixes, and also tie in the associated 2933 /// operand values. 2934 /// If this returns an empty vector, and if the constraint string itself 2935 /// isn't empty, there was an error parsing. 2936 TargetLowering::AsmOperandInfoVector 2937 TargetLowering::ParseConstraints(const DataLayout &DL, 2938 const TargetRegisterInfo *TRI, 2939 ImmutableCallSite CS) const { 2940 /// Information about all of the constraints. 2941 AsmOperandInfoVector ConstraintOperands; 2942 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2943 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2944 2945 // Do a prepass over the constraints, canonicalizing them, and building up the 2946 // ConstraintOperands list. 2947 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2948 unsigned ResNo = 0; // ResNo - The result number of the next output. 2949 2950 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2951 ConstraintOperands.emplace_back(std::move(CI)); 2952 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2953 2954 // Update multiple alternative constraint count. 2955 if (OpInfo.multipleAlternatives.size() > maCount) 2956 maCount = OpInfo.multipleAlternatives.size(); 2957 2958 OpInfo.ConstraintVT = MVT::Other; 2959 2960 // Compute the value type for each operand. 2961 switch (OpInfo.Type) { 2962 case InlineAsm::isOutput: 2963 // Indirect outputs just consume an argument. 2964 if (OpInfo.isIndirect) { 2965 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2966 break; 2967 } 2968 2969 // The return value of the call is this value. As such, there is no 2970 // corresponding argument. 2971 assert(!CS.getType()->isVoidTy() && 2972 "Bad inline asm!"); 2973 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2974 OpInfo.ConstraintVT = 2975 getSimpleValueType(DL, STy->getElementType(ResNo)); 2976 } else { 2977 assert(ResNo == 0 && "Asm only has one result!"); 2978 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2979 } 2980 ++ResNo; 2981 break; 2982 case InlineAsm::isInput: 2983 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2984 break; 2985 case InlineAsm::isClobber: 2986 // Nothing to do. 2987 break; 2988 } 2989 2990 if (OpInfo.CallOperandVal) { 2991 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2992 if (OpInfo.isIndirect) { 2993 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2994 if (!PtrTy) 2995 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2996 OpTy = PtrTy->getElementType(); 2997 } 2998 2999 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3000 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3001 if (STy->getNumElements() == 1) 3002 OpTy = STy->getElementType(0); 3003 3004 // If OpTy is not a single value, it may be a struct/union that we 3005 // can tile with integers. 3006 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3007 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3008 switch (BitSize) { 3009 default: break; 3010 case 1: 3011 case 8: 3012 case 16: 3013 case 32: 3014 case 64: 3015 case 128: 3016 OpInfo.ConstraintVT = 3017 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3018 break; 3019 } 3020 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3021 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3022 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3023 } else { 3024 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3025 } 3026 } 3027 } 3028 3029 // If we have multiple alternative constraints, select the best alternative. 3030 if (!ConstraintOperands.empty()) { 3031 if (maCount) { 3032 unsigned bestMAIndex = 0; 3033 int bestWeight = -1; 3034 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3035 int weight = -1; 3036 unsigned maIndex; 3037 // Compute the sums of the weights for each alternative, keeping track 3038 // of the best (highest weight) one so far. 3039 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3040 int weightSum = 0; 3041 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3042 cIndex != eIndex; ++cIndex) { 3043 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3044 if (OpInfo.Type == InlineAsm::isClobber) 3045 continue; 3046 3047 // If this is an output operand with a matching input operand, 3048 // look up the matching input. If their types mismatch, e.g. one 3049 // is an integer, the other is floating point, or their sizes are 3050 // different, flag it as an maCantMatch. 3051 if (OpInfo.hasMatchingInput()) { 3052 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3053 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3054 if ((OpInfo.ConstraintVT.isInteger() != 3055 Input.ConstraintVT.isInteger()) || 3056 (OpInfo.ConstraintVT.getSizeInBits() != 3057 Input.ConstraintVT.getSizeInBits())) { 3058 weightSum = -1; // Can't match. 3059 break; 3060 } 3061 } 3062 } 3063 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3064 if (weight == -1) { 3065 weightSum = -1; 3066 break; 3067 } 3068 weightSum += weight; 3069 } 3070 // Update best. 3071 if (weightSum > bestWeight) { 3072 bestWeight = weightSum; 3073 bestMAIndex = maIndex; 3074 } 3075 } 3076 3077 // Now select chosen alternative in each constraint. 3078 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3079 cIndex != eIndex; ++cIndex) { 3080 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3081 if (cInfo.Type == InlineAsm::isClobber) 3082 continue; 3083 cInfo.selectAlternative(bestMAIndex); 3084 } 3085 } 3086 } 3087 3088 // Check and hook up tied operands, choose constraint code to use. 3089 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3090 cIndex != eIndex; ++cIndex) { 3091 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3092 3093 // If this is an output operand with a matching input operand, look up the 3094 // matching input. If their types mismatch, e.g. one is an integer, the 3095 // other is floating point, or their sizes are different, flag it as an 3096 // error. 3097 if (OpInfo.hasMatchingInput()) { 3098 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3099 3100 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3101 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3102 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3103 OpInfo.ConstraintVT); 3104 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3105 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3106 Input.ConstraintVT); 3107 if ((OpInfo.ConstraintVT.isInteger() != 3108 Input.ConstraintVT.isInteger()) || 3109 (MatchRC.second != InputRC.second)) { 3110 report_fatal_error("Unsupported asm: input constraint" 3111 " with a matching output constraint of" 3112 " incompatible type!"); 3113 } 3114 } 3115 } 3116 } 3117 3118 return ConstraintOperands; 3119 } 3120 3121 /// Return an integer indicating how general CT is. 3122 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3123 switch (CT) { 3124 case TargetLowering::C_Other: 3125 case TargetLowering::C_Unknown: 3126 return 0; 3127 case TargetLowering::C_Register: 3128 return 1; 3129 case TargetLowering::C_RegisterClass: 3130 return 2; 3131 case TargetLowering::C_Memory: 3132 return 3; 3133 } 3134 llvm_unreachable("Invalid constraint type"); 3135 } 3136 3137 /// Examine constraint type and operand type and determine a weight value. 3138 /// This object must already have been set up with the operand type 3139 /// and the current alternative constraint selected. 3140 TargetLowering::ConstraintWeight 3141 TargetLowering::getMultipleConstraintMatchWeight( 3142 AsmOperandInfo &info, int maIndex) const { 3143 InlineAsm::ConstraintCodeVector *rCodes; 3144 if (maIndex >= (int)info.multipleAlternatives.size()) 3145 rCodes = &info.Codes; 3146 else 3147 rCodes = &info.multipleAlternatives[maIndex].Codes; 3148 ConstraintWeight BestWeight = CW_Invalid; 3149 3150 // Loop over the options, keeping track of the most general one. 3151 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3152 ConstraintWeight weight = 3153 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3154 if (weight > BestWeight) 3155 BestWeight = weight; 3156 } 3157 3158 return BestWeight; 3159 } 3160 3161 /// Examine constraint type and operand type and determine a weight value. 3162 /// This object must already have been set up with the operand type 3163 /// and the current alternative constraint selected. 3164 TargetLowering::ConstraintWeight 3165 TargetLowering::getSingleConstraintMatchWeight( 3166 AsmOperandInfo &info, const char *constraint) const { 3167 ConstraintWeight weight = CW_Invalid; 3168 Value *CallOperandVal = info.CallOperandVal; 3169 // If we don't have a value, we can't do a match, 3170 // but allow it at the lowest weight. 3171 if (!CallOperandVal) 3172 return CW_Default; 3173 // Look at the constraint type. 3174 switch (*constraint) { 3175 case 'i': // immediate integer. 3176 case 'n': // immediate integer with a known value. 3177 if (isa<ConstantInt>(CallOperandVal)) 3178 weight = CW_Constant; 3179 break; 3180 case 's': // non-explicit intregal immediate. 3181 if (isa<GlobalValue>(CallOperandVal)) 3182 weight = CW_Constant; 3183 break; 3184 case 'E': // immediate float if host format. 3185 case 'F': // immediate float. 3186 if (isa<ConstantFP>(CallOperandVal)) 3187 weight = CW_Constant; 3188 break; 3189 case '<': // memory operand with autodecrement. 3190 case '>': // memory operand with autoincrement. 3191 case 'm': // memory operand. 3192 case 'o': // offsettable memory operand 3193 case 'V': // non-offsettable memory operand 3194 weight = CW_Memory; 3195 break; 3196 case 'r': // general register. 3197 case 'g': // general register, memory operand or immediate integer. 3198 // note: Clang converts "g" to "imr". 3199 if (CallOperandVal->getType()->isIntegerTy()) 3200 weight = CW_Register; 3201 break; 3202 case 'X': // any operand. 3203 default: 3204 weight = CW_Default; 3205 break; 3206 } 3207 return weight; 3208 } 3209 3210 /// If there are multiple different constraints that we could pick for this 3211 /// operand (e.g. "imr") try to pick the 'best' one. 3212 /// This is somewhat tricky: constraints fall into four classes: 3213 /// Other -> immediates and magic values 3214 /// Register -> one specific register 3215 /// RegisterClass -> a group of regs 3216 /// Memory -> memory 3217 /// Ideally, we would pick the most specific constraint possible: if we have 3218 /// something that fits into a register, we would pick it. The problem here 3219 /// is that if we have something that could either be in a register or in 3220 /// memory that use of the register could cause selection of *other* 3221 /// operands to fail: they might only succeed if we pick memory. Because of 3222 /// this the heuristic we use is: 3223 /// 3224 /// 1) If there is an 'other' constraint, and if the operand is valid for 3225 /// that constraint, use it. This makes us take advantage of 'i' 3226 /// constraints when available. 3227 /// 2) Otherwise, pick the most general constraint present. This prefers 3228 /// 'm' over 'r', for example. 3229 /// 3230 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3231 const TargetLowering &TLI, 3232 SDValue Op, SelectionDAG *DAG) { 3233 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3234 unsigned BestIdx = 0; 3235 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3236 int BestGenerality = -1; 3237 3238 // Loop over the options, keeping track of the most general one. 3239 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3240 TargetLowering::ConstraintType CType = 3241 TLI.getConstraintType(OpInfo.Codes[i]); 3242 3243 // If this is an 'other' constraint, see if the operand is valid for it. 3244 // For example, on X86 we might have an 'rI' constraint. If the operand 3245 // is an integer in the range [0..31] we want to use I (saving a load 3246 // of a register), otherwise we must use 'r'. 3247 if (CType == TargetLowering::C_Other && Op.getNode()) { 3248 assert(OpInfo.Codes[i].size() == 1 && 3249 "Unhandled multi-letter 'other' constraint"); 3250 std::vector<SDValue> ResultOps; 3251 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3252 ResultOps, *DAG); 3253 if (!ResultOps.empty()) { 3254 BestType = CType; 3255 BestIdx = i; 3256 break; 3257 } 3258 } 3259 3260 // Things with matching constraints can only be registers, per gcc 3261 // documentation. This mainly affects "g" constraints. 3262 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3263 continue; 3264 3265 // This constraint letter is more general than the previous one, use it. 3266 int Generality = getConstraintGenerality(CType); 3267 if (Generality > BestGenerality) { 3268 BestType = CType; 3269 BestIdx = i; 3270 BestGenerality = Generality; 3271 } 3272 } 3273 3274 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3275 OpInfo.ConstraintType = BestType; 3276 } 3277 3278 /// Determines the constraint code and constraint type to use for the specific 3279 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3280 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3281 SDValue Op, 3282 SelectionDAG *DAG) const { 3283 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3284 3285 // Single-letter constraints ('r') are very common. 3286 if (OpInfo.Codes.size() == 1) { 3287 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3288 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3289 } else { 3290 ChooseConstraint(OpInfo, *this, Op, DAG); 3291 } 3292 3293 // 'X' matches anything. 3294 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3295 // Labels and constants are handled elsewhere ('X' is the only thing 3296 // that matches labels). For Functions, the type here is the type of 3297 // the result, which is not what we want to look at; leave them alone. 3298 Value *v = OpInfo.CallOperandVal; 3299 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3300 OpInfo.CallOperandVal = v; 3301 return; 3302 } 3303 3304 // Otherwise, try to resolve it to something we know about by looking at 3305 // the actual operand type. 3306 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3307 OpInfo.ConstraintCode = Repl; 3308 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3309 } 3310 } 3311 } 3312 3313 /// \brief Given an exact SDIV by a constant, create a multiplication 3314 /// with the multiplicative inverse of the constant. 3315 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 3316 const SDLoc &dl, SelectionDAG &DAG, 3317 std::vector<SDNode *> &Created) { 3318 assert(d != 0 && "Division by zero!"); 3319 3320 // Shift the value upfront if it is even, so the LSB is one. 3321 unsigned ShAmt = d.countTrailingZeros(); 3322 if (ShAmt) { 3323 // TODO: For UDIV use SRL instead of SRA. 3324 SDValue Amt = 3325 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 3326 DAG.getDataLayout())); 3327 SDNodeFlags Flags; 3328 Flags.setExact(true); 3329 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); 3330 Created.push_back(Op1.getNode()); 3331 d.ashrInPlace(ShAmt); 3332 } 3333 3334 // Calculate the multiplicative inverse, using Newton's method. 3335 APInt t, xn = d; 3336 while ((t = d*xn) != 1) 3337 xn *= APInt(d.getBitWidth(), 2) - t; 3338 3339 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 3340 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3341 Created.push_back(Mul.getNode()); 3342 return Mul; 3343 } 3344 3345 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3346 SelectionDAG &DAG, 3347 std::vector<SDNode *> *Created) const { 3348 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3350 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3351 return SDValue(N,0); // Lower SDIV as SDIV 3352 return SDValue(); 3353 } 3354 3355 /// \brief Given an ISD::SDIV node expressing a divide by constant, 3356 /// return a DAG expression to select that will generate the same value by 3357 /// multiplying by a magic number. 3358 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3359 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 3360 SelectionDAG &DAG, bool IsAfterLegalization, 3361 std::vector<SDNode *> *Created) const { 3362 assert(Created && "No vector to hold sdiv ops."); 3363 3364 EVT VT = N->getValueType(0); 3365 SDLoc dl(N); 3366 3367 // Check to see if we can do this. 3368 // FIXME: We should be more aggressive here. 3369 if (!isTypeLegal(VT)) 3370 return SDValue(); 3371 3372 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3373 if (N->getFlags().hasExact()) 3374 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3375 3376 APInt::ms magics = Divisor.magic(); 3377 3378 // Multiply the numerator (operand 0) by the magic value 3379 // FIXME: We should support doing a MUL in a wider type 3380 SDValue Q; 3381 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3382 isOperationLegalOrCustom(ISD::MULHS, VT)) 3383 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3384 DAG.getConstant(magics.m, dl, VT)); 3385 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3386 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3387 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3388 N->getOperand(0), 3389 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3390 else 3391 return SDValue(); // No mulhs or equvialent 3392 // If d > 0 and m < 0, add the numerator 3393 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3394 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3395 Created->push_back(Q.getNode()); 3396 } 3397 // If d < 0 and m > 0, subtract the numerator. 3398 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3399 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3400 Created->push_back(Q.getNode()); 3401 } 3402 auto &DL = DAG.getDataLayout(); 3403 // Shift right algebraic if shift value is nonzero 3404 if (magics.s > 0) { 3405 Q = DAG.getNode( 3406 ISD::SRA, dl, VT, Q, 3407 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3408 Created->push_back(Q.getNode()); 3409 } 3410 // Extract the sign bit and add it to the quotient 3411 SDValue T = 3412 DAG.getNode(ISD::SRL, dl, VT, Q, 3413 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3414 getShiftAmountTy(Q.getValueType(), DL))); 3415 Created->push_back(T.getNode()); 3416 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3417 } 3418 3419 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3420 /// return a DAG expression to select that will generate the same value by 3421 /// multiplying by a magic number. 3422 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3423 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3424 SelectionDAG &DAG, bool IsAfterLegalization, 3425 std::vector<SDNode *> *Created) const { 3426 assert(Created && "No vector to hold udiv ops."); 3427 3428 EVT VT = N->getValueType(0); 3429 SDLoc dl(N); 3430 auto &DL = DAG.getDataLayout(); 3431 3432 // Check to see if we can do this. 3433 // FIXME: We should be more aggressive here. 3434 if (!isTypeLegal(VT)) 3435 return SDValue(); 3436 3437 // FIXME: We should use a narrower constant when the upper 3438 // bits are known to be zero. 3439 APInt::mu magics = Divisor.magicu(); 3440 3441 SDValue Q = N->getOperand(0); 3442 3443 // If the divisor is even, we can avoid using the expensive fixup by shifting 3444 // the divided value upfront. 3445 if (magics.a != 0 && !Divisor[0]) { 3446 unsigned Shift = Divisor.countTrailingZeros(); 3447 Q = DAG.getNode( 3448 ISD::SRL, dl, VT, Q, 3449 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3450 Created->push_back(Q.getNode()); 3451 3452 // Get magic number for the shifted divisor. 3453 magics = Divisor.lshr(Shift).magicu(Shift); 3454 assert(magics.a == 0 && "Should use cheap fixup now"); 3455 } 3456 3457 // Multiply the numerator (operand 0) by the magic value 3458 // FIXME: We should support doing a MUL in a wider type 3459 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3460 isOperationLegalOrCustom(ISD::MULHU, VT)) 3461 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3462 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3463 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3464 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3465 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3466 else 3467 return SDValue(); // No mulhu or equivalent 3468 3469 Created->push_back(Q.getNode()); 3470 3471 if (magics.a == 0) { 3472 assert(magics.s < Divisor.getBitWidth() && 3473 "We shouldn't generate an undefined shift!"); 3474 return DAG.getNode( 3475 ISD::SRL, dl, VT, Q, 3476 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3477 } else { 3478 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3479 Created->push_back(NPQ.getNode()); 3480 NPQ = DAG.getNode( 3481 ISD::SRL, dl, VT, NPQ, 3482 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3483 Created->push_back(NPQ.getNode()); 3484 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3485 Created->push_back(NPQ.getNode()); 3486 return DAG.getNode( 3487 ISD::SRL, dl, VT, NPQ, 3488 DAG.getConstant(magics.s - 1, dl, 3489 getShiftAmountTy(NPQ.getValueType(), DL))); 3490 } 3491 } 3492 3493 bool TargetLowering:: 3494 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3495 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3496 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3497 "be a constant integer"); 3498 return true; 3499 } 3500 3501 return false; 3502 } 3503 3504 //===----------------------------------------------------------------------===// 3505 // Legalization Utilities 3506 //===----------------------------------------------------------------------===// 3507 3508 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3509 SDValue LHS, SDValue RHS, 3510 SmallVectorImpl<SDValue> &Result, 3511 EVT HiLoVT, SelectionDAG &DAG, 3512 MulExpansionKind Kind, SDValue LL, 3513 SDValue LH, SDValue RL, SDValue RH) const { 3514 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3515 Opcode == ISD::SMUL_LOHI); 3516 3517 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3518 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3519 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3520 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3521 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3522 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3523 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3524 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3525 3526 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3527 return false; 3528 3529 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3530 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3531 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3532 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3533 3534 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3535 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3536 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3537 3538 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3539 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3540 bool Signed) -> bool { 3541 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3542 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3543 Hi = SDValue(Lo.getNode(), 1); 3544 return true; 3545 } 3546 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3547 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3548 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3549 return true; 3550 } 3551 return false; 3552 }; 3553 3554 SDValue Lo, Hi; 3555 3556 if (!LL.getNode() && !RL.getNode() && 3557 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3558 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3559 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3560 } 3561 3562 if (!LL.getNode()) 3563 return false; 3564 3565 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3566 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3567 DAG.MaskedValueIsZero(RHS, HighMask)) { 3568 // The inputs are both zero-extended. 3569 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3570 Result.push_back(Lo); 3571 Result.push_back(Hi); 3572 if (Opcode != ISD::MUL) { 3573 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3574 Result.push_back(Zero); 3575 Result.push_back(Zero); 3576 } 3577 return true; 3578 } 3579 } 3580 3581 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3582 RHSSB > InnerBitSize) { 3583 // The input values are both sign-extended. 3584 // TODO non-MUL case? 3585 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3586 Result.push_back(Lo); 3587 Result.push_back(Hi); 3588 return true; 3589 } 3590 } 3591 3592 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3593 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3594 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3595 // FIXME getShiftAmountTy does not always return a sensible result when VT 3596 // is an illegal type, and so the type may be too small to fit the shift 3597 // amount. Override it with i32. The shift will have to be legalized. 3598 ShiftAmountTy = MVT::i32; 3599 } 3600 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3601 3602 if (!LH.getNode() && !RH.getNode() && 3603 isOperationLegalOrCustom(ISD::SRL, VT) && 3604 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3605 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3606 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3607 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3608 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3609 } 3610 3611 if (!LH.getNode()) 3612 return false; 3613 3614 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3615 return false; 3616 3617 Result.push_back(Lo); 3618 3619 if (Opcode == ISD::MUL) { 3620 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3621 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3622 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3623 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3624 Result.push_back(Hi); 3625 return true; 3626 } 3627 3628 // Compute the full width result. 3629 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3630 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3631 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3632 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3633 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3634 }; 3635 3636 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3637 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3638 return false; 3639 3640 // This is effectively the add part of a multiply-add of half-sized operands, 3641 // so it cannot overflow. 3642 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3643 3644 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3645 return false; 3646 3647 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3648 Merge(Lo, Hi)); 3649 3650 SDValue Carry = Next.getValue(1); 3651 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3652 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3653 3654 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3655 return false; 3656 3657 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3658 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3659 Carry); 3660 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3661 3662 if (Opcode == ISD::SMUL_LOHI) { 3663 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3664 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3665 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3666 3667 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3668 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3669 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3670 } 3671 3672 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3673 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3674 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3675 return true; 3676 } 3677 3678 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3679 SelectionDAG &DAG, MulExpansionKind Kind, 3680 SDValue LL, SDValue LH, SDValue RL, 3681 SDValue RH) const { 3682 SmallVector<SDValue, 2> Result; 3683 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3684 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3685 DAG, Kind, LL, LH, RL, RH); 3686 if (Ok) { 3687 assert(Result.size() == 2); 3688 Lo = Result[0]; 3689 Hi = Result[1]; 3690 } 3691 return Ok; 3692 } 3693 3694 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3695 SelectionDAG &DAG) const { 3696 EVT VT = Node->getOperand(0).getValueType(); 3697 EVT NVT = Node->getValueType(0); 3698 SDLoc dl(SDValue(Node, 0)); 3699 3700 // FIXME: Only f32 to i64 conversions are supported. 3701 if (VT != MVT::f32 || NVT != MVT::i64) 3702 return false; 3703 3704 // Expand f32 -> i64 conversion 3705 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3706 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3707 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3708 VT.getSizeInBits()); 3709 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3710 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3711 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3712 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3713 IntVT); 3714 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3715 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3716 3717 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3718 3719 auto &DL = DAG.getDataLayout(); 3720 SDValue ExponentBits = DAG.getNode( 3721 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3722 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3723 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3724 3725 SDValue Sign = DAG.getNode( 3726 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3727 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3728 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3729 3730 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3731 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3732 DAG.getConstant(0x00800000, dl, IntVT)); 3733 3734 R = DAG.getZExtOrTrunc(R, dl, NVT); 3735 3736 R = DAG.getSelectCC( 3737 dl, Exponent, ExponentLoBit, 3738 DAG.getNode(ISD::SHL, dl, NVT, R, 3739 DAG.getZExtOrTrunc( 3740 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3741 dl, getShiftAmountTy(IntVT, DL))), 3742 DAG.getNode(ISD::SRL, dl, NVT, R, 3743 DAG.getZExtOrTrunc( 3744 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3745 dl, getShiftAmountTy(IntVT, DL))), 3746 ISD::SETGT); 3747 3748 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3749 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3750 Sign); 3751 3752 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3753 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3754 return true; 3755 } 3756 3757 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3758 SelectionDAG &DAG) const { 3759 SDLoc SL(LD); 3760 SDValue Chain = LD->getChain(); 3761 SDValue BasePTR = LD->getBasePtr(); 3762 EVT SrcVT = LD->getMemoryVT(); 3763 ISD::LoadExtType ExtType = LD->getExtensionType(); 3764 3765 unsigned NumElem = SrcVT.getVectorNumElements(); 3766 3767 EVT SrcEltVT = SrcVT.getScalarType(); 3768 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3769 3770 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3771 assert(SrcEltVT.isByteSized()); 3772 3773 EVT PtrVT = BasePTR.getValueType(); 3774 3775 SmallVector<SDValue, 8> Vals; 3776 SmallVector<SDValue, 8> LoadChains; 3777 3778 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3779 SDValue ScalarLoad = 3780 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3781 LD->getPointerInfo().getWithOffset(Idx * Stride), 3782 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3783 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3784 3785 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3786 DAG.getConstant(Stride, SL, PtrVT)); 3787 3788 Vals.push_back(ScalarLoad.getValue(0)); 3789 LoadChains.push_back(ScalarLoad.getValue(1)); 3790 } 3791 3792 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3793 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3794 3795 return DAG.getMergeValues({ Value, NewChain }, SL); 3796 } 3797 3798 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3799 SelectionDAG &DAG) const { 3800 SDLoc SL(ST); 3801 3802 SDValue Chain = ST->getChain(); 3803 SDValue BasePtr = ST->getBasePtr(); 3804 SDValue Value = ST->getValue(); 3805 EVT StVT = ST->getMemoryVT(); 3806 3807 // The type of the data we want to save 3808 EVT RegVT = Value.getValueType(); 3809 EVT RegSclVT = RegVT.getScalarType(); 3810 3811 // The type of data as saved in memory. 3812 EVT MemSclVT = StVT.getScalarType(); 3813 3814 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3815 unsigned NumElem = StVT.getVectorNumElements(); 3816 3817 // A vector must always be stored in memory as-is, i.e. without any padding 3818 // between the elements, since various code depend on it, e.g. in the 3819 // handling of a bitcast of a vector type to int, which may be done with a 3820 // vector store followed by an integer load. A vector that does not have 3821 // elements that are byte-sized must therefore be stored as an integer 3822 // built out of the extracted vector elements. 3823 if (!MemSclVT.isByteSized()) { 3824 unsigned NumBits = StVT.getSizeInBits(); 3825 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 3826 3827 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 3828 3829 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3830 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3831 DAG.getConstant(Idx, SL, IdxVT)); 3832 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 3833 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 3834 unsigned ShiftIntoIdx = 3835 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 3836 SDValue ShiftAmount = 3837 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 3838 SDValue ShiftedElt = 3839 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 3840 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 3841 } 3842 3843 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 3844 ST->getAlignment(), ST->getMemOperand()->getFlags(), 3845 ST->getAAInfo()); 3846 } 3847 3848 // Store Stride in bytes 3849 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3850 assert (Stride && "Zero stride!"); 3851 // Extract each of the elements from the original vector and save them into 3852 // memory individually. 3853 SmallVector<SDValue, 8> Stores; 3854 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3855 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3856 DAG.getConstant(Idx, SL, IdxVT)); 3857 3858 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 3859 3860 // This scalar TruncStore may be illegal, but we legalize it later. 3861 SDValue Store = DAG.getTruncStore( 3862 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3863 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3864 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3865 3866 Stores.push_back(Store); 3867 } 3868 3869 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3870 } 3871 3872 std::pair<SDValue, SDValue> 3873 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3874 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3875 "unaligned indexed loads not implemented!"); 3876 SDValue Chain = LD->getChain(); 3877 SDValue Ptr = LD->getBasePtr(); 3878 EVT VT = LD->getValueType(0); 3879 EVT LoadedVT = LD->getMemoryVT(); 3880 SDLoc dl(LD); 3881 auto &MF = DAG.getMachineFunction(); 3882 3883 if (VT.isFloatingPoint() || VT.isVector()) { 3884 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3885 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3886 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3887 // Scalarize the load and let the individual components be handled. 3888 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3889 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3890 } 3891 3892 // Expand to a (misaligned) integer load of the same size, 3893 // then bitconvert to floating point or vector. 3894 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3895 LD->getMemOperand()); 3896 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3897 if (LoadedVT != VT) 3898 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3899 ISD::ANY_EXTEND, dl, VT, Result); 3900 3901 return std::make_pair(Result, newLoad.getValue(1)); 3902 } 3903 3904 // Copy the value to a (aligned) stack slot using (unaligned) integer 3905 // loads and stores, then do a (aligned) load from the stack slot. 3906 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3907 unsigned LoadedBytes = LoadedVT.getStoreSize(); 3908 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3909 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3910 3911 // Make sure the stack slot is also aligned for the register type. 3912 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3913 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 3914 SmallVector<SDValue, 8> Stores; 3915 SDValue StackPtr = StackBase; 3916 unsigned Offset = 0; 3917 3918 EVT PtrVT = Ptr.getValueType(); 3919 EVT StackPtrVT = StackPtr.getValueType(); 3920 3921 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3922 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3923 3924 // Do all but one copies using the full register width. 3925 for (unsigned i = 1; i < NumRegs; i++) { 3926 // Load one integer register's worth from the original location. 3927 SDValue Load = DAG.getLoad( 3928 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3929 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3930 LD->getAAInfo()); 3931 // Follow the load with a store to the stack slot. Remember the store. 3932 Stores.push_back(DAG.getStore( 3933 Load.getValue(1), dl, Load, StackPtr, 3934 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 3935 // Increment the pointers. 3936 Offset += RegBytes; 3937 3938 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 3939 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 3940 } 3941 3942 // The last copy may be partial. Do an extending load. 3943 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3944 8 * (LoadedBytes - Offset)); 3945 SDValue Load = 3946 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3947 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3948 MinAlign(LD->getAlignment(), Offset), 3949 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3950 // Follow the load with a store to the stack slot. Remember the store. 3951 // On big-endian machines this requires a truncating store to ensure 3952 // that the bits end up in the right place. 3953 Stores.push_back(DAG.getTruncStore( 3954 Load.getValue(1), dl, Load, StackPtr, 3955 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 3956 3957 // The order of the stores doesn't matter - say it with a TokenFactor. 3958 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3959 3960 // Finally, perform the original load only redirected to the stack slot. 3961 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3962 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 3963 LoadedVT); 3964 3965 // Callers expect a MERGE_VALUES node. 3966 return std::make_pair(Load, TF); 3967 } 3968 3969 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3970 "Unaligned load of unsupported type."); 3971 3972 // Compute the new VT that is half the size of the old one. This is an 3973 // integer MVT. 3974 unsigned NumBits = LoadedVT.getSizeInBits(); 3975 EVT NewLoadedVT; 3976 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3977 NumBits >>= 1; 3978 3979 unsigned Alignment = LD->getAlignment(); 3980 unsigned IncrementSize = NumBits / 8; 3981 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3982 3983 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3984 if (HiExtType == ISD::NON_EXTLOAD) 3985 HiExtType = ISD::ZEXTLOAD; 3986 3987 // Load the value in two parts 3988 SDValue Lo, Hi; 3989 if (DAG.getDataLayout().isLittleEndian()) { 3990 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3991 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3992 LD->getAAInfo()); 3993 3994 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 3995 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3996 LD->getPointerInfo().getWithOffset(IncrementSize), 3997 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3998 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3999 } else { 4000 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4001 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4002 LD->getAAInfo()); 4003 4004 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4005 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4006 LD->getPointerInfo().getWithOffset(IncrementSize), 4007 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4008 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4009 } 4010 4011 // aggregate the two parts 4012 SDValue ShiftAmount = 4013 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4014 DAG.getDataLayout())); 4015 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4016 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4017 4018 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 4019 Hi.getValue(1)); 4020 4021 return std::make_pair(Result, TF); 4022 } 4023 4024 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 4025 SelectionDAG &DAG) const { 4026 assert(ST->getAddressingMode() == ISD::UNINDEXED && 4027 "unaligned indexed stores not implemented!"); 4028 SDValue Chain = ST->getChain(); 4029 SDValue Ptr = ST->getBasePtr(); 4030 SDValue Val = ST->getValue(); 4031 EVT VT = Val.getValueType(); 4032 int Alignment = ST->getAlignment(); 4033 auto &MF = DAG.getMachineFunction(); 4034 4035 SDLoc dl(ST); 4036 if (ST->getMemoryVT().isFloatingPoint() || 4037 ST->getMemoryVT().isVector()) { 4038 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 4039 if (isTypeLegal(intVT)) { 4040 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 4041 // Scalarize the store and let the individual components be handled. 4042 SDValue Result = scalarizeVectorStore(ST, DAG); 4043 4044 return Result; 4045 } 4046 // Expand to a bitconvert of the value to the integer type of the 4047 // same size, then a (misaligned) int store. 4048 // FIXME: Does not handle truncating floating point stores! 4049 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 4050 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 4051 Alignment, ST->getMemOperand()->getFlags()); 4052 return Result; 4053 } 4054 // Do a (aligned) store to a stack slot, then copy from the stack slot 4055 // to the final destination using (unaligned) integer loads and stores. 4056 EVT StoredVT = ST->getMemoryVT(); 4057 MVT RegVT = 4058 getRegisterType(*DAG.getContext(), 4059 EVT::getIntegerVT(*DAG.getContext(), 4060 StoredVT.getSizeInBits())); 4061 EVT PtrVT = Ptr.getValueType(); 4062 unsigned StoredBytes = StoredVT.getStoreSize(); 4063 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4064 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 4065 4066 // Make sure the stack slot is also aligned for the register type. 4067 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4068 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4069 4070 // Perform the original store, only redirected to the stack slot. 4071 SDValue Store = DAG.getTruncStore( 4072 Chain, dl, Val, StackPtr, 4073 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4074 4075 EVT StackPtrVT = StackPtr.getValueType(); 4076 4077 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4078 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4079 SmallVector<SDValue, 8> Stores; 4080 unsigned Offset = 0; 4081 4082 // Do all but one copies using the full register width. 4083 for (unsigned i = 1; i < NumRegs; i++) { 4084 // Load one integer register's worth from the stack slot. 4085 SDValue Load = DAG.getLoad( 4086 RegVT, dl, Store, StackPtr, 4087 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4088 // Store it to the final location. Remember the store. 4089 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4090 ST->getPointerInfo().getWithOffset(Offset), 4091 MinAlign(ST->getAlignment(), Offset), 4092 ST->getMemOperand()->getFlags())); 4093 // Increment the pointers. 4094 Offset += RegBytes; 4095 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4096 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4097 } 4098 4099 // The last store may be partial. Do a truncating store. On big-endian 4100 // machines this requires an extending load from the stack slot to ensure 4101 // that the bits are in the right place. 4102 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4103 8 * (StoredBytes - Offset)); 4104 4105 // Load from the stack slot. 4106 SDValue Load = DAG.getExtLoad( 4107 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4108 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4109 4110 Stores.push_back( 4111 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4112 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4113 MinAlign(ST->getAlignment(), Offset), 4114 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4115 // The order of the stores doesn't matter - say it with a TokenFactor. 4116 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4117 return Result; 4118 } 4119 4120 assert(ST->getMemoryVT().isInteger() && 4121 !ST->getMemoryVT().isVector() && 4122 "Unaligned store of unknown type."); 4123 // Get the half-size VT 4124 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4125 int NumBits = NewStoredVT.getSizeInBits(); 4126 int IncrementSize = NumBits / 8; 4127 4128 // Divide the stored value in two parts. 4129 SDValue ShiftAmount = 4130 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4131 DAG.getDataLayout())); 4132 SDValue Lo = Val; 4133 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4134 4135 // Store the two parts 4136 SDValue Store1, Store2; 4137 Store1 = DAG.getTruncStore(Chain, dl, 4138 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4139 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4140 ST->getMemOperand()->getFlags()); 4141 4142 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4143 Alignment = MinAlign(Alignment, IncrementSize); 4144 Store2 = DAG.getTruncStore( 4145 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4146 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4147 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4148 4149 SDValue Result = 4150 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4151 return Result; 4152 } 4153 4154 SDValue 4155 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4156 const SDLoc &DL, EVT DataVT, 4157 SelectionDAG &DAG, 4158 bool IsCompressedMemory) const { 4159 SDValue Increment; 4160 EVT AddrVT = Addr.getValueType(); 4161 EVT MaskVT = Mask.getValueType(); 4162 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4163 "Incompatible types of Data and Mask"); 4164 if (IsCompressedMemory) { 4165 // Incrementing the pointer according to number of '1's in the mask. 4166 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4167 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4168 if (MaskIntVT.getSizeInBits() < 32) { 4169 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4170 MaskIntVT = MVT::i32; 4171 } 4172 4173 // Count '1's with POPCNT. 4174 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4175 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4176 // Scale is an element size in bytes. 4177 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4178 AddrVT); 4179 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 4180 } else 4181 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 4182 4183 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 4184 } 4185 4186 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 4187 SDValue Idx, 4188 EVT VecVT, 4189 const SDLoc &dl) { 4190 if (isa<ConstantSDNode>(Idx)) 4191 return Idx; 4192 4193 EVT IdxVT = Idx.getValueType(); 4194 unsigned NElts = VecVT.getVectorNumElements(); 4195 if (isPowerOf2_32(NElts)) { 4196 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 4197 Log2_32(NElts)); 4198 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 4199 DAG.getConstant(Imm, dl, IdxVT)); 4200 } 4201 4202 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 4203 DAG.getConstant(NElts - 1, dl, IdxVT)); 4204 } 4205 4206 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 4207 SDValue VecPtr, EVT VecVT, 4208 SDValue Index) const { 4209 SDLoc dl(Index); 4210 // Make sure the index type is big enough to compute in. 4211 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 4212 4213 EVT EltVT = VecVT.getVectorElementType(); 4214 4215 // Calculate the element offset and add it to the pointer. 4216 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 4217 assert(EltSize * 8 == EltVT.getSizeInBits() && 4218 "Converting bits to bytes lost precision"); 4219 4220 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 4221 4222 EVT IdxVT = Index.getValueType(); 4223 4224 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 4225 DAG.getConstant(EltSize, dl, IdxVT)); 4226 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 4227 } 4228 4229 //===----------------------------------------------------------------------===// 4230 // Implementation of Emulated TLS Model 4231 //===----------------------------------------------------------------------===// 4232 4233 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 4234 SelectionDAG &DAG) const { 4235 // Access to address of TLS varialbe xyz is lowered to a function call: 4236 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 4237 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4238 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 4239 SDLoc dl(GA); 4240 4241 ArgListTy Args; 4242 ArgListEntry Entry; 4243 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 4244 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 4245 StringRef EmuTlsVarName(NameString); 4246 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 4247 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 4248 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 4249 Entry.Ty = VoidPtrType; 4250 Args.push_back(Entry); 4251 4252 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 4253 4254 TargetLowering::CallLoweringInfo CLI(DAG); 4255 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 4256 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 4257 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4258 4259 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 4260 // At last for X86 targets, maybe good for other targets too? 4261 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4262 MFI.setAdjustsStack(true); // Is this only for X86 target? 4263 MFI.setHasCalls(true); 4264 4265 assert((GA->getOffset() == 0) && 4266 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 4267 return CallResult.first; 4268 } 4269 4270 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 4271 SelectionDAG &DAG) const { 4272 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 4273 if (!isCtlzFast()) 4274 return SDValue(); 4275 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 4276 SDLoc dl(Op); 4277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4278 if (C->isNullValue() && CC == ISD::SETEQ) { 4279 EVT VT = Op.getOperand(0).getValueType(); 4280 SDValue Zext = Op.getOperand(0); 4281 if (VT.bitsLT(MVT::i32)) { 4282 VT = MVT::i32; 4283 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 4284 } 4285 unsigned Log2b = Log2_32(VT.getSizeInBits()); 4286 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 4287 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 4288 DAG.getConstant(Log2b, dl, MVT::i32)); 4289 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 4290 } 4291 } 4292 return SDValue(); 4293 } 4294