1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool 180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 181 unsigned Limit, uint64_t Size, 182 unsigned DstAlign, unsigned SrcAlign, 183 bool IsMemset, 184 bool ZeroMemset, 185 bool MemcpyStrSrc, 186 bool AllowOverlap, 187 unsigned DstAS, unsigned SrcAS, 188 const AttributeList &FuncAttributes) const { 189 // If 'SrcAlign' is zero, that means the memory operation does not need to 190 // load the value, i.e. memset or memcpy from constant string. Otherwise, 191 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 192 // is the specified alignment of the memory operation. If it is zero, that 193 // means it's possible to change the alignment of the destination. 194 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 195 // not need to be loaded. 196 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 200 IsMemset, ZeroMemset, MemcpyStrSrc, 201 FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 209 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 210 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 211 assert(VT.isInteger()); 212 213 // Find the largest legal integer type. 214 MVT LVT = MVT::i64; 215 while (!isTypeLegal(LVT)) 216 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 217 assert(LVT.isInteger()); 218 219 // If the type we've chosen is larger than the largest legal integer type 220 // then use that instead. 221 if (VT.bitsGT(LVT)) 222 VT = LVT; 223 } 224 225 unsigned NumMemOps = 0; 226 while (Size != 0) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && AllowOverlap && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETUO: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 break; 352 case ISD::SETO: 353 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 354 (VT == MVT::f64) ? RTLIB::O_F64 : 355 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 356 break; 357 case ISD::SETONE: 358 // SETONE = SETOLT | SETOGT 359 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 360 (VT == MVT::f64) ? RTLIB::OLT_F64 : 361 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 362 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 363 (VT == MVT::f64) ? RTLIB::OGT_F64 : 364 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 365 break; 366 case ISD::SETUEQ: 367 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 368 (VT == MVT::f64) ? RTLIB::UO_F64 : 369 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 370 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 371 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 372 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 373 break; 374 default: 375 // Invert CC for unordered comparisons 376 ShouldInvertCC = true; 377 switch (CCCode) { 378 case ISD::SETULT: 379 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 380 (VT == MVT::f64) ? RTLIB::OGE_F64 : 381 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 382 break; 383 case ISD::SETULE: 384 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 385 (VT == MVT::f64) ? RTLIB::OGT_F64 : 386 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 387 break; 388 case ISD::SETUGT: 389 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 390 (VT == MVT::f64) ? RTLIB::OLE_F64 : 391 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 392 break; 393 case ISD::SETUGE: 394 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 395 (VT == MVT::f64) ? RTLIB::OLT_F64 : 396 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 397 break; 398 default: llvm_unreachable("Do not know how to soften this setcc!"); 399 } 400 } 401 402 // Use the target specific return value for comparions lib calls. 403 EVT RetVT = getCmpLibcallReturnType(); 404 SDValue Ops[2] = {NewLHS, NewRHS}; 405 TargetLowering::MakeLibCallOptions CallOptions; 406 EVT OpsVT[2] = { OldLHS.getValueType(), 407 OldRHS.getValueType() }; 408 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 409 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 410 NewLHS = Call.first; 411 NewRHS = DAG.getConstant(0, dl, RetVT); 412 413 CCCode = getCmpLibcallCC(LC1); 414 if (ShouldInvertCC) { 415 assert(RetVT.isInteger()); 416 CCCode = getSetCCInverse(CCCode, RetVT); 417 } 418 419 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 420 // Update Chain. 421 Chain = Call.second; 422 } else { 423 SDValue Tmp = DAG.getNode( 424 ISD::SETCC, dl, 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 426 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 NewLHS = DAG.getNode( 429 ISD::SETCC, dl, 430 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 431 Call2.first, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 436 NewRHS = SDValue(); 437 } 438 } 439 440 /// Return the entry encoding for a jump table in the current function. The 441 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 442 unsigned TargetLowering::getJumpTableEncoding() const { 443 // In non-pic modes, just use the address of a block. 444 if (!isPositionIndependent()) 445 return MachineJumpTableInfo::EK_BlockAddress; 446 447 // In PIC mode, if the target supports a GPRel32 directive, use it. 448 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 449 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 450 451 // Otherwise, use a label difference. 452 return MachineJumpTableInfo::EK_LabelDifference32; 453 } 454 455 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 456 SelectionDAG &DAG) const { 457 // If our PIC model is GP relative, use the global offset table as the base. 458 unsigned JTEncoding = getJumpTableEncoding(); 459 460 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 461 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 462 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 463 464 return Table; 465 } 466 467 /// This returns the relocation base for the given PIC jumptable, the same as 468 /// getPICJumpTableRelocBase, but as an MCExpr. 469 const MCExpr * 470 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 471 unsigned JTI,MCContext &Ctx) const{ 472 // The normal PIC reloc base is the label at the start of the jump table. 473 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 474 } 475 476 bool 477 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 478 const TargetMachine &TM = getTargetMachine(); 479 const GlobalValue *GV = GA->getGlobal(); 480 481 // If the address is not even local to this DSO we will have to load it from 482 // a got and then add the offset. 483 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 484 return false; 485 486 // If the code is position independent we will have to add a base register. 487 if (isPositionIndependent()) 488 return false; 489 490 // Otherwise we can do it. 491 return true; 492 } 493 494 //===----------------------------------------------------------------------===// 495 // Optimization Methods 496 //===----------------------------------------------------------------------===// 497 498 /// If the specified instruction has a constant integer operand and there are 499 /// bits set in that constant that are not demanded, then clear those bits and 500 /// return true. 501 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(Demanded)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 541 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 542 /// generalized for targets with other types of implicit widening casts. 543 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 544 const APInt &Demanded, 545 TargetLoweringOpt &TLO) const { 546 assert(Op.getNumOperands() == 2 && 547 "ShrinkDemandedOp only supports binary operators!"); 548 assert(Op.getNode()->getNumValues() == 1 && 549 "ShrinkDemandedOp only supports nodes with one result!"); 550 551 SelectionDAG &DAG = TLO.DAG; 552 SDLoc dl(Op); 553 554 // Early return, as this function cannot handle vector types. 555 if (Op.getValueType().isVector()) 556 return false; 557 558 // Don't do this if the node has another user, which may require the 559 // full value. 560 if (!Op.getNode()->hasOneUse()) 561 return false; 562 563 // Search for the smallest integer type with free casts to and from 564 // Op's type. For expedience, just check power-of-2 integer types. 565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 566 unsigned DemandedSize = Demanded.getActiveBits(); 567 unsigned SmallVTBits = DemandedSize; 568 if (!isPowerOf2_32(SmallVTBits)) 569 SmallVTBits = NextPowerOf2(SmallVTBits); 570 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 571 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 572 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 573 TLI.isZExtFree(SmallVT, Op.getValueType())) { 574 // We found a type with free casts. 575 SDValue X = DAG.getNode( 576 Op.getOpcode(), dl, SmallVT, 577 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 578 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 579 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 580 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 581 return TLO.CombineTo(Op, Z); 582 } 583 } 584 return false; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 DAGCombinerInfo &DCI) const { 589 SelectionDAG &DAG = DCI.DAG; 590 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 591 !DCI.isBeforeLegalizeOps()); 592 KnownBits Known; 593 594 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 595 if (Simplified) { 596 DCI.AddToWorklist(Op.getNode()); 597 DCI.CommitTargetLoweringOpt(TLO); 598 } 599 return Simplified; 600 } 601 602 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 603 KnownBits &Known, 604 TargetLoweringOpt &TLO, 605 unsigned Depth, 606 bool AssumeSingleUse) const { 607 EVT VT = Op.getValueType(); 608 APInt DemandedElts = VT.isVector() 609 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 610 : APInt(1, 1); 611 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 612 AssumeSingleUse); 613 } 614 615 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 616 // TODO: Under what circumstances can we create nodes? Constant folding? 617 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 618 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 619 SelectionDAG &DAG, unsigned Depth) const { 620 // Limit search depth. 621 if (Depth >= SelectionDAG::MaxRecursionDepth) 622 return SDValue(); 623 624 // Ignore UNDEFs. 625 if (Op.isUndef()) 626 return SDValue(); 627 628 // Not demanding any bits/elts from Op. 629 if (DemandedBits == 0 || DemandedElts == 0) 630 return DAG.getUNDEF(Op.getValueType()); 631 632 unsigned NumElts = DemandedElts.getBitWidth(); 633 KnownBits LHSKnown, RHSKnown; 634 switch (Op.getOpcode()) { 635 case ISD::BITCAST: { 636 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 637 EVT SrcVT = Src.getValueType(); 638 EVT DstVT = Op.getValueType(); 639 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 640 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 641 642 if (NumSrcEltBits == NumDstEltBits) 643 if (SDValue V = SimplifyMultipleUseDemandedBits( 644 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 645 return DAG.getBitcast(DstVT, V); 646 647 // TODO - bigendian once we have test coverage. 648 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 649 DAG.getDataLayout().isLittleEndian()) { 650 unsigned Scale = NumDstEltBits / NumSrcEltBits; 651 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 652 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 653 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 654 for (unsigned i = 0; i != Scale; ++i) { 655 unsigned Offset = i * NumSrcEltBits; 656 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 657 if (!Sub.isNullValue()) { 658 DemandedSrcBits |= Sub; 659 for (unsigned j = 0; j != NumElts; ++j) 660 if (DemandedElts[j]) 661 DemandedSrcElts.setBit((j * Scale) + i); 662 } 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 // TODO - bigendian once we have test coverage. 671 if ((NumSrcEltBits % NumDstEltBits) == 0 && 672 DAG.getDataLayout().isLittleEndian()) { 673 unsigned Scale = NumSrcEltBits / NumDstEltBits; 674 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 675 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 676 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 677 for (unsigned i = 0; i != NumElts; ++i) 678 if (DemandedElts[i]) { 679 unsigned Offset = (i % Scale) * NumDstEltBits; 680 DemandedSrcBits.insertBits(DemandedBits, Offset); 681 DemandedSrcElts.setBit(i / Scale); 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 break; 690 } 691 case ISD::AND: { 692 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 693 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 694 695 // If all of the demanded bits are known 1 on one side, return the other. 696 // These bits cannot contribute to the result of the 'and' in this 697 // context. 698 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 699 return Op.getOperand(0); 700 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 701 return Op.getOperand(1); 702 break; 703 } 704 case ISD::OR: { 705 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 706 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 707 708 // If all of the demanded bits are known zero on one side, return the 709 // other. These bits cannot contribute to the result of the 'or' in this 710 // context. 711 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 712 return Op.getOperand(0); 713 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 714 return Op.getOperand(1); 715 break; 716 } 717 case ISD::XOR: { 718 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 719 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 720 721 // If all of the demanded bits are known zero on one side, return the 722 // other. 723 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 724 return Op.getOperand(0); 725 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 726 return Op.getOperand(1); 727 break; 728 } 729 case ISD::SETCC: { 730 SDValue Op0 = Op.getOperand(0); 731 SDValue Op1 = Op.getOperand(1); 732 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 733 // If (1) we only need the sign-bit, (2) the setcc operands are the same 734 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 735 // -1, we may be able to bypass the setcc. 736 if (DemandedBits.isSignMask() && 737 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 738 getBooleanContents(Op0.getValueType()) == 739 BooleanContent::ZeroOrNegativeOneBooleanContent) { 740 // If we're testing X < 0, then this compare isn't needed - just use X! 741 // FIXME: We're limiting to integer types here, but this should also work 742 // if we don't care about FP signed-zero. The use of SETLT with FP means 743 // that we don't care about NaNs. 744 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 745 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 746 return Op0; 747 } 748 break; 749 } 750 case ISD::SIGN_EXTEND_INREG: { 751 // If none of the extended bits are demanded, eliminate the sextinreg. 752 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 753 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 754 return Op.getOperand(0); 755 break; 756 } 757 case ISD::INSERT_VECTOR_ELT: { 758 // If we don't demand the inserted element, return the base vector. 759 SDValue Vec = Op.getOperand(0); 760 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 761 EVT VecVT = Vec.getValueType(); 762 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 763 !DemandedElts[CIdx->getZExtValue()]) 764 return Vec; 765 break; 766 } 767 case ISD::VECTOR_SHUFFLE: { 768 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 769 770 // If all the demanded elts are from one operand and are inline, 771 // then we can use the operand directly. 772 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 773 for (unsigned i = 0; i != NumElts; ++i) { 774 int M = ShuffleMask[i]; 775 if (M < 0 || !DemandedElts[i]) 776 continue; 777 AllUndef = false; 778 IdentityLHS &= (M == (int)i); 779 IdentityRHS &= ((M - NumElts) == i); 780 } 781 782 if (AllUndef) 783 return DAG.getUNDEF(Op.getValueType()); 784 if (IdentityLHS) 785 return Op.getOperand(0); 786 if (IdentityRHS) 787 return Op.getOperand(1); 788 break; 789 } 790 default: 791 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 792 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 793 Op, DemandedBits, DemandedElts, DAG, Depth)) 794 return V; 795 break; 796 } 797 return SDValue(); 798 } 799 800 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 801 /// result of Op are ever used downstream. If we can use this information to 802 /// simplify Op, create a new simplified DAG node and return true, returning the 803 /// original and new nodes in Old and New. Otherwise, analyze the expression and 804 /// return a mask of Known bits for the expression (used to simplify the 805 /// caller). The Known bits may only be accurate for those bits in the 806 /// OriginalDemandedBits and OriginalDemandedElts. 807 bool TargetLowering::SimplifyDemandedBits( 808 SDValue Op, const APInt &OriginalDemandedBits, 809 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 810 unsigned Depth, bool AssumeSingleUse) const { 811 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 812 assert(Op.getScalarValueSizeInBits() == BitWidth && 813 "Mask size mismatches value type size!"); 814 815 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 816 assert((!Op.getValueType().isVector() || 817 NumElts == Op.getValueType().getVectorNumElements()) && 818 "Unexpected vector size"); 819 820 APInt DemandedBits = OriginalDemandedBits; 821 APInt DemandedElts = OriginalDemandedElts; 822 SDLoc dl(Op); 823 auto &DL = TLO.DAG.getDataLayout(); 824 825 // Don't know anything. 826 Known = KnownBits(BitWidth); 827 828 // Undef operand. 829 if (Op.isUndef()) 830 return false; 831 832 if (Op.getOpcode() == ISD::Constant) { 833 // We know all of the bits for a constant! 834 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 835 Known.Zero = ~Known.One; 836 return false; 837 } 838 839 // Other users may use these bits. 840 EVT VT = Op.getValueType(); 841 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 842 if (Depth != 0) { 843 // If not at the root, Just compute the Known bits to 844 // simplify things downstream. 845 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 846 return false; 847 } 848 // If this is the root being simplified, allow it to have multiple uses, 849 // just set the DemandedBits/Elts to all bits. 850 DemandedBits = APInt::getAllOnesValue(BitWidth); 851 DemandedElts = APInt::getAllOnesValue(NumElts); 852 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 853 // Not demanding any bits/elts from Op. 854 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 855 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 856 // Limit search depth. 857 return false; 858 } 859 860 KnownBits Known2, KnownOut; 861 switch (Op.getOpcode()) { 862 case ISD::TargetConstant: 863 llvm_unreachable("Can't simplify this node"); 864 case ISD::SCALAR_TO_VECTOR: { 865 if (!DemandedElts[0]) 866 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 867 868 KnownBits SrcKnown; 869 SDValue Src = Op.getOperand(0); 870 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 871 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 872 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 873 return true; 874 Known = SrcKnown.zextOrTrunc(BitWidth, false); 875 break; 876 } 877 case ISD::BUILD_VECTOR: 878 // Collect the known bits that are shared by every demanded element. 879 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 880 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 881 return false; // Don't fall through, will infinitely loop. 882 case ISD::LOAD: { 883 LoadSDNode *LD = cast<LoadSDNode>(Op); 884 if (getTargetConstantFromLoad(LD)) { 885 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 886 return false; // Don't fall through, will infinitely loop. 887 } 888 break; 889 } 890 case ISD::INSERT_VECTOR_ELT: { 891 SDValue Vec = Op.getOperand(0); 892 SDValue Scl = Op.getOperand(1); 893 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 894 EVT VecVT = Vec.getValueType(); 895 896 // If index isn't constant, assume we need all vector elements AND the 897 // inserted element. 898 APInt DemandedVecElts(DemandedElts); 899 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 900 unsigned Idx = CIdx->getZExtValue(); 901 DemandedVecElts.clearBit(Idx); 902 903 // Inserted element is not required. 904 if (!DemandedElts[Idx]) 905 return TLO.CombineTo(Op, Vec); 906 } 907 908 KnownBits KnownScl; 909 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 910 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 911 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 912 return true; 913 914 Known = KnownScl.zextOrTrunc(BitWidth, false); 915 916 KnownBits KnownVec; 917 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 918 Depth + 1)) 919 return true; 920 921 if (!!DemandedVecElts) { 922 Known.One &= KnownVec.One; 923 Known.Zero &= KnownVec.Zero; 924 } 925 926 return false; 927 } 928 case ISD::INSERT_SUBVECTOR: { 929 SDValue Base = Op.getOperand(0); 930 SDValue Sub = Op.getOperand(1); 931 EVT SubVT = Sub.getValueType(); 932 unsigned NumSubElts = SubVT.getVectorNumElements(); 933 934 // If index isn't constant, assume we need the original demanded base 935 // elements and ALL the inserted subvector elements. 936 APInt BaseElts = DemandedElts; 937 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 938 if (isa<ConstantSDNode>(Op.getOperand(2))) { 939 const APInt &Idx = Op.getConstantOperandAPInt(2); 940 if (Idx.ule(NumElts - NumSubElts)) { 941 unsigned SubIdx = Idx.getZExtValue(); 942 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 943 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 944 } 945 } 946 947 KnownBits KnownSub, KnownBase; 948 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 949 Depth + 1)) 950 return true; 951 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 952 Depth + 1)) 953 return true; 954 955 Known.Zero.setAllBits(); 956 Known.One.setAllBits(); 957 if (!!SubElts) { 958 Known.One &= KnownSub.One; 959 Known.Zero &= KnownSub.Zero; 960 } 961 if (!!BaseElts) { 962 Known.One &= KnownBase.One; 963 Known.Zero &= KnownBase.Zero; 964 } 965 break; 966 } 967 case ISD::EXTRACT_SUBVECTOR: { 968 // If index isn't constant, assume we need all the source vector elements. 969 SDValue Src = Op.getOperand(0); 970 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 971 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 972 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 973 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 974 // Offset the demanded elts by the subvector index. 975 uint64_t Idx = SubIdx->getZExtValue(); 976 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 977 } 978 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 979 return true; 980 break; 981 } 982 case ISD::CONCAT_VECTORS: { 983 Known.Zero.setAllBits(); 984 Known.One.setAllBits(); 985 EVT SubVT = Op.getOperand(0).getValueType(); 986 unsigned NumSubVecs = Op.getNumOperands(); 987 unsigned NumSubElts = SubVT.getVectorNumElements(); 988 for (unsigned i = 0; i != NumSubVecs; ++i) { 989 APInt DemandedSubElts = 990 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 991 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 992 Known2, TLO, Depth + 1)) 993 return true; 994 // Known bits are shared by every demanded subvector element. 995 if (!!DemandedSubElts) { 996 Known.One &= Known2.One; 997 Known.Zero &= Known2.Zero; 998 } 999 } 1000 break; 1001 } 1002 case ISD::VECTOR_SHUFFLE: { 1003 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1004 1005 // Collect demanded elements from shuffle operands.. 1006 APInt DemandedLHS(NumElts, 0); 1007 APInt DemandedRHS(NumElts, 0); 1008 for (unsigned i = 0; i != NumElts; ++i) { 1009 if (!DemandedElts[i]) 1010 continue; 1011 int M = ShuffleMask[i]; 1012 if (M < 0) { 1013 // For UNDEF elements, we don't know anything about the common state of 1014 // the shuffle result. 1015 DemandedLHS.clearAllBits(); 1016 DemandedRHS.clearAllBits(); 1017 break; 1018 } 1019 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1020 if (M < (int)NumElts) 1021 DemandedLHS.setBit(M); 1022 else 1023 DemandedRHS.setBit(M - NumElts); 1024 } 1025 1026 if (!!DemandedLHS || !!DemandedRHS) { 1027 SDValue Op0 = Op.getOperand(0); 1028 SDValue Op1 = Op.getOperand(1); 1029 1030 Known.Zero.setAllBits(); 1031 Known.One.setAllBits(); 1032 if (!!DemandedLHS) { 1033 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1034 Depth + 1)) 1035 return true; 1036 Known.One &= Known2.One; 1037 Known.Zero &= Known2.Zero; 1038 } 1039 if (!!DemandedRHS) { 1040 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1041 Depth + 1)) 1042 return true; 1043 Known.One &= Known2.One; 1044 Known.Zero &= Known2.Zero; 1045 } 1046 1047 // Attempt to avoid multi-use ops if we don't need anything from them. 1048 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1049 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1050 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1051 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1052 if (DemandedOp0 || DemandedOp1) { 1053 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1054 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1055 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1056 return TLO.CombineTo(Op, NewOp); 1057 } 1058 } 1059 break; 1060 } 1061 case ISD::AND: { 1062 SDValue Op0 = Op.getOperand(0); 1063 SDValue Op1 = Op.getOperand(1); 1064 1065 // If the RHS is a constant, check to see if the LHS would be zero without 1066 // using the bits from the RHS. Below, we use knowledge about the RHS to 1067 // simplify the LHS, here we're using information from the LHS to simplify 1068 // the RHS. 1069 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1070 // Do not increment Depth here; that can cause an infinite loop. 1071 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1072 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1073 if ((LHSKnown.Zero & DemandedBits) == 1074 (~RHSC->getAPIntValue() & DemandedBits)) 1075 return TLO.CombineTo(Op, Op0); 1076 1077 // If any of the set bits in the RHS are known zero on the LHS, shrink 1078 // the constant. 1079 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1080 return true; 1081 1082 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1083 // constant, but if this 'and' is only clearing bits that were just set by 1084 // the xor, then this 'and' can be eliminated by shrinking the mask of 1085 // the xor. For example, for a 32-bit X: 1086 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1087 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1088 LHSKnown.One == ~RHSC->getAPIntValue()) { 1089 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1090 return TLO.CombineTo(Op, Xor); 1091 } 1092 } 1093 1094 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1095 Depth + 1)) 1096 return true; 1097 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1098 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1099 Known2, TLO, Depth + 1)) 1100 return true; 1101 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1102 1103 // Attempt to avoid multi-use ops if we don't need anything from them. 1104 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1105 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1106 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1107 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1108 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1109 if (DemandedOp0 || DemandedOp1) { 1110 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1111 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1112 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1113 return TLO.CombineTo(Op, NewOp); 1114 } 1115 } 1116 1117 // If all of the demanded bits are known one on one side, return the other. 1118 // These bits cannot contribute to the result of the 'and'. 1119 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1120 return TLO.CombineTo(Op, Op0); 1121 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1122 return TLO.CombineTo(Op, Op1); 1123 // If all of the demanded bits in the inputs are known zeros, return zero. 1124 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1125 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1126 // If the RHS is a constant, see if we can simplify it. 1127 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1128 return true; 1129 // If the operation can be done in a smaller type, do so. 1130 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1131 return true; 1132 1133 // Output known-1 bits are only known if set in both the LHS & RHS. 1134 Known.One &= Known2.One; 1135 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1136 Known.Zero |= Known2.Zero; 1137 break; 1138 } 1139 case ISD::OR: { 1140 SDValue Op0 = Op.getOperand(0); 1141 SDValue Op1 = Op.getOperand(1); 1142 1143 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1144 Depth + 1)) 1145 return true; 1146 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1147 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1148 Known2, TLO, Depth + 1)) 1149 return true; 1150 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1151 1152 // Attempt to avoid multi-use ops if we don't need anything from them. 1153 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1154 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1155 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1156 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1157 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1158 if (DemandedOp0 || DemandedOp1) { 1159 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1160 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1161 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1162 return TLO.CombineTo(Op, NewOp); 1163 } 1164 } 1165 1166 // If all of the demanded bits are known zero on one side, return the other. 1167 // These bits cannot contribute to the result of the 'or'. 1168 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1169 return TLO.CombineTo(Op, Op0); 1170 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1171 return TLO.CombineTo(Op, Op1); 1172 // If the RHS is a constant, see if we can simplify it. 1173 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1174 return true; 1175 // If the operation can be done in a smaller type, do so. 1176 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1177 return true; 1178 1179 // Output known-0 bits are only known if clear in both the LHS & RHS. 1180 Known.Zero &= Known2.Zero; 1181 // Output known-1 are known to be set if set in either the LHS | RHS. 1182 Known.One |= Known2.One; 1183 break; 1184 } 1185 case ISD::XOR: { 1186 SDValue Op0 = Op.getOperand(0); 1187 SDValue Op1 = Op.getOperand(1); 1188 1189 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1190 Depth + 1)) 1191 return true; 1192 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1193 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1194 Depth + 1)) 1195 return true; 1196 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1197 1198 // Attempt to avoid multi-use ops if we don't need anything from them. 1199 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1200 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1201 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1202 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1203 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1204 if (DemandedOp0 || DemandedOp1) { 1205 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1206 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1207 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1208 return TLO.CombineTo(Op, NewOp); 1209 } 1210 } 1211 1212 // If all of the demanded bits are known zero on one side, return the other. 1213 // These bits cannot contribute to the result of the 'xor'. 1214 if (DemandedBits.isSubsetOf(Known.Zero)) 1215 return TLO.CombineTo(Op, Op0); 1216 if (DemandedBits.isSubsetOf(Known2.Zero)) 1217 return TLO.CombineTo(Op, Op1); 1218 // If the operation can be done in a smaller type, do so. 1219 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1220 return true; 1221 1222 // If all of the unknown bits are known to be zero on one side or the other 1223 // (but not both) turn this into an *inclusive* or. 1224 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1225 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1226 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1227 1228 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1229 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1230 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1231 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1232 1233 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1234 // If one side is a constant, and all of the known set bits on the other 1235 // side are also set in the constant, turn this into an AND, as we know 1236 // the bits will be cleared. 1237 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1238 // NB: it is okay if more bits are known than are requested 1239 if (C->getAPIntValue() == Known2.One) { 1240 SDValue ANDC = 1241 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1242 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1243 } 1244 1245 // If the RHS is a constant, see if we can change it. Don't alter a -1 1246 // constant because that's a 'not' op, and that is better for combining 1247 // and codegen. 1248 if (!C->isAllOnesValue()) { 1249 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1250 // We're flipping all demanded bits. Flip the undemanded bits too. 1251 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1252 return TLO.CombineTo(Op, New); 1253 } 1254 // If we can't turn this into a 'not', try to shrink the constant. 1255 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1256 return true; 1257 } 1258 } 1259 1260 Known = std::move(KnownOut); 1261 break; 1262 } 1263 case ISD::SELECT: 1264 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1265 Depth + 1)) 1266 return true; 1267 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1268 Depth + 1)) 1269 return true; 1270 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1271 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1272 1273 // If the operands are constants, see if we can simplify them. 1274 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1275 return true; 1276 1277 // Only known if known in both the LHS and RHS. 1278 Known.One &= Known2.One; 1279 Known.Zero &= Known2.Zero; 1280 break; 1281 case ISD::SELECT_CC: 1282 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1283 Depth + 1)) 1284 return true; 1285 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1286 Depth + 1)) 1287 return true; 1288 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1289 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1290 1291 // If the operands are constants, see if we can simplify them. 1292 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1293 return true; 1294 1295 // Only known if known in both the LHS and RHS. 1296 Known.One &= Known2.One; 1297 Known.Zero &= Known2.Zero; 1298 break; 1299 case ISD::SETCC: { 1300 SDValue Op0 = Op.getOperand(0); 1301 SDValue Op1 = Op.getOperand(1); 1302 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1303 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1304 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1305 // -1, we may be able to bypass the setcc. 1306 if (DemandedBits.isSignMask() && 1307 Op0.getScalarValueSizeInBits() == BitWidth && 1308 getBooleanContents(Op0.getValueType()) == 1309 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1310 // If we're testing X < 0, then this compare isn't needed - just use X! 1311 // FIXME: We're limiting to integer types here, but this should also work 1312 // if we don't care about FP signed-zero. The use of SETLT with FP means 1313 // that we don't care about NaNs. 1314 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1315 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1316 return TLO.CombineTo(Op, Op0); 1317 1318 // TODO: Should we check for other forms of sign-bit comparisons? 1319 // Examples: X <= -1, X >= 0 1320 } 1321 if (getBooleanContents(Op0.getValueType()) == 1322 TargetLowering::ZeroOrOneBooleanContent && 1323 BitWidth > 1) 1324 Known.Zero.setBitsFrom(1); 1325 break; 1326 } 1327 case ISD::SHL: { 1328 SDValue Op0 = Op.getOperand(0); 1329 SDValue Op1 = Op.getOperand(1); 1330 1331 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1332 // If the shift count is an invalid immediate, don't do anything. 1333 if (SA->getAPIntValue().uge(BitWidth)) 1334 break; 1335 1336 unsigned ShAmt = SA->getZExtValue(); 1337 if (ShAmt == 0) 1338 return TLO.CombineTo(Op, Op0); 1339 1340 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1341 // single shift. We can do this if the bottom bits (which are shifted 1342 // out) are never demanded. 1343 // TODO - support non-uniform vector amounts. 1344 if (Op0.getOpcode() == ISD::SRL) { 1345 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1346 if (ConstantSDNode *SA2 = 1347 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1348 if (SA2->getAPIntValue().ult(BitWidth)) { 1349 unsigned C1 = SA2->getZExtValue(); 1350 unsigned Opc = ISD::SHL; 1351 int Diff = ShAmt - C1; 1352 if (Diff < 0) { 1353 Diff = -Diff; 1354 Opc = ISD::SRL; 1355 } 1356 1357 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1358 return TLO.CombineTo( 1359 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1360 } 1361 } 1362 } 1363 } 1364 1365 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1366 Known, TLO, Depth + 1)) 1367 return true; 1368 1369 // Try shrinking the operation as long as the shift amount will still be 1370 // in range. 1371 if ((ShAmt < DemandedBits.getActiveBits()) && 1372 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1373 return true; 1374 1375 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1376 // are not demanded. This will likely allow the anyext to be folded away. 1377 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1378 SDValue InnerOp = Op0.getOperand(0); 1379 EVT InnerVT = InnerOp.getValueType(); 1380 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1381 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1382 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1383 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1384 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1385 ShTy = InnerVT; 1386 SDValue NarrowShl = 1387 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1388 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1389 return TLO.CombineTo( 1390 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1391 } 1392 // Repeat the SHL optimization above in cases where an extension 1393 // intervenes: (shl (anyext (shr x, c1)), c2) to 1394 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1395 // aren't demanded (as above) and that the shifted upper c1 bits of 1396 // x aren't demanded. 1397 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1398 InnerOp.hasOneUse()) { 1399 if (ConstantSDNode *SA2 = 1400 isConstOrConstSplat(InnerOp.getOperand(1))) { 1401 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1402 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1403 DemandedBits.getActiveBits() <= 1404 (InnerBits - InnerShAmt + ShAmt) && 1405 DemandedBits.countTrailingZeros() >= ShAmt) { 1406 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1407 Op1.getValueType()); 1408 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1409 InnerOp.getOperand(0)); 1410 return TLO.CombineTo( 1411 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1412 } 1413 } 1414 } 1415 } 1416 1417 Known.Zero <<= ShAmt; 1418 Known.One <<= ShAmt; 1419 // low bits known zero. 1420 Known.Zero.setLowBits(ShAmt); 1421 } 1422 break; 1423 } 1424 case ISD::SRL: { 1425 SDValue Op0 = Op.getOperand(0); 1426 SDValue Op1 = Op.getOperand(1); 1427 1428 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1429 // If the shift count is an invalid immediate, don't do anything. 1430 if (SA->getAPIntValue().uge(BitWidth)) 1431 break; 1432 1433 unsigned ShAmt = SA->getZExtValue(); 1434 if (ShAmt == 0) 1435 return TLO.CombineTo(Op, Op0); 1436 1437 EVT ShiftVT = Op1.getValueType(); 1438 APInt InDemandedMask = (DemandedBits << ShAmt); 1439 1440 // If the shift is exact, then it does demand the low bits (and knows that 1441 // they are zero). 1442 if (Op->getFlags().hasExact()) 1443 InDemandedMask.setLowBits(ShAmt); 1444 1445 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1446 // single shift. We can do this if the top bits (which are shifted out) 1447 // are never demanded. 1448 // TODO - support non-uniform vector amounts. 1449 if (Op0.getOpcode() == ISD::SHL) { 1450 if (ConstantSDNode *SA2 = 1451 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1452 if (!DemandedBits.intersects( 1453 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1454 if (SA2->getAPIntValue().ult(BitWidth)) { 1455 unsigned C1 = SA2->getZExtValue(); 1456 unsigned Opc = ISD::SRL; 1457 int Diff = ShAmt - C1; 1458 if (Diff < 0) { 1459 Diff = -Diff; 1460 Opc = ISD::SHL; 1461 } 1462 1463 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1464 return TLO.CombineTo( 1465 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1466 } 1467 } 1468 } 1469 } 1470 1471 // Compute the new bits that are at the top now. 1472 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1473 Depth + 1)) 1474 return true; 1475 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1476 Known.Zero.lshrInPlace(ShAmt); 1477 Known.One.lshrInPlace(ShAmt); 1478 1479 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1480 } 1481 break; 1482 } 1483 case ISD::SRA: { 1484 SDValue Op0 = Op.getOperand(0); 1485 SDValue Op1 = Op.getOperand(1); 1486 1487 // If this is an arithmetic shift right and only the low-bit is set, we can 1488 // always convert this into a logical shr, even if the shift amount is 1489 // variable. The low bit of the shift cannot be an input sign bit unless 1490 // the shift amount is >= the size of the datatype, which is undefined. 1491 if (DemandedBits.isOneValue()) 1492 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1493 1494 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1495 // If the shift count is an invalid immediate, don't do anything. 1496 if (SA->getAPIntValue().uge(BitWidth)) 1497 break; 1498 1499 unsigned ShAmt = SA->getZExtValue(); 1500 if (ShAmt == 0) 1501 return TLO.CombineTo(Op, Op0); 1502 1503 APInt InDemandedMask = (DemandedBits << ShAmt); 1504 1505 // If the shift is exact, then it does demand the low bits (and knows that 1506 // they are zero). 1507 if (Op->getFlags().hasExact()) 1508 InDemandedMask.setLowBits(ShAmt); 1509 1510 // If any of the demanded bits are produced by the sign extension, we also 1511 // demand the input sign bit. 1512 if (DemandedBits.countLeadingZeros() < ShAmt) 1513 InDemandedMask.setSignBit(); 1514 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero.lshrInPlace(ShAmt); 1520 Known.One.lshrInPlace(ShAmt); 1521 1522 // If the input sign bit is known to be zero, or if none of the top bits 1523 // are demanded, turn this into an unsigned shift right. 1524 if (Known.Zero[BitWidth - ShAmt - 1] || 1525 DemandedBits.countLeadingZeros() >= ShAmt) { 1526 SDNodeFlags Flags; 1527 Flags.setExact(Op->getFlags().hasExact()); 1528 return TLO.CombineTo( 1529 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1530 } 1531 1532 int Log2 = DemandedBits.exactLogBase2(); 1533 if (Log2 >= 0) { 1534 // The bit must come from the sign. 1535 SDValue NewSA = 1536 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1537 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1538 } 1539 1540 if (Known.One[BitWidth - ShAmt - 1]) 1541 // New bits are known one. 1542 Known.One.setHighBits(ShAmt); 1543 } 1544 break; 1545 } 1546 case ISD::FSHL: 1547 case ISD::FSHR: { 1548 SDValue Op0 = Op.getOperand(0); 1549 SDValue Op1 = Op.getOperand(1); 1550 SDValue Op2 = Op.getOperand(2); 1551 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1552 1553 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1554 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1555 1556 // For fshl, 0-shift returns the 1st arg. 1557 // For fshr, 0-shift returns the 2nd arg. 1558 if (Amt == 0) { 1559 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1560 Known, TLO, Depth + 1)) 1561 return true; 1562 break; 1563 } 1564 1565 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1566 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1567 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1568 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1569 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1570 Depth + 1)) 1571 return true; 1572 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1573 Depth + 1)) 1574 return true; 1575 1576 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1577 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1578 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1579 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1580 Known.One |= Known2.One; 1581 Known.Zero |= Known2.Zero; 1582 } 1583 break; 1584 } 1585 case ISD::BITREVERSE: { 1586 SDValue Src = Op.getOperand(0); 1587 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1588 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1589 Depth + 1)) 1590 return true; 1591 Known.One = Known2.One.reverseBits(); 1592 Known.Zero = Known2.Zero.reverseBits(); 1593 break; 1594 } 1595 case ISD::BSWAP: { 1596 SDValue Src = Op.getOperand(0); 1597 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1598 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1599 Depth + 1)) 1600 return true; 1601 Known.One = Known2.One.byteSwap(); 1602 Known.Zero = Known2.Zero.byteSwap(); 1603 break; 1604 } 1605 case ISD::SIGN_EXTEND_INREG: { 1606 SDValue Op0 = Op.getOperand(0); 1607 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1608 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1609 1610 // If we only care about the highest bit, don't bother shifting right. 1611 if (DemandedBits.isSignMask()) { 1612 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1613 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1614 // However if the input is already sign extended we expect the sign 1615 // extension to be dropped altogether later and do not simplify. 1616 if (!AlreadySignExtended) { 1617 // Compute the correct shift amount type, which must be getShiftAmountTy 1618 // for scalar types after legalization. 1619 EVT ShiftAmtTy = VT; 1620 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1621 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1622 1623 SDValue ShiftAmt = 1624 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1625 return TLO.CombineTo(Op, 1626 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1627 } 1628 } 1629 1630 // If none of the extended bits are demanded, eliminate the sextinreg. 1631 if (DemandedBits.getActiveBits() <= ExVTBits) 1632 return TLO.CombineTo(Op, Op0); 1633 1634 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1635 1636 // Since the sign extended bits are demanded, we know that the sign 1637 // bit is demanded. 1638 InputDemandedBits.setBit(ExVTBits - 1); 1639 1640 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1641 return true; 1642 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1643 1644 // If the sign bit of the input is known set or clear, then we know the 1645 // top bits of the result. 1646 1647 // If the input sign bit is known zero, convert this into a zero extension. 1648 if (Known.Zero[ExVTBits - 1]) 1649 return TLO.CombineTo( 1650 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1651 1652 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1653 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1654 Known.One.setBitsFrom(ExVTBits); 1655 Known.Zero &= Mask; 1656 } else { // Input sign bit unknown 1657 Known.Zero &= Mask; 1658 Known.One &= Mask; 1659 } 1660 break; 1661 } 1662 case ISD::BUILD_PAIR: { 1663 EVT HalfVT = Op.getOperand(0).getValueType(); 1664 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1665 1666 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1667 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1668 1669 KnownBits KnownLo, KnownHi; 1670 1671 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1672 return true; 1673 1674 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1675 return true; 1676 1677 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1678 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1679 1680 Known.One = KnownLo.One.zext(BitWidth) | 1681 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1682 break; 1683 } 1684 case ISD::ZERO_EXTEND: 1685 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1686 SDValue Src = Op.getOperand(0); 1687 EVT SrcVT = Src.getValueType(); 1688 unsigned InBits = SrcVT.getScalarSizeInBits(); 1689 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1690 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1691 1692 // If none of the top bits are demanded, convert this into an any_extend. 1693 if (DemandedBits.getActiveBits() <= InBits) { 1694 // If we only need the non-extended bits of the bottom element 1695 // then we can just bitcast to the result. 1696 if (IsVecInReg && DemandedElts == 1 && 1697 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1698 TLO.DAG.getDataLayout().isLittleEndian()) 1699 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1700 1701 unsigned Opc = 1702 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1703 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1704 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1705 } 1706 1707 APInt InDemandedBits = DemandedBits.trunc(InBits); 1708 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1709 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1710 Depth + 1)) 1711 return true; 1712 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1713 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1714 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1715 break; 1716 } 1717 case ISD::SIGN_EXTEND: 1718 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1719 SDValue Src = Op.getOperand(0); 1720 EVT SrcVT = Src.getValueType(); 1721 unsigned InBits = SrcVT.getScalarSizeInBits(); 1722 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1723 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1724 1725 // If none of the top bits are demanded, convert this into an any_extend. 1726 if (DemandedBits.getActiveBits() <= InBits) { 1727 // If we only need the non-extended bits of the bottom element 1728 // then we can just bitcast to the result. 1729 if (IsVecInReg && DemandedElts == 1 && 1730 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1731 TLO.DAG.getDataLayout().isLittleEndian()) 1732 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1733 1734 unsigned Opc = 1735 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1736 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1737 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1738 } 1739 1740 APInt InDemandedBits = DemandedBits.trunc(InBits); 1741 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1742 1743 // Since some of the sign extended bits are demanded, we know that the sign 1744 // bit is demanded. 1745 InDemandedBits.setBit(InBits - 1); 1746 1747 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1748 Depth + 1)) 1749 return true; 1750 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1751 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1752 1753 // If the sign bit is known one, the top bits match. 1754 Known = Known.sext(BitWidth); 1755 1756 // If the sign bit is known zero, convert this to a zero extend. 1757 if (Known.isNonNegative()) { 1758 unsigned Opc = 1759 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1760 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1761 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1762 } 1763 break; 1764 } 1765 case ISD::ANY_EXTEND: 1766 case ISD::ANY_EXTEND_VECTOR_INREG: { 1767 SDValue Src = Op.getOperand(0); 1768 EVT SrcVT = Src.getValueType(); 1769 unsigned InBits = SrcVT.getScalarSizeInBits(); 1770 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1771 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1772 1773 // If we only need the bottom element then we can just bitcast. 1774 // TODO: Handle ANY_EXTEND? 1775 if (IsVecInReg && DemandedElts == 1 && 1776 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1777 TLO.DAG.getDataLayout().isLittleEndian()) 1778 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1779 1780 APInt InDemandedBits = DemandedBits.trunc(InBits); 1781 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1782 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1783 Depth + 1)) 1784 return true; 1785 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1786 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1787 Known = Known.zext(BitWidth, false /* => any extend */); 1788 break; 1789 } 1790 case ISD::TRUNCATE: { 1791 SDValue Src = Op.getOperand(0); 1792 1793 // Simplify the input, using demanded bit information, and compute the known 1794 // zero/one bits live out. 1795 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1796 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1797 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1798 return true; 1799 Known = Known.trunc(BitWidth); 1800 1801 // Attempt to avoid multi-use ops if we don't need anything from them. 1802 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1803 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1804 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1805 1806 // If the input is only used by this truncate, see if we can shrink it based 1807 // on the known demanded bits. 1808 if (Src.getNode()->hasOneUse()) { 1809 switch (Src.getOpcode()) { 1810 default: 1811 break; 1812 case ISD::SRL: 1813 // Shrink SRL by a constant if none of the high bits shifted in are 1814 // demanded. 1815 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1816 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1817 // undesirable. 1818 break; 1819 1820 SDValue ShAmt = Src.getOperand(1); 1821 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1822 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1823 break; 1824 uint64_t ShVal = ShAmtC->getZExtValue(); 1825 1826 APInt HighBits = 1827 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1828 HighBits.lshrInPlace(ShVal); 1829 HighBits = HighBits.trunc(BitWidth); 1830 1831 if (!(HighBits & DemandedBits)) { 1832 // None of the shifted in bits are needed. Add a truncate of the 1833 // shift input, then shift it. 1834 if (TLO.LegalTypes()) 1835 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1836 SDValue NewTrunc = 1837 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1838 return TLO.CombineTo( 1839 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1840 } 1841 break; 1842 } 1843 } 1844 1845 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1846 break; 1847 } 1848 case ISD::AssertZext: { 1849 // AssertZext demands all of the high bits, plus any of the low bits 1850 // demanded by its users. 1851 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1852 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1853 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1854 TLO, Depth + 1)) 1855 return true; 1856 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1857 1858 Known.Zero |= ~InMask; 1859 break; 1860 } 1861 case ISD::EXTRACT_VECTOR_ELT: { 1862 SDValue Src = Op.getOperand(0); 1863 SDValue Idx = Op.getOperand(1); 1864 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1865 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1866 1867 // Demand the bits from every vector element without a constant index. 1868 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1869 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1870 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1871 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1872 1873 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1874 // anything about the extended bits. 1875 APInt DemandedSrcBits = DemandedBits; 1876 if (BitWidth > EltBitWidth) 1877 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1878 1879 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1880 Depth + 1)) 1881 return true; 1882 1883 // Attempt to avoid multi-use ops if we don't need anything from them. 1884 if (!DemandedSrcBits.isAllOnesValue() || 1885 !DemandedSrcElts.isAllOnesValue()) { 1886 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1887 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1888 SDValue NewOp = 1889 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1890 return TLO.CombineTo(Op, NewOp); 1891 } 1892 } 1893 1894 Known = Known2; 1895 if (BitWidth > EltBitWidth) 1896 Known = Known.zext(BitWidth, false /* => any extend */); 1897 break; 1898 } 1899 case ISD::BITCAST: { 1900 SDValue Src = Op.getOperand(0); 1901 EVT SrcVT = Src.getValueType(); 1902 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1903 1904 // If this is an FP->Int bitcast and if the sign bit is the only 1905 // thing demanded, turn this into a FGETSIGN. 1906 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1907 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1908 SrcVT.isFloatingPoint()) { 1909 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1910 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1911 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1912 SrcVT != MVT::f128) { 1913 // Cannot eliminate/lower SHL for f128 yet. 1914 EVT Ty = OpVTLegal ? VT : MVT::i32; 1915 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1916 // place. We expect the SHL to be eliminated by other optimizations. 1917 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1918 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1919 if (!OpVTLegal && OpVTSizeInBits > 32) 1920 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1921 unsigned ShVal = Op.getValueSizeInBits() - 1; 1922 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1923 return TLO.CombineTo(Op, 1924 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1925 } 1926 } 1927 1928 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1929 // Demand the elt/bit if any of the original elts/bits are demanded. 1930 // TODO - bigendian once we have test coverage. 1931 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1932 TLO.DAG.getDataLayout().isLittleEndian()) { 1933 unsigned Scale = BitWidth / NumSrcEltBits; 1934 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1935 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1936 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1937 for (unsigned i = 0; i != Scale; ++i) { 1938 unsigned Offset = i * NumSrcEltBits; 1939 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1940 if (!Sub.isNullValue()) { 1941 DemandedSrcBits |= Sub; 1942 for (unsigned j = 0; j != NumElts; ++j) 1943 if (DemandedElts[j]) 1944 DemandedSrcElts.setBit((j * Scale) + i); 1945 } 1946 } 1947 1948 APInt KnownSrcUndef, KnownSrcZero; 1949 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1950 KnownSrcZero, TLO, Depth + 1)) 1951 return true; 1952 1953 KnownBits KnownSrcBits; 1954 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1955 KnownSrcBits, TLO, Depth + 1)) 1956 return true; 1957 } else if ((NumSrcEltBits % BitWidth) == 0 && 1958 TLO.DAG.getDataLayout().isLittleEndian()) { 1959 unsigned Scale = NumSrcEltBits / BitWidth; 1960 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1961 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1962 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1963 for (unsigned i = 0; i != NumElts; ++i) 1964 if (DemandedElts[i]) { 1965 unsigned Offset = (i % Scale) * BitWidth; 1966 DemandedSrcBits.insertBits(DemandedBits, Offset); 1967 DemandedSrcElts.setBit(i / Scale); 1968 } 1969 1970 if (SrcVT.isVector()) { 1971 APInt KnownSrcUndef, KnownSrcZero; 1972 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1973 KnownSrcZero, TLO, Depth + 1)) 1974 return true; 1975 } 1976 1977 KnownBits KnownSrcBits; 1978 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1979 KnownSrcBits, TLO, Depth + 1)) 1980 return true; 1981 } 1982 1983 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1984 // recursive call where Known may be useful to the caller. 1985 if (Depth > 0) { 1986 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1987 return false; 1988 } 1989 break; 1990 } 1991 case ISD::ADD: 1992 case ISD::MUL: 1993 case ISD::SUB: { 1994 // Add, Sub, and Mul don't demand any bits in positions beyond that 1995 // of the highest bit demanded of them. 1996 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1997 SDNodeFlags Flags = Op.getNode()->getFlags(); 1998 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1999 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2000 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2001 Depth + 1) || 2002 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2003 Depth + 1) || 2004 // See if the operation should be performed at a smaller bit width. 2005 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2006 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2007 // Disable the nsw and nuw flags. We can no longer guarantee that we 2008 // won't wrap after simplification. 2009 Flags.setNoSignedWrap(false); 2010 Flags.setNoUnsignedWrap(false); 2011 SDValue NewOp = 2012 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2013 return TLO.CombineTo(Op, NewOp); 2014 } 2015 return true; 2016 } 2017 2018 // Attempt to avoid multi-use ops if we don't need anything from them. 2019 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2020 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2021 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2022 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2023 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2024 if (DemandedOp0 || DemandedOp1) { 2025 Flags.setNoSignedWrap(false); 2026 Flags.setNoUnsignedWrap(false); 2027 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2028 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2029 SDValue NewOp = 2030 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2031 return TLO.CombineTo(Op, NewOp); 2032 } 2033 } 2034 2035 // If we have a constant operand, we may be able to turn it into -1 if we 2036 // do not demand the high bits. This can make the constant smaller to 2037 // encode, allow more general folding, or match specialized instruction 2038 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2039 // is probably not useful (and could be detrimental). 2040 ConstantSDNode *C = isConstOrConstSplat(Op1); 2041 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2042 if (C && !C->isAllOnesValue() && !C->isOne() && 2043 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2044 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2045 // Disable the nsw and nuw flags. We can no longer guarantee that we 2046 // won't wrap after simplification. 2047 Flags.setNoSignedWrap(false); 2048 Flags.setNoUnsignedWrap(false); 2049 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2050 return TLO.CombineTo(Op, NewOp); 2051 } 2052 2053 LLVM_FALLTHROUGH; 2054 } 2055 default: 2056 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2057 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2058 Known, TLO, Depth)) 2059 return true; 2060 break; 2061 } 2062 2063 // Just use computeKnownBits to compute output bits. 2064 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2065 break; 2066 } 2067 2068 // If we know the value of all of the demanded bits, return this as a 2069 // constant. 2070 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2071 // Avoid folding to a constant if any OpaqueConstant is involved. 2072 const SDNode *N = Op.getNode(); 2073 for (SDNodeIterator I = SDNodeIterator::begin(N), 2074 E = SDNodeIterator::end(N); 2075 I != E; ++I) { 2076 SDNode *Op = *I; 2077 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2078 if (C->isOpaque()) 2079 return false; 2080 } 2081 // TODO: Handle float bits as well. 2082 if (VT.isInteger()) 2083 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2084 } 2085 2086 return false; 2087 } 2088 2089 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2090 const APInt &DemandedElts, 2091 APInt &KnownUndef, 2092 APInt &KnownZero, 2093 DAGCombinerInfo &DCI) const { 2094 SelectionDAG &DAG = DCI.DAG; 2095 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2096 !DCI.isBeforeLegalizeOps()); 2097 2098 bool Simplified = 2099 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2100 if (Simplified) { 2101 DCI.AddToWorklist(Op.getNode()); 2102 DCI.CommitTargetLoweringOpt(TLO); 2103 } 2104 2105 return Simplified; 2106 } 2107 2108 /// Given a vector binary operation and known undefined elements for each input 2109 /// operand, compute whether each element of the output is undefined. 2110 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2111 const APInt &UndefOp0, 2112 const APInt &UndefOp1) { 2113 EVT VT = BO.getValueType(); 2114 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2115 "Vector binop only"); 2116 2117 EVT EltVT = VT.getVectorElementType(); 2118 unsigned NumElts = VT.getVectorNumElements(); 2119 assert(UndefOp0.getBitWidth() == NumElts && 2120 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2121 2122 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2123 const APInt &UndefVals) { 2124 if (UndefVals[Index]) 2125 return DAG.getUNDEF(EltVT); 2126 2127 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2128 // Try hard to make sure that the getNode() call is not creating temporary 2129 // nodes. Ignore opaque integers because they do not constant fold. 2130 SDValue Elt = BV->getOperand(Index); 2131 auto *C = dyn_cast<ConstantSDNode>(Elt); 2132 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2133 return Elt; 2134 } 2135 2136 return SDValue(); 2137 }; 2138 2139 APInt KnownUndef = APInt::getNullValue(NumElts); 2140 for (unsigned i = 0; i != NumElts; ++i) { 2141 // If both inputs for this element are either constant or undef and match 2142 // the element type, compute the constant/undef result for this element of 2143 // the vector. 2144 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2145 // not handle FP constants. The code within getNode() should be refactored 2146 // to avoid the danger of creating a bogus temporary node here. 2147 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2148 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2149 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2150 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2151 KnownUndef.setBit(i); 2152 } 2153 return KnownUndef; 2154 } 2155 2156 bool TargetLowering::SimplifyDemandedVectorElts( 2157 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2158 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2159 bool AssumeSingleUse) const { 2160 EVT VT = Op.getValueType(); 2161 APInt DemandedElts = OriginalDemandedElts; 2162 unsigned NumElts = DemandedElts.getBitWidth(); 2163 assert(VT.isVector() && "Expected vector op"); 2164 assert(VT.getVectorNumElements() == NumElts && 2165 "Mask size mismatches value type element count!"); 2166 2167 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2168 2169 // Undef operand. 2170 if (Op.isUndef()) { 2171 KnownUndef.setAllBits(); 2172 return false; 2173 } 2174 2175 // If Op has other users, assume that all elements are needed. 2176 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2177 DemandedElts.setAllBits(); 2178 2179 // Not demanding any elements from Op. 2180 if (DemandedElts == 0) { 2181 KnownUndef.setAllBits(); 2182 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2183 } 2184 2185 // Limit search depth. 2186 if (Depth >= SelectionDAG::MaxRecursionDepth) 2187 return false; 2188 2189 SDLoc DL(Op); 2190 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2191 2192 switch (Op.getOpcode()) { 2193 case ISD::SCALAR_TO_VECTOR: { 2194 if (!DemandedElts[0]) { 2195 KnownUndef.setAllBits(); 2196 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2197 } 2198 KnownUndef.setHighBits(NumElts - 1); 2199 break; 2200 } 2201 case ISD::BITCAST: { 2202 SDValue Src = Op.getOperand(0); 2203 EVT SrcVT = Src.getValueType(); 2204 2205 // We only handle vectors here. 2206 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2207 if (!SrcVT.isVector()) 2208 break; 2209 2210 // Fast handling of 'identity' bitcasts. 2211 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2212 if (NumSrcElts == NumElts) 2213 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2214 KnownZero, TLO, Depth + 1); 2215 2216 APInt SrcZero, SrcUndef; 2217 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2218 2219 // Bitcast from 'large element' src vector to 'small element' vector, we 2220 // must demand a source element if any DemandedElt maps to it. 2221 if ((NumElts % NumSrcElts) == 0) { 2222 unsigned Scale = NumElts / NumSrcElts; 2223 for (unsigned i = 0; i != NumElts; ++i) 2224 if (DemandedElts[i]) 2225 SrcDemandedElts.setBit(i / Scale); 2226 2227 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2228 TLO, Depth + 1)) 2229 return true; 2230 2231 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2232 // of the large element. 2233 // TODO - bigendian once we have test coverage. 2234 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2235 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2236 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2237 for (unsigned i = 0; i != NumElts; ++i) 2238 if (DemandedElts[i]) { 2239 unsigned Ofs = (i % Scale) * EltSizeInBits; 2240 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2241 } 2242 2243 KnownBits Known; 2244 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2245 return true; 2246 } 2247 2248 // If the src element is zero/undef then all the output elements will be - 2249 // only demanded elements are guaranteed to be correct. 2250 for (unsigned i = 0; i != NumSrcElts; ++i) { 2251 if (SrcDemandedElts[i]) { 2252 if (SrcZero[i]) 2253 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2254 if (SrcUndef[i]) 2255 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2256 } 2257 } 2258 } 2259 2260 // Bitcast from 'small element' src vector to 'large element' vector, we 2261 // demand all smaller source elements covered by the larger demanded element 2262 // of this vector. 2263 if ((NumSrcElts % NumElts) == 0) { 2264 unsigned Scale = NumSrcElts / NumElts; 2265 for (unsigned i = 0; i != NumElts; ++i) 2266 if (DemandedElts[i]) 2267 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2268 2269 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2270 TLO, Depth + 1)) 2271 return true; 2272 2273 // If all the src elements covering an output element are zero/undef, then 2274 // the output element will be as well, assuming it was demanded. 2275 for (unsigned i = 0; i != NumElts; ++i) { 2276 if (DemandedElts[i]) { 2277 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2278 KnownZero.setBit(i); 2279 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2280 KnownUndef.setBit(i); 2281 } 2282 } 2283 } 2284 break; 2285 } 2286 case ISD::BUILD_VECTOR: { 2287 // Check all elements and simplify any unused elements with UNDEF. 2288 if (!DemandedElts.isAllOnesValue()) { 2289 // Don't simplify BROADCASTS. 2290 if (llvm::any_of(Op->op_values(), 2291 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2292 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2293 bool Updated = false; 2294 for (unsigned i = 0; i != NumElts; ++i) { 2295 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2296 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2297 KnownUndef.setBit(i); 2298 Updated = true; 2299 } 2300 } 2301 if (Updated) 2302 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2303 } 2304 } 2305 for (unsigned i = 0; i != NumElts; ++i) { 2306 SDValue SrcOp = Op.getOperand(i); 2307 if (SrcOp.isUndef()) { 2308 KnownUndef.setBit(i); 2309 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2310 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2311 KnownZero.setBit(i); 2312 } 2313 } 2314 break; 2315 } 2316 case ISD::CONCAT_VECTORS: { 2317 EVT SubVT = Op.getOperand(0).getValueType(); 2318 unsigned NumSubVecs = Op.getNumOperands(); 2319 unsigned NumSubElts = SubVT.getVectorNumElements(); 2320 for (unsigned i = 0; i != NumSubVecs; ++i) { 2321 SDValue SubOp = Op.getOperand(i); 2322 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2323 APInt SubUndef, SubZero; 2324 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2325 Depth + 1)) 2326 return true; 2327 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2328 KnownZero.insertBits(SubZero, i * NumSubElts); 2329 } 2330 break; 2331 } 2332 case ISD::INSERT_SUBVECTOR: { 2333 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2334 break; 2335 SDValue Base = Op.getOperand(0); 2336 SDValue Sub = Op.getOperand(1); 2337 EVT SubVT = Sub.getValueType(); 2338 unsigned NumSubElts = SubVT.getVectorNumElements(); 2339 const APInt &Idx = Op.getConstantOperandAPInt(2); 2340 if (Idx.ugt(NumElts - NumSubElts)) 2341 break; 2342 unsigned SubIdx = Idx.getZExtValue(); 2343 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2344 APInt SubUndef, SubZero; 2345 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2346 Depth + 1)) 2347 return true; 2348 APInt BaseElts = DemandedElts; 2349 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2350 2351 // If none of the base operand elements are demanded, replace it with undef. 2352 if (!BaseElts && !Base.isUndef()) 2353 return TLO.CombineTo(Op, 2354 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2355 TLO.DAG.getUNDEF(VT), 2356 Op.getOperand(1), 2357 Op.getOperand(2))); 2358 2359 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2360 Depth + 1)) 2361 return true; 2362 KnownUndef.insertBits(SubUndef, SubIdx); 2363 KnownZero.insertBits(SubZero, SubIdx); 2364 break; 2365 } 2366 case ISD::EXTRACT_SUBVECTOR: { 2367 SDValue Src = Op.getOperand(0); 2368 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2369 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2370 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2371 // Offset the demanded elts by the subvector index. 2372 uint64_t Idx = SubIdx->getZExtValue(); 2373 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2374 APInt SrcUndef, SrcZero; 2375 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2376 Depth + 1)) 2377 return true; 2378 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2379 KnownZero = SrcZero.extractBits(NumElts, Idx); 2380 } 2381 break; 2382 } 2383 case ISD::INSERT_VECTOR_ELT: { 2384 SDValue Vec = Op.getOperand(0); 2385 SDValue Scl = Op.getOperand(1); 2386 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2387 2388 // For a legal, constant insertion index, if we don't need this insertion 2389 // then strip it, else remove it from the demanded elts. 2390 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2391 unsigned Idx = CIdx->getZExtValue(); 2392 if (!DemandedElts[Idx]) 2393 return TLO.CombineTo(Op, Vec); 2394 2395 APInt DemandedVecElts(DemandedElts); 2396 DemandedVecElts.clearBit(Idx); 2397 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2398 KnownZero, TLO, Depth + 1)) 2399 return true; 2400 2401 KnownUndef.clearBit(Idx); 2402 if (Scl.isUndef()) 2403 KnownUndef.setBit(Idx); 2404 2405 KnownZero.clearBit(Idx); 2406 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2407 KnownZero.setBit(Idx); 2408 break; 2409 } 2410 2411 APInt VecUndef, VecZero; 2412 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2413 Depth + 1)) 2414 return true; 2415 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2416 break; 2417 } 2418 case ISD::VSELECT: { 2419 // Try to transform the select condition based on the current demanded 2420 // elements. 2421 // TODO: If a condition element is undef, we can choose from one arm of the 2422 // select (and if one arm is undef, then we can propagate that to the 2423 // result). 2424 // TODO - add support for constant vselect masks (see IR version of this). 2425 APInt UnusedUndef, UnusedZero; 2426 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2427 UnusedZero, TLO, Depth + 1)) 2428 return true; 2429 2430 // See if we can simplify either vselect operand. 2431 APInt DemandedLHS(DemandedElts); 2432 APInt DemandedRHS(DemandedElts); 2433 APInt UndefLHS, ZeroLHS; 2434 APInt UndefRHS, ZeroRHS; 2435 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2436 ZeroLHS, TLO, Depth + 1)) 2437 return true; 2438 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2439 ZeroRHS, TLO, Depth + 1)) 2440 return true; 2441 2442 KnownUndef = UndefLHS & UndefRHS; 2443 KnownZero = ZeroLHS & ZeroRHS; 2444 break; 2445 } 2446 case ISD::VECTOR_SHUFFLE: { 2447 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2448 2449 // Collect demanded elements from shuffle operands.. 2450 APInt DemandedLHS(NumElts, 0); 2451 APInt DemandedRHS(NumElts, 0); 2452 for (unsigned i = 0; i != NumElts; ++i) { 2453 int M = ShuffleMask[i]; 2454 if (M < 0 || !DemandedElts[i]) 2455 continue; 2456 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2457 if (M < (int)NumElts) 2458 DemandedLHS.setBit(M); 2459 else 2460 DemandedRHS.setBit(M - NumElts); 2461 } 2462 2463 // See if we can simplify either shuffle operand. 2464 APInt UndefLHS, ZeroLHS; 2465 APInt UndefRHS, ZeroRHS; 2466 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2467 ZeroLHS, TLO, Depth + 1)) 2468 return true; 2469 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2470 ZeroRHS, TLO, Depth + 1)) 2471 return true; 2472 2473 // Simplify mask using undef elements from LHS/RHS. 2474 bool Updated = false; 2475 bool IdentityLHS = true, IdentityRHS = true; 2476 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2477 for (unsigned i = 0; i != NumElts; ++i) { 2478 int &M = NewMask[i]; 2479 if (M < 0) 2480 continue; 2481 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2482 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2483 Updated = true; 2484 M = -1; 2485 } 2486 IdentityLHS &= (M < 0) || (M == (int)i); 2487 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2488 } 2489 2490 // Update legal shuffle masks based on demanded elements if it won't reduce 2491 // to Identity which can cause premature removal of the shuffle mask. 2492 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2493 SDValue LegalShuffle = 2494 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2495 NewMask, TLO.DAG); 2496 if (LegalShuffle) 2497 return TLO.CombineTo(Op, LegalShuffle); 2498 } 2499 2500 // Propagate undef/zero elements from LHS/RHS. 2501 for (unsigned i = 0; i != NumElts; ++i) { 2502 int M = ShuffleMask[i]; 2503 if (M < 0) { 2504 KnownUndef.setBit(i); 2505 } else if (M < (int)NumElts) { 2506 if (UndefLHS[M]) 2507 KnownUndef.setBit(i); 2508 if (ZeroLHS[M]) 2509 KnownZero.setBit(i); 2510 } else { 2511 if (UndefRHS[M - NumElts]) 2512 KnownUndef.setBit(i); 2513 if (ZeroRHS[M - NumElts]) 2514 KnownZero.setBit(i); 2515 } 2516 } 2517 break; 2518 } 2519 case ISD::ANY_EXTEND_VECTOR_INREG: 2520 case ISD::SIGN_EXTEND_VECTOR_INREG: 2521 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2522 APInt SrcUndef, SrcZero; 2523 SDValue Src = Op.getOperand(0); 2524 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2525 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2526 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2527 Depth + 1)) 2528 return true; 2529 KnownZero = SrcZero.zextOrTrunc(NumElts); 2530 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2531 2532 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2533 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2534 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2535 // aext - if we just need the bottom element then we can bitcast. 2536 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2537 } 2538 2539 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2540 // zext(undef) upper bits are guaranteed to be zero. 2541 if (DemandedElts.isSubsetOf(KnownUndef)) 2542 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2543 KnownUndef.clearAllBits(); 2544 } 2545 break; 2546 } 2547 2548 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2549 // MAX, saturated math, etc. 2550 case ISD::OR: 2551 case ISD::XOR: 2552 case ISD::ADD: 2553 case ISD::SUB: 2554 case ISD::FADD: 2555 case ISD::FSUB: 2556 case ISD::FMUL: 2557 case ISD::FDIV: 2558 case ISD::FREM: { 2559 APInt UndefRHS, ZeroRHS; 2560 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2561 ZeroRHS, TLO, Depth + 1)) 2562 return true; 2563 APInt UndefLHS, ZeroLHS; 2564 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2565 ZeroLHS, TLO, Depth + 1)) 2566 return true; 2567 2568 KnownZero = ZeroLHS & ZeroRHS; 2569 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2570 break; 2571 } 2572 case ISD::SHL: 2573 case ISD::SRL: 2574 case ISD::SRA: 2575 case ISD::ROTL: 2576 case ISD::ROTR: { 2577 APInt UndefRHS, ZeroRHS; 2578 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2579 ZeroRHS, TLO, Depth + 1)) 2580 return true; 2581 APInt UndefLHS, ZeroLHS; 2582 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2583 ZeroLHS, TLO, Depth + 1)) 2584 return true; 2585 2586 KnownZero = ZeroLHS; 2587 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2588 break; 2589 } 2590 case ISD::MUL: 2591 case ISD::AND: { 2592 APInt SrcUndef, SrcZero; 2593 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2594 SrcZero, TLO, Depth + 1)) 2595 return true; 2596 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2597 KnownZero, TLO, Depth + 1)) 2598 return true; 2599 2600 // If either side has a zero element, then the result element is zero, even 2601 // if the other is an UNDEF. 2602 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2603 // and then handle 'and' nodes with the rest of the binop opcodes. 2604 KnownZero |= SrcZero; 2605 KnownUndef &= SrcUndef; 2606 KnownUndef &= ~KnownZero; 2607 break; 2608 } 2609 case ISD::TRUNCATE: 2610 case ISD::SIGN_EXTEND: 2611 case ISD::ZERO_EXTEND: 2612 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2613 KnownZero, TLO, Depth + 1)) 2614 return true; 2615 2616 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2617 // zext(undef) upper bits are guaranteed to be zero. 2618 if (DemandedElts.isSubsetOf(KnownUndef)) 2619 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2620 KnownUndef.clearAllBits(); 2621 } 2622 break; 2623 default: { 2624 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2625 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2626 KnownZero, TLO, Depth)) 2627 return true; 2628 } else { 2629 KnownBits Known; 2630 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2631 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2632 TLO, Depth, AssumeSingleUse)) 2633 return true; 2634 } 2635 break; 2636 } 2637 } 2638 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2639 2640 // Constant fold all undef cases. 2641 // TODO: Handle zero cases as well. 2642 if (DemandedElts.isSubsetOf(KnownUndef)) 2643 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2644 2645 return false; 2646 } 2647 2648 /// Determine which of the bits specified in Mask are known to be either zero or 2649 /// one and return them in the Known. 2650 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2651 KnownBits &Known, 2652 const APInt &DemandedElts, 2653 const SelectionDAG &DAG, 2654 unsigned Depth) const { 2655 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2656 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2657 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2658 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2659 "Should use MaskedValueIsZero if you don't know whether Op" 2660 " is a target node!"); 2661 Known.resetAll(); 2662 } 2663 2664 void TargetLowering::computeKnownBitsForTargetInstr( 2665 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2666 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2667 unsigned Depth) const { 2668 Known.resetAll(); 2669 } 2670 2671 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2672 KnownBits &Known, 2673 const APInt &DemandedElts, 2674 const SelectionDAG &DAG, 2675 unsigned Depth) const { 2676 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2677 2678 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2679 // The low bits are known zero if the pointer is aligned. 2680 Known.Zero.setLowBits(Log2_32(Align)); 2681 } 2682 } 2683 2684 /// This method can be implemented by targets that want to expose additional 2685 /// information about sign bits to the DAG Combiner. 2686 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2687 const APInt &, 2688 const SelectionDAG &, 2689 unsigned Depth) const { 2690 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2691 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2692 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2693 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2694 "Should use ComputeNumSignBits if you don't know whether Op" 2695 " is a target node!"); 2696 return 1; 2697 } 2698 2699 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2700 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2701 TargetLoweringOpt &TLO, unsigned Depth) const { 2702 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2703 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2704 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2705 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2706 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2707 " is a target node!"); 2708 return false; 2709 } 2710 2711 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2712 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2713 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2714 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2715 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2716 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2717 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2718 "Should use SimplifyDemandedBits if you don't know whether Op" 2719 " is a target node!"); 2720 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2721 return false; 2722 } 2723 2724 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2725 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2726 SelectionDAG &DAG, unsigned Depth) const { 2727 assert( 2728 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2729 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2730 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2731 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2732 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2733 " is a target node!"); 2734 return SDValue(); 2735 } 2736 2737 SDValue 2738 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2739 SDValue N1, MutableArrayRef<int> Mask, 2740 SelectionDAG &DAG) const { 2741 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2742 if (!LegalMask) { 2743 std::swap(N0, N1); 2744 ShuffleVectorSDNode::commuteMask(Mask); 2745 LegalMask = isShuffleMaskLegal(Mask, VT); 2746 } 2747 2748 if (!LegalMask) 2749 return SDValue(); 2750 2751 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2752 } 2753 2754 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2755 return nullptr; 2756 } 2757 2758 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2759 const SelectionDAG &DAG, 2760 bool SNaN, 2761 unsigned Depth) const { 2762 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2763 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2764 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2765 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2766 "Should use isKnownNeverNaN if you don't know whether Op" 2767 " is a target node!"); 2768 return false; 2769 } 2770 2771 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2772 // work with truncating build vectors and vectors with elements of less than 2773 // 8 bits. 2774 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2775 if (!N) 2776 return false; 2777 2778 APInt CVal; 2779 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2780 CVal = CN->getAPIntValue(); 2781 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2782 auto *CN = BV->getConstantSplatNode(); 2783 if (!CN) 2784 return false; 2785 2786 // If this is a truncating build vector, truncate the splat value. 2787 // Otherwise, we may fail to match the expected values below. 2788 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2789 CVal = CN->getAPIntValue(); 2790 if (BVEltWidth < CVal.getBitWidth()) 2791 CVal = CVal.trunc(BVEltWidth); 2792 } else { 2793 return false; 2794 } 2795 2796 switch (getBooleanContents(N->getValueType(0))) { 2797 case UndefinedBooleanContent: 2798 return CVal[0]; 2799 case ZeroOrOneBooleanContent: 2800 return CVal.isOneValue(); 2801 case ZeroOrNegativeOneBooleanContent: 2802 return CVal.isAllOnesValue(); 2803 } 2804 2805 llvm_unreachable("Invalid boolean contents"); 2806 } 2807 2808 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2809 if (!N) 2810 return false; 2811 2812 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2813 if (!CN) { 2814 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2815 if (!BV) 2816 return false; 2817 2818 // Only interested in constant splats, we don't care about undef 2819 // elements in identifying boolean constants and getConstantSplatNode 2820 // returns NULL if all ops are undef; 2821 CN = BV->getConstantSplatNode(); 2822 if (!CN) 2823 return false; 2824 } 2825 2826 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2827 return !CN->getAPIntValue()[0]; 2828 2829 return CN->isNullValue(); 2830 } 2831 2832 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2833 bool SExt) const { 2834 if (VT == MVT::i1) 2835 return N->isOne(); 2836 2837 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2838 switch (Cnt) { 2839 case TargetLowering::ZeroOrOneBooleanContent: 2840 // An extended value of 1 is always true, unless its original type is i1, 2841 // in which case it will be sign extended to -1. 2842 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2843 case TargetLowering::UndefinedBooleanContent: 2844 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2845 return N->isAllOnesValue() && SExt; 2846 } 2847 llvm_unreachable("Unexpected enumeration."); 2848 } 2849 2850 /// This helper function of SimplifySetCC tries to optimize the comparison when 2851 /// either operand of the SetCC node is a bitwise-and instruction. 2852 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2853 ISD::CondCode Cond, const SDLoc &DL, 2854 DAGCombinerInfo &DCI) const { 2855 // Match these patterns in any of their permutations: 2856 // (X & Y) == Y 2857 // (X & Y) != Y 2858 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2859 std::swap(N0, N1); 2860 2861 EVT OpVT = N0.getValueType(); 2862 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2863 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2864 return SDValue(); 2865 2866 SDValue X, Y; 2867 if (N0.getOperand(0) == N1) { 2868 X = N0.getOperand(1); 2869 Y = N0.getOperand(0); 2870 } else if (N0.getOperand(1) == N1) { 2871 X = N0.getOperand(0); 2872 Y = N0.getOperand(1); 2873 } else { 2874 return SDValue(); 2875 } 2876 2877 SelectionDAG &DAG = DCI.DAG; 2878 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2879 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2880 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2881 // Note that where Y is variable and is known to have at most one bit set 2882 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2883 // equivalent when Y == 0. 2884 assert(OpVT.isInteger()); 2885 Cond = ISD::getSetCCInverse(Cond, OpVT); 2886 if (DCI.isBeforeLegalizeOps() || 2887 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2888 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2889 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2890 // If the target supports an 'and-not' or 'and-complement' logic operation, 2891 // try to use that to make a comparison operation more efficient. 2892 // But don't do this transform if the mask is a single bit because there are 2893 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2894 // 'rlwinm' on PPC). 2895 2896 // Bail out if the compare operand that we want to turn into a zero is 2897 // already a zero (otherwise, infinite loop). 2898 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2899 if (YConst && YConst->isNullValue()) 2900 return SDValue(); 2901 2902 // Transform this into: ~X & Y == 0. 2903 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2904 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2905 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2906 } 2907 2908 return SDValue(); 2909 } 2910 2911 /// There are multiple IR patterns that could be checking whether certain 2912 /// truncation of a signed number would be lossy or not. The pattern which is 2913 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2914 /// We are looking for the following pattern: (KeptBits is a constant) 2915 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2916 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2917 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2918 /// We will unfold it into the natural trunc+sext pattern: 2919 /// ((%x << C) a>> C) dstcond %x 2920 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2921 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2922 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2923 const SDLoc &DL) const { 2924 // We must be comparing with a constant. 2925 ConstantSDNode *C1; 2926 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2927 return SDValue(); 2928 2929 // N0 should be: add %x, (1 << (KeptBits-1)) 2930 if (N0->getOpcode() != ISD::ADD) 2931 return SDValue(); 2932 2933 // And we must be 'add'ing a constant. 2934 ConstantSDNode *C01; 2935 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2936 return SDValue(); 2937 2938 SDValue X = N0->getOperand(0); 2939 EVT XVT = X.getValueType(); 2940 2941 // Validate constants ... 2942 2943 APInt I1 = C1->getAPIntValue(); 2944 2945 ISD::CondCode NewCond; 2946 if (Cond == ISD::CondCode::SETULT) { 2947 NewCond = ISD::CondCode::SETEQ; 2948 } else if (Cond == ISD::CondCode::SETULE) { 2949 NewCond = ISD::CondCode::SETEQ; 2950 // But need to 'canonicalize' the constant. 2951 I1 += 1; 2952 } else if (Cond == ISD::CondCode::SETUGT) { 2953 NewCond = ISD::CondCode::SETNE; 2954 // But need to 'canonicalize' the constant. 2955 I1 += 1; 2956 } else if (Cond == ISD::CondCode::SETUGE) { 2957 NewCond = ISD::CondCode::SETNE; 2958 } else 2959 return SDValue(); 2960 2961 APInt I01 = C01->getAPIntValue(); 2962 2963 auto checkConstants = [&I1, &I01]() -> bool { 2964 // Both of them must be power-of-two, and the constant from setcc is bigger. 2965 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2966 }; 2967 2968 if (checkConstants()) { 2969 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2970 } else { 2971 // What if we invert constants? (and the target predicate) 2972 I1.negate(); 2973 I01.negate(); 2974 assert(XVT.isInteger()); 2975 NewCond = getSetCCInverse(NewCond, XVT); 2976 if (!checkConstants()) 2977 return SDValue(); 2978 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2979 } 2980 2981 // They are power-of-two, so which bit is set? 2982 const unsigned KeptBits = I1.logBase2(); 2983 const unsigned KeptBitsMinusOne = I01.logBase2(); 2984 2985 // Magic! 2986 if (KeptBits != (KeptBitsMinusOne + 1)) 2987 return SDValue(); 2988 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2989 2990 // We don't want to do this in every single case. 2991 SelectionDAG &DAG = DCI.DAG; 2992 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2993 XVT, KeptBits)) 2994 return SDValue(); 2995 2996 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2997 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2998 2999 // Unfold into: ((%x << C) a>> C) cond %x 3000 // Where 'cond' will be either 'eq' or 'ne'. 3001 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3002 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3003 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3004 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3005 3006 return T2; 3007 } 3008 3009 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3010 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3011 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3012 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3013 assert(isConstOrConstSplat(N1C) && 3014 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3015 "Should be a comparison with 0."); 3016 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3017 "Valid only for [in]equality comparisons."); 3018 3019 unsigned NewShiftOpcode; 3020 SDValue X, C, Y; 3021 3022 SelectionDAG &DAG = DCI.DAG; 3023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3024 3025 // Look for '(C l>>/<< Y)'. 3026 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3027 // The shift should be one-use. 3028 if (!V.hasOneUse()) 3029 return false; 3030 unsigned OldShiftOpcode = V.getOpcode(); 3031 switch (OldShiftOpcode) { 3032 case ISD::SHL: 3033 NewShiftOpcode = ISD::SRL; 3034 break; 3035 case ISD::SRL: 3036 NewShiftOpcode = ISD::SHL; 3037 break; 3038 default: 3039 return false; // must be a logical shift. 3040 } 3041 // We should be shifting a constant. 3042 // FIXME: best to use isConstantOrConstantVector(). 3043 C = V.getOperand(0); 3044 ConstantSDNode *CC = 3045 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3046 if (!CC) 3047 return false; 3048 Y = V.getOperand(1); 3049 3050 ConstantSDNode *XC = 3051 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3052 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3053 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3054 }; 3055 3056 // LHS of comparison should be an one-use 'and'. 3057 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3058 return SDValue(); 3059 3060 X = N0.getOperand(0); 3061 SDValue Mask = N0.getOperand(1); 3062 3063 // 'and' is commutative! 3064 if (!Match(Mask)) { 3065 std::swap(X, Mask); 3066 if (!Match(Mask)) 3067 return SDValue(); 3068 } 3069 3070 EVT VT = X.getValueType(); 3071 3072 // Produce: 3073 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3074 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3075 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3076 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3077 return T2; 3078 } 3079 3080 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3081 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3082 /// handle the commuted versions of these patterns. 3083 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3084 ISD::CondCode Cond, const SDLoc &DL, 3085 DAGCombinerInfo &DCI) const { 3086 unsigned BOpcode = N0.getOpcode(); 3087 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3088 "Unexpected binop"); 3089 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3090 3091 // (X + Y) == X --> Y == 0 3092 // (X - Y) == X --> Y == 0 3093 // (X ^ Y) == X --> Y == 0 3094 SelectionDAG &DAG = DCI.DAG; 3095 EVT OpVT = N0.getValueType(); 3096 SDValue X = N0.getOperand(0); 3097 SDValue Y = N0.getOperand(1); 3098 if (X == N1) 3099 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3100 3101 if (Y != N1) 3102 return SDValue(); 3103 3104 // (X + Y) == Y --> X == 0 3105 // (X ^ Y) == Y --> X == 0 3106 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3107 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3108 3109 // The shift would not be valid if the operands are boolean (i1). 3110 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3111 return SDValue(); 3112 3113 // (X - Y) == Y --> X == Y << 1 3114 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3115 !DCI.isBeforeLegalize()); 3116 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3117 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3118 if (!DCI.isCalledByLegalizer()) 3119 DCI.AddToWorklist(YShl1.getNode()); 3120 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3121 } 3122 3123 /// Try to simplify a setcc built with the specified operands and cc. If it is 3124 /// unable to simplify it, return a null SDValue. 3125 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3126 ISD::CondCode Cond, bool foldBooleans, 3127 DAGCombinerInfo &DCI, 3128 const SDLoc &dl) const { 3129 SelectionDAG &DAG = DCI.DAG; 3130 const DataLayout &Layout = DAG.getDataLayout(); 3131 EVT OpVT = N0.getValueType(); 3132 3133 // Constant fold or commute setcc. 3134 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3135 return Fold; 3136 3137 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3138 // TODO: Handle non-splat vector constants. All undef causes trouble. 3139 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3140 if (isConstOrConstSplat(N0) && 3141 (DCI.isBeforeLegalizeOps() || 3142 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3143 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3144 3145 // If we have a subtract with the same 2 non-constant operands as this setcc 3146 // -- but in reverse order -- then try to commute the operands of this setcc 3147 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3148 // instruction on some targets. 3149 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3150 (DCI.isBeforeLegalizeOps() || 3151 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3152 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3153 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3154 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3155 3156 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3157 const APInt &C1 = N1C->getAPIntValue(); 3158 3159 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3160 // equality comparison, then we're just comparing whether X itself is 3161 // zero. 3162 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3163 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3164 N0.getOperand(1).getOpcode() == ISD::Constant) { 3165 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3166 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3167 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3168 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3169 // (srl (ctlz x), 5) == 0 -> X != 0 3170 // (srl (ctlz x), 5) != 1 -> X != 0 3171 Cond = ISD::SETNE; 3172 } else { 3173 // (srl (ctlz x), 5) != 0 -> X == 0 3174 // (srl (ctlz x), 5) == 1 -> X == 0 3175 Cond = ISD::SETEQ; 3176 } 3177 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3178 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3179 Zero, Cond); 3180 } 3181 } 3182 3183 SDValue CTPOP = N0; 3184 // Look through truncs that don't change the value of a ctpop. 3185 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3186 CTPOP = N0.getOperand(0); 3187 3188 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3189 (N0 == CTPOP || 3190 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3191 EVT CTVT = CTPOP.getValueType(); 3192 SDValue CTOp = CTPOP.getOperand(0); 3193 3194 // (ctpop x) u< 2 -> (x & x-1) == 0 3195 // (ctpop x) u> 1 -> (x & x-1) != 0 3196 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3197 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3198 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3199 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3200 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3201 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3202 } 3203 3204 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3205 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3206 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3207 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3208 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3209 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3210 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3211 assert(CTVT.isInteger()); 3212 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3213 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3214 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3215 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3216 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3217 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3218 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3219 } 3220 } 3221 3222 // (zext x) == C --> x == (trunc C) 3223 // (sext x) == C --> x == (trunc C) 3224 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3225 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3226 unsigned MinBits = N0.getValueSizeInBits(); 3227 SDValue PreExt; 3228 bool Signed = false; 3229 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3230 // ZExt 3231 MinBits = N0->getOperand(0).getValueSizeInBits(); 3232 PreExt = N0->getOperand(0); 3233 } else if (N0->getOpcode() == ISD::AND) { 3234 // DAGCombine turns costly ZExts into ANDs 3235 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3236 if ((C->getAPIntValue()+1).isPowerOf2()) { 3237 MinBits = C->getAPIntValue().countTrailingOnes(); 3238 PreExt = N0->getOperand(0); 3239 } 3240 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3241 // SExt 3242 MinBits = N0->getOperand(0).getValueSizeInBits(); 3243 PreExt = N0->getOperand(0); 3244 Signed = true; 3245 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3246 // ZEXTLOAD / SEXTLOAD 3247 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3248 MinBits = LN0->getMemoryVT().getSizeInBits(); 3249 PreExt = N0; 3250 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3251 Signed = true; 3252 MinBits = LN0->getMemoryVT().getSizeInBits(); 3253 PreExt = N0; 3254 } 3255 } 3256 3257 // Figure out how many bits we need to preserve this constant. 3258 unsigned ReqdBits = Signed ? 3259 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3260 C1.getActiveBits(); 3261 3262 // Make sure we're not losing bits from the constant. 3263 if (MinBits > 0 && 3264 MinBits < C1.getBitWidth() && 3265 MinBits >= ReqdBits) { 3266 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3267 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3268 // Will get folded away. 3269 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3270 if (MinBits == 1 && C1 == 1) 3271 // Invert the condition. 3272 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3273 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3274 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3275 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3276 } 3277 3278 // If truncating the setcc operands is not desirable, we can still 3279 // simplify the expression in some cases: 3280 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3281 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3282 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3283 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3284 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3285 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3286 SDValue TopSetCC = N0->getOperand(0); 3287 unsigned N0Opc = N0->getOpcode(); 3288 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3289 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3290 TopSetCC.getOpcode() == ISD::SETCC && 3291 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3292 (isConstFalseVal(N1C) || 3293 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3294 3295 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3296 (!N1C->isNullValue() && Cond == ISD::SETNE); 3297 3298 if (!Inverse) 3299 return TopSetCC; 3300 3301 ISD::CondCode InvCond = ISD::getSetCCInverse( 3302 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3303 TopSetCC.getOperand(0).getValueType()); 3304 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3305 TopSetCC.getOperand(1), 3306 InvCond); 3307 } 3308 } 3309 } 3310 3311 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3312 // equality or unsigned, and all 1 bits of the const are in the same 3313 // partial word, see if we can shorten the load. 3314 if (DCI.isBeforeLegalize() && 3315 !ISD::isSignedIntSetCC(Cond) && 3316 N0.getOpcode() == ISD::AND && C1 == 0 && 3317 N0.getNode()->hasOneUse() && 3318 isa<LoadSDNode>(N0.getOperand(0)) && 3319 N0.getOperand(0).getNode()->hasOneUse() && 3320 isa<ConstantSDNode>(N0.getOperand(1))) { 3321 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3322 APInt bestMask; 3323 unsigned bestWidth = 0, bestOffset = 0; 3324 if (Lod->isSimple() && Lod->isUnindexed()) { 3325 unsigned origWidth = N0.getValueSizeInBits(); 3326 unsigned maskWidth = origWidth; 3327 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3328 // 8 bits, but have to be careful... 3329 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3330 origWidth = Lod->getMemoryVT().getSizeInBits(); 3331 const APInt &Mask = N0.getConstantOperandAPInt(1); 3332 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3333 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3334 for (unsigned offset=0; offset<origWidth/width; offset++) { 3335 if (Mask.isSubsetOf(newMask)) { 3336 if (Layout.isLittleEndian()) 3337 bestOffset = (uint64_t)offset * (width/8); 3338 else 3339 bestOffset = (origWidth/width - offset - 1) * (width/8); 3340 bestMask = Mask.lshr(offset * (width/8) * 8); 3341 bestWidth = width; 3342 break; 3343 } 3344 newMask <<= width; 3345 } 3346 } 3347 } 3348 if (bestWidth) { 3349 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3350 if (newVT.isRound() && 3351 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3352 SDValue Ptr = Lod->getBasePtr(); 3353 if (bestOffset != 0) 3354 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3355 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3356 SDValue NewLoad = DAG.getLoad( 3357 newVT, dl, Lod->getChain(), Ptr, 3358 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3359 return DAG.getSetCC(dl, VT, 3360 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3361 DAG.getConstant(bestMask.trunc(bestWidth), 3362 dl, newVT)), 3363 DAG.getConstant(0LL, dl, newVT), Cond); 3364 } 3365 } 3366 } 3367 3368 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3369 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3370 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3371 3372 // If the comparison constant has bits in the upper part, the 3373 // zero-extended value could never match. 3374 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3375 C1.getBitWidth() - InSize))) { 3376 switch (Cond) { 3377 case ISD::SETUGT: 3378 case ISD::SETUGE: 3379 case ISD::SETEQ: 3380 return DAG.getConstant(0, dl, VT); 3381 case ISD::SETULT: 3382 case ISD::SETULE: 3383 case ISD::SETNE: 3384 return DAG.getConstant(1, dl, VT); 3385 case ISD::SETGT: 3386 case ISD::SETGE: 3387 // True if the sign bit of C1 is set. 3388 return DAG.getConstant(C1.isNegative(), dl, VT); 3389 case ISD::SETLT: 3390 case ISD::SETLE: 3391 // True if the sign bit of C1 isn't set. 3392 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3393 default: 3394 break; 3395 } 3396 } 3397 3398 // Otherwise, we can perform the comparison with the low bits. 3399 switch (Cond) { 3400 case ISD::SETEQ: 3401 case ISD::SETNE: 3402 case ISD::SETUGT: 3403 case ISD::SETUGE: 3404 case ISD::SETULT: 3405 case ISD::SETULE: { 3406 EVT newVT = N0.getOperand(0).getValueType(); 3407 if (DCI.isBeforeLegalizeOps() || 3408 (isOperationLegal(ISD::SETCC, newVT) && 3409 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3410 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3411 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3412 3413 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3414 NewConst, Cond); 3415 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3416 } 3417 break; 3418 } 3419 default: 3420 break; // todo, be more careful with signed comparisons 3421 } 3422 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3423 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3424 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3425 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3426 EVT ExtDstTy = N0.getValueType(); 3427 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3428 3429 // If the constant doesn't fit into the number of bits for the source of 3430 // the sign extension, it is impossible for both sides to be equal. 3431 if (C1.getMinSignedBits() > ExtSrcTyBits) 3432 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3433 3434 SDValue ZextOp; 3435 EVT Op0Ty = N0.getOperand(0).getValueType(); 3436 if (Op0Ty == ExtSrcTy) { 3437 ZextOp = N0.getOperand(0); 3438 } else { 3439 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3440 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3441 DAG.getConstant(Imm, dl, Op0Ty)); 3442 } 3443 if (!DCI.isCalledByLegalizer()) 3444 DCI.AddToWorklist(ZextOp.getNode()); 3445 // Otherwise, make this a use of a zext. 3446 return DAG.getSetCC(dl, VT, ZextOp, 3447 DAG.getConstant(C1 & APInt::getLowBitsSet( 3448 ExtDstTyBits, 3449 ExtSrcTyBits), 3450 dl, ExtDstTy), 3451 Cond); 3452 } else if ((N1C->isNullValue() || N1C->isOne()) && 3453 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3454 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3455 if (N0.getOpcode() == ISD::SETCC && 3456 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3457 (N0.getValueType() == MVT::i1 || 3458 getBooleanContents(N0.getOperand(0).getValueType()) == 3459 ZeroOrOneBooleanContent)) { 3460 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3461 if (TrueWhenTrue) 3462 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3463 // Invert the condition. 3464 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3465 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3466 if (DCI.isBeforeLegalizeOps() || 3467 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3468 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3469 } 3470 3471 if ((N0.getOpcode() == ISD::XOR || 3472 (N0.getOpcode() == ISD::AND && 3473 N0.getOperand(0).getOpcode() == ISD::XOR && 3474 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3475 isa<ConstantSDNode>(N0.getOperand(1)) && 3476 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3477 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3478 // can only do this if the top bits are known zero. 3479 unsigned BitWidth = N0.getValueSizeInBits(); 3480 if (DAG.MaskedValueIsZero(N0, 3481 APInt::getHighBitsSet(BitWidth, 3482 BitWidth-1))) { 3483 // Okay, get the un-inverted input value. 3484 SDValue Val; 3485 if (N0.getOpcode() == ISD::XOR) { 3486 Val = N0.getOperand(0); 3487 } else { 3488 assert(N0.getOpcode() == ISD::AND && 3489 N0.getOperand(0).getOpcode() == ISD::XOR); 3490 // ((X^1)&1)^1 -> X & 1 3491 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3492 N0.getOperand(0).getOperand(0), 3493 N0.getOperand(1)); 3494 } 3495 3496 return DAG.getSetCC(dl, VT, Val, N1, 3497 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3498 } 3499 } else if (N1C->isOne()) { 3500 SDValue Op0 = N0; 3501 if (Op0.getOpcode() == ISD::TRUNCATE) 3502 Op0 = Op0.getOperand(0); 3503 3504 if ((Op0.getOpcode() == ISD::XOR) && 3505 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3506 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3507 SDValue XorLHS = Op0.getOperand(0); 3508 SDValue XorRHS = Op0.getOperand(1); 3509 // Ensure that the input setccs return an i1 type or 0/1 value. 3510 if (Op0.getValueType() == MVT::i1 || 3511 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3512 ZeroOrOneBooleanContent && 3513 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3514 ZeroOrOneBooleanContent)) { 3515 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3516 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3517 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3518 } 3519 } 3520 if (Op0.getOpcode() == ISD::AND && 3521 isa<ConstantSDNode>(Op0.getOperand(1)) && 3522 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3523 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3524 if (Op0.getValueType().bitsGT(VT)) 3525 Op0 = DAG.getNode(ISD::AND, dl, VT, 3526 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3527 DAG.getConstant(1, dl, VT)); 3528 else if (Op0.getValueType().bitsLT(VT)) 3529 Op0 = DAG.getNode(ISD::AND, dl, VT, 3530 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3531 DAG.getConstant(1, dl, VT)); 3532 3533 return DAG.getSetCC(dl, VT, Op0, 3534 DAG.getConstant(0, dl, Op0.getValueType()), 3535 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3536 } 3537 if (Op0.getOpcode() == ISD::AssertZext && 3538 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3539 return DAG.getSetCC(dl, VT, Op0, 3540 DAG.getConstant(0, dl, Op0.getValueType()), 3541 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3542 } 3543 } 3544 3545 // Given: 3546 // icmp eq/ne (urem %x, %y), 0 3547 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3548 // icmp eq/ne %x, 0 3549 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3550 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3551 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3552 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3553 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3554 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3555 } 3556 3557 if (SDValue V = 3558 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3559 return V; 3560 } 3561 3562 // These simplifications apply to splat vectors as well. 3563 // TODO: Handle more splat vector cases. 3564 if (auto *N1C = isConstOrConstSplat(N1)) { 3565 const APInt &C1 = N1C->getAPIntValue(); 3566 3567 APInt MinVal, MaxVal; 3568 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3569 if (ISD::isSignedIntSetCC(Cond)) { 3570 MinVal = APInt::getSignedMinValue(OperandBitSize); 3571 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3572 } else { 3573 MinVal = APInt::getMinValue(OperandBitSize); 3574 MaxVal = APInt::getMaxValue(OperandBitSize); 3575 } 3576 3577 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3578 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3579 // X >= MIN --> true 3580 if (C1 == MinVal) 3581 return DAG.getBoolConstant(true, dl, VT, OpVT); 3582 3583 if (!VT.isVector()) { // TODO: Support this for vectors. 3584 // X >= C0 --> X > (C0 - 1) 3585 APInt C = C1 - 1; 3586 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3587 if ((DCI.isBeforeLegalizeOps() || 3588 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3589 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3590 isLegalICmpImmediate(C.getSExtValue())))) { 3591 return DAG.getSetCC(dl, VT, N0, 3592 DAG.getConstant(C, dl, N1.getValueType()), 3593 NewCC); 3594 } 3595 } 3596 } 3597 3598 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3599 // X <= MAX --> true 3600 if (C1 == MaxVal) 3601 return DAG.getBoolConstant(true, dl, VT, OpVT); 3602 3603 // X <= C0 --> X < (C0 + 1) 3604 if (!VT.isVector()) { // TODO: Support this for vectors. 3605 APInt C = C1 + 1; 3606 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3607 if ((DCI.isBeforeLegalizeOps() || 3608 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3609 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3610 isLegalICmpImmediate(C.getSExtValue())))) { 3611 return DAG.getSetCC(dl, VT, N0, 3612 DAG.getConstant(C, dl, N1.getValueType()), 3613 NewCC); 3614 } 3615 } 3616 } 3617 3618 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3619 if (C1 == MinVal) 3620 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3621 3622 // TODO: Support this for vectors after legalize ops. 3623 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3624 // Canonicalize setlt X, Max --> setne X, Max 3625 if (C1 == MaxVal) 3626 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3627 3628 // If we have setult X, 1, turn it into seteq X, 0 3629 if (C1 == MinVal+1) 3630 return DAG.getSetCC(dl, VT, N0, 3631 DAG.getConstant(MinVal, dl, N0.getValueType()), 3632 ISD::SETEQ); 3633 } 3634 } 3635 3636 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3637 if (C1 == MaxVal) 3638 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3639 3640 // TODO: Support this for vectors after legalize ops. 3641 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3642 // Canonicalize setgt X, Min --> setne X, Min 3643 if (C1 == MinVal) 3644 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3645 3646 // If we have setugt X, Max-1, turn it into seteq X, Max 3647 if (C1 == MaxVal-1) 3648 return DAG.getSetCC(dl, VT, N0, 3649 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3650 ISD::SETEQ); 3651 } 3652 } 3653 3654 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3655 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3656 if (C1.isNullValue()) 3657 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3658 VT, N0, N1, Cond, DCI, dl)) 3659 return CC; 3660 } 3661 3662 // If we have "setcc X, C0", check to see if we can shrink the immediate 3663 // by changing cc. 3664 // TODO: Support this for vectors after legalize ops. 3665 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3666 // SETUGT X, SINTMAX -> SETLT X, 0 3667 if (Cond == ISD::SETUGT && 3668 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3669 return DAG.getSetCC(dl, VT, N0, 3670 DAG.getConstant(0, dl, N1.getValueType()), 3671 ISD::SETLT); 3672 3673 // SETULT X, SINTMIN -> SETGT X, -1 3674 if (Cond == ISD::SETULT && 3675 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3676 SDValue ConstMinusOne = 3677 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3678 N1.getValueType()); 3679 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3680 } 3681 } 3682 } 3683 3684 // Back to non-vector simplifications. 3685 // TODO: Can we do these for vector splats? 3686 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3688 const APInt &C1 = N1C->getAPIntValue(); 3689 EVT ShValTy = N0.getValueType(); 3690 3691 // Fold bit comparisons when we can. 3692 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3693 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3694 N0.getOpcode() == ISD::AND) { 3695 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3696 EVT ShiftTy = 3697 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3698 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3699 // Perform the xform if the AND RHS is a single bit. 3700 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3701 if (AndRHS->getAPIntValue().isPowerOf2() && 3702 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3703 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3704 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3705 DAG.getConstant(ShCt, dl, ShiftTy))); 3706 } 3707 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3708 // (X & 8) == 8 --> (X & 8) >> 3 3709 // Perform the xform if C1 is a single bit. 3710 unsigned ShCt = C1.logBase2(); 3711 if (C1.isPowerOf2() && 3712 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3713 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3714 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3715 DAG.getConstant(ShCt, dl, ShiftTy))); 3716 } 3717 } 3718 } 3719 } 3720 3721 if (C1.getMinSignedBits() <= 64 && 3722 !isLegalICmpImmediate(C1.getSExtValue())) { 3723 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3724 // (X & -256) == 256 -> (X >> 8) == 1 3725 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3726 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3727 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3728 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3729 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3730 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3731 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3732 SDValue Shift = 3733 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3734 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3735 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3736 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3737 } 3738 } 3739 } 3740 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3741 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3742 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3743 // X < 0x100000000 -> (X >> 32) < 1 3744 // X >= 0x100000000 -> (X >> 32) >= 1 3745 // X <= 0x0ffffffff -> (X >> 32) < 1 3746 // X > 0x0ffffffff -> (X >> 32) >= 1 3747 unsigned ShiftBits; 3748 APInt NewC = C1; 3749 ISD::CondCode NewCond = Cond; 3750 if (AdjOne) { 3751 ShiftBits = C1.countTrailingOnes(); 3752 NewC = NewC + 1; 3753 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3754 } else { 3755 ShiftBits = C1.countTrailingZeros(); 3756 } 3757 NewC.lshrInPlace(ShiftBits); 3758 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3759 isLegalICmpImmediate(NewC.getSExtValue()) && 3760 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3761 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3762 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3763 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3764 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3765 } 3766 } 3767 } 3768 } 3769 3770 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3771 auto *CFP = cast<ConstantFPSDNode>(N1); 3772 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3773 3774 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3775 // constant if knowing that the operand is non-nan is enough. We prefer to 3776 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3777 // materialize 0.0. 3778 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3779 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3780 3781 // setcc (fneg x), C -> setcc swap(pred) x, -C 3782 if (N0.getOpcode() == ISD::FNEG) { 3783 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3784 if (DCI.isBeforeLegalizeOps() || 3785 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3786 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3787 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3788 } 3789 } 3790 3791 // If the condition is not legal, see if we can find an equivalent one 3792 // which is legal. 3793 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3794 // If the comparison was an awkward floating-point == or != and one of 3795 // the comparison operands is infinity or negative infinity, convert the 3796 // condition to a less-awkward <= or >=. 3797 if (CFP->getValueAPF().isInfinity()) { 3798 if (CFP->getValueAPF().isNegative()) { 3799 if (Cond == ISD::SETOEQ && 3800 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3801 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3802 if (Cond == ISD::SETUEQ && 3803 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3804 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3805 if (Cond == ISD::SETUNE && 3806 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3807 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3808 if (Cond == ISD::SETONE && 3809 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3810 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3811 } else { 3812 if (Cond == ISD::SETOEQ && 3813 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3814 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3815 if (Cond == ISD::SETUEQ && 3816 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3817 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3818 if (Cond == ISD::SETUNE && 3819 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3820 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3821 if (Cond == ISD::SETONE && 3822 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3823 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3824 } 3825 } 3826 } 3827 } 3828 3829 if (N0 == N1) { 3830 // The sext(setcc()) => setcc() optimization relies on the appropriate 3831 // constant being emitted. 3832 assert(!N0.getValueType().isInteger() && 3833 "Integer types should be handled by FoldSetCC"); 3834 3835 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3836 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3837 if (UOF == 2) // FP operators that are undefined on NaNs. 3838 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3839 if (UOF == unsigned(EqTrue)) 3840 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3841 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3842 // if it is not already. 3843 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3844 if (NewCond != Cond && 3845 (DCI.isBeforeLegalizeOps() || 3846 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3847 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3848 } 3849 3850 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3851 N0.getValueType().isInteger()) { 3852 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3853 N0.getOpcode() == ISD::XOR) { 3854 // Simplify (X+Y) == (X+Z) --> Y == Z 3855 if (N0.getOpcode() == N1.getOpcode()) { 3856 if (N0.getOperand(0) == N1.getOperand(0)) 3857 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3858 if (N0.getOperand(1) == N1.getOperand(1)) 3859 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3860 if (isCommutativeBinOp(N0.getOpcode())) { 3861 // If X op Y == Y op X, try other combinations. 3862 if (N0.getOperand(0) == N1.getOperand(1)) 3863 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3864 Cond); 3865 if (N0.getOperand(1) == N1.getOperand(0)) 3866 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3867 Cond); 3868 } 3869 } 3870 3871 // If RHS is a legal immediate value for a compare instruction, we need 3872 // to be careful about increasing register pressure needlessly. 3873 bool LegalRHSImm = false; 3874 3875 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3876 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3877 // Turn (X+C1) == C2 --> X == C2-C1 3878 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3879 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3880 DAG.getConstant(RHSC->getAPIntValue()- 3881 LHSR->getAPIntValue(), 3882 dl, N0.getValueType()), Cond); 3883 } 3884 3885 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3886 if (N0.getOpcode() == ISD::XOR) 3887 // If we know that all of the inverted bits are zero, don't bother 3888 // performing the inversion. 3889 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3890 return 3891 DAG.getSetCC(dl, VT, N0.getOperand(0), 3892 DAG.getConstant(LHSR->getAPIntValue() ^ 3893 RHSC->getAPIntValue(), 3894 dl, N0.getValueType()), 3895 Cond); 3896 } 3897 3898 // Turn (C1-X) == C2 --> X == C1-C2 3899 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3900 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3901 return 3902 DAG.getSetCC(dl, VT, N0.getOperand(1), 3903 DAG.getConstant(SUBC->getAPIntValue() - 3904 RHSC->getAPIntValue(), 3905 dl, N0.getValueType()), 3906 Cond); 3907 } 3908 } 3909 3910 // Could RHSC fold directly into a compare? 3911 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3912 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3913 } 3914 3915 // (X+Y) == X --> Y == 0 and similar folds. 3916 // Don't do this if X is an immediate that can fold into a cmp 3917 // instruction and X+Y has other uses. It could be an induction variable 3918 // chain, and the transform would increase register pressure. 3919 if (!LegalRHSImm || N0.hasOneUse()) 3920 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3921 return V; 3922 } 3923 3924 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3925 N1.getOpcode() == ISD::XOR) 3926 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3927 return V; 3928 3929 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3930 return V; 3931 } 3932 3933 // Fold remainder of division by a constant. 3934 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3935 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3936 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3937 3938 // When division is cheap or optimizing for minimum size, 3939 // fall through to DIVREM creation by skipping this fold. 3940 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3941 if (N0.getOpcode() == ISD::UREM) { 3942 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3943 return Folded; 3944 } else if (N0.getOpcode() == ISD::SREM) { 3945 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3946 return Folded; 3947 } 3948 } 3949 } 3950 3951 // Fold away ALL boolean setcc's. 3952 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3953 SDValue Temp; 3954 switch (Cond) { 3955 default: llvm_unreachable("Unknown integer setcc!"); 3956 case ISD::SETEQ: // X == Y -> ~(X^Y) 3957 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3958 N0 = DAG.getNOT(dl, Temp, OpVT); 3959 if (!DCI.isCalledByLegalizer()) 3960 DCI.AddToWorklist(Temp.getNode()); 3961 break; 3962 case ISD::SETNE: // X != Y --> (X^Y) 3963 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3964 break; 3965 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3966 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3967 Temp = DAG.getNOT(dl, N0, OpVT); 3968 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3969 if (!DCI.isCalledByLegalizer()) 3970 DCI.AddToWorklist(Temp.getNode()); 3971 break; 3972 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3973 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3974 Temp = DAG.getNOT(dl, N1, OpVT); 3975 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3976 if (!DCI.isCalledByLegalizer()) 3977 DCI.AddToWorklist(Temp.getNode()); 3978 break; 3979 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3980 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3981 Temp = DAG.getNOT(dl, N0, OpVT); 3982 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3983 if (!DCI.isCalledByLegalizer()) 3984 DCI.AddToWorklist(Temp.getNode()); 3985 break; 3986 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3987 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3988 Temp = DAG.getNOT(dl, N1, OpVT); 3989 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3990 break; 3991 } 3992 if (VT.getScalarType() != MVT::i1) { 3993 if (!DCI.isCalledByLegalizer()) 3994 DCI.AddToWorklist(N0.getNode()); 3995 // FIXME: If running after legalize, we probably can't do this. 3996 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3997 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3998 } 3999 return N0; 4000 } 4001 4002 // Could not fold it. 4003 return SDValue(); 4004 } 4005 4006 /// Returns true (and the GlobalValue and the offset) if the node is a 4007 /// GlobalAddress + offset. 4008 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4009 int64_t &Offset) const { 4010 4011 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4012 4013 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4014 GA = GASD->getGlobal(); 4015 Offset += GASD->getOffset(); 4016 return true; 4017 } 4018 4019 if (N->getOpcode() == ISD::ADD) { 4020 SDValue N1 = N->getOperand(0); 4021 SDValue N2 = N->getOperand(1); 4022 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4023 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4024 Offset += V->getSExtValue(); 4025 return true; 4026 } 4027 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4028 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4029 Offset += V->getSExtValue(); 4030 return true; 4031 } 4032 } 4033 } 4034 4035 return false; 4036 } 4037 4038 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4039 DAGCombinerInfo &DCI) const { 4040 // Default implementation: no optimization. 4041 return SDValue(); 4042 } 4043 4044 //===----------------------------------------------------------------------===// 4045 // Inline Assembler Implementation Methods 4046 //===----------------------------------------------------------------------===// 4047 4048 TargetLowering::ConstraintType 4049 TargetLowering::getConstraintType(StringRef Constraint) const { 4050 unsigned S = Constraint.size(); 4051 4052 if (S == 1) { 4053 switch (Constraint[0]) { 4054 default: break; 4055 case 'r': 4056 return C_RegisterClass; 4057 case 'm': // memory 4058 case 'o': // offsetable 4059 case 'V': // not offsetable 4060 return C_Memory; 4061 case 'n': // Simple Integer 4062 case 'E': // Floating Point Constant 4063 case 'F': // Floating Point Constant 4064 return C_Immediate; 4065 case 'i': // Simple Integer or Relocatable Constant 4066 case 's': // Relocatable Constant 4067 case 'p': // Address. 4068 case 'X': // Allow ANY value. 4069 case 'I': // Target registers. 4070 case 'J': 4071 case 'K': 4072 case 'L': 4073 case 'M': 4074 case 'N': 4075 case 'O': 4076 case 'P': 4077 case '<': 4078 case '>': 4079 return C_Other; 4080 } 4081 } 4082 4083 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4084 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4085 return C_Memory; 4086 return C_Register; 4087 } 4088 return C_Unknown; 4089 } 4090 4091 /// Try to replace an X constraint, which matches anything, with another that 4092 /// has more specific requirements based on the type of the corresponding 4093 /// operand. 4094 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4095 if (ConstraintVT.isInteger()) 4096 return "r"; 4097 if (ConstraintVT.isFloatingPoint()) 4098 return "f"; // works for many targets 4099 return nullptr; 4100 } 4101 4102 SDValue TargetLowering::LowerAsmOutputForConstraint( 4103 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4104 SelectionDAG &DAG) const { 4105 return SDValue(); 4106 } 4107 4108 /// Lower the specified operand into the Ops vector. 4109 /// If it is invalid, don't add anything to Ops. 4110 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4111 std::string &Constraint, 4112 std::vector<SDValue> &Ops, 4113 SelectionDAG &DAG) const { 4114 4115 if (Constraint.length() > 1) return; 4116 4117 char ConstraintLetter = Constraint[0]; 4118 switch (ConstraintLetter) { 4119 default: break; 4120 case 'X': // Allows any operand; labels (basic block) use this. 4121 if (Op.getOpcode() == ISD::BasicBlock || 4122 Op.getOpcode() == ISD::TargetBlockAddress) { 4123 Ops.push_back(Op); 4124 return; 4125 } 4126 LLVM_FALLTHROUGH; 4127 case 'i': // Simple Integer or Relocatable Constant 4128 case 'n': // Simple Integer 4129 case 's': { // Relocatable Constant 4130 4131 GlobalAddressSDNode *GA; 4132 ConstantSDNode *C; 4133 BlockAddressSDNode *BA; 4134 uint64_t Offset = 0; 4135 4136 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4137 // etc., since getelementpointer is variadic. We can't use 4138 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4139 // while in this case the GA may be furthest from the root node which is 4140 // likely an ISD::ADD. 4141 while (1) { 4142 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4143 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4144 GA->getValueType(0), 4145 Offset + GA->getOffset())); 4146 return; 4147 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4148 ConstraintLetter != 's') { 4149 // gcc prints these as sign extended. Sign extend value to 64 bits 4150 // now; without this it would get ZExt'd later in 4151 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4152 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4153 BooleanContent BCont = getBooleanContents(MVT::i64); 4154 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4155 : ISD::SIGN_EXTEND; 4156 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4157 : C->getSExtValue(); 4158 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4159 SDLoc(C), MVT::i64)); 4160 return; 4161 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4162 ConstraintLetter != 'n') { 4163 Ops.push_back(DAG.getTargetBlockAddress( 4164 BA->getBlockAddress(), BA->getValueType(0), 4165 Offset + BA->getOffset(), BA->getTargetFlags())); 4166 return; 4167 } else { 4168 const unsigned OpCode = Op.getOpcode(); 4169 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4170 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4171 Op = Op.getOperand(1); 4172 // Subtraction is not commutative. 4173 else if (OpCode == ISD::ADD && 4174 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4175 Op = Op.getOperand(0); 4176 else 4177 return; 4178 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4179 continue; 4180 } 4181 } 4182 return; 4183 } 4184 break; 4185 } 4186 } 4187 } 4188 4189 std::pair<unsigned, const TargetRegisterClass *> 4190 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4191 StringRef Constraint, 4192 MVT VT) const { 4193 if (Constraint.empty() || Constraint[0] != '{') 4194 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4195 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4196 4197 // Remove the braces from around the name. 4198 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4199 4200 std::pair<unsigned, const TargetRegisterClass *> R = 4201 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4202 4203 // Figure out which register class contains this reg. 4204 for (const TargetRegisterClass *RC : RI->regclasses()) { 4205 // If none of the value types for this register class are valid, we 4206 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4207 if (!isLegalRC(*RI, *RC)) 4208 continue; 4209 4210 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4211 I != E; ++I) { 4212 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4213 std::pair<unsigned, const TargetRegisterClass *> S = 4214 std::make_pair(*I, RC); 4215 4216 // If this register class has the requested value type, return it, 4217 // otherwise keep searching and return the first class found 4218 // if no other is found which explicitly has the requested type. 4219 if (RI->isTypeLegalForClass(*RC, VT)) 4220 return S; 4221 if (!R.second) 4222 R = S; 4223 } 4224 } 4225 } 4226 4227 return R; 4228 } 4229 4230 //===----------------------------------------------------------------------===// 4231 // Constraint Selection. 4232 4233 /// Return true of this is an input operand that is a matching constraint like 4234 /// "4". 4235 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4236 assert(!ConstraintCode.empty() && "No known constraint!"); 4237 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4238 } 4239 4240 /// If this is an input matching constraint, this method returns the output 4241 /// operand it matches. 4242 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4243 assert(!ConstraintCode.empty() && "No known constraint!"); 4244 return atoi(ConstraintCode.c_str()); 4245 } 4246 4247 /// Split up the constraint string from the inline assembly value into the 4248 /// specific constraints and their prefixes, and also tie in the associated 4249 /// operand values. 4250 /// If this returns an empty vector, and if the constraint string itself 4251 /// isn't empty, there was an error parsing. 4252 TargetLowering::AsmOperandInfoVector 4253 TargetLowering::ParseConstraints(const DataLayout &DL, 4254 const TargetRegisterInfo *TRI, 4255 ImmutableCallSite CS) const { 4256 /// Information about all of the constraints. 4257 AsmOperandInfoVector ConstraintOperands; 4258 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4259 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4260 4261 // Do a prepass over the constraints, canonicalizing them, and building up the 4262 // ConstraintOperands list. 4263 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4264 unsigned ResNo = 0; // ResNo - The result number of the next output. 4265 4266 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4267 ConstraintOperands.emplace_back(std::move(CI)); 4268 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4269 4270 // Update multiple alternative constraint count. 4271 if (OpInfo.multipleAlternatives.size() > maCount) 4272 maCount = OpInfo.multipleAlternatives.size(); 4273 4274 OpInfo.ConstraintVT = MVT::Other; 4275 4276 // Compute the value type for each operand. 4277 switch (OpInfo.Type) { 4278 case InlineAsm::isOutput: 4279 // Indirect outputs just consume an argument. 4280 if (OpInfo.isIndirect) { 4281 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4282 break; 4283 } 4284 4285 // The return value of the call is this value. As such, there is no 4286 // corresponding argument. 4287 assert(!CS.getType()->isVoidTy() && 4288 "Bad inline asm!"); 4289 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4290 OpInfo.ConstraintVT = 4291 getSimpleValueType(DL, STy->getElementType(ResNo)); 4292 } else { 4293 assert(ResNo == 0 && "Asm only has one result!"); 4294 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4295 } 4296 ++ResNo; 4297 break; 4298 case InlineAsm::isInput: 4299 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4300 break; 4301 case InlineAsm::isClobber: 4302 // Nothing to do. 4303 break; 4304 } 4305 4306 if (OpInfo.CallOperandVal) { 4307 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4308 if (OpInfo.isIndirect) { 4309 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4310 if (!PtrTy) 4311 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4312 OpTy = PtrTy->getElementType(); 4313 } 4314 4315 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4316 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4317 if (STy->getNumElements() == 1) 4318 OpTy = STy->getElementType(0); 4319 4320 // If OpTy is not a single value, it may be a struct/union that we 4321 // can tile with integers. 4322 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4323 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4324 switch (BitSize) { 4325 default: break; 4326 case 1: 4327 case 8: 4328 case 16: 4329 case 32: 4330 case 64: 4331 case 128: 4332 OpInfo.ConstraintVT = 4333 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4334 break; 4335 } 4336 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4337 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4338 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4339 } else { 4340 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4341 } 4342 } 4343 } 4344 4345 // If we have multiple alternative constraints, select the best alternative. 4346 if (!ConstraintOperands.empty()) { 4347 if (maCount) { 4348 unsigned bestMAIndex = 0; 4349 int bestWeight = -1; 4350 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4351 int weight = -1; 4352 unsigned maIndex; 4353 // Compute the sums of the weights for each alternative, keeping track 4354 // of the best (highest weight) one so far. 4355 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4356 int weightSum = 0; 4357 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4358 cIndex != eIndex; ++cIndex) { 4359 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4360 if (OpInfo.Type == InlineAsm::isClobber) 4361 continue; 4362 4363 // If this is an output operand with a matching input operand, 4364 // look up the matching input. If their types mismatch, e.g. one 4365 // is an integer, the other is floating point, or their sizes are 4366 // different, flag it as an maCantMatch. 4367 if (OpInfo.hasMatchingInput()) { 4368 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4369 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4370 if ((OpInfo.ConstraintVT.isInteger() != 4371 Input.ConstraintVT.isInteger()) || 4372 (OpInfo.ConstraintVT.getSizeInBits() != 4373 Input.ConstraintVT.getSizeInBits())) { 4374 weightSum = -1; // Can't match. 4375 break; 4376 } 4377 } 4378 } 4379 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4380 if (weight == -1) { 4381 weightSum = -1; 4382 break; 4383 } 4384 weightSum += weight; 4385 } 4386 // Update best. 4387 if (weightSum > bestWeight) { 4388 bestWeight = weightSum; 4389 bestMAIndex = maIndex; 4390 } 4391 } 4392 4393 // Now select chosen alternative in each constraint. 4394 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4395 cIndex != eIndex; ++cIndex) { 4396 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4397 if (cInfo.Type == InlineAsm::isClobber) 4398 continue; 4399 cInfo.selectAlternative(bestMAIndex); 4400 } 4401 } 4402 } 4403 4404 // Check and hook up tied operands, choose constraint code to use. 4405 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4406 cIndex != eIndex; ++cIndex) { 4407 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4408 4409 // If this is an output operand with a matching input operand, look up the 4410 // matching input. If their types mismatch, e.g. one is an integer, the 4411 // other is floating point, or their sizes are different, flag it as an 4412 // error. 4413 if (OpInfo.hasMatchingInput()) { 4414 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4415 4416 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4417 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4418 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4419 OpInfo.ConstraintVT); 4420 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4421 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4422 Input.ConstraintVT); 4423 if ((OpInfo.ConstraintVT.isInteger() != 4424 Input.ConstraintVT.isInteger()) || 4425 (MatchRC.second != InputRC.second)) { 4426 report_fatal_error("Unsupported asm: input constraint" 4427 " with a matching output constraint of" 4428 " incompatible type!"); 4429 } 4430 } 4431 } 4432 } 4433 4434 return ConstraintOperands; 4435 } 4436 4437 /// Return an integer indicating how general CT is. 4438 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4439 switch (CT) { 4440 case TargetLowering::C_Immediate: 4441 case TargetLowering::C_Other: 4442 case TargetLowering::C_Unknown: 4443 return 0; 4444 case TargetLowering::C_Register: 4445 return 1; 4446 case TargetLowering::C_RegisterClass: 4447 return 2; 4448 case TargetLowering::C_Memory: 4449 return 3; 4450 } 4451 llvm_unreachable("Invalid constraint type"); 4452 } 4453 4454 /// Examine constraint type and operand type and determine a weight value. 4455 /// This object must already have been set up with the operand type 4456 /// and the current alternative constraint selected. 4457 TargetLowering::ConstraintWeight 4458 TargetLowering::getMultipleConstraintMatchWeight( 4459 AsmOperandInfo &info, int maIndex) const { 4460 InlineAsm::ConstraintCodeVector *rCodes; 4461 if (maIndex >= (int)info.multipleAlternatives.size()) 4462 rCodes = &info.Codes; 4463 else 4464 rCodes = &info.multipleAlternatives[maIndex].Codes; 4465 ConstraintWeight BestWeight = CW_Invalid; 4466 4467 // Loop over the options, keeping track of the most general one. 4468 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4469 ConstraintWeight weight = 4470 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4471 if (weight > BestWeight) 4472 BestWeight = weight; 4473 } 4474 4475 return BestWeight; 4476 } 4477 4478 /// Examine constraint type and operand type and determine a weight value. 4479 /// This object must already have been set up with the operand type 4480 /// and the current alternative constraint selected. 4481 TargetLowering::ConstraintWeight 4482 TargetLowering::getSingleConstraintMatchWeight( 4483 AsmOperandInfo &info, const char *constraint) const { 4484 ConstraintWeight weight = CW_Invalid; 4485 Value *CallOperandVal = info.CallOperandVal; 4486 // If we don't have a value, we can't do a match, 4487 // but allow it at the lowest weight. 4488 if (!CallOperandVal) 4489 return CW_Default; 4490 // Look at the constraint type. 4491 switch (*constraint) { 4492 case 'i': // immediate integer. 4493 case 'n': // immediate integer with a known value. 4494 if (isa<ConstantInt>(CallOperandVal)) 4495 weight = CW_Constant; 4496 break; 4497 case 's': // non-explicit intregal immediate. 4498 if (isa<GlobalValue>(CallOperandVal)) 4499 weight = CW_Constant; 4500 break; 4501 case 'E': // immediate float if host format. 4502 case 'F': // immediate float. 4503 if (isa<ConstantFP>(CallOperandVal)) 4504 weight = CW_Constant; 4505 break; 4506 case '<': // memory operand with autodecrement. 4507 case '>': // memory operand with autoincrement. 4508 case 'm': // memory operand. 4509 case 'o': // offsettable memory operand 4510 case 'V': // non-offsettable memory operand 4511 weight = CW_Memory; 4512 break; 4513 case 'r': // general register. 4514 case 'g': // general register, memory operand or immediate integer. 4515 // note: Clang converts "g" to "imr". 4516 if (CallOperandVal->getType()->isIntegerTy()) 4517 weight = CW_Register; 4518 break; 4519 case 'X': // any operand. 4520 default: 4521 weight = CW_Default; 4522 break; 4523 } 4524 return weight; 4525 } 4526 4527 /// If there are multiple different constraints that we could pick for this 4528 /// operand (e.g. "imr") try to pick the 'best' one. 4529 /// This is somewhat tricky: constraints fall into four classes: 4530 /// Other -> immediates and magic values 4531 /// Register -> one specific register 4532 /// RegisterClass -> a group of regs 4533 /// Memory -> memory 4534 /// Ideally, we would pick the most specific constraint possible: if we have 4535 /// something that fits into a register, we would pick it. The problem here 4536 /// is that if we have something that could either be in a register or in 4537 /// memory that use of the register could cause selection of *other* 4538 /// operands to fail: they might only succeed if we pick memory. Because of 4539 /// this the heuristic we use is: 4540 /// 4541 /// 1) If there is an 'other' constraint, and if the operand is valid for 4542 /// that constraint, use it. This makes us take advantage of 'i' 4543 /// constraints when available. 4544 /// 2) Otherwise, pick the most general constraint present. This prefers 4545 /// 'm' over 'r', for example. 4546 /// 4547 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4548 const TargetLowering &TLI, 4549 SDValue Op, SelectionDAG *DAG) { 4550 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4551 unsigned BestIdx = 0; 4552 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4553 int BestGenerality = -1; 4554 4555 // Loop over the options, keeping track of the most general one. 4556 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4557 TargetLowering::ConstraintType CType = 4558 TLI.getConstraintType(OpInfo.Codes[i]); 4559 4560 // Indirect 'other' or 'immediate' constraints are not allowed. 4561 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4562 CType == TargetLowering::C_Register || 4563 CType == TargetLowering::C_RegisterClass)) 4564 continue; 4565 4566 // If this is an 'other' or 'immediate' constraint, see if the operand is 4567 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4568 // the operand is an integer in the range [0..31] we want to use I (saving a 4569 // load of a register), otherwise we must use 'r'. 4570 if ((CType == TargetLowering::C_Other || 4571 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4572 assert(OpInfo.Codes[i].size() == 1 && 4573 "Unhandled multi-letter 'other' constraint"); 4574 std::vector<SDValue> ResultOps; 4575 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4576 ResultOps, *DAG); 4577 if (!ResultOps.empty()) { 4578 BestType = CType; 4579 BestIdx = i; 4580 break; 4581 } 4582 } 4583 4584 // Things with matching constraints can only be registers, per gcc 4585 // documentation. This mainly affects "g" constraints. 4586 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4587 continue; 4588 4589 // This constraint letter is more general than the previous one, use it. 4590 int Generality = getConstraintGenerality(CType); 4591 if (Generality > BestGenerality) { 4592 BestType = CType; 4593 BestIdx = i; 4594 BestGenerality = Generality; 4595 } 4596 } 4597 4598 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4599 OpInfo.ConstraintType = BestType; 4600 } 4601 4602 /// Determines the constraint code and constraint type to use for the specific 4603 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4604 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4605 SDValue Op, 4606 SelectionDAG *DAG) const { 4607 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4608 4609 // Single-letter constraints ('r') are very common. 4610 if (OpInfo.Codes.size() == 1) { 4611 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4612 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4613 } else { 4614 ChooseConstraint(OpInfo, *this, Op, DAG); 4615 } 4616 4617 // 'X' matches anything. 4618 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4619 // Labels and constants are handled elsewhere ('X' is the only thing 4620 // that matches labels). For Functions, the type here is the type of 4621 // the result, which is not what we want to look at; leave them alone. 4622 Value *v = OpInfo.CallOperandVal; 4623 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4624 OpInfo.CallOperandVal = v; 4625 return; 4626 } 4627 4628 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4629 return; 4630 4631 // Otherwise, try to resolve it to something we know about by looking at 4632 // the actual operand type. 4633 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4634 OpInfo.ConstraintCode = Repl; 4635 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4636 } 4637 } 4638 } 4639 4640 /// Given an exact SDIV by a constant, create a multiplication 4641 /// with the multiplicative inverse of the constant. 4642 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4643 const SDLoc &dl, SelectionDAG &DAG, 4644 SmallVectorImpl<SDNode *> &Created) { 4645 SDValue Op0 = N->getOperand(0); 4646 SDValue Op1 = N->getOperand(1); 4647 EVT VT = N->getValueType(0); 4648 EVT SVT = VT.getScalarType(); 4649 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4650 EVT ShSVT = ShVT.getScalarType(); 4651 4652 bool UseSRA = false; 4653 SmallVector<SDValue, 16> Shifts, Factors; 4654 4655 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4656 if (C->isNullValue()) 4657 return false; 4658 APInt Divisor = C->getAPIntValue(); 4659 unsigned Shift = Divisor.countTrailingZeros(); 4660 if (Shift) { 4661 Divisor.ashrInPlace(Shift); 4662 UseSRA = true; 4663 } 4664 // Calculate the multiplicative inverse, using Newton's method. 4665 APInt t; 4666 APInt Factor = Divisor; 4667 while ((t = Divisor * Factor) != 1) 4668 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4669 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4670 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4671 return true; 4672 }; 4673 4674 // Collect all magic values from the build vector. 4675 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4676 return SDValue(); 4677 4678 SDValue Shift, Factor; 4679 if (VT.isVector()) { 4680 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4681 Factor = DAG.getBuildVector(VT, dl, Factors); 4682 } else { 4683 Shift = Shifts[0]; 4684 Factor = Factors[0]; 4685 } 4686 4687 SDValue Res = Op0; 4688 4689 // Shift the value upfront if it is even, so the LSB is one. 4690 if (UseSRA) { 4691 // TODO: For UDIV use SRL instead of SRA. 4692 SDNodeFlags Flags; 4693 Flags.setExact(true); 4694 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4695 Created.push_back(Res.getNode()); 4696 } 4697 4698 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4699 } 4700 4701 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4702 SelectionDAG &DAG, 4703 SmallVectorImpl<SDNode *> &Created) const { 4704 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4706 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4707 return SDValue(N, 0); // Lower SDIV as SDIV 4708 return SDValue(); 4709 } 4710 4711 /// Given an ISD::SDIV node expressing a divide by constant, 4712 /// return a DAG expression to select that will generate the same value by 4713 /// multiplying by a magic number. 4714 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4715 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4716 bool IsAfterLegalization, 4717 SmallVectorImpl<SDNode *> &Created) const { 4718 SDLoc dl(N); 4719 EVT VT = N->getValueType(0); 4720 EVT SVT = VT.getScalarType(); 4721 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4722 EVT ShSVT = ShVT.getScalarType(); 4723 unsigned EltBits = VT.getScalarSizeInBits(); 4724 4725 // Check to see if we can do this. 4726 // FIXME: We should be more aggressive here. 4727 if (!isTypeLegal(VT)) 4728 return SDValue(); 4729 4730 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4731 if (N->getFlags().hasExact()) 4732 return BuildExactSDIV(*this, N, dl, DAG, Created); 4733 4734 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4735 4736 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4737 if (C->isNullValue()) 4738 return false; 4739 4740 const APInt &Divisor = C->getAPIntValue(); 4741 APInt::ms magics = Divisor.magic(); 4742 int NumeratorFactor = 0; 4743 int ShiftMask = -1; 4744 4745 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4746 // If d is +1/-1, we just multiply the numerator by +1/-1. 4747 NumeratorFactor = Divisor.getSExtValue(); 4748 magics.m = 0; 4749 magics.s = 0; 4750 ShiftMask = 0; 4751 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4752 // If d > 0 and m < 0, add the numerator. 4753 NumeratorFactor = 1; 4754 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4755 // If d < 0 and m > 0, subtract the numerator. 4756 NumeratorFactor = -1; 4757 } 4758 4759 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4760 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4761 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4762 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4763 return true; 4764 }; 4765 4766 SDValue N0 = N->getOperand(0); 4767 SDValue N1 = N->getOperand(1); 4768 4769 // Collect the shifts / magic values from each element. 4770 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4771 return SDValue(); 4772 4773 SDValue MagicFactor, Factor, Shift, ShiftMask; 4774 if (VT.isVector()) { 4775 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4776 Factor = DAG.getBuildVector(VT, dl, Factors); 4777 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4778 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4779 } else { 4780 MagicFactor = MagicFactors[0]; 4781 Factor = Factors[0]; 4782 Shift = Shifts[0]; 4783 ShiftMask = ShiftMasks[0]; 4784 } 4785 4786 // Multiply the numerator (operand 0) by the magic value. 4787 // FIXME: We should support doing a MUL in a wider type. 4788 SDValue Q; 4789 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4790 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4791 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4792 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4793 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4794 SDValue LoHi = 4795 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4796 Q = SDValue(LoHi.getNode(), 1); 4797 } else 4798 return SDValue(); // No mulhs or equivalent. 4799 Created.push_back(Q.getNode()); 4800 4801 // (Optionally) Add/subtract the numerator using Factor. 4802 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4803 Created.push_back(Factor.getNode()); 4804 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4805 Created.push_back(Q.getNode()); 4806 4807 // Shift right algebraic by shift value. 4808 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4809 Created.push_back(Q.getNode()); 4810 4811 // Extract the sign bit, mask it and add it to the quotient. 4812 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4813 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4814 Created.push_back(T.getNode()); 4815 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4816 Created.push_back(T.getNode()); 4817 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4818 } 4819 4820 /// Given an ISD::UDIV node expressing a divide by constant, 4821 /// return a DAG expression to select that will generate the same value by 4822 /// multiplying by a magic number. 4823 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4824 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4825 bool IsAfterLegalization, 4826 SmallVectorImpl<SDNode *> &Created) const { 4827 SDLoc dl(N); 4828 EVT VT = N->getValueType(0); 4829 EVT SVT = VT.getScalarType(); 4830 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4831 EVT ShSVT = ShVT.getScalarType(); 4832 unsigned EltBits = VT.getScalarSizeInBits(); 4833 4834 // Check to see if we can do this. 4835 // FIXME: We should be more aggressive here. 4836 if (!isTypeLegal(VT)) 4837 return SDValue(); 4838 4839 bool UseNPQ = false; 4840 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4841 4842 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4843 if (C->isNullValue()) 4844 return false; 4845 // FIXME: We should use a narrower constant when the upper 4846 // bits are known to be zero. 4847 APInt Divisor = C->getAPIntValue(); 4848 APInt::mu magics = Divisor.magicu(); 4849 unsigned PreShift = 0, PostShift = 0; 4850 4851 // If the divisor is even, we can avoid using the expensive fixup by 4852 // shifting the divided value upfront. 4853 if (magics.a != 0 && !Divisor[0]) { 4854 PreShift = Divisor.countTrailingZeros(); 4855 // Get magic number for the shifted divisor. 4856 magics = Divisor.lshr(PreShift).magicu(PreShift); 4857 assert(magics.a == 0 && "Should use cheap fixup now"); 4858 } 4859 4860 APInt Magic = magics.m; 4861 4862 unsigned SelNPQ; 4863 if (magics.a == 0 || Divisor.isOneValue()) { 4864 assert(magics.s < Divisor.getBitWidth() && 4865 "We shouldn't generate an undefined shift!"); 4866 PostShift = magics.s; 4867 SelNPQ = false; 4868 } else { 4869 PostShift = magics.s - 1; 4870 SelNPQ = true; 4871 } 4872 4873 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4874 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4875 NPQFactors.push_back( 4876 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4877 : APInt::getNullValue(EltBits), 4878 dl, SVT)); 4879 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4880 UseNPQ |= SelNPQ; 4881 return true; 4882 }; 4883 4884 SDValue N0 = N->getOperand(0); 4885 SDValue N1 = N->getOperand(1); 4886 4887 // Collect the shifts/magic values from each element. 4888 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4889 return SDValue(); 4890 4891 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4892 if (VT.isVector()) { 4893 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4894 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4895 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4896 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4897 } else { 4898 PreShift = PreShifts[0]; 4899 MagicFactor = MagicFactors[0]; 4900 PostShift = PostShifts[0]; 4901 } 4902 4903 SDValue Q = N0; 4904 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4905 Created.push_back(Q.getNode()); 4906 4907 // FIXME: We should support doing a MUL in a wider type. 4908 auto GetMULHU = [&](SDValue X, SDValue Y) { 4909 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4910 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4911 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4912 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4913 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4914 SDValue LoHi = 4915 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4916 return SDValue(LoHi.getNode(), 1); 4917 } 4918 return SDValue(); // No mulhu or equivalent 4919 }; 4920 4921 // Multiply the numerator (operand 0) by the magic value. 4922 Q = GetMULHU(Q, MagicFactor); 4923 if (!Q) 4924 return SDValue(); 4925 4926 Created.push_back(Q.getNode()); 4927 4928 if (UseNPQ) { 4929 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4930 Created.push_back(NPQ.getNode()); 4931 4932 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4933 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4934 if (VT.isVector()) 4935 NPQ = GetMULHU(NPQ, NPQFactor); 4936 else 4937 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4938 4939 Created.push_back(NPQ.getNode()); 4940 4941 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4942 Created.push_back(Q.getNode()); 4943 } 4944 4945 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4946 Created.push_back(Q.getNode()); 4947 4948 SDValue One = DAG.getConstant(1, dl, VT); 4949 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4950 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4951 } 4952 4953 /// If all values in Values that *don't* match the predicate are same 'splat' 4954 /// value, then replace all values with that splat value. 4955 /// Else, if AlternativeReplacement was provided, then replace all values that 4956 /// do match predicate with AlternativeReplacement value. 4957 static void 4958 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4959 std::function<bool(SDValue)> Predicate, 4960 SDValue AlternativeReplacement = SDValue()) { 4961 SDValue Replacement; 4962 // Is there a value for which the Predicate does *NOT* match? What is it? 4963 auto SplatValue = llvm::find_if_not(Values, Predicate); 4964 if (SplatValue != Values.end()) { 4965 // Does Values consist only of SplatValue's and values matching Predicate? 4966 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4967 return Value == *SplatValue || Predicate(Value); 4968 })) // Then we shall replace values matching predicate with SplatValue. 4969 Replacement = *SplatValue; 4970 } 4971 if (!Replacement) { 4972 // Oops, we did not find the "baseline" splat value. 4973 if (!AlternativeReplacement) 4974 return; // Nothing to do. 4975 // Let's replace with provided value then. 4976 Replacement = AlternativeReplacement; 4977 } 4978 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4979 } 4980 4981 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4982 /// where the divisor is constant and the comparison target is zero, 4983 /// return a DAG expression that will generate the same comparison result 4984 /// using only multiplications, additions and shifts/rotations. 4985 /// Ref: "Hacker's Delight" 10-17. 4986 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4987 SDValue CompTargetNode, 4988 ISD::CondCode Cond, 4989 DAGCombinerInfo &DCI, 4990 const SDLoc &DL) const { 4991 SmallVector<SDNode *, 5> Built; 4992 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4993 DCI, DL, Built)) { 4994 for (SDNode *N : Built) 4995 DCI.AddToWorklist(N); 4996 return Folded; 4997 } 4998 4999 return SDValue(); 5000 } 5001 5002 SDValue 5003 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5004 SDValue CompTargetNode, ISD::CondCode Cond, 5005 DAGCombinerInfo &DCI, const SDLoc &DL, 5006 SmallVectorImpl<SDNode *> &Created) const { 5007 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5008 // - D must be constant, with D = D0 * 2^K where D0 is odd 5009 // - P is the multiplicative inverse of D0 modulo 2^W 5010 // - Q = floor(((2^W) - 1) / D) 5011 // where W is the width of the common type of N and D. 5012 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5013 "Only applicable for (in)equality comparisons."); 5014 5015 SelectionDAG &DAG = DCI.DAG; 5016 5017 EVT VT = REMNode.getValueType(); 5018 EVT SVT = VT.getScalarType(); 5019 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5020 EVT ShSVT = ShVT.getScalarType(); 5021 5022 // If MUL is unavailable, we cannot proceed in any case. 5023 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5024 return SDValue(); 5025 5026 bool ComparingWithAllZeros = true; 5027 bool AllComparisonsWithNonZerosAreTautological = true; 5028 bool HadTautologicalLanes = false; 5029 bool AllLanesAreTautological = true; 5030 bool HadEvenDivisor = false; 5031 bool AllDivisorsArePowerOfTwo = true; 5032 bool HadTautologicalInvertedLanes = false; 5033 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5034 5035 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5036 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5037 if (CDiv->isNullValue()) 5038 return false; 5039 5040 const APInt &D = CDiv->getAPIntValue(); 5041 const APInt &Cmp = CCmp->getAPIntValue(); 5042 5043 ComparingWithAllZeros &= Cmp.isNullValue(); 5044 5045 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5046 // if C2 is not less than C1, the comparison is always false. 5047 // But we will only be able to produce the comparison that will give the 5048 // opposive tautological answer. So this lane would need to be fixed up. 5049 bool TautologicalInvertedLane = D.ule(Cmp); 5050 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5051 5052 // If all lanes are tautological (either all divisors are ones, or divisor 5053 // is not greater than the constant we are comparing with), 5054 // we will prefer to avoid the fold. 5055 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5056 HadTautologicalLanes |= TautologicalLane; 5057 AllLanesAreTautological &= TautologicalLane; 5058 5059 // If we are comparing with non-zero, we need'll need to subtract said 5060 // comparison value from the LHS. But there is no point in doing that if 5061 // every lane where we are comparing with non-zero is tautological.. 5062 if (!Cmp.isNullValue()) 5063 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5064 5065 // Decompose D into D0 * 2^K 5066 unsigned K = D.countTrailingZeros(); 5067 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5068 APInt D0 = D.lshr(K); 5069 5070 // D is even if it has trailing zeros. 5071 HadEvenDivisor |= (K != 0); 5072 // D is a power-of-two if D0 is one. 5073 // If all divisors are power-of-two, we will prefer to avoid the fold. 5074 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5075 5076 // P = inv(D0, 2^W) 5077 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5078 unsigned W = D.getBitWidth(); 5079 APInt P = D0.zext(W + 1) 5080 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5081 .trunc(W); 5082 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5083 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5084 5085 // Q = floor((2^W - 1) u/ D) 5086 // R = ((2^W - 1) u% D) 5087 APInt Q, R; 5088 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5089 5090 // If we are comparing with zero, then that comparison constant is okay, 5091 // else it may need to be one less than that. 5092 if (Cmp.ugt(R)) 5093 Q -= 1; 5094 5095 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5096 "We are expecting that K is always less than all-ones for ShSVT"); 5097 5098 // If the lane is tautological the result can be constant-folded. 5099 if (TautologicalLane) { 5100 // Set P and K amount to a bogus values so we can try to splat them. 5101 P = 0; 5102 K = -1; 5103 // And ensure that comparison constant is tautological, 5104 // it will always compare true/false. 5105 Q = -1; 5106 } 5107 5108 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5109 KAmts.push_back( 5110 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5111 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5112 return true; 5113 }; 5114 5115 SDValue N = REMNode.getOperand(0); 5116 SDValue D = REMNode.getOperand(1); 5117 5118 // Collect the values from each element. 5119 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5120 return SDValue(); 5121 5122 // If all lanes are tautological, the result can be constant-folded. 5123 if (AllLanesAreTautological) 5124 return SDValue(); 5125 5126 // If this is a urem by a powers-of-two, avoid the fold since it can be 5127 // best implemented as a bit test. 5128 if (AllDivisorsArePowerOfTwo) 5129 return SDValue(); 5130 5131 SDValue PVal, KVal, QVal; 5132 if (VT.isVector()) { 5133 if (HadTautologicalLanes) { 5134 // Try to turn PAmts into a splat, since we don't care about the values 5135 // that are currently '0'. If we can't, just keep '0'`s. 5136 turnVectorIntoSplatVector(PAmts, isNullConstant); 5137 // Try to turn KAmts into a splat, since we don't care about the values 5138 // that are currently '-1'. If we can't, change them to '0'`s. 5139 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5140 DAG.getConstant(0, DL, ShSVT)); 5141 } 5142 5143 PVal = DAG.getBuildVector(VT, DL, PAmts); 5144 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5145 QVal = DAG.getBuildVector(VT, DL, QAmts); 5146 } else { 5147 PVal = PAmts[0]; 5148 KVal = KAmts[0]; 5149 QVal = QAmts[0]; 5150 } 5151 5152 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5153 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5154 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5155 assert(CompTargetNode.getValueType() == N.getValueType() && 5156 "Expecting that the types on LHS and RHS of comparisons match."); 5157 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5158 } 5159 5160 // (mul N, P) 5161 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5162 Created.push_back(Op0.getNode()); 5163 5164 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5165 // divisors as a performance improvement, since rotating by 0 is a no-op. 5166 if (HadEvenDivisor) { 5167 // We need ROTR to do this. 5168 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5169 return SDValue(); 5170 SDNodeFlags Flags; 5171 Flags.setExact(true); 5172 // UREM: (rotr (mul N, P), K) 5173 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5174 Created.push_back(Op0.getNode()); 5175 } 5176 5177 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5178 SDValue NewCC = 5179 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5180 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5181 if (!HadTautologicalInvertedLanes) 5182 return NewCC; 5183 5184 // If any lanes previously compared always-false, the NewCC will give 5185 // always-true result for them, so we need to fixup those lanes. 5186 // Or the other way around for inequality predicate. 5187 assert(VT.isVector() && "Can/should only get here for vectors."); 5188 Created.push_back(NewCC.getNode()); 5189 5190 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5191 // if C2 is not less than C1, the comparison is always false. 5192 // But we have produced the comparison that will give the 5193 // opposive tautological answer. So these lanes would need to be fixed up. 5194 SDValue TautologicalInvertedChannels = 5195 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5196 Created.push_back(TautologicalInvertedChannels.getNode()); 5197 5198 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5199 // If we have a vector select, let's replace the comparison results in the 5200 // affected lanes with the correct tautological result. 5201 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5202 DL, SETCCVT, SETCCVT); 5203 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5204 Replacement, NewCC); 5205 } 5206 5207 // Else, we can just invert the comparison result in the appropriate lanes. 5208 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5209 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5210 TautologicalInvertedChannels); 5211 5212 return SDValue(); // Don't know how to lower. 5213 } 5214 5215 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5216 /// where the divisor is constant and the comparison target is zero, 5217 /// return a DAG expression that will generate the same comparison result 5218 /// using only multiplications, additions and shifts/rotations. 5219 /// Ref: "Hacker's Delight" 10-17. 5220 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5221 SDValue CompTargetNode, 5222 ISD::CondCode Cond, 5223 DAGCombinerInfo &DCI, 5224 const SDLoc &DL) const { 5225 SmallVector<SDNode *, 7> Built; 5226 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5227 DCI, DL, Built)) { 5228 assert(Built.size() <= 7 && "Max size prediction failed."); 5229 for (SDNode *N : Built) 5230 DCI.AddToWorklist(N); 5231 return Folded; 5232 } 5233 5234 return SDValue(); 5235 } 5236 5237 SDValue 5238 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5239 SDValue CompTargetNode, ISD::CondCode Cond, 5240 DAGCombinerInfo &DCI, const SDLoc &DL, 5241 SmallVectorImpl<SDNode *> &Created) const { 5242 // Fold: 5243 // (seteq/ne (srem N, D), 0) 5244 // To: 5245 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5246 // 5247 // - D must be constant, with D = D0 * 2^K where D0 is odd 5248 // - P is the multiplicative inverse of D0 modulo 2^W 5249 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5250 // - Q = floor((2 * A) / (2^K)) 5251 // where W is the width of the common type of N and D. 5252 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5253 "Only applicable for (in)equality comparisons."); 5254 5255 SelectionDAG &DAG = DCI.DAG; 5256 5257 EVT VT = REMNode.getValueType(); 5258 EVT SVT = VT.getScalarType(); 5259 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5260 EVT ShSVT = ShVT.getScalarType(); 5261 5262 // If MUL is unavailable, we cannot proceed in any case. 5263 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5264 return SDValue(); 5265 5266 // TODO: Could support comparing with non-zero too. 5267 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5268 if (!CompTarget || !CompTarget->isNullValue()) 5269 return SDValue(); 5270 5271 bool HadIntMinDivisor = false; 5272 bool HadOneDivisor = false; 5273 bool AllDivisorsAreOnes = true; 5274 bool HadEvenDivisor = false; 5275 bool NeedToApplyOffset = false; 5276 bool AllDivisorsArePowerOfTwo = true; 5277 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5278 5279 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5280 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5281 if (C->isNullValue()) 5282 return false; 5283 5284 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5285 5286 // WARNING: this fold is only valid for positive divisors! 5287 APInt D = C->getAPIntValue(); 5288 if (D.isNegative()) 5289 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5290 5291 HadIntMinDivisor |= D.isMinSignedValue(); 5292 5293 // If all divisors are ones, we will prefer to avoid the fold. 5294 HadOneDivisor |= D.isOneValue(); 5295 AllDivisorsAreOnes &= D.isOneValue(); 5296 5297 // Decompose D into D0 * 2^K 5298 unsigned K = D.countTrailingZeros(); 5299 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5300 APInt D0 = D.lshr(K); 5301 5302 if (!D.isMinSignedValue()) { 5303 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5304 // we don't care about this lane in this fold, we'll special-handle it. 5305 HadEvenDivisor |= (K != 0); 5306 } 5307 5308 // D is a power-of-two if D0 is one. This includes INT_MIN. 5309 // If all divisors are power-of-two, we will prefer to avoid the fold. 5310 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5311 5312 // P = inv(D0, 2^W) 5313 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5314 unsigned W = D.getBitWidth(); 5315 APInt P = D0.zext(W + 1) 5316 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5317 .trunc(W); 5318 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5319 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5320 5321 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5322 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5323 A.clearLowBits(K); 5324 5325 if (!D.isMinSignedValue()) { 5326 // If divisor INT_MIN, then we don't care about this lane in this fold, 5327 // we'll special-handle it. 5328 NeedToApplyOffset |= A != 0; 5329 } 5330 5331 // Q = floor((2 * A) / (2^K)) 5332 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5333 5334 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5335 "We are expecting that A is always less than all-ones for SVT"); 5336 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5337 "We are expecting that K is always less than all-ones for ShSVT"); 5338 5339 // If the divisor is 1 the result can be constant-folded. Likewise, we 5340 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5341 if (D.isOneValue()) { 5342 // Set P, A and K to a bogus values so we can try to splat them. 5343 P = 0; 5344 A = -1; 5345 K = -1; 5346 5347 // x ?% 1 == 0 <--> true <--> x u<= -1 5348 Q = -1; 5349 } 5350 5351 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5352 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5353 KAmts.push_back( 5354 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5355 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5356 return true; 5357 }; 5358 5359 SDValue N = REMNode.getOperand(0); 5360 SDValue D = REMNode.getOperand(1); 5361 5362 // Collect the values from each element. 5363 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5364 return SDValue(); 5365 5366 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5367 if (AllDivisorsAreOnes) 5368 return SDValue(); 5369 5370 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5371 // since it can be best implemented as a bit test. 5372 if (AllDivisorsArePowerOfTwo) 5373 return SDValue(); 5374 5375 SDValue PVal, AVal, KVal, QVal; 5376 if (VT.isVector()) { 5377 if (HadOneDivisor) { 5378 // Try to turn PAmts into a splat, since we don't care about the values 5379 // that are currently '0'. If we can't, just keep '0'`s. 5380 turnVectorIntoSplatVector(PAmts, isNullConstant); 5381 // Try to turn AAmts into a splat, since we don't care about the 5382 // values that are currently '-1'. If we can't, change them to '0'`s. 5383 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5384 DAG.getConstant(0, DL, SVT)); 5385 // Try to turn KAmts into a splat, since we don't care about the values 5386 // that are currently '-1'. If we can't, change them to '0'`s. 5387 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5388 DAG.getConstant(0, DL, ShSVT)); 5389 } 5390 5391 PVal = DAG.getBuildVector(VT, DL, PAmts); 5392 AVal = DAG.getBuildVector(VT, DL, AAmts); 5393 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5394 QVal = DAG.getBuildVector(VT, DL, QAmts); 5395 } else { 5396 PVal = PAmts[0]; 5397 AVal = AAmts[0]; 5398 KVal = KAmts[0]; 5399 QVal = QAmts[0]; 5400 } 5401 5402 // (mul N, P) 5403 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5404 Created.push_back(Op0.getNode()); 5405 5406 if (NeedToApplyOffset) { 5407 // We need ADD to do this. 5408 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5409 return SDValue(); 5410 5411 // (add (mul N, P), A) 5412 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5413 Created.push_back(Op0.getNode()); 5414 } 5415 5416 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5417 // divisors as a performance improvement, since rotating by 0 is a no-op. 5418 if (HadEvenDivisor) { 5419 // We need ROTR to do this. 5420 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5421 return SDValue(); 5422 SDNodeFlags Flags; 5423 Flags.setExact(true); 5424 // SREM: (rotr (add (mul N, P), A), K) 5425 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5426 Created.push_back(Op0.getNode()); 5427 } 5428 5429 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5430 SDValue Fold = 5431 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5432 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5433 5434 // If we didn't have lanes with INT_MIN divisor, then we're done. 5435 if (!HadIntMinDivisor) 5436 return Fold; 5437 5438 // That fold is only valid for positive divisors. Which effectively means, 5439 // it is invalid for INT_MIN divisors. So if we have such a lane, 5440 // we must fix-up results for said lanes. 5441 assert(VT.isVector() && "Can/should only get here for vectors."); 5442 5443 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5444 !isOperationLegalOrCustom(ISD::AND, VT) || 5445 !isOperationLegalOrCustom(Cond, VT) || 5446 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5447 return SDValue(); 5448 5449 Created.push_back(Fold.getNode()); 5450 5451 SDValue IntMin = DAG.getConstant( 5452 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5453 SDValue IntMax = DAG.getConstant( 5454 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5455 SDValue Zero = 5456 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5457 5458 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5459 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5460 Created.push_back(DivisorIsIntMin.getNode()); 5461 5462 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5463 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5464 Created.push_back(Masked.getNode()); 5465 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5466 Created.push_back(MaskedIsZero.getNode()); 5467 5468 // To produce final result we need to blend 2 vectors: 'SetCC' and 5469 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5470 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5471 // constant-folded, select can get lowered to a shuffle with constant mask. 5472 SDValue Blended = 5473 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5474 5475 return Blended; 5476 } 5477 5478 bool TargetLowering:: 5479 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5480 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5481 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5482 "be a constant integer"); 5483 return true; 5484 } 5485 5486 return false; 5487 } 5488 5489 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5490 bool LegalOperations, bool ForCodeSize, 5491 unsigned Depth) const { 5492 // fneg is removable even if it has multiple uses. 5493 if (Op.getOpcode() == ISD::FNEG) 5494 return 2; 5495 5496 // Don't allow anything with multiple uses unless we know it is free. 5497 EVT VT = Op.getValueType(); 5498 const SDNodeFlags Flags = Op->getFlags(); 5499 const TargetOptions &Options = DAG.getTarget().Options; 5500 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5501 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5502 return 0; 5503 5504 // Don't recurse exponentially. 5505 if (Depth > SelectionDAG::MaxRecursionDepth) 5506 return 0; 5507 5508 switch (Op.getOpcode()) { 5509 case ISD::ConstantFP: { 5510 if (!LegalOperations) 5511 return 1; 5512 5513 // Don't invert constant FP values after legalization unless the target says 5514 // the negated constant is legal. 5515 return isOperationLegal(ISD::ConstantFP, VT) || 5516 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5517 ForCodeSize); 5518 } 5519 case ISD::BUILD_VECTOR: { 5520 // Only permit BUILD_VECTOR of constants. 5521 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5522 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5523 })) 5524 return 0; 5525 if (!LegalOperations) 5526 return 1; 5527 if (isOperationLegal(ISD::ConstantFP, VT) && 5528 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5529 return 1; 5530 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5531 return N.isUndef() || 5532 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5533 ForCodeSize); 5534 }); 5535 } 5536 case ISD::FADD: 5537 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5538 return 0; 5539 5540 // After operation legalization, it might not be legal to create new FSUBs. 5541 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5542 return 0; 5543 5544 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5545 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5546 ForCodeSize, Depth + 1)) 5547 return V; 5548 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5549 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5550 ForCodeSize, Depth + 1); 5551 case ISD::FSUB: 5552 // We can't turn -(A-B) into B-A when we honor signed zeros. 5553 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5554 return 0; 5555 5556 // fold (fneg (fsub A, B)) -> (fsub B, A) 5557 return 1; 5558 5559 case ISD::FMUL: 5560 case ISD::FDIV: 5561 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5562 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5563 ForCodeSize, Depth + 1)) 5564 return V; 5565 5566 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5567 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5568 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5569 return 0; 5570 5571 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5572 ForCodeSize, Depth + 1); 5573 5574 case ISD::FMA: 5575 case ISD::FMAD: { 5576 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5577 return 0; 5578 5579 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5580 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5581 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5582 ForCodeSize, Depth + 1); 5583 if (!V2) 5584 return 0; 5585 5586 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5587 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5588 ForCodeSize, Depth + 1); 5589 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5590 ForCodeSize, Depth + 1); 5591 char V01 = std::max(V0, V1); 5592 return V01 ? std::max(V01, V2) : 0; 5593 } 5594 5595 case ISD::FP_EXTEND: 5596 case ISD::FP_ROUND: 5597 case ISD::FSIN: 5598 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5599 ForCodeSize, Depth + 1); 5600 } 5601 5602 return 0; 5603 } 5604 5605 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5606 bool LegalOperations, 5607 bool ForCodeSize, 5608 unsigned Depth) const { 5609 // fneg is removable even if it has multiple uses. 5610 if (Op.getOpcode() == ISD::FNEG) 5611 return Op.getOperand(0); 5612 5613 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5614 "getNegatedExpression doesn't match isNegatibleForFree"); 5615 const SDNodeFlags Flags = Op->getFlags(); 5616 5617 switch (Op.getOpcode()) { 5618 case ISD::ConstantFP: { 5619 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5620 V.changeSign(); 5621 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5622 } 5623 case ISD::BUILD_VECTOR: { 5624 SmallVector<SDValue, 4> Ops; 5625 for (SDValue C : Op->op_values()) { 5626 if (C.isUndef()) { 5627 Ops.push_back(C); 5628 continue; 5629 } 5630 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5631 V.changeSign(); 5632 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5633 } 5634 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5635 } 5636 case ISD::FADD: 5637 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5638 Flags.hasNoSignedZeros()) && 5639 "Expected NSZ fp-flag"); 5640 5641 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5642 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5643 Depth + 1)) 5644 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5645 getNegatedExpression(Op.getOperand(0), DAG, 5646 LegalOperations, ForCodeSize, 5647 Depth + 1), 5648 Op.getOperand(1), Flags); 5649 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5650 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5651 getNegatedExpression(Op.getOperand(1), DAG, 5652 LegalOperations, ForCodeSize, 5653 Depth + 1), 5654 Op.getOperand(0), Flags); 5655 case ISD::FSUB: 5656 // fold (fneg (fsub 0, B)) -> B 5657 if (ConstantFPSDNode *N0CFP = 5658 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5659 if (N0CFP->isZero()) 5660 return Op.getOperand(1); 5661 5662 // fold (fneg (fsub A, B)) -> (fsub B, A) 5663 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5664 Op.getOperand(1), Op.getOperand(0), Flags); 5665 5666 case ISD::FMUL: 5667 case ISD::FDIV: 5668 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5669 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5670 Depth + 1)) 5671 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5672 getNegatedExpression(Op.getOperand(0), DAG, 5673 LegalOperations, ForCodeSize, 5674 Depth + 1), 5675 Op.getOperand(1), Flags); 5676 5677 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5678 return DAG.getNode( 5679 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5680 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5681 ForCodeSize, Depth + 1), 5682 Flags); 5683 5684 case ISD::FMA: 5685 case ISD::FMAD: { 5686 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5687 Flags.hasNoSignedZeros()) && 5688 "Expected NSZ fp-flag"); 5689 5690 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5691 ForCodeSize, Depth + 1); 5692 5693 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5694 ForCodeSize, Depth + 1); 5695 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5696 ForCodeSize, Depth + 1); 5697 // TODO: This is a hack. It is possible that costs have changed between now 5698 // and the initial calls to isNegatibleForFree(). That is because we 5699 // are rewriting the expression, and that may change the number of 5700 // uses (and therefore the cost) of values. If the negation costs are 5701 // equal, only negate this value if it is a constant. Otherwise, try 5702 // operand 1. A better fix would eliminate uses as a cost factor or 5703 // track the change in uses as we rewrite the expression. 5704 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5705 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5706 SDValue Neg0 = getNegatedExpression( 5707 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5708 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5709 Op.getOperand(1), Neg2, Flags); 5710 } 5711 5712 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5713 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5714 ForCodeSize, Depth + 1); 5715 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5716 Op.getOperand(0), Neg1, Neg2, Flags); 5717 } 5718 5719 case ISD::FP_EXTEND: 5720 case ISD::FSIN: 5721 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5722 getNegatedExpression(Op.getOperand(0), DAG, 5723 LegalOperations, ForCodeSize, 5724 Depth + 1)); 5725 case ISD::FP_ROUND: 5726 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5727 getNegatedExpression(Op.getOperand(0), DAG, 5728 LegalOperations, ForCodeSize, 5729 Depth + 1), 5730 Op.getOperand(1)); 5731 } 5732 5733 llvm_unreachable("Unknown code"); 5734 } 5735 5736 //===----------------------------------------------------------------------===// 5737 // Legalization Utilities 5738 //===----------------------------------------------------------------------===// 5739 5740 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5741 SDValue LHS, SDValue RHS, 5742 SmallVectorImpl<SDValue> &Result, 5743 EVT HiLoVT, SelectionDAG &DAG, 5744 MulExpansionKind Kind, SDValue LL, 5745 SDValue LH, SDValue RL, SDValue RH) const { 5746 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5747 Opcode == ISD::SMUL_LOHI); 5748 5749 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5750 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5751 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5752 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5753 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5754 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5755 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5756 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5757 5758 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5759 return false; 5760 5761 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5762 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5763 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5764 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5765 5766 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5767 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5768 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5769 5770 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5771 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5772 bool Signed) -> bool { 5773 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5774 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5775 Hi = SDValue(Lo.getNode(), 1); 5776 return true; 5777 } 5778 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5779 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5780 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5781 return true; 5782 } 5783 return false; 5784 }; 5785 5786 SDValue Lo, Hi; 5787 5788 if (!LL.getNode() && !RL.getNode() && 5789 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5790 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5791 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5792 } 5793 5794 if (!LL.getNode()) 5795 return false; 5796 5797 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5798 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5799 DAG.MaskedValueIsZero(RHS, HighMask)) { 5800 // The inputs are both zero-extended. 5801 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5802 Result.push_back(Lo); 5803 Result.push_back(Hi); 5804 if (Opcode != ISD::MUL) { 5805 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5806 Result.push_back(Zero); 5807 Result.push_back(Zero); 5808 } 5809 return true; 5810 } 5811 } 5812 5813 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5814 RHSSB > InnerBitSize) { 5815 // The input values are both sign-extended. 5816 // TODO non-MUL case? 5817 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5818 Result.push_back(Lo); 5819 Result.push_back(Hi); 5820 return true; 5821 } 5822 } 5823 5824 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5825 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5826 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5827 // FIXME getShiftAmountTy does not always return a sensible result when VT 5828 // is an illegal type, and so the type may be too small to fit the shift 5829 // amount. Override it with i32. The shift will have to be legalized. 5830 ShiftAmountTy = MVT::i32; 5831 } 5832 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5833 5834 if (!LH.getNode() && !RH.getNode() && 5835 isOperationLegalOrCustom(ISD::SRL, VT) && 5836 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5837 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5838 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5839 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5840 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5841 } 5842 5843 if (!LH.getNode()) 5844 return false; 5845 5846 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5847 return false; 5848 5849 Result.push_back(Lo); 5850 5851 if (Opcode == ISD::MUL) { 5852 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5853 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5854 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5855 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5856 Result.push_back(Hi); 5857 return true; 5858 } 5859 5860 // Compute the full width result. 5861 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5862 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5863 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5864 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5865 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5866 }; 5867 5868 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5869 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5870 return false; 5871 5872 // This is effectively the add part of a multiply-add of half-sized operands, 5873 // so it cannot overflow. 5874 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5875 5876 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5877 return false; 5878 5879 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5880 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5881 5882 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5883 isOperationLegalOrCustom(ISD::ADDE, VT)); 5884 if (UseGlue) 5885 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5886 Merge(Lo, Hi)); 5887 else 5888 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5889 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5890 5891 SDValue Carry = Next.getValue(1); 5892 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5893 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5894 5895 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5896 return false; 5897 5898 if (UseGlue) 5899 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5900 Carry); 5901 else 5902 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5903 Zero, Carry); 5904 5905 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5906 5907 if (Opcode == ISD::SMUL_LOHI) { 5908 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5909 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5910 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5911 5912 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5913 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5914 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5915 } 5916 5917 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5918 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5919 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5920 return true; 5921 } 5922 5923 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5924 SelectionDAG &DAG, MulExpansionKind Kind, 5925 SDValue LL, SDValue LH, SDValue RL, 5926 SDValue RH) const { 5927 SmallVector<SDValue, 2> Result; 5928 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5929 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5930 DAG, Kind, LL, LH, RL, RH); 5931 if (Ok) { 5932 assert(Result.size() == 2); 5933 Lo = Result[0]; 5934 Hi = Result[1]; 5935 } 5936 return Ok; 5937 } 5938 5939 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5940 SelectionDAG &DAG) const { 5941 EVT VT = Node->getValueType(0); 5942 5943 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5944 !isOperationLegalOrCustom(ISD::SRL, VT) || 5945 !isOperationLegalOrCustom(ISD::SUB, VT) || 5946 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5947 return false; 5948 5949 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5950 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5951 SDValue X = Node->getOperand(0); 5952 SDValue Y = Node->getOperand(1); 5953 SDValue Z = Node->getOperand(2); 5954 5955 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5956 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5957 SDLoc DL(SDValue(Node, 0)); 5958 5959 EVT ShVT = Z.getValueType(); 5960 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5961 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5962 5963 SDValue ShAmt; 5964 if (isPowerOf2_32(EltSizeInBits)) { 5965 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5966 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5967 } else { 5968 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5969 } 5970 5971 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5972 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5973 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5974 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5975 5976 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5977 // and that is undefined. We must compare and select to avoid UB. 5978 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5979 5980 // For fshl, 0-shift returns the 1st arg (X). 5981 // For fshr, 0-shift returns the 2nd arg (Y). 5982 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5983 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5984 return true; 5985 } 5986 5987 // TODO: Merge with expandFunnelShift. 5988 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5989 SelectionDAG &DAG) const { 5990 EVT VT = Node->getValueType(0); 5991 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5992 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5993 SDValue Op0 = Node->getOperand(0); 5994 SDValue Op1 = Node->getOperand(1); 5995 SDLoc DL(SDValue(Node, 0)); 5996 5997 EVT ShVT = Op1.getValueType(); 5998 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5999 6000 // If a rotate in the other direction is legal, use it. 6001 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6002 if (isOperationLegal(RevRot, VT)) { 6003 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6004 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6005 return true; 6006 } 6007 6008 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6009 !isOperationLegalOrCustom(ISD::SRL, VT) || 6010 !isOperationLegalOrCustom(ISD::SUB, VT) || 6011 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6012 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6013 return false; 6014 6015 // Otherwise, 6016 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6017 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6018 // 6019 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6020 "Expecting the type bitwidth to be a power of 2"); 6021 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6022 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6023 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6024 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6025 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6026 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6027 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6028 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6029 return true; 6030 } 6031 6032 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6033 SelectionDAG &DAG) const { 6034 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6035 SDValue Src = Node->getOperand(OpNo); 6036 EVT SrcVT = Src.getValueType(); 6037 EVT DstVT = Node->getValueType(0); 6038 SDLoc dl(SDValue(Node, 0)); 6039 6040 // FIXME: Only f32 to i64 conversions are supported. 6041 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6042 return false; 6043 6044 if (Node->isStrictFPOpcode()) 6045 // When a NaN is converted to an integer a trap is allowed. We can't 6046 // use this expansion here because it would eliminate that trap. Other 6047 // traps are also allowed and cannot be eliminated. See 6048 // IEEE 754-2008 sec 5.8. 6049 return false; 6050 6051 // Expand f32 -> i64 conversion 6052 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6053 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6054 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6055 EVT IntVT = SrcVT.changeTypeToInteger(); 6056 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6057 6058 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6059 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6060 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6061 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6062 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6063 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6064 6065 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6066 6067 SDValue ExponentBits = DAG.getNode( 6068 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6069 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6070 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6071 6072 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6073 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6074 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6075 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6076 6077 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6078 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6079 DAG.getConstant(0x00800000, dl, IntVT)); 6080 6081 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6082 6083 R = DAG.getSelectCC( 6084 dl, Exponent, ExponentLoBit, 6085 DAG.getNode(ISD::SHL, dl, DstVT, R, 6086 DAG.getZExtOrTrunc( 6087 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6088 dl, IntShVT)), 6089 DAG.getNode(ISD::SRL, dl, DstVT, R, 6090 DAG.getZExtOrTrunc( 6091 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6092 dl, IntShVT)), 6093 ISD::SETGT); 6094 6095 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6096 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6097 6098 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6099 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6100 return true; 6101 } 6102 6103 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6104 SDValue &Chain, 6105 SelectionDAG &DAG) const { 6106 SDLoc dl(SDValue(Node, 0)); 6107 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6108 SDValue Src = Node->getOperand(OpNo); 6109 6110 EVT SrcVT = Src.getValueType(); 6111 EVT DstVT = Node->getValueType(0); 6112 EVT SetCCVT = 6113 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6114 EVT DstSetCCVT = 6115 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6116 6117 // Only expand vector types if we have the appropriate vector bit operations. 6118 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6119 ISD::FP_TO_SINT; 6120 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6121 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6122 return false; 6123 6124 // If the maximum float value is smaller then the signed integer range, 6125 // the destination signmask can't be represented by the float, so we can 6126 // just use FP_TO_SINT directly. 6127 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6128 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6129 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6130 if (APFloat::opOverflow & 6131 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6132 if (Node->isStrictFPOpcode()) { 6133 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6134 { Node->getOperand(0), Src }); 6135 Chain = Result.getValue(1); 6136 } else 6137 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6138 return true; 6139 } 6140 6141 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6142 SDValue Sel; 6143 6144 if (Node->isStrictFPOpcode()) 6145 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6146 Node->getOperand(0), /*IsSignaling*/ true); 6147 else 6148 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6149 6150 bool Strict = Node->isStrictFPOpcode() || 6151 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6152 6153 if (Strict) { 6154 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6155 // signmask then offset (the result of which should be fully representable). 6156 // Sel = Src < 0x8000000000000000 6157 // FltOfs = select Sel, 0, 0x8000000000000000 6158 // IntOfs = select Sel, 0, 0x8000000000000000 6159 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6160 6161 // TODO: Should any fast-math-flags be set for the FSUB? 6162 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6163 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6164 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6165 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6166 DAG.getConstant(0, dl, DstVT), 6167 DAG.getConstant(SignMask, dl, DstVT)); 6168 SDValue SInt; 6169 if (Node->isStrictFPOpcode()) { 6170 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6171 { Node->getOperand(0), Src, FltOfs }); 6172 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6173 { Val.getValue(1), Val }); 6174 Chain = SInt.getValue(1); 6175 } else { 6176 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6177 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6178 } 6179 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6180 } else { 6181 // Expand based on maximum range of FP_TO_SINT: 6182 // True = fp_to_sint(Src) 6183 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6184 // Result = select (Src < 0x8000000000000000), True, False 6185 6186 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6187 // TODO: Should any fast-math-flags be set for the FSUB? 6188 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6189 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6190 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6191 DAG.getConstant(SignMask, dl, DstVT)); 6192 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6193 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6194 } 6195 return true; 6196 } 6197 6198 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6199 SDValue &Chain, 6200 SelectionDAG &DAG) const { 6201 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6202 SDValue Src = Node->getOperand(OpNo); 6203 EVT SrcVT = Src.getValueType(); 6204 EVT DstVT = Node->getValueType(0); 6205 6206 if (SrcVT.getScalarType() != MVT::i64) 6207 return false; 6208 6209 SDLoc dl(SDValue(Node, 0)); 6210 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6211 6212 if (DstVT.getScalarType() == MVT::f32) { 6213 // Only expand vector types if we have the appropriate vector bit 6214 // operations. 6215 if (SrcVT.isVector() && 6216 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6217 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6218 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6219 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6220 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6221 return false; 6222 6223 // For unsigned conversions, convert them to signed conversions using the 6224 // algorithm from the x86_64 __floatundisf in compiler_rt. 6225 6226 // TODO: This really should be implemented using a branch rather than a 6227 // select. We happen to get lucky and machinesink does the right 6228 // thing most of the time. This would be a good candidate for a 6229 // pseudo-op, or, even better, for whole-function isel. 6230 EVT SetCCVT = 6231 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6232 6233 SDValue SignBitTest = DAG.getSetCC( 6234 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6235 6236 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6237 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6238 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6239 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6240 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6241 6242 SDValue Slow, Fast; 6243 if (Node->isStrictFPOpcode()) { 6244 // In strict mode, we must avoid spurious exceptions, and therefore 6245 // must make sure to only emit a single STRICT_SINT_TO_FP. 6246 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src); 6247 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other }, 6248 { Node->getOperand(0), InCvt }); 6249 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, 6250 { Fast.getValue(1), Fast, Fast }); 6251 Chain = Slow.getValue(1); 6252 // The STRICT_SINT_TO_FP inherits the exception mode from the 6253 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 6254 // never raise any exception. 6255 SDNodeFlags Flags; 6256 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 6257 Fast->setFlags(Flags); 6258 Flags.setNoFPExcept(true); 6259 Slow->setFlags(Flags); 6260 } else { 6261 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6262 Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6263 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6264 } 6265 6266 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6267 return true; 6268 } 6269 6270 if (DstVT.getScalarType() == MVT::f64) { 6271 // Only expand vector types if we have the appropriate vector bit 6272 // operations. 6273 if (SrcVT.isVector() && 6274 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6275 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6276 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6277 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6278 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6279 return false; 6280 6281 // Implementation of unsigned i64 to f64 following the algorithm in 6282 // __floatundidf in compiler_rt. This implementation has the advantage 6283 // of performing rounding correctly, both in the default rounding mode 6284 // and in all alternate rounding modes. 6285 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6286 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6287 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6288 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6289 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6290 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6291 6292 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6293 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6294 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6295 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6296 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6297 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6298 if (Node->isStrictFPOpcode()) { 6299 SDValue HiSub = 6300 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6301 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6302 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6303 {HiSub.getValue(1), LoFlt, HiSub}); 6304 Chain = Result.getValue(1); 6305 } else { 6306 SDValue HiSub = 6307 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6308 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6309 } 6310 return true; 6311 } 6312 6313 return false; 6314 } 6315 6316 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6317 SelectionDAG &DAG) const { 6318 SDLoc dl(Node); 6319 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6320 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6321 EVT VT = Node->getValueType(0); 6322 if (isOperationLegalOrCustom(NewOp, VT)) { 6323 SDValue Quiet0 = Node->getOperand(0); 6324 SDValue Quiet1 = Node->getOperand(1); 6325 6326 if (!Node->getFlags().hasNoNaNs()) { 6327 // Insert canonicalizes if it's possible we need to quiet to get correct 6328 // sNaN behavior. 6329 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6330 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6331 Node->getFlags()); 6332 } 6333 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6334 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6335 Node->getFlags()); 6336 } 6337 } 6338 6339 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6340 } 6341 6342 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6343 // instead if there are no NaNs. 6344 if (Node->getFlags().hasNoNaNs()) { 6345 unsigned IEEE2018Op = 6346 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6347 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6348 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6349 Node->getOperand(1), Node->getFlags()); 6350 } 6351 } 6352 6353 // If none of the above worked, but there are no NaNs, then expand to 6354 // a compare/select sequence. This is required for correctness since 6355 // InstCombine might have canonicalized a fcmp+select sequence to a 6356 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6357 // expansion to libcall, we might introduce a link-time dependency 6358 // on libm into a file that originally did not have one. 6359 if (Node->getFlags().hasNoNaNs()) { 6360 ISD::CondCode Pred = 6361 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6362 SDValue Op1 = Node->getOperand(0); 6363 SDValue Op2 = Node->getOperand(1); 6364 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6365 // Copy FMF flags, but always set the no-signed-zeros flag 6366 // as this is implied by the FMINNUM/FMAXNUM semantics. 6367 SDNodeFlags Flags = Node->getFlags(); 6368 Flags.setNoSignedZeros(true); 6369 SelCC->setFlags(Flags); 6370 return SelCC; 6371 } 6372 6373 return SDValue(); 6374 } 6375 6376 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6377 SelectionDAG &DAG) const { 6378 SDLoc dl(Node); 6379 EVT VT = Node->getValueType(0); 6380 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6381 SDValue Op = Node->getOperand(0); 6382 unsigned Len = VT.getScalarSizeInBits(); 6383 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6384 6385 // TODO: Add support for irregular type lengths. 6386 if (!(Len <= 128 && Len % 8 == 0)) 6387 return false; 6388 6389 // Only expand vector types if we have the appropriate vector bit operations. 6390 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6391 !isOperationLegalOrCustom(ISD::SUB, VT) || 6392 !isOperationLegalOrCustom(ISD::SRL, VT) || 6393 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6394 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6395 return false; 6396 6397 // This is the "best" algorithm from 6398 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6399 SDValue Mask55 = 6400 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6401 SDValue Mask33 = 6402 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6403 SDValue Mask0F = 6404 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6405 SDValue Mask01 = 6406 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6407 6408 // v = v - ((v >> 1) & 0x55555555...) 6409 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6410 DAG.getNode(ISD::AND, dl, VT, 6411 DAG.getNode(ISD::SRL, dl, VT, Op, 6412 DAG.getConstant(1, dl, ShVT)), 6413 Mask55)); 6414 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6415 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6416 DAG.getNode(ISD::AND, dl, VT, 6417 DAG.getNode(ISD::SRL, dl, VT, Op, 6418 DAG.getConstant(2, dl, ShVT)), 6419 Mask33)); 6420 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6421 Op = DAG.getNode(ISD::AND, dl, VT, 6422 DAG.getNode(ISD::ADD, dl, VT, Op, 6423 DAG.getNode(ISD::SRL, dl, VT, Op, 6424 DAG.getConstant(4, dl, ShVT))), 6425 Mask0F); 6426 // v = (v * 0x01010101...) >> (Len - 8) 6427 if (Len > 8) 6428 Op = 6429 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6430 DAG.getConstant(Len - 8, dl, ShVT)); 6431 6432 Result = Op; 6433 return true; 6434 } 6435 6436 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6437 SelectionDAG &DAG) const { 6438 SDLoc dl(Node); 6439 EVT VT = Node->getValueType(0); 6440 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6441 SDValue Op = Node->getOperand(0); 6442 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6443 6444 // If the non-ZERO_UNDEF version is supported we can use that instead. 6445 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6446 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6447 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6448 return true; 6449 } 6450 6451 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6452 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6453 EVT SetCCVT = 6454 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6455 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6456 SDValue Zero = DAG.getConstant(0, dl, VT); 6457 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6458 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6459 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6460 return true; 6461 } 6462 6463 // Only expand vector types if we have the appropriate vector bit operations. 6464 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6465 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6466 !isOperationLegalOrCustom(ISD::SRL, VT) || 6467 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6468 return false; 6469 6470 // for now, we do this: 6471 // x = x | (x >> 1); 6472 // x = x | (x >> 2); 6473 // ... 6474 // x = x | (x >>16); 6475 // x = x | (x >>32); // for 64-bit input 6476 // return popcount(~x); 6477 // 6478 // Ref: "Hacker's Delight" by Henry Warren 6479 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6480 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6481 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6482 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6483 } 6484 Op = DAG.getNOT(dl, Op, VT); 6485 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6486 return true; 6487 } 6488 6489 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6490 SelectionDAG &DAG) const { 6491 SDLoc dl(Node); 6492 EVT VT = Node->getValueType(0); 6493 SDValue Op = Node->getOperand(0); 6494 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6495 6496 // If the non-ZERO_UNDEF version is supported we can use that instead. 6497 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6498 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6499 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6500 return true; 6501 } 6502 6503 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6504 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6505 EVT SetCCVT = 6506 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6507 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6508 SDValue Zero = DAG.getConstant(0, dl, VT); 6509 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6510 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6511 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6512 return true; 6513 } 6514 6515 // Only expand vector types if we have the appropriate vector bit operations. 6516 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6517 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6518 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6519 !isOperationLegalOrCustom(ISD::SUB, VT) || 6520 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6521 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6522 return false; 6523 6524 // for now, we use: { return popcount(~x & (x - 1)); } 6525 // unless the target has ctlz but not ctpop, in which case we use: 6526 // { return 32 - nlz(~x & (x-1)); } 6527 // Ref: "Hacker's Delight" by Henry Warren 6528 SDValue Tmp = DAG.getNode( 6529 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6530 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6531 6532 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6533 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6534 Result = 6535 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6536 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6537 return true; 6538 } 6539 6540 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6541 return true; 6542 } 6543 6544 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6545 SelectionDAG &DAG) const { 6546 SDLoc dl(N); 6547 EVT VT = N->getValueType(0); 6548 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6549 SDValue Op = N->getOperand(0); 6550 6551 // Only expand vector types if we have the appropriate vector operations. 6552 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6553 !isOperationLegalOrCustom(ISD::ADD, VT) || 6554 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6555 return false; 6556 6557 SDValue Shift = 6558 DAG.getNode(ISD::SRA, dl, VT, Op, 6559 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6560 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6561 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6562 return true; 6563 } 6564 6565 std::pair<SDValue, SDValue> 6566 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6567 SelectionDAG &DAG) const { 6568 SDLoc SL(LD); 6569 SDValue Chain = LD->getChain(); 6570 SDValue BasePTR = LD->getBasePtr(); 6571 EVT SrcVT = LD->getMemoryVT(); 6572 ISD::LoadExtType ExtType = LD->getExtensionType(); 6573 6574 unsigned NumElem = SrcVT.getVectorNumElements(); 6575 6576 EVT SrcEltVT = SrcVT.getScalarType(); 6577 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6578 6579 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6580 assert(SrcEltVT.isByteSized()); 6581 6582 SmallVector<SDValue, 8> Vals; 6583 SmallVector<SDValue, 8> LoadChains; 6584 6585 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6586 SDValue ScalarLoad = 6587 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6588 LD->getPointerInfo().getWithOffset(Idx * Stride), 6589 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6590 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6591 6592 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6593 6594 Vals.push_back(ScalarLoad.getValue(0)); 6595 LoadChains.push_back(ScalarLoad.getValue(1)); 6596 } 6597 6598 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6599 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6600 6601 return std::make_pair(Value, NewChain); 6602 } 6603 6604 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6605 SelectionDAG &DAG) const { 6606 SDLoc SL(ST); 6607 6608 SDValue Chain = ST->getChain(); 6609 SDValue BasePtr = ST->getBasePtr(); 6610 SDValue Value = ST->getValue(); 6611 EVT StVT = ST->getMemoryVT(); 6612 6613 // The type of the data we want to save 6614 EVT RegVT = Value.getValueType(); 6615 EVT RegSclVT = RegVT.getScalarType(); 6616 6617 // The type of data as saved in memory. 6618 EVT MemSclVT = StVT.getScalarType(); 6619 6620 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6621 unsigned NumElem = StVT.getVectorNumElements(); 6622 6623 // A vector must always be stored in memory as-is, i.e. without any padding 6624 // between the elements, since various code depend on it, e.g. in the 6625 // handling of a bitcast of a vector type to int, which may be done with a 6626 // vector store followed by an integer load. A vector that does not have 6627 // elements that are byte-sized must therefore be stored as an integer 6628 // built out of the extracted vector elements. 6629 if (!MemSclVT.isByteSized()) { 6630 unsigned NumBits = StVT.getSizeInBits(); 6631 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6632 6633 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6634 6635 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6636 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6637 DAG.getConstant(Idx, SL, IdxVT)); 6638 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6639 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6640 unsigned ShiftIntoIdx = 6641 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6642 SDValue ShiftAmount = 6643 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6644 SDValue ShiftedElt = 6645 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6646 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6647 } 6648 6649 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6650 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6651 ST->getAAInfo()); 6652 } 6653 6654 // Store Stride in bytes 6655 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6656 assert(Stride && "Zero stride!"); 6657 // Extract each of the elements from the original vector and save them into 6658 // memory individually. 6659 SmallVector<SDValue, 8> Stores; 6660 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6661 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6662 DAG.getConstant(Idx, SL, IdxVT)); 6663 6664 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6665 6666 // This scalar TruncStore may be illegal, but we legalize it later. 6667 SDValue Store = DAG.getTruncStore( 6668 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6669 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6670 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6671 6672 Stores.push_back(Store); 6673 } 6674 6675 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6676 } 6677 6678 std::pair<SDValue, SDValue> 6679 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6680 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6681 "unaligned indexed loads not implemented!"); 6682 SDValue Chain = LD->getChain(); 6683 SDValue Ptr = LD->getBasePtr(); 6684 EVT VT = LD->getValueType(0); 6685 EVT LoadedVT = LD->getMemoryVT(); 6686 SDLoc dl(LD); 6687 auto &MF = DAG.getMachineFunction(); 6688 6689 if (VT.isFloatingPoint() || VT.isVector()) { 6690 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6691 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6692 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6693 LoadedVT.isVector()) { 6694 // Scalarize the load and let the individual components be handled. 6695 return scalarizeVectorLoad(LD, DAG); 6696 } 6697 6698 // Expand to a (misaligned) integer load of the same size, 6699 // then bitconvert to floating point or vector. 6700 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6701 LD->getMemOperand()); 6702 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6703 if (LoadedVT != VT) 6704 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6705 ISD::ANY_EXTEND, dl, VT, Result); 6706 6707 return std::make_pair(Result, newLoad.getValue(1)); 6708 } 6709 6710 // Copy the value to a (aligned) stack slot using (unaligned) integer 6711 // loads and stores, then do a (aligned) load from the stack slot. 6712 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6713 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6714 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6715 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6716 6717 // Make sure the stack slot is also aligned for the register type. 6718 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6719 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6720 SmallVector<SDValue, 8> Stores; 6721 SDValue StackPtr = StackBase; 6722 unsigned Offset = 0; 6723 6724 EVT PtrVT = Ptr.getValueType(); 6725 EVT StackPtrVT = StackPtr.getValueType(); 6726 6727 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6728 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6729 6730 // Do all but one copies using the full register width. 6731 for (unsigned i = 1; i < NumRegs; i++) { 6732 // Load one integer register's worth from the original location. 6733 SDValue Load = DAG.getLoad( 6734 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6735 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6736 LD->getAAInfo()); 6737 // Follow the load with a store to the stack slot. Remember the store. 6738 Stores.push_back(DAG.getStore( 6739 Load.getValue(1), dl, Load, StackPtr, 6740 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6741 // Increment the pointers. 6742 Offset += RegBytes; 6743 6744 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6745 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6746 } 6747 6748 // The last copy may be partial. Do an extending load. 6749 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6750 8 * (LoadedBytes - Offset)); 6751 SDValue Load = 6752 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6753 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6754 MinAlign(LD->getAlignment(), Offset), 6755 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6756 // Follow the load with a store to the stack slot. Remember the store. 6757 // On big-endian machines this requires a truncating store to ensure 6758 // that the bits end up in the right place. 6759 Stores.push_back(DAG.getTruncStore( 6760 Load.getValue(1), dl, Load, StackPtr, 6761 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6762 6763 // The order of the stores doesn't matter - say it with a TokenFactor. 6764 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6765 6766 // Finally, perform the original load only redirected to the stack slot. 6767 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6768 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6769 LoadedVT); 6770 6771 // Callers expect a MERGE_VALUES node. 6772 return std::make_pair(Load, TF); 6773 } 6774 6775 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6776 "Unaligned load of unsupported type."); 6777 6778 // Compute the new VT that is half the size of the old one. This is an 6779 // integer MVT. 6780 unsigned NumBits = LoadedVT.getSizeInBits(); 6781 EVT NewLoadedVT; 6782 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6783 NumBits >>= 1; 6784 6785 unsigned Alignment = LD->getAlignment(); 6786 unsigned IncrementSize = NumBits / 8; 6787 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6788 6789 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6790 if (HiExtType == ISD::NON_EXTLOAD) 6791 HiExtType = ISD::ZEXTLOAD; 6792 6793 // Load the value in two parts 6794 SDValue Lo, Hi; 6795 if (DAG.getDataLayout().isLittleEndian()) { 6796 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6797 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6798 LD->getAAInfo()); 6799 6800 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6801 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6802 LD->getPointerInfo().getWithOffset(IncrementSize), 6803 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6804 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6805 } else { 6806 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6807 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6808 LD->getAAInfo()); 6809 6810 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6811 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6812 LD->getPointerInfo().getWithOffset(IncrementSize), 6813 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6814 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6815 } 6816 6817 // aggregate the two parts 6818 SDValue ShiftAmount = 6819 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6820 DAG.getDataLayout())); 6821 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6822 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6823 6824 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6825 Hi.getValue(1)); 6826 6827 return std::make_pair(Result, TF); 6828 } 6829 6830 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6831 SelectionDAG &DAG) const { 6832 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6833 "unaligned indexed stores not implemented!"); 6834 SDValue Chain = ST->getChain(); 6835 SDValue Ptr = ST->getBasePtr(); 6836 SDValue Val = ST->getValue(); 6837 EVT VT = Val.getValueType(); 6838 int Alignment = ST->getAlignment(); 6839 auto &MF = DAG.getMachineFunction(); 6840 EVT StoreMemVT = ST->getMemoryVT(); 6841 6842 SDLoc dl(ST); 6843 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6844 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6845 if (isTypeLegal(intVT)) { 6846 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6847 StoreMemVT.isVector()) { 6848 // Scalarize the store and let the individual components be handled. 6849 SDValue Result = scalarizeVectorStore(ST, DAG); 6850 return Result; 6851 } 6852 // Expand to a bitconvert of the value to the integer type of the 6853 // same size, then a (misaligned) int store. 6854 // FIXME: Does not handle truncating floating point stores! 6855 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6856 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6857 Alignment, ST->getMemOperand()->getFlags()); 6858 return Result; 6859 } 6860 // Do a (aligned) store to a stack slot, then copy from the stack slot 6861 // to the final destination using (unaligned) integer loads and stores. 6862 MVT RegVT = getRegisterType( 6863 *DAG.getContext(), 6864 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6865 EVT PtrVT = Ptr.getValueType(); 6866 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6867 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6868 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6869 6870 // Make sure the stack slot is also aligned for the register type. 6871 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6872 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6873 6874 // Perform the original store, only redirected to the stack slot. 6875 SDValue Store = DAG.getTruncStore( 6876 Chain, dl, Val, StackPtr, 6877 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6878 6879 EVT StackPtrVT = StackPtr.getValueType(); 6880 6881 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6882 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6883 SmallVector<SDValue, 8> Stores; 6884 unsigned Offset = 0; 6885 6886 // Do all but one copies using the full register width. 6887 for (unsigned i = 1; i < NumRegs; i++) { 6888 // Load one integer register's worth from the stack slot. 6889 SDValue Load = DAG.getLoad( 6890 RegVT, dl, Store, StackPtr, 6891 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6892 // Store it to the final location. Remember the store. 6893 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6894 ST->getPointerInfo().getWithOffset(Offset), 6895 MinAlign(ST->getAlignment(), Offset), 6896 ST->getMemOperand()->getFlags())); 6897 // Increment the pointers. 6898 Offset += RegBytes; 6899 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6900 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6901 } 6902 6903 // The last store may be partial. Do a truncating store. On big-endian 6904 // machines this requires an extending load from the stack slot to ensure 6905 // that the bits are in the right place. 6906 EVT LoadMemVT = 6907 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6908 6909 // Load from the stack slot. 6910 SDValue Load = DAG.getExtLoad( 6911 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6912 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6913 6914 Stores.push_back( 6915 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6916 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6917 MinAlign(ST->getAlignment(), Offset), 6918 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6919 // The order of the stores doesn't matter - say it with a TokenFactor. 6920 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6921 return Result; 6922 } 6923 6924 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6925 "Unaligned store of unknown type."); 6926 // Get the half-size VT 6927 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6928 int NumBits = NewStoredVT.getSizeInBits(); 6929 int IncrementSize = NumBits / 8; 6930 6931 // Divide the stored value in two parts. 6932 SDValue ShiftAmount = DAG.getConstant( 6933 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6934 SDValue Lo = Val; 6935 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6936 6937 // Store the two parts 6938 SDValue Store1, Store2; 6939 Store1 = DAG.getTruncStore(Chain, dl, 6940 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6941 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6942 ST->getMemOperand()->getFlags()); 6943 6944 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6945 Alignment = MinAlign(Alignment, IncrementSize); 6946 Store2 = DAG.getTruncStore( 6947 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6948 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6949 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6950 6951 SDValue Result = 6952 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6953 return Result; 6954 } 6955 6956 SDValue 6957 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6958 const SDLoc &DL, EVT DataVT, 6959 SelectionDAG &DAG, 6960 bool IsCompressedMemory) const { 6961 SDValue Increment; 6962 EVT AddrVT = Addr.getValueType(); 6963 EVT MaskVT = Mask.getValueType(); 6964 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6965 "Incompatible types of Data and Mask"); 6966 if (IsCompressedMemory) { 6967 // Incrementing the pointer according to number of '1's in the mask. 6968 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6969 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6970 if (MaskIntVT.getSizeInBits() < 32) { 6971 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6972 MaskIntVT = MVT::i32; 6973 } 6974 6975 // Count '1's with POPCNT. 6976 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6977 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6978 // Scale is an element size in bytes. 6979 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6980 AddrVT); 6981 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6982 } else 6983 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6984 6985 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6986 } 6987 6988 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6989 SDValue Idx, 6990 EVT VecVT, 6991 const SDLoc &dl) { 6992 if (isa<ConstantSDNode>(Idx)) 6993 return Idx; 6994 6995 EVT IdxVT = Idx.getValueType(); 6996 unsigned NElts = VecVT.getVectorNumElements(); 6997 if (isPowerOf2_32(NElts)) { 6998 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6999 Log2_32(NElts)); 7000 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7001 DAG.getConstant(Imm, dl, IdxVT)); 7002 } 7003 7004 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7005 DAG.getConstant(NElts - 1, dl, IdxVT)); 7006 } 7007 7008 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7009 SDValue VecPtr, EVT VecVT, 7010 SDValue Index) const { 7011 SDLoc dl(Index); 7012 // Make sure the index type is big enough to compute in. 7013 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7014 7015 EVT EltVT = VecVT.getVectorElementType(); 7016 7017 // Calculate the element offset and add it to the pointer. 7018 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7019 assert(EltSize * 8 == EltVT.getSizeInBits() && 7020 "Converting bits to bytes lost precision"); 7021 7022 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7023 7024 EVT IdxVT = Index.getValueType(); 7025 7026 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7027 DAG.getConstant(EltSize, dl, IdxVT)); 7028 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7029 } 7030 7031 //===----------------------------------------------------------------------===// 7032 // Implementation of Emulated TLS Model 7033 //===----------------------------------------------------------------------===// 7034 7035 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7036 SelectionDAG &DAG) const { 7037 // Access to address of TLS varialbe xyz is lowered to a function call: 7038 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7039 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7040 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7041 SDLoc dl(GA); 7042 7043 ArgListTy Args; 7044 ArgListEntry Entry; 7045 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7046 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7047 StringRef EmuTlsVarName(NameString); 7048 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7049 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7050 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7051 Entry.Ty = VoidPtrType; 7052 Args.push_back(Entry); 7053 7054 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7055 7056 TargetLowering::CallLoweringInfo CLI(DAG); 7057 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7058 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7059 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7060 7061 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7062 // At last for X86 targets, maybe good for other targets too? 7063 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7064 MFI.setAdjustsStack(true); // Is this only for X86 target? 7065 MFI.setHasCalls(true); 7066 7067 assert((GA->getOffset() == 0) && 7068 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7069 return CallResult.first; 7070 } 7071 7072 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7073 SelectionDAG &DAG) const { 7074 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7075 if (!isCtlzFast()) 7076 return SDValue(); 7077 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7078 SDLoc dl(Op); 7079 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7080 if (C->isNullValue() && CC == ISD::SETEQ) { 7081 EVT VT = Op.getOperand(0).getValueType(); 7082 SDValue Zext = Op.getOperand(0); 7083 if (VT.bitsLT(MVT::i32)) { 7084 VT = MVT::i32; 7085 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7086 } 7087 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7088 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7089 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7090 DAG.getConstant(Log2b, dl, MVT::i32)); 7091 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7092 } 7093 } 7094 return SDValue(); 7095 } 7096 7097 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7098 unsigned Opcode = Node->getOpcode(); 7099 SDValue LHS = Node->getOperand(0); 7100 SDValue RHS = Node->getOperand(1); 7101 EVT VT = LHS.getValueType(); 7102 SDLoc dl(Node); 7103 7104 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7105 assert(VT.isInteger() && "Expected operands to be integers"); 7106 7107 // usub.sat(a, b) -> umax(a, b) - b 7108 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7109 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7110 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7111 } 7112 7113 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7114 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7115 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7116 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7117 } 7118 7119 unsigned OverflowOp; 7120 switch (Opcode) { 7121 case ISD::SADDSAT: 7122 OverflowOp = ISD::SADDO; 7123 break; 7124 case ISD::UADDSAT: 7125 OverflowOp = ISD::UADDO; 7126 break; 7127 case ISD::SSUBSAT: 7128 OverflowOp = ISD::SSUBO; 7129 break; 7130 case ISD::USUBSAT: 7131 OverflowOp = ISD::USUBO; 7132 break; 7133 default: 7134 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7135 "addition or subtraction node."); 7136 } 7137 7138 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7139 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7140 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7141 LHS, RHS); 7142 SDValue SumDiff = Result.getValue(0); 7143 SDValue Overflow = Result.getValue(1); 7144 SDValue Zero = DAG.getConstant(0, dl, VT); 7145 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7146 7147 if (Opcode == ISD::UADDSAT) { 7148 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7149 // (LHS + RHS) | OverflowMask 7150 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7151 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7152 } 7153 // Overflow ? 0xffff.... : (LHS + RHS) 7154 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7155 } else if (Opcode == ISD::USUBSAT) { 7156 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7157 // (LHS - RHS) & ~OverflowMask 7158 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7159 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7160 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7161 } 7162 // Overflow ? 0 : (LHS - RHS) 7163 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7164 } else { 7165 // SatMax -> Overflow && SumDiff < 0 7166 // SatMin -> Overflow && SumDiff >= 0 7167 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7168 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7169 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7170 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7171 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7172 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7173 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7174 } 7175 } 7176 7177 SDValue 7178 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7179 assert((Node->getOpcode() == ISD::SMULFIX || 7180 Node->getOpcode() == ISD::UMULFIX || 7181 Node->getOpcode() == ISD::SMULFIXSAT || 7182 Node->getOpcode() == ISD::UMULFIXSAT) && 7183 "Expected a fixed point multiplication opcode"); 7184 7185 SDLoc dl(Node); 7186 SDValue LHS = Node->getOperand(0); 7187 SDValue RHS = Node->getOperand(1); 7188 EVT VT = LHS.getValueType(); 7189 unsigned Scale = Node->getConstantOperandVal(2); 7190 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7191 Node->getOpcode() == ISD::UMULFIXSAT); 7192 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7193 Node->getOpcode() == ISD::SMULFIXSAT); 7194 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7195 unsigned VTSize = VT.getScalarSizeInBits(); 7196 7197 if (!Scale) { 7198 // [us]mul.fix(a, b, 0) -> mul(a, b) 7199 if (!Saturating) { 7200 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7201 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7202 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7203 SDValue Result = 7204 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7205 SDValue Product = Result.getValue(0); 7206 SDValue Overflow = Result.getValue(1); 7207 SDValue Zero = DAG.getConstant(0, dl, VT); 7208 7209 APInt MinVal = APInt::getSignedMinValue(VTSize); 7210 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7211 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7212 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7213 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7214 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7215 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7216 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7217 SDValue Result = 7218 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7219 SDValue Product = Result.getValue(0); 7220 SDValue Overflow = Result.getValue(1); 7221 7222 APInt MaxVal = APInt::getMaxValue(VTSize); 7223 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7224 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7225 } 7226 } 7227 7228 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7229 "Expected scale to be less than the number of bits if signed or at " 7230 "most the number of bits if unsigned."); 7231 assert(LHS.getValueType() == RHS.getValueType() && 7232 "Expected both operands to be the same type"); 7233 7234 // Get the upper and lower bits of the result. 7235 SDValue Lo, Hi; 7236 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7237 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7238 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7239 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7240 Lo = Result.getValue(0); 7241 Hi = Result.getValue(1); 7242 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7243 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7244 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7245 } else if (VT.isVector()) { 7246 return SDValue(); 7247 } else { 7248 report_fatal_error("Unable to expand fixed point multiplication."); 7249 } 7250 7251 if (Scale == VTSize) 7252 // Result is just the top half since we'd be shifting by the width of the 7253 // operand. Overflow impossible so this works for both UMULFIX and 7254 // UMULFIXSAT. 7255 return Hi; 7256 7257 // The result will need to be shifted right by the scale since both operands 7258 // are scaled. The result is given to us in 2 halves, so we only want part of 7259 // both in the result. 7260 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7261 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7262 DAG.getConstant(Scale, dl, ShiftTy)); 7263 if (!Saturating) 7264 return Result; 7265 7266 if (!Signed) { 7267 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7268 // widened multiplication) aren't all zeroes. 7269 7270 // Saturate to max if ((Hi >> Scale) != 0), 7271 // which is the same as if (Hi > ((1 << Scale) - 1)) 7272 APInt MaxVal = APInt::getMaxValue(VTSize); 7273 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7274 dl, VT); 7275 Result = DAG.getSelectCC(dl, Hi, LowMask, 7276 DAG.getConstant(MaxVal, dl, VT), Result, 7277 ISD::SETUGT); 7278 7279 return Result; 7280 } 7281 7282 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7283 // widened multiplication) aren't all ones or all zeroes. 7284 7285 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7286 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7287 7288 if (Scale == 0) { 7289 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7290 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7291 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7292 // Saturated to SatMin if wide product is negative, and SatMax if wide 7293 // product is positive ... 7294 SDValue Zero = DAG.getConstant(0, dl, VT); 7295 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7296 ISD::SETLT); 7297 // ... but only if we overflowed. 7298 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7299 } 7300 7301 // We handled Scale==0 above so all the bits to examine is in Hi. 7302 7303 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7304 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7305 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7306 dl, VT); 7307 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7308 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7309 // which is the same as if (HI < (-1 << (Scale - 1)) 7310 SDValue HighMask = 7311 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7312 dl, VT); 7313 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7314 return Result; 7315 } 7316 7317 SDValue 7318 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7319 SDValue LHS, SDValue RHS, 7320 unsigned Scale, SelectionDAG &DAG) const { 7321 assert((Opcode == ISD::SDIVFIX || 7322 Opcode == ISD::UDIVFIX) && 7323 "Expected a fixed point division opcode"); 7324 7325 EVT VT = LHS.getValueType(); 7326 bool Signed = Opcode == ISD::SDIVFIX; 7327 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7328 7329 // If there is enough room in the type to upscale the LHS or downscale the 7330 // RHS before the division, we can perform it in this type without having to 7331 // resize. For signed operations, the LHS headroom is the number of 7332 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7333 // The headroom for the RHS is the number of trailing zeroes. 7334 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7335 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7336 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7337 7338 if (LHSLead + RHSTrail < Scale) 7339 return SDValue(); 7340 7341 unsigned LHSShift = std::min(LHSLead, Scale); 7342 unsigned RHSShift = Scale - LHSShift; 7343 7344 // At this point, we know that if we shift the LHS up by LHSShift and the 7345 // RHS down by RHSShift, we can emit a regular division with a final scaling 7346 // factor of Scale. 7347 7348 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7349 if (LHSShift) 7350 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7351 DAG.getConstant(LHSShift, dl, ShiftTy)); 7352 if (RHSShift) 7353 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7354 DAG.getConstant(RHSShift, dl, ShiftTy)); 7355 7356 SDValue Quot; 7357 if (Signed) { 7358 // For signed operations, if the resulting quotient is negative and the 7359 // remainder is nonzero, subtract 1 from the quotient to round towards 7360 // negative infinity. 7361 SDValue Rem; 7362 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7363 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7364 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7365 if (isTypeLegal(VT) && 7366 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7367 Quot = DAG.getNode(ISD::SDIVREM, dl, 7368 DAG.getVTList(VT, VT), 7369 LHS, RHS); 7370 Rem = Quot.getValue(1); 7371 Quot = Quot.getValue(0); 7372 } else { 7373 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7374 LHS, RHS); 7375 Rem = DAG.getNode(ISD::SREM, dl, VT, 7376 LHS, RHS); 7377 } 7378 SDValue Zero = DAG.getConstant(0, dl, VT); 7379 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7380 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7381 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7382 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7383 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7384 DAG.getConstant(1, dl, VT)); 7385 Quot = DAG.getSelect(dl, VT, 7386 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7387 Sub1, Quot); 7388 } else 7389 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7390 LHS, RHS); 7391 7392 // TODO: Saturation. 7393 7394 return Quot; 7395 } 7396 7397 void TargetLowering::expandUADDSUBO( 7398 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7399 SDLoc dl(Node); 7400 SDValue LHS = Node->getOperand(0); 7401 SDValue RHS = Node->getOperand(1); 7402 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7403 7404 // If ADD/SUBCARRY is legal, use that instead. 7405 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7406 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7407 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7408 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7409 { LHS, RHS, CarryIn }); 7410 Result = SDValue(NodeCarry.getNode(), 0); 7411 Overflow = SDValue(NodeCarry.getNode(), 1); 7412 return; 7413 } 7414 7415 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7416 LHS.getValueType(), LHS, RHS); 7417 7418 EVT ResultType = Node->getValueType(1); 7419 EVT SetCCType = getSetCCResultType( 7420 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7421 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7422 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7423 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7424 } 7425 7426 void TargetLowering::expandSADDSUBO( 7427 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7428 SDLoc dl(Node); 7429 SDValue LHS = Node->getOperand(0); 7430 SDValue RHS = Node->getOperand(1); 7431 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7432 7433 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7434 LHS.getValueType(), LHS, RHS); 7435 7436 EVT ResultType = Node->getValueType(1); 7437 EVT OType = getSetCCResultType( 7438 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7439 7440 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7441 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7442 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7443 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7444 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7445 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7446 return; 7447 } 7448 7449 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7450 7451 // For an addition, the result should be less than one of the operands (LHS) 7452 // if and only if the other operand (RHS) is negative, otherwise there will 7453 // be overflow. 7454 // For a subtraction, the result should be less than one of the operands 7455 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7456 // otherwise there will be overflow. 7457 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7458 SDValue ConditionRHS = 7459 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7460 7461 Overflow = DAG.getBoolExtOrTrunc( 7462 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7463 ResultType, ResultType); 7464 } 7465 7466 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7467 SDValue &Overflow, SelectionDAG &DAG) const { 7468 SDLoc dl(Node); 7469 EVT VT = Node->getValueType(0); 7470 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7471 SDValue LHS = Node->getOperand(0); 7472 SDValue RHS = Node->getOperand(1); 7473 bool isSigned = Node->getOpcode() == ISD::SMULO; 7474 7475 // For power-of-two multiplications we can use a simpler shift expansion. 7476 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7477 const APInt &C = RHSC->getAPIntValue(); 7478 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7479 if (C.isPowerOf2()) { 7480 // smulo(x, signed_min) is same as umulo(x, signed_min). 7481 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7482 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7483 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7484 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7485 Overflow = DAG.getSetCC(dl, SetCCVT, 7486 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7487 dl, VT, Result, ShiftAmt), 7488 LHS, ISD::SETNE); 7489 return true; 7490 } 7491 } 7492 7493 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7494 if (VT.isVector()) 7495 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7496 VT.getVectorNumElements()); 7497 7498 SDValue BottomHalf; 7499 SDValue TopHalf; 7500 static const unsigned Ops[2][3] = 7501 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7502 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7503 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7504 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7505 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7506 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7507 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7508 RHS); 7509 TopHalf = BottomHalf.getValue(1); 7510 } else if (isTypeLegal(WideVT)) { 7511 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7512 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7513 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7514 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7515 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7516 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7517 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7518 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7519 } else { 7520 if (VT.isVector()) 7521 return false; 7522 7523 // We can fall back to a libcall with an illegal type for the MUL if we 7524 // have a libcall big enough. 7525 // Also, we can fall back to a division in some cases, but that's a big 7526 // performance hit in the general case. 7527 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7528 if (WideVT == MVT::i16) 7529 LC = RTLIB::MUL_I16; 7530 else if (WideVT == MVT::i32) 7531 LC = RTLIB::MUL_I32; 7532 else if (WideVT == MVT::i64) 7533 LC = RTLIB::MUL_I64; 7534 else if (WideVT == MVT::i128) 7535 LC = RTLIB::MUL_I128; 7536 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7537 7538 SDValue HiLHS; 7539 SDValue HiRHS; 7540 if (isSigned) { 7541 // The high part is obtained by SRA'ing all but one of the bits of low 7542 // part. 7543 unsigned LoSize = VT.getSizeInBits(); 7544 HiLHS = 7545 DAG.getNode(ISD::SRA, dl, VT, LHS, 7546 DAG.getConstant(LoSize - 1, dl, 7547 getPointerTy(DAG.getDataLayout()))); 7548 HiRHS = 7549 DAG.getNode(ISD::SRA, dl, VT, RHS, 7550 DAG.getConstant(LoSize - 1, dl, 7551 getPointerTy(DAG.getDataLayout()))); 7552 } else { 7553 HiLHS = DAG.getConstant(0, dl, VT); 7554 HiRHS = DAG.getConstant(0, dl, VT); 7555 } 7556 7557 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7558 // pre-lowered to the correct types. This all depends upon WideVT not 7559 // being a legal type for the architecture and thus has to be split to 7560 // two arguments. 7561 SDValue Ret; 7562 TargetLowering::MakeLibCallOptions CallOptions; 7563 CallOptions.setSExt(isSigned); 7564 CallOptions.setIsPostTypeLegalization(true); 7565 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7566 // Halves of WideVT are packed into registers in different order 7567 // depending on platform endianness. This is usually handled by 7568 // the C calling convention, but we can't defer to it in 7569 // the legalizer. 7570 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7571 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7572 } else { 7573 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7574 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7575 } 7576 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7577 "Ret value is a collection of constituent nodes holding result."); 7578 if (DAG.getDataLayout().isLittleEndian()) { 7579 // Same as above. 7580 BottomHalf = Ret.getOperand(0); 7581 TopHalf = Ret.getOperand(1); 7582 } else { 7583 BottomHalf = Ret.getOperand(1); 7584 TopHalf = Ret.getOperand(0); 7585 } 7586 } 7587 7588 Result = BottomHalf; 7589 if (isSigned) { 7590 SDValue ShiftAmt = DAG.getConstant( 7591 VT.getScalarSizeInBits() - 1, dl, 7592 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7593 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7594 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7595 } else { 7596 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7597 DAG.getConstant(0, dl, VT), ISD::SETNE); 7598 } 7599 7600 // Truncate the result if SetCC returns a larger type than needed. 7601 EVT RType = Node->getValueType(1); 7602 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7603 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7604 7605 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7606 "Unexpected result type for S/UMULO legalization"); 7607 return true; 7608 } 7609 7610 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7611 SDLoc dl(Node); 7612 bool NoNaN = Node->getFlags().hasNoNaNs(); 7613 unsigned BaseOpcode = 0; 7614 switch (Node->getOpcode()) { 7615 default: llvm_unreachable("Expected VECREDUCE opcode"); 7616 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7617 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7618 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7619 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7620 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7621 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7622 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7623 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7624 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7625 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7626 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7627 case ISD::VECREDUCE_FMAX: 7628 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7629 break; 7630 case ISD::VECREDUCE_FMIN: 7631 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7632 break; 7633 } 7634 7635 SDValue Op = Node->getOperand(0); 7636 EVT VT = Op.getValueType(); 7637 7638 // Try to use a shuffle reduction for power of two vectors. 7639 if (VT.isPow2VectorType()) { 7640 while (VT.getVectorNumElements() > 1) { 7641 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7642 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7643 break; 7644 7645 SDValue Lo, Hi; 7646 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7647 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7648 VT = HalfVT; 7649 } 7650 } 7651 7652 EVT EltVT = VT.getVectorElementType(); 7653 unsigned NumElts = VT.getVectorNumElements(); 7654 7655 SmallVector<SDValue, 8> Ops; 7656 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7657 7658 SDValue Res = Ops[0]; 7659 for (unsigned i = 1; i < NumElts; i++) 7660 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7661 7662 // Result type may be wider than element type. 7663 if (EltVT != Node->getValueType(0)) 7664 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7665 return Res; 7666 } 7667