1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 /// Check whether a given call node is in tail position within its function. If 48 /// so, it sets Chain to the input chain of the tail call. 49 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 50 SDValue &Chain) const { 51 const Function *F = DAG.getMachineFunction().getFunction(); 52 53 // Conservatively require the attributes of the call to match those of 54 // the return. Ignore noalias because it doesn't affect the call sequence. 55 AttributeSet CallerAttrs = F->getAttributes(); 56 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 57 .removeAttribute(Attribute::NoAlias).hasAttributes()) 58 return false; 59 60 // It's not safe to eliminate the sign / zero extension of the return value. 61 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 62 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 63 return false; 64 65 // Check if the only use is a function return node. 66 return isUsedByReturnOnly(Node, Chain); 67 } 68 69 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 70 const uint32_t *CallerPreservedMask, 71 const SmallVectorImpl<CCValAssign> &ArgLocs, 72 const SmallVectorImpl<SDValue> &OutVals) const { 73 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 74 const CCValAssign &ArgLoc = ArgLocs[I]; 75 if (!ArgLoc.isRegLoc()) 76 continue; 77 unsigned Reg = ArgLoc.getLocReg(); 78 // Only look at callee saved registers. 79 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 80 continue; 81 // Check that we pass the value used for the caller. 82 // (We look for a CopyFromReg reading a virtual register that is used 83 // for the function live-in value of register Reg) 84 SDValue Value = OutVals[I]; 85 if (Value->getOpcode() != ISD::CopyFromReg) 86 return false; 87 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 88 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 89 return false; 90 } 91 return true; 92 } 93 94 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 95 /// and called function attributes. 96 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 97 unsigned AttrIdx) { 98 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 99 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 100 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 101 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 102 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 103 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 104 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 105 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 106 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 107 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 108 Alignment = CS->getParamAlignment(AttrIdx); 109 } 110 111 /// Generate a libcall taking the given operands as arguments and returning a 112 /// result of type RetVT. 113 std::pair<SDValue, SDValue> 114 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 115 ArrayRef<SDValue> Ops, bool isSigned, 116 const SDLoc &dl, bool doesNotReturn, 117 bool isReturnValueUsed) const { 118 TargetLowering::ArgListTy Args; 119 Args.reserve(Ops.size()); 120 121 TargetLowering::ArgListEntry Entry; 122 for (SDValue Op : Ops) { 123 Entry.Node = Op; 124 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 125 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 126 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 127 Args.push_back(Entry); 128 } 129 130 if (LC == RTLIB::UNKNOWN_LIBCALL) 131 report_fatal_error("Unsupported library call operation!"); 132 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 133 getPointerTy(DAG.getDataLayout())); 134 135 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 136 TargetLowering::CallLoweringInfo CLI(DAG); 137 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 138 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 139 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 140 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 141 .setSExtResult(signExtend).setZExtResult(!signExtend); 142 return LowerCallTo(CLI); 143 } 144 145 /// Soften the operands of a comparison. This code is shared among BR_CC, 146 /// SELECT_CC, and SETCC handlers. 147 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 148 SDValue &NewLHS, SDValue &NewRHS, 149 ISD::CondCode &CCCode, 150 const SDLoc &dl) const { 151 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 152 && "Unsupported setcc type!"); 153 154 // Expand into one or more soft-fp libcall(s). 155 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 156 bool ShouldInvertCC = false; 157 switch (CCCode) { 158 case ISD::SETEQ: 159 case ISD::SETOEQ: 160 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 161 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 162 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 163 break; 164 case ISD::SETNE: 165 case ISD::SETUNE: 166 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 167 (VT == MVT::f64) ? RTLIB::UNE_F64 : 168 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 169 break; 170 case ISD::SETGE: 171 case ISD::SETOGE: 172 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 173 (VT == MVT::f64) ? RTLIB::OGE_F64 : 174 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 175 break; 176 case ISD::SETLT: 177 case ISD::SETOLT: 178 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 179 (VT == MVT::f64) ? RTLIB::OLT_F64 : 180 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 181 break; 182 case ISD::SETLE: 183 case ISD::SETOLE: 184 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 185 (VT == MVT::f64) ? RTLIB::OLE_F64 : 186 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 187 break; 188 case ISD::SETGT: 189 case ISD::SETOGT: 190 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 191 (VT == MVT::f64) ? RTLIB::OGT_F64 : 192 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 193 break; 194 case ISD::SETUO: 195 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 196 (VT == MVT::f64) ? RTLIB::UO_F64 : 197 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 198 break; 199 case ISD::SETO: 200 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 201 (VT == MVT::f64) ? RTLIB::O_F64 : 202 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 203 break; 204 case ISD::SETONE: 205 // SETONE = SETOLT | SETOGT 206 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 207 (VT == MVT::f64) ? RTLIB::OLT_F64 : 208 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 209 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 210 (VT == MVT::f64) ? RTLIB::OGT_F64 : 211 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 212 break; 213 case ISD::SETUEQ: 214 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 215 (VT == MVT::f64) ? RTLIB::UO_F64 : 216 (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 218 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 219 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 220 break; 221 default: 222 // Invert CC for unordered comparisons 223 ShouldInvertCC = true; 224 switch (CCCode) { 225 case ISD::SETULT: 226 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 227 (VT == MVT::f64) ? RTLIB::OGE_F64 : 228 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 229 break; 230 case ISD::SETULE: 231 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 232 (VT == MVT::f64) ? RTLIB::OGT_F64 : 233 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 234 break; 235 case ISD::SETUGT: 236 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 237 (VT == MVT::f64) ? RTLIB::OLE_F64 : 238 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 239 break; 240 case ISD::SETUGE: 241 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 242 (VT == MVT::f64) ? RTLIB::OLT_F64 : 243 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 244 break; 245 default: llvm_unreachable("Do not know how to soften this setcc!"); 246 } 247 } 248 249 // Use the target specific return value for comparions lib calls. 250 EVT RetVT = getCmpLibcallReturnType(); 251 SDValue Ops[2] = {NewLHS, NewRHS}; 252 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 253 dl).first; 254 NewRHS = DAG.getConstant(0, dl, RetVT); 255 256 CCCode = getCmpLibcallCC(LC1); 257 if (ShouldInvertCC) 258 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 259 260 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 261 SDValue Tmp = DAG.getNode( 262 ISD::SETCC, dl, 263 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 264 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 265 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 266 dl).first; 267 NewLHS = DAG.getNode( 268 ISD::SETCC, dl, 269 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 270 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 271 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 272 NewRHS = SDValue(); 273 } 274 } 275 276 /// Return the entry encoding for a jump table in the current function. The 277 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 278 unsigned TargetLowering::getJumpTableEncoding() const { 279 // In non-pic modes, just use the address of a block. 280 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 281 return MachineJumpTableInfo::EK_BlockAddress; 282 283 // In PIC mode, if the target supports a GPRel32 directive, use it. 284 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 285 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 286 287 // Otherwise, use a label difference. 288 return MachineJumpTableInfo::EK_LabelDifference32; 289 } 290 291 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 292 SelectionDAG &DAG) const { 293 // If our PIC model is GP relative, use the global offset table as the base. 294 unsigned JTEncoding = getJumpTableEncoding(); 295 296 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 297 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 298 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 299 300 return Table; 301 } 302 303 /// This returns the relocation base for the given PIC jumptable, the same as 304 /// getPICJumpTableRelocBase, but as an MCExpr. 305 const MCExpr * 306 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 307 unsigned JTI,MCContext &Ctx) const{ 308 // The normal PIC reloc base is the label at the start of the jump table. 309 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 310 } 311 312 bool 313 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 314 const TargetMachine &TM = getTargetMachine(); 315 Reloc::Model RM = TM.getRelocationModel(); 316 const GlobalValue *GV = GA->getGlobal(); 317 const Triple &TargetTriple = TM.getTargetTriple(); 318 319 // If the address is not even local to this DSO we will have to load it from 320 // a got and then add the offset. 321 if (!shouldAssumeDSOLocal(RM, TargetTriple, *GV->getParent(), GV)) 322 return false; 323 324 // If the code is position independent we will have to add a base register. 325 if (RM == Reloc::PIC_) 326 return false; 327 328 // Otherwise we can do it. 329 return true; 330 } 331 332 //===----------------------------------------------------------------------===// 333 // Optimization Methods 334 //===----------------------------------------------------------------------===// 335 336 /// Check to see if the specified operand of the specified instruction is a 337 /// constant integer. If so, check to see if there are any bits set in the 338 /// constant that are not demanded. If so, shrink the constant and return true. 339 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 340 const APInt &Demanded) { 341 SDLoc dl(Op); 342 343 // FIXME: ISD::SELECT, ISD::SELECT_CC 344 switch (Op.getOpcode()) { 345 default: break; 346 case ISD::XOR: 347 case ISD::AND: 348 case ISD::OR: { 349 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 350 if (!C) return false; 351 352 if (Op.getOpcode() == ISD::XOR && 353 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 354 return false; 355 356 // if we can expand it to have all bits set, do it 357 if (C->getAPIntValue().intersects(~Demanded)) { 358 EVT VT = Op.getValueType(); 359 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 360 DAG.getConstant(Demanded & 361 C->getAPIntValue(), 362 dl, VT)); 363 return CombineTo(Op, New); 364 } 365 366 break; 367 } 368 } 369 370 return false; 371 } 372 373 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 374 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 375 /// generalized for targets with other types of implicit widening casts. 376 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 377 unsigned BitWidth, 378 const APInt &Demanded, 379 const SDLoc &dl) { 380 assert(Op.getNumOperands() == 2 && 381 "ShrinkDemandedOp only supports binary operators!"); 382 assert(Op.getNode()->getNumValues() == 1 && 383 "ShrinkDemandedOp only supports nodes with one result!"); 384 385 // Early return, as this function cannot handle vector types. 386 if (Op.getValueType().isVector()) 387 return false; 388 389 // Don't do this if the node has another user, which may require the 390 // full value. 391 if (!Op.getNode()->hasOneUse()) 392 return false; 393 394 // Search for the smallest integer type with free casts to and from 395 // Op's type. For expedience, just check power-of-2 integer types. 396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 397 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 398 unsigned SmallVTBits = DemandedSize; 399 if (!isPowerOf2_32(SmallVTBits)) 400 SmallVTBits = NextPowerOf2(SmallVTBits); 401 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 402 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 403 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 404 TLI.isZExtFree(SmallVT, Op.getValueType())) { 405 // We found a type with free casts. 406 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 407 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 408 Op.getNode()->getOperand(0)), 409 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 410 Op.getNode()->getOperand(1))); 411 bool NeedZext = DemandedSize > SmallVTBits; 412 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 413 dl, Op.getValueType(), X); 414 return CombineTo(Op, Z); 415 } 416 } 417 return false; 418 } 419 420 /// Look at Op. At this point, we know that only the DemandedMask bits of the 421 /// result of Op are ever used downstream. If we can use this information to 422 /// simplify Op, create a new simplified DAG node and return true, returning the 423 /// original and new nodes in Old and New. Otherwise, analyze the expression and 424 /// return a mask of KnownOne and KnownZero bits for the expression (used to 425 /// simplify the caller). The KnownZero/One bits may only be accurate for those 426 /// bits in the DemandedMask. 427 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 428 const APInt &DemandedMask, 429 APInt &KnownZero, 430 APInt &KnownOne, 431 TargetLoweringOpt &TLO, 432 unsigned Depth) const { 433 unsigned BitWidth = DemandedMask.getBitWidth(); 434 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 435 "Mask size mismatches value type size!"); 436 APInt NewMask = DemandedMask; 437 SDLoc dl(Op); 438 auto &DL = TLO.DAG.getDataLayout(); 439 440 // Don't know anything. 441 KnownZero = KnownOne = APInt(BitWidth, 0); 442 443 // Other users may use these bits. 444 if (!Op.getNode()->hasOneUse()) { 445 if (Depth != 0) { 446 // If not at the root, Just compute the KnownZero/KnownOne bits to 447 // simplify things downstream. 448 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 449 return false; 450 } 451 // If this is the root being simplified, allow it to have multiple uses, 452 // just set the NewMask to all bits. 453 NewMask = APInt::getAllOnesValue(BitWidth); 454 } else if (DemandedMask == 0) { 455 // Not demanding any bits from Op. 456 if (!Op.isUndef()) 457 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 458 return false; 459 } else if (Depth == 6) { // Limit search depth. 460 return false; 461 } 462 463 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 464 switch (Op.getOpcode()) { 465 case ISD::Constant: 466 // We know all of the bits for a constant! 467 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 468 KnownZero = ~KnownOne; 469 return false; // Don't fall through, will infinitely loop. 470 case ISD::AND: 471 // If the RHS is a constant, check to see if the LHS would be zero without 472 // using the bits from the RHS. Below, we use knowledge about the RHS to 473 // simplify the LHS, here we're using information from the LHS to simplify 474 // the RHS. 475 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 476 APInt LHSZero, LHSOne; 477 // Do not increment Depth here; that can cause an infinite loop. 478 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 479 // If the LHS already has zeros where RHSC does, this and is dead. 480 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 481 return TLO.CombineTo(Op, Op.getOperand(0)); 482 // If any of the set bits in the RHS are known zero on the LHS, shrink 483 // the constant. 484 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 485 return true; 486 } 487 488 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 489 KnownOne, TLO, Depth+1)) 490 return true; 491 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 492 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 493 KnownZero2, KnownOne2, TLO, Depth+1)) 494 return true; 495 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 496 497 // If all of the demanded bits are known one on one side, return the other. 498 // These bits cannot contribute to the result of the 'and'. 499 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 500 return TLO.CombineTo(Op, Op.getOperand(0)); 501 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 502 return TLO.CombineTo(Op, Op.getOperand(1)); 503 // If all of the demanded bits in the inputs are known zeros, return zero. 504 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 505 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 506 // If the RHS is a constant, see if we can simplify it. 507 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 508 return true; 509 // If the operation can be done in a smaller type, do so. 510 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 511 return true; 512 513 // Output known-1 bits are only known if set in both the LHS & RHS. 514 KnownOne &= KnownOne2; 515 // Output known-0 are known to be clear if zero in either the LHS | RHS. 516 KnownZero |= KnownZero2; 517 break; 518 case ISD::OR: 519 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 520 KnownOne, TLO, Depth+1)) 521 return true; 522 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 523 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 524 KnownZero2, KnownOne2, TLO, Depth+1)) 525 return true; 526 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 527 528 // If all of the demanded bits are known zero on one side, return the other. 529 // These bits cannot contribute to the result of the 'or'. 530 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 531 return TLO.CombineTo(Op, Op.getOperand(0)); 532 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 533 return TLO.CombineTo(Op, Op.getOperand(1)); 534 // If all of the potentially set bits on one side are known to be set on 535 // the other side, just use the 'other' side. 536 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 537 return TLO.CombineTo(Op, Op.getOperand(0)); 538 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 539 return TLO.CombineTo(Op, Op.getOperand(1)); 540 // If the RHS is a constant, see if we can simplify it. 541 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 542 return true; 543 // If the operation can be done in a smaller type, do so. 544 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 545 return true; 546 547 // Output known-0 bits are only known if clear in both the LHS & RHS. 548 KnownZero &= KnownZero2; 549 // Output known-1 are known to be set if set in either the LHS | RHS. 550 KnownOne |= KnownOne2; 551 break; 552 case ISD::XOR: 553 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 554 KnownOne, TLO, Depth+1)) 555 return true; 556 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 557 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 558 KnownOne2, TLO, Depth+1)) 559 return true; 560 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 561 562 // If all of the demanded bits are known zero on one side, return the other. 563 // These bits cannot contribute to the result of the 'xor'. 564 if ((KnownZero & NewMask) == NewMask) 565 return TLO.CombineTo(Op, Op.getOperand(0)); 566 if ((KnownZero2 & NewMask) == NewMask) 567 return TLO.CombineTo(Op, Op.getOperand(1)); 568 // If the operation can be done in a smaller type, do so. 569 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 570 return true; 571 572 // If all of the unknown bits are known to be zero on one side or the other 573 // (but not both) turn this into an *inclusive* or. 574 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 575 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 576 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 577 Op.getOperand(0), 578 Op.getOperand(1))); 579 580 // Output known-0 bits are known if clear or set in both the LHS & RHS. 581 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 582 // Output known-1 are known to be set if set in only one of the LHS, RHS. 583 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 584 585 // If all of the demanded bits on one side are known, and all of the set 586 // bits on that side are also known to be set on the other side, turn this 587 // into an AND, as we know the bits will be cleared. 588 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 589 // NB: it is okay if more bits are known than are requested 590 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 591 if (KnownOne == KnownOne2) { // set bits are the same on both sides 592 EVT VT = Op.getValueType(); 593 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 594 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 595 Op.getOperand(0), ANDC)); 596 } 597 } 598 599 // If the RHS is a constant, see if we can simplify it. 600 // for XOR, we prefer to force bits to 1 if they will make a -1. 601 // if we can't force bits, try to shrink constant 602 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 603 APInt Expanded = C->getAPIntValue() | (~NewMask); 604 // if we can expand it to have all bits set, do it 605 if (Expanded.isAllOnesValue()) { 606 if (Expanded != C->getAPIntValue()) { 607 EVT VT = Op.getValueType(); 608 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 609 TLO.DAG.getConstant(Expanded, dl, VT)); 610 return TLO.CombineTo(Op, New); 611 } 612 // if it already has all the bits set, nothing to change 613 // but don't shrink either! 614 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 615 return true; 616 } 617 } 618 619 KnownZero = KnownZeroOut; 620 KnownOne = KnownOneOut; 621 break; 622 case ISD::SELECT: 623 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 624 KnownOne, TLO, Depth+1)) 625 return true; 626 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 627 KnownOne2, TLO, Depth+1)) 628 return true; 629 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 630 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 631 632 // If the operands are constants, see if we can simplify them. 633 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 634 return true; 635 636 // Only known if known in both the LHS and RHS. 637 KnownOne &= KnownOne2; 638 KnownZero &= KnownZero2; 639 break; 640 case ISD::SELECT_CC: 641 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 642 KnownOne, TLO, Depth+1)) 643 return true; 644 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 645 KnownOne2, TLO, Depth+1)) 646 return true; 647 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 648 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 649 650 // If the operands are constants, see if we can simplify them. 651 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 652 return true; 653 654 // Only known if known in both the LHS and RHS. 655 KnownOne &= KnownOne2; 656 KnownZero &= KnownZero2; 657 break; 658 case ISD::SHL: 659 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 660 unsigned ShAmt = SA->getZExtValue(); 661 SDValue InOp = Op.getOperand(0); 662 663 // If the shift count is an invalid immediate, don't do anything. 664 if (ShAmt >= BitWidth) 665 break; 666 667 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 668 // single shift. We can do this if the bottom bits (which are shifted 669 // out) are never demanded. 670 if (InOp.getOpcode() == ISD::SRL && 671 isa<ConstantSDNode>(InOp.getOperand(1))) { 672 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 673 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 674 unsigned Opc = ISD::SHL; 675 int Diff = ShAmt-C1; 676 if (Diff < 0) { 677 Diff = -Diff; 678 Opc = ISD::SRL; 679 } 680 681 SDValue NewSA = 682 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 683 EVT VT = Op.getValueType(); 684 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 685 InOp.getOperand(0), NewSA)); 686 } 687 } 688 689 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 690 KnownZero, KnownOne, TLO, Depth+1)) 691 return true; 692 693 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 694 // are not demanded. This will likely allow the anyext to be folded away. 695 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 696 SDValue InnerOp = InOp.getNode()->getOperand(0); 697 EVT InnerVT = InnerOp.getValueType(); 698 unsigned InnerBits = InnerVT.getSizeInBits(); 699 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 700 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 701 EVT ShTy = getShiftAmountTy(InnerVT, DL); 702 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 703 ShTy = InnerVT; 704 SDValue NarrowShl = 705 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 706 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 707 return 708 TLO.CombineTo(Op, 709 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 710 NarrowShl)); 711 } 712 // Repeat the SHL optimization above in cases where an extension 713 // intervenes: (shl (anyext (shr x, c1)), c2) to 714 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 715 // aren't demanded (as above) and that the shifted upper c1 bits of 716 // x aren't demanded. 717 if (InOp.hasOneUse() && 718 InnerOp.getOpcode() == ISD::SRL && 719 InnerOp.hasOneUse() && 720 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 721 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 722 ->getZExtValue(); 723 if (InnerShAmt < ShAmt && 724 InnerShAmt < InnerBits && 725 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 726 NewMask.trunc(ShAmt) == 0) { 727 SDValue NewSA = 728 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 729 Op.getOperand(1).getValueType()); 730 EVT VT = Op.getValueType(); 731 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 732 InnerOp.getOperand(0)); 733 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 734 NewExt, NewSA)); 735 } 736 } 737 } 738 739 KnownZero <<= SA->getZExtValue(); 740 KnownOne <<= SA->getZExtValue(); 741 // low bits known zero. 742 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 743 } 744 break; 745 case ISD::SRL: 746 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 747 EVT VT = Op.getValueType(); 748 unsigned ShAmt = SA->getZExtValue(); 749 unsigned VTSize = VT.getSizeInBits(); 750 SDValue InOp = Op.getOperand(0); 751 752 // If the shift count is an invalid immediate, don't do anything. 753 if (ShAmt >= BitWidth) 754 break; 755 756 APInt InDemandedMask = (NewMask << ShAmt); 757 758 // If the shift is exact, then it does demand the low bits (and knows that 759 // they are zero). 760 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 761 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 762 763 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 764 // single shift. We can do this if the top bits (which are shifted out) 765 // are never demanded. 766 if (InOp.getOpcode() == ISD::SHL && 767 isa<ConstantSDNode>(InOp.getOperand(1))) { 768 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 769 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 770 unsigned Opc = ISD::SRL; 771 int Diff = ShAmt-C1; 772 if (Diff < 0) { 773 Diff = -Diff; 774 Opc = ISD::SHL; 775 } 776 777 SDValue NewSA = 778 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 779 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 780 InOp.getOperand(0), NewSA)); 781 } 782 } 783 784 // Compute the new bits that are at the top now. 785 if (SimplifyDemandedBits(InOp, InDemandedMask, 786 KnownZero, KnownOne, TLO, Depth+1)) 787 return true; 788 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 789 KnownZero = KnownZero.lshr(ShAmt); 790 KnownOne = KnownOne.lshr(ShAmt); 791 792 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 793 KnownZero |= HighBits; // High bits known zero. 794 } 795 break; 796 case ISD::SRA: 797 // If this is an arithmetic shift right and only the low-bit is set, we can 798 // always convert this into a logical shr, even if the shift amount is 799 // variable. The low bit of the shift cannot be an input sign bit unless 800 // the shift amount is >= the size of the datatype, which is undefined. 801 if (NewMask == 1) 802 return TLO.CombineTo(Op, 803 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 804 Op.getOperand(0), Op.getOperand(1))); 805 806 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 807 EVT VT = Op.getValueType(); 808 unsigned ShAmt = SA->getZExtValue(); 809 810 // If the shift count is an invalid immediate, don't do anything. 811 if (ShAmt >= BitWidth) 812 break; 813 814 APInt InDemandedMask = (NewMask << ShAmt); 815 816 // If the shift is exact, then it does demand the low bits (and knows that 817 // they are zero). 818 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 819 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 820 821 // If any of the demanded bits are produced by the sign extension, we also 822 // demand the input sign bit. 823 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 824 if (HighBits.intersects(NewMask)) 825 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 826 827 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 828 KnownZero, KnownOne, TLO, Depth+1)) 829 return true; 830 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 831 KnownZero = KnownZero.lshr(ShAmt); 832 KnownOne = KnownOne.lshr(ShAmt); 833 834 // Handle the sign bit, adjusted to where it is now in the mask. 835 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 836 837 // If the input sign bit is known to be zero, or if none of the top bits 838 // are demanded, turn this into an unsigned shift right. 839 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 840 SDNodeFlags Flags; 841 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 842 return TLO.CombineTo(Op, 843 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 844 Op.getOperand(1), &Flags)); 845 } 846 847 int Log2 = NewMask.exactLogBase2(); 848 if (Log2 >= 0) { 849 // The bit must come from the sign. 850 SDValue NewSA = 851 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 852 Op.getOperand(1).getValueType()); 853 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 854 Op.getOperand(0), NewSA)); 855 } 856 857 if (KnownOne.intersects(SignBit)) 858 // New bits are known one. 859 KnownOne |= HighBits; 860 } 861 break; 862 case ISD::SIGN_EXTEND_INREG: { 863 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 864 865 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 866 // If we only care about the highest bit, don't bother shifting right. 867 if (MsbMask == NewMask) { 868 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 869 SDValue InOp = Op.getOperand(0); 870 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 871 bool AlreadySignExtended = 872 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 873 // However if the input is already sign extended we expect the sign 874 // extension to be dropped altogether later and do not simplify. 875 if (!AlreadySignExtended) { 876 // Compute the correct shift amount type, which must be getShiftAmountTy 877 // for scalar types after legalization. 878 EVT ShiftAmtTy = Op.getValueType(); 879 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 880 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 881 882 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 883 ShiftAmtTy); 884 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 885 Op.getValueType(), InOp, 886 ShiftAmt)); 887 } 888 } 889 890 // Sign extension. Compute the demanded bits in the result that are not 891 // present in the input. 892 APInt NewBits = 893 APInt::getHighBitsSet(BitWidth, 894 BitWidth - ExVT.getScalarType().getSizeInBits()); 895 896 // If none of the extended bits are demanded, eliminate the sextinreg. 897 if ((NewBits & NewMask) == 0) 898 return TLO.CombineTo(Op, Op.getOperand(0)); 899 900 APInt InSignBit = 901 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 902 APInt InputDemandedBits = 903 APInt::getLowBitsSet(BitWidth, 904 ExVT.getScalarType().getSizeInBits()) & 905 NewMask; 906 907 // Since the sign extended bits are demanded, we know that the sign 908 // bit is demanded. 909 InputDemandedBits |= InSignBit; 910 911 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 912 KnownZero, KnownOne, TLO, Depth+1)) 913 return true; 914 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 915 916 // If the sign bit of the input is known set or clear, then we know the 917 // top bits of the result. 918 919 // If the input sign bit is known zero, convert this into a zero extension. 920 if (KnownZero.intersects(InSignBit)) 921 return TLO.CombineTo(Op, 922 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 923 924 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 925 KnownOne |= NewBits; 926 KnownZero &= ~NewBits; 927 } else { // Input sign bit unknown 928 KnownZero &= ~NewBits; 929 KnownOne &= ~NewBits; 930 } 931 break; 932 } 933 case ISD::BUILD_PAIR: { 934 EVT HalfVT = Op.getOperand(0).getValueType(); 935 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 936 937 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 938 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 939 940 APInt KnownZeroLo, KnownOneLo; 941 APInt KnownZeroHi, KnownOneHi; 942 943 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 944 KnownOneLo, TLO, Depth + 1)) 945 return true; 946 947 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 948 KnownOneHi, TLO, Depth + 1)) 949 return true; 950 951 KnownZero = KnownZeroLo.zext(BitWidth) | 952 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 953 954 KnownOne = KnownOneLo.zext(BitWidth) | 955 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 956 break; 957 } 958 case ISD::ZERO_EXTEND: { 959 unsigned OperandBitWidth = 960 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 961 APInt InMask = NewMask.trunc(OperandBitWidth); 962 963 // If none of the top bits are demanded, convert this into an any_extend. 964 APInt NewBits = 965 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 966 if (!NewBits.intersects(NewMask)) 967 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 968 Op.getValueType(), 969 Op.getOperand(0))); 970 971 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 972 KnownZero, KnownOne, TLO, Depth+1)) 973 return true; 974 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 975 KnownZero = KnownZero.zext(BitWidth); 976 KnownOne = KnownOne.zext(BitWidth); 977 KnownZero |= NewBits; 978 break; 979 } 980 case ISD::SIGN_EXTEND: { 981 EVT InVT = Op.getOperand(0).getValueType(); 982 unsigned InBits = InVT.getScalarType().getSizeInBits(); 983 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 984 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 985 APInt NewBits = ~InMask & NewMask; 986 987 // If none of the top bits are demanded, convert this into an any_extend. 988 if (NewBits == 0) 989 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 990 Op.getValueType(), 991 Op.getOperand(0))); 992 993 // Since some of the sign extended bits are demanded, we know that the sign 994 // bit is demanded. 995 APInt InDemandedBits = InMask & NewMask; 996 InDemandedBits |= InSignBit; 997 InDemandedBits = InDemandedBits.trunc(InBits); 998 999 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1000 KnownOne, TLO, Depth+1)) 1001 return true; 1002 KnownZero = KnownZero.zext(BitWidth); 1003 KnownOne = KnownOne.zext(BitWidth); 1004 1005 // If the sign bit is known zero, convert this to a zero extend. 1006 if (KnownZero.intersects(InSignBit)) 1007 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1008 Op.getValueType(), 1009 Op.getOperand(0))); 1010 1011 // If the sign bit is known one, the top bits match. 1012 if (KnownOne.intersects(InSignBit)) { 1013 KnownOne |= NewBits; 1014 assert((KnownZero & NewBits) == 0); 1015 } else { // Otherwise, top bits aren't known. 1016 assert((KnownOne & NewBits) == 0); 1017 assert((KnownZero & NewBits) == 0); 1018 } 1019 break; 1020 } 1021 case ISD::ANY_EXTEND: { 1022 unsigned OperandBitWidth = 1023 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1024 APInt InMask = NewMask.trunc(OperandBitWidth); 1025 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1026 KnownZero, KnownOne, TLO, Depth+1)) 1027 return true; 1028 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1029 KnownZero = KnownZero.zext(BitWidth); 1030 KnownOne = KnownOne.zext(BitWidth); 1031 break; 1032 } 1033 case ISD::TRUNCATE: { 1034 // Simplify the input, using demanded bit information, and compute the known 1035 // zero/one bits live out. 1036 unsigned OperandBitWidth = 1037 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1038 APInt TruncMask = NewMask.zext(OperandBitWidth); 1039 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1040 KnownZero, KnownOne, TLO, Depth+1)) 1041 return true; 1042 KnownZero = KnownZero.trunc(BitWidth); 1043 KnownOne = KnownOne.trunc(BitWidth); 1044 1045 // If the input is only used by this truncate, see if we can shrink it based 1046 // on the known demanded bits. 1047 if (Op.getOperand(0).getNode()->hasOneUse()) { 1048 SDValue In = Op.getOperand(0); 1049 switch (In.getOpcode()) { 1050 default: break; 1051 case ISD::SRL: 1052 // Shrink SRL by a constant if none of the high bits shifted in are 1053 // demanded. 1054 if (TLO.LegalTypes() && 1055 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1056 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1057 // undesirable. 1058 break; 1059 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1060 if (!ShAmt) 1061 break; 1062 SDValue Shift = In.getOperand(1); 1063 if (TLO.LegalTypes()) { 1064 uint64_t ShVal = ShAmt->getZExtValue(); 1065 Shift = TLO.DAG.getConstant(ShVal, dl, 1066 getShiftAmountTy(Op.getValueType(), DL)); 1067 } 1068 1069 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1070 OperandBitWidth - BitWidth); 1071 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1072 1073 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1074 // None of the shifted in bits are needed. Add a truncate of the 1075 // shift input, then shift it. 1076 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1077 Op.getValueType(), 1078 In.getOperand(0)); 1079 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1080 Op.getValueType(), 1081 NewTrunc, 1082 Shift)); 1083 } 1084 break; 1085 } 1086 } 1087 1088 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1089 break; 1090 } 1091 case ISD::AssertZext: { 1092 // AssertZext demands all of the high bits, plus any of the low bits 1093 // demanded by its users. 1094 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1095 APInt InMask = APInt::getLowBitsSet(BitWidth, 1096 VT.getSizeInBits()); 1097 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1098 KnownZero, KnownOne, TLO, Depth+1)) 1099 return true; 1100 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1101 1102 KnownZero |= ~InMask & NewMask; 1103 break; 1104 } 1105 case ISD::BITCAST: 1106 // If this is an FP->Int bitcast and if the sign bit is the only 1107 // thing demanded, turn this into a FGETSIGN. 1108 if (!TLO.LegalOperations() && 1109 !Op.getValueType().isVector() && 1110 !Op.getOperand(0).getValueType().isVector() && 1111 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1112 Op.getOperand(0).getValueType().isFloatingPoint()) { 1113 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1114 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1115 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1116 Op.getOperand(0).getValueType() != MVT::f128) { 1117 // Cannot eliminate/lower SHL for f128 yet. 1118 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1119 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1120 // place. We expect the SHL to be eliminated by other optimizations. 1121 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1122 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1123 if (!OpVTLegal && OpVTSizeInBits > 32) 1124 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1125 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1126 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1127 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1128 Op.getValueType(), 1129 Sign, ShAmt)); 1130 } 1131 } 1132 break; 1133 case ISD::ADD: 1134 case ISD::MUL: 1135 case ISD::SUB: { 1136 // Add, Sub, and Mul don't demand any bits in positions beyond that 1137 // of the highest bit demanded of them. 1138 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1139 BitWidth - NewMask.countLeadingZeros()); 1140 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1141 KnownOne2, TLO, Depth+1)) 1142 return true; 1143 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1144 KnownOne2, TLO, Depth+1)) 1145 return true; 1146 // See if the operation should be performed at a smaller bit width. 1147 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1148 return true; 1149 } 1150 // FALL THROUGH 1151 default: 1152 // Just use computeKnownBits to compute output bits. 1153 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1154 break; 1155 } 1156 1157 // If we know the value of all of the demanded bits, return this as a 1158 // constant. 1159 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1160 // Avoid folding to a constant if any OpaqueConstant is involved. 1161 const SDNode *N = Op.getNode(); 1162 for (SDNodeIterator I = SDNodeIterator::begin(N), 1163 E = SDNodeIterator::end(N); I != E; ++I) { 1164 SDNode *Op = *I; 1165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1166 if (C->isOpaque()) 1167 return false; 1168 } 1169 return TLO.CombineTo(Op, 1170 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1171 } 1172 1173 return false; 1174 } 1175 1176 /// Determine which of the bits specified in Mask are known to be either zero or 1177 /// one and return them in the KnownZero/KnownOne bitsets. 1178 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1179 APInt &KnownZero, 1180 APInt &KnownOne, 1181 const SelectionDAG &DAG, 1182 unsigned Depth) const { 1183 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1184 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1185 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1186 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1187 "Should use MaskedValueIsZero if you don't know whether Op" 1188 " is a target node!"); 1189 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1190 } 1191 1192 /// This method can be implemented by targets that want to expose additional 1193 /// information about sign bits to the DAG Combiner. 1194 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1195 const SelectionDAG &, 1196 unsigned Depth) const { 1197 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1198 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1199 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1200 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1201 "Should use ComputeNumSignBits if you don't know whether Op" 1202 " is a target node!"); 1203 return 1; 1204 } 1205 1206 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1207 if (!N) 1208 return false; 1209 1210 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1211 if (!CN) { 1212 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1213 if (!BV) 1214 return false; 1215 1216 BitVector UndefElements; 1217 CN = BV->getConstantSplatNode(&UndefElements); 1218 // Only interested in constant splats, and we don't try to handle undef 1219 // elements in identifying boolean constants. 1220 if (!CN || UndefElements.none()) 1221 return false; 1222 } 1223 1224 switch (getBooleanContents(N->getValueType(0))) { 1225 case UndefinedBooleanContent: 1226 return CN->getAPIntValue()[0]; 1227 case ZeroOrOneBooleanContent: 1228 return CN->isOne(); 1229 case ZeroOrNegativeOneBooleanContent: 1230 return CN->isAllOnesValue(); 1231 } 1232 1233 llvm_unreachable("Invalid boolean contents"); 1234 } 1235 1236 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1237 if (!N) 1238 return false; 1239 1240 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1241 if (!CN) { 1242 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1243 if (!BV) 1244 return false; 1245 1246 BitVector UndefElements; 1247 CN = BV->getConstantSplatNode(&UndefElements); 1248 // Only interested in constant splats, and we don't try to handle undef 1249 // elements in identifying boolean constants. 1250 if (!CN || UndefElements.none()) 1251 return false; 1252 } 1253 1254 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1255 return !CN->getAPIntValue()[0]; 1256 1257 return CN->isNullValue(); 1258 } 1259 1260 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1261 bool SExt) const { 1262 if (VT == MVT::i1) 1263 return N->isOne(); 1264 1265 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1266 switch (Cnt) { 1267 case TargetLowering::ZeroOrOneBooleanContent: 1268 // An extended value of 1 is always true, unless its original type is i1, 1269 // in which case it will be sign extended to -1. 1270 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1271 case TargetLowering::UndefinedBooleanContent: 1272 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1273 return N->isAllOnesValue() && SExt; 1274 } 1275 llvm_unreachable("Unexpected enumeration."); 1276 } 1277 1278 /// This helper function of SimplifySetCC tries to optimize the comparison when 1279 /// either operand of the SetCC node is a bitwise-and instruction. 1280 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1281 ISD::CondCode Cond, 1282 DAGCombinerInfo &DCI, 1283 const SDLoc &DL) const { 1284 // Match these patterns in any of their permutations: 1285 // (X & Y) == Y 1286 // (X & Y) != Y 1287 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1288 std::swap(N0, N1); 1289 1290 EVT OpVT = N0.getValueType(); 1291 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1292 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1293 return SDValue(); 1294 1295 SDValue X, Y; 1296 if (N0.getOperand(0) == N1) { 1297 X = N0.getOperand(1); 1298 Y = N0.getOperand(0); 1299 } else if (N0.getOperand(1) == N1) { 1300 X = N0.getOperand(0); 1301 Y = N0.getOperand(1); 1302 } else { 1303 return SDValue(); 1304 } 1305 1306 SelectionDAG &DAG = DCI.DAG; 1307 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1308 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1309 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1310 // Note that where Y is variable and is known to have at most one bit set 1311 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1312 // equivalent when Y == 0. 1313 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1314 if (DCI.isBeforeLegalizeOps() || 1315 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1316 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1317 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1318 // If the target supports an 'and-not' or 'and-complement' logic operation, 1319 // try to use that to make a comparison operation more efficient. 1320 // But don't do this transform if the mask is a single bit because there are 1321 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1322 // 'rlwinm' on PPC). 1323 1324 // Bail out if the compare operand that we want to turn into a zero is 1325 // already a zero (otherwise, infinite loop). 1326 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1327 if (YConst && YConst->isNullValue()) 1328 return SDValue(); 1329 1330 // Transform this into: ~X & Y == 0. 1331 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1332 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1333 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1334 } 1335 1336 return SDValue(); 1337 } 1338 1339 /// Try to simplify a setcc built with the specified operands and cc. If it is 1340 /// unable to simplify it, return a null SDValue. 1341 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1342 ISD::CondCode Cond, bool foldBooleans, 1343 DAGCombinerInfo &DCI, 1344 const SDLoc &dl) const { 1345 SelectionDAG &DAG = DCI.DAG; 1346 1347 // These setcc operations always fold. 1348 switch (Cond) { 1349 default: break; 1350 case ISD::SETFALSE: 1351 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1352 case ISD::SETTRUE: 1353 case ISD::SETTRUE2: { 1354 TargetLowering::BooleanContent Cnt = 1355 getBooleanContents(N0->getValueType(0)); 1356 return DAG.getConstant( 1357 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1358 VT); 1359 } 1360 } 1361 1362 // Ensure that the constant occurs on the RHS, and fold constant 1363 // comparisons. 1364 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1365 if (isa<ConstantSDNode>(N0.getNode()) && 1366 (DCI.isBeforeLegalizeOps() || 1367 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1368 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1369 1370 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1371 const APInt &C1 = N1C->getAPIntValue(); 1372 1373 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1374 // equality comparison, then we're just comparing whether X itself is 1375 // zero. 1376 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1377 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1378 N0.getOperand(1).getOpcode() == ISD::Constant) { 1379 const APInt &ShAmt 1380 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1381 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1382 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1383 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1384 // (srl (ctlz x), 5) == 0 -> X != 0 1385 // (srl (ctlz x), 5) != 1 -> X != 0 1386 Cond = ISD::SETNE; 1387 } else { 1388 // (srl (ctlz x), 5) != 0 -> X == 0 1389 // (srl (ctlz x), 5) == 1 -> X == 0 1390 Cond = ISD::SETEQ; 1391 } 1392 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1393 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1394 Zero, Cond); 1395 } 1396 } 1397 1398 SDValue CTPOP = N0; 1399 // Look through truncs that don't change the value of a ctpop. 1400 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1401 CTPOP = N0.getOperand(0); 1402 1403 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1404 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1405 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1406 EVT CTVT = CTPOP.getValueType(); 1407 SDValue CTOp = CTPOP.getOperand(0); 1408 1409 // (ctpop x) u< 2 -> (x & x-1) == 0 1410 // (ctpop x) u> 1 -> (x & x-1) != 0 1411 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1412 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1413 DAG.getConstant(1, dl, CTVT)); 1414 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1415 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1416 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1417 } 1418 1419 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1420 } 1421 1422 // (zext x) == C --> x == (trunc C) 1423 // (sext x) == C --> x == (trunc C) 1424 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1425 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1426 unsigned MinBits = N0.getValueSizeInBits(); 1427 SDValue PreExt; 1428 bool Signed = false; 1429 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1430 // ZExt 1431 MinBits = N0->getOperand(0).getValueSizeInBits(); 1432 PreExt = N0->getOperand(0); 1433 } else if (N0->getOpcode() == ISD::AND) { 1434 // DAGCombine turns costly ZExts into ANDs 1435 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1436 if ((C->getAPIntValue()+1).isPowerOf2()) { 1437 MinBits = C->getAPIntValue().countTrailingOnes(); 1438 PreExt = N0->getOperand(0); 1439 } 1440 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1441 // SExt 1442 MinBits = N0->getOperand(0).getValueSizeInBits(); 1443 PreExt = N0->getOperand(0); 1444 Signed = true; 1445 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1446 // ZEXTLOAD / SEXTLOAD 1447 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1448 MinBits = LN0->getMemoryVT().getSizeInBits(); 1449 PreExt = N0; 1450 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1451 Signed = true; 1452 MinBits = LN0->getMemoryVT().getSizeInBits(); 1453 PreExt = N0; 1454 } 1455 } 1456 1457 // Figure out how many bits we need to preserve this constant. 1458 unsigned ReqdBits = Signed ? 1459 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1460 C1.getActiveBits(); 1461 1462 // Make sure we're not losing bits from the constant. 1463 if (MinBits > 0 && 1464 MinBits < C1.getBitWidth() && 1465 MinBits >= ReqdBits) { 1466 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1467 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1468 // Will get folded away. 1469 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1470 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1471 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1472 } 1473 1474 // If truncating the setcc operands is not desirable, we can still 1475 // simplify the expression in some cases: 1476 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1477 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1478 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1479 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1480 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1481 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1482 SDValue TopSetCC = N0->getOperand(0); 1483 unsigned N0Opc = N0->getOpcode(); 1484 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1485 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1486 TopSetCC.getOpcode() == ISD::SETCC && 1487 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1488 (isConstFalseVal(N1C) || 1489 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1490 1491 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1492 (!N1C->isNullValue() && Cond == ISD::SETNE); 1493 1494 if (!Inverse) 1495 return TopSetCC; 1496 1497 ISD::CondCode InvCond = ISD::getSetCCInverse( 1498 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1499 TopSetCC.getOperand(0).getValueType().isInteger()); 1500 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1501 TopSetCC.getOperand(1), 1502 InvCond); 1503 1504 } 1505 } 1506 } 1507 1508 // If the LHS is '(and load, const)', the RHS is 0, 1509 // the test is for equality or unsigned, and all 1 bits of the const are 1510 // in the same partial word, see if we can shorten the load. 1511 if (DCI.isBeforeLegalize() && 1512 !ISD::isSignedIntSetCC(Cond) && 1513 N0.getOpcode() == ISD::AND && C1 == 0 && 1514 N0.getNode()->hasOneUse() && 1515 isa<LoadSDNode>(N0.getOperand(0)) && 1516 N0.getOperand(0).getNode()->hasOneUse() && 1517 isa<ConstantSDNode>(N0.getOperand(1))) { 1518 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1519 APInt bestMask; 1520 unsigned bestWidth = 0, bestOffset = 0; 1521 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1522 unsigned origWidth = N0.getValueType().getSizeInBits(); 1523 unsigned maskWidth = origWidth; 1524 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1525 // 8 bits, but have to be careful... 1526 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1527 origWidth = Lod->getMemoryVT().getSizeInBits(); 1528 const APInt &Mask = 1529 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1530 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1531 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1532 for (unsigned offset=0; offset<origWidth/width; offset++) { 1533 if ((newMask & Mask) == Mask) { 1534 if (!DAG.getDataLayout().isLittleEndian()) 1535 bestOffset = (origWidth/width - offset - 1) * (width/8); 1536 else 1537 bestOffset = (uint64_t)offset * (width/8); 1538 bestMask = Mask.lshr(offset * (width/8) * 8); 1539 bestWidth = width; 1540 break; 1541 } 1542 newMask = newMask << width; 1543 } 1544 } 1545 } 1546 if (bestWidth) { 1547 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1548 if (newVT.isRound()) { 1549 EVT PtrType = Lod->getOperand(1).getValueType(); 1550 SDValue Ptr = Lod->getBasePtr(); 1551 if (bestOffset != 0) 1552 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1553 DAG.getConstant(bestOffset, dl, PtrType)); 1554 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1555 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1556 Lod->getPointerInfo().getWithOffset(bestOffset), 1557 false, false, false, NewAlign); 1558 return DAG.getSetCC(dl, VT, 1559 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1560 DAG.getConstant(bestMask.trunc(bestWidth), 1561 dl, newVT)), 1562 DAG.getConstant(0LL, dl, newVT), Cond); 1563 } 1564 } 1565 } 1566 1567 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1568 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1569 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1570 1571 // If the comparison constant has bits in the upper part, the 1572 // zero-extended value could never match. 1573 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1574 C1.getBitWidth() - InSize))) { 1575 switch (Cond) { 1576 case ISD::SETUGT: 1577 case ISD::SETUGE: 1578 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1579 case ISD::SETULT: 1580 case ISD::SETULE: 1581 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1582 case ISD::SETGT: 1583 case ISD::SETGE: 1584 // True if the sign bit of C1 is set. 1585 return DAG.getConstant(C1.isNegative(), dl, VT); 1586 case ISD::SETLT: 1587 case ISD::SETLE: 1588 // True if the sign bit of C1 isn't set. 1589 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1590 default: 1591 break; 1592 } 1593 } 1594 1595 // Otherwise, we can perform the comparison with the low bits. 1596 switch (Cond) { 1597 case ISD::SETEQ: 1598 case ISD::SETNE: 1599 case ISD::SETUGT: 1600 case ISD::SETUGE: 1601 case ISD::SETULT: 1602 case ISD::SETULE: { 1603 EVT newVT = N0.getOperand(0).getValueType(); 1604 if (DCI.isBeforeLegalizeOps() || 1605 (isOperationLegal(ISD::SETCC, newVT) && 1606 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1607 EVT NewSetCCVT = 1608 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1609 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1610 1611 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1612 NewConst, Cond); 1613 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1614 } 1615 break; 1616 } 1617 default: 1618 break; // todo, be more careful with signed comparisons 1619 } 1620 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1621 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1622 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1623 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1624 EVT ExtDstTy = N0.getValueType(); 1625 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1626 1627 // If the constant doesn't fit into the number of bits for the source of 1628 // the sign extension, it is impossible for both sides to be equal. 1629 if (C1.getMinSignedBits() > ExtSrcTyBits) 1630 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1631 1632 SDValue ZextOp; 1633 EVT Op0Ty = N0.getOperand(0).getValueType(); 1634 if (Op0Ty == ExtSrcTy) { 1635 ZextOp = N0.getOperand(0); 1636 } else { 1637 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1638 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1639 DAG.getConstant(Imm, dl, Op0Ty)); 1640 } 1641 if (!DCI.isCalledByLegalizer()) 1642 DCI.AddToWorklist(ZextOp.getNode()); 1643 // Otherwise, make this a use of a zext. 1644 return DAG.getSetCC(dl, VT, ZextOp, 1645 DAG.getConstant(C1 & APInt::getLowBitsSet( 1646 ExtDstTyBits, 1647 ExtSrcTyBits), 1648 dl, ExtDstTy), 1649 Cond); 1650 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1651 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1652 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1653 if (N0.getOpcode() == ISD::SETCC && 1654 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1655 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1656 if (TrueWhenTrue) 1657 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1658 // Invert the condition. 1659 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1660 CC = ISD::getSetCCInverse(CC, 1661 N0.getOperand(0).getValueType().isInteger()); 1662 if (DCI.isBeforeLegalizeOps() || 1663 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1664 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1665 } 1666 1667 if ((N0.getOpcode() == ISD::XOR || 1668 (N0.getOpcode() == ISD::AND && 1669 N0.getOperand(0).getOpcode() == ISD::XOR && 1670 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1671 isa<ConstantSDNode>(N0.getOperand(1)) && 1672 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1673 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1674 // can only do this if the top bits are known zero. 1675 unsigned BitWidth = N0.getValueSizeInBits(); 1676 if (DAG.MaskedValueIsZero(N0, 1677 APInt::getHighBitsSet(BitWidth, 1678 BitWidth-1))) { 1679 // Okay, get the un-inverted input value. 1680 SDValue Val; 1681 if (N0.getOpcode() == ISD::XOR) 1682 Val = N0.getOperand(0); 1683 else { 1684 assert(N0.getOpcode() == ISD::AND && 1685 N0.getOperand(0).getOpcode() == ISD::XOR); 1686 // ((X^1)&1)^1 -> X & 1 1687 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1688 N0.getOperand(0).getOperand(0), 1689 N0.getOperand(1)); 1690 } 1691 1692 return DAG.getSetCC(dl, VT, Val, N1, 1693 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1694 } 1695 } else if (N1C->getAPIntValue() == 1 && 1696 (VT == MVT::i1 || 1697 getBooleanContents(N0->getValueType(0)) == 1698 ZeroOrOneBooleanContent)) { 1699 SDValue Op0 = N0; 1700 if (Op0.getOpcode() == ISD::TRUNCATE) 1701 Op0 = Op0.getOperand(0); 1702 1703 if ((Op0.getOpcode() == ISD::XOR) && 1704 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1705 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1706 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1707 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1708 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1709 Cond); 1710 } 1711 if (Op0.getOpcode() == ISD::AND && 1712 isa<ConstantSDNode>(Op0.getOperand(1)) && 1713 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1714 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1715 if (Op0.getValueType().bitsGT(VT)) 1716 Op0 = DAG.getNode(ISD::AND, dl, VT, 1717 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1718 DAG.getConstant(1, dl, VT)); 1719 else if (Op0.getValueType().bitsLT(VT)) 1720 Op0 = DAG.getNode(ISD::AND, dl, VT, 1721 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1722 DAG.getConstant(1, dl, VT)); 1723 1724 return DAG.getSetCC(dl, VT, Op0, 1725 DAG.getConstant(0, dl, Op0.getValueType()), 1726 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1727 } 1728 if (Op0.getOpcode() == ISD::AssertZext && 1729 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1730 return DAG.getSetCC(dl, VT, Op0, 1731 DAG.getConstant(0, dl, Op0.getValueType()), 1732 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1733 } 1734 } 1735 1736 APInt MinVal, MaxVal; 1737 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1738 if (ISD::isSignedIntSetCC(Cond)) { 1739 MinVal = APInt::getSignedMinValue(OperandBitSize); 1740 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1741 } else { 1742 MinVal = APInt::getMinValue(OperandBitSize); 1743 MaxVal = APInt::getMaxValue(OperandBitSize); 1744 } 1745 1746 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1747 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1748 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1749 // X >= C0 --> X > (C0 - 1) 1750 APInt C = C1 - 1; 1751 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1752 if ((DCI.isBeforeLegalizeOps() || 1753 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1754 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1755 isLegalICmpImmediate(C.getSExtValue())))) { 1756 return DAG.getSetCC(dl, VT, N0, 1757 DAG.getConstant(C, dl, N1.getValueType()), 1758 NewCC); 1759 } 1760 } 1761 1762 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1763 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1764 // X <= C0 --> X < (C0 + 1) 1765 APInt C = C1 + 1; 1766 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1767 if ((DCI.isBeforeLegalizeOps() || 1768 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1769 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1770 isLegalICmpImmediate(C.getSExtValue())))) { 1771 return DAG.getSetCC(dl, VT, N0, 1772 DAG.getConstant(C, dl, N1.getValueType()), 1773 NewCC); 1774 } 1775 } 1776 1777 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1778 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1779 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1780 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1781 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1782 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1783 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1784 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1785 1786 // Canonicalize setgt X, Min --> setne X, Min 1787 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1788 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1789 // Canonicalize setlt X, Max --> setne X, Max 1790 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1791 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1792 1793 // If we have setult X, 1, turn it into seteq X, 0 1794 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1795 return DAG.getSetCC(dl, VT, N0, 1796 DAG.getConstant(MinVal, dl, N0.getValueType()), 1797 ISD::SETEQ); 1798 // If we have setugt X, Max-1, turn it into seteq X, Max 1799 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1800 return DAG.getSetCC(dl, VT, N0, 1801 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1802 ISD::SETEQ); 1803 1804 // If we have "setcc X, C0", check to see if we can shrink the immediate 1805 // by changing cc. 1806 1807 // SETUGT X, SINTMAX -> SETLT X, 0 1808 if (Cond == ISD::SETUGT && 1809 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1810 return DAG.getSetCC(dl, VT, N0, 1811 DAG.getConstant(0, dl, N1.getValueType()), 1812 ISD::SETLT); 1813 1814 // SETULT X, SINTMIN -> SETGT X, -1 1815 if (Cond == ISD::SETULT && 1816 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1817 SDValue ConstMinusOne = 1818 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1819 N1.getValueType()); 1820 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1821 } 1822 1823 // Fold bit comparisons when we can. 1824 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1825 (VT == N0.getValueType() || 1826 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1827 N0.getOpcode() == ISD::AND) { 1828 auto &DL = DAG.getDataLayout(); 1829 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1830 EVT ShiftTy = DCI.isBeforeLegalize() 1831 ? getPointerTy(DL) 1832 : getShiftAmountTy(N0.getValueType(), DL); 1833 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1834 // Perform the xform if the AND RHS is a single bit. 1835 if (AndRHS->getAPIntValue().isPowerOf2()) { 1836 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1837 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1838 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1839 ShiftTy))); 1840 } 1841 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1842 // (X & 8) == 8 --> (X & 8) >> 3 1843 // Perform the xform if C1 is a single bit. 1844 if (C1.isPowerOf2()) { 1845 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1846 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1847 DAG.getConstant(C1.logBase2(), dl, 1848 ShiftTy))); 1849 } 1850 } 1851 } 1852 } 1853 1854 if (C1.getMinSignedBits() <= 64 && 1855 !isLegalICmpImmediate(C1.getSExtValue())) { 1856 // (X & -256) == 256 -> (X >> 8) == 1 1857 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1858 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1859 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1860 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1861 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1862 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1863 auto &DL = DAG.getDataLayout(); 1864 EVT ShiftTy = DCI.isBeforeLegalize() 1865 ? getPointerTy(DL) 1866 : getShiftAmountTy(N0.getValueType(), DL); 1867 EVT CmpTy = N0.getValueType(); 1868 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1869 DAG.getConstant(ShiftBits, dl, 1870 ShiftTy)); 1871 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1872 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1873 } 1874 } 1875 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1876 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1877 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1878 // X < 0x100000000 -> (X >> 32) < 1 1879 // X >= 0x100000000 -> (X >> 32) >= 1 1880 // X <= 0x0ffffffff -> (X >> 32) < 1 1881 // X > 0x0ffffffff -> (X >> 32) >= 1 1882 unsigned ShiftBits; 1883 APInt NewC = C1; 1884 ISD::CondCode NewCond = Cond; 1885 if (AdjOne) { 1886 ShiftBits = C1.countTrailingOnes(); 1887 NewC = NewC + 1; 1888 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1889 } else { 1890 ShiftBits = C1.countTrailingZeros(); 1891 } 1892 NewC = NewC.lshr(ShiftBits); 1893 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1894 isLegalICmpImmediate(NewC.getSExtValue())) { 1895 auto &DL = DAG.getDataLayout(); 1896 EVT ShiftTy = DCI.isBeforeLegalize() 1897 ? getPointerTy(DL) 1898 : getShiftAmountTy(N0.getValueType(), DL); 1899 EVT CmpTy = N0.getValueType(); 1900 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1901 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1902 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1903 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1904 } 1905 } 1906 } 1907 } 1908 1909 if (isa<ConstantFPSDNode>(N0.getNode())) { 1910 // Constant fold or commute setcc. 1911 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1912 if (O.getNode()) return O; 1913 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1914 // If the RHS of an FP comparison is a constant, simplify it away in 1915 // some cases. 1916 if (CFP->getValueAPF().isNaN()) { 1917 // If an operand is known to be a nan, we can fold it. 1918 switch (ISD::getUnorderedFlavor(Cond)) { 1919 default: llvm_unreachable("Unknown flavor!"); 1920 case 0: // Known false. 1921 return DAG.getConstant(0, dl, VT); 1922 case 1: // Known true. 1923 return DAG.getConstant(1, dl, VT); 1924 case 2: // Undefined. 1925 return DAG.getUNDEF(VT); 1926 } 1927 } 1928 1929 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1930 // constant if knowing that the operand is non-nan is enough. We prefer to 1931 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1932 // materialize 0.0. 1933 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1934 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1935 1936 // If the condition is not legal, see if we can find an equivalent one 1937 // which is legal. 1938 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1939 // If the comparison was an awkward floating-point == or != and one of 1940 // the comparison operands is infinity or negative infinity, convert the 1941 // condition to a less-awkward <= or >=. 1942 if (CFP->getValueAPF().isInfinity()) { 1943 if (CFP->getValueAPF().isNegative()) { 1944 if (Cond == ISD::SETOEQ && 1945 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1946 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1947 if (Cond == ISD::SETUEQ && 1948 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1949 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1950 if (Cond == ISD::SETUNE && 1951 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1952 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1953 if (Cond == ISD::SETONE && 1954 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1955 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1956 } else { 1957 if (Cond == ISD::SETOEQ && 1958 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1959 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1960 if (Cond == ISD::SETUEQ && 1961 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1962 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1963 if (Cond == ISD::SETUNE && 1964 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1965 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1966 if (Cond == ISD::SETONE && 1967 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1968 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1969 } 1970 } 1971 } 1972 } 1973 1974 if (N0 == N1) { 1975 // The sext(setcc()) => setcc() optimization relies on the appropriate 1976 // constant being emitted. 1977 uint64_t EqVal = 0; 1978 switch (getBooleanContents(N0.getValueType())) { 1979 case UndefinedBooleanContent: 1980 case ZeroOrOneBooleanContent: 1981 EqVal = ISD::isTrueWhenEqual(Cond); 1982 break; 1983 case ZeroOrNegativeOneBooleanContent: 1984 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1985 break; 1986 } 1987 1988 // We can always fold X == X for integer setcc's. 1989 if (N0.getValueType().isInteger()) { 1990 return DAG.getConstant(EqVal, dl, VT); 1991 } 1992 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1993 if (UOF == 2) // FP operators that are undefined on NaNs. 1994 return DAG.getConstant(EqVal, dl, VT); 1995 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1996 return DAG.getConstant(EqVal, dl, VT); 1997 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1998 // if it is not already. 1999 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2000 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2001 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2002 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2003 } 2004 2005 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2006 N0.getValueType().isInteger()) { 2007 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2008 N0.getOpcode() == ISD::XOR) { 2009 // Simplify (X+Y) == (X+Z) --> Y == Z 2010 if (N0.getOpcode() == N1.getOpcode()) { 2011 if (N0.getOperand(0) == N1.getOperand(0)) 2012 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2013 if (N0.getOperand(1) == N1.getOperand(1)) 2014 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2015 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2016 // If X op Y == Y op X, try other combinations. 2017 if (N0.getOperand(0) == N1.getOperand(1)) 2018 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2019 Cond); 2020 if (N0.getOperand(1) == N1.getOperand(0)) 2021 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2022 Cond); 2023 } 2024 } 2025 2026 // If RHS is a legal immediate value for a compare instruction, we need 2027 // to be careful about increasing register pressure needlessly. 2028 bool LegalRHSImm = false; 2029 2030 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2031 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2032 // Turn (X+C1) == C2 --> X == C2-C1 2033 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2034 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2035 DAG.getConstant(RHSC->getAPIntValue()- 2036 LHSR->getAPIntValue(), 2037 dl, N0.getValueType()), Cond); 2038 } 2039 2040 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2041 if (N0.getOpcode() == ISD::XOR) 2042 // If we know that all of the inverted bits are zero, don't bother 2043 // performing the inversion. 2044 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2045 return 2046 DAG.getSetCC(dl, VT, N0.getOperand(0), 2047 DAG.getConstant(LHSR->getAPIntValue() ^ 2048 RHSC->getAPIntValue(), 2049 dl, N0.getValueType()), 2050 Cond); 2051 } 2052 2053 // Turn (C1-X) == C2 --> X == C1-C2 2054 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2055 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2056 return 2057 DAG.getSetCC(dl, VT, N0.getOperand(1), 2058 DAG.getConstant(SUBC->getAPIntValue() - 2059 RHSC->getAPIntValue(), 2060 dl, N0.getValueType()), 2061 Cond); 2062 } 2063 } 2064 2065 // Could RHSC fold directly into a compare? 2066 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2067 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2068 } 2069 2070 // Simplify (X+Z) == X --> Z == 0 2071 // Don't do this if X is an immediate that can fold into a cmp 2072 // instruction and X+Z has other uses. It could be an induction variable 2073 // chain, and the transform would increase register pressure. 2074 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2075 if (N0.getOperand(0) == N1) 2076 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2077 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2078 if (N0.getOperand(1) == N1) { 2079 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2080 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2081 DAG.getConstant(0, dl, N0.getValueType()), 2082 Cond); 2083 if (N0.getNode()->hasOneUse()) { 2084 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2085 auto &DL = DAG.getDataLayout(); 2086 // (Z-X) == X --> Z == X<<1 2087 SDValue SH = DAG.getNode( 2088 ISD::SHL, dl, N1.getValueType(), N1, 2089 DAG.getConstant(1, dl, 2090 getShiftAmountTy(N1.getValueType(), DL))); 2091 if (!DCI.isCalledByLegalizer()) 2092 DCI.AddToWorklist(SH.getNode()); 2093 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2094 } 2095 } 2096 } 2097 } 2098 2099 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2100 N1.getOpcode() == ISD::XOR) { 2101 // Simplify X == (X+Z) --> Z == 0 2102 if (N1.getOperand(0) == N0) 2103 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2104 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2105 if (N1.getOperand(1) == N0) { 2106 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2107 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2108 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2109 if (N1.getNode()->hasOneUse()) { 2110 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2111 auto &DL = DAG.getDataLayout(); 2112 // X == (Z-X) --> X<<1 == Z 2113 SDValue SH = DAG.getNode( 2114 ISD::SHL, dl, N1.getValueType(), N0, 2115 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2116 if (!DCI.isCalledByLegalizer()) 2117 DCI.AddToWorklist(SH.getNode()); 2118 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2119 } 2120 } 2121 } 2122 2123 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2124 return V; 2125 } 2126 2127 // Fold away ALL boolean setcc's. 2128 SDValue Temp; 2129 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2130 switch (Cond) { 2131 default: llvm_unreachable("Unknown integer setcc!"); 2132 case ISD::SETEQ: // X == Y -> ~(X^Y) 2133 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2134 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2135 if (!DCI.isCalledByLegalizer()) 2136 DCI.AddToWorklist(Temp.getNode()); 2137 break; 2138 case ISD::SETNE: // X != Y --> (X^Y) 2139 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2140 break; 2141 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2142 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2143 Temp = DAG.getNOT(dl, N0, MVT::i1); 2144 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2145 if (!DCI.isCalledByLegalizer()) 2146 DCI.AddToWorklist(Temp.getNode()); 2147 break; 2148 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2149 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2150 Temp = DAG.getNOT(dl, N1, MVT::i1); 2151 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2152 if (!DCI.isCalledByLegalizer()) 2153 DCI.AddToWorklist(Temp.getNode()); 2154 break; 2155 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2156 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2157 Temp = DAG.getNOT(dl, N0, MVT::i1); 2158 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2159 if (!DCI.isCalledByLegalizer()) 2160 DCI.AddToWorklist(Temp.getNode()); 2161 break; 2162 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2163 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2164 Temp = DAG.getNOT(dl, N1, MVT::i1); 2165 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2166 break; 2167 } 2168 if (VT != MVT::i1) { 2169 if (!DCI.isCalledByLegalizer()) 2170 DCI.AddToWorklist(N0.getNode()); 2171 // FIXME: If running after legalize, we probably can't do this. 2172 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2173 } 2174 return N0; 2175 } 2176 2177 // Could not fold it. 2178 return SDValue(); 2179 } 2180 2181 /// Returns true (and the GlobalValue and the offset) if the node is a 2182 /// GlobalAddress + offset. 2183 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2184 int64_t &Offset) const { 2185 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2186 GA = GASD->getGlobal(); 2187 Offset += GASD->getOffset(); 2188 return true; 2189 } 2190 2191 if (N->getOpcode() == ISD::ADD) { 2192 SDValue N1 = N->getOperand(0); 2193 SDValue N2 = N->getOperand(1); 2194 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2195 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2196 Offset += V->getSExtValue(); 2197 return true; 2198 } 2199 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2200 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2201 Offset += V->getSExtValue(); 2202 return true; 2203 } 2204 } 2205 } 2206 2207 return false; 2208 } 2209 2210 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2211 DAGCombinerInfo &DCI) const { 2212 // Default implementation: no optimization. 2213 return SDValue(); 2214 } 2215 2216 //===----------------------------------------------------------------------===// 2217 // Inline Assembler Implementation Methods 2218 //===----------------------------------------------------------------------===// 2219 2220 TargetLowering::ConstraintType 2221 TargetLowering::getConstraintType(StringRef Constraint) const { 2222 unsigned S = Constraint.size(); 2223 2224 if (S == 1) { 2225 switch (Constraint[0]) { 2226 default: break; 2227 case 'r': return C_RegisterClass; 2228 case 'm': // memory 2229 case 'o': // offsetable 2230 case 'V': // not offsetable 2231 return C_Memory; 2232 case 'i': // Simple Integer or Relocatable Constant 2233 case 'n': // Simple Integer 2234 case 'E': // Floating Point Constant 2235 case 'F': // Floating Point Constant 2236 case 's': // Relocatable Constant 2237 case 'p': // Address. 2238 case 'X': // Allow ANY value. 2239 case 'I': // Target registers. 2240 case 'J': 2241 case 'K': 2242 case 'L': 2243 case 'M': 2244 case 'N': 2245 case 'O': 2246 case 'P': 2247 case '<': 2248 case '>': 2249 return C_Other; 2250 } 2251 } 2252 2253 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2254 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2255 return C_Memory; 2256 return C_Register; 2257 } 2258 return C_Unknown; 2259 } 2260 2261 /// Try to replace an X constraint, which matches anything, with another that 2262 /// has more specific requirements based on the type of the corresponding 2263 /// operand. 2264 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2265 if (ConstraintVT.isInteger()) 2266 return "r"; 2267 if (ConstraintVT.isFloatingPoint()) 2268 return "f"; // works for many targets 2269 return nullptr; 2270 } 2271 2272 /// Lower the specified operand into the Ops vector. 2273 /// If it is invalid, don't add anything to Ops. 2274 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2275 std::string &Constraint, 2276 std::vector<SDValue> &Ops, 2277 SelectionDAG &DAG) const { 2278 2279 if (Constraint.length() > 1) return; 2280 2281 char ConstraintLetter = Constraint[0]; 2282 switch (ConstraintLetter) { 2283 default: break; 2284 case 'X': // Allows any operand; labels (basic block) use this. 2285 if (Op.getOpcode() == ISD::BasicBlock) { 2286 Ops.push_back(Op); 2287 return; 2288 } 2289 // fall through 2290 case 'i': // Simple Integer or Relocatable Constant 2291 case 'n': // Simple Integer 2292 case 's': { // Relocatable Constant 2293 // These operands are interested in values of the form (GV+C), where C may 2294 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2295 // is possible and fine if either GV or C are missing. 2296 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2297 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2298 2299 // If we have "(add GV, C)", pull out GV/C 2300 if (Op.getOpcode() == ISD::ADD) { 2301 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2302 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2303 if (!C || !GA) { 2304 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2305 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2306 } 2307 if (!C || !GA) { 2308 C = nullptr; 2309 GA = nullptr; 2310 } 2311 } 2312 2313 // If we find a valid operand, map to the TargetXXX version so that the 2314 // value itself doesn't get selected. 2315 if (GA) { // Either &GV or &GV+C 2316 if (ConstraintLetter != 'n') { 2317 int64_t Offs = GA->getOffset(); 2318 if (C) Offs += C->getZExtValue(); 2319 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2320 C ? SDLoc(C) : SDLoc(), 2321 Op.getValueType(), Offs)); 2322 } 2323 return; 2324 } 2325 if (C) { // just C, no GV. 2326 // Simple constants are not allowed for 's'. 2327 if (ConstraintLetter != 's') { 2328 // gcc prints these as sign extended. Sign extend value to 64 bits 2329 // now; without this it would get ZExt'd later in 2330 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2331 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2332 SDLoc(C), MVT::i64)); 2333 } 2334 return; 2335 } 2336 break; 2337 } 2338 } 2339 } 2340 2341 std::pair<unsigned, const TargetRegisterClass *> 2342 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2343 StringRef Constraint, 2344 MVT VT) const { 2345 if (Constraint.empty() || Constraint[0] != '{') 2346 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2347 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2348 2349 // Remove the braces from around the name. 2350 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2351 2352 std::pair<unsigned, const TargetRegisterClass*> R = 2353 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2354 2355 // Figure out which register class contains this reg. 2356 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2357 E = RI->regclass_end(); RCI != E; ++RCI) { 2358 const TargetRegisterClass *RC = *RCI; 2359 2360 // If none of the value types for this register class are valid, we 2361 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2362 if (!isLegalRC(RC)) 2363 continue; 2364 2365 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2366 I != E; ++I) { 2367 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2368 std::pair<unsigned, const TargetRegisterClass*> S = 2369 std::make_pair(*I, RC); 2370 2371 // If this register class has the requested value type, return it, 2372 // otherwise keep searching and return the first class found 2373 // if no other is found which explicitly has the requested type. 2374 if (RC->hasType(VT)) 2375 return S; 2376 else if (!R.second) 2377 R = S; 2378 } 2379 } 2380 } 2381 2382 return R; 2383 } 2384 2385 //===----------------------------------------------------------------------===// 2386 // Constraint Selection. 2387 2388 /// Return true of this is an input operand that is a matching constraint like 2389 /// "4". 2390 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2391 assert(!ConstraintCode.empty() && "No known constraint!"); 2392 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2393 } 2394 2395 /// If this is an input matching constraint, this method returns the output 2396 /// operand it matches. 2397 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2398 assert(!ConstraintCode.empty() && "No known constraint!"); 2399 return atoi(ConstraintCode.c_str()); 2400 } 2401 2402 /// Split up the constraint string from the inline assembly value into the 2403 /// specific constraints and their prefixes, and also tie in the associated 2404 /// operand values. 2405 /// If this returns an empty vector, and if the constraint string itself 2406 /// isn't empty, there was an error parsing. 2407 TargetLowering::AsmOperandInfoVector 2408 TargetLowering::ParseConstraints(const DataLayout &DL, 2409 const TargetRegisterInfo *TRI, 2410 ImmutableCallSite CS) const { 2411 /// Information about all of the constraints. 2412 AsmOperandInfoVector ConstraintOperands; 2413 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2414 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2415 2416 // Do a prepass over the constraints, canonicalizing them, and building up the 2417 // ConstraintOperands list. 2418 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2419 unsigned ResNo = 0; // ResNo - The result number of the next output. 2420 2421 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2422 ConstraintOperands.emplace_back(std::move(CI)); 2423 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2424 2425 // Update multiple alternative constraint count. 2426 if (OpInfo.multipleAlternatives.size() > maCount) 2427 maCount = OpInfo.multipleAlternatives.size(); 2428 2429 OpInfo.ConstraintVT = MVT::Other; 2430 2431 // Compute the value type for each operand. 2432 switch (OpInfo.Type) { 2433 case InlineAsm::isOutput: 2434 // Indirect outputs just consume an argument. 2435 if (OpInfo.isIndirect) { 2436 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2437 break; 2438 } 2439 2440 // The return value of the call is this value. As such, there is no 2441 // corresponding argument. 2442 assert(!CS.getType()->isVoidTy() && 2443 "Bad inline asm!"); 2444 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2445 OpInfo.ConstraintVT = 2446 getSimpleValueType(DL, STy->getElementType(ResNo)); 2447 } else { 2448 assert(ResNo == 0 && "Asm only has one result!"); 2449 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2450 } 2451 ++ResNo; 2452 break; 2453 case InlineAsm::isInput: 2454 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2455 break; 2456 case InlineAsm::isClobber: 2457 // Nothing to do. 2458 break; 2459 } 2460 2461 if (OpInfo.CallOperandVal) { 2462 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2463 if (OpInfo.isIndirect) { 2464 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2465 if (!PtrTy) 2466 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2467 OpTy = PtrTy->getElementType(); 2468 } 2469 2470 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2471 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2472 if (STy->getNumElements() == 1) 2473 OpTy = STy->getElementType(0); 2474 2475 // If OpTy is not a single value, it may be a struct/union that we 2476 // can tile with integers. 2477 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2478 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2479 switch (BitSize) { 2480 default: break; 2481 case 1: 2482 case 8: 2483 case 16: 2484 case 32: 2485 case 64: 2486 case 128: 2487 OpInfo.ConstraintVT = 2488 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2489 break; 2490 } 2491 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2492 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2493 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2494 } else { 2495 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2496 } 2497 } 2498 } 2499 2500 // If we have multiple alternative constraints, select the best alternative. 2501 if (!ConstraintOperands.empty()) { 2502 if (maCount) { 2503 unsigned bestMAIndex = 0; 2504 int bestWeight = -1; 2505 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2506 int weight = -1; 2507 unsigned maIndex; 2508 // Compute the sums of the weights for each alternative, keeping track 2509 // of the best (highest weight) one so far. 2510 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2511 int weightSum = 0; 2512 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2513 cIndex != eIndex; ++cIndex) { 2514 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2515 if (OpInfo.Type == InlineAsm::isClobber) 2516 continue; 2517 2518 // If this is an output operand with a matching input operand, 2519 // look up the matching input. If their types mismatch, e.g. one 2520 // is an integer, the other is floating point, or their sizes are 2521 // different, flag it as an maCantMatch. 2522 if (OpInfo.hasMatchingInput()) { 2523 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2524 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2525 if ((OpInfo.ConstraintVT.isInteger() != 2526 Input.ConstraintVT.isInteger()) || 2527 (OpInfo.ConstraintVT.getSizeInBits() != 2528 Input.ConstraintVT.getSizeInBits())) { 2529 weightSum = -1; // Can't match. 2530 break; 2531 } 2532 } 2533 } 2534 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2535 if (weight == -1) { 2536 weightSum = -1; 2537 break; 2538 } 2539 weightSum += weight; 2540 } 2541 // Update best. 2542 if (weightSum > bestWeight) { 2543 bestWeight = weightSum; 2544 bestMAIndex = maIndex; 2545 } 2546 } 2547 2548 // Now select chosen alternative in each constraint. 2549 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2550 cIndex != eIndex; ++cIndex) { 2551 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2552 if (cInfo.Type == InlineAsm::isClobber) 2553 continue; 2554 cInfo.selectAlternative(bestMAIndex); 2555 } 2556 } 2557 } 2558 2559 // Check and hook up tied operands, choose constraint code to use. 2560 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2561 cIndex != eIndex; ++cIndex) { 2562 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2563 2564 // If this is an output operand with a matching input operand, look up the 2565 // matching input. If their types mismatch, e.g. one is an integer, the 2566 // other is floating point, or their sizes are different, flag it as an 2567 // error. 2568 if (OpInfo.hasMatchingInput()) { 2569 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2570 2571 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2572 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2573 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2574 OpInfo.ConstraintVT); 2575 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2576 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2577 Input.ConstraintVT); 2578 if ((OpInfo.ConstraintVT.isInteger() != 2579 Input.ConstraintVT.isInteger()) || 2580 (MatchRC.second != InputRC.second)) { 2581 report_fatal_error("Unsupported asm: input constraint" 2582 " with a matching output constraint of" 2583 " incompatible type!"); 2584 } 2585 } 2586 } 2587 } 2588 2589 return ConstraintOperands; 2590 } 2591 2592 /// Return an integer indicating how general CT is. 2593 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2594 switch (CT) { 2595 case TargetLowering::C_Other: 2596 case TargetLowering::C_Unknown: 2597 return 0; 2598 case TargetLowering::C_Register: 2599 return 1; 2600 case TargetLowering::C_RegisterClass: 2601 return 2; 2602 case TargetLowering::C_Memory: 2603 return 3; 2604 } 2605 llvm_unreachable("Invalid constraint type"); 2606 } 2607 2608 /// Examine constraint type and operand type and determine a weight value. 2609 /// This object must already have been set up with the operand type 2610 /// and the current alternative constraint selected. 2611 TargetLowering::ConstraintWeight 2612 TargetLowering::getMultipleConstraintMatchWeight( 2613 AsmOperandInfo &info, int maIndex) const { 2614 InlineAsm::ConstraintCodeVector *rCodes; 2615 if (maIndex >= (int)info.multipleAlternatives.size()) 2616 rCodes = &info.Codes; 2617 else 2618 rCodes = &info.multipleAlternatives[maIndex].Codes; 2619 ConstraintWeight BestWeight = CW_Invalid; 2620 2621 // Loop over the options, keeping track of the most general one. 2622 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2623 ConstraintWeight weight = 2624 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2625 if (weight > BestWeight) 2626 BestWeight = weight; 2627 } 2628 2629 return BestWeight; 2630 } 2631 2632 /// Examine constraint type and operand type and determine a weight value. 2633 /// This object must already have been set up with the operand type 2634 /// and the current alternative constraint selected. 2635 TargetLowering::ConstraintWeight 2636 TargetLowering::getSingleConstraintMatchWeight( 2637 AsmOperandInfo &info, const char *constraint) const { 2638 ConstraintWeight weight = CW_Invalid; 2639 Value *CallOperandVal = info.CallOperandVal; 2640 // If we don't have a value, we can't do a match, 2641 // but allow it at the lowest weight. 2642 if (!CallOperandVal) 2643 return CW_Default; 2644 // Look at the constraint type. 2645 switch (*constraint) { 2646 case 'i': // immediate integer. 2647 case 'n': // immediate integer with a known value. 2648 if (isa<ConstantInt>(CallOperandVal)) 2649 weight = CW_Constant; 2650 break; 2651 case 's': // non-explicit intregal immediate. 2652 if (isa<GlobalValue>(CallOperandVal)) 2653 weight = CW_Constant; 2654 break; 2655 case 'E': // immediate float if host format. 2656 case 'F': // immediate float. 2657 if (isa<ConstantFP>(CallOperandVal)) 2658 weight = CW_Constant; 2659 break; 2660 case '<': // memory operand with autodecrement. 2661 case '>': // memory operand with autoincrement. 2662 case 'm': // memory operand. 2663 case 'o': // offsettable memory operand 2664 case 'V': // non-offsettable memory operand 2665 weight = CW_Memory; 2666 break; 2667 case 'r': // general register. 2668 case 'g': // general register, memory operand or immediate integer. 2669 // note: Clang converts "g" to "imr". 2670 if (CallOperandVal->getType()->isIntegerTy()) 2671 weight = CW_Register; 2672 break; 2673 case 'X': // any operand. 2674 default: 2675 weight = CW_Default; 2676 break; 2677 } 2678 return weight; 2679 } 2680 2681 /// If there are multiple different constraints that we could pick for this 2682 /// operand (e.g. "imr") try to pick the 'best' one. 2683 /// This is somewhat tricky: constraints fall into four classes: 2684 /// Other -> immediates and magic values 2685 /// Register -> one specific register 2686 /// RegisterClass -> a group of regs 2687 /// Memory -> memory 2688 /// Ideally, we would pick the most specific constraint possible: if we have 2689 /// something that fits into a register, we would pick it. The problem here 2690 /// is that if we have something that could either be in a register or in 2691 /// memory that use of the register could cause selection of *other* 2692 /// operands to fail: they might only succeed if we pick memory. Because of 2693 /// this the heuristic we use is: 2694 /// 2695 /// 1) If there is an 'other' constraint, and if the operand is valid for 2696 /// that constraint, use it. This makes us take advantage of 'i' 2697 /// constraints when available. 2698 /// 2) Otherwise, pick the most general constraint present. This prefers 2699 /// 'm' over 'r', for example. 2700 /// 2701 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2702 const TargetLowering &TLI, 2703 SDValue Op, SelectionDAG *DAG) { 2704 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2705 unsigned BestIdx = 0; 2706 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2707 int BestGenerality = -1; 2708 2709 // Loop over the options, keeping track of the most general one. 2710 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2711 TargetLowering::ConstraintType CType = 2712 TLI.getConstraintType(OpInfo.Codes[i]); 2713 2714 // If this is an 'other' constraint, see if the operand is valid for it. 2715 // For example, on X86 we might have an 'rI' constraint. If the operand 2716 // is an integer in the range [0..31] we want to use I (saving a load 2717 // of a register), otherwise we must use 'r'. 2718 if (CType == TargetLowering::C_Other && Op.getNode()) { 2719 assert(OpInfo.Codes[i].size() == 1 && 2720 "Unhandled multi-letter 'other' constraint"); 2721 std::vector<SDValue> ResultOps; 2722 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2723 ResultOps, *DAG); 2724 if (!ResultOps.empty()) { 2725 BestType = CType; 2726 BestIdx = i; 2727 break; 2728 } 2729 } 2730 2731 // Things with matching constraints can only be registers, per gcc 2732 // documentation. This mainly affects "g" constraints. 2733 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2734 continue; 2735 2736 // This constraint letter is more general than the previous one, use it. 2737 int Generality = getConstraintGenerality(CType); 2738 if (Generality > BestGenerality) { 2739 BestType = CType; 2740 BestIdx = i; 2741 BestGenerality = Generality; 2742 } 2743 } 2744 2745 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2746 OpInfo.ConstraintType = BestType; 2747 } 2748 2749 /// Determines the constraint code and constraint type to use for the specific 2750 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2751 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2752 SDValue Op, 2753 SelectionDAG *DAG) const { 2754 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2755 2756 // Single-letter constraints ('r') are very common. 2757 if (OpInfo.Codes.size() == 1) { 2758 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2759 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2760 } else { 2761 ChooseConstraint(OpInfo, *this, Op, DAG); 2762 } 2763 2764 // 'X' matches anything. 2765 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2766 // Labels and constants are handled elsewhere ('X' is the only thing 2767 // that matches labels). For Functions, the type here is the type of 2768 // the result, which is not what we want to look at; leave them alone. 2769 Value *v = OpInfo.CallOperandVal; 2770 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2771 OpInfo.CallOperandVal = v; 2772 return; 2773 } 2774 2775 // Otherwise, try to resolve it to something we know about by looking at 2776 // the actual operand type. 2777 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2778 OpInfo.ConstraintCode = Repl; 2779 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2780 } 2781 } 2782 } 2783 2784 /// \brief Given an exact SDIV by a constant, create a multiplication 2785 /// with the multiplicative inverse of the constant. 2786 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2787 const SDLoc &dl, SelectionDAG &DAG, 2788 std::vector<SDNode *> &Created) { 2789 assert(d != 0 && "Division by zero!"); 2790 2791 // Shift the value upfront if it is even, so the LSB is one. 2792 unsigned ShAmt = d.countTrailingZeros(); 2793 if (ShAmt) { 2794 // TODO: For UDIV use SRL instead of SRA. 2795 SDValue Amt = 2796 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2797 DAG.getDataLayout())); 2798 SDNodeFlags Flags; 2799 Flags.setExact(true); 2800 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2801 Created.push_back(Op1.getNode()); 2802 d = d.ashr(ShAmt); 2803 } 2804 2805 // Calculate the multiplicative inverse, using Newton's method. 2806 APInt t, xn = d; 2807 while ((t = d*xn) != 1) 2808 xn *= APInt(d.getBitWidth(), 2) - t; 2809 2810 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2811 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2812 Created.push_back(Mul.getNode()); 2813 return Mul; 2814 } 2815 2816 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2817 SelectionDAG &DAG, 2818 std::vector<SDNode *> *Created) const { 2819 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2821 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2822 return SDValue(N,0); // Lower SDIV as SDIV 2823 return SDValue(); 2824 } 2825 2826 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2827 /// return a DAG expression to select that will generate the same value by 2828 /// multiplying by a magic number. 2829 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2830 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2831 SelectionDAG &DAG, bool IsAfterLegalization, 2832 std::vector<SDNode *> *Created) const { 2833 assert(Created && "No vector to hold sdiv ops."); 2834 2835 EVT VT = N->getValueType(0); 2836 SDLoc dl(N); 2837 2838 // Check to see if we can do this. 2839 // FIXME: We should be more aggressive here. 2840 if (!isTypeLegal(VT)) 2841 return SDValue(); 2842 2843 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2844 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2845 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2846 2847 APInt::ms magics = Divisor.magic(); 2848 2849 // Multiply the numerator (operand 0) by the magic value 2850 // FIXME: We should support doing a MUL in a wider type 2851 SDValue Q; 2852 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2853 isOperationLegalOrCustom(ISD::MULHS, VT)) 2854 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2855 DAG.getConstant(magics.m, dl, VT)); 2856 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2857 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2858 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2859 N->getOperand(0), 2860 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2861 else 2862 return SDValue(); // No mulhs or equvialent 2863 // If d > 0 and m < 0, add the numerator 2864 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2865 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2866 Created->push_back(Q.getNode()); 2867 } 2868 // If d < 0 and m > 0, subtract the numerator. 2869 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2870 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2871 Created->push_back(Q.getNode()); 2872 } 2873 auto &DL = DAG.getDataLayout(); 2874 // Shift right algebraic if shift value is nonzero 2875 if (magics.s > 0) { 2876 Q = DAG.getNode( 2877 ISD::SRA, dl, VT, Q, 2878 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2879 Created->push_back(Q.getNode()); 2880 } 2881 // Extract the sign bit and add it to the quotient 2882 SDValue T = 2883 DAG.getNode(ISD::SRL, dl, VT, Q, 2884 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2885 getShiftAmountTy(Q.getValueType(), DL))); 2886 Created->push_back(T.getNode()); 2887 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2888 } 2889 2890 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2891 /// return a DAG expression to select that will generate the same value by 2892 /// multiplying by a magic number. 2893 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2894 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2895 SelectionDAG &DAG, bool IsAfterLegalization, 2896 std::vector<SDNode *> *Created) const { 2897 assert(Created && "No vector to hold udiv ops."); 2898 2899 EVT VT = N->getValueType(0); 2900 SDLoc dl(N); 2901 auto &DL = DAG.getDataLayout(); 2902 2903 // Check to see if we can do this. 2904 // FIXME: We should be more aggressive here. 2905 if (!isTypeLegal(VT)) 2906 return SDValue(); 2907 2908 // FIXME: We should use a narrower constant when the upper 2909 // bits are known to be zero. 2910 APInt::mu magics = Divisor.magicu(); 2911 2912 SDValue Q = N->getOperand(0); 2913 2914 // If the divisor is even, we can avoid using the expensive fixup by shifting 2915 // the divided value upfront. 2916 if (magics.a != 0 && !Divisor[0]) { 2917 unsigned Shift = Divisor.countTrailingZeros(); 2918 Q = DAG.getNode( 2919 ISD::SRL, dl, VT, Q, 2920 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2921 Created->push_back(Q.getNode()); 2922 2923 // Get magic number for the shifted divisor. 2924 magics = Divisor.lshr(Shift).magicu(Shift); 2925 assert(magics.a == 0 && "Should use cheap fixup now"); 2926 } 2927 2928 // Multiply the numerator (operand 0) by the magic value 2929 // FIXME: We should support doing a MUL in a wider type 2930 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2931 isOperationLegalOrCustom(ISD::MULHU, VT)) 2932 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2933 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2934 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2935 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2936 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2937 else 2938 return SDValue(); // No mulhu or equvialent 2939 2940 Created->push_back(Q.getNode()); 2941 2942 if (magics.a == 0) { 2943 assert(magics.s < Divisor.getBitWidth() && 2944 "We shouldn't generate an undefined shift!"); 2945 return DAG.getNode( 2946 ISD::SRL, dl, VT, Q, 2947 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2948 } else { 2949 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2950 Created->push_back(NPQ.getNode()); 2951 NPQ = DAG.getNode( 2952 ISD::SRL, dl, VT, NPQ, 2953 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2954 Created->push_back(NPQ.getNode()); 2955 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2956 Created->push_back(NPQ.getNode()); 2957 return DAG.getNode( 2958 ISD::SRL, dl, VT, NPQ, 2959 DAG.getConstant(magics.s - 1, dl, 2960 getShiftAmountTy(NPQ.getValueType(), DL))); 2961 } 2962 } 2963 2964 bool TargetLowering:: 2965 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2966 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2967 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2968 "be a constant integer"); 2969 return true; 2970 } 2971 2972 return false; 2973 } 2974 2975 //===----------------------------------------------------------------------===// 2976 // Legalization Utilities 2977 //===----------------------------------------------------------------------===// 2978 2979 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2980 SelectionDAG &DAG, SDValue LL, SDValue LH, 2981 SDValue RL, SDValue RH) const { 2982 EVT VT = N->getValueType(0); 2983 SDLoc dl(N); 2984 2985 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2986 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2987 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2988 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2989 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2990 unsigned OuterBitSize = VT.getSizeInBits(); 2991 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2992 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2993 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2994 2995 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2996 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2997 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2998 2999 if (!LL.getNode() && !RL.getNode() && 3000 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3001 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3002 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3003 } 3004 3005 if (!LL.getNode()) 3006 return false; 3007 3008 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3009 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3010 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3011 // The inputs are both zero-extended. 3012 if (HasUMUL_LOHI) { 3013 // We can emit a umul_lohi. 3014 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3015 RL); 3016 Hi = SDValue(Lo.getNode(), 1); 3017 return true; 3018 } 3019 if (HasMULHU) { 3020 // We can emit a mulhu+mul. 3021 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3022 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3023 return true; 3024 } 3025 } 3026 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3027 // The input values are both sign-extended. 3028 if (HasSMUL_LOHI) { 3029 // We can emit a smul_lohi. 3030 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3031 RL); 3032 Hi = SDValue(Lo.getNode(), 1); 3033 return true; 3034 } 3035 if (HasMULHS) { 3036 // We can emit a mulhs+mul. 3037 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3038 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3039 return true; 3040 } 3041 } 3042 3043 if (!LH.getNode() && !RH.getNode() && 3044 isOperationLegalOrCustom(ISD::SRL, VT) && 3045 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3046 auto &DL = DAG.getDataLayout(); 3047 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3048 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3049 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3050 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3051 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3052 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3053 } 3054 3055 if (!LH.getNode()) 3056 return false; 3057 3058 if (HasUMUL_LOHI) { 3059 // Lo,Hi = umul LHS, RHS. 3060 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3061 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3062 Lo = UMulLOHI; 3063 Hi = UMulLOHI.getValue(1); 3064 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3065 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3066 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3067 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3068 return true; 3069 } 3070 if (HasMULHU) { 3071 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3072 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3073 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3074 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3075 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3076 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3077 return true; 3078 } 3079 } 3080 return false; 3081 } 3082 3083 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3084 SelectionDAG &DAG) const { 3085 EVT VT = Node->getOperand(0).getValueType(); 3086 EVT NVT = Node->getValueType(0); 3087 SDLoc dl(SDValue(Node, 0)); 3088 3089 // FIXME: Only f32 to i64 conversions are supported. 3090 if (VT != MVT::f32 || NVT != MVT::i64) 3091 return false; 3092 3093 // Expand f32 -> i64 conversion 3094 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3095 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3096 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3097 VT.getSizeInBits()); 3098 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3099 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3100 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3101 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3102 IntVT); 3103 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3104 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3105 3106 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3107 3108 auto &DL = DAG.getDataLayout(); 3109 SDValue ExponentBits = DAG.getNode( 3110 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3111 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3112 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3113 3114 SDValue Sign = DAG.getNode( 3115 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3116 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3117 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3118 3119 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3120 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3121 DAG.getConstant(0x00800000, dl, IntVT)); 3122 3123 R = DAG.getZExtOrTrunc(R, dl, NVT); 3124 3125 R = DAG.getSelectCC( 3126 dl, Exponent, ExponentLoBit, 3127 DAG.getNode(ISD::SHL, dl, NVT, R, 3128 DAG.getZExtOrTrunc( 3129 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3130 dl, getShiftAmountTy(IntVT, DL))), 3131 DAG.getNode(ISD::SRL, dl, NVT, R, 3132 DAG.getZExtOrTrunc( 3133 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3134 dl, getShiftAmountTy(IntVT, DL))), 3135 ISD::SETGT); 3136 3137 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3138 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3139 Sign); 3140 3141 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3142 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3143 return true; 3144 } 3145 3146 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3147 SelectionDAG &DAG) const { 3148 SDLoc SL(LD); 3149 SDValue Chain = LD->getChain(); 3150 SDValue BasePTR = LD->getBasePtr(); 3151 EVT SrcVT = LD->getMemoryVT(); 3152 ISD::LoadExtType ExtType = LD->getExtensionType(); 3153 3154 unsigned NumElem = SrcVT.getVectorNumElements(); 3155 3156 EVT SrcEltVT = SrcVT.getScalarType(); 3157 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3158 3159 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3160 assert(SrcEltVT.isByteSized()); 3161 3162 EVT PtrVT = BasePTR.getValueType(); 3163 3164 SmallVector<SDValue, 8> Vals; 3165 SmallVector<SDValue, 8> LoadChains; 3166 3167 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3168 SDValue ScalarLoad = DAG.getExtLoad( 3169 ExtType, SL, DstEltVT, 3170 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 3171 SrcEltVT, 3172 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 3173 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 3174 3175 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3176 DAG.getConstant(Stride, SL, PtrVT)); 3177 3178 Vals.push_back(ScalarLoad.getValue(0)); 3179 LoadChains.push_back(ScalarLoad.getValue(1)); 3180 } 3181 3182 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3183 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3184 3185 return DAG.getMergeValues({ Value, NewChain }, SL); 3186 } 3187 3188 // FIXME: This relies on each element having a byte size, otherwise the stride 3189 // is 0 and just overwrites the same location. ExpandStore currently expects 3190 // this broken behavior. 3191 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3192 SelectionDAG &DAG) const { 3193 SDLoc SL(ST); 3194 3195 SDValue Chain = ST->getChain(); 3196 SDValue BasePtr = ST->getBasePtr(); 3197 SDValue Value = ST->getValue(); 3198 EVT StVT = ST->getMemoryVT(); 3199 3200 unsigned Alignment = ST->getAlignment(); 3201 bool isVolatile = ST->isVolatile(); 3202 bool isNonTemporal = ST->isNonTemporal(); 3203 AAMDNodes AAInfo = ST->getAAInfo(); 3204 3205 // The type of the data we want to save 3206 EVT RegVT = Value.getValueType(); 3207 EVT RegSclVT = RegVT.getScalarType(); 3208 3209 // The type of data as saved in memory. 3210 EVT MemSclVT = StVT.getScalarType(); 3211 3212 EVT PtrVT = BasePtr.getValueType(); 3213 3214 // Store Stride in bytes 3215 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3216 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3217 unsigned NumElem = StVT.getVectorNumElements(); 3218 3219 // Extract each of the elements from the original vector and save them into 3220 // memory individually. 3221 SmallVector<SDValue, 8> Stores; 3222 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3223 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3224 DAG.getConstant(Idx, SL, IdxVT)); 3225 3226 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3227 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3228 3229 // This scalar TruncStore may be illegal, but we legalize it later. 3230 SDValue Store = DAG.getTruncStore( 3231 Chain, SL, Elt, Ptr, 3232 ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT, 3233 isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride), 3234 AAInfo); 3235 3236 Stores.push_back(Store); 3237 } 3238 3239 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3240 } 3241 3242 std::pair<SDValue, SDValue> 3243 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3244 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3245 "unaligned indexed loads not implemented!"); 3246 SDValue Chain = LD->getChain(); 3247 SDValue Ptr = LD->getBasePtr(); 3248 EVT VT = LD->getValueType(0); 3249 EVT LoadedVT = LD->getMemoryVT(); 3250 SDLoc dl(LD); 3251 if (VT.isFloatingPoint() || VT.isVector()) { 3252 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3253 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3254 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3255 // Scalarize the load and let the individual components be handled. 3256 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3257 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3258 } 3259 3260 // Expand to a (misaligned) integer load of the same size, 3261 // then bitconvert to floating point or vector. 3262 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3263 LD->getMemOperand()); 3264 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3265 if (LoadedVT != VT) 3266 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3267 ISD::ANY_EXTEND, dl, VT, Result); 3268 3269 return std::make_pair(Result, newLoad.getValue(1)); 3270 } 3271 3272 // Copy the value to a (aligned) stack slot using (unaligned) integer 3273 // loads and stores, then do a (aligned) load from the stack slot. 3274 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3275 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3276 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3277 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3278 3279 // Make sure the stack slot is also aligned for the register type. 3280 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3281 3282 SmallVector<SDValue, 8> Stores; 3283 SDValue StackPtr = StackBase; 3284 unsigned Offset = 0; 3285 3286 EVT PtrVT = Ptr.getValueType(); 3287 EVT StackPtrVT = StackPtr.getValueType(); 3288 3289 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3290 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3291 3292 // Do all but one copies using the full register width. 3293 for (unsigned i = 1; i < NumRegs; i++) { 3294 // Load one integer register's worth from the original location. 3295 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 3296 LD->getPointerInfo().getWithOffset(Offset), 3297 LD->isVolatile(), LD->isNonTemporal(), 3298 LD->isInvariant(), 3299 MinAlign(LD->getAlignment(), Offset), 3300 LD->getAAInfo()); 3301 // Follow the load with a store to the stack slot. Remember the store. 3302 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3303 MachinePointerInfo(), false, false, 0)); 3304 // Increment the pointers. 3305 Offset += RegBytes; 3306 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3307 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3308 StackPtrIncrement); 3309 } 3310 3311 // The last copy may be partial. Do an extending load. 3312 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3313 8 * (LoadedBytes - Offset)); 3314 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3315 LD->getPointerInfo().getWithOffset(Offset), 3316 MemVT, LD->isVolatile(), 3317 LD->isNonTemporal(), 3318 LD->isInvariant(), 3319 MinAlign(LD->getAlignment(), Offset), 3320 LD->getAAInfo()); 3321 // Follow the load with a store to the stack slot. Remember the store. 3322 // On big-endian machines this requires a truncating store to ensure 3323 // that the bits end up in the right place. 3324 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3325 MachinePointerInfo(), MemVT, 3326 false, false, 0)); 3327 3328 // The order of the stores doesn't matter - say it with a TokenFactor. 3329 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3330 3331 // Finally, perform the original load only redirected to the stack slot. 3332 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3333 MachinePointerInfo(), LoadedVT, false,false, false, 3334 0); 3335 3336 // Callers expect a MERGE_VALUES node. 3337 return std::make_pair(Load, TF); 3338 } 3339 3340 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3341 "Unaligned load of unsupported type."); 3342 3343 // Compute the new VT that is half the size of the old one. This is an 3344 // integer MVT. 3345 unsigned NumBits = LoadedVT.getSizeInBits(); 3346 EVT NewLoadedVT; 3347 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3348 NumBits >>= 1; 3349 3350 unsigned Alignment = LD->getAlignment(); 3351 unsigned IncrementSize = NumBits / 8; 3352 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3353 3354 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3355 if (HiExtType == ISD::NON_EXTLOAD) 3356 HiExtType = ISD::ZEXTLOAD; 3357 3358 // Load the value in two parts 3359 SDValue Lo, Hi; 3360 if (DAG.getDataLayout().isLittleEndian()) { 3361 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3362 NewLoadedVT, LD->isVolatile(), 3363 LD->isNonTemporal(), LD->isInvariant(), Alignment, 3364 LD->getAAInfo()); 3365 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3366 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3367 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3368 LD->getPointerInfo().getWithOffset(IncrementSize), 3369 NewLoadedVT, LD->isVolatile(), 3370 LD->isNonTemporal(),LD->isInvariant(), 3371 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 3372 } else { 3373 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3374 NewLoadedVT, LD->isVolatile(), 3375 LD->isNonTemporal(), LD->isInvariant(), Alignment, 3376 LD->getAAInfo()); 3377 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3378 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3379 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3380 LD->getPointerInfo().getWithOffset(IncrementSize), 3381 NewLoadedVT, LD->isVolatile(), 3382 LD->isNonTemporal(), LD->isInvariant(), 3383 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 3384 } 3385 3386 // aggregate the two parts 3387 SDValue ShiftAmount = 3388 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3389 DAG.getDataLayout())); 3390 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3391 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3392 3393 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3394 Hi.getValue(1)); 3395 3396 return std::make_pair(Result, TF); 3397 } 3398 3399 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3400 SelectionDAG &DAG) const { 3401 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3402 "unaligned indexed stores not implemented!"); 3403 SDValue Chain = ST->getChain(); 3404 SDValue Ptr = ST->getBasePtr(); 3405 SDValue Val = ST->getValue(); 3406 EVT VT = Val.getValueType(); 3407 int Alignment = ST->getAlignment(); 3408 3409 SDLoc dl(ST); 3410 if (ST->getMemoryVT().isFloatingPoint() || 3411 ST->getMemoryVT().isVector()) { 3412 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3413 if (isTypeLegal(intVT)) { 3414 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3415 // Scalarize the store and let the individual components be handled. 3416 SDValue Result = scalarizeVectorStore(ST, DAG); 3417 3418 return Result; 3419 } 3420 // Expand to a bitconvert of the value to the integer type of the 3421 // same size, then a (misaligned) int store. 3422 // FIXME: Does not handle truncating floating point stores! 3423 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3424 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3425 ST->isVolatile(), ST->isNonTemporal(), Alignment); 3426 return Result; 3427 } 3428 // Do a (aligned) store to a stack slot, then copy from the stack slot 3429 // to the final destination using (unaligned) integer loads and stores. 3430 EVT StoredVT = ST->getMemoryVT(); 3431 MVT RegVT = 3432 getRegisterType(*DAG.getContext(), 3433 EVT::getIntegerVT(*DAG.getContext(), 3434 StoredVT.getSizeInBits())); 3435 EVT PtrVT = Ptr.getValueType(); 3436 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3437 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3438 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3439 3440 // Make sure the stack slot is also aligned for the register type. 3441 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3442 3443 // Perform the original store, only redirected to the stack slot. 3444 SDValue Store = DAG.getTruncStore(Chain, dl, 3445 Val, StackPtr, MachinePointerInfo(), 3446 StoredVT, false, false, 0); 3447 3448 EVT StackPtrVT = StackPtr.getValueType(); 3449 3450 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3451 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3452 SmallVector<SDValue, 8> Stores; 3453 unsigned Offset = 0; 3454 3455 // Do all but one copies using the full register width. 3456 for (unsigned i = 1; i < NumRegs; i++) { 3457 // Load one integer register's worth from the stack slot. 3458 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 3459 MachinePointerInfo(), 3460 false, false, false, 0); 3461 // Store it to the final location. Remember the store. 3462 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3463 ST->getPointerInfo().getWithOffset(Offset), 3464 ST->isVolatile(), ST->isNonTemporal(), 3465 MinAlign(ST->getAlignment(), Offset))); 3466 // Increment the pointers. 3467 Offset += RegBytes; 3468 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3469 StackPtr, StackPtrIncrement); 3470 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3471 } 3472 3473 // The last store may be partial. Do a truncating store. On big-endian 3474 // machines this requires an extending load from the stack slot to ensure 3475 // that the bits are in the right place. 3476 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3477 8 * (StoredBytes - Offset)); 3478 3479 // Load from the stack slot. 3480 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3481 MachinePointerInfo(), 3482 MemVT, false, false, false, 0); 3483 3484 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3485 ST->getPointerInfo() 3486 .getWithOffset(Offset), 3487 MemVT, ST->isVolatile(), 3488 ST->isNonTemporal(), 3489 MinAlign(ST->getAlignment(), Offset), 3490 ST->getAAInfo())); 3491 // The order of the stores doesn't matter - say it with a TokenFactor. 3492 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3493 return Result; 3494 } 3495 3496 assert(ST->getMemoryVT().isInteger() && 3497 !ST->getMemoryVT().isVector() && 3498 "Unaligned store of unknown type."); 3499 // Get the half-size VT 3500 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3501 int NumBits = NewStoredVT.getSizeInBits(); 3502 int IncrementSize = NumBits / 8; 3503 3504 // Divide the stored value in two parts. 3505 SDValue ShiftAmount = 3506 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3507 DAG.getDataLayout())); 3508 SDValue Lo = Val; 3509 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3510 3511 // Store the two parts 3512 SDValue Store1, Store2; 3513 Store1 = DAG.getTruncStore(Chain, dl, 3514 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3515 Ptr, ST->getPointerInfo(), NewStoredVT, 3516 ST->isVolatile(), ST->isNonTemporal(), Alignment); 3517 3518 EVT PtrVT = Ptr.getValueType(); 3519 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3520 DAG.getConstant(IncrementSize, dl, PtrVT)); 3521 Alignment = MinAlign(Alignment, IncrementSize); 3522 Store2 = DAG.getTruncStore( 3523 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3524 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, 3525 ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo()); 3526 3527 SDValue Result = 3528 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3529 return Result; 3530 } 3531 3532 //===----------------------------------------------------------------------===// 3533 // Implementation of Emulated TLS Model 3534 //===----------------------------------------------------------------------===// 3535 3536 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3537 SelectionDAG &DAG) const { 3538 // Access to address of TLS varialbe xyz is lowered to a function call: 3539 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3541 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3542 SDLoc dl(GA); 3543 3544 ArgListTy Args; 3545 ArgListEntry Entry; 3546 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3547 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3548 StringRef EmuTlsVarName(NameString); 3549 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3550 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3551 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3552 Entry.Ty = VoidPtrType; 3553 Args.push_back(Entry); 3554 3555 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3556 3557 TargetLowering::CallLoweringInfo CLI(DAG); 3558 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3559 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3560 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3561 3562 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3563 // At last for X86 targets, maybe good for other targets too? 3564 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3565 MFI->setAdjustsStack(true); // Is this only for X86 target? 3566 MFI->setHasCalls(true); 3567 3568 assert((GA->getOffset() == 0) && 3569 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3570 return CallResult.first; 3571 } 3572