1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 909 /// result of Op are ever used downstream. If we can use this information to 910 /// simplify Op, create a new simplified DAG node and return true, returning the 911 /// original and new nodes in Old and New. Otherwise, analyze the expression and 912 /// return a mask of Known bits for the expression (used to simplify the 913 /// caller). The Known bits may only be accurate for those bits in the 914 /// OriginalDemandedBits and OriginalDemandedElts. 915 bool TargetLowering::SimplifyDemandedBits( 916 SDValue Op, const APInt &OriginalDemandedBits, 917 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 918 unsigned Depth, bool AssumeSingleUse) const { 919 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 920 assert(Op.getScalarValueSizeInBits() == BitWidth && 921 "Mask size mismatches value type size!"); 922 923 // Don't know anything. 924 Known = KnownBits(BitWidth); 925 926 // TODO: We can probably do more work on calculating the known bits and 927 // simplifying the operations for scalable vectors, but for now we just 928 // bail out. 929 if (Op.getValueType().isScalableVector()) 930 return false; 931 932 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 933 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 934 assert((!Op.getValueType().isVector() || 935 NumElts == Op.getValueType().getVectorNumElements()) && 936 "Unexpected vector size"); 937 938 APInt DemandedBits = OriginalDemandedBits; 939 APInt DemandedElts = OriginalDemandedElts; 940 SDLoc dl(Op); 941 auto &DL = TLO.DAG.getDataLayout(); 942 943 // Undef operand. 944 if (Op.isUndef()) 945 return false; 946 947 if (Op.getOpcode() == ISD::Constant) { 948 // We know all of the bits for a constant! 949 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 950 return false; 951 } 952 953 if (Op.getOpcode() == ISD::ConstantFP) { 954 // We know all of the bits for a floating point constant! 955 Known = KnownBits::makeConstant( 956 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 957 return false; 958 } 959 960 // Other users may use these bits. 961 EVT VT = Op.getValueType(); 962 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 963 if (Depth != 0) { 964 // If not at the root, Just compute the Known bits to 965 // simplify things downstream. 966 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 967 return false; 968 } 969 // If this is the root being simplified, allow it to have multiple uses, 970 // just set the DemandedBits/Elts to all bits. 971 DemandedBits = APInt::getAllOnes(BitWidth); 972 DemandedElts = APInt::getAllOnes(NumElts); 973 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 974 // Not demanding any bits/elts from Op. 975 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 976 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 977 // Limit search depth. 978 return false; 979 } 980 981 KnownBits Known2; 982 switch (Op.getOpcode()) { 983 case ISD::TargetConstant: 984 llvm_unreachable("Can't simplify this node"); 985 case ISD::SCALAR_TO_VECTOR: { 986 if (!DemandedElts[0]) 987 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 988 989 KnownBits SrcKnown; 990 SDValue Src = Op.getOperand(0); 991 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 992 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 993 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 994 return true; 995 996 // Upper elements are undef, so only get the knownbits if we just demand 997 // the bottom element. 998 if (DemandedElts == 1) 999 Known = SrcKnown.anyextOrTrunc(BitWidth); 1000 break; 1001 } 1002 case ISD::BUILD_VECTOR: 1003 // Collect the known bits that are shared by every demanded element. 1004 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1006 return false; // Don't fall through, will infinitely loop. 1007 case ISD::LOAD: { 1008 auto *LD = cast<LoadSDNode>(Op); 1009 if (getTargetConstantFromLoad(LD)) { 1010 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1011 return false; // Don't fall through, will infinitely loop. 1012 } 1013 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1014 // If this is a ZEXTLoad and we are looking at the loaded value. 1015 EVT MemVT = LD->getMemoryVT(); 1016 unsigned MemBits = MemVT.getScalarSizeInBits(); 1017 Known.Zero.setBitsFrom(MemBits); 1018 return false; // Don't fall through, will infinitely loop. 1019 } 1020 break; 1021 } 1022 case ISD::INSERT_VECTOR_ELT: { 1023 SDValue Vec = Op.getOperand(0); 1024 SDValue Scl = Op.getOperand(1); 1025 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1026 EVT VecVT = Vec.getValueType(); 1027 1028 // If index isn't constant, assume we need all vector elements AND the 1029 // inserted element. 1030 APInt DemandedVecElts(DemandedElts); 1031 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1032 unsigned Idx = CIdx->getZExtValue(); 1033 DemandedVecElts.clearBit(Idx); 1034 1035 // Inserted element is not required. 1036 if (!DemandedElts[Idx]) 1037 return TLO.CombineTo(Op, Vec); 1038 } 1039 1040 KnownBits KnownScl; 1041 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1042 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1043 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1044 return true; 1045 1046 Known = KnownScl.anyextOrTrunc(BitWidth); 1047 1048 KnownBits KnownVec; 1049 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1050 Depth + 1)) 1051 return true; 1052 1053 if (!!DemandedVecElts) 1054 Known = KnownBits::commonBits(Known, KnownVec); 1055 1056 return false; 1057 } 1058 case ISD::INSERT_SUBVECTOR: { 1059 // Demand any elements from the subvector and the remainder from the src its 1060 // inserted into. 1061 SDValue Src = Op.getOperand(0); 1062 SDValue Sub = Op.getOperand(1); 1063 uint64_t Idx = Op.getConstantOperandVal(2); 1064 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1065 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1066 APInt DemandedSrcElts = DemandedElts; 1067 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1068 1069 KnownBits KnownSub, KnownSrc; 1070 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1071 Depth + 1)) 1072 return true; 1073 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1074 Depth + 1)) 1075 return true; 1076 1077 Known.Zero.setAllBits(); 1078 Known.One.setAllBits(); 1079 if (!!DemandedSubElts) 1080 Known = KnownBits::commonBits(Known, KnownSub); 1081 if (!!DemandedSrcElts) 1082 Known = KnownBits::commonBits(Known, KnownSrc); 1083 1084 // Attempt to avoid multi-use src if we don't need anything from it. 1085 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1086 !DemandedSrcElts.isAllOnes()) { 1087 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1088 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1089 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1090 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1091 if (NewSub || NewSrc) { 1092 NewSub = NewSub ? NewSub : Sub; 1093 NewSrc = NewSrc ? NewSrc : Src; 1094 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1095 Op.getOperand(2)); 1096 return TLO.CombineTo(Op, NewOp); 1097 } 1098 } 1099 break; 1100 } 1101 case ISD::EXTRACT_SUBVECTOR: { 1102 // Offset the demanded elts by the subvector index. 1103 SDValue Src = Op.getOperand(0); 1104 if (Src.getValueType().isScalableVector()) 1105 break; 1106 uint64_t Idx = Op.getConstantOperandVal(1); 1107 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1108 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1109 1110 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1111 Depth + 1)) 1112 return true; 1113 1114 // Attempt to avoid multi-use src if we don't need anything from it. 1115 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1116 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1117 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1118 if (DemandedSrc) { 1119 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1120 Op.getOperand(1)); 1121 return TLO.CombineTo(Op, NewOp); 1122 } 1123 } 1124 break; 1125 } 1126 case ISD::CONCAT_VECTORS: { 1127 Known.Zero.setAllBits(); 1128 Known.One.setAllBits(); 1129 EVT SubVT = Op.getOperand(0).getValueType(); 1130 unsigned NumSubVecs = Op.getNumOperands(); 1131 unsigned NumSubElts = SubVT.getVectorNumElements(); 1132 for (unsigned i = 0; i != NumSubVecs; ++i) { 1133 APInt DemandedSubElts = 1134 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1135 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1136 Known2, TLO, Depth + 1)) 1137 return true; 1138 // Known bits are shared by every demanded subvector element. 1139 if (!!DemandedSubElts) 1140 Known = KnownBits::commonBits(Known, Known2); 1141 } 1142 break; 1143 } 1144 case ISD::VECTOR_SHUFFLE: { 1145 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1146 1147 // Collect demanded elements from shuffle operands.. 1148 APInt DemandedLHS(NumElts, 0); 1149 APInt DemandedRHS(NumElts, 0); 1150 for (unsigned i = 0; i != NumElts; ++i) { 1151 if (!DemandedElts[i]) 1152 continue; 1153 int M = ShuffleMask[i]; 1154 if (M < 0) { 1155 // For UNDEF elements, we don't know anything about the common state of 1156 // the shuffle result. 1157 DemandedLHS.clearAllBits(); 1158 DemandedRHS.clearAllBits(); 1159 break; 1160 } 1161 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1162 if (M < (int)NumElts) 1163 DemandedLHS.setBit(M); 1164 else 1165 DemandedRHS.setBit(M - NumElts); 1166 } 1167 1168 if (!!DemandedLHS || !!DemandedRHS) { 1169 SDValue Op0 = Op.getOperand(0); 1170 SDValue Op1 = Op.getOperand(1); 1171 1172 Known.Zero.setAllBits(); 1173 Known.One.setAllBits(); 1174 if (!!DemandedLHS) { 1175 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1176 Depth + 1)) 1177 return true; 1178 Known = KnownBits::commonBits(Known, Known2); 1179 } 1180 if (!!DemandedRHS) { 1181 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1182 Depth + 1)) 1183 return true; 1184 Known = KnownBits::commonBits(Known, Known2); 1185 } 1186 1187 // Attempt to avoid multi-use ops if we don't need anything from them. 1188 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1189 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1190 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1191 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1192 if (DemandedOp0 || DemandedOp1) { 1193 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1194 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1195 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1196 return TLO.CombineTo(Op, NewOp); 1197 } 1198 } 1199 break; 1200 } 1201 case ISD::AND: { 1202 SDValue Op0 = Op.getOperand(0); 1203 SDValue Op1 = Op.getOperand(1); 1204 1205 // If the RHS is a constant, check to see if the LHS would be zero without 1206 // using the bits from the RHS. Below, we use knowledge about the RHS to 1207 // simplify the LHS, here we're using information from the LHS to simplify 1208 // the RHS. 1209 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1210 // Do not increment Depth here; that can cause an infinite loop. 1211 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1212 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1213 if ((LHSKnown.Zero & DemandedBits) == 1214 (~RHSC->getAPIntValue() & DemandedBits)) 1215 return TLO.CombineTo(Op, Op0); 1216 1217 // If any of the set bits in the RHS are known zero on the LHS, shrink 1218 // the constant. 1219 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1220 DemandedElts, TLO)) 1221 return true; 1222 1223 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1224 // constant, but if this 'and' is only clearing bits that were just set by 1225 // the xor, then this 'and' can be eliminated by shrinking the mask of 1226 // the xor. For example, for a 32-bit X: 1227 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1228 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1229 LHSKnown.One == ~RHSC->getAPIntValue()) { 1230 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1231 return TLO.CombineTo(Op, Xor); 1232 } 1233 } 1234 1235 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1236 Depth + 1)) 1237 return true; 1238 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1239 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1240 Known2, TLO, Depth + 1)) 1241 return true; 1242 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1243 1244 // Attempt to avoid multi-use ops if we don't need anything from them. 1245 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1246 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1247 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1248 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1249 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1250 if (DemandedOp0 || DemandedOp1) { 1251 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1252 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1253 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1254 return TLO.CombineTo(Op, NewOp); 1255 } 1256 } 1257 1258 // If all of the demanded bits are known one on one side, return the other. 1259 // These bits cannot contribute to the result of the 'and'. 1260 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1261 return TLO.CombineTo(Op, Op0); 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1263 return TLO.CombineTo(Op, Op1); 1264 // If all of the demanded bits in the inputs are known zeros, return zero. 1265 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1266 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1267 // If the RHS is a constant, see if we can simplify it. 1268 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1269 TLO)) 1270 return true; 1271 // If the operation can be done in a smaller type, do so. 1272 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1273 return true; 1274 1275 Known &= Known2; 1276 break; 1277 } 1278 case ISD::OR: { 1279 SDValue Op0 = Op.getOperand(0); 1280 SDValue Op1 = Op.getOperand(1); 1281 1282 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1283 Depth + 1)) 1284 return true; 1285 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1286 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1287 Known2, TLO, Depth + 1)) 1288 return true; 1289 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1290 1291 // Attempt to avoid multi-use ops if we don't need anything from them. 1292 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1293 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1294 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1295 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1296 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1297 if (DemandedOp0 || DemandedOp1) { 1298 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1299 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1300 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1301 return TLO.CombineTo(Op, NewOp); 1302 } 1303 } 1304 1305 // If all of the demanded bits are known zero on one side, return the other. 1306 // These bits cannot contribute to the result of the 'or'. 1307 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1308 return TLO.CombineTo(Op, Op0); 1309 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1310 return TLO.CombineTo(Op, Op1); 1311 // If the RHS is a constant, see if we can simplify it. 1312 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1313 return true; 1314 // If the operation can be done in a smaller type, do so. 1315 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1316 return true; 1317 1318 Known |= Known2; 1319 break; 1320 } 1321 case ISD::XOR: { 1322 SDValue Op0 = Op.getOperand(0); 1323 SDValue Op1 = Op.getOperand(1); 1324 1325 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1326 Depth + 1)) 1327 return true; 1328 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1329 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1330 Depth + 1)) 1331 return true; 1332 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1333 1334 // Attempt to avoid multi-use ops if we don't need anything from them. 1335 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1336 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1337 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1338 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1339 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1340 if (DemandedOp0 || DemandedOp1) { 1341 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1342 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1343 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1344 return TLO.CombineTo(Op, NewOp); 1345 } 1346 } 1347 1348 // If all of the demanded bits are known zero on one side, return the other. 1349 // These bits cannot contribute to the result of the 'xor'. 1350 if (DemandedBits.isSubsetOf(Known.Zero)) 1351 return TLO.CombineTo(Op, Op0); 1352 if (DemandedBits.isSubsetOf(Known2.Zero)) 1353 return TLO.CombineTo(Op, Op1); 1354 // If the operation can be done in a smaller type, do so. 1355 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1356 return true; 1357 1358 // If all of the unknown bits are known to be zero on one side or the other 1359 // turn this into an *inclusive* or. 1360 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1361 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1362 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1363 1364 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1365 if (C) { 1366 // If one side is a constant, and all of the set bits in the constant are 1367 // also known set on the other side, turn this into an AND, as we know 1368 // the bits will be cleared. 1369 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1370 // NB: it is okay if more bits are known than are requested 1371 if (C->getAPIntValue() == Known2.One) { 1372 SDValue ANDC = 1373 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1374 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1375 } 1376 1377 // If the RHS is a constant, see if we can change it. Don't alter a -1 1378 // constant because that's a 'not' op, and that is better for combining 1379 // and codegen. 1380 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1381 // We're flipping all demanded bits. Flip the undemanded bits too. 1382 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1383 return TLO.CombineTo(Op, New); 1384 } 1385 } 1386 1387 // If we can't turn this into a 'not', try to shrink the constant. 1388 if (!C || !C->isAllOnes()) 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 Known ^= Known2; 1393 break; 1394 } 1395 case ISD::SELECT: 1396 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SELECT_CC: 1413 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1414 Depth + 1)) 1415 return true; 1416 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1417 Depth + 1)) 1418 return true; 1419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1420 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1421 1422 // If the operands are constants, see if we can simplify them. 1423 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1424 return true; 1425 1426 // Only known if known in both the LHS and RHS. 1427 Known = KnownBits::commonBits(Known, Known2); 1428 break; 1429 case ISD::SETCC: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1433 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1434 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1435 // -1, we may be able to bypass the setcc. 1436 if (DemandedBits.isSignMask() && 1437 Op0.getScalarValueSizeInBits() == BitWidth && 1438 getBooleanContents(Op0.getValueType()) == 1439 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1440 // If we're testing X < 0, then this compare isn't needed - just use X! 1441 // FIXME: We're limiting to integer types here, but this should also work 1442 // if we don't care about FP signed-zero. The use of SETLT with FP means 1443 // that we don't care about NaNs. 1444 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1445 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1446 return TLO.CombineTo(Op, Op0); 1447 1448 // TODO: Should we check for other forms of sign-bit comparisons? 1449 // Examples: X <= -1, X >= 0 1450 } 1451 if (getBooleanContents(Op0.getValueType()) == 1452 TargetLowering::ZeroOrOneBooleanContent && 1453 BitWidth > 1) 1454 Known.Zero.setBitsFrom(1); 1455 break; 1456 } 1457 case ISD::SHL: { 1458 SDValue Op0 = Op.getOperand(0); 1459 SDValue Op1 = Op.getOperand(1); 1460 EVT ShiftVT = Op1.getValueType(); 1461 1462 if (const APInt *SA = 1463 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1464 unsigned ShAmt = SA->getZExtValue(); 1465 if (ShAmt == 0) 1466 return TLO.CombineTo(Op, Op0); 1467 1468 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1469 // single shift. We can do this if the bottom bits (which are shifted 1470 // out) are never demanded. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::SRL) { 1473 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1474 if (const APInt *SA2 = 1475 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1476 unsigned C1 = SA2->getZExtValue(); 1477 unsigned Opc = ISD::SHL; 1478 int Diff = ShAmt - C1; 1479 if (Diff < 0) { 1480 Diff = -Diff; 1481 Opc = ISD::SRL; 1482 } 1483 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1486 } 1487 } 1488 } 1489 1490 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1491 // are not demanded. This will likely allow the anyext to be folded away. 1492 // TODO - support non-uniform vector amounts. 1493 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1494 SDValue InnerOp = Op0.getOperand(0); 1495 EVT InnerVT = InnerOp.getValueType(); 1496 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1497 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1498 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1499 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1500 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1501 ShTy = InnerVT; 1502 SDValue NarrowShl = 1503 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1504 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1505 return TLO.CombineTo( 1506 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1507 } 1508 1509 // Repeat the SHL optimization above in cases where an extension 1510 // intervenes: (shl (anyext (shr x, c1)), c2) to 1511 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1512 // aren't demanded (as above) and that the shifted upper c1 bits of 1513 // x aren't demanded. 1514 // TODO - support non-uniform vector amounts. 1515 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1516 InnerOp.hasOneUse()) { 1517 if (const APInt *SA2 = 1518 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1519 unsigned InnerShAmt = SA2->getZExtValue(); 1520 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1521 DemandedBits.getActiveBits() <= 1522 (InnerBits - InnerShAmt + ShAmt) && 1523 DemandedBits.countTrailingZeros() >= ShAmt) { 1524 SDValue NewSA = 1525 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1526 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1527 InnerOp.getOperand(0)); 1528 return TLO.CombineTo( 1529 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1530 } 1531 } 1532 } 1533 } 1534 1535 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1536 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1537 Depth + 1)) 1538 return true; 1539 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1540 Known.Zero <<= ShAmt; 1541 Known.One <<= ShAmt; 1542 // low bits known zero. 1543 Known.Zero.setLowBits(ShAmt); 1544 1545 // Try shrinking the operation as long as the shift amount will still be 1546 // in range. 1547 if ((ShAmt < DemandedBits.getActiveBits()) && 1548 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1549 return true; 1550 } 1551 1552 // If we are only demanding sign bits then we can use the shift source 1553 // directly. 1554 if (const APInt *MaxSA = 1555 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1556 unsigned ShAmt = MaxSA->getZExtValue(); 1557 unsigned NumSignBits = 1558 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1559 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1560 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1561 return TLO.CombineTo(Op, Op0); 1562 } 1563 break; 1564 } 1565 case ISD::SRL: { 1566 SDValue Op0 = Op.getOperand(0); 1567 SDValue Op1 = Op.getOperand(1); 1568 EVT ShiftVT = Op1.getValueType(); 1569 1570 if (const APInt *SA = 1571 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1572 unsigned ShAmt = SA->getZExtValue(); 1573 if (ShAmt == 0) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1577 // single shift. We can do this if the top bits (which are shifted out) 1578 // are never demanded. 1579 // TODO - support non-uniform vector amounts. 1580 if (Op0.getOpcode() == ISD::SHL) { 1581 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1582 if (const APInt *SA2 = 1583 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1584 unsigned C1 = SA2->getZExtValue(); 1585 unsigned Opc = ISD::SRL; 1586 int Diff = ShAmt - C1; 1587 if (Diff < 0) { 1588 Diff = -Diff; 1589 Opc = ISD::SHL; 1590 } 1591 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1592 return TLO.CombineTo( 1593 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1594 } 1595 } 1596 } 1597 1598 APInt InDemandedMask = (DemandedBits << ShAmt); 1599 1600 // If the shift is exact, then it does demand the low bits (and knows that 1601 // they are zero). 1602 if (Op->getFlags().hasExact()) 1603 InDemandedMask.setLowBits(ShAmt); 1604 1605 // Compute the new bits that are at the top now. 1606 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1607 Depth + 1)) 1608 return true; 1609 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1610 Known.Zero.lshrInPlace(ShAmt); 1611 Known.One.lshrInPlace(ShAmt); 1612 // High bits known zero. 1613 Known.Zero.setHighBits(ShAmt); 1614 } 1615 break; 1616 } 1617 case ISD::SRA: { 1618 SDValue Op0 = Op.getOperand(0); 1619 SDValue Op1 = Op.getOperand(1); 1620 EVT ShiftVT = Op1.getValueType(); 1621 1622 // If we only want bits that already match the signbit then we don't need 1623 // to shift. 1624 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1625 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1626 NumHiDemandedBits) 1627 return TLO.CombineTo(Op, Op0); 1628 1629 // If this is an arithmetic shift right and only the low-bit is set, we can 1630 // always convert this into a logical shr, even if the shift amount is 1631 // variable. The low bit of the shift cannot be an input sign bit unless 1632 // the shift amount is >= the size of the datatype, which is undefined. 1633 if (DemandedBits.isOne()) 1634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1635 1636 if (const APInt *SA = 1637 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1638 unsigned ShAmt = SA->getZExtValue(); 1639 if (ShAmt == 0) 1640 return TLO.CombineTo(Op, Op0); 1641 1642 APInt InDemandedMask = (DemandedBits << ShAmt); 1643 1644 // If the shift is exact, then it does demand the low bits (and knows that 1645 // they are zero). 1646 if (Op->getFlags().hasExact()) 1647 InDemandedMask.setLowBits(ShAmt); 1648 1649 // If any of the demanded bits are produced by the sign extension, we also 1650 // demand the input sign bit. 1651 if (DemandedBits.countLeadingZeros() < ShAmt) 1652 InDemandedMask.setSignBit(); 1653 1654 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1655 Depth + 1)) 1656 return true; 1657 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1658 Known.Zero.lshrInPlace(ShAmt); 1659 Known.One.lshrInPlace(ShAmt); 1660 1661 // If the input sign bit is known to be zero, or if none of the top bits 1662 // are demanded, turn this into an unsigned shift right. 1663 if (Known.Zero[BitWidth - ShAmt - 1] || 1664 DemandedBits.countLeadingZeros() >= ShAmt) { 1665 SDNodeFlags Flags; 1666 Flags.setExact(Op->getFlags().hasExact()); 1667 return TLO.CombineTo( 1668 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1669 } 1670 1671 int Log2 = DemandedBits.exactLogBase2(); 1672 if (Log2 >= 0) { 1673 // The bit must come from the sign. 1674 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1675 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1676 } 1677 1678 if (Known.One[BitWidth - ShAmt - 1]) 1679 // New bits are known one. 1680 Known.One.setHighBits(ShAmt); 1681 1682 // Attempt to avoid multi-use ops if we don't need anything from them. 1683 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1684 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1685 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1686 if (DemandedOp0) { 1687 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1688 return TLO.CombineTo(Op, NewOp); 1689 } 1690 } 1691 } 1692 break; 1693 } 1694 case ISD::FSHL: 1695 case ISD::FSHR: { 1696 SDValue Op0 = Op.getOperand(0); 1697 SDValue Op1 = Op.getOperand(1); 1698 SDValue Op2 = Op.getOperand(2); 1699 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1700 1701 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1702 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1703 1704 // For fshl, 0-shift returns the 1st arg. 1705 // For fshr, 0-shift returns the 2nd arg. 1706 if (Amt == 0) { 1707 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1708 Known, TLO, Depth + 1)) 1709 return true; 1710 break; 1711 } 1712 1713 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1714 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1715 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1716 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1717 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1718 Depth + 1)) 1719 return true; 1720 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1721 Depth + 1)) 1722 return true; 1723 1724 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1725 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1726 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1727 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1728 Known.One |= Known2.One; 1729 Known.Zero |= Known2.Zero; 1730 } 1731 1732 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1733 if (isPowerOf2_32(BitWidth)) { 1734 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1735 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1736 Known2, TLO, Depth + 1)) 1737 return true; 1738 } 1739 break; 1740 } 1741 case ISD::ROTL: 1742 case ISD::ROTR: { 1743 SDValue Op0 = Op.getOperand(0); 1744 SDValue Op1 = Op.getOperand(1); 1745 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1746 1747 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1748 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1749 return TLO.CombineTo(Op, Op0); 1750 1751 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1752 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1753 unsigned RevAmt = BitWidth - Amt; 1754 1755 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1756 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1757 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1758 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1759 Depth + 1)) 1760 return true; 1761 1762 // rot*(x, 0) --> x 1763 if (Amt == 0) 1764 return TLO.CombineTo(Op, Op0); 1765 1766 // See if we don't demand either half of the rotated bits. 1767 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1768 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1769 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1770 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1771 } 1772 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1773 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1774 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1776 } 1777 } 1778 1779 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1780 if (isPowerOf2_32(BitWidth)) { 1781 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1782 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1783 Depth + 1)) 1784 return true; 1785 } 1786 break; 1787 } 1788 case ISD::UMIN: { 1789 // Check if one arg is always less than (or equal) to the other arg. 1790 SDValue Op0 = Op.getOperand(0); 1791 SDValue Op1 = Op.getOperand(1); 1792 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1793 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1794 Known = KnownBits::umin(Known0, Known1); 1795 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1796 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1797 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1798 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1799 break; 1800 } 1801 case ISD::UMAX: { 1802 // Check if one arg is always greater than (or equal) to the other arg. 1803 SDValue Op0 = Op.getOperand(0); 1804 SDValue Op1 = Op.getOperand(1); 1805 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1806 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1807 Known = KnownBits::umax(Known0, Known1); 1808 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1809 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1810 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1811 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1812 break; 1813 } 1814 case ISD::BITREVERSE: { 1815 SDValue Src = Op.getOperand(0); 1816 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1818 Depth + 1)) 1819 return true; 1820 Known.One = Known2.One.reverseBits(); 1821 Known.Zero = Known2.Zero.reverseBits(); 1822 break; 1823 } 1824 case ISD::BSWAP: { 1825 SDValue Src = Op.getOperand(0); 1826 1827 // If the only bits demanded come from one byte of the bswap result, 1828 // just shift the input byte into position to eliminate the bswap. 1829 unsigned NLZ = DemandedBits.countLeadingZeros(); 1830 unsigned NTZ = DemandedBits.countTrailingZeros(); 1831 1832 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1833 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1834 // have 14 leading zeros, round to 8. 1835 NLZ = alignDown(NLZ, 8); 1836 NTZ = alignDown(NTZ, 8); 1837 // If we need exactly one byte, we can do this transformation. 1838 if (BitWidth - NLZ - NTZ == 8) { 1839 // Replace this with either a left or right shift to get the byte into 1840 // the right place. 1841 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1842 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1843 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1844 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1845 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1846 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1847 return TLO.CombineTo(Op, NewOp); 1848 } 1849 } 1850 1851 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1852 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1853 Depth + 1)) 1854 return true; 1855 Known.One = Known2.One.byteSwap(); 1856 Known.Zero = Known2.Zero.byteSwap(); 1857 break; 1858 } 1859 case ISD::CTPOP: { 1860 // If only 1 bit is demanded, replace with PARITY as long as we're before 1861 // op legalization. 1862 // FIXME: Limit to scalars for now. 1863 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1865 Op.getOperand(0))); 1866 1867 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1868 break; 1869 } 1870 case ISD::SIGN_EXTEND_INREG: { 1871 SDValue Op0 = Op.getOperand(0); 1872 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1873 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1874 1875 // If we only care about the highest bit, don't bother shifting right. 1876 if (DemandedBits.isSignMask()) { 1877 unsigned MinSignedBits = 1878 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1879 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1880 // However if the input is already sign extended we expect the sign 1881 // extension to be dropped altogether later and do not simplify. 1882 if (!AlreadySignExtended) { 1883 // Compute the correct shift amount type, which must be getShiftAmountTy 1884 // for scalar types after legalization. 1885 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1886 getShiftAmountTy(VT, DL)); 1887 return TLO.CombineTo(Op, 1888 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1889 } 1890 } 1891 1892 // If none of the extended bits are demanded, eliminate the sextinreg. 1893 if (DemandedBits.getActiveBits() <= ExVTBits) 1894 return TLO.CombineTo(Op, Op0); 1895 1896 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1897 1898 // Since the sign extended bits are demanded, we know that the sign 1899 // bit is demanded. 1900 InputDemandedBits.setBit(ExVTBits - 1); 1901 1902 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1903 return true; 1904 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1905 1906 // If the sign bit of the input is known set or clear, then we know the 1907 // top bits of the result. 1908 1909 // If the input sign bit is known zero, convert this into a zero extension. 1910 if (Known.Zero[ExVTBits - 1]) 1911 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1912 1913 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1914 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1915 Known.One.setBitsFrom(ExVTBits); 1916 Known.Zero &= Mask; 1917 } else { // Input sign bit unknown 1918 Known.Zero &= Mask; 1919 Known.One &= Mask; 1920 } 1921 break; 1922 } 1923 case ISD::BUILD_PAIR: { 1924 EVT HalfVT = Op.getOperand(0).getValueType(); 1925 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1926 1927 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1928 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1929 1930 KnownBits KnownLo, KnownHi; 1931 1932 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1933 return true; 1934 1935 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1936 return true; 1937 1938 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1939 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1940 1941 Known.One = KnownLo.One.zext(BitWidth) | 1942 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1943 break; 1944 } 1945 case ISD::ZERO_EXTEND: 1946 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1947 SDValue Src = Op.getOperand(0); 1948 EVT SrcVT = Src.getValueType(); 1949 unsigned InBits = SrcVT.getScalarSizeInBits(); 1950 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1951 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1952 1953 // If none of the top bits are demanded, convert this into an any_extend. 1954 if (DemandedBits.getActiveBits() <= InBits) { 1955 // If we only need the non-extended bits of the bottom element 1956 // then we can just bitcast to the result. 1957 if (IsLE && IsVecInReg && DemandedElts == 1 && 1958 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1959 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1960 1961 unsigned Opc = 1962 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1963 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1964 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1965 } 1966 1967 APInt InDemandedBits = DemandedBits.trunc(InBits); 1968 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1969 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1970 Depth + 1)) 1971 return true; 1972 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1973 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1974 Known = Known.zext(BitWidth); 1975 1976 // Attempt to avoid multi-use ops if we don't need anything from them. 1977 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1978 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1979 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1980 break; 1981 } 1982 case ISD::SIGN_EXTEND: 1983 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1984 SDValue Src = Op.getOperand(0); 1985 EVT SrcVT = Src.getValueType(); 1986 unsigned InBits = SrcVT.getScalarSizeInBits(); 1987 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1988 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1989 1990 // If none of the top bits are demanded, convert this into an any_extend. 1991 if (DemandedBits.getActiveBits() <= InBits) { 1992 // If we only need the non-extended bits of the bottom element 1993 // then we can just bitcast to the result. 1994 if (IsLE && IsVecInReg && DemandedElts == 1 && 1995 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1996 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1997 1998 unsigned Opc = 1999 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2000 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2001 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2002 } 2003 2004 APInt InDemandedBits = DemandedBits.trunc(InBits); 2005 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2006 2007 // Since some of the sign extended bits are demanded, we know that the sign 2008 // bit is demanded. 2009 InDemandedBits.setBit(InBits - 1); 2010 2011 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2012 Depth + 1)) 2013 return true; 2014 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2015 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2016 2017 // If the sign bit is known one, the top bits match. 2018 Known = Known.sext(BitWidth); 2019 2020 // If the sign bit is known zero, convert this to a zero extend. 2021 if (Known.isNonNegative()) { 2022 unsigned Opc = 2023 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2024 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2025 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2026 } 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2030 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2031 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2032 break; 2033 } 2034 case ISD::ANY_EXTEND: 2035 case ISD::ANY_EXTEND_VECTOR_INREG: { 2036 SDValue Src = Op.getOperand(0); 2037 EVT SrcVT = Src.getValueType(); 2038 unsigned InBits = SrcVT.getScalarSizeInBits(); 2039 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2040 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2041 2042 // If we only need the bottom element then we can just bitcast. 2043 // TODO: Handle ANY_EXTEND? 2044 if (IsLE && IsVecInReg && DemandedElts == 1 && 2045 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2046 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2047 2048 APInt InDemandedBits = DemandedBits.trunc(InBits); 2049 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2050 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2051 Depth + 1)) 2052 return true; 2053 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2054 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2055 Known = Known.anyext(BitWidth); 2056 2057 // Attempt to avoid multi-use ops if we don't need anything from them. 2058 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2059 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2060 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2061 break; 2062 } 2063 case ISD::TRUNCATE: { 2064 SDValue Src = Op.getOperand(0); 2065 2066 // Simplify the input, using demanded bit information, and compute the known 2067 // zero/one bits live out. 2068 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2069 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2070 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2071 Depth + 1)) 2072 return true; 2073 Known = Known.trunc(BitWidth); 2074 2075 // Attempt to avoid multi-use ops if we don't need anything from them. 2076 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2077 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2078 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2079 2080 // If the input is only used by this truncate, see if we can shrink it based 2081 // on the known demanded bits. 2082 if (Src.getNode()->hasOneUse()) { 2083 switch (Src.getOpcode()) { 2084 default: 2085 break; 2086 case ISD::SRL: 2087 // Shrink SRL by a constant if none of the high bits shifted in are 2088 // demanded. 2089 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2090 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2091 // undesirable. 2092 break; 2093 2094 const APInt *ShAmtC = 2095 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2096 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2097 break; 2098 uint64_t ShVal = ShAmtC->getZExtValue(); 2099 2100 APInt HighBits = 2101 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2102 HighBits.lshrInPlace(ShVal); 2103 HighBits = HighBits.trunc(BitWidth); 2104 2105 if (!(HighBits & DemandedBits)) { 2106 // None of the shifted in bits are needed. Add a truncate of the 2107 // shift input, then shift it. 2108 SDValue NewShAmt = TLO.DAG.getConstant( 2109 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2110 SDValue NewTrunc = 2111 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2112 return TLO.CombineTo( 2113 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2114 } 2115 break; 2116 } 2117 } 2118 2119 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2120 break; 2121 } 2122 case ISD::AssertZext: { 2123 // AssertZext demands all of the high bits, plus any of the low bits 2124 // demanded by its users. 2125 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2126 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2127 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2128 TLO, Depth + 1)) 2129 return true; 2130 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2131 2132 Known.Zero |= ~InMask; 2133 break; 2134 } 2135 case ISD::EXTRACT_VECTOR_ELT: { 2136 SDValue Src = Op.getOperand(0); 2137 SDValue Idx = Op.getOperand(1); 2138 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2139 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2140 2141 if (SrcEltCnt.isScalable()) 2142 return false; 2143 2144 // Demand the bits from every vector element without a constant index. 2145 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2146 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2147 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2148 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2149 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2150 2151 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2152 // anything about the extended bits. 2153 APInt DemandedSrcBits = DemandedBits; 2154 if (BitWidth > EltBitWidth) 2155 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2156 2157 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2158 Depth + 1)) 2159 return true; 2160 2161 // Attempt to avoid multi-use ops if we don't need anything from them. 2162 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2163 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2164 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2165 SDValue NewOp = 2166 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2167 return TLO.CombineTo(Op, NewOp); 2168 } 2169 } 2170 2171 Known = Known2; 2172 if (BitWidth > EltBitWidth) 2173 Known = Known.anyext(BitWidth); 2174 break; 2175 } 2176 case ISD::BITCAST: { 2177 SDValue Src = Op.getOperand(0); 2178 EVT SrcVT = Src.getValueType(); 2179 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2180 2181 // If this is an FP->Int bitcast and if the sign bit is the only 2182 // thing demanded, turn this into a FGETSIGN. 2183 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2184 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2185 SrcVT.isFloatingPoint()) { 2186 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2187 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2188 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2189 SrcVT != MVT::f128) { 2190 // Cannot eliminate/lower SHL for f128 yet. 2191 EVT Ty = OpVTLegal ? VT : MVT::i32; 2192 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2193 // place. We expect the SHL to be eliminated by other optimizations. 2194 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2195 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2196 if (!OpVTLegal && OpVTSizeInBits > 32) 2197 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2198 unsigned ShVal = Op.getValueSizeInBits() - 1; 2199 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2200 return TLO.CombineTo(Op, 2201 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2202 } 2203 } 2204 2205 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2206 // Demand the elt/bit if any of the original elts/bits are demanded. 2207 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2208 unsigned Scale = BitWidth / NumSrcEltBits; 2209 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2210 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2211 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2212 for (unsigned i = 0; i != Scale; ++i) { 2213 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2214 unsigned BitOffset = EltOffset * NumSrcEltBits; 2215 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2216 if (!Sub.isZero()) { 2217 DemandedSrcBits |= Sub; 2218 for (unsigned j = 0; j != NumElts; ++j) 2219 if (DemandedElts[j]) 2220 DemandedSrcElts.setBit((j * Scale) + i); 2221 } 2222 } 2223 2224 APInt KnownSrcUndef, KnownSrcZero; 2225 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2226 KnownSrcZero, TLO, Depth + 1)) 2227 return true; 2228 2229 KnownBits KnownSrcBits; 2230 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2231 KnownSrcBits, TLO, Depth + 1)) 2232 return true; 2233 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2234 // TODO - bigendian once we have test coverage. 2235 unsigned Scale = NumSrcEltBits / BitWidth; 2236 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2237 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2238 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2239 for (unsigned i = 0; i != NumElts; ++i) 2240 if (DemandedElts[i]) { 2241 unsigned Offset = (i % Scale) * BitWidth; 2242 DemandedSrcBits.insertBits(DemandedBits, Offset); 2243 DemandedSrcElts.setBit(i / Scale); 2244 } 2245 2246 if (SrcVT.isVector()) { 2247 APInt KnownSrcUndef, KnownSrcZero; 2248 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2249 KnownSrcZero, TLO, Depth + 1)) 2250 return true; 2251 } 2252 2253 KnownBits KnownSrcBits; 2254 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2255 KnownSrcBits, TLO, Depth + 1)) 2256 return true; 2257 } 2258 2259 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2260 // recursive call where Known may be useful to the caller. 2261 if (Depth > 0) { 2262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2263 return false; 2264 } 2265 break; 2266 } 2267 case ISD::MUL: 2268 if (DemandedBits.isPowerOf2()) { 2269 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2270 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2271 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2272 unsigned CTZ = DemandedBits.countTrailingZeros(); 2273 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2274 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2275 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2276 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2277 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2278 return TLO.CombineTo(Op, Shl); 2279 } 2280 } 2281 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2282 // X * X is odd iff X is odd. 2283 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2284 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2285 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2286 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2287 return TLO.CombineTo(Op, And1); 2288 } 2289 LLVM_FALLTHROUGH; 2290 case ISD::ADD: 2291 case ISD::SUB: { 2292 // Add, Sub, and Mul don't demand any bits in positions beyond that 2293 // of the highest bit demanded of them. 2294 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2295 SDNodeFlags Flags = Op.getNode()->getFlags(); 2296 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2297 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2298 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2299 Depth + 1) || 2300 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2301 Depth + 1) || 2302 // See if the operation should be performed at a smaller bit width. 2303 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2304 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2305 // Disable the nsw and nuw flags. We can no longer guarantee that we 2306 // won't wrap after simplification. 2307 Flags.setNoSignedWrap(false); 2308 Flags.setNoUnsignedWrap(false); 2309 SDValue NewOp = 2310 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2311 return TLO.CombineTo(Op, NewOp); 2312 } 2313 return true; 2314 } 2315 2316 // Attempt to avoid multi-use ops if we don't need anything from them. 2317 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2319 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2321 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2322 if (DemandedOp0 || DemandedOp1) { 2323 Flags.setNoSignedWrap(false); 2324 Flags.setNoUnsignedWrap(false); 2325 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2326 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2327 SDValue NewOp = 2328 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2329 return TLO.CombineTo(Op, NewOp); 2330 } 2331 } 2332 2333 // If we have a constant operand, we may be able to turn it into -1 if we 2334 // do not demand the high bits. This can make the constant smaller to 2335 // encode, allow more general folding, or match specialized instruction 2336 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2337 // is probably not useful (and could be detrimental). 2338 ConstantSDNode *C = isConstOrConstSplat(Op1); 2339 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2340 if (C && !C->isAllOnes() && !C->isOne() && 2341 (C->getAPIntValue() | HighMask).isAllOnes()) { 2342 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2343 // Disable the nsw and nuw flags. We can no longer guarantee that we 2344 // won't wrap after simplification. 2345 Flags.setNoSignedWrap(false); 2346 Flags.setNoUnsignedWrap(false); 2347 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2348 return TLO.CombineTo(Op, NewOp); 2349 } 2350 2351 LLVM_FALLTHROUGH; 2352 } 2353 default: 2354 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2355 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2356 Known, TLO, Depth)) 2357 return true; 2358 break; 2359 } 2360 2361 // Just use computeKnownBits to compute output bits. 2362 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2363 break; 2364 } 2365 2366 // If we know the value of all of the demanded bits, return this as a 2367 // constant. 2368 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2369 // Avoid folding to a constant if any OpaqueConstant is involved. 2370 const SDNode *N = Op.getNode(); 2371 for (SDNode *Op : 2372 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2373 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2374 if (C->isOpaque()) 2375 return false; 2376 } 2377 if (VT.isInteger()) 2378 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2379 if (VT.isFloatingPoint()) 2380 return TLO.CombineTo( 2381 Op, 2382 TLO.DAG.getConstantFP( 2383 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2384 } 2385 2386 return false; 2387 } 2388 2389 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2390 const APInt &DemandedElts, 2391 DAGCombinerInfo &DCI) const { 2392 SelectionDAG &DAG = DCI.DAG; 2393 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2394 !DCI.isBeforeLegalizeOps()); 2395 2396 APInt KnownUndef, KnownZero; 2397 bool Simplified = 2398 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2399 if (Simplified) { 2400 DCI.AddToWorklist(Op.getNode()); 2401 DCI.CommitTargetLoweringOpt(TLO); 2402 } 2403 2404 return Simplified; 2405 } 2406 2407 /// Given a vector binary operation and known undefined elements for each input 2408 /// operand, compute whether each element of the output is undefined. 2409 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2410 const APInt &UndefOp0, 2411 const APInt &UndefOp1) { 2412 EVT VT = BO.getValueType(); 2413 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2414 "Vector binop only"); 2415 2416 EVT EltVT = VT.getVectorElementType(); 2417 unsigned NumElts = VT.getVectorNumElements(); 2418 assert(UndefOp0.getBitWidth() == NumElts && 2419 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2420 2421 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2422 const APInt &UndefVals) { 2423 if (UndefVals[Index]) 2424 return DAG.getUNDEF(EltVT); 2425 2426 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2427 // Try hard to make sure that the getNode() call is not creating temporary 2428 // nodes. Ignore opaque integers because they do not constant fold. 2429 SDValue Elt = BV->getOperand(Index); 2430 auto *C = dyn_cast<ConstantSDNode>(Elt); 2431 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2432 return Elt; 2433 } 2434 2435 return SDValue(); 2436 }; 2437 2438 APInt KnownUndef = APInt::getZero(NumElts); 2439 for (unsigned i = 0; i != NumElts; ++i) { 2440 // If both inputs for this element are either constant or undef and match 2441 // the element type, compute the constant/undef result for this element of 2442 // the vector. 2443 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2444 // not handle FP constants. The code within getNode() should be refactored 2445 // to avoid the danger of creating a bogus temporary node here. 2446 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2447 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2448 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2449 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2450 KnownUndef.setBit(i); 2451 } 2452 return KnownUndef; 2453 } 2454 2455 bool TargetLowering::SimplifyDemandedVectorElts( 2456 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2457 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2458 bool AssumeSingleUse) const { 2459 EVT VT = Op.getValueType(); 2460 unsigned Opcode = Op.getOpcode(); 2461 APInt DemandedElts = OriginalDemandedElts; 2462 unsigned NumElts = DemandedElts.getBitWidth(); 2463 assert(VT.isVector() && "Expected vector op"); 2464 2465 KnownUndef = KnownZero = APInt::getZero(NumElts); 2466 2467 // TODO: For now we assume we know nothing about scalable vectors. 2468 if (VT.isScalableVector()) 2469 return false; 2470 2471 assert(VT.getVectorNumElements() == NumElts && 2472 "Mask size mismatches value type element count!"); 2473 2474 // Undef operand. 2475 if (Op.isUndef()) { 2476 KnownUndef.setAllBits(); 2477 return false; 2478 } 2479 2480 // If Op has other users, assume that all elements are needed. 2481 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2482 DemandedElts.setAllBits(); 2483 2484 // Not demanding any elements from Op. 2485 if (DemandedElts == 0) { 2486 KnownUndef.setAllBits(); 2487 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2488 } 2489 2490 // Limit search depth. 2491 if (Depth >= SelectionDAG::MaxRecursionDepth) 2492 return false; 2493 2494 SDLoc DL(Op); 2495 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2496 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2497 2498 // Helper for demanding the specified elements and all the bits of both binary 2499 // operands. 2500 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2501 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2502 TLO.DAG, Depth + 1); 2503 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2504 TLO.DAG, Depth + 1); 2505 if (NewOp0 || NewOp1) { 2506 SDValue NewOp = TLO.DAG.getNode( 2507 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2508 return TLO.CombineTo(Op, NewOp); 2509 } 2510 return false; 2511 }; 2512 2513 switch (Opcode) { 2514 case ISD::SCALAR_TO_VECTOR: { 2515 if (!DemandedElts[0]) { 2516 KnownUndef.setAllBits(); 2517 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2518 } 2519 SDValue ScalarSrc = Op.getOperand(0); 2520 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2521 SDValue Src = ScalarSrc.getOperand(0); 2522 SDValue Idx = ScalarSrc.getOperand(1); 2523 EVT SrcVT = Src.getValueType(); 2524 2525 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2526 2527 if (SrcEltCnt.isScalable()) 2528 return false; 2529 2530 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2531 if (isNullConstant(Idx)) { 2532 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2533 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2534 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2535 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2536 TLO, Depth + 1)) 2537 return true; 2538 } 2539 } 2540 KnownUndef.setHighBits(NumElts - 1); 2541 break; 2542 } 2543 case ISD::BITCAST: { 2544 SDValue Src = Op.getOperand(0); 2545 EVT SrcVT = Src.getValueType(); 2546 2547 // We only handle vectors here. 2548 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2549 if (!SrcVT.isVector()) 2550 break; 2551 2552 // Fast handling of 'identity' bitcasts. 2553 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2554 if (NumSrcElts == NumElts) 2555 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2556 KnownZero, TLO, Depth + 1); 2557 2558 APInt SrcDemandedElts, SrcZero, SrcUndef; 2559 2560 // Bitcast from 'large element' src vector to 'small element' vector, we 2561 // must demand a source element if any DemandedElt maps to it. 2562 if ((NumElts % NumSrcElts) == 0) { 2563 unsigned Scale = NumElts / NumSrcElts; 2564 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2565 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2566 TLO, Depth + 1)) 2567 return true; 2568 2569 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2570 // of the large element. 2571 // TODO - bigendian once we have test coverage. 2572 if (IsLE) { 2573 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2574 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2575 for (unsigned i = 0; i != NumElts; ++i) 2576 if (DemandedElts[i]) { 2577 unsigned Ofs = (i % Scale) * EltSizeInBits; 2578 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2579 } 2580 2581 KnownBits Known; 2582 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2583 TLO, Depth + 1)) 2584 return true; 2585 } 2586 2587 // If the src element is zero/undef then all the output elements will be - 2588 // only demanded elements are guaranteed to be correct. 2589 for (unsigned i = 0; i != NumSrcElts; ++i) { 2590 if (SrcDemandedElts[i]) { 2591 if (SrcZero[i]) 2592 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2593 if (SrcUndef[i]) 2594 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2595 } 2596 } 2597 } 2598 2599 // Bitcast from 'small element' src vector to 'large element' vector, we 2600 // demand all smaller source elements covered by the larger demanded element 2601 // of this vector. 2602 if ((NumSrcElts % NumElts) == 0) { 2603 unsigned Scale = NumSrcElts / NumElts; 2604 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2605 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2606 TLO, Depth + 1)) 2607 return true; 2608 2609 // If all the src elements covering an output element are zero/undef, then 2610 // the output element will be as well, assuming it was demanded. 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 if (DemandedElts[i]) { 2613 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2614 KnownZero.setBit(i); 2615 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2616 KnownUndef.setBit(i); 2617 } 2618 } 2619 } 2620 break; 2621 } 2622 case ISD::BUILD_VECTOR: { 2623 // Check all elements and simplify any unused elements with UNDEF. 2624 if (!DemandedElts.isAllOnes()) { 2625 // Don't simplify BROADCASTS. 2626 if (llvm::any_of(Op->op_values(), 2627 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2628 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2629 bool Updated = false; 2630 for (unsigned i = 0; i != NumElts; ++i) { 2631 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2632 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2633 KnownUndef.setBit(i); 2634 Updated = true; 2635 } 2636 } 2637 if (Updated) 2638 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2639 } 2640 } 2641 for (unsigned i = 0; i != NumElts; ++i) { 2642 SDValue SrcOp = Op.getOperand(i); 2643 if (SrcOp.isUndef()) { 2644 KnownUndef.setBit(i); 2645 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2646 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2647 KnownZero.setBit(i); 2648 } 2649 } 2650 break; 2651 } 2652 case ISD::CONCAT_VECTORS: { 2653 EVT SubVT = Op.getOperand(0).getValueType(); 2654 unsigned NumSubVecs = Op.getNumOperands(); 2655 unsigned NumSubElts = SubVT.getVectorNumElements(); 2656 for (unsigned i = 0; i != NumSubVecs; ++i) { 2657 SDValue SubOp = Op.getOperand(i); 2658 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2659 APInt SubUndef, SubZero; 2660 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2661 Depth + 1)) 2662 return true; 2663 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2664 KnownZero.insertBits(SubZero, i * NumSubElts); 2665 } 2666 break; 2667 } 2668 case ISD::INSERT_SUBVECTOR: { 2669 // Demand any elements from the subvector and the remainder from the src its 2670 // inserted into. 2671 SDValue Src = Op.getOperand(0); 2672 SDValue Sub = Op.getOperand(1); 2673 uint64_t Idx = Op.getConstantOperandVal(2); 2674 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2675 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2676 APInt DemandedSrcElts = DemandedElts; 2677 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2678 2679 APInt SubUndef, SubZero; 2680 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2681 Depth + 1)) 2682 return true; 2683 2684 // If none of the src operand elements are demanded, replace it with undef. 2685 if (!DemandedSrcElts && !Src.isUndef()) 2686 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2687 TLO.DAG.getUNDEF(VT), Sub, 2688 Op.getOperand(2))); 2689 2690 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2691 TLO, Depth + 1)) 2692 return true; 2693 KnownUndef.insertBits(SubUndef, Idx); 2694 KnownZero.insertBits(SubZero, Idx); 2695 2696 // Attempt to avoid multi-use ops if we don't need anything from them. 2697 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2698 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2699 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2700 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2701 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2702 if (NewSrc || NewSub) { 2703 NewSrc = NewSrc ? NewSrc : Src; 2704 NewSub = NewSub ? NewSub : Sub; 2705 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2706 NewSub, Op.getOperand(2)); 2707 return TLO.CombineTo(Op, NewOp); 2708 } 2709 } 2710 break; 2711 } 2712 case ISD::EXTRACT_SUBVECTOR: { 2713 // Offset the demanded elts by the subvector index. 2714 SDValue Src = Op.getOperand(0); 2715 if (Src.getValueType().isScalableVector()) 2716 break; 2717 uint64_t Idx = Op.getConstantOperandVal(1); 2718 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2719 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2720 2721 APInt SrcUndef, SrcZero; 2722 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2723 Depth + 1)) 2724 return true; 2725 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2726 KnownZero = SrcZero.extractBits(NumElts, Idx); 2727 2728 // Attempt to avoid multi-use ops if we don't need anything from them. 2729 if (!DemandedElts.isAllOnes()) { 2730 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2731 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2732 if (NewSrc) { 2733 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2734 Op.getOperand(1)); 2735 return TLO.CombineTo(Op, NewOp); 2736 } 2737 } 2738 break; 2739 } 2740 case ISD::INSERT_VECTOR_ELT: { 2741 SDValue Vec = Op.getOperand(0); 2742 SDValue Scl = Op.getOperand(1); 2743 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2744 2745 // For a legal, constant insertion index, if we don't need this insertion 2746 // then strip it, else remove it from the demanded elts. 2747 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2748 unsigned Idx = CIdx->getZExtValue(); 2749 if (!DemandedElts[Idx]) 2750 return TLO.CombineTo(Op, Vec); 2751 2752 APInt DemandedVecElts(DemandedElts); 2753 DemandedVecElts.clearBit(Idx); 2754 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2755 KnownZero, TLO, Depth + 1)) 2756 return true; 2757 2758 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2759 2760 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2761 break; 2762 } 2763 2764 APInt VecUndef, VecZero; 2765 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2766 Depth + 1)) 2767 return true; 2768 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2769 break; 2770 } 2771 case ISD::VSELECT: { 2772 // Try to transform the select condition based on the current demanded 2773 // elements. 2774 // TODO: If a condition element is undef, we can choose from one arm of the 2775 // select (and if one arm is undef, then we can propagate that to the 2776 // result). 2777 // TODO - add support for constant vselect masks (see IR version of this). 2778 APInt UnusedUndef, UnusedZero; 2779 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2780 UnusedZero, TLO, Depth + 1)) 2781 return true; 2782 2783 // See if we can simplify either vselect operand. 2784 APInt DemandedLHS(DemandedElts); 2785 APInt DemandedRHS(DemandedElts); 2786 APInt UndefLHS, ZeroLHS; 2787 APInt UndefRHS, ZeroRHS; 2788 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2789 ZeroLHS, TLO, Depth + 1)) 2790 return true; 2791 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2792 ZeroRHS, TLO, Depth + 1)) 2793 return true; 2794 2795 KnownUndef = UndefLHS & UndefRHS; 2796 KnownZero = ZeroLHS & ZeroRHS; 2797 break; 2798 } 2799 case ISD::VECTOR_SHUFFLE: { 2800 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2801 2802 // Collect demanded elements from shuffle operands.. 2803 APInt DemandedLHS(NumElts, 0); 2804 APInt DemandedRHS(NumElts, 0); 2805 for (unsigned i = 0; i != NumElts; ++i) { 2806 int M = ShuffleMask[i]; 2807 if (M < 0 || !DemandedElts[i]) 2808 continue; 2809 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2810 if (M < (int)NumElts) 2811 DemandedLHS.setBit(M); 2812 else 2813 DemandedRHS.setBit(M - NumElts); 2814 } 2815 2816 // See if we can simplify either shuffle operand. 2817 APInt UndefLHS, ZeroLHS; 2818 APInt UndefRHS, ZeroRHS; 2819 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2820 ZeroLHS, TLO, Depth + 1)) 2821 return true; 2822 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2823 ZeroRHS, TLO, Depth + 1)) 2824 return true; 2825 2826 // Simplify mask using undef elements from LHS/RHS. 2827 bool Updated = false; 2828 bool IdentityLHS = true, IdentityRHS = true; 2829 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2830 for (unsigned i = 0; i != NumElts; ++i) { 2831 int &M = NewMask[i]; 2832 if (M < 0) 2833 continue; 2834 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2835 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2836 Updated = true; 2837 M = -1; 2838 } 2839 IdentityLHS &= (M < 0) || (M == (int)i); 2840 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2841 } 2842 2843 // Update legal shuffle masks based on demanded elements if it won't reduce 2844 // to Identity which can cause premature removal of the shuffle mask. 2845 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2846 SDValue LegalShuffle = 2847 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2848 NewMask, TLO.DAG); 2849 if (LegalShuffle) 2850 return TLO.CombineTo(Op, LegalShuffle); 2851 } 2852 2853 // Propagate undef/zero elements from LHS/RHS. 2854 for (unsigned i = 0; i != NumElts; ++i) { 2855 int M = ShuffleMask[i]; 2856 if (M < 0) { 2857 KnownUndef.setBit(i); 2858 } else if (M < (int)NumElts) { 2859 if (UndefLHS[M]) 2860 KnownUndef.setBit(i); 2861 if (ZeroLHS[M]) 2862 KnownZero.setBit(i); 2863 } else { 2864 if (UndefRHS[M - NumElts]) 2865 KnownUndef.setBit(i); 2866 if (ZeroRHS[M - NumElts]) 2867 KnownZero.setBit(i); 2868 } 2869 } 2870 break; 2871 } 2872 case ISD::ANY_EXTEND_VECTOR_INREG: 2873 case ISD::SIGN_EXTEND_VECTOR_INREG: 2874 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2875 APInt SrcUndef, SrcZero; 2876 SDValue Src = Op.getOperand(0); 2877 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2878 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2879 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2880 Depth + 1)) 2881 return true; 2882 KnownZero = SrcZero.zextOrTrunc(NumElts); 2883 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2884 2885 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2886 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2887 DemandedSrcElts == 1) { 2888 // aext - if we just need the bottom element then we can bitcast. 2889 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2890 } 2891 2892 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2893 // zext(undef) upper bits are guaranteed to be zero. 2894 if (DemandedElts.isSubsetOf(KnownUndef)) 2895 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2896 KnownUndef.clearAllBits(); 2897 2898 // zext - if we just need the bottom element then we can mask: 2899 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2900 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2901 Op->isOnlyUserOf(Src.getNode()) && 2902 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2903 SDLoc DL(Op); 2904 EVT SrcVT = Src.getValueType(); 2905 EVT SrcSVT = SrcVT.getScalarType(); 2906 SmallVector<SDValue> MaskElts; 2907 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2908 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2909 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2910 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2911 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2912 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2913 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2914 } 2915 } 2916 } 2917 break; 2918 } 2919 2920 // TODO: There are more binop opcodes that could be handled here - MIN, 2921 // MAX, saturated math, etc. 2922 case ISD::ADD: { 2923 SDValue Op0 = Op.getOperand(0); 2924 SDValue Op1 = Op.getOperand(1); 2925 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2926 APInt UndefLHS, ZeroLHS; 2927 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2928 Depth + 1, /*AssumeSingleUse*/ true)) 2929 return true; 2930 } 2931 LLVM_FALLTHROUGH; 2932 } 2933 case ISD::OR: 2934 case ISD::XOR: 2935 case ISD::SUB: 2936 case ISD::FADD: 2937 case ISD::FSUB: 2938 case ISD::FMUL: 2939 case ISD::FDIV: 2940 case ISD::FREM: { 2941 SDValue Op0 = Op.getOperand(0); 2942 SDValue Op1 = Op.getOperand(1); 2943 2944 APInt UndefRHS, ZeroRHS; 2945 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2946 Depth + 1)) 2947 return true; 2948 APInt UndefLHS, ZeroLHS; 2949 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2950 Depth + 1)) 2951 return true; 2952 2953 KnownZero = ZeroLHS & ZeroRHS; 2954 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2955 2956 // Attempt to avoid multi-use ops if we don't need anything from them. 2957 // TODO - use KnownUndef to relax the demandedelts? 2958 if (!DemandedElts.isAllOnes()) 2959 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2960 return true; 2961 break; 2962 } 2963 case ISD::SHL: 2964 case ISD::SRL: 2965 case ISD::SRA: 2966 case ISD::ROTL: 2967 case ISD::ROTR: { 2968 SDValue Op0 = Op.getOperand(0); 2969 SDValue Op1 = Op.getOperand(1); 2970 2971 APInt UndefRHS, ZeroRHS; 2972 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2973 Depth + 1)) 2974 return true; 2975 APInt UndefLHS, ZeroLHS; 2976 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2977 Depth + 1)) 2978 return true; 2979 2980 KnownZero = ZeroLHS; 2981 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2982 2983 // Attempt to avoid multi-use ops if we don't need anything from them. 2984 // TODO - use KnownUndef to relax the demandedelts? 2985 if (!DemandedElts.isAllOnes()) 2986 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2987 return true; 2988 break; 2989 } 2990 case ISD::MUL: 2991 case ISD::AND: { 2992 SDValue Op0 = Op.getOperand(0); 2993 SDValue Op1 = Op.getOperand(1); 2994 2995 APInt SrcUndef, SrcZero; 2996 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2997 Depth + 1)) 2998 return true; 2999 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3000 TLO, Depth + 1)) 3001 return true; 3002 3003 // If either side has a zero element, then the result element is zero, even 3004 // if the other is an UNDEF. 3005 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3006 // and then handle 'and' nodes with the rest of the binop opcodes. 3007 KnownZero |= SrcZero; 3008 KnownUndef &= SrcUndef; 3009 KnownUndef &= ~KnownZero; 3010 3011 // Attempt to avoid multi-use ops if we don't need anything from them. 3012 // TODO - use KnownUndef to relax the demandedelts? 3013 if (!DemandedElts.isAllOnes()) 3014 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3015 return true; 3016 break; 3017 } 3018 case ISD::TRUNCATE: 3019 case ISD::SIGN_EXTEND: 3020 case ISD::ZERO_EXTEND: 3021 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3022 KnownZero, TLO, Depth + 1)) 3023 return true; 3024 3025 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3026 // zext(undef) upper bits are guaranteed to be zero. 3027 if (DemandedElts.isSubsetOf(KnownUndef)) 3028 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3029 KnownUndef.clearAllBits(); 3030 } 3031 break; 3032 default: { 3033 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3034 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3035 KnownZero, TLO, Depth)) 3036 return true; 3037 } else { 3038 KnownBits Known; 3039 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3040 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3041 TLO, Depth, AssumeSingleUse)) 3042 return true; 3043 } 3044 break; 3045 } 3046 } 3047 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3048 3049 // Constant fold all undef cases. 3050 // TODO: Handle zero cases as well. 3051 if (DemandedElts.isSubsetOf(KnownUndef)) 3052 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3053 3054 return false; 3055 } 3056 3057 /// Determine which of the bits specified in Mask are known to be either zero or 3058 /// one and return them in the Known. 3059 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3060 KnownBits &Known, 3061 const APInt &DemandedElts, 3062 const SelectionDAG &DAG, 3063 unsigned Depth) const { 3064 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3065 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3066 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3067 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3068 "Should use MaskedValueIsZero if you don't know whether Op" 3069 " is a target node!"); 3070 Known.resetAll(); 3071 } 3072 3073 void TargetLowering::computeKnownBitsForTargetInstr( 3074 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3075 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3076 unsigned Depth) const { 3077 Known.resetAll(); 3078 } 3079 3080 void TargetLowering::computeKnownBitsForFrameIndex( 3081 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3082 // The low bits are known zero if the pointer is aligned. 3083 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3084 } 3085 3086 Align TargetLowering::computeKnownAlignForTargetInstr( 3087 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3088 unsigned Depth) const { 3089 return Align(1); 3090 } 3091 3092 /// This method can be implemented by targets that want to expose additional 3093 /// information about sign bits to the DAG Combiner. 3094 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3095 const APInt &, 3096 const SelectionDAG &, 3097 unsigned Depth) const { 3098 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3099 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3100 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3101 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3102 "Should use ComputeNumSignBits if you don't know whether Op" 3103 " is a target node!"); 3104 return 1; 3105 } 3106 3107 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3108 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3109 const MachineRegisterInfo &MRI, unsigned Depth) const { 3110 return 1; 3111 } 3112 3113 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3114 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3115 TargetLoweringOpt &TLO, unsigned Depth) const { 3116 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3117 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3118 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3119 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3120 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3121 " is a target node!"); 3122 return false; 3123 } 3124 3125 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3126 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3127 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3128 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3129 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3130 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3131 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3132 "Should use SimplifyDemandedBits if you don't know whether Op" 3133 " is a target node!"); 3134 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3135 return false; 3136 } 3137 3138 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3139 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3140 SelectionDAG &DAG, unsigned Depth) const { 3141 assert( 3142 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3143 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3144 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3145 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3146 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3147 " is a target node!"); 3148 return SDValue(); 3149 } 3150 3151 SDValue 3152 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3153 SDValue N1, MutableArrayRef<int> Mask, 3154 SelectionDAG &DAG) const { 3155 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3156 if (!LegalMask) { 3157 std::swap(N0, N1); 3158 ShuffleVectorSDNode::commuteMask(Mask); 3159 LegalMask = isShuffleMaskLegal(Mask, VT); 3160 } 3161 3162 if (!LegalMask) 3163 return SDValue(); 3164 3165 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3166 } 3167 3168 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3169 return nullptr; 3170 } 3171 3172 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3173 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3174 bool PoisonOnly, unsigned Depth) const { 3175 assert( 3176 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3177 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3178 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3179 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3180 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3181 " is a target node!"); 3182 return false; 3183 } 3184 3185 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3186 const SelectionDAG &DAG, 3187 bool SNaN, 3188 unsigned Depth) const { 3189 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3190 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3191 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3192 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3193 "Should use isKnownNeverNaN if you don't know whether Op" 3194 " is a target node!"); 3195 return false; 3196 } 3197 3198 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3199 const APInt &DemandedElts, 3200 APInt &UndefElts, 3201 unsigned Depth) const { 3202 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3203 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3204 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3205 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3206 "Should use isSplatValue if you don't know whether Op" 3207 " is a target node!"); 3208 return false; 3209 } 3210 3211 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3212 // work with truncating build vectors and vectors with elements of less than 3213 // 8 bits. 3214 bool TargetLowering::isConstTrueVal(SDValue N) const { 3215 if (!N) 3216 return false; 3217 3218 unsigned EltWidth; 3219 APInt CVal; 3220 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3221 /*AllowTruncation=*/true)) { 3222 CVal = CN->getAPIntValue(); 3223 EltWidth = N.getValueType().getScalarSizeInBits(); 3224 } else 3225 return false; 3226 3227 // If this is a truncating splat, truncate the splat value. 3228 // Otherwise, we may fail to match the expected values below. 3229 if (EltWidth < CVal.getBitWidth()) 3230 CVal = CVal.trunc(EltWidth); 3231 3232 switch (getBooleanContents(N.getValueType())) { 3233 case UndefinedBooleanContent: 3234 return CVal[0]; 3235 case ZeroOrOneBooleanContent: 3236 return CVal.isOne(); 3237 case ZeroOrNegativeOneBooleanContent: 3238 return CVal.isAllOnes(); 3239 } 3240 3241 llvm_unreachable("Invalid boolean contents"); 3242 } 3243 3244 bool TargetLowering::isConstFalseVal(SDValue N) const { 3245 if (!N) 3246 return false; 3247 3248 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3249 if (!CN) { 3250 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3251 if (!BV) 3252 return false; 3253 3254 // Only interested in constant splats, we don't care about undef 3255 // elements in identifying boolean constants and getConstantSplatNode 3256 // returns NULL if all ops are undef; 3257 CN = BV->getConstantSplatNode(); 3258 if (!CN) 3259 return false; 3260 } 3261 3262 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3263 return !CN->getAPIntValue()[0]; 3264 3265 return CN->isZero(); 3266 } 3267 3268 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3269 bool SExt) const { 3270 if (VT == MVT::i1) 3271 return N->isOne(); 3272 3273 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3274 switch (Cnt) { 3275 case TargetLowering::ZeroOrOneBooleanContent: 3276 // An extended value of 1 is always true, unless its original type is i1, 3277 // in which case it will be sign extended to -1. 3278 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3279 case TargetLowering::UndefinedBooleanContent: 3280 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3281 return N->isAllOnes() && SExt; 3282 } 3283 llvm_unreachable("Unexpected enumeration."); 3284 } 3285 3286 /// This helper function of SimplifySetCC tries to optimize the comparison when 3287 /// either operand of the SetCC node is a bitwise-and instruction. 3288 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3289 ISD::CondCode Cond, const SDLoc &DL, 3290 DAGCombinerInfo &DCI) const { 3291 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3292 std::swap(N0, N1); 3293 3294 SelectionDAG &DAG = DCI.DAG; 3295 EVT OpVT = N0.getValueType(); 3296 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3297 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3298 return SDValue(); 3299 3300 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3301 // iff everything but LSB is known zero: 3302 if (Cond == ISD::SETNE && isNullConstant(N1) && 3303 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3304 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3305 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3306 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3307 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3308 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3309 } 3310 3311 // Match these patterns in any of their permutations: 3312 // (X & Y) == Y 3313 // (X & Y) != Y 3314 SDValue X, Y; 3315 if (N0.getOperand(0) == N1) { 3316 X = N0.getOperand(1); 3317 Y = N0.getOperand(0); 3318 } else if (N0.getOperand(1) == N1) { 3319 X = N0.getOperand(0); 3320 Y = N0.getOperand(1); 3321 } else { 3322 return SDValue(); 3323 } 3324 3325 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3326 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3327 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3328 // Note that where Y is variable and is known to have at most one bit set 3329 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3330 // equivalent when Y == 0. 3331 assert(OpVT.isInteger()); 3332 Cond = ISD::getSetCCInverse(Cond, OpVT); 3333 if (DCI.isBeforeLegalizeOps() || 3334 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3335 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3336 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3337 // If the target supports an 'and-not' or 'and-complement' logic operation, 3338 // try to use that to make a comparison operation more efficient. 3339 // But don't do this transform if the mask is a single bit because there are 3340 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3341 // 'rlwinm' on PPC). 3342 3343 // Bail out if the compare operand that we want to turn into a zero is 3344 // already a zero (otherwise, infinite loop). 3345 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3346 if (YConst && YConst->isZero()) 3347 return SDValue(); 3348 3349 // Transform this into: ~X & Y == 0. 3350 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3351 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3352 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3353 } 3354 3355 return SDValue(); 3356 } 3357 3358 /// There are multiple IR patterns that could be checking whether certain 3359 /// truncation of a signed number would be lossy or not. The pattern which is 3360 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3361 /// We are looking for the following pattern: (KeptBits is a constant) 3362 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3363 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3364 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3365 /// We will unfold it into the natural trunc+sext pattern: 3366 /// ((%x << C) a>> C) dstcond %x 3367 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3368 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3369 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3370 const SDLoc &DL) const { 3371 // We must be comparing with a constant. 3372 ConstantSDNode *C1; 3373 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3374 return SDValue(); 3375 3376 // N0 should be: add %x, (1 << (KeptBits-1)) 3377 if (N0->getOpcode() != ISD::ADD) 3378 return SDValue(); 3379 3380 // And we must be 'add'ing a constant. 3381 ConstantSDNode *C01; 3382 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3383 return SDValue(); 3384 3385 SDValue X = N0->getOperand(0); 3386 EVT XVT = X.getValueType(); 3387 3388 // Validate constants ... 3389 3390 APInt I1 = C1->getAPIntValue(); 3391 3392 ISD::CondCode NewCond; 3393 if (Cond == ISD::CondCode::SETULT) { 3394 NewCond = ISD::CondCode::SETEQ; 3395 } else if (Cond == ISD::CondCode::SETULE) { 3396 NewCond = ISD::CondCode::SETEQ; 3397 // But need to 'canonicalize' the constant. 3398 I1 += 1; 3399 } else if (Cond == ISD::CondCode::SETUGT) { 3400 NewCond = ISD::CondCode::SETNE; 3401 // But need to 'canonicalize' the constant. 3402 I1 += 1; 3403 } else if (Cond == ISD::CondCode::SETUGE) { 3404 NewCond = ISD::CondCode::SETNE; 3405 } else 3406 return SDValue(); 3407 3408 APInt I01 = C01->getAPIntValue(); 3409 3410 auto checkConstants = [&I1, &I01]() -> bool { 3411 // Both of them must be power-of-two, and the constant from setcc is bigger. 3412 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3413 }; 3414 3415 if (checkConstants()) { 3416 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3417 } else { 3418 // What if we invert constants? (and the target predicate) 3419 I1.negate(); 3420 I01.negate(); 3421 assert(XVT.isInteger()); 3422 NewCond = getSetCCInverse(NewCond, XVT); 3423 if (!checkConstants()) 3424 return SDValue(); 3425 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3426 } 3427 3428 // They are power-of-two, so which bit is set? 3429 const unsigned KeptBits = I1.logBase2(); 3430 const unsigned KeptBitsMinusOne = I01.logBase2(); 3431 3432 // Magic! 3433 if (KeptBits != (KeptBitsMinusOne + 1)) 3434 return SDValue(); 3435 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3436 3437 // We don't want to do this in every single case. 3438 SelectionDAG &DAG = DCI.DAG; 3439 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3440 XVT, KeptBits)) 3441 return SDValue(); 3442 3443 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3444 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3445 3446 // Unfold into: ((%x << C) a>> C) cond %x 3447 // Where 'cond' will be either 'eq' or 'ne'. 3448 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3449 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3450 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3451 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3452 3453 return T2; 3454 } 3455 3456 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3457 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3458 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3459 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3460 assert(isConstOrConstSplat(N1C) && 3461 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3462 "Should be a comparison with 0."); 3463 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3464 "Valid only for [in]equality comparisons."); 3465 3466 unsigned NewShiftOpcode; 3467 SDValue X, C, Y; 3468 3469 SelectionDAG &DAG = DCI.DAG; 3470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3471 3472 // Look for '(C l>>/<< Y)'. 3473 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3474 // The shift should be one-use. 3475 if (!V.hasOneUse()) 3476 return false; 3477 unsigned OldShiftOpcode = V.getOpcode(); 3478 switch (OldShiftOpcode) { 3479 case ISD::SHL: 3480 NewShiftOpcode = ISD::SRL; 3481 break; 3482 case ISD::SRL: 3483 NewShiftOpcode = ISD::SHL; 3484 break; 3485 default: 3486 return false; // must be a logical shift. 3487 } 3488 // We should be shifting a constant. 3489 // FIXME: best to use isConstantOrConstantVector(). 3490 C = V.getOperand(0); 3491 ConstantSDNode *CC = 3492 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3493 if (!CC) 3494 return false; 3495 Y = V.getOperand(1); 3496 3497 ConstantSDNode *XC = 3498 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3499 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3500 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3501 }; 3502 3503 // LHS of comparison should be an one-use 'and'. 3504 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3505 return SDValue(); 3506 3507 X = N0.getOperand(0); 3508 SDValue Mask = N0.getOperand(1); 3509 3510 // 'and' is commutative! 3511 if (!Match(Mask)) { 3512 std::swap(X, Mask); 3513 if (!Match(Mask)) 3514 return SDValue(); 3515 } 3516 3517 EVT VT = X.getValueType(); 3518 3519 // Produce: 3520 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3521 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3522 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3523 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3524 return T2; 3525 } 3526 3527 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3528 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3529 /// handle the commuted versions of these patterns. 3530 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3531 ISD::CondCode Cond, const SDLoc &DL, 3532 DAGCombinerInfo &DCI) const { 3533 unsigned BOpcode = N0.getOpcode(); 3534 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3535 "Unexpected binop"); 3536 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3537 3538 // (X + Y) == X --> Y == 0 3539 // (X - Y) == X --> Y == 0 3540 // (X ^ Y) == X --> Y == 0 3541 SelectionDAG &DAG = DCI.DAG; 3542 EVT OpVT = N0.getValueType(); 3543 SDValue X = N0.getOperand(0); 3544 SDValue Y = N0.getOperand(1); 3545 if (X == N1) 3546 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3547 3548 if (Y != N1) 3549 return SDValue(); 3550 3551 // (X + Y) == Y --> X == 0 3552 // (X ^ Y) == Y --> X == 0 3553 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3554 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3555 3556 // The shift would not be valid if the operands are boolean (i1). 3557 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3558 return SDValue(); 3559 3560 // (X - Y) == Y --> X == Y << 1 3561 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3562 !DCI.isBeforeLegalize()); 3563 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3564 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3565 if (!DCI.isCalledByLegalizer()) 3566 DCI.AddToWorklist(YShl1.getNode()); 3567 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3568 } 3569 3570 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3571 SDValue N0, const APInt &C1, 3572 ISD::CondCode Cond, const SDLoc &dl, 3573 SelectionDAG &DAG) { 3574 // Look through truncs that don't change the value of a ctpop. 3575 // FIXME: Add vector support? Need to be careful with setcc result type below. 3576 SDValue CTPOP = N0; 3577 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3578 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3579 CTPOP = N0.getOperand(0); 3580 3581 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3582 return SDValue(); 3583 3584 EVT CTVT = CTPOP.getValueType(); 3585 SDValue CTOp = CTPOP.getOperand(0); 3586 3587 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3588 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3589 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3590 return SDValue(); 3591 3592 // (ctpop x) u< 2 -> (x & x-1) == 0 3593 // (ctpop x) u> 1 -> (x & x-1) != 0 3594 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3595 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3596 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3597 return SDValue(); 3598 if (C1 == 0 && (Cond == ISD::SETULT)) 3599 return SDValue(); // This is handled elsewhere. 3600 3601 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3602 3603 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3604 SDValue Result = CTOp; 3605 for (unsigned i = 0; i < Passes; i++) { 3606 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3607 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3608 } 3609 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3610 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3611 } 3612 3613 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3614 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3615 // For scalars, keep CTPOP if it is legal or custom. 3616 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3617 return SDValue(); 3618 // This is based on X86's custom lowering for CTPOP which produces more 3619 // instructions than the expansion here. 3620 3621 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3622 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3623 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3624 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3625 assert(CTVT.isInteger()); 3626 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3627 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3628 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3629 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3630 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3631 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3632 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3633 } 3634 3635 return SDValue(); 3636 } 3637 3638 /// Try to simplify a setcc built with the specified operands and cc. If it is 3639 /// unable to simplify it, return a null SDValue. 3640 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3641 ISD::CondCode Cond, bool foldBooleans, 3642 DAGCombinerInfo &DCI, 3643 const SDLoc &dl) const { 3644 SelectionDAG &DAG = DCI.DAG; 3645 const DataLayout &Layout = DAG.getDataLayout(); 3646 EVT OpVT = N0.getValueType(); 3647 3648 // Constant fold or commute setcc. 3649 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3650 return Fold; 3651 3652 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3653 // TODO: Handle non-splat vector constants. All undef causes trouble. 3654 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3655 // infinite loop here when we encounter one. 3656 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3657 if (isConstOrConstSplat(N0) && 3658 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3659 (DCI.isBeforeLegalizeOps() || 3660 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3661 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3662 3663 // If we have a subtract with the same 2 non-constant operands as this setcc 3664 // -- but in reverse order -- then try to commute the operands of this setcc 3665 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3666 // instruction on some targets. 3667 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3668 (DCI.isBeforeLegalizeOps() || 3669 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3670 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3671 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3672 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3673 3674 if (auto *N1C = isConstOrConstSplat(N1)) { 3675 const APInt &C1 = N1C->getAPIntValue(); 3676 3677 // Optimize some CTPOP cases. 3678 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3679 return V; 3680 3681 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3682 // equality comparison, then we're just comparing whether X itself is 3683 // zero. 3684 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3685 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3686 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3687 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3688 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3689 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3690 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3691 // (srl (ctlz x), 5) == 0 -> X != 0 3692 // (srl (ctlz x), 5) != 1 -> X != 0 3693 Cond = ISD::SETNE; 3694 } else { 3695 // (srl (ctlz x), 5) != 0 -> X == 0 3696 // (srl (ctlz x), 5) == 1 -> X == 0 3697 Cond = ISD::SETEQ; 3698 } 3699 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3700 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3701 Cond); 3702 } 3703 } 3704 } 3705 } 3706 3707 // FIXME: Support vectors. 3708 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3709 const APInt &C1 = N1C->getAPIntValue(); 3710 3711 // (zext x) == C --> x == (trunc C) 3712 // (sext x) == C --> x == (trunc C) 3713 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3714 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3715 unsigned MinBits = N0.getValueSizeInBits(); 3716 SDValue PreExt; 3717 bool Signed = false; 3718 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3719 // ZExt 3720 MinBits = N0->getOperand(0).getValueSizeInBits(); 3721 PreExt = N0->getOperand(0); 3722 } else if (N0->getOpcode() == ISD::AND) { 3723 // DAGCombine turns costly ZExts into ANDs 3724 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3725 if ((C->getAPIntValue()+1).isPowerOf2()) { 3726 MinBits = C->getAPIntValue().countTrailingOnes(); 3727 PreExt = N0->getOperand(0); 3728 } 3729 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3730 // SExt 3731 MinBits = N0->getOperand(0).getValueSizeInBits(); 3732 PreExt = N0->getOperand(0); 3733 Signed = true; 3734 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3735 // ZEXTLOAD / SEXTLOAD 3736 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3737 MinBits = LN0->getMemoryVT().getSizeInBits(); 3738 PreExt = N0; 3739 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3740 Signed = true; 3741 MinBits = LN0->getMemoryVT().getSizeInBits(); 3742 PreExt = N0; 3743 } 3744 } 3745 3746 // Figure out how many bits we need to preserve this constant. 3747 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3748 3749 // Make sure we're not losing bits from the constant. 3750 if (MinBits > 0 && 3751 MinBits < C1.getBitWidth() && 3752 MinBits >= ReqdBits) { 3753 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3754 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3755 // Will get folded away. 3756 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3757 if (MinBits == 1 && C1 == 1) 3758 // Invert the condition. 3759 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3760 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3761 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3762 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3763 } 3764 3765 // If truncating the setcc operands is not desirable, we can still 3766 // simplify the expression in some cases: 3767 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3768 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3769 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3770 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3771 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3772 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3773 SDValue TopSetCC = N0->getOperand(0); 3774 unsigned N0Opc = N0->getOpcode(); 3775 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3776 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3777 TopSetCC.getOpcode() == ISD::SETCC && 3778 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3779 (isConstFalseVal(N1) || 3780 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3781 3782 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3783 (!N1C->isZero() && Cond == ISD::SETNE); 3784 3785 if (!Inverse) 3786 return TopSetCC; 3787 3788 ISD::CondCode InvCond = ISD::getSetCCInverse( 3789 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3790 TopSetCC.getOperand(0).getValueType()); 3791 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3792 TopSetCC.getOperand(1), 3793 InvCond); 3794 } 3795 } 3796 } 3797 3798 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3799 // equality or unsigned, and all 1 bits of the const are in the same 3800 // partial word, see if we can shorten the load. 3801 if (DCI.isBeforeLegalize() && 3802 !ISD::isSignedIntSetCC(Cond) && 3803 N0.getOpcode() == ISD::AND && C1 == 0 && 3804 N0.getNode()->hasOneUse() && 3805 isa<LoadSDNode>(N0.getOperand(0)) && 3806 N0.getOperand(0).getNode()->hasOneUse() && 3807 isa<ConstantSDNode>(N0.getOperand(1))) { 3808 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3809 APInt bestMask; 3810 unsigned bestWidth = 0, bestOffset = 0; 3811 if (Lod->isSimple() && Lod->isUnindexed()) { 3812 unsigned origWidth = N0.getValueSizeInBits(); 3813 unsigned maskWidth = origWidth; 3814 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3815 // 8 bits, but have to be careful... 3816 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3817 origWidth = Lod->getMemoryVT().getSizeInBits(); 3818 const APInt &Mask = N0.getConstantOperandAPInt(1); 3819 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3820 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3821 for (unsigned offset=0; offset<origWidth/width; offset++) { 3822 if (Mask.isSubsetOf(newMask)) { 3823 if (Layout.isLittleEndian()) 3824 bestOffset = (uint64_t)offset * (width/8); 3825 else 3826 bestOffset = (origWidth/width - offset - 1) * (width/8); 3827 bestMask = Mask.lshr(offset * (width/8) * 8); 3828 bestWidth = width; 3829 break; 3830 } 3831 newMask <<= width; 3832 } 3833 } 3834 } 3835 if (bestWidth) { 3836 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3837 if (newVT.isRound() && 3838 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3839 SDValue Ptr = Lod->getBasePtr(); 3840 if (bestOffset != 0) 3841 Ptr = 3842 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3843 SDValue NewLoad = 3844 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3845 Lod->getPointerInfo().getWithOffset(bestOffset), 3846 Lod->getOriginalAlign()); 3847 return DAG.getSetCC(dl, VT, 3848 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3849 DAG.getConstant(bestMask.trunc(bestWidth), 3850 dl, newVT)), 3851 DAG.getConstant(0LL, dl, newVT), Cond); 3852 } 3853 } 3854 } 3855 3856 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3857 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3858 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3859 3860 // If the comparison constant has bits in the upper part, the 3861 // zero-extended value could never match. 3862 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3863 C1.getBitWidth() - InSize))) { 3864 switch (Cond) { 3865 case ISD::SETUGT: 3866 case ISD::SETUGE: 3867 case ISD::SETEQ: 3868 return DAG.getConstant(0, dl, VT); 3869 case ISD::SETULT: 3870 case ISD::SETULE: 3871 case ISD::SETNE: 3872 return DAG.getConstant(1, dl, VT); 3873 case ISD::SETGT: 3874 case ISD::SETGE: 3875 // True if the sign bit of C1 is set. 3876 return DAG.getConstant(C1.isNegative(), dl, VT); 3877 case ISD::SETLT: 3878 case ISD::SETLE: 3879 // True if the sign bit of C1 isn't set. 3880 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3881 default: 3882 break; 3883 } 3884 } 3885 3886 // Otherwise, we can perform the comparison with the low bits. 3887 switch (Cond) { 3888 case ISD::SETEQ: 3889 case ISD::SETNE: 3890 case ISD::SETUGT: 3891 case ISD::SETUGE: 3892 case ISD::SETULT: 3893 case ISD::SETULE: { 3894 EVT newVT = N0.getOperand(0).getValueType(); 3895 if (DCI.isBeforeLegalizeOps() || 3896 (isOperationLegal(ISD::SETCC, newVT) && 3897 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3898 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3899 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3900 3901 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3902 NewConst, Cond); 3903 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3904 } 3905 break; 3906 } 3907 default: 3908 break; // todo, be more careful with signed comparisons 3909 } 3910 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3911 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3912 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3913 OpVT)) { 3914 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3915 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3916 EVT ExtDstTy = N0.getValueType(); 3917 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3918 3919 // If the constant doesn't fit into the number of bits for the source of 3920 // the sign extension, it is impossible for both sides to be equal. 3921 if (C1.getMinSignedBits() > ExtSrcTyBits) 3922 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3923 3924 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3925 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3926 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3927 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3928 DAG.getConstant(Imm, dl, ExtDstTy)); 3929 if (!DCI.isCalledByLegalizer()) 3930 DCI.AddToWorklist(ZextOp.getNode()); 3931 // Otherwise, make this a use of a zext. 3932 return DAG.getSetCC(dl, VT, ZextOp, 3933 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3934 } else if ((N1C->isZero() || N1C->isOne()) && 3935 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3936 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3937 if (N0.getOpcode() == ISD::SETCC && 3938 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3939 (N0.getValueType() == MVT::i1 || 3940 getBooleanContents(N0.getOperand(0).getValueType()) == 3941 ZeroOrOneBooleanContent)) { 3942 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3943 if (TrueWhenTrue) 3944 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3945 // Invert the condition. 3946 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3947 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3948 if (DCI.isBeforeLegalizeOps() || 3949 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3950 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3951 } 3952 3953 if ((N0.getOpcode() == ISD::XOR || 3954 (N0.getOpcode() == ISD::AND && 3955 N0.getOperand(0).getOpcode() == ISD::XOR && 3956 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3957 isOneConstant(N0.getOperand(1))) { 3958 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3959 // can only do this if the top bits are known zero. 3960 unsigned BitWidth = N0.getValueSizeInBits(); 3961 if (DAG.MaskedValueIsZero(N0, 3962 APInt::getHighBitsSet(BitWidth, 3963 BitWidth-1))) { 3964 // Okay, get the un-inverted input value. 3965 SDValue Val; 3966 if (N0.getOpcode() == ISD::XOR) { 3967 Val = N0.getOperand(0); 3968 } else { 3969 assert(N0.getOpcode() == ISD::AND && 3970 N0.getOperand(0).getOpcode() == ISD::XOR); 3971 // ((X^1)&1)^1 -> X & 1 3972 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3973 N0.getOperand(0).getOperand(0), 3974 N0.getOperand(1)); 3975 } 3976 3977 return DAG.getSetCC(dl, VT, Val, N1, 3978 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3979 } 3980 } else if (N1C->isOne()) { 3981 SDValue Op0 = N0; 3982 if (Op0.getOpcode() == ISD::TRUNCATE) 3983 Op0 = Op0.getOperand(0); 3984 3985 if ((Op0.getOpcode() == ISD::XOR) && 3986 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3987 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3988 SDValue XorLHS = Op0.getOperand(0); 3989 SDValue XorRHS = Op0.getOperand(1); 3990 // Ensure that the input setccs return an i1 type or 0/1 value. 3991 if (Op0.getValueType() == MVT::i1 || 3992 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3993 ZeroOrOneBooleanContent && 3994 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3995 ZeroOrOneBooleanContent)) { 3996 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3997 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3998 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3999 } 4000 } 4001 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4002 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4003 if (Op0.getValueType().bitsGT(VT)) 4004 Op0 = DAG.getNode(ISD::AND, dl, VT, 4005 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4006 DAG.getConstant(1, dl, VT)); 4007 else if (Op0.getValueType().bitsLT(VT)) 4008 Op0 = DAG.getNode(ISD::AND, dl, VT, 4009 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4010 DAG.getConstant(1, dl, VT)); 4011 4012 return DAG.getSetCC(dl, VT, Op0, 4013 DAG.getConstant(0, dl, Op0.getValueType()), 4014 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4015 } 4016 if (Op0.getOpcode() == ISD::AssertZext && 4017 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4018 return DAG.getSetCC(dl, VT, Op0, 4019 DAG.getConstant(0, dl, Op0.getValueType()), 4020 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4021 } 4022 } 4023 4024 // Given: 4025 // icmp eq/ne (urem %x, %y), 0 4026 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4027 // icmp eq/ne %x, 0 4028 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4029 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4030 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4031 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4032 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4033 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4034 } 4035 4036 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4037 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4038 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4039 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4040 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4041 N1C && N1C->isAllOnes()) { 4042 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4043 DAG.getConstant(0, dl, OpVT), 4044 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4045 } 4046 4047 if (SDValue V = 4048 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4049 return V; 4050 } 4051 4052 // These simplifications apply to splat vectors as well. 4053 // TODO: Handle more splat vector cases. 4054 if (auto *N1C = isConstOrConstSplat(N1)) { 4055 const APInt &C1 = N1C->getAPIntValue(); 4056 4057 APInt MinVal, MaxVal; 4058 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4059 if (ISD::isSignedIntSetCC(Cond)) { 4060 MinVal = APInt::getSignedMinValue(OperandBitSize); 4061 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4062 } else { 4063 MinVal = APInt::getMinValue(OperandBitSize); 4064 MaxVal = APInt::getMaxValue(OperandBitSize); 4065 } 4066 4067 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4068 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4069 // X >= MIN --> true 4070 if (C1 == MinVal) 4071 return DAG.getBoolConstant(true, dl, VT, OpVT); 4072 4073 if (!VT.isVector()) { // TODO: Support this for vectors. 4074 // X >= C0 --> X > (C0 - 1) 4075 APInt C = C1 - 1; 4076 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4077 if ((DCI.isBeforeLegalizeOps() || 4078 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4079 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4080 isLegalICmpImmediate(C.getSExtValue())))) { 4081 return DAG.getSetCC(dl, VT, N0, 4082 DAG.getConstant(C, dl, N1.getValueType()), 4083 NewCC); 4084 } 4085 } 4086 } 4087 4088 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4089 // X <= MAX --> true 4090 if (C1 == MaxVal) 4091 return DAG.getBoolConstant(true, dl, VT, OpVT); 4092 4093 // X <= C0 --> X < (C0 + 1) 4094 if (!VT.isVector()) { // TODO: Support this for vectors. 4095 APInt C = C1 + 1; 4096 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4097 if ((DCI.isBeforeLegalizeOps() || 4098 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4099 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4100 isLegalICmpImmediate(C.getSExtValue())))) { 4101 return DAG.getSetCC(dl, VT, N0, 4102 DAG.getConstant(C, dl, N1.getValueType()), 4103 NewCC); 4104 } 4105 } 4106 } 4107 4108 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4109 if (C1 == MinVal) 4110 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4111 4112 // TODO: Support this for vectors after legalize ops. 4113 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4114 // Canonicalize setlt X, Max --> setne X, Max 4115 if (C1 == MaxVal) 4116 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4117 4118 // If we have setult X, 1, turn it into seteq X, 0 4119 if (C1 == MinVal+1) 4120 return DAG.getSetCC(dl, VT, N0, 4121 DAG.getConstant(MinVal, dl, N0.getValueType()), 4122 ISD::SETEQ); 4123 } 4124 } 4125 4126 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4127 if (C1 == MaxVal) 4128 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4129 4130 // TODO: Support this for vectors after legalize ops. 4131 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4132 // Canonicalize setgt X, Min --> setne X, Min 4133 if (C1 == MinVal) 4134 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4135 4136 // If we have setugt X, Max-1, turn it into seteq X, Max 4137 if (C1 == MaxVal-1) 4138 return DAG.getSetCC(dl, VT, N0, 4139 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4140 ISD::SETEQ); 4141 } 4142 } 4143 4144 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4145 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4146 if (C1.isZero()) 4147 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4148 VT, N0, N1, Cond, DCI, dl)) 4149 return CC; 4150 4151 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4152 // For example, when high 32-bits of i64 X are known clear: 4153 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4154 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4155 bool CmpZero = N1C->getAPIntValue().isZero(); 4156 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4157 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4158 // Match or(lo,shl(hi,bw/2)) pattern. 4159 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4160 unsigned EltBits = V.getScalarValueSizeInBits(); 4161 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4162 return false; 4163 SDValue LHS = V.getOperand(0); 4164 SDValue RHS = V.getOperand(1); 4165 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4166 // Unshifted element must have zero upperbits. 4167 if (RHS.getOpcode() == ISD::SHL && 4168 isa<ConstantSDNode>(RHS.getOperand(1)) && 4169 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4170 DAG.MaskedValueIsZero(LHS, HiBits)) { 4171 Lo = LHS; 4172 Hi = RHS.getOperand(0); 4173 return true; 4174 } 4175 if (LHS.getOpcode() == ISD::SHL && 4176 isa<ConstantSDNode>(LHS.getOperand(1)) && 4177 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4178 DAG.MaskedValueIsZero(RHS, HiBits)) { 4179 Lo = RHS; 4180 Hi = LHS.getOperand(0); 4181 return true; 4182 } 4183 return false; 4184 }; 4185 4186 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4187 unsigned EltBits = N0.getScalarValueSizeInBits(); 4188 unsigned HalfBits = EltBits / 2; 4189 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4190 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4191 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4192 SDValue NewN0 = 4193 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4194 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4195 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4196 }; 4197 4198 SDValue Lo, Hi; 4199 if (IsConcat(N0, Lo, Hi)) 4200 return MergeConcat(Lo, Hi); 4201 4202 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4203 SDValue Lo0, Lo1, Hi0, Hi1; 4204 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4205 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4206 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4207 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4208 } 4209 } 4210 } 4211 } 4212 4213 // If we have "setcc X, C0", check to see if we can shrink the immediate 4214 // by changing cc. 4215 // TODO: Support this for vectors after legalize ops. 4216 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4217 // SETUGT X, SINTMAX -> SETLT X, 0 4218 // SETUGE X, SINTMIN -> SETLT X, 0 4219 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4220 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4221 return DAG.getSetCC(dl, VT, N0, 4222 DAG.getConstant(0, dl, N1.getValueType()), 4223 ISD::SETLT); 4224 4225 // SETULT X, SINTMIN -> SETGT X, -1 4226 // SETULE X, SINTMAX -> SETGT X, -1 4227 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4228 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4229 return DAG.getSetCC(dl, VT, N0, 4230 DAG.getAllOnesConstant(dl, N1.getValueType()), 4231 ISD::SETGT); 4232 } 4233 } 4234 4235 // Back to non-vector simplifications. 4236 // TODO: Can we do these for vector splats? 4237 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4239 const APInt &C1 = N1C->getAPIntValue(); 4240 EVT ShValTy = N0.getValueType(); 4241 4242 // Fold bit comparisons when we can. This will result in an 4243 // incorrect value when boolean false is negative one, unless 4244 // the bitsize is 1 in which case the false value is the same 4245 // in practice regardless of the representation. 4246 if ((VT.getSizeInBits() == 1 || 4247 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4248 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4249 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4250 N0.getOpcode() == ISD::AND) { 4251 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4252 EVT ShiftTy = 4253 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4254 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4255 // Perform the xform if the AND RHS is a single bit. 4256 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4257 if (AndRHS->getAPIntValue().isPowerOf2() && 4258 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4259 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4260 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4261 DAG.getConstant(ShCt, dl, ShiftTy))); 4262 } 4263 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4264 // (X & 8) == 8 --> (X & 8) >> 3 4265 // Perform the xform if C1 is a single bit. 4266 unsigned ShCt = C1.logBase2(); 4267 if (C1.isPowerOf2() && 4268 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4269 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4270 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4271 DAG.getConstant(ShCt, dl, ShiftTy))); 4272 } 4273 } 4274 } 4275 } 4276 4277 if (C1.getMinSignedBits() <= 64 && 4278 !isLegalICmpImmediate(C1.getSExtValue())) { 4279 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4280 // (X & -256) == 256 -> (X >> 8) == 1 4281 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4282 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4283 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4284 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4285 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4286 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4287 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4288 SDValue Shift = 4289 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4290 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4291 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4292 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4293 } 4294 } 4295 } 4296 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4297 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4298 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4299 // X < 0x100000000 -> (X >> 32) < 1 4300 // X >= 0x100000000 -> (X >> 32) >= 1 4301 // X <= 0x0ffffffff -> (X >> 32) < 1 4302 // X > 0x0ffffffff -> (X >> 32) >= 1 4303 unsigned ShiftBits; 4304 APInt NewC = C1; 4305 ISD::CondCode NewCond = Cond; 4306 if (AdjOne) { 4307 ShiftBits = C1.countTrailingOnes(); 4308 NewC = NewC + 1; 4309 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4310 } else { 4311 ShiftBits = C1.countTrailingZeros(); 4312 } 4313 NewC.lshrInPlace(ShiftBits); 4314 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4315 isLegalICmpImmediate(NewC.getSExtValue()) && 4316 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4317 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4318 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4319 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4320 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4321 } 4322 } 4323 } 4324 } 4325 4326 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4327 auto *CFP = cast<ConstantFPSDNode>(N1); 4328 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4329 4330 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4331 // constant if knowing that the operand is non-nan is enough. We prefer to 4332 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4333 // materialize 0.0. 4334 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4335 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4336 4337 // setcc (fneg x), C -> setcc swap(pred) x, -C 4338 if (N0.getOpcode() == ISD::FNEG) { 4339 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4340 if (DCI.isBeforeLegalizeOps() || 4341 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4342 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4343 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4344 } 4345 } 4346 4347 // If the condition is not legal, see if we can find an equivalent one 4348 // which is legal. 4349 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4350 // If the comparison was an awkward floating-point == or != and one of 4351 // the comparison operands is infinity or negative infinity, convert the 4352 // condition to a less-awkward <= or >=. 4353 if (CFP->getValueAPF().isInfinity()) { 4354 bool IsNegInf = CFP->getValueAPF().isNegative(); 4355 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4356 switch (Cond) { 4357 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4358 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4359 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4360 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4361 default: break; 4362 } 4363 if (NewCond != ISD::SETCC_INVALID && 4364 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4365 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4366 } 4367 } 4368 } 4369 4370 if (N0 == N1) { 4371 // The sext(setcc()) => setcc() optimization relies on the appropriate 4372 // constant being emitted. 4373 assert(!N0.getValueType().isInteger() && 4374 "Integer types should be handled by FoldSetCC"); 4375 4376 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4377 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4378 if (UOF == 2) // FP operators that are undefined on NaNs. 4379 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4380 if (UOF == unsigned(EqTrue)) 4381 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4382 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4383 // if it is not already. 4384 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4385 if (NewCond != Cond && 4386 (DCI.isBeforeLegalizeOps() || 4387 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4388 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4389 } 4390 4391 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4392 N0.getValueType().isInteger()) { 4393 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4394 N0.getOpcode() == ISD::XOR) { 4395 // Simplify (X+Y) == (X+Z) --> Y == Z 4396 if (N0.getOpcode() == N1.getOpcode()) { 4397 if (N0.getOperand(0) == N1.getOperand(0)) 4398 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4399 if (N0.getOperand(1) == N1.getOperand(1)) 4400 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4401 if (isCommutativeBinOp(N0.getOpcode())) { 4402 // If X op Y == Y op X, try other combinations. 4403 if (N0.getOperand(0) == N1.getOperand(1)) 4404 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4405 Cond); 4406 if (N0.getOperand(1) == N1.getOperand(0)) 4407 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4408 Cond); 4409 } 4410 } 4411 4412 // If RHS is a legal immediate value for a compare instruction, we need 4413 // to be careful about increasing register pressure needlessly. 4414 bool LegalRHSImm = false; 4415 4416 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4417 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4418 // Turn (X+C1) == C2 --> X == C2-C1 4419 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4420 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4421 DAG.getConstant(RHSC->getAPIntValue()- 4422 LHSR->getAPIntValue(), 4423 dl, N0.getValueType()), Cond); 4424 } 4425 4426 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4427 if (N0.getOpcode() == ISD::XOR) 4428 // If we know that all of the inverted bits are zero, don't bother 4429 // performing the inversion. 4430 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4431 return 4432 DAG.getSetCC(dl, VT, N0.getOperand(0), 4433 DAG.getConstant(LHSR->getAPIntValue() ^ 4434 RHSC->getAPIntValue(), 4435 dl, N0.getValueType()), 4436 Cond); 4437 } 4438 4439 // Turn (C1-X) == C2 --> X == C1-C2 4440 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4441 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4442 return 4443 DAG.getSetCC(dl, VT, N0.getOperand(1), 4444 DAG.getConstant(SUBC->getAPIntValue() - 4445 RHSC->getAPIntValue(), 4446 dl, N0.getValueType()), 4447 Cond); 4448 } 4449 } 4450 4451 // Could RHSC fold directly into a compare? 4452 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4453 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4454 } 4455 4456 // (X+Y) == X --> Y == 0 and similar folds. 4457 // Don't do this if X is an immediate that can fold into a cmp 4458 // instruction and X+Y has other uses. It could be an induction variable 4459 // chain, and the transform would increase register pressure. 4460 if (!LegalRHSImm || N0.hasOneUse()) 4461 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4462 return V; 4463 } 4464 4465 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4466 N1.getOpcode() == ISD::XOR) 4467 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4468 return V; 4469 4470 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4471 return V; 4472 } 4473 4474 // Fold remainder of division by a constant. 4475 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4476 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4477 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4478 4479 // When division is cheap or optimizing for minimum size, 4480 // fall through to DIVREM creation by skipping this fold. 4481 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4482 if (N0.getOpcode() == ISD::UREM) { 4483 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4484 return Folded; 4485 } else if (N0.getOpcode() == ISD::SREM) { 4486 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4487 return Folded; 4488 } 4489 } 4490 } 4491 4492 // Fold away ALL boolean setcc's. 4493 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4494 SDValue Temp; 4495 switch (Cond) { 4496 default: llvm_unreachable("Unknown integer setcc!"); 4497 case ISD::SETEQ: // X == Y -> ~(X^Y) 4498 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4499 N0 = DAG.getNOT(dl, Temp, OpVT); 4500 if (!DCI.isCalledByLegalizer()) 4501 DCI.AddToWorklist(Temp.getNode()); 4502 break; 4503 case ISD::SETNE: // X != Y --> (X^Y) 4504 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4505 break; 4506 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4507 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4508 Temp = DAG.getNOT(dl, N0, OpVT); 4509 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4510 if (!DCI.isCalledByLegalizer()) 4511 DCI.AddToWorklist(Temp.getNode()); 4512 break; 4513 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4514 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4515 Temp = DAG.getNOT(dl, N1, OpVT); 4516 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4517 if (!DCI.isCalledByLegalizer()) 4518 DCI.AddToWorklist(Temp.getNode()); 4519 break; 4520 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4521 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4522 Temp = DAG.getNOT(dl, N0, OpVT); 4523 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4524 if (!DCI.isCalledByLegalizer()) 4525 DCI.AddToWorklist(Temp.getNode()); 4526 break; 4527 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4528 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4529 Temp = DAG.getNOT(dl, N1, OpVT); 4530 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4531 break; 4532 } 4533 if (VT.getScalarType() != MVT::i1) { 4534 if (!DCI.isCalledByLegalizer()) 4535 DCI.AddToWorklist(N0.getNode()); 4536 // FIXME: If running after legalize, we probably can't do this. 4537 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4538 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4539 } 4540 return N0; 4541 } 4542 4543 // Could not fold it. 4544 return SDValue(); 4545 } 4546 4547 /// Returns true (and the GlobalValue and the offset) if the node is a 4548 /// GlobalAddress + offset. 4549 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4550 int64_t &Offset) const { 4551 4552 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4553 4554 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4555 GA = GASD->getGlobal(); 4556 Offset += GASD->getOffset(); 4557 return true; 4558 } 4559 4560 if (N->getOpcode() == ISD::ADD) { 4561 SDValue N1 = N->getOperand(0); 4562 SDValue N2 = N->getOperand(1); 4563 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4564 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4565 Offset += V->getSExtValue(); 4566 return true; 4567 } 4568 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4569 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4570 Offset += V->getSExtValue(); 4571 return true; 4572 } 4573 } 4574 } 4575 4576 return false; 4577 } 4578 4579 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4580 DAGCombinerInfo &DCI) const { 4581 // Default implementation: no optimization. 4582 return SDValue(); 4583 } 4584 4585 //===----------------------------------------------------------------------===// 4586 // Inline Assembler Implementation Methods 4587 //===----------------------------------------------------------------------===// 4588 4589 TargetLowering::ConstraintType 4590 TargetLowering::getConstraintType(StringRef Constraint) const { 4591 unsigned S = Constraint.size(); 4592 4593 if (S == 1) { 4594 switch (Constraint[0]) { 4595 default: break; 4596 case 'r': 4597 return C_RegisterClass; 4598 case 'm': // memory 4599 case 'o': // offsetable 4600 case 'V': // not offsetable 4601 return C_Memory; 4602 case 'n': // Simple Integer 4603 case 'E': // Floating Point Constant 4604 case 'F': // Floating Point Constant 4605 return C_Immediate; 4606 case 'i': // Simple Integer or Relocatable Constant 4607 case 's': // Relocatable Constant 4608 case 'p': // Address. 4609 case 'X': // Allow ANY value. 4610 case 'I': // Target registers. 4611 case 'J': 4612 case 'K': 4613 case 'L': 4614 case 'M': 4615 case 'N': 4616 case 'O': 4617 case 'P': 4618 case '<': 4619 case '>': 4620 return C_Other; 4621 } 4622 } 4623 4624 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4625 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4626 return C_Memory; 4627 return C_Register; 4628 } 4629 return C_Unknown; 4630 } 4631 4632 /// Try to replace an X constraint, which matches anything, with another that 4633 /// has more specific requirements based on the type of the corresponding 4634 /// operand. 4635 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4636 if (ConstraintVT.isInteger()) 4637 return "r"; 4638 if (ConstraintVT.isFloatingPoint()) 4639 return "f"; // works for many targets 4640 return nullptr; 4641 } 4642 4643 SDValue TargetLowering::LowerAsmOutputForConstraint( 4644 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4645 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4646 return SDValue(); 4647 } 4648 4649 /// Lower the specified operand into the Ops vector. 4650 /// If it is invalid, don't add anything to Ops. 4651 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4652 std::string &Constraint, 4653 std::vector<SDValue> &Ops, 4654 SelectionDAG &DAG) const { 4655 4656 if (Constraint.length() > 1) return; 4657 4658 char ConstraintLetter = Constraint[0]; 4659 switch (ConstraintLetter) { 4660 default: break; 4661 case 'X': // Allows any operand 4662 case 'i': // Simple Integer or Relocatable Constant 4663 case 'n': // Simple Integer 4664 case 's': { // Relocatable Constant 4665 4666 ConstantSDNode *C; 4667 uint64_t Offset = 0; 4668 4669 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4670 // etc., since getelementpointer is variadic. We can't use 4671 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4672 // while in this case the GA may be furthest from the root node which is 4673 // likely an ISD::ADD. 4674 while (true) { 4675 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4676 // gcc prints these as sign extended. Sign extend value to 64 bits 4677 // now; without this it would get ZExt'd later in 4678 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4679 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4680 BooleanContent BCont = getBooleanContents(MVT::i64); 4681 ISD::NodeType ExtOpc = 4682 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4683 int64_t ExtVal = 4684 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4685 Ops.push_back( 4686 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4687 return; 4688 } 4689 if (ConstraintLetter != 'n') { 4690 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4691 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4692 GA->getValueType(0), 4693 Offset + GA->getOffset())); 4694 return; 4695 } 4696 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4697 Ops.push_back(DAG.getTargetBlockAddress( 4698 BA->getBlockAddress(), BA->getValueType(0), 4699 Offset + BA->getOffset(), BA->getTargetFlags())); 4700 return; 4701 } 4702 if (isa<BasicBlockSDNode>(Op)) { 4703 Ops.push_back(Op); 4704 return; 4705 } 4706 } 4707 const unsigned OpCode = Op.getOpcode(); 4708 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4709 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4710 Op = Op.getOperand(1); 4711 // Subtraction is not commutative. 4712 else if (OpCode == ISD::ADD && 4713 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4714 Op = Op.getOperand(0); 4715 else 4716 return; 4717 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4718 continue; 4719 } 4720 return; 4721 } 4722 break; 4723 } 4724 } 4725 } 4726 4727 std::pair<unsigned, const TargetRegisterClass *> 4728 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4729 StringRef Constraint, 4730 MVT VT) const { 4731 if (Constraint.empty() || Constraint[0] != '{') 4732 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4733 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4734 4735 // Remove the braces from around the name. 4736 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4737 4738 std::pair<unsigned, const TargetRegisterClass *> R = 4739 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4740 4741 // Figure out which register class contains this reg. 4742 for (const TargetRegisterClass *RC : RI->regclasses()) { 4743 // If none of the value types for this register class are valid, we 4744 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4745 if (!isLegalRC(*RI, *RC)) 4746 continue; 4747 4748 for (const MCPhysReg &PR : *RC) { 4749 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4750 std::pair<unsigned, const TargetRegisterClass *> S = 4751 std::make_pair(PR, RC); 4752 4753 // If this register class has the requested value type, return it, 4754 // otherwise keep searching and return the first class found 4755 // if no other is found which explicitly has the requested type. 4756 if (RI->isTypeLegalForClass(*RC, VT)) 4757 return S; 4758 if (!R.second) 4759 R = S; 4760 } 4761 } 4762 } 4763 4764 return R; 4765 } 4766 4767 //===----------------------------------------------------------------------===// 4768 // Constraint Selection. 4769 4770 /// Return true of this is an input operand that is a matching constraint like 4771 /// "4". 4772 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4773 assert(!ConstraintCode.empty() && "No known constraint!"); 4774 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4775 } 4776 4777 /// If this is an input matching constraint, this method returns the output 4778 /// operand it matches. 4779 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4780 assert(!ConstraintCode.empty() && "No known constraint!"); 4781 return atoi(ConstraintCode.c_str()); 4782 } 4783 4784 /// Split up the constraint string from the inline assembly value into the 4785 /// specific constraints and their prefixes, and also tie in the associated 4786 /// operand values. 4787 /// If this returns an empty vector, and if the constraint string itself 4788 /// isn't empty, there was an error parsing. 4789 TargetLowering::AsmOperandInfoVector 4790 TargetLowering::ParseConstraints(const DataLayout &DL, 4791 const TargetRegisterInfo *TRI, 4792 const CallBase &Call) const { 4793 /// Information about all of the constraints. 4794 AsmOperandInfoVector ConstraintOperands; 4795 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4796 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4797 4798 // Do a prepass over the constraints, canonicalizing them, and building up the 4799 // ConstraintOperands list. 4800 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4801 unsigned ResNo = 0; // ResNo - The result number of the next output. 4802 4803 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4804 ConstraintOperands.emplace_back(std::move(CI)); 4805 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4806 4807 // Update multiple alternative constraint count. 4808 if (OpInfo.multipleAlternatives.size() > maCount) 4809 maCount = OpInfo.multipleAlternatives.size(); 4810 4811 OpInfo.ConstraintVT = MVT::Other; 4812 4813 // Compute the value type for each operand. 4814 switch (OpInfo.Type) { 4815 case InlineAsm::isOutput: 4816 // Indirect outputs just consume an argument. 4817 if (OpInfo.isIndirect) { 4818 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4819 break; 4820 } 4821 4822 // The return value of the call is this value. As such, there is no 4823 // corresponding argument. 4824 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4825 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4826 OpInfo.ConstraintVT = 4827 getSimpleValueType(DL, STy->getElementType(ResNo)); 4828 } else { 4829 assert(ResNo == 0 && "Asm only has one result!"); 4830 OpInfo.ConstraintVT = 4831 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4832 } 4833 ++ResNo; 4834 break; 4835 case InlineAsm::isInput: 4836 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4837 break; 4838 case InlineAsm::isClobber: 4839 // Nothing to do. 4840 break; 4841 } 4842 4843 if (OpInfo.CallOperandVal) { 4844 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4845 if (OpInfo.isIndirect) { 4846 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4847 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4848 } 4849 4850 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4851 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4852 if (STy->getNumElements() == 1) 4853 OpTy = STy->getElementType(0); 4854 4855 // If OpTy is not a single value, it may be a struct/union that we 4856 // can tile with integers. 4857 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4858 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4859 switch (BitSize) { 4860 default: break; 4861 case 1: 4862 case 8: 4863 case 16: 4864 case 32: 4865 case 64: 4866 case 128: 4867 OpInfo.ConstraintVT = 4868 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4869 break; 4870 } 4871 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4872 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4873 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4874 } else { 4875 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4876 } 4877 4878 ArgNo++; 4879 } 4880 } 4881 4882 // If we have multiple alternative constraints, select the best alternative. 4883 if (!ConstraintOperands.empty()) { 4884 if (maCount) { 4885 unsigned bestMAIndex = 0; 4886 int bestWeight = -1; 4887 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4888 int weight = -1; 4889 unsigned maIndex; 4890 // Compute the sums of the weights for each alternative, keeping track 4891 // of the best (highest weight) one so far. 4892 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4893 int weightSum = 0; 4894 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4895 cIndex != eIndex; ++cIndex) { 4896 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4897 if (OpInfo.Type == InlineAsm::isClobber) 4898 continue; 4899 4900 // If this is an output operand with a matching input operand, 4901 // look up the matching input. If their types mismatch, e.g. one 4902 // is an integer, the other is floating point, or their sizes are 4903 // different, flag it as an maCantMatch. 4904 if (OpInfo.hasMatchingInput()) { 4905 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4906 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4907 if ((OpInfo.ConstraintVT.isInteger() != 4908 Input.ConstraintVT.isInteger()) || 4909 (OpInfo.ConstraintVT.getSizeInBits() != 4910 Input.ConstraintVT.getSizeInBits())) { 4911 weightSum = -1; // Can't match. 4912 break; 4913 } 4914 } 4915 } 4916 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4917 if (weight == -1) { 4918 weightSum = -1; 4919 break; 4920 } 4921 weightSum += weight; 4922 } 4923 // Update best. 4924 if (weightSum > bestWeight) { 4925 bestWeight = weightSum; 4926 bestMAIndex = maIndex; 4927 } 4928 } 4929 4930 // Now select chosen alternative in each constraint. 4931 for (AsmOperandInfo &cInfo : ConstraintOperands) 4932 if (cInfo.Type != InlineAsm::isClobber) 4933 cInfo.selectAlternative(bestMAIndex); 4934 } 4935 } 4936 4937 // Check and hook up tied operands, choose constraint code to use. 4938 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4939 cIndex != eIndex; ++cIndex) { 4940 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4941 4942 // If this is an output operand with a matching input operand, look up the 4943 // matching input. If their types mismatch, e.g. one is an integer, the 4944 // other is floating point, or their sizes are different, flag it as an 4945 // error. 4946 if (OpInfo.hasMatchingInput()) { 4947 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4948 4949 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4950 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4951 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4952 OpInfo.ConstraintVT); 4953 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4954 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4955 Input.ConstraintVT); 4956 if ((OpInfo.ConstraintVT.isInteger() != 4957 Input.ConstraintVT.isInteger()) || 4958 (MatchRC.second != InputRC.second)) { 4959 report_fatal_error("Unsupported asm: input constraint" 4960 " with a matching output constraint of" 4961 " incompatible type!"); 4962 } 4963 } 4964 } 4965 } 4966 4967 return ConstraintOperands; 4968 } 4969 4970 /// Return an integer indicating how general CT is. 4971 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4972 switch (CT) { 4973 case TargetLowering::C_Immediate: 4974 case TargetLowering::C_Other: 4975 case TargetLowering::C_Unknown: 4976 return 0; 4977 case TargetLowering::C_Register: 4978 return 1; 4979 case TargetLowering::C_RegisterClass: 4980 return 2; 4981 case TargetLowering::C_Memory: 4982 return 3; 4983 } 4984 llvm_unreachable("Invalid constraint type"); 4985 } 4986 4987 /// Examine constraint type and operand type and determine a weight value. 4988 /// This object must already have been set up with the operand type 4989 /// and the current alternative constraint selected. 4990 TargetLowering::ConstraintWeight 4991 TargetLowering::getMultipleConstraintMatchWeight( 4992 AsmOperandInfo &info, int maIndex) const { 4993 InlineAsm::ConstraintCodeVector *rCodes; 4994 if (maIndex >= (int)info.multipleAlternatives.size()) 4995 rCodes = &info.Codes; 4996 else 4997 rCodes = &info.multipleAlternatives[maIndex].Codes; 4998 ConstraintWeight BestWeight = CW_Invalid; 4999 5000 // Loop over the options, keeping track of the most general one. 5001 for (const std::string &rCode : *rCodes) { 5002 ConstraintWeight weight = 5003 getSingleConstraintMatchWeight(info, rCode.c_str()); 5004 if (weight > BestWeight) 5005 BestWeight = weight; 5006 } 5007 5008 return BestWeight; 5009 } 5010 5011 /// Examine constraint type and operand type and determine a weight value. 5012 /// This object must already have been set up with the operand type 5013 /// and the current alternative constraint selected. 5014 TargetLowering::ConstraintWeight 5015 TargetLowering::getSingleConstraintMatchWeight( 5016 AsmOperandInfo &info, const char *constraint) const { 5017 ConstraintWeight weight = CW_Invalid; 5018 Value *CallOperandVal = info.CallOperandVal; 5019 // If we don't have a value, we can't do a match, 5020 // but allow it at the lowest weight. 5021 if (!CallOperandVal) 5022 return CW_Default; 5023 // Look at the constraint type. 5024 switch (*constraint) { 5025 case 'i': // immediate integer. 5026 case 'n': // immediate integer with a known value. 5027 if (isa<ConstantInt>(CallOperandVal)) 5028 weight = CW_Constant; 5029 break; 5030 case 's': // non-explicit intregal immediate. 5031 if (isa<GlobalValue>(CallOperandVal)) 5032 weight = CW_Constant; 5033 break; 5034 case 'E': // immediate float if host format. 5035 case 'F': // immediate float. 5036 if (isa<ConstantFP>(CallOperandVal)) 5037 weight = CW_Constant; 5038 break; 5039 case '<': // memory operand with autodecrement. 5040 case '>': // memory operand with autoincrement. 5041 case 'm': // memory operand. 5042 case 'o': // offsettable memory operand 5043 case 'V': // non-offsettable memory operand 5044 weight = CW_Memory; 5045 break; 5046 case 'r': // general register. 5047 case 'g': // general register, memory operand or immediate integer. 5048 // note: Clang converts "g" to "imr". 5049 if (CallOperandVal->getType()->isIntegerTy()) 5050 weight = CW_Register; 5051 break; 5052 case 'X': // any operand. 5053 default: 5054 weight = CW_Default; 5055 break; 5056 } 5057 return weight; 5058 } 5059 5060 /// If there are multiple different constraints that we could pick for this 5061 /// operand (e.g. "imr") try to pick the 'best' one. 5062 /// This is somewhat tricky: constraints fall into four classes: 5063 /// Other -> immediates and magic values 5064 /// Register -> one specific register 5065 /// RegisterClass -> a group of regs 5066 /// Memory -> memory 5067 /// Ideally, we would pick the most specific constraint possible: if we have 5068 /// something that fits into a register, we would pick it. The problem here 5069 /// is that if we have something that could either be in a register or in 5070 /// memory that use of the register could cause selection of *other* 5071 /// operands to fail: they might only succeed if we pick memory. Because of 5072 /// this the heuristic we use is: 5073 /// 5074 /// 1) If there is an 'other' constraint, and if the operand is valid for 5075 /// that constraint, use it. This makes us take advantage of 'i' 5076 /// constraints when available. 5077 /// 2) Otherwise, pick the most general constraint present. This prefers 5078 /// 'm' over 'r', for example. 5079 /// 5080 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5081 const TargetLowering &TLI, 5082 SDValue Op, SelectionDAG *DAG) { 5083 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5084 unsigned BestIdx = 0; 5085 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5086 int BestGenerality = -1; 5087 5088 // Loop over the options, keeping track of the most general one. 5089 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5090 TargetLowering::ConstraintType CType = 5091 TLI.getConstraintType(OpInfo.Codes[i]); 5092 5093 // Indirect 'other' or 'immediate' constraints are not allowed. 5094 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5095 CType == TargetLowering::C_Register || 5096 CType == TargetLowering::C_RegisterClass)) 5097 continue; 5098 5099 // If this is an 'other' or 'immediate' constraint, see if the operand is 5100 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5101 // the operand is an integer in the range [0..31] we want to use I (saving a 5102 // load of a register), otherwise we must use 'r'. 5103 if ((CType == TargetLowering::C_Other || 5104 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5105 assert(OpInfo.Codes[i].size() == 1 && 5106 "Unhandled multi-letter 'other' constraint"); 5107 std::vector<SDValue> ResultOps; 5108 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5109 ResultOps, *DAG); 5110 if (!ResultOps.empty()) { 5111 BestType = CType; 5112 BestIdx = i; 5113 break; 5114 } 5115 } 5116 5117 // Things with matching constraints can only be registers, per gcc 5118 // documentation. This mainly affects "g" constraints. 5119 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5120 continue; 5121 5122 // This constraint letter is more general than the previous one, use it. 5123 int Generality = getConstraintGenerality(CType); 5124 if (Generality > BestGenerality) { 5125 BestType = CType; 5126 BestIdx = i; 5127 BestGenerality = Generality; 5128 } 5129 } 5130 5131 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5132 OpInfo.ConstraintType = BestType; 5133 } 5134 5135 /// Determines the constraint code and constraint type to use for the specific 5136 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5137 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5138 SDValue Op, 5139 SelectionDAG *DAG) const { 5140 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5141 5142 // Single-letter constraints ('r') are very common. 5143 if (OpInfo.Codes.size() == 1) { 5144 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5145 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5146 } else { 5147 ChooseConstraint(OpInfo, *this, Op, DAG); 5148 } 5149 5150 // 'X' matches anything. 5151 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5152 // Constants are handled elsewhere. For Functions, the type here is the 5153 // type of the result, which is not what we want to look at; leave them 5154 // alone. 5155 Value *v = OpInfo.CallOperandVal; 5156 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5157 return; 5158 } 5159 5160 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5161 OpInfo.ConstraintCode = "i"; 5162 return; 5163 } 5164 5165 // Otherwise, try to resolve it to something we know about by looking at 5166 // the actual operand type. 5167 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5168 OpInfo.ConstraintCode = Repl; 5169 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5170 } 5171 } 5172 } 5173 5174 /// Given an exact SDIV by a constant, create a multiplication 5175 /// with the multiplicative inverse of the constant. 5176 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5177 const SDLoc &dl, SelectionDAG &DAG, 5178 SmallVectorImpl<SDNode *> &Created) { 5179 SDValue Op0 = N->getOperand(0); 5180 SDValue Op1 = N->getOperand(1); 5181 EVT VT = N->getValueType(0); 5182 EVT SVT = VT.getScalarType(); 5183 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5184 EVT ShSVT = ShVT.getScalarType(); 5185 5186 bool UseSRA = false; 5187 SmallVector<SDValue, 16> Shifts, Factors; 5188 5189 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5190 if (C->isZero()) 5191 return false; 5192 APInt Divisor = C->getAPIntValue(); 5193 unsigned Shift = Divisor.countTrailingZeros(); 5194 if (Shift) { 5195 Divisor.ashrInPlace(Shift); 5196 UseSRA = true; 5197 } 5198 // Calculate the multiplicative inverse, using Newton's method. 5199 APInt t; 5200 APInt Factor = Divisor; 5201 while ((t = Divisor * Factor) != 1) 5202 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5203 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5204 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5205 return true; 5206 }; 5207 5208 // Collect all magic values from the build vector. 5209 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5210 return SDValue(); 5211 5212 SDValue Shift, Factor; 5213 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5214 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5215 Factor = DAG.getBuildVector(VT, dl, Factors); 5216 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5217 assert(Shifts.size() == 1 && Factors.size() == 1 && 5218 "Expected matchUnaryPredicate to return one element for scalable " 5219 "vectors"); 5220 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5221 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5222 } else { 5223 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5224 Shift = Shifts[0]; 5225 Factor = Factors[0]; 5226 } 5227 5228 SDValue Res = Op0; 5229 5230 // Shift the value upfront if it is even, so the LSB is one. 5231 if (UseSRA) { 5232 // TODO: For UDIV use SRL instead of SRA. 5233 SDNodeFlags Flags; 5234 Flags.setExact(true); 5235 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5236 Created.push_back(Res.getNode()); 5237 } 5238 5239 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5240 } 5241 5242 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5243 SelectionDAG &DAG, 5244 SmallVectorImpl<SDNode *> &Created) const { 5245 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5247 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5248 return SDValue(N, 0); // Lower SDIV as SDIV 5249 return SDValue(); 5250 } 5251 5252 /// Given an ISD::SDIV node expressing a divide by constant, 5253 /// return a DAG expression to select that will generate the same value by 5254 /// multiplying by a magic number. 5255 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5256 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5257 bool IsAfterLegalization, 5258 SmallVectorImpl<SDNode *> &Created) const { 5259 SDLoc dl(N); 5260 EVT VT = N->getValueType(0); 5261 EVT SVT = VT.getScalarType(); 5262 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5263 EVT ShSVT = ShVT.getScalarType(); 5264 unsigned EltBits = VT.getScalarSizeInBits(); 5265 EVT MulVT; 5266 5267 // Check to see if we can do this. 5268 // FIXME: We should be more aggressive here. 5269 if (!isTypeLegal(VT)) { 5270 // Limit this to simple scalars for now. 5271 if (VT.isVector() || !VT.isSimple()) 5272 return SDValue(); 5273 5274 // If this type will be promoted to a large enough type with a legal 5275 // multiply operation, we can go ahead and do this transform. 5276 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5277 return SDValue(); 5278 5279 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5280 if (MulVT.getSizeInBits() < (2 * EltBits) || 5281 !isOperationLegal(ISD::MUL, MulVT)) 5282 return SDValue(); 5283 } 5284 5285 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5286 if (N->getFlags().hasExact()) 5287 return BuildExactSDIV(*this, N, dl, DAG, Created); 5288 5289 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5290 5291 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5292 if (C->isZero()) 5293 return false; 5294 5295 const APInt &Divisor = C->getAPIntValue(); 5296 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5297 int NumeratorFactor = 0; 5298 int ShiftMask = -1; 5299 5300 if (Divisor.isOne() || Divisor.isAllOnes()) { 5301 // If d is +1/-1, we just multiply the numerator by +1/-1. 5302 NumeratorFactor = Divisor.getSExtValue(); 5303 magics.Magic = 0; 5304 magics.ShiftAmount = 0; 5305 ShiftMask = 0; 5306 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5307 // If d > 0 and m < 0, add the numerator. 5308 NumeratorFactor = 1; 5309 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5310 // If d < 0 and m > 0, subtract the numerator. 5311 NumeratorFactor = -1; 5312 } 5313 5314 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5315 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5316 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5317 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5318 return true; 5319 }; 5320 5321 SDValue N0 = N->getOperand(0); 5322 SDValue N1 = N->getOperand(1); 5323 5324 // Collect the shifts / magic values from each element. 5325 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5326 return SDValue(); 5327 5328 SDValue MagicFactor, Factor, Shift, ShiftMask; 5329 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5330 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5331 Factor = DAG.getBuildVector(VT, dl, Factors); 5332 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5333 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5334 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5335 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5336 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5337 "Expected matchUnaryPredicate to return one element for scalable " 5338 "vectors"); 5339 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5340 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5341 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5342 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5343 } else { 5344 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5345 MagicFactor = MagicFactors[0]; 5346 Factor = Factors[0]; 5347 Shift = Shifts[0]; 5348 ShiftMask = ShiftMasks[0]; 5349 } 5350 5351 // Multiply the numerator (operand 0) by the magic value. 5352 // FIXME: We should support doing a MUL in a wider type. 5353 auto GetMULHS = [&](SDValue X, SDValue Y) { 5354 // If the type isn't legal, use a wider mul of the the type calculated 5355 // earlier. 5356 if (!isTypeLegal(VT)) { 5357 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5358 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5359 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5360 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5361 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5362 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5363 } 5364 5365 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5366 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5367 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5368 SDValue LoHi = 5369 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5370 return SDValue(LoHi.getNode(), 1); 5371 } 5372 return SDValue(); 5373 }; 5374 5375 SDValue Q = GetMULHS(N0, MagicFactor); 5376 if (!Q) 5377 return SDValue(); 5378 5379 Created.push_back(Q.getNode()); 5380 5381 // (Optionally) Add/subtract the numerator using Factor. 5382 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5383 Created.push_back(Factor.getNode()); 5384 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5385 Created.push_back(Q.getNode()); 5386 5387 // Shift right algebraic by shift value. 5388 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5389 Created.push_back(Q.getNode()); 5390 5391 // Extract the sign bit, mask it and add it to the quotient. 5392 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5393 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5394 Created.push_back(T.getNode()); 5395 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5396 Created.push_back(T.getNode()); 5397 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5398 } 5399 5400 /// Given an ISD::UDIV node expressing a divide by constant, 5401 /// return a DAG expression to select that will generate the same value by 5402 /// multiplying by a magic number. 5403 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5404 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5405 bool IsAfterLegalization, 5406 SmallVectorImpl<SDNode *> &Created) const { 5407 SDLoc dl(N); 5408 EVT VT = N->getValueType(0); 5409 EVT SVT = VT.getScalarType(); 5410 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5411 EVT ShSVT = ShVT.getScalarType(); 5412 unsigned EltBits = VT.getScalarSizeInBits(); 5413 EVT MulVT; 5414 5415 // Check to see if we can do this. 5416 // FIXME: We should be more aggressive here. 5417 if (!isTypeLegal(VT)) { 5418 // Limit this to simple scalars for now. 5419 if (VT.isVector() || !VT.isSimple()) 5420 return SDValue(); 5421 5422 // If this type will be promoted to a large enough type with a legal 5423 // multiply operation, we can go ahead and do this transform. 5424 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5425 return SDValue(); 5426 5427 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5428 if (MulVT.getSizeInBits() < (2 * EltBits) || 5429 !isOperationLegal(ISD::MUL, MulVT)) 5430 return SDValue(); 5431 } 5432 5433 bool UseNPQ = false; 5434 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5435 5436 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5437 if (C->isZero()) 5438 return false; 5439 // FIXME: We should use a narrower constant when the upper 5440 // bits are known to be zero. 5441 const APInt& Divisor = C->getAPIntValue(); 5442 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5443 unsigned PreShift = 0, PostShift = 0; 5444 5445 // If the divisor is even, we can avoid using the expensive fixup by 5446 // shifting the divided value upfront. 5447 if (magics.IsAdd != 0 && !Divisor[0]) { 5448 PreShift = Divisor.countTrailingZeros(); 5449 // Get magic number for the shifted divisor. 5450 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5451 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5452 } 5453 5454 APInt Magic = magics.Magic; 5455 5456 unsigned SelNPQ; 5457 if (magics.IsAdd == 0 || Divisor.isOne()) { 5458 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5459 "We shouldn't generate an undefined shift!"); 5460 PostShift = magics.ShiftAmount; 5461 SelNPQ = false; 5462 } else { 5463 PostShift = magics.ShiftAmount - 1; 5464 SelNPQ = true; 5465 } 5466 5467 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5468 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5469 NPQFactors.push_back( 5470 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5471 : APInt::getZero(EltBits), 5472 dl, SVT)); 5473 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5474 UseNPQ |= SelNPQ; 5475 return true; 5476 }; 5477 5478 SDValue N0 = N->getOperand(0); 5479 SDValue N1 = N->getOperand(1); 5480 5481 // Collect the shifts/magic values from each element. 5482 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5483 return SDValue(); 5484 5485 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5486 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5487 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5488 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5489 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5490 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5491 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5492 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5493 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5494 "Expected matchUnaryPredicate to return one for scalable vectors"); 5495 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5496 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5497 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5498 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5499 } else { 5500 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5501 PreShift = PreShifts[0]; 5502 MagicFactor = MagicFactors[0]; 5503 PostShift = PostShifts[0]; 5504 } 5505 5506 SDValue Q = N0; 5507 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5508 Created.push_back(Q.getNode()); 5509 5510 // FIXME: We should support doing a MUL in a wider type. 5511 auto GetMULHU = [&](SDValue X, SDValue Y) { 5512 // If the type isn't legal, use a wider mul of the the type calculated 5513 // earlier. 5514 if (!isTypeLegal(VT)) { 5515 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5516 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5517 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5518 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5519 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5520 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5521 } 5522 5523 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5524 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5525 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5526 SDValue LoHi = 5527 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5528 return SDValue(LoHi.getNode(), 1); 5529 } 5530 return SDValue(); // No mulhu or equivalent 5531 }; 5532 5533 // Multiply the numerator (operand 0) by the magic value. 5534 Q = GetMULHU(Q, MagicFactor); 5535 if (!Q) 5536 return SDValue(); 5537 5538 Created.push_back(Q.getNode()); 5539 5540 if (UseNPQ) { 5541 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5542 Created.push_back(NPQ.getNode()); 5543 5544 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5545 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5546 if (VT.isVector()) 5547 NPQ = GetMULHU(NPQ, NPQFactor); 5548 else 5549 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5550 5551 Created.push_back(NPQ.getNode()); 5552 5553 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5554 Created.push_back(Q.getNode()); 5555 } 5556 5557 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5558 Created.push_back(Q.getNode()); 5559 5560 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5561 5562 SDValue One = DAG.getConstant(1, dl, VT); 5563 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5564 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5565 } 5566 5567 /// If all values in Values that *don't* match the predicate are same 'splat' 5568 /// value, then replace all values with that splat value. 5569 /// Else, if AlternativeReplacement was provided, then replace all values that 5570 /// do match predicate with AlternativeReplacement value. 5571 static void 5572 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5573 std::function<bool(SDValue)> Predicate, 5574 SDValue AlternativeReplacement = SDValue()) { 5575 SDValue Replacement; 5576 // Is there a value for which the Predicate does *NOT* match? What is it? 5577 auto SplatValue = llvm::find_if_not(Values, Predicate); 5578 if (SplatValue != Values.end()) { 5579 // Does Values consist only of SplatValue's and values matching Predicate? 5580 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5581 return Value == *SplatValue || Predicate(Value); 5582 })) // Then we shall replace values matching predicate with SplatValue. 5583 Replacement = *SplatValue; 5584 } 5585 if (!Replacement) { 5586 // Oops, we did not find the "baseline" splat value. 5587 if (!AlternativeReplacement) 5588 return; // Nothing to do. 5589 // Let's replace with provided value then. 5590 Replacement = AlternativeReplacement; 5591 } 5592 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5593 } 5594 5595 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5596 /// where the divisor is constant and the comparison target is zero, 5597 /// return a DAG expression that will generate the same comparison result 5598 /// using only multiplications, additions and shifts/rotations. 5599 /// Ref: "Hacker's Delight" 10-17. 5600 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5601 SDValue CompTargetNode, 5602 ISD::CondCode Cond, 5603 DAGCombinerInfo &DCI, 5604 const SDLoc &DL) const { 5605 SmallVector<SDNode *, 5> Built; 5606 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5607 DCI, DL, Built)) { 5608 for (SDNode *N : Built) 5609 DCI.AddToWorklist(N); 5610 return Folded; 5611 } 5612 5613 return SDValue(); 5614 } 5615 5616 SDValue 5617 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5618 SDValue CompTargetNode, ISD::CondCode Cond, 5619 DAGCombinerInfo &DCI, const SDLoc &DL, 5620 SmallVectorImpl<SDNode *> &Created) const { 5621 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5622 // - D must be constant, with D = D0 * 2^K where D0 is odd 5623 // - P is the multiplicative inverse of D0 modulo 2^W 5624 // - Q = floor(((2^W) - 1) / D) 5625 // where W is the width of the common type of N and D. 5626 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5627 "Only applicable for (in)equality comparisons."); 5628 5629 SelectionDAG &DAG = DCI.DAG; 5630 5631 EVT VT = REMNode.getValueType(); 5632 EVT SVT = VT.getScalarType(); 5633 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5634 EVT ShSVT = ShVT.getScalarType(); 5635 5636 // If MUL is unavailable, we cannot proceed in any case. 5637 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5638 return SDValue(); 5639 5640 bool ComparingWithAllZeros = true; 5641 bool AllComparisonsWithNonZerosAreTautological = true; 5642 bool HadTautologicalLanes = false; 5643 bool AllLanesAreTautological = true; 5644 bool HadEvenDivisor = false; 5645 bool AllDivisorsArePowerOfTwo = true; 5646 bool HadTautologicalInvertedLanes = false; 5647 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5648 5649 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5650 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5651 if (CDiv->isZero()) 5652 return false; 5653 5654 const APInt &D = CDiv->getAPIntValue(); 5655 const APInt &Cmp = CCmp->getAPIntValue(); 5656 5657 ComparingWithAllZeros &= Cmp.isZero(); 5658 5659 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5660 // if C2 is not less than C1, the comparison is always false. 5661 // But we will only be able to produce the comparison that will give the 5662 // opposive tautological answer. So this lane would need to be fixed up. 5663 bool TautologicalInvertedLane = D.ule(Cmp); 5664 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5665 5666 // If all lanes are tautological (either all divisors are ones, or divisor 5667 // is not greater than the constant we are comparing with), 5668 // we will prefer to avoid the fold. 5669 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5670 HadTautologicalLanes |= TautologicalLane; 5671 AllLanesAreTautological &= TautologicalLane; 5672 5673 // If we are comparing with non-zero, we need'll need to subtract said 5674 // comparison value from the LHS. But there is no point in doing that if 5675 // every lane where we are comparing with non-zero is tautological.. 5676 if (!Cmp.isZero()) 5677 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5678 5679 // Decompose D into D0 * 2^K 5680 unsigned K = D.countTrailingZeros(); 5681 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5682 APInt D0 = D.lshr(K); 5683 5684 // D is even if it has trailing zeros. 5685 HadEvenDivisor |= (K != 0); 5686 // D is a power-of-two if D0 is one. 5687 // If all divisors are power-of-two, we will prefer to avoid the fold. 5688 AllDivisorsArePowerOfTwo &= D0.isOne(); 5689 5690 // P = inv(D0, 2^W) 5691 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5692 unsigned W = D.getBitWidth(); 5693 APInt P = D0.zext(W + 1) 5694 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5695 .trunc(W); 5696 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5697 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5698 5699 // Q = floor((2^W - 1) u/ D) 5700 // R = ((2^W - 1) u% D) 5701 APInt Q, R; 5702 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5703 5704 // If we are comparing with zero, then that comparison constant is okay, 5705 // else it may need to be one less than that. 5706 if (Cmp.ugt(R)) 5707 Q -= 1; 5708 5709 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5710 "We are expecting that K is always less than all-ones for ShSVT"); 5711 5712 // If the lane is tautological the result can be constant-folded. 5713 if (TautologicalLane) { 5714 // Set P and K amount to a bogus values so we can try to splat them. 5715 P = 0; 5716 K = -1; 5717 // And ensure that comparison constant is tautological, 5718 // it will always compare true/false. 5719 Q = -1; 5720 } 5721 5722 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5723 KAmts.push_back( 5724 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5725 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5726 return true; 5727 }; 5728 5729 SDValue N = REMNode.getOperand(0); 5730 SDValue D = REMNode.getOperand(1); 5731 5732 // Collect the values from each element. 5733 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5734 return SDValue(); 5735 5736 // If all lanes are tautological, the result can be constant-folded. 5737 if (AllLanesAreTautological) 5738 return SDValue(); 5739 5740 // If this is a urem by a powers-of-two, avoid the fold since it can be 5741 // best implemented as a bit test. 5742 if (AllDivisorsArePowerOfTwo) 5743 return SDValue(); 5744 5745 SDValue PVal, KVal, QVal; 5746 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5747 if (HadTautologicalLanes) { 5748 // Try to turn PAmts into a splat, since we don't care about the values 5749 // that are currently '0'. If we can't, just keep '0'`s. 5750 turnVectorIntoSplatVector(PAmts, isNullConstant); 5751 // Try to turn KAmts into a splat, since we don't care about the values 5752 // that are currently '-1'. If we can't, change them to '0'`s. 5753 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5754 DAG.getConstant(0, DL, ShSVT)); 5755 } 5756 5757 PVal = DAG.getBuildVector(VT, DL, PAmts); 5758 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5759 QVal = DAG.getBuildVector(VT, DL, QAmts); 5760 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5761 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5762 "Expected matchBinaryPredicate to return one element for " 5763 "SPLAT_VECTORs"); 5764 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5765 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5766 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5767 } else { 5768 PVal = PAmts[0]; 5769 KVal = KAmts[0]; 5770 QVal = QAmts[0]; 5771 } 5772 5773 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5774 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5775 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5776 assert(CompTargetNode.getValueType() == N.getValueType() && 5777 "Expecting that the types on LHS and RHS of comparisons match."); 5778 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5779 } 5780 5781 // (mul N, P) 5782 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5783 Created.push_back(Op0.getNode()); 5784 5785 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5786 // divisors as a performance improvement, since rotating by 0 is a no-op. 5787 if (HadEvenDivisor) { 5788 // We need ROTR to do this. 5789 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5790 return SDValue(); 5791 // UREM: (rotr (mul N, P), K) 5792 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5793 Created.push_back(Op0.getNode()); 5794 } 5795 5796 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5797 SDValue NewCC = 5798 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5799 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5800 if (!HadTautologicalInvertedLanes) 5801 return NewCC; 5802 5803 // If any lanes previously compared always-false, the NewCC will give 5804 // always-true result for them, so we need to fixup those lanes. 5805 // Or the other way around for inequality predicate. 5806 assert(VT.isVector() && "Can/should only get here for vectors."); 5807 Created.push_back(NewCC.getNode()); 5808 5809 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5810 // if C2 is not less than C1, the comparison is always false. 5811 // But we have produced the comparison that will give the 5812 // opposive tautological answer. So these lanes would need to be fixed up. 5813 SDValue TautologicalInvertedChannels = 5814 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5815 Created.push_back(TautologicalInvertedChannels.getNode()); 5816 5817 // NOTE: we avoid letting illegal types through even if we're before legalize 5818 // ops – legalization has a hard time producing good code for this. 5819 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5820 // If we have a vector select, let's replace the comparison results in the 5821 // affected lanes with the correct tautological result. 5822 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5823 DL, SETCCVT, SETCCVT); 5824 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5825 Replacement, NewCC); 5826 } 5827 5828 // Else, we can just invert the comparison result in the appropriate lanes. 5829 // 5830 // NOTE: see the note above VSELECT above. 5831 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5832 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5833 TautologicalInvertedChannels); 5834 5835 return SDValue(); // Don't know how to lower. 5836 } 5837 5838 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5839 /// where the divisor is constant and the comparison target is zero, 5840 /// return a DAG expression that will generate the same comparison result 5841 /// using only multiplications, additions and shifts/rotations. 5842 /// Ref: "Hacker's Delight" 10-17. 5843 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5844 SDValue CompTargetNode, 5845 ISD::CondCode Cond, 5846 DAGCombinerInfo &DCI, 5847 const SDLoc &DL) const { 5848 SmallVector<SDNode *, 7> Built; 5849 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5850 DCI, DL, Built)) { 5851 assert(Built.size() <= 7 && "Max size prediction failed."); 5852 for (SDNode *N : Built) 5853 DCI.AddToWorklist(N); 5854 return Folded; 5855 } 5856 5857 return SDValue(); 5858 } 5859 5860 SDValue 5861 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5862 SDValue CompTargetNode, ISD::CondCode Cond, 5863 DAGCombinerInfo &DCI, const SDLoc &DL, 5864 SmallVectorImpl<SDNode *> &Created) const { 5865 // Fold: 5866 // (seteq/ne (srem N, D), 0) 5867 // To: 5868 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5869 // 5870 // - D must be constant, with D = D0 * 2^K where D0 is odd 5871 // - P is the multiplicative inverse of D0 modulo 2^W 5872 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5873 // - Q = floor((2 * A) / (2^K)) 5874 // where W is the width of the common type of N and D. 5875 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5876 "Only applicable for (in)equality comparisons."); 5877 5878 SelectionDAG &DAG = DCI.DAG; 5879 5880 EVT VT = REMNode.getValueType(); 5881 EVT SVT = VT.getScalarType(); 5882 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5883 EVT ShSVT = ShVT.getScalarType(); 5884 5885 // If we are after ops legalization, and MUL is unavailable, we can not 5886 // proceed. 5887 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5888 return SDValue(); 5889 5890 // TODO: Could support comparing with non-zero too. 5891 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5892 if (!CompTarget || !CompTarget->isZero()) 5893 return SDValue(); 5894 5895 bool HadIntMinDivisor = false; 5896 bool HadOneDivisor = false; 5897 bool AllDivisorsAreOnes = true; 5898 bool HadEvenDivisor = false; 5899 bool NeedToApplyOffset = false; 5900 bool AllDivisorsArePowerOfTwo = true; 5901 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5902 5903 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5904 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5905 if (C->isZero()) 5906 return false; 5907 5908 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5909 5910 // WARNING: this fold is only valid for positive divisors! 5911 APInt D = C->getAPIntValue(); 5912 if (D.isNegative()) 5913 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5914 5915 HadIntMinDivisor |= D.isMinSignedValue(); 5916 5917 // If all divisors are ones, we will prefer to avoid the fold. 5918 HadOneDivisor |= D.isOne(); 5919 AllDivisorsAreOnes &= D.isOne(); 5920 5921 // Decompose D into D0 * 2^K 5922 unsigned K = D.countTrailingZeros(); 5923 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5924 APInt D0 = D.lshr(K); 5925 5926 if (!D.isMinSignedValue()) { 5927 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5928 // we don't care about this lane in this fold, we'll special-handle it. 5929 HadEvenDivisor |= (K != 0); 5930 } 5931 5932 // D is a power-of-two if D0 is one. This includes INT_MIN. 5933 // If all divisors are power-of-two, we will prefer to avoid the fold. 5934 AllDivisorsArePowerOfTwo &= D0.isOne(); 5935 5936 // P = inv(D0, 2^W) 5937 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5938 unsigned W = D.getBitWidth(); 5939 APInt P = D0.zext(W + 1) 5940 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5941 .trunc(W); 5942 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5943 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5944 5945 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5946 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5947 A.clearLowBits(K); 5948 5949 if (!D.isMinSignedValue()) { 5950 // If divisor INT_MIN, then we don't care about this lane in this fold, 5951 // we'll special-handle it. 5952 NeedToApplyOffset |= A != 0; 5953 } 5954 5955 // Q = floor((2 * A) / (2^K)) 5956 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5957 5958 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5959 "We are expecting that A is always less than all-ones for SVT"); 5960 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5961 "We are expecting that K is always less than all-ones for ShSVT"); 5962 5963 // If the divisor is 1 the result can be constant-folded. Likewise, we 5964 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5965 if (D.isOne()) { 5966 // Set P, A and K to a bogus values so we can try to splat them. 5967 P = 0; 5968 A = -1; 5969 K = -1; 5970 5971 // x ?% 1 == 0 <--> true <--> x u<= -1 5972 Q = -1; 5973 } 5974 5975 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5976 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5977 KAmts.push_back( 5978 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5979 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5980 return true; 5981 }; 5982 5983 SDValue N = REMNode.getOperand(0); 5984 SDValue D = REMNode.getOperand(1); 5985 5986 // Collect the values from each element. 5987 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5988 return SDValue(); 5989 5990 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5991 if (AllDivisorsAreOnes) 5992 return SDValue(); 5993 5994 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5995 // since it can be best implemented as a bit test. 5996 if (AllDivisorsArePowerOfTwo) 5997 return SDValue(); 5998 5999 SDValue PVal, AVal, KVal, QVal; 6000 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6001 if (HadOneDivisor) { 6002 // Try to turn PAmts into a splat, since we don't care about the values 6003 // that are currently '0'. If we can't, just keep '0'`s. 6004 turnVectorIntoSplatVector(PAmts, isNullConstant); 6005 // Try to turn AAmts into a splat, since we don't care about the 6006 // values that are currently '-1'. If we can't, change them to '0'`s. 6007 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6008 DAG.getConstant(0, DL, SVT)); 6009 // Try to turn KAmts into a splat, since we don't care about the values 6010 // that are currently '-1'. If we can't, change them to '0'`s. 6011 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6012 DAG.getConstant(0, DL, ShSVT)); 6013 } 6014 6015 PVal = DAG.getBuildVector(VT, DL, PAmts); 6016 AVal = DAG.getBuildVector(VT, DL, AAmts); 6017 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6018 QVal = DAG.getBuildVector(VT, DL, QAmts); 6019 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6020 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6021 QAmts.size() == 1 && 6022 "Expected matchUnaryPredicate to return one element for scalable " 6023 "vectors"); 6024 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6025 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6026 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6027 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6028 } else { 6029 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6030 PVal = PAmts[0]; 6031 AVal = AAmts[0]; 6032 KVal = KAmts[0]; 6033 QVal = QAmts[0]; 6034 } 6035 6036 // (mul N, P) 6037 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6038 Created.push_back(Op0.getNode()); 6039 6040 if (NeedToApplyOffset) { 6041 // We need ADD to do this. 6042 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6043 return SDValue(); 6044 6045 // (add (mul N, P), A) 6046 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6047 Created.push_back(Op0.getNode()); 6048 } 6049 6050 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6051 // divisors as a performance improvement, since rotating by 0 is a no-op. 6052 if (HadEvenDivisor) { 6053 // We need ROTR to do this. 6054 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6055 return SDValue(); 6056 // SREM: (rotr (add (mul N, P), A), K) 6057 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6058 Created.push_back(Op0.getNode()); 6059 } 6060 6061 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6062 SDValue Fold = 6063 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6064 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6065 6066 // If we didn't have lanes with INT_MIN divisor, then we're done. 6067 if (!HadIntMinDivisor) 6068 return Fold; 6069 6070 // That fold is only valid for positive divisors. Which effectively means, 6071 // it is invalid for INT_MIN divisors. So if we have such a lane, 6072 // we must fix-up results for said lanes. 6073 assert(VT.isVector() && "Can/should only get here for vectors."); 6074 6075 // NOTE: we avoid letting illegal types through even if we're before legalize 6076 // ops – legalization has a hard time producing good code for the code that 6077 // follows. 6078 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6079 !isOperationLegalOrCustom(ISD::AND, VT) || 6080 !isOperationLegalOrCustom(Cond, VT) || 6081 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6082 return SDValue(); 6083 6084 Created.push_back(Fold.getNode()); 6085 6086 SDValue IntMin = DAG.getConstant( 6087 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6088 SDValue IntMax = DAG.getConstant( 6089 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6090 SDValue Zero = 6091 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6092 6093 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6094 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6095 Created.push_back(DivisorIsIntMin.getNode()); 6096 6097 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6098 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6099 Created.push_back(Masked.getNode()); 6100 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6101 Created.push_back(MaskedIsZero.getNode()); 6102 6103 // To produce final result we need to blend 2 vectors: 'SetCC' and 6104 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6105 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6106 // constant-folded, select can get lowered to a shuffle with constant mask. 6107 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6108 MaskedIsZero, Fold); 6109 6110 return Blended; 6111 } 6112 6113 bool TargetLowering:: 6114 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6115 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6116 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6117 "be a constant integer"); 6118 return true; 6119 } 6120 6121 return false; 6122 } 6123 6124 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6125 const DenormalMode &Mode) const { 6126 SDLoc DL(Op); 6127 EVT VT = Op.getValueType(); 6128 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6129 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6130 // Testing it with denormal inputs to avoid wrong estimate. 6131 if (Mode.Input == DenormalMode::IEEE) { 6132 // This is specifically a check for the handling of denormal inputs, 6133 // not the result. 6134 6135 // Test = fabs(X) < SmallestNormal 6136 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6137 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6138 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6139 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6140 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6141 } 6142 // Test = X == 0.0 6143 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6144 } 6145 6146 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6147 bool LegalOps, bool OptForSize, 6148 NegatibleCost &Cost, 6149 unsigned Depth) const { 6150 // fneg is removable even if it has multiple uses. 6151 if (Op.getOpcode() == ISD::FNEG) { 6152 Cost = NegatibleCost::Cheaper; 6153 return Op.getOperand(0); 6154 } 6155 6156 // Don't recurse exponentially. 6157 if (Depth > SelectionDAG::MaxRecursionDepth) 6158 return SDValue(); 6159 6160 // Pre-increment recursion depth for use in recursive calls. 6161 ++Depth; 6162 const SDNodeFlags Flags = Op->getFlags(); 6163 const TargetOptions &Options = DAG.getTarget().Options; 6164 EVT VT = Op.getValueType(); 6165 unsigned Opcode = Op.getOpcode(); 6166 6167 // Don't allow anything with multiple uses unless we know it is free. 6168 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6169 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6170 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6171 if (!IsFreeExtend) 6172 return SDValue(); 6173 } 6174 6175 auto RemoveDeadNode = [&](SDValue N) { 6176 if (N && N.getNode()->use_empty()) 6177 DAG.RemoveDeadNode(N.getNode()); 6178 }; 6179 6180 SDLoc DL(Op); 6181 6182 // Because getNegatedExpression can delete nodes we need a handle to keep 6183 // temporary nodes alive in case the recursion manages to create an identical 6184 // node. 6185 std::list<HandleSDNode> Handles; 6186 6187 switch (Opcode) { 6188 case ISD::ConstantFP: { 6189 // Don't invert constant FP values after legalization unless the target says 6190 // the negated constant is legal. 6191 bool IsOpLegal = 6192 isOperationLegal(ISD::ConstantFP, VT) || 6193 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6194 OptForSize); 6195 6196 if (LegalOps && !IsOpLegal) 6197 break; 6198 6199 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6200 V.changeSign(); 6201 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6202 6203 // If we already have the use of the negated floating constant, it is free 6204 // to negate it even it has multiple uses. 6205 if (!Op.hasOneUse() && CFP.use_empty()) 6206 break; 6207 Cost = NegatibleCost::Neutral; 6208 return CFP; 6209 } 6210 case ISD::BUILD_VECTOR: { 6211 // Only permit BUILD_VECTOR of constants. 6212 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6213 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6214 })) 6215 break; 6216 6217 bool IsOpLegal = 6218 (isOperationLegal(ISD::ConstantFP, VT) && 6219 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6220 llvm::all_of(Op->op_values(), [&](SDValue N) { 6221 return N.isUndef() || 6222 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6223 OptForSize); 6224 }); 6225 6226 if (LegalOps && !IsOpLegal) 6227 break; 6228 6229 SmallVector<SDValue, 4> Ops; 6230 for (SDValue C : Op->op_values()) { 6231 if (C.isUndef()) { 6232 Ops.push_back(C); 6233 continue; 6234 } 6235 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6236 V.changeSign(); 6237 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6238 } 6239 Cost = NegatibleCost::Neutral; 6240 return DAG.getBuildVector(VT, DL, Ops); 6241 } 6242 case ISD::FADD: { 6243 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6244 break; 6245 6246 // After operation legalization, it might not be legal to create new FSUBs. 6247 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6248 break; 6249 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6250 6251 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6252 NegatibleCost CostX = NegatibleCost::Expensive; 6253 SDValue NegX = 6254 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6255 // Prevent this node from being deleted by the next call. 6256 if (NegX) 6257 Handles.emplace_back(NegX); 6258 6259 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6260 NegatibleCost CostY = NegatibleCost::Expensive; 6261 SDValue NegY = 6262 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6263 6264 // We're done with the handles. 6265 Handles.clear(); 6266 6267 // Negate the X if its cost is less or equal than Y. 6268 if (NegX && (CostX <= CostY)) { 6269 Cost = CostX; 6270 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6271 if (NegY != N) 6272 RemoveDeadNode(NegY); 6273 return N; 6274 } 6275 6276 // Negate the Y if it is not expensive. 6277 if (NegY) { 6278 Cost = CostY; 6279 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6280 if (NegX != N) 6281 RemoveDeadNode(NegX); 6282 return N; 6283 } 6284 break; 6285 } 6286 case ISD::FSUB: { 6287 // We can't turn -(A-B) into B-A when we honor signed zeros. 6288 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6289 break; 6290 6291 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6292 // fold (fneg (fsub 0, Y)) -> Y 6293 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6294 if (C->isZero()) { 6295 Cost = NegatibleCost::Cheaper; 6296 return Y; 6297 } 6298 6299 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6300 Cost = NegatibleCost::Neutral; 6301 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6302 } 6303 case ISD::FMUL: 6304 case ISD::FDIV: { 6305 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6306 6307 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6308 NegatibleCost CostX = NegatibleCost::Expensive; 6309 SDValue NegX = 6310 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6311 // Prevent this node from being deleted by the next call. 6312 if (NegX) 6313 Handles.emplace_back(NegX); 6314 6315 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6316 NegatibleCost CostY = NegatibleCost::Expensive; 6317 SDValue NegY = 6318 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6319 6320 // We're done with the handles. 6321 Handles.clear(); 6322 6323 // Negate the X if its cost is less or equal than Y. 6324 if (NegX && (CostX <= CostY)) { 6325 Cost = CostX; 6326 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6327 if (NegY != N) 6328 RemoveDeadNode(NegY); 6329 return N; 6330 } 6331 6332 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6333 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6334 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6335 break; 6336 6337 // Negate the Y if it is not expensive. 6338 if (NegY) { 6339 Cost = CostY; 6340 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6341 if (NegX != N) 6342 RemoveDeadNode(NegX); 6343 return N; 6344 } 6345 break; 6346 } 6347 case ISD::FMA: 6348 case ISD::FMAD: { 6349 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6350 break; 6351 6352 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6353 NegatibleCost CostZ = NegatibleCost::Expensive; 6354 SDValue NegZ = 6355 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6356 // Give up if fail to negate the Z. 6357 if (!NegZ) 6358 break; 6359 6360 // Prevent this node from being deleted by the next two calls. 6361 Handles.emplace_back(NegZ); 6362 6363 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6364 NegatibleCost CostX = NegatibleCost::Expensive; 6365 SDValue NegX = 6366 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6367 // Prevent this node from being deleted by the next call. 6368 if (NegX) 6369 Handles.emplace_back(NegX); 6370 6371 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6372 NegatibleCost CostY = NegatibleCost::Expensive; 6373 SDValue NegY = 6374 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6375 6376 // We're done with the handles. 6377 Handles.clear(); 6378 6379 // Negate the X if its cost is less or equal than Y. 6380 if (NegX && (CostX <= CostY)) { 6381 Cost = std::min(CostX, CostZ); 6382 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6383 if (NegY != N) 6384 RemoveDeadNode(NegY); 6385 return N; 6386 } 6387 6388 // Negate the Y if it is not expensive. 6389 if (NegY) { 6390 Cost = std::min(CostY, CostZ); 6391 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6392 if (NegX != N) 6393 RemoveDeadNode(NegX); 6394 return N; 6395 } 6396 break; 6397 } 6398 6399 case ISD::FP_EXTEND: 6400 case ISD::FSIN: 6401 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6402 OptForSize, Cost, Depth)) 6403 return DAG.getNode(Opcode, DL, VT, NegV); 6404 break; 6405 case ISD::FP_ROUND: 6406 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6407 OptForSize, Cost, Depth)) 6408 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6409 break; 6410 } 6411 6412 return SDValue(); 6413 } 6414 6415 //===----------------------------------------------------------------------===// 6416 // Legalization Utilities 6417 //===----------------------------------------------------------------------===// 6418 6419 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6420 SDValue LHS, SDValue RHS, 6421 SmallVectorImpl<SDValue> &Result, 6422 EVT HiLoVT, SelectionDAG &DAG, 6423 MulExpansionKind Kind, SDValue LL, 6424 SDValue LH, SDValue RL, SDValue RH) const { 6425 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6426 Opcode == ISD::SMUL_LOHI); 6427 6428 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6429 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6430 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6431 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6432 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6433 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6434 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6435 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6436 6437 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6438 return false; 6439 6440 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6441 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6442 6443 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6444 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6445 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6446 6447 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6448 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6449 bool Signed) -> bool { 6450 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6451 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6452 Hi = SDValue(Lo.getNode(), 1); 6453 return true; 6454 } 6455 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6456 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6457 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6458 return true; 6459 } 6460 return false; 6461 }; 6462 6463 SDValue Lo, Hi; 6464 6465 if (!LL.getNode() && !RL.getNode() && 6466 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6467 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6468 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6469 } 6470 6471 if (!LL.getNode()) 6472 return false; 6473 6474 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6475 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6476 DAG.MaskedValueIsZero(RHS, HighMask)) { 6477 // The inputs are both zero-extended. 6478 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6479 Result.push_back(Lo); 6480 Result.push_back(Hi); 6481 if (Opcode != ISD::MUL) { 6482 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6483 Result.push_back(Zero); 6484 Result.push_back(Zero); 6485 } 6486 return true; 6487 } 6488 } 6489 6490 if (!VT.isVector() && Opcode == ISD::MUL && 6491 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6492 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6493 // The input values are both sign-extended. 6494 // TODO non-MUL case? 6495 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6496 Result.push_back(Lo); 6497 Result.push_back(Hi); 6498 return true; 6499 } 6500 } 6501 6502 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6503 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6504 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6505 6506 if (!LH.getNode() && !RH.getNode() && 6507 isOperationLegalOrCustom(ISD::SRL, VT) && 6508 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6509 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6510 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6511 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6512 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6513 } 6514 6515 if (!LH.getNode()) 6516 return false; 6517 6518 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6519 return false; 6520 6521 Result.push_back(Lo); 6522 6523 if (Opcode == ISD::MUL) { 6524 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6525 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6526 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6527 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6528 Result.push_back(Hi); 6529 return true; 6530 } 6531 6532 // Compute the full width result. 6533 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6534 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6535 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6536 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6537 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6538 }; 6539 6540 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6541 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6542 return false; 6543 6544 // This is effectively the add part of a multiply-add of half-sized operands, 6545 // so it cannot overflow. 6546 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6547 6548 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6549 return false; 6550 6551 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6552 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6553 6554 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6555 isOperationLegalOrCustom(ISD::ADDE, VT)); 6556 if (UseGlue) 6557 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6558 Merge(Lo, Hi)); 6559 else 6560 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6561 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6562 6563 SDValue Carry = Next.getValue(1); 6564 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6565 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6566 6567 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6568 return false; 6569 6570 if (UseGlue) 6571 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6572 Carry); 6573 else 6574 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6575 Zero, Carry); 6576 6577 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6578 6579 if (Opcode == ISD::SMUL_LOHI) { 6580 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6581 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6582 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6583 6584 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6585 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6586 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6587 } 6588 6589 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6590 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6591 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6592 return true; 6593 } 6594 6595 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6596 SelectionDAG &DAG, MulExpansionKind Kind, 6597 SDValue LL, SDValue LH, SDValue RL, 6598 SDValue RH) const { 6599 SmallVector<SDValue, 2> Result; 6600 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6601 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6602 DAG, Kind, LL, LH, RL, RH); 6603 if (Ok) { 6604 assert(Result.size() == 2); 6605 Lo = Result[0]; 6606 Hi = Result[1]; 6607 } 6608 return Ok; 6609 } 6610 6611 // Check that (every element of) Z is undef or not an exact multiple of BW. 6612 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6613 return ISD::matchUnaryPredicate( 6614 Z, 6615 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6616 true); 6617 } 6618 6619 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6620 SelectionDAG &DAG) const { 6621 EVT VT = Node->getValueType(0); 6622 6623 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6624 !isOperationLegalOrCustom(ISD::SRL, VT) || 6625 !isOperationLegalOrCustom(ISD::SUB, VT) || 6626 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6627 return SDValue(); 6628 6629 SDValue X = Node->getOperand(0); 6630 SDValue Y = Node->getOperand(1); 6631 SDValue Z = Node->getOperand(2); 6632 6633 unsigned BW = VT.getScalarSizeInBits(); 6634 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6635 SDLoc DL(SDValue(Node, 0)); 6636 6637 EVT ShVT = Z.getValueType(); 6638 6639 // If a funnel shift in the other direction is more supported, use it. 6640 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6641 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6642 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6643 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6644 // fshl X, Y, Z -> fshr X, Y, -Z 6645 // fshr X, Y, Z -> fshl X, Y, -Z 6646 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6647 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6648 } else { 6649 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6650 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6651 SDValue One = DAG.getConstant(1, DL, ShVT); 6652 if (IsFSHL) { 6653 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6654 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6655 } else { 6656 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6657 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6658 } 6659 Z = DAG.getNOT(DL, Z, ShVT); 6660 } 6661 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6662 } 6663 6664 SDValue ShX, ShY; 6665 SDValue ShAmt, InvShAmt; 6666 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6667 // fshl: X << C | Y >> (BW - C) 6668 // fshr: X << (BW - C) | Y >> C 6669 // where C = Z % BW is not zero 6670 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6671 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6672 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6673 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6674 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6675 } else { 6676 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6677 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6678 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6679 if (isPowerOf2_32(BW)) { 6680 // Z % BW -> Z & (BW - 1) 6681 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6682 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6683 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6684 } else { 6685 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6686 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6687 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6688 } 6689 6690 SDValue One = DAG.getConstant(1, DL, ShVT); 6691 if (IsFSHL) { 6692 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6693 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6694 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6695 } else { 6696 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6697 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6698 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6699 } 6700 } 6701 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6702 } 6703 6704 // TODO: Merge with expandFunnelShift. 6705 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6706 SelectionDAG &DAG) const { 6707 EVT VT = Node->getValueType(0); 6708 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6709 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6710 SDValue Op0 = Node->getOperand(0); 6711 SDValue Op1 = Node->getOperand(1); 6712 SDLoc DL(SDValue(Node, 0)); 6713 6714 EVT ShVT = Op1.getValueType(); 6715 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6716 6717 // If a rotate in the other direction is more supported, use it. 6718 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6719 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6720 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6721 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6722 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6723 } 6724 6725 if (!AllowVectorOps && VT.isVector() && 6726 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6727 !isOperationLegalOrCustom(ISD::SRL, VT) || 6728 !isOperationLegalOrCustom(ISD::SUB, VT) || 6729 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6730 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6731 return SDValue(); 6732 6733 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6734 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6735 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6736 SDValue ShVal; 6737 SDValue HsVal; 6738 if (isPowerOf2_32(EltSizeInBits)) { 6739 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6740 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6741 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6742 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6743 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6744 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6745 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6746 } else { 6747 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6748 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6749 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6750 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6751 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6752 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6753 SDValue One = DAG.getConstant(1, DL, ShVT); 6754 HsVal = 6755 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6756 } 6757 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6758 } 6759 6760 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6761 SelectionDAG &DAG) const { 6762 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6763 EVT VT = Node->getValueType(0); 6764 unsigned VTBits = VT.getScalarSizeInBits(); 6765 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6766 6767 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6768 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6769 SDValue ShOpLo = Node->getOperand(0); 6770 SDValue ShOpHi = Node->getOperand(1); 6771 SDValue ShAmt = Node->getOperand(2); 6772 EVT ShAmtVT = ShAmt.getValueType(); 6773 EVT ShAmtCCVT = 6774 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6775 SDLoc dl(Node); 6776 6777 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6778 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6779 // away during isel. 6780 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6781 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6782 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6783 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6784 : DAG.getConstant(0, dl, VT); 6785 6786 SDValue Tmp2, Tmp3; 6787 if (IsSHL) { 6788 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6789 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6790 } else { 6791 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6792 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6793 } 6794 6795 // If the shift amount is larger or equal than the width of a part we don't 6796 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6797 // values for large shift amounts. 6798 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6799 DAG.getConstant(VTBits, dl, ShAmtVT)); 6800 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6801 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6802 6803 if (IsSHL) { 6804 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6805 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6806 } else { 6807 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6808 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6809 } 6810 } 6811 6812 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6813 SelectionDAG &DAG) const { 6814 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6815 SDValue Src = Node->getOperand(OpNo); 6816 EVT SrcVT = Src.getValueType(); 6817 EVT DstVT = Node->getValueType(0); 6818 SDLoc dl(SDValue(Node, 0)); 6819 6820 // FIXME: Only f32 to i64 conversions are supported. 6821 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6822 return false; 6823 6824 if (Node->isStrictFPOpcode()) 6825 // When a NaN is converted to an integer a trap is allowed. We can't 6826 // use this expansion here because it would eliminate that trap. Other 6827 // traps are also allowed and cannot be eliminated. See 6828 // IEEE 754-2008 sec 5.8. 6829 return false; 6830 6831 // Expand f32 -> i64 conversion 6832 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6833 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6834 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6835 EVT IntVT = SrcVT.changeTypeToInteger(); 6836 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6837 6838 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6839 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6840 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6841 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6842 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6843 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6844 6845 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6846 6847 SDValue ExponentBits = DAG.getNode( 6848 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6849 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6850 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6851 6852 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6853 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6854 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6855 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6856 6857 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6858 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6859 DAG.getConstant(0x00800000, dl, IntVT)); 6860 6861 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6862 6863 R = DAG.getSelectCC( 6864 dl, Exponent, ExponentLoBit, 6865 DAG.getNode(ISD::SHL, dl, DstVT, R, 6866 DAG.getZExtOrTrunc( 6867 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6868 dl, IntShVT)), 6869 DAG.getNode(ISD::SRL, dl, DstVT, R, 6870 DAG.getZExtOrTrunc( 6871 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6872 dl, IntShVT)), 6873 ISD::SETGT); 6874 6875 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6876 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6877 6878 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6879 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6880 return true; 6881 } 6882 6883 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6884 SDValue &Chain, 6885 SelectionDAG &DAG) const { 6886 SDLoc dl(SDValue(Node, 0)); 6887 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6888 SDValue Src = Node->getOperand(OpNo); 6889 6890 EVT SrcVT = Src.getValueType(); 6891 EVT DstVT = Node->getValueType(0); 6892 EVT SetCCVT = 6893 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6894 EVT DstSetCCVT = 6895 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6896 6897 // Only expand vector types if we have the appropriate vector bit operations. 6898 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6899 ISD::FP_TO_SINT; 6900 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6901 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6902 return false; 6903 6904 // If the maximum float value is smaller then the signed integer range, 6905 // the destination signmask can't be represented by the float, so we can 6906 // just use FP_TO_SINT directly. 6907 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6908 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6909 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6910 if (APFloat::opOverflow & 6911 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6912 if (Node->isStrictFPOpcode()) { 6913 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6914 { Node->getOperand(0), Src }); 6915 Chain = Result.getValue(1); 6916 } else 6917 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6918 return true; 6919 } 6920 6921 // Don't expand it if there isn't cheap fsub instruction. 6922 if (!isOperationLegalOrCustom( 6923 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6924 return false; 6925 6926 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6927 SDValue Sel; 6928 6929 if (Node->isStrictFPOpcode()) { 6930 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6931 Node->getOperand(0), /*IsSignaling*/ true); 6932 Chain = Sel.getValue(1); 6933 } else { 6934 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6935 } 6936 6937 bool Strict = Node->isStrictFPOpcode() || 6938 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6939 6940 if (Strict) { 6941 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6942 // signmask then offset (the result of which should be fully representable). 6943 // Sel = Src < 0x8000000000000000 6944 // FltOfs = select Sel, 0, 0x8000000000000000 6945 // IntOfs = select Sel, 0, 0x8000000000000000 6946 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6947 6948 // TODO: Should any fast-math-flags be set for the FSUB? 6949 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6950 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6951 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6952 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6953 DAG.getConstant(0, dl, DstVT), 6954 DAG.getConstant(SignMask, dl, DstVT)); 6955 SDValue SInt; 6956 if (Node->isStrictFPOpcode()) { 6957 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6958 { Chain, Src, FltOfs }); 6959 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6960 { Val.getValue(1), Val }); 6961 Chain = SInt.getValue(1); 6962 } else { 6963 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6964 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6965 } 6966 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6967 } else { 6968 // Expand based on maximum range of FP_TO_SINT: 6969 // True = fp_to_sint(Src) 6970 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6971 // Result = select (Src < 0x8000000000000000), True, False 6972 6973 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6974 // TODO: Should any fast-math-flags be set for the FSUB? 6975 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6976 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6977 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6978 DAG.getConstant(SignMask, dl, DstVT)); 6979 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6980 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6981 } 6982 return true; 6983 } 6984 6985 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6986 SDValue &Chain, 6987 SelectionDAG &DAG) const { 6988 // This transform is not correct for converting 0 when rounding mode is set 6989 // to round toward negative infinity which will produce -0.0. So disable under 6990 // strictfp. 6991 if (Node->isStrictFPOpcode()) 6992 return false; 6993 6994 SDValue Src = Node->getOperand(0); 6995 EVT SrcVT = Src.getValueType(); 6996 EVT DstVT = Node->getValueType(0); 6997 6998 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6999 return false; 7000 7001 // Only expand vector types if we have the appropriate vector bit operations. 7002 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7003 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7004 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7005 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7006 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7007 return false; 7008 7009 SDLoc dl(SDValue(Node, 0)); 7010 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7011 7012 // Implementation of unsigned i64 to f64 following the algorithm in 7013 // __floatundidf in compiler_rt. This implementation performs rounding 7014 // correctly in all rounding modes with the exception of converting 0 7015 // when rounding toward negative infinity. In that case the fsub will produce 7016 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7017 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7018 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7019 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7020 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7021 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7022 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7023 7024 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7025 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7026 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7027 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7028 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7029 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7030 SDValue HiSub = 7031 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7032 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7033 return true; 7034 } 7035 7036 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7037 SelectionDAG &DAG) const { 7038 SDLoc dl(Node); 7039 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7040 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7041 EVT VT = Node->getValueType(0); 7042 7043 if (VT.isScalableVector()) 7044 report_fatal_error( 7045 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7046 7047 if (isOperationLegalOrCustom(NewOp, VT)) { 7048 SDValue Quiet0 = Node->getOperand(0); 7049 SDValue Quiet1 = Node->getOperand(1); 7050 7051 if (!Node->getFlags().hasNoNaNs()) { 7052 // Insert canonicalizes if it's possible we need to quiet to get correct 7053 // sNaN behavior. 7054 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7055 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7056 Node->getFlags()); 7057 } 7058 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7059 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7060 Node->getFlags()); 7061 } 7062 } 7063 7064 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7065 } 7066 7067 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7068 // instead if there are no NaNs. 7069 if (Node->getFlags().hasNoNaNs()) { 7070 unsigned IEEE2018Op = 7071 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7072 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7073 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7074 Node->getOperand(1), Node->getFlags()); 7075 } 7076 } 7077 7078 // If none of the above worked, but there are no NaNs, then expand to 7079 // a compare/select sequence. This is required for correctness since 7080 // InstCombine might have canonicalized a fcmp+select sequence to a 7081 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7082 // expansion to libcall, we might introduce a link-time dependency 7083 // on libm into a file that originally did not have one. 7084 if (Node->getFlags().hasNoNaNs()) { 7085 ISD::CondCode Pred = 7086 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7087 SDValue Op1 = Node->getOperand(0); 7088 SDValue Op2 = Node->getOperand(1); 7089 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7090 // Copy FMF flags, but always set the no-signed-zeros flag 7091 // as this is implied by the FMINNUM/FMAXNUM semantics. 7092 SDNodeFlags Flags = Node->getFlags(); 7093 Flags.setNoSignedZeros(true); 7094 SelCC->setFlags(Flags); 7095 return SelCC; 7096 } 7097 7098 return SDValue(); 7099 } 7100 7101 // Only expand vector types if we have the appropriate vector bit operations. 7102 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7103 assert(VT.isVector() && "Expected vector type"); 7104 unsigned Len = VT.getScalarSizeInBits(); 7105 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7106 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7107 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7108 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7109 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7110 } 7111 7112 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7113 SDLoc dl(Node); 7114 EVT VT = Node->getValueType(0); 7115 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7116 SDValue Op = Node->getOperand(0); 7117 unsigned Len = VT.getScalarSizeInBits(); 7118 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7119 7120 // TODO: Add support for irregular type lengths. 7121 if (!(Len <= 128 && Len % 8 == 0)) 7122 return SDValue(); 7123 7124 // Only expand vector types if we have the appropriate vector bit operations. 7125 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7126 return SDValue(); 7127 7128 // This is the "best" algorithm from 7129 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7130 SDValue Mask55 = 7131 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7132 SDValue Mask33 = 7133 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7134 SDValue Mask0F = 7135 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7136 SDValue Mask01 = 7137 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7138 7139 // v = v - ((v >> 1) & 0x55555555...) 7140 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7141 DAG.getNode(ISD::AND, dl, VT, 7142 DAG.getNode(ISD::SRL, dl, VT, Op, 7143 DAG.getConstant(1, dl, ShVT)), 7144 Mask55)); 7145 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7146 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7147 DAG.getNode(ISD::AND, dl, VT, 7148 DAG.getNode(ISD::SRL, dl, VT, Op, 7149 DAG.getConstant(2, dl, ShVT)), 7150 Mask33)); 7151 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7152 Op = DAG.getNode(ISD::AND, dl, VT, 7153 DAG.getNode(ISD::ADD, dl, VT, Op, 7154 DAG.getNode(ISD::SRL, dl, VT, Op, 7155 DAG.getConstant(4, dl, ShVT))), 7156 Mask0F); 7157 // v = (v * 0x01010101...) >> (Len - 8) 7158 if (Len > 8) 7159 Op = 7160 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7161 DAG.getConstant(Len - 8, dl, ShVT)); 7162 7163 return Op; 7164 } 7165 7166 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7167 SDLoc dl(Node); 7168 EVT VT = Node->getValueType(0); 7169 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7170 SDValue Op = Node->getOperand(0); 7171 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7172 7173 // If the non-ZERO_UNDEF version is supported we can use that instead. 7174 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7175 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7176 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7177 7178 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7179 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7180 EVT SetCCVT = 7181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7182 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7183 SDValue Zero = DAG.getConstant(0, dl, VT); 7184 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7185 return DAG.getSelect(dl, VT, SrcIsZero, 7186 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7187 } 7188 7189 // Only expand vector types if we have the appropriate vector bit operations. 7190 // This includes the operations needed to expand CTPOP if it isn't supported. 7191 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7192 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7193 !canExpandVectorCTPOP(*this, VT)) || 7194 !isOperationLegalOrCustom(ISD::SRL, VT) || 7195 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7196 return SDValue(); 7197 7198 // for now, we do this: 7199 // x = x | (x >> 1); 7200 // x = x | (x >> 2); 7201 // ... 7202 // x = x | (x >>16); 7203 // x = x | (x >>32); // for 64-bit input 7204 // return popcount(~x); 7205 // 7206 // Ref: "Hacker's Delight" by Henry Warren 7207 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7208 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7209 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7210 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7211 } 7212 Op = DAG.getNOT(dl, Op, VT); 7213 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7214 } 7215 7216 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7217 SDLoc dl(Node); 7218 EVT VT = Node->getValueType(0); 7219 SDValue Op = Node->getOperand(0); 7220 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7221 7222 // If the non-ZERO_UNDEF version is supported we can use that instead. 7223 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7224 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7225 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7226 7227 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7228 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7229 EVT SetCCVT = 7230 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7231 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7232 SDValue Zero = DAG.getConstant(0, dl, VT); 7233 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7234 return DAG.getSelect(dl, VT, SrcIsZero, 7235 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7236 } 7237 7238 // Only expand vector types if we have the appropriate vector bit operations. 7239 // This includes the operations needed to expand CTPOP if it isn't supported. 7240 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7241 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7242 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7243 !canExpandVectorCTPOP(*this, VT)) || 7244 !isOperationLegalOrCustom(ISD::SUB, VT) || 7245 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7246 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7247 return SDValue(); 7248 7249 // for now, we use: { return popcount(~x & (x - 1)); } 7250 // unless the target has ctlz but not ctpop, in which case we use: 7251 // { return 32 - nlz(~x & (x-1)); } 7252 // Ref: "Hacker's Delight" by Henry Warren 7253 SDValue Tmp = DAG.getNode( 7254 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7255 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7256 7257 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7258 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7259 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7260 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7261 } 7262 7263 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7264 } 7265 7266 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7267 bool IsNegative) const { 7268 SDLoc dl(N); 7269 EVT VT = N->getValueType(0); 7270 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7271 SDValue Op = N->getOperand(0); 7272 7273 // abs(x) -> smax(x,sub(0,x)) 7274 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7275 isOperationLegal(ISD::SMAX, VT)) { 7276 SDValue Zero = DAG.getConstant(0, dl, VT); 7277 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7278 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7279 } 7280 7281 // abs(x) -> umin(x,sub(0,x)) 7282 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7283 isOperationLegal(ISD::UMIN, VT)) { 7284 SDValue Zero = DAG.getConstant(0, dl, VT); 7285 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7286 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7287 } 7288 7289 // 0 - abs(x) -> smin(x, sub(0,x)) 7290 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7291 isOperationLegal(ISD::SMIN, VT)) { 7292 SDValue Zero = DAG.getConstant(0, dl, VT); 7293 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7294 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7295 } 7296 7297 // Only expand vector types if we have the appropriate vector operations. 7298 if (VT.isVector() && 7299 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7300 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7301 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7302 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7303 return SDValue(); 7304 7305 SDValue Shift = 7306 DAG.getNode(ISD::SRA, dl, VT, Op, 7307 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7308 if (!IsNegative) { 7309 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7310 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7311 } 7312 7313 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7314 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7315 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7316 } 7317 7318 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7319 SDLoc dl(N); 7320 EVT VT = N->getValueType(0); 7321 SDValue Op = N->getOperand(0); 7322 7323 if (!VT.isSimple()) 7324 return SDValue(); 7325 7326 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7327 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7328 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7329 default: 7330 return SDValue(); 7331 case MVT::i16: 7332 // Use a rotate by 8. This can be further expanded if necessary. 7333 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7334 case MVT::i32: 7335 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7336 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7337 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7338 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7339 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7340 DAG.getConstant(0xFF0000, dl, VT)); 7341 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7342 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7343 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7344 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7345 case MVT::i64: 7346 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7347 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7348 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7349 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7350 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7351 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7352 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7353 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7354 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7355 DAG.getConstant(255ULL<<48, dl, VT)); 7356 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7357 DAG.getConstant(255ULL<<40, dl, VT)); 7358 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7359 DAG.getConstant(255ULL<<32, dl, VT)); 7360 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7361 DAG.getConstant(255ULL<<24, dl, VT)); 7362 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7363 DAG.getConstant(255ULL<<16, dl, VT)); 7364 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7365 DAG.getConstant(255ULL<<8 , dl, VT)); 7366 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7367 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7368 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7369 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7370 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7371 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7372 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7373 } 7374 } 7375 7376 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7377 SDLoc dl(N); 7378 EVT VT = N->getValueType(0); 7379 SDValue Op = N->getOperand(0); 7380 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7381 unsigned Sz = VT.getScalarSizeInBits(); 7382 7383 SDValue Tmp, Tmp2, Tmp3; 7384 7385 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7386 // and finally the i1 pairs. 7387 // TODO: We can easily support i4/i2 legal types if any target ever does. 7388 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7389 // Create the masks - repeating the pattern every byte. 7390 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7391 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7392 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7393 7394 // BSWAP if the type is wider than a single byte. 7395 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7396 7397 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7398 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7399 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7400 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7401 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7402 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7403 7404 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7405 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7406 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7407 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7408 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7409 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7410 7411 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7412 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7413 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7414 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7415 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7416 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7417 return Tmp; 7418 } 7419 7420 Tmp = DAG.getConstant(0, dl, VT); 7421 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7422 if (I < J) 7423 Tmp2 = 7424 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7425 else 7426 Tmp2 = 7427 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7428 7429 APInt Shift(Sz, 1); 7430 Shift <<= J; 7431 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7432 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7433 } 7434 7435 return Tmp; 7436 } 7437 7438 std::pair<SDValue, SDValue> 7439 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7440 SelectionDAG &DAG) const { 7441 SDLoc SL(LD); 7442 SDValue Chain = LD->getChain(); 7443 SDValue BasePTR = LD->getBasePtr(); 7444 EVT SrcVT = LD->getMemoryVT(); 7445 EVT DstVT = LD->getValueType(0); 7446 ISD::LoadExtType ExtType = LD->getExtensionType(); 7447 7448 if (SrcVT.isScalableVector()) 7449 report_fatal_error("Cannot scalarize scalable vector loads"); 7450 7451 unsigned NumElem = SrcVT.getVectorNumElements(); 7452 7453 EVT SrcEltVT = SrcVT.getScalarType(); 7454 EVT DstEltVT = DstVT.getScalarType(); 7455 7456 // A vector must always be stored in memory as-is, i.e. without any padding 7457 // between the elements, since various code depend on it, e.g. in the 7458 // handling of a bitcast of a vector type to int, which may be done with a 7459 // vector store followed by an integer load. A vector that does not have 7460 // elements that are byte-sized must therefore be stored as an integer 7461 // built out of the extracted vector elements. 7462 if (!SrcEltVT.isByteSized()) { 7463 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7464 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7465 7466 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7467 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7468 7469 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7470 SDValue SrcEltBitMask = DAG.getConstant( 7471 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7472 7473 // Load the whole vector and avoid masking off the top bits as it makes 7474 // the codegen worse. 7475 SDValue Load = 7476 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7477 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7478 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7479 7480 SmallVector<SDValue, 8> Vals; 7481 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7482 unsigned ShiftIntoIdx = 7483 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7484 SDValue ShiftAmount = 7485 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7486 LoadVT, SL, /*LegalTypes=*/false); 7487 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7488 SDValue Elt = 7489 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7490 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7491 7492 if (ExtType != ISD::NON_EXTLOAD) { 7493 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7494 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7495 } 7496 7497 Vals.push_back(Scalar); 7498 } 7499 7500 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7501 return std::make_pair(Value, Load.getValue(1)); 7502 } 7503 7504 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7505 assert(SrcEltVT.isByteSized()); 7506 7507 SmallVector<SDValue, 8> Vals; 7508 SmallVector<SDValue, 8> LoadChains; 7509 7510 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7511 SDValue ScalarLoad = 7512 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7513 LD->getPointerInfo().getWithOffset(Idx * Stride), 7514 SrcEltVT, LD->getOriginalAlign(), 7515 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7516 7517 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7518 7519 Vals.push_back(ScalarLoad.getValue(0)); 7520 LoadChains.push_back(ScalarLoad.getValue(1)); 7521 } 7522 7523 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7524 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7525 7526 return std::make_pair(Value, NewChain); 7527 } 7528 7529 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7530 SelectionDAG &DAG) const { 7531 SDLoc SL(ST); 7532 7533 SDValue Chain = ST->getChain(); 7534 SDValue BasePtr = ST->getBasePtr(); 7535 SDValue Value = ST->getValue(); 7536 EVT StVT = ST->getMemoryVT(); 7537 7538 if (StVT.isScalableVector()) 7539 report_fatal_error("Cannot scalarize scalable vector stores"); 7540 7541 // The type of the data we want to save 7542 EVT RegVT = Value.getValueType(); 7543 EVT RegSclVT = RegVT.getScalarType(); 7544 7545 // The type of data as saved in memory. 7546 EVT MemSclVT = StVT.getScalarType(); 7547 7548 unsigned NumElem = StVT.getVectorNumElements(); 7549 7550 // A vector must always be stored in memory as-is, i.e. without any padding 7551 // between the elements, since various code depend on it, e.g. in the 7552 // handling of a bitcast of a vector type to int, which may be done with a 7553 // vector store followed by an integer load. A vector that does not have 7554 // elements that are byte-sized must therefore be stored as an integer 7555 // built out of the extracted vector elements. 7556 if (!MemSclVT.isByteSized()) { 7557 unsigned NumBits = StVT.getSizeInBits(); 7558 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7559 7560 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7561 7562 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7563 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7564 DAG.getVectorIdxConstant(Idx, SL)); 7565 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7566 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7567 unsigned ShiftIntoIdx = 7568 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7569 SDValue ShiftAmount = 7570 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7571 SDValue ShiftedElt = 7572 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7573 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7574 } 7575 7576 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7577 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7578 ST->getAAInfo()); 7579 } 7580 7581 // Store Stride in bytes 7582 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7583 assert(Stride && "Zero stride!"); 7584 // Extract each of the elements from the original vector and save them into 7585 // memory individually. 7586 SmallVector<SDValue, 8> Stores; 7587 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7588 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7589 DAG.getVectorIdxConstant(Idx, SL)); 7590 7591 SDValue Ptr = 7592 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7593 7594 // This scalar TruncStore may be illegal, but we legalize it later. 7595 SDValue Store = DAG.getTruncStore( 7596 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7597 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7598 ST->getAAInfo()); 7599 7600 Stores.push_back(Store); 7601 } 7602 7603 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7604 } 7605 7606 std::pair<SDValue, SDValue> 7607 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7608 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7609 "unaligned indexed loads not implemented!"); 7610 SDValue Chain = LD->getChain(); 7611 SDValue Ptr = LD->getBasePtr(); 7612 EVT VT = LD->getValueType(0); 7613 EVT LoadedVT = LD->getMemoryVT(); 7614 SDLoc dl(LD); 7615 auto &MF = DAG.getMachineFunction(); 7616 7617 if (VT.isFloatingPoint() || VT.isVector()) { 7618 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7619 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7620 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7621 LoadedVT.isVector()) { 7622 // Scalarize the load and let the individual components be handled. 7623 return scalarizeVectorLoad(LD, DAG); 7624 } 7625 7626 // Expand to a (misaligned) integer load of the same size, 7627 // then bitconvert to floating point or vector. 7628 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7629 LD->getMemOperand()); 7630 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7631 if (LoadedVT != VT) 7632 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7633 ISD::ANY_EXTEND, dl, VT, Result); 7634 7635 return std::make_pair(Result, newLoad.getValue(1)); 7636 } 7637 7638 // Copy the value to a (aligned) stack slot using (unaligned) integer 7639 // loads and stores, then do a (aligned) load from the stack slot. 7640 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7641 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7642 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7643 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7644 7645 // Make sure the stack slot is also aligned for the register type. 7646 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7647 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7648 SmallVector<SDValue, 8> Stores; 7649 SDValue StackPtr = StackBase; 7650 unsigned Offset = 0; 7651 7652 EVT PtrVT = Ptr.getValueType(); 7653 EVT StackPtrVT = StackPtr.getValueType(); 7654 7655 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7656 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7657 7658 // Do all but one copies using the full register width. 7659 for (unsigned i = 1; i < NumRegs; i++) { 7660 // Load one integer register's worth from the original location. 7661 SDValue Load = DAG.getLoad( 7662 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7663 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7664 LD->getAAInfo()); 7665 // Follow the load with a store to the stack slot. Remember the store. 7666 Stores.push_back(DAG.getStore( 7667 Load.getValue(1), dl, Load, StackPtr, 7668 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7669 // Increment the pointers. 7670 Offset += RegBytes; 7671 7672 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7673 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7674 } 7675 7676 // The last copy may be partial. Do an extending load. 7677 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7678 8 * (LoadedBytes - Offset)); 7679 SDValue Load = 7680 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7681 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7682 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7683 LD->getAAInfo()); 7684 // Follow the load with a store to the stack slot. Remember the store. 7685 // On big-endian machines this requires a truncating store to ensure 7686 // that the bits end up in the right place. 7687 Stores.push_back(DAG.getTruncStore( 7688 Load.getValue(1), dl, Load, StackPtr, 7689 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7690 7691 // The order of the stores doesn't matter - say it with a TokenFactor. 7692 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7693 7694 // Finally, perform the original load only redirected to the stack slot. 7695 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7696 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7697 LoadedVT); 7698 7699 // Callers expect a MERGE_VALUES node. 7700 return std::make_pair(Load, TF); 7701 } 7702 7703 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7704 "Unaligned load of unsupported type."); 7705 7706 // Compute the new VT that is half the size of the old one. This is an 7707 // integer MVT. 7708 unsigned NumBits = LoadedVT.getSizeInBits(); 7709 EVT NewLoadedVT; 7710 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7711 NumBits >>= 1; 7712 7713 Align Alignment = LD->getOriginalAlign(); 7714 unsigned IncrementSize = NumBits / 8; 7715 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7716 7717 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7718 if (HiExtType == ISD::NON_EXTLOAD) 7719 HiExtType = ISD::ZEXTLOAD; 7720 7721 // Load the value in two parts 7722 SDValue Lo, Hi; 7723 if (DAG.getDataLayout().isLittleEndian()) { 7724 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7725 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7726 LD->getAAInfo()); 7727 7728 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7729 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7730 LD->getPointerInfo().getWithOffset(IncrementSize), 7731 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7732 LD->getAAInfo()); 7733 } else { 7734 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7735 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7736 LD->getAAInfo()); 7737 7738 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7739 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7740 LD->getPointerInfo().getWithOffset(IncrementSize), 7741 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7742 LD->getAAInfo()); 7743 } 7744 7745 // aggregate the two parts 7746 SDValue ShiftAmount = 7747 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7748 DAG.getDataLayout())); 7749 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7750 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7751 7752 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7753 Hi.getValue(1)); 7754 7755 return std::make_pair(Result, TF); 7756 } 7757 7758 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7759 SelectionDAG &DAG) const { 7760 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7761 "unaligned indexed stores not implemented!"); 7762 SDValue Chain = ST->getChain(); 7763 SDValue Ptr = ST->getBasePtr(); 7764 SDValue Val = ST->getValue(); 7765 EVT VT = Val.getValueType(); 7766 Align Alignment = ST->getOriginalAlign(); 7767 auto &MF = DAG.getMachineFunction(); 7768 EVT StoreMemVT = ST->getMemoryVT(); 7769 7770 SDLoc dl(ST); 7771 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7772 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7773 if (isTypeLegal(intVT)) { 7774 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7775 StoreMemVT.isVector()) { 7776 // Scalarize the store and let the individual components be handled. 7777 SDValue Result = scalarizeVectorStore(ST, DAG); 7778 return Result; 7779 } 7780 // Expand to a bitconvert of the value to the integer type of the 7781 // same size, then a (misaligned) int store. 7782 // FIXME: Does not handle truncating floating point stores! 7783 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7784 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7785 Alignment, ST->getMemOperand()->getFlags()); 7786 return Result; 7787 } 7788 // Do a (aligned) store to a stack slot, then copy from the stack slot 7789 // to the final destination using (unaligned) integer loads and stores. 7790 MVT RegVT = getRegisterType( 7791 *DAG.getContext(), 7792 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7793 EVT PtrVT = Ptr.getValueType(); 7794 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7795 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7796 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7797 7798 // Make sure the stack slot is also aligned for the register type. 7799 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7800 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7801 7802 // Perform the original store, only redirected to the stack slot. 7803 SDValue Store = DAG.getTruncStore( 7804 Chain, dl, Val, StackPtr, 7805 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7806 7807 EVT StackPtrVT = StackPtr.getValueType(); 7808 7809 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7810 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7811 SmallVector<SDValue, 8> Stores; 7812 unsigned Offset = 0; 7813 7814 // Do all but one copies using the full register width. 7815 for (unsigned i = 1; i < NumRegs; i++) { 7816 // Load one integer register's worth from the stack slot. 7817 SDValue Load = DAG.getLoad( 7818 RegVT, dl, Store, StackPtr, 7819 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7820 // Store it to the final location. Remember the store. 7821 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7822 ST->getPointerInfo().getWithOffset(Offset), 7823 ST->getOriginalAlign(), 7824 ST->getMemOperand()->getFlags())); 7825 // Increment the pointers. 7826 Offset += RegBytes; 7827 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7828 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7829 } 7830 7831 // The last store may be partial. Do a truncating store. On big-endian 7832 // machines this requires an extending load from the stack slot to ensure 7833 // that the bits are in the right place. 7834 EVT LoadMemVT = 7835 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7836 7837 // Load from the stack slot. 7838 SDValue Load = DAG.getExtLoad( 7839 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7840 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7841 7842 Stores.push_back( 7843 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7844 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7845 ST->getOriginalAlign(), 7846 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7847 // The order of the stores doesn't matter - say it with a TokenFactor. 7848 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7849 return Result; 7850 } 7851 7852 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7853 "Unaligned store of unknown type."); 7854 // Get the half-size VT 7855 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7856 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7857 unsigned IncrementSize = NumBits / 8; 7858 7859 // Divide the stored value in two parts. 7860 SDValue ShiftAmount = DAG.getConstant( 7861 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7862 SDValue Lo = Val; 7863 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7864 7865 // Store the two parts 7866 SDValue Store1, Store2; 7867 Store1 = DAG.getTruncStore(Chain, dl, 7868 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7869 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7870 ST->getMemOperand()->getFlags()); 7871 7872 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7873 Store2 = DAG.getTruncStore( 7874 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7875 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7876 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7877 7878 SDValue Result = 7879 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7880 return Result; 7881 } 7882 7883 SDValue 7884 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7885 const SDLoc &DL, EVT DataVT, 7886 SelectionDAG &DAG, 7887 bool IsCompressedMemory) const { 7888 SDValue Increment; 7889 EVT AddrVT = Addr.getValueType(); 7890 EVT MaskVT = Mask.getValueType(); 7891 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7892 "Incompatible types of Data and Mask"); 7893 if (IsCompressedMemory) { 7894 if (DataVT.isScalableVector()) 7895 report_fatal_error( 7896 "Cannot currently handle compressed memory with scalable vectors"); 7897 // Incrementing the pointer according to number of '1's in the mask. 7898 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7899 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7900 if (MaskIntVT.getSizeInBits() < 32) { 7901 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7902 MaskIntVT = MVT::i32; 7903 } 7904 7905 // Count '1's with POPCNT. 7906 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7907 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7908 // Scale is an element size in bytes. 7909 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7910 AddrVT); 7911 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7912 } else if (DataVT.isScalableVector()) { 7913 Increment = DAG.getVScale(DL, AddrVT, 7914 APInt(AddrVT.getFixedSizeInBits(), 7915 DataVT.getStoreSize().getKnownMinSize())); 7916 } else 7917 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7918 7919 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7920 } 7921 7922 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7923 EVT VecVT, const SDLoc &dl, 7924 ElementCount SubEC) { 7925 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7926 "Cannot index a scalable vector within a fixed-width vector"); 7927 7928 unsigned NElts = VecVT.getVectorMinNumElements(); 7929 unsigned NumSubElts = SubEC.getKnownMinValue(); 7930 EVT IdxVT = Idx.getValueType(); 7931 7932 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7933 // If this is a constant index and we know the value plus the number of the 7934 // elements in the subvector minus one is less than the minimum number of 7935 // elements then it's safe to return Idx. 7936 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7937 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7938 return Idx; 7939 SDValue VS = 7940 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7941 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7942 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7943 DAG.getConstant(NumSubElts, dl, IdxVT)); 7944 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7945 } 7946 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7947 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7948 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7949 DAG.getConstant(Imm, dl, IdxVT)); 7950 } 7951 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7952 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7953 DAG.getConstant(MaxIndex, dl, IdxVT)); 7954 } 7955 7956 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7957 SDValue VecPtr, EVT VecVT, 7958 SDValue Index) const { 7959 return getVectorSubVecPointer( 7960 DAG, VecPtr, VecVT, 7961 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7962 Index); 7963 } 7964 7965 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7966 SDValue VecPtr, EVT VecVT, 7967 EVT SubVecVT, 7968 SDValue Index) const { 7969 SDLoc dl(Index); 7970 // Make sure the index type is big enough to compute in. 7971 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7972 7973 EVT EltVT = VecVT.getVectorElementType(); 7974 7975 // Calculate the element offset and add it to the pointer. 7976 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7977 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7978 "Converting bits to bytes lost precision"); 7979 assert(SubVecVT.getVectorElementType() == EltVT && 7980 "Sub-vector must be a vector with matching element type"); 7981 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7982 SubVecVT.getVectorElementCount()); 7983 7984 EVT IdxVT = Index.getValueType(); 7985 if (SubVecVT.isScalableVector()) 7986 Index = 7987 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7988 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7989 7990 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7991 DAG.getConstant(EltSize, dl, IdxVT)); 7992 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7993 } 7994 7995 //===----------------------------------------------------------------------===// 7996 // Implementation of Emulated TLS Model 7997 //===----------------------------------------------------------------------===// 7998 7999 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8000 SelectionDAG &DAG) const { 8001 // Access to address of TLS varialbe xyz is lowered to a function call: 8002 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8003 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8004 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8005 SDLoc dl(GA); 8006 8007 ArgListTy Args; 8008 ArgListEntry Entry; 8009 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8010 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8011 StringRef EmuTlsVarName(NameString); 8012 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8013 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8014 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8015 Entry.Ty = VoidPtrType; 8016 Args.push_back(Entry); 8017 8018 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8019 8020 TargetLowering::CallLoweringInfo CLI(DAG); 8021 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8022 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8023 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8024 8025 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8026 // At last for X86 targets, maybe good for other targets too? 8027 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8028 MFI.setAdjustsStack(true); // Is this only for X86 target? 8029 MFI.setHasCalls(true); 8030 8031 assert((GA->getOffset() == 0) && 8032 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8033 return CallResult.first; 8034 } 8035 8036 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8037 SelectionDAG &DAG) const { 8038 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8039 if (!isCtlzFast()) 8040 return SDValue(); 8041 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8042 SDLoc dl(Op); 8043 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8044 if (C->isZero() && CC == ISD::SETEQ) { 8045 EVT VT = Op.getOperand(0).getValueType(); 8046 SDValue Zext = Op.getOperand(0); 8047 if (VT.bitsLT(MVT::i32)) { 8048 VT = MVT::i32; 8049 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8050 } 8051 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8052 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8053 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8054 DAG.getConstant(Log2b, dl, MVT::i32)); 8055 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8056 } 8057 } 8058 return SDValue(); 8059 } 8060 8061 // Convert redundant addressing modes (e.g. scaling is redundant 8062 // when accessing bytes). 8063 ISD::MemIndexType 8064 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8065 SDValue Offsets) const { 8066 bool IsScaledIndex = 8067 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8068 bool IsSignedIndex = 8069 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8070 8071 // Scaling is unimportant for bytes, canonicalize to unscaled. 8072 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8073 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8074 8075 return IndexType; 8076 } 8077 8078 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8079 SDValue Op0 = Node->getOperand(0); 8080 SDValue Op1 = Node->getOperand(1); 8081 EVT VT = Op0.getValueType(); 8082 unsigned Opcode = Node->getOpcode(); 8083 SDLoc DL(Node); 8084 8085 // umin(x,y) -> sub(x,usubsat(x,y)) 8086 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8087 isOperationLegal(ISD::USUBSAT, VT)) { 8088 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8089 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8090 } 8091 8092 // umax(x,y) -> add(x,usubsat(y,x)) 8093 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8094 isOperationLegal(ISD::USUBSAT, VT)) { 8095 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8096 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8097 } 8098 8099 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8100 ISD::CondCode CC; 8101 switch (Opcode) { 8102 default: llvm_unreachable("How did we get here?"); 8103 case ISD::SMAX: CC = ISD::SETGT; break; 8104 case ISD::SMIN: CC = ISD::SETLT; break; 8105 case ISD::UMAX: CC = ISD::SETUGT; break; 8106 case ISD::UMIN: CC = ISD::SETULT; break; 8107 } 8108 8109 // FIXME: Should really try to split the vector in case it's legal on a 8110 // subvector. 8111 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8112 return DAG.UnrollVectorOp(Node); 8113 8114 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8115 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8116 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8117 } 8118 8119 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8120 unsigned Opcode = Node->getOpcode(); 8121 SDValue LHS = Node->getOperand(0); 8122 SDValue RHS = Node->getOperand(1); 8123 EVT VT = LHS.getValueType(); 8124 SDLoc dl(Node); 8125 8126 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8127 assert(VT.isInteger() && "Expected operands to be integers"); 8128 8129 // usub.sat(a, b) -> umax(a, b) - b 8130 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8131 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8132 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8133 } 8134 8135 // uadd.sat(a, b) -> umin(a, ~b) + b 8136 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8137 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8138 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8139 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8140 } 8141 8142 unsigned OverflowOp; 8143 switch (Opcode) { 8144 case ISD::SADDSAT: 8145 OverflowOp = ISD::SADDO; 8146 break; 8147 case ISD::UADDSAT: 8148 OverflowOp = ISD::UADDO; 8149 break; 8150 case ISD::SSUBSAT: 8151 OverflowOp = ISD::SSUBO; 8152 break; 8153 case ISD::USUBSAT: 8154 OverflowOp = ISD::USUBO; 8155 break; 8156 default: 8157 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8158 "addition or subtraction node."); 8159 } 8160 8161 // FIXME: Should really try to split the vector in case it's legal on a 8162 // subvector. 8163 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8164 return DAG.UnrollVectorOp(Node); 8165 8166 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8167 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8168 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8169 SDValue SumDiff = Result.getValue(0); 8170 SDValue Overflow = Result.getValue(1); 8171 SDValue Zero = DAG.getConstant(0, dl, VT); 8172 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8173 8174 if (Opcode == ISD::UADDSAT) { 8175 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8176 // (LHS + RHS) | OverflowMask 8177 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8178 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8179 } 8180 // Overflow ? 0xffff.... : (LHS + RHS) 8181 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8182 } 8183 8184 if (Opcode == ISD::USUBSAT) { 8185 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8186 // (LHS - RHS) & ~OverflowMask 8187 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8188 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8189 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8190 } 8191 // Overflow ? 0 : (LHS - RHS) 8192 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8193 } 8194 8195 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8196 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8197 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8198 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8199 DAG.getConstant(BitWidth - 1, dl, VT)); 8200 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8201 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8202 } 8203 8204 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8205 unsigned Opcode = Node->getOpcode(); 8206 bool IsSigned = Opcode == ISD::SSHLSAT; 8207 SDValue LHS = Node->getOperand(0); 8208 SDValue RHS = Node->getOperand(1); 8209 EVT VT = LHS.getValueType(); 8210 SDLoc dl(Node); 8211 8212 assert((Node->getOpcode() == ISD::SSHLSAT || 8213 Node->getOpcode() == ISD::USHLSAT) && 8214 "Expected a SHLSAT opcode"); 8215 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8216 assert(VT.isInteger() && "Expected operands to be integers"); 8217 8218 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8219 8220 unsigned BW = VT.getScalarSizeInBits(); 8221 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8222 SDValue Orig = 8223 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8224 8225 SDValue SatVal; 8226 if (IsSigned) { 8227 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8228 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8229 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8230 SatMin, SatMax, ISD::SETLT); 8231 } else { 8232 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8233 } 8234 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8235 8236 return Result; 8237 } 8238 8239 SDValue 8240 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8241 assert((Node->getOpcode() == ISD::SMULFIX || 8242 Node->getOpcode() == ISD::UMULFIX || 8243 Node->getOpcode() == ISD::SMULFIXSAT || 8244 Node->getOpcode() == ISD::UMULFIXSAT) && 8245 "Expected a fixed point multiplication opcode"); 8246 8247 SDLoc dl(Node); 8248 SDValue LHS = Node->getOperand(0); 8249 SDValue RHS = Node->getOperand(1); 8250 EVT VT = LHS.getValueType(); 8251 unsigned Scale = Node->getConstantOperandVal(2); 8252 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8253 Node->getOpcode() == ISD::UMULFIXSAT); 8254 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8255 Node->getOpcode() == ISD::SMULFIXSAT); 8256 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8257 unsigned VTSize = VT.getScalarSizeInBits(); 8258 8259 if (!Scale) { 8260 // [us]mul.fix(a, b, 0) -> mul(a, b) 8261 if (!Saturating) { 8262 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8263 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8264 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8265 SDValue Result = 8266 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8267 SDValue Product = Result.getValue(0); 8268 SDValue Overflow = Result.getValue(1); 8269 SDValue Zero = DAG.getConstant(0, dl, VT); 8270 8271 APInt MinVal = APInt::getSignedMinValue(VTSize); 8272 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8273 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8274 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8275 // Xor the inputs, if resulting sign bit is 0 the product will be 8276 // positive, else negative. 8277 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8278 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8279 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8280 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8281 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8282 SDValue Result = 8283 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8284 SDValue Product = Result.getValue(0); 8285 SDValue Overflow = Result.getValue(1); 8286 8287 APInt MaxVal = APInt::getMaxValue(VTSize); 8288 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8289 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8290 } 8291 } 8292 8293 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8294 "Expected scale to be less than the number of bits if signed or at " 8295 "most the number of bits if unsigned."); 8296 assert(LHS.getValueType() == RHS.getValueType() && 8297 "Expected both operands to be the same type"); 8298 8299 // Get the upper and lower bits of the result. 8300 SDValue Lo, Hi; 8301 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8302 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8303 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8304 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8305 Lo = Result.getValue(0); 8306 Hi = Result.getValue(1); 8307 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8308 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8309 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8310 } else if (VT.isVector()) { 8311 return SDValue(); 8312 } else { 8313 report_fatal_error("Unable to expand fixed point multiplication."); 8314 } 8315 8316 if (Scale == VTSize) 8317 // Result is just the top half since we'd be shifting by the width of the 8318 // operand. Overflow impossible so this works for both UMULFIX and 8319 // UMULFIXSAT. 8320 return Hi; 8321 8322 // The result will need to be shifted right by the scale since both operands 8323 // are scaled. The result is given to us in 2 halves, so we only want part of 8324 // both in the result. 8325 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8326 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8327 DAG.getConstant(Scale, dl, ShiftTy)); 8328 if (!Saturating) 8329 return Result; 8330 8331 if (!Signed) { 8332 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8333 // widened multiplication) aren't all zeroes. 8334 8335 // Saturate to max if ((Hi >> Scale) != 0), 8336 // which is the same as if (Hi > ((1 << Scale) - 1)) 8337 APInt MaxVal = APInt::getMaxValue(VTSize); 8338 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8339 dl, VT); 8340 Result = DAG.getSelectCC(dl, Hi, LowMask, 8341 DAG.getConstant(MaxVal, dl, VT), Result, 8342 ISD::SETUGT); 8343 8344 return Result; 8345 } 8346 8347 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8348 // widened multiplication) aren't all ones or all zeroes. 8349 8350 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8351 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8352 8353 if (Scale == 0) { 8354 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8355 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8356 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8357 // Saturated to SatMin if wide product is negative, and SatMax if wide 8358 // product is positive ... 8359 SDValue Zero = DAG.getConstant(0, dl, VT); 8360 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8361 ISD::SETLT); 8362 // ... but only if we overflowed. 8363 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8364 } 8365 8366 // We handled Scale==0 above so all the bits to examine is in Hi. 8367 8368 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8369 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8370 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8371 dl, VT); 8372 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8373 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8374 // which is the same as if (HI < (-1 << (Scale - 1)) 8375 SDValue HighMask = 8376 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8377 dl, VT); 8378 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8379 return Result; 8380 } 8381 8382 SDValue 8383 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8384 SDValue LHS, SDValue RHS, 8385 unsigned Scale, SelectionDAG &DAG) const { 8386 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8387 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8388 "Expected a fixed point division opcode"); 8389 8390 EVT VT = LHS.getValueType(); 8391 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8392 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8393 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8394 8395 // If there is enough room in the type to upscale the LHS or downscale the 8396 // RHS before the division, we can perform it in this type without having to 8397 // resize. For signed operations, the LHS headroom is the number of 8398 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8399 // The headroom for the RHS is the number of trailing zeroes. 8400 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8401 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8402 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8403 8404 // For signed saturating operations, we need to be able to detect true integer 8405 // division overflow; that is, when you have MIN / -EPS. However, this 8406 // is undefined behavior and if we emit divisions that could take such 8407 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8408 // example). 8409 // Avoid this by requiring an extra bit so that we never get this case. 8410 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8411 // signed saturating division, we need to emit a whopping 32-bit division. 8412 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8413 return SDValue(); 8414 8415 unsigned LHSShift = std::min(LHSLead, Scale); 8416 unsigned RHSShift = Scale - LHSShift; 8417 8418 // At this point, we know that if we shift the LHS up by LHSShift and the 8419 // RHS down by RHSShift, we can emit a regular division with a final scaling 8420 // factor of Scale. 8421 8422 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8423 if (LHSShift) 8424 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8425 DAG.getConstant(LHSShift, dl, ShiftTy)); 8426 if (RHSShift) 8427 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8428 DAG.getConstant(RHSShift, dl, ShiftTy)); 8429 8430 SDValue Quot; 8431 if (Signed) { 8432 // For signed operations, if the resulting quotient is negative and the 8433 // remainder is nonzero, subtract 1 from the quotient to round towards 8434 // negative infinity. 8435 SDValue Rem; 8436 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8437 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8438 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8439 if (isTypeLegal(VT) && 8440 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8441 Quot = DAG.getNode(ISD::SDIVREM, dl, 8442 DAG.getVTList(VT, VT), 8443 LHS, RHS); 8444 Rem = Quot.getValue(1); 8445 Quot = Quot.getValue(0); 8446 } else { 8447 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8448 LHS, RHS); 8449 Rem = DAG.getNode(ISD::SREM, dl, VT, 8450 LHS, RHS); 8451 } 8452 SDValue Zero = DAG.getConstant(0, dl, VT); 8453 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8454 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8455 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8456 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8457 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8458 DAG.getConstant(1, dl, VT)); 8459 Quot = DAG.getSelect(dl, VT, 8460 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8461 Sub1, Quot); 8462 } else 8463 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8464 LHS, RHS); 8465 8466 return Quot; 8467 } 8468 8469 void TargetLowering::expandUADDSUBO( 8470 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8471 SDLoc dl(Node); 8472 SDValue LHS = Node->getOperand(0); 8473 SDValue RHS = Node->getOperand(1); 8474 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8475 8476 // If ADD/SUBCARRY is legal, use that instead. 8477 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8478 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8479 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8480 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8481 { LHS, RHS, CarryIn }); 8482 Result = SDValue(NodeCarry.getNode(), 0); 8483 Overflow = SDValue(NodeCarry.getNode(), 1); 8484 return; 8485 } 8486 8487 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8488 LHS.getValueType(), LHS, RHS); 8489 8490 EVT ResultType = Node->getValueType(1); 8491 EVT SetCCType = getSetCCResultType( 8492 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8493 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8494 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8495 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8496 } 8497 8498 void TargetLowering::expandSADDSUBO( 8499 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8500 SDLoc dl(Node); 8501 SDValue LHS = Node->getOperand(0); 8502 SDValue RHS = Node->getOperand(1); 8503 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8504 8505 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8506 LHS.getValueType(), LHS, RHS); 8507 8508 EVT ResultType = Node->getValueType(1); 8509 EVT OType = getSetCCResultType( 8510 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8511 8512 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8513 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8514 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8515 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8516 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8517 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8518 return; 8519 } 8520 8521 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8522 8523 // For an addition, the result should be less than one of the operands (LHS) 8524 // if and only if the other operand (RHS) is negative, otherwise there will 8525 // be overflow. 8526 // For a subtraction, the result should be less than one of the operands 8527 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8528 // otherwise there will be overflow. 8529 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8530 SDValue ConditionRHS = 8531 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8532 8533 Overflow = DAG.getBoolExtOrTrunc( 8534 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8535 ResultType, ResultType); 8536 } 8537 8538 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8539 SDValue &Overflow, SelectionDAG &DAG) const { 8540 SDLoc dl(Node); 8541 EVT VT = Node->getValueType(0); 8542 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8543 SDValue LHS = Node->getOperand(0); 8544 SDValue RHS = Node->getOperand(1); 8545 bool isSigned = Node->getOpcode() == ISD::SMULO; 8546 8547 // For power-of-two multiplications we can use a simpler shift expansion. 8548 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8549 const APInt &C = RHSC->getAPIntValue(); 8550 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8551 if (C.isPowerOf2()) { 8552 // smulo(x, signed_min) is same as umulo(x, signed_min). 8553 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8554 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8555 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8556 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8557 Overflow = DAG.getSetCC(dl, SetCCVT, 8558 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8559 dl, VT, Result, ShiftAmt), 8560 LHS, ISD::SETNE); 8561 return true; 8562 } 8563 } 8564 8565 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8566 if (VT.isVector()) 8567 WideVT = 8568 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8569 8570 SDValue BottomHalf; 8571 SDValue TopHalf; 8572 static const unsigned Ops[2][3] = 8573 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8574 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8575 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8576 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8577 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8578 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8579 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8580 RHS); 8581 TopHalf = BottomHalf.getValue(1); 8582 } else if (isTypeLegal(WideVT)) { 8583 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8584 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8585 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8586 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8587 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8588 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8589 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8590 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8591 } else { 8592 if (VT.isVector()) 8593 return false; 8594 8595 // We can fall back to a libcall with an illegal type for the MUL if we 8596 // have a libcall big enough. 8597 // Also, we can fall back to a division in some cases, but that's a big 8598 // performance hit in the general case. 8599 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8600 if (WideVT == MVT::i16) 8601 LC = RTLIB::MUL_I16; 8602 else if (WideVT == MVT::i32) 8603 LC = RTLIB::MUL_I32; 8604 else if (WideVT == MVT::i64) 8605 LC = RTLIB::MUL_I64; 8606 else if (WideVT == MVT::i128) 8607 LC = RTLIB::MUL_I128; 8608 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8609 8610 SDValue HiLHS; 8611 SDValue HiRHS; 8612 if (isSigned) { 8613 // The high part is obtained by SRA'ing all but one of the bits of low 8614 // part. 8615 unsigned LoSize = VT.getFixedSizeInBits(); 8616 HiLHS = 8617 DAG.getNode(ISD::SRA, dl, VT, LHS, 8618 DAG.getConstant(LoSize - 1, dl, 8619 getPointerTy(DAG.getDataLayout()))); 8620 HiRHS = 8621 DAG.getNode(ISD::SRA, dl, VT, RHS, 8622 DAG.getConstant(LoSize - 1, dl, 8623 getPointerTy(DAG.getDataLayout()))); 8624 } else { 8625 HiLHS = DAG.getConstant(0, dl, VT); 8626 HiRHS = DAG.getConstant(0, dl, VT); 8627 } 8628 8629 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8630 // pre-lowered to the correct types. This all depends upon WideVT not 8631 // being a legal type for the architecture and thus has to be split to 8632 // two arguments. 8633 SDValue Ret; 8634 TargetLowering::MakeLibCallOptions CallOptions; 8635 CallOptions.setSExt(isSigned); 8636 CallOptions.setIsPostTypeLegalization(true); 8637 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8638 // Halves of WideVT are packed into registers in different order 8639 // depending on platform endianness. This is usually handled by 8640 // the C calling convention, but we can't defer to it in 8641 // the legalizer. 8642 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8643 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8644 } else { 8645 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8646 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8647 } 8648 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8649 "Ret value is a collection of constituent nodes holding result."); 8650 if (DAG.getDataLayout().isLittleEndian()) { 8651 // Same as above. 8652 BottomHalf = Ret.getOperand(0); 8653 TopHalf = Ret.getOperand(1); 8654 } else { 8655 BottomHalf = Ret.getOperand(1); 8656 TopHalf = Ret.getOperand(0); 8657 } 8658 } 8659 8660 Result = BottomHalf; 8661 if (isSigned) { 8662 SDValue ShiftAmt = DAG.getConstant( 8663 VT.getScalarSizeInBits() - 1, dl, 8664 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8665 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8666 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8667 } else { 8668 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8669 DAG.getConstant(0, dl, VT), ISD::SETNE); 8670 } 8671 8672 // Truncate the result if SetCC returns a larger type than needed. 8673 EVT RType = Node->getValueType(1); 8674 if (RType.bitsLT(Overflow.getValueType())) 8675 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8676 8677 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8678 "Unexpected result type for S/UMULO legalization"); 8679 return true; 8680 } 8681 8682 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8683 SDLoc dl(Node); 8684 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8685 SDValue Op = Node->getOperand(0); 8686 EVT VT = Op.getValueType(); 8687 8688 if (VT.isScalableVector()) 8689 report_fatal_error( 8690 "Expanding reductions for scalable vectors is undefined."); 8691 8692 // Try to use a shuffle reduction for power of two vectors. 8693 if (VT.isPow2VectorType()) { 8694 while (VT.getVectorNumElements() > 1) { 8695 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8696 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8697 break; 8698 8699 SDValue Lo, Hi; 8700 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8701 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8702 VT = HalfVT; 8703 } 8704 } 8705 8706 EVT EltVT = VT.getVectorElementType(); 8707 unsigned NumElts = VT.getVectorNumElements(); 8708 8709 SmallVector<SDValue, 8> Ops; 8710 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8711 8712 SDValue Res = Ops[0]; 8713 for (unsigned i = 1; i < NumElts; i++) 8714 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8715 8716 // Result type may be wider than element type. 8717 if (EltVT != Node->getValueType(0)) 8718 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8719 return Res; 8720 } 8721 8722 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8723 SDLoc dl(Node); 8724 SDValue AccOp = Node->getOperand(0); 8725 SDValue VecOp = Node->getOperand(1); 8726 SDNodeFlags Flags = Node->getFlags(); 8727 8728 EVT VT = VecOp.getValueType(); 8729 EVT EltVT = VT.getVectorElementType(); 8730 8731 if (VT.isScalableVector()) 8732 report_fatal_error( 8733 "Expanding reductions for scalable vectors is undefined."); 8734 8735 unsigned NumElts = VT.getVectorNumElements(); 8736 8737 SmallVector<SDValue, 8> Ops; 8738 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8739 8740 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8741 8742 SDValue Res = AccOp; 8743 for (unsigned i = 0; i < NumElts; i++) 8744 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8745 8746 return Res; 8747 } 8748 8749 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8750 SelectionDAG &DAG) const { 8751 EVT VT = Node->getValueType(0); 8752 SDLoc dl(Node); 8753 bool isSigned = Node->getOpcode() == ISD::SREM; 8754 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8755 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8756 SDValue Dividend = Node->getOperand(0); 8757 SDValue Divisor = Node->getOperand(1); 8758 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8759 SDVTList VTs = DAG.getVTList(VT, VT); 8760 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8761 return true; 8762 } 8763 if (isOperationLegalOrCustom(DivOpc, VT)) { 8764 // X % Y -> X-X/Y*Y 8765 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8766 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8767 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8768 return true; 8769 } 8770 return false; 8771 } 8772 8773 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8774 SelectionDAG &DAG) const { 8775 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8776 SDLoc dl(SDValue(Node, 0)); 8777 SDValue Src = Node->getOperand(0); 8778 8779 // DstVT is the result type, while SatVT is the size to which we saturate 8780 EVT SrcVT = Src.getValueType(); 8781 EVT DstVT = Node->getValueType(0); 8782 8783 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8784 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8785 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8786 assert(SatWidth <= DstWidth && 8787 "Expected saturation width smaller than result width"); 8788 8789 // Determine minimum and maximum integer values and their corresponding 8790 // floating-point values. 8791 APInt MinInt, MaxInt; 8792 if (IsSigned) { 8793 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8794 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8795 } else { 8796 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8797 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8798 } 8799 8800 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8801 // libcall emission cannot handle this. Large result types will fail. 8802 if (SrcVT == MVT::f16) { 8803 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8804 SrcVT = Src.getValueType(); 8805 } 8806 8807 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8808 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8809 8810 APFloat::opStatus MinStatus = 8811 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8812 APFloat::opStatus MaxStatus = 8813 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8814 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8815 !(MaxStatus & APFloat::opStatus::opInexact); 8816 8817 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8818 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8819 8820 // If the integer bounds are exactly representable as floats and min/max are 8821 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8822 // of comparisons and selects. 8823 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8824 isOperationLegal(ISD::FMAXNUM, SrcVT); 8825 if (AreExactFloatBounds && MinMaxLegal) { 8826 SDValue Clamped = Src; 8827 8828 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8829 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8830 // Clamp by MaxFloat from above. NaN cannot occur. 8831 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8832 // Convert clamped value to integer. 8833 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8834 dl, DstVT, Clamped); 8835 8836 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8837 // which will cast to zero. 8838 if (!IsSigned) 8839 return FpToInt; 8840 8841 // Otherwise, select 0 if Src is NaN. 8842 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8843 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8844 ISD::CondCode::SETUO); 8845 } 8846 8847 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8848 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8849 8850 // Result of direct conversion. The assumption here is that the operation is 8851 // non-trapping and it's fine to apply it to an out-of-range value if we 8852 // select it away later. 8853 SDValue FpToInt = 8854 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8855 8856 SDValue Select = FpToInt; 8857 8858 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8859 // MinInt if Src is NaN. 8860 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8861 ISD::CondCode::SETULT); 8862 // If Src OGT MaxFloat, select MaxInt. 8863 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8864 ISD::CondCode::SETOGT); 8865 8866 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8867 // is already zero. 8868 if (!IsSigned) 8869 return Select; 8870 8871 // Otherwise, select 0 if Src is NaN. 8872 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8873 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8874 } 8875 8876 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8877 SelectionDAG &DAG) const { 8878 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8879 assert(Node->getValueType(0).isScalableVector() && 8880 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8881 8882 EVT VT = Node->getValueType(0); 8883 SDValue V1 = Node->getOperand(0); 8884 SDValue V2 = Node->getOperand(1); 8885 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8886 SDLoc DL(Node); 8887 8888 // Expand through memory thusly: 8889 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8890 // Store V1, Ptr 8891 // Store V2, Ptr + sizeof(V1) 8892 // If (Imm < 0) 8893 // TrailingElts = -Imm 8894 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8895 // else 8896 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8897 // Res = Load Ptr 8898 8899 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8900 8901 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8902 VT.getVectorElementCount() * 2); 8903 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8904 EVT PtrVT = StackPtr.getValueType(); 8905 auto &MF = DAG.getMachineFunction(); 8906 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8907 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8908 8909 // Store the lo part of CONCAT_VECTORS(V1, V2) 8910 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8911 // Store the hi part of CONCAT_VECTORS(V1, V2) 8912 SDValue OffsetToV2 = DAG.getVScale( 8913 DL, PtrVT, 8914 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8915 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8916 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8917 8918 if (Imm >= 0) { 8919 // Load back the required element. getVectorElementPointer takes care of 8920 // clamping the index if it's out-of-bounds. 8921 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8922 // Load the spliced result 8923 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8924 MachinePointerInfo::getUnknownStack(MF)); 8925 } 8926 8927 uint64_t TrailingElts = -Imm; 8928 8929 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8930 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8931 SDValue TrailingBytes = 8932 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8933 8934 if (TrailingElts > VT.getVectorMinNumElements()) { 8935 SDValue VLBytes = DAG.getVScale( 8936 DL, PtrVT, 8937 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8938 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8939 } 8940 8941 // Calculate the start address of the spliced result. 8942 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8943 8944 // Load the spliced result 8945 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8946 MachinePointerInfo::getUnknownStack(MF)); 8947 } 8948 8949 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8950 SDValue &LHS, SDValue &RHS, 8951 SDValue &CC, bool &NeedInvert, 8952 const SDLoc &dl, SDValue &Chain, 8953 bool IsSignaling) const { 8954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8955 MVT OpVT = LHS.getSimpleValueType(); 8956 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8957 NeedInvert = false; 8958 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8959 default: 8960 llvm_unreachable("Unknown condition code action!"); 8961 case TargetLowering::Legal: 8962 // Nothing to do. 8963 break; 8964 case TargetLowering::Expand: { 8965 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8966 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8967 std::swap(LHS, RHS); 8968 CC = DAG.getCondCode(InvCC); 8969 return true; 8970 } 8971 // Swapping operands didn't work. Try inverting the condition. 8972 bool NeedSwap = false; 8973 InvCC = getSetCCInverse(CCCode, OpVT); 8974 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8975 // If inverting the condition is not enough, try swapping operands 8976 // on top of it. 8977 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8978 NeedSwap = true; 8979 } 8980 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8981 CC = DAG.getCondCode(InvCC); 8982 NeedInvert = true; 8983 if (NeedSwap) 8984 std::swap(LHS, RHS); 8985 return true; 8986 } 8987 8988 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8989 unsigned Opc = 0; 8990 switch (CCCode) { 8991 default: 8992 llvm_unreachable("Don't know how to expand this condition!"); 8993 case ISD::SETUO: 8994 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8995 CC1 = ISD::SETUNE; 8996 CC2 = ISD::SETUNE; 8997 Opc = ISD::OR; 8998 break; 8999 } 9000 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9001 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9002 NeedInvert = true; 9003 LLVM_FALLTHROUGH; 9004 case ISD::SETO: 9005 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9006 "If SETO is expanded, SETOEQ must be legal!"); 9007 CC1 = ISD::SETOEQ; 9008 CC2 = ISD::SETOEQ; 9009 Opc = ISD::AND; 9010 break; 9011 case ISD::SETONE: 9012 case ISD::SETUEQ: 9013 // If the SETUO or SETO CC isn't legal, we might be able to use 9014 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9015 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9016 // the operands. 9017 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9018 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9019 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9020 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9021 CC1 = ISD::SETOGT; 9022 CC2 = ISD::SETOLT; 9023 Opc = ISD::OR; 9024 NeedInvert = ((unsigned)CCCode & 0x8U); 9025 break; 9026 } 9027 LLVM_FALLTHROUGH; 9028 case ISD::SETOEQ: 9029 case ISD::SETOGT: 9030 case ISD::SETOGE: 9031 case ISD::SETOLT: 9032 case ISD::SETOLE: 9033 case ISD::SETUNE: 9034 case ISD::SETUGT: 9035 case ISD::SETUGE: 9036 case ISD::SETULT: 9037 case ISD::SETULE: 9038 // If we are floating point, assign and break, otherwise fall through. 9039 if (!OpVT.isInteger()) { 9040 // We can use the 4th bit to tell if we are the unordered 9041 // or ordered version of the opcode. 9042 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9043 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9044 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9045 break; 9046 } 9047 // Fallthrough if we are unsigned integer. 9048 LLVM_FALLTHROUGH; 9049 case ISD::SETLE: 9050 case ISD::SETGT: 9051 case ISD::SETGE: 9052 case ISD::SETLT: 9053 case ISD::SETNE: 9054 case ISD::SETEQ: 9055 // If all combinations of inverting the condition and swapping operands 9056 // didn't work then we have no means to expand the condition. 9057 llvm_unreachable("Don't know how to expand this condition!"); 9058 } 9059 9060 SDValue SetCC1, SetCC2; 9061 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9062 // If we aren't the ordered or unorder operation, 9063 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9064 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9065 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9066 } else { 9067 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9068 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9069 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9070 } 9071 if (Chain) 9072 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9073 SetCC2.getValue(1)); 9074 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9075 RHS = SDValue(); 9076 CC = SDValue(); 9077 return true; 9078 } 9079 } 9080 return false; 9081 } 9082