1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 IndirectType = nullptr; 123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 124 "multiple ABI attributes?"); 125 if (IsByVal) { 126 IndirectType = Call->getParamByValType(ArgIdx); 127 if (!Alignment) 128 Alignment = Call->getParamAlign(ArgIdx); 129 } 130 if (IsPreallocated) 131 IndirectType = Call->getParamPreallocatedType(ArgIdx); 132 if (IsInAlloca) 133 IndirectType = Call->getParamInAllocaType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C || Op1C->isOpaque()) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnes(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnes(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 916 assert((!Op.getValueType().isVector() || 917 NumElts == Op.getValueType().getVectorNumElements()) && 918 "Unexpected vector size"); 919 920 APInt DemandedBits = OriginalDemandedBits; 921 APInt DemandedElts = OriginalDemandedElts; 922 SDLoc dl(Op); 923 auto &DL = TLO.DAG.getDataLayout(); 924 925 // Undef operand. 926 if (Op.isUndef()) 927 return false; 928 929 if (Op.getOpcode() == ISD::Constant) { 930 // We know all of the bits for a constant! 931 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 932 return false; 933 } 934 935 if (Op.getOpcode() == ISD::ConstantFP) { 936 // We know all of the bits for a floating point constant! 937 Known = KnownBits::makeConstant( 938 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 939 return false; 940 } 941 942 // Other users may use these bits. 943 EVT VT = Op.getValueType(); 944 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 945 if (Depth != 0) { 946 // If not at the root, Just compute the Known bits to 947 // simplify things downstream. 948 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 949 return false; 950 } 951 // If this is the root being simplified, allow it to have multiple uses, 952 // just set the DemandedBits/Elts to all bits. 953 DemandedBits = APInt::getAllOnes(BitWidth); 954 DemandedElts = APInt::getAllOnes(NumElts); 955 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 956 // Not demanding any bits/elts from Op. 957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 958 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 959 // Limit search depth. 960 return false; 961 } 962 963 KnownBits Known2; 964 switch (Op.getOpcode()) { 965 case ISD::TargetConstant: 966 llvm_unreachable("Can't simplify this node"); 967 case ISD::SCALAR_TO_VECTOR: { 968 if (!DemandedElts[0]) 969 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 970 971 KnownBits SrcKnown; 972 SDValue Src = Op.getOperand(0); 973 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 974 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 975 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 976 return true; 977 978 // Upper elements are undef, so only get the knownbits if we just demand 979 // the bottom element. 980 if (DemandedElts == 1) 981 Known = SrcKnown.anyextOrTrunc(BitWidth); 982 break; 983 } 984 case ISD::BUILD_VECTOR: 985 // Collect the known bits that are shared by every demanded element. 986 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 987 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 988 return false; // Don't fall through, will infinitely loop. 989 case ISD::LOAD: { 990 auto *LD = cast<LoadSDNode>(Op); 991 if (getTargetConstantFromLoad(LD)) { 992 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 993 return false; // Don't fall through, will infinitely loop. 994 } 995 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 996 // If this is a ZEXTLoad and we are looking at the loaded value. 997 EVT MemVT = LD->getMemoryVT(); 998 unsigned MemBits = MemVT.getScalarSizeInBits(); 999 Known.Zero.setBitsFrom(MemBits); 1000 return false; // Don't fall through, will infinitely loop. 1001 } 1002 break; 1003 } 1004 case ISD::INSERT_VECTOR_ELT: { 1005 SDValue Vec = Op.getOperand(0); 1006 SDValue Scl = Op.getOperand(1); 1007 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1008 EVT VecVT = Vec.getValueType(); 1009 1010 // If index isn't constant, assume we need all vector elements AND the 1011 // inserted element. 1012 APInt DemandedVecElts(DemandedElts); 1013 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1014 unsigned Idx = CIdx->getZExtValue(); 1015 DemandedVecElts.clearBit(Idx); 1016 1017 // Inserted element is not required. 1018 if (!DemandedElts[Idx]) 1019 return TLO.CombineTo(Op, Vec); 1020 } 1021 1022 KnownBits KnownScl; 1023 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1024 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1025 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1026 return true; 1027 1028 Known = KnownScl.anyextOrTrunc(BitWidth); 1029 1030 KnownBits KnownVec; 1031 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1032 Depth + 1)) 1033 return true; 1034 1035 if (!!DemandedVecElts) 1036 Known = KnownBits::commonBits(Known, KnownVec); 1037 1038 return false; 1039 } 1040 case ISD::INSERT_SUBVECTOR: { 1041 // Demand any elements from the subvector and the remainder from the src its 1042 // inserted into. 1043 SDValue Src = Op.getOperand(0); 1044 SDValue Sub = Op.getOperand(1); 1045 uint64_t Idx = Op.getConstantOperandVal(2); 1046 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1047 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1048 APInt DemandedSrcElts = DemandedElts; 1049 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1050 1051 KnownBits KnownSub, KnownSrc; 1052 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1053 Depth + 1)) 1054 return true; 1055 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1056 Depth + 1)) 1057 return true; 1058 1059 Known.Zero.setAllBits(); 1060 Known.One.setAllBits(); 1061 if (!!DemandedSubElts) 1062 Known = KnownBits::commonBits(Known, KnownSub); 1063 if (!!DemandedSrcElts) 1064 Known = KnownBits::commonBits(Known, KnownSrc); 1065 1066 // Attempt to avoid multi-use src if we don't need anything from it. 1067 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1068 !DemandedSrcElts.isAllOnes()) { 1069 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1070 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1071 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1072 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1073 if (NewSub || NewSrc) { 1074 NewSub = NewSub ? NewSub : Sub; 1075 NewSrc = NewSrc ? NewSrc : Src; 1076 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1077 Op.getOperand(2)); 1078 return TLO.CombineTo(Op, NewOp); 1079 } 1080 } 1081 break; 1082 } 1083 case ISD::EXTRACT_SUBVECTOR: { 1084 // Offset the demanded elts by the subvector index. 1085 SDValue Src = Op.getOperand(0); 1086 if (Src.getValueType().isScalableVector()) 1087 break; 1088 uint64_t Idx = Op.getConstantOperandVal(1); 1089 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1090 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1091 1092 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1093 Depth + 1)) 1094 return true; 1095 1096 // Attempt to avoid multi-use src if we don't need anything from it. 1097 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1098 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1099 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1100 if (DemandedSrc) { 1101 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1102 Op.getOperand(1)); 1103 return TLO.CombineTo(Op, NewOp); 1104 } 1105 } 1106 break; 1107 } 1108 case ISD::CONCAT_VECTORS: { 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 EVT SubVT = Op.getOperand(0).getValueType(); 1112 unsigned NumSubVecs = Op.getNumOperands(); 1113 unsigned NumSubElts = SubVT.getVectorNumElements(); 1114 for (unsigned i = 0; i != NumSubVecs; ++i) { 1115 APInt DemandedSubElts = 1116 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1117 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1118 Known2, TLO, Depth + 1)) 1119 return true; 1120 // Known bits are shared by every demanded subvector element. 1121 if (!!DemandedSubElts) 1122 Known = KnownBits::commonBits(Known, Known2); 1123 } 1124 break; 1125 } 1126 case ISD::VECTOR_SHUFFLE: { 1127 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1128 1129 // Collect demanded elements from shuffle operands.. 1130 APInt DemandedLHS(NumElts, 0); 1131 APInt DemandedRHS(NumElts, 0); 1132 for (unsigned i = 0; i != NumElts; ++i) { 1133 if (!DemandedElts[i]) 1134 continue; 1135 int M = ShuffleMask[i]; 1136 if (M < 0) { 1137 // For UNDEF elements, we don't know anything about the common state of 1138 // the shuffle result. 1139 DemandedLHS.clearAllBits(); 1140 DemandedRHS.clearAllBits(); 1141 break; 1142 } 1143 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1144 if (M < (int)NumElts) 1145 DemandedLHS.setBit(M); 1146 else 1147 DemandedRHS.setBit(M - NumElts); 1148 } 1149 1150 if (!!DemandedLHS || !!DemandedRHS) { 1151 SDValue Op0 = Op.getOperand(0); 1152 SDValue Op1 = Op.getOperand(1); 1153 1154 Known.Zero.setAllBits(); 1155 Known.One.setAllBits(); 1156 if (!!DemandedLHS) { 1157 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1158 Depth + 1)) 1159 return true; 1160 Known = KnownBits::commonBits(Known, Known2); 1161 } 1162 if (!!DemandedRHS) { 1163 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1164 Depth + 1)) 1165 return true; 1166 Known = KnownBits::commonBits(Known, Known2); 1167 } 1168 1169 // Attempt to avoid multi-use ops if we don't need anything from them. 1170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1171 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1173 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1174 if (DemandedOp0 || DemandedOp1) { 1175 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1176 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1177 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1178 return TLO.CombineTo(Op, NewOp); 1179 } 1180 } 1181 break; 1182 } 1183 case ISD::AND: { 1184 SDValue Op0 = Op.getOperand(0); 1185 SDValue Op1 = Op.getOperand(1); 1186 1187 // If the RHS is a constant, check to see if the LHS would be zero without 1188 // using the bits from the RHS. Below, we use knowledge about the RHS to 1189 // simplify the LHS, here we're using information from the LHS to simplify 1190 // the RHS. 1191 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1192 // Do not increment Depth here; that can cause an infinite loop. 1193 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1194 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1195 if ((LHSKnown.Zero & DemandedBits) == 1196 (~RHSC->getAPIntValue() & DemandedBits)) 1197 return TLO.CombineTo(Op, Op0); 1198 1199 // If any of the set bits in the RHS are known zero on the LHS, shrink 1200 // the constant. 1201 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1202 DemandedElts, TLO)) 1203 return true; 1204 1205 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1206 // constant, but if this 'and' is only clearing bits that were just set by 1207 // the xor, then this 'and' can be eliminated by shrinking the mask of 1208 // the xor. For example, for a 32-bit X: 1209 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1210 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1211 LHSKnown.One == ~RHSC->getAPIntValue()) { 1212 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1213 return TLO.CombineTo(Op, Xor); 1214 } 1215 } 1216 1217 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1222 Known2, TLO, Depth + 1)) 1223 return true; 1224 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1225 1226 // Attempt to avoid multi-use ops if we don't need anything from them. 1227 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1228 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1229 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1231 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1232 if (DemandedOp0 || DemandedOp1) { 1233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1235 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1236 return TLO.CombineTo(Op, NewOp); 1237 } 1238 } 1239 1240 // If all of the demanded bits are known one on one side, return the other. 1241 // These bits cannot contribute to the result of the 'and'. 1242 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1243 return TLO.CombineTo(Op, Op0); 1244 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1245 return TLO.CombineTo(Op, Op1); 1246 // If all of the demanded bits in the inputs are known zeros, return zero. 1247 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1248 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1249 // If the RHS is a constant, see if we can simplify it. 1250 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1251 TLO)) 1252 return true; 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 Known &= Known2; 1258 break; 1259 } 1260 case ISD::OR: { 1261 SDValue Op0 = Op.getOperand(0); 1262 SDValue Op1 = Op.getOperand(1); 1263 1264 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1265 Depth + 1)) 1266 return true; 1267 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1268 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1269 Known2, TLO, Depth + 1)) 1270 return true; 1271 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1272 1273 // Attempt to avoid multi-use ops if we don't need anything from them. 1274 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1275 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1276 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1277 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1278 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1279 if (DemandedOp0 || DemandedOp1) { 1280 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1281 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1282 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1283 return TLO.CombineTo(Op, NewOp); 1284 } 1285 } 1286 1287 // If all of the demanded bits are known zero on one side, return the other. 1288 // These bits cannot contribute to the result of the 'or'. 1289 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1290 return TLO.CombineTo(Op, Op0); 1291 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1292 return TLO.CombineTo(Op, Op1); 1293 // If the RHS is a constant, see if we can simplify it. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1295 return true; 1296 // If the operation can be done in a smaller type, do so. 1297 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1298 return true; 1299 1300 Known |= Known2; 1301 break; 1302 } 1303 case ISD::XOR: { 1304 SDValue Op0 = Op.getOperand(0); 1305 SDValue Op1 = Op.getOperand(1); 1306 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1308 Depth + 1)) 1309 return true; 1310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1311 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 1330 // If all of the demanded bits are known zero on one side, return the other. 1331 // These bits cannot contribute to the result of the 'xor'. 1332 if (DemandedBits.isSubsetOf(Known.Zero)) 1333 return TLO.CombineTo(Op, Op0); 1334 if (DemandedBits.isSubsetOf(Known2.Zero)) 1335 return TLO.CombineTo(Op, Op1); 1336 // If the operation can be done in a smaller type, do so. 1337 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1338 return true; 1339 1340 // If all of the unknown bits are known to be zero on one side or the other 1341 // turn this into an *inclusive* or. 1342 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1343 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1344 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1345 1346 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1347 if (C) { 1348 // If one side is a constant, and all of the set bits in the constant are 1349 // also known set on the other side, turn this into an AND, as we know 1350 // the bits will be cleared. 1351 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1352 // NB: it is okay if more bits are known than are requested 1353 if (C->getAPIntValue() == Known2.One) { 1354 SDValue ANDC = 1355 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1356 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1357 } 1358 1359 // If the RHS is a constant, see if we can change it. Don't alter a -1 1360 // constant because that's a 'not' op, and that is better for combining 1361 // and codegen. 1362 if (!C->isAllOnesValue() && 1363 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnesValue()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOneValue()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1734 if (isPowerOf2_32(BitWidth)) { 1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1737 Depth + 1)) 1738 return true; 1739 } 1740 break; 1741 } 1742 case ISD::UMIN: { 1743 // Check if one arg is always less than (or equal) to the other arg. 1744 SDValue Op0 = Op.getOperand(0); 1745 SDValue Op1 = Op.getOperand(1); 1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1748 Known = KnownBits::umin(Known0, Known1); 1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1753 break; 1754 } 1755 case ISD::UMAX: { 1756 // Check if one arg is always greater than (or equal) to the other arg. 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1761 Known = KnownBits::umax(Known0, Known1); 1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1766 break; 1767 } 1768 case ISD::BITREVERSE: { 1769 SDValue Src = Op.getOperand(0); 1770 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1772 Depth + 1)) 1773 return true; 1774 Known.One = Known2.One.reverseBits(); 1775 Known.Zero = Known2.Zero.reverseBits(); 1776 break; 1777 } 1778 case ISD::BSWAP: { 1779 SDValue Src = Op.getOperand(0); 1780 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1782 Depth + 1)) 1783 return true; 1784 Known.One = Known2.One.byteSwap(); 1785 Known.Zero = Known2.Zero.byteSwap(); 1786 break; 1787 } 1788 case ISD::CTPOP: { 1789 // If only 1 bit is demanded, replace with PARITY as long as we're before 1790 // op legalization. 1791 // FIXME: Limit to scalars for now. 1792 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1794 Op.getOperand(0))); 1795 1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1797 break; 1798 } 1799 case ISD::SIGN_EXTEND_INREG: { 1800 SDValue Op0 = Op.getOperand(0); 1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1802 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1803 1804 // If we only care about the highest bit, don't bother shifting right. 1805 if (DemandedBits.isSignMask()) { 1806 unsigned NumSignBits = 1807 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1808 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1809 // However if the input is already sign extended we expect the sign 1810 // extension to be dropped altogether later and do not simplify. 1811 if (!AlreadySignExtended) { 1812 // Compute the correct shift amount type, which must be getShiftAmountTy 1813 // for scalar types after legalization. 1814 EVT ShiftAmtTy = VT; 1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1817 1818 SDValue ShiftAmt = 1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1820 return TLO.CombineTo(Op, 1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1822 } 1823 } 1824 1825 // If none of the extended bits are demanded, eliminate the sextinreg. 1826 if (DemandedBits.getActiveBits() <= ExVTBits) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1830 1831 // Since the sign extended bits are demanded, we know that the sign 1832 // bit is demanded. 1833 InputDemandedBits.setBit(ExVTBits - 1); 1834 1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1836 return true; 1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1838 1839 // If the sign bit of the input is known set or clear, then we know the 1840 // top bits of the result. 1841 1842 // If the input sign bit is known zero, convert this into a zero extension. 1843 if (Known.Zero[ExVTBits - 1]) 1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1845 1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1848 Known.One.setBitsFrom(ExVTBits); 1849 Known.Zero &= Mask; 1850 } else { // Input sign bit unknown 1851 Known.Zero &= Mask; 1852 Known.One &= Mask; 1853 } 1854 break; 1855 } 1856 case ISD::BUILD_PAIR: { 1857 EVT HalfVT = Op.getOperand(0).getValueType(); 1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1859 1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1862 1863 KnownBits KnownLo, KnownHi; 1864 1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1866 return true; 1867 1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1869 return true; 1870 1871 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1873 1874 Known.One = KnownLo.One.zext(BitWidth) | 1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1876 break; 1877 } 1878 case ISD::ZERO_EXTEND: 1879 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1880 SDValue Src = Op.getOperand(0); 1881 EVT SrcVT = Src.getValueType(); 1882 unsigned InBits = SrcVT.getScalarSizeInBits(); 1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1885 1886 // If none of the top bits are demanded, convert this into an any_extend. 1887 if (DemandedBits.getActiveBits() <= InBits) { 1888 // If we only need the non-extended bits of the bottom element 1889 // then we can just bitcast to the result. 1890 if (IsVecInReg && DemandedElts == 1 && 1891 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1892 TLO.DAG.getDataLayout().isLittleEndian()) 1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1894 1895 unsigned Opc = 1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1899 } 1900 1901 APInt InDemandedBits = DemandedBits.trunc(InBits); 1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1904 Depth + 1)) 1905 return true; 1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1907 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1908 Known = Known.zext(BitWidth); 1909 1910 // Attempt to avoid multi-use ops if we don't need anything from them. 1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1914 break; 1915 } 1916 case ISD::SIGN_EXTEND: 1917 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1918 SDValue Src = Op.getOperand(0); 1919 EVT SrcVT = Src.getValueType(); 1920 unsigned InBits = SrcVT.getScalarSizeInBits(); 1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1923 1924 // If none of the top bits are demanded, convert this into an any_extend. 1925 if (DemandedBits.getActiveBits() <= InBits) { 1926 // If we only need the non-extended bits of the bottom element 1927 // then we can just bitcast to the result. 1928 if (IsVecInReg && DemandedElts == 1 && 1929 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1930 TLO.DAG.getDataLayout().isLittleEndian()) 1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1932 1933 unsigned Opc = 1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1937 } 1938 1939 APInt InDemandedBits = DemandedBits.trunc(InBits); 1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1941 1942 // Since some of the sign extended bits are demanded, we know that the sign 1943 // bit is demanded. 1944 InDemandedBits.setBit(InBits - 1); 1945 1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1947 Depth + 1)) 1948 return true; 1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1950 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1951 1952 // If the sign bit is known one, the top bits match. 1953 Known = Known.sext(BitWidth); 1954 1955 // If the sign bit is known zero, convert this to a zero extend. 1956 if (Known.isNonNegative()) { 1957 unsigned Opc = 1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1961 } 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::ANY_EXTEND: 1970 case ISD::ANY_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1976 1977 // If we only need the bottom element then we can just bitcast. 1978 // TODO: Handle ANY_EXTEND? 1979 if (IsVecInReg && DemandedElts == 1 && 1980 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1981 TLO.DAG.getDataLayout().isLittleEndian()) 1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1983 1984 APInt InDemandedBits = DemandedBits.trunc(InBits); 1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1987 Depth + 1)) 1988 return true; 1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1990 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1991 Known = Known.anyext(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1997 break; 1998 } 1999 case ISD::TRUNCATE: { 2000 SDValue Src = Op.getOperand(0); 2001 2002 // Simplify the input, using demanded bit information, and compute the known 2003 // zero/one bits live out. 2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known = Known.trunc(BitWidth); 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2015 2016 // If the input is only used by this truncate, see if we can shrink it based 2017 // on the known demanded bits. 2018 if (Src.getNode()->hasOneUse()) { 2019 switch (Src.getOpcode()) { 2020 default: 2021 break; 2022 case ISD::SRL: 2023 // Shrink SRL by a constant if none of the high bits shifted in are 2024 // demanded. 2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2027 // undesirable. 2028 break; 2029 2030 const APInt *ShAmtC = 2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2032 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2033 break; 2034 uint64_t ShVal = ShAmtC->getZExtValue(); 2035 2036 APInt HighBits = 2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2038 HighBits.lshrInPlace(ShVal); 2039 HighBits = HighBits.trunc(BitWidth); 2040 2041 if (!(HighBits & DemandedBits)) { 2042 // None of the shifted in bits are needed. Add a truncate of the 2043 // shift input, then shift it. 2044 SDValue NewShAmt = TLO.DAG.getConstant( 2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2046 SDValue NewTrunc = 2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2048 return TLO.CombineTo( 2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2050 } 2051 break; 2052 } 2053 } 2054 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 break; 2057 } 2058 case ISD::AssertZext: { 2059 // AssertZext demands all of the high bits, plus any of the low bits 2060 // demanded by its users. 2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2064 TLO, Depth + 1)) 2065 return true; 2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2067 2068 Known.Zero |= ~InMask; 2069 break; 2070 } 2071 case ISD::EXTRACT_VECTOR_ELT: { 2072 SDValue Src = Op.getOperand(0); 2073 SDValue Idx = Op.getOperand(1); 2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2076 2077 if (SrcEltCnt.isScalable()) 2078 return false; 2079 2080 // Demand the bits from every vector element without a constant index. 2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2082 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2084 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2086 2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2088 // anything about the extended bits. 2089 APInt DemandedSrcBits = DemandedBits; 2090 if (BitWidth > EltBitWidth) 2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2092 2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2094 Depth + 1)) 2095 return true; 2096 2097 // Attempt to avoid multi-use ops if we don't need anything from them. 2098 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2099 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2100 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2101 SDValue NewOp = 2102 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2103 return TLO.CombineTo(Op, NewOp); 2104 } 2105 } 2106 2107 Known = Known2; 2108 if (BitWidth > EltBitWidth) 2109 Known = Known.anyext(BitWidth); 2110 break; 2111 } 2112 case ISD::BITCAST: { 2113 SDValue Src = Op.getOperand(0); 2114 EVT SrcVT = Src.getValueType(); 2115 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2116 2117 // If this is an FP->Int bitcast and if the sign bit is the only 2118 // thing demanded, turn this into a FGETSIGN. 2119 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2120 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2121 SrcVT.isFloatingPoint()) { 2122 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2123 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2124 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2125 SrcVT != MVT::f128) { 2126 // Cannot eliminate/lower SHL for f128 yet. 2127 EVT Ty = OpVTLegal ? VT : MVT::i32; 2128 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2129 // place. We expect the SHL to be eliminated by other optimizations. 2130 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2131 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2132 if (!OpVTLegal && OpVTSizeInBits > 32) 2133 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2134 unsigned ShVal = Op.getValueSizeInBits() - 1; 2135 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2136 return TLO.CombineTo(Op, 2137 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2138 } 2139 } 2140 2141 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2142 // Demand the elt/bit if any of the original elts/bits are demanded. 2143 // TODO - bigendian once we have test coverage. 2144 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2145 TLO.DAG.getDataLayout().isLittleEndian()) { 2146 unsigned Scale = BitWidth / NumSrcEltBits; 2147 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2148 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2149 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2150 for (unsigned i = 0; i != Scale; ++i) { 2151 unsigned Offset = i * NumSrcEltBits; 2152 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2153 if (!Sub.isNullValue()) { 2154 DemandedSrcBits |= Sub; 2155 for (unsigned j = 0; j != NumElts; ++j) 2156 if (DemandedElts[j]) 2157 DemandedSrcElts.setBit((j * Scale) + i); 2158 } 2159 } 2160 2161 APInt KnownSrcUndef, KnownSrcZero; 2162 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2163 KnownSrcZero, TLO, Depth + 1)) 2164 return true; 2165 2166 KnownBits KnownSrcBits; 2167 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2168 KnownSrcBits, TLO, Depth + 1)) 2169 return true; 2170 } else if ((NumSrcEltBits % BitWidth) == 0 && 2171 TLO.DAG.getDataLayout().isLittleEndian()) { 2172 unsigned Scale = NumSrcEltBits / BitWidth; 2173 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2174 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2175 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2176 for (unsigned i = 0; i != NumElts; ++i) 2177 if (DemandedElts[i]) { 2178 unsigned Offset = (i % Scale) * BitWidth; 2179 DemandedSrcBits.insertBits(DemandedBits, Offset); 2180 DemandedSrcElts.setBit(i / Scale); 2181 } 2182 2183 if (SrcVT.isVector()) { 2184 APInt KnownSrcUndef, KnownSrcZero; 2185 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2186 KnownSrcZero, TLO, Depth + 1)) 2187 return true; 2188 } 2189 2190 KnownBits KnownSrcBits; 2191 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2192 KnownSrcBits, TLO, Depth + 1)) 2193 return true; 2194 } 2195 2196 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2197 // recursive call where Known may be useful to the caller. 2198 if (Depth > 0) { 2199 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2200 return false; 2201 } 2202 break; 2203 } 2204 case ISD::ADD: 2205 case ISD::MUL: 2206 case ISD::SUB: { 2207 // Add, Sub, and Mul don't demand any bits in positions beyond that 2208 // of the highest bit demanded of them. 2209 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2210 SDNodeFlags Flags = Op.getNode()->getFlags(); 2211 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2212 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2213 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2214 Depth + 1) || 2215 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2216 Depth + 1) || 2217 // See if the operation should be performed at a smaller bit width. 2218 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2219 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2220 // Disable the nsw and nuw flags. We can no longer guarantee that we 2221 // won't wrap after simplification. 2222 Flags.setNoSignedWrap(false); 2223 Flags.setNoUnsignedWrap(false); 2224 SDValue NewOp = 2225 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2226 return TLO.CombineTo(Op, NewOp); 2227 } 2228 return true; 2229 } 2230 2231 // Attempt to avoid multi-use ops if we don't need anything from them. 2232 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2233 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2234 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2235 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2236 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2237 if (DemandedOp0 || DemandedOp1) { 2238 Flags.setNoSignedWrap(false); 2239 Flags.setNoUnsignedWrap(false); 2240 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2241 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2242 SDValue NewOp = 2243 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2244 return TLO.CombineTo(Op, NewOp); 2245 } 2246 } 2247 2248 // If we have a constant operand, we may be able to turn it into -1 if we 2249 // do not demand the high bits. This can make the constant smaller to 2250 // encode, allow more general folding, or match specialized instruction 2251 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2252 // is probably not useful (and could be detrimental). 2253 ConstantSDNode *C = isConstOrConstSplat(Op1); 2254 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2255 if (C && !C->isAllOnesValue() && !C->isOne() && 2256 (C->getAPIntValue() | HighMask).isAllOnes()) { 2257 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2258 // Disable the nsw and nuw flags. We can no longer guarantee that we 2259 // won't wrap after simplification. 2260 Flags.setNoSignedWrap(false); 2261 Flags.setNoUnsignedWrap(false); 2262 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2263 return TLO.CombineTo(Op, NewOp); 2264 } 2265 2266 LLVM_FALLTHROUGH; 2267 } 2268 default: 2269 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2270 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2271 Known, TLO, Depth)) 2272 return true; 2273 break; 2274 } 2275 2276 // Just use computeKnownBits to compute output bits. 2277 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2278 break; 2279 } 2280 2281 // If we know the value of all of the demanded bits, return this as a 2282 // constant. 2283 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2284 // Avoid folding to a constant if any OpaqueConstant is involved. 2285 const SDNode *N = Op.getNode(); 2286 for (SDNode *Op : 2287 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2289 if (C->isOpaque()) 2290 return false; 2291 } 2292 if (VT.isInteger()) 2293 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2294 if (VT.isFloatingPoint()) 2295 return TLO.CombineTo( 2296 Op, 2297 TLO.DAG.getConstantFP( 2298 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2299 } 2300 2301 return false; 2302 } 2303 2304 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2305 const APInt &DemandedElts, 2306 APInt &KnownUndef, 2307 APInt &KnownZero, 2308 DAGCombinerInfo &DCI) const { 2309 SelectionDAG &DAG = DCI.DAG; 2310 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2311 !DCI.isBeforeLegalizeOps()); 2312 2313 bool Simplified = 2314 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2315 if (Simplified) { 2316 DCI.AddToWorklist(Op.getNode()); 2317 DCI.CommitTargetLoweringOpt(TLO); 2318 } 2319 2320 return Simplified; 2321 } 2322 2323 /// Given a vector binary operation and known undefined elements for each input 2324 /// operand, compute whether each element of the output is undefined. 2325 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2326 const APInt &UndefOp0, 2327 const APInt &UndefOp1) { 2328 EVT VT = BO.getValueType(); 2329 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2330 "Vector binop only"); 2331 2332 EVT EltVT = VT.getVectorElementType(); 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(UndefOp0.getBitWidth() == NumElts && 2335 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2336 2337 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2338 const APInt &UndefVals) { 2339 if (UndefVals[Index]) 2340 return DAG.getUNDEF(EltVT); 2341 2342 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2343 // Try hard to make sure that the getNode() call is not creating temporary 2344 // nodes. Ignore opaque integers because they do not constant fold. 2345 SDValue Elt = BV->getOperand(Index); 2346 auto *C = dyn_cast<ConstantSDNode>(Elt); 2347 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2348 return Elt; 2349 } 2350 2351 return SDValue(); 2352 }; 2353 2354 APInt KnownUndef = APInt::getZero(NumElts); 2355 for (unsigned i = 0; i != NumElts; ++i) { 2356 // If both inputs for this element are either constant or undef and match 2357 // the element type, compute the constant/undef result for this element of 2358 // the vector. 2359 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2360 // not handle FP constants. The code within getNode() should be refactored 2361 // to avoid the danger of creating a bogus temporary node here. 2362 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2363 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2364 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2365 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2366 KnownUndef.setBit(i); 2367 } 2368 return KnownUndef; 2369 } 2370 2371 bool TargetLowering::SimplifyDemandedVectorElts( 2372 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2373 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2374 bool AssumeSingleUse) const { 2375 EVT VT = Op.getValueType(); 2376 unsigned Opcode = Op.getOpcode(); 2377 APInt DemandedElts = OriginalDemandedElts; 2378 unsigned NumElts = DemandedElts.getBitWidth(); 2379 assert(VT.isVector() && "Expected vector op"); 2380 2381 KnownUndef = KnownZero = APInt::getZero(NumElts); 2382 2383 // TODO: For now we assume we know nothing about scalable vectors. 2384 if (VT.isScalableVector()) 2385 return false; 2386 2387 assert(VT.getVectorNumElements() == NumElts && 2388 "Mask size mismatches value type element count!"); 2389 2390 // Undef operand. 2391 if (Op.isUndef()) { 2392 KnownUndef.setAllBits(); 2393 return false; 2394 } 2395 2396 // If Op has other users, assume that all elements are needed. 2397 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2398 DemandedElts.setAllBits(); 2399 2400 // Not demanding any elements from Op. 2401 if (DemandedElts == 0) { 2402 KnownUndef.setAllBits(); 2403 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2404 } 2405 2406 // Limit search depth. 2407 if (Depth >= SelectionDAG::MaxRecursionDepth) 2408 return false; 2409 2410 SDLoc DL(Op); 2411 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2412 2413 // Helper for demanding the specified elements and all the bits of both binary 2414 // operands. 2415 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2416 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2417 TLO.DAG, Depth + 1); 2418 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2419 TLO.DAG, Depth + 1); 2420 if (NewOp0 || NewOp1) { 2421 SDValue NewOp = TLO.DAG.getNode( 2422 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2423 return TLO.CombineTo(Op, NewOp); 2424 } 2425 return false; 2426 }; 2427 2428 switch (Opcode) { 2429 case ISD::SCALAR_TO_VECTOR: { 2430 if (!DemandedElts[0]) { 2431 KnownUndef.setAllBits(); 2432 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2433 } 2434 SDValue ScalarSrc = Op.getOperand(0); 2435 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2436 SDValue Src = ScalarSrc.getOperand(0); 2437 SDValue Idx = ScalarSrc.getOperand(1); 2438 EVT SrcVT = Src.getValueType(); 2439 2440 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2441 2442 if (SrcEltCnt.isScalable()) 2443 return false; 2444 2445 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2446 if (isNullConstant(Idx)) { 2447 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2448 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2449 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2450 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2451 TLO, Depth + 1)) 2452 return true; 2453 } 2454 } 2455 KnownUndef.setHighBits(NumElts - 1); 2456 break; 2457 } 2458 case ISD::BITCAST: { 2459 SDValue Src = Op.getOperand(0); 2460 EVT SrcVT = Src.getValueType(); 2461 2462 // We only handle vectors here. 2463 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2464 if (!SrcVT.isVector()) 2465 break; 2466 2467 // Fast handling of 'identity' bitcasts. 2468 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2469 if (NumSrcElts == NumElts) 2470 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2471 KnownZero, TLO, Depth + 1); 2472 2473 APInt SrcZero, SrcUndef; 2474 APInt SrcDemandedElts = APInt::getZero(NumSrcElts); 2475 2476 // Bitcast from 'large element' src vector to 'small element' vector, we 2477 // must demand a source element if any DemandedElt maps to it. 2478 if ((NumElts % NumSrcElts) == 0) { 2479 unsigned Scale = NumElts / NumSrcElts; 2480 for (unsigned i = 0; i != NumElts; ++i) 2481 if (DemandedElts[i]) 2482 SrcDemandedElts.setBit(i / Scale); 2483 2484 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2485 TLO, Depth + 1)) 2486 return true; 2487 2488 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2489 // of the large element. 2490 // TODO - bigendian once we have test coverage. 2491 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2492 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2493 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2494 for (unsigned i = 0; i != NumElts; ++i) 2495 if (DemandedElts[i]) { 2496 unsigned Ofs = (i % Scale) * EltSizeInBits; 2497 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2498 } 2499 2500 KnownBits Known; 2501 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2502 TLO, Depth + 1)) 2503 return true; 2504 } 2505 2506 // If the src element is zero/undef then all the output elements will be - 2507 // only demanded elements are guaranteed to be correct. 2508 for (unsigned i = 0; i != NumSrcElts; ++i) { 2509 if (SrcDemandedElts[i]) { 2510 if (SrcZero[i]) 2511 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2512 if (SrcUndef[i]) 2513 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2514 } 2515 } 2516 } 2517 2518 // Bitcast from 'small element' src vector to 'large element' vector, we 2519 // demand all smaller source elements covered by the larger demanded element 2520 // of this vector. 2521 if ((NumSrcElts % NumElts) == 0) { 2522 unsigned Scale = NumSrcElts / NumElts; 2523 for (unsigned i = 0; i != NumElts; ++i) 2524 if (DemandedElts[i]) 2525 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2526 2527 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2528 TLO, Depth + 1)) 2529 return true; 2530 2531 // If all the src elements covering an output element are zero/undef, then 2532 // the output element will be as well, assuming it was demanded. 2533 for (unsigned i = 0; i != NumElts; ++i) { 2534 if (DemandedElts[i]) { 2535 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2536 KnownZero.setBit(i); 2537 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2538 KnownUndef.setBit(i); 2539 } 2540 } 2541 } 2542 break; 2543 } 2544 case ISD::BUILD_VECTOR: { 2545 // Check all elements and simplify any unused elements with UNDEF. 2546 if (!DemandedElts.isAllOnes()) { 2547 // Don't simplify BROADCASTS. 2548 if (llvm::any_of(Op->op_values(), 2549 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2550 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2551 bool Updated = false; 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2554 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2555 KnownUndef.setBit(i); 2556 Updated = true; 2557 } 2558 } 2559 if (Updated) 2560 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2561 } 2562 } 2563 for (unsigned i = 0; i != NumElts; ++i) { 2564 SDValue SrcOp = Op.getOperand(i); 2565 if (SrcOp.isUndef()) { 2566 KnownUndef.setBit(i); 2567 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2568 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2569 KnownZero.setBit(i); 2570 } 2571 } 2572 break; 2573 } 2574 case ISD::CONCAT_VECTORS: { 2575 EVT SubVT = Op.getOperand(0).getValueType(); 2576 unsigned NumSubVecs = Op.getNumOperands(); 2577 unsigned NumSubElts = SubVT.getVectorNumElements(); 2578 for (unsigned i = 0; i != NumSubVecs; ++i) { 2579 SDValue SubOp = Op.getOperand(i); 2580 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2581 APInt SubUndef, SubZero; 2582 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2583 Depth + 1)) 2584 return true; 2585 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2586 KnownZero.insertBits(SubZero, i * NumSubElts); 2587 } 2588 break; 2589 } 2590 case ISD::INSERT_SUBVECTOR: { 2591 // Demand any elements from the subvector and the remainder from the src its 2592 // inserted into. 2593 SDValue Src = Op.getOperand(0); 2594 SDValue Sub = Op.getOperand(1); 2595 uint64_t Idx = Op.getConstantOperandVal(2); 2596 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2597 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2598 APInt DemandedSrcElts = DemandedElts; 2599 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2600 2601 APInt SubUndef, SubZero; 2602 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2603 Depth + 1)) 2604 return true; 2605 2606 // If none of the src operand elements are demanded, replace it with undef. 2607 if (!DemandedSrcElts && !Src.isUndef()) 2608 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2609 TLO.DAG.getUNDEF(VT), Sub, 2610 Op.getOperand(2))); 2611 2612 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2613 TLO, Depth + 1)) 2614 return true; 2615 KnownUndef.insertBits(SubUndef, Idx); 2616 KnownZero.insertBits(SubZero, Idx); 2617 2618 // Attempt to avoid multi-use ops if we don't need anything from them. 2619 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2620 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2621 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2622 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2623 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2624 if (NewSrc || NewSub) { 2625 NewSrc = NewSrc ? NewSrc : Src; 2626 NewSub = NewSub ? NewSub : Sub; 2627 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2628 NewSub, Op.getOperand(2)); 2629 return TLO.CombineTo(Op, NewOp); 2630 } 2631 } 2632 break; 2633 } 2634 case ISD::EXTRACT_SUBVECTOR: { 2635 // Offset the demanded elts by the subvector index. 2636 SDValue Src = Op.getOperand(0); 2637 if (Src.getValueType().isScalableVector()) 2638 break; 2639 uint64_t Idx = Op.getConstantOperandVal(1); 2640 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2641 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2642 2643 APInt SrcUndef, SrcZero; 2644 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2645 Depth + 1)) 2646 return true; 2647 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2648 KnownZero = SrcZero.extractBits(NumElts, Idx); 2649 2650 // Attempt to avoid multi-use ops if we don't need anything from them. 2651 if (!DemandedElts.isAllOnes()) { 2652 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2653 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2654 if (NewSrc) { 2655 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2656 Op.getOperand(1)); 2657 return TLO.CombineTo(Op, NewOp); 2658 } 2659 } 2660 break; 2661 } 2662 case ISD::INSERT_VECTOR_ELT: { 2663 SDValue Vec = Op.getOperand(0); 2664 SDValue Scl = Op.getOperand(1); 2665 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2666 2667 // For a legal, constant insertion index, if we don't need this insertion 2668 // then strip it, else remove it from the demanded elts. 2669 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2670 unsigned Idx = CIdx->getZExtValue(); 2671 if (!DemandedElts[Idx]) 2672 return TLO.CombineTo(Op, Vec); 2673 2674 APInt DemandedVecElts(DemandedElts); 2675 DemandedVecElts.clearBit(Idx); 2676 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2677 KnownZero, TLO, Depth + 1)) 2678 return true; 2679 2680 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2681 2682 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2683 break; 2684 } 2685 2686 APInt VecUndef, VecZero; 2687 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2688 Depth + 1)) 2689 return true; 2690 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2691 break; 2692 } 2693 case ISD::VSELECT: { 2694 // Try to transform the select condition based on the current demanded 2695 // elements. 2696 // TODO: If a condition element is undef, we can choose from one arm of the 2697 // select (and if one arm is undef, then we can propagate that to the 2698 // result). 2699 // TODO - add support for constant vselect masks (see IR version of this). 2700 APInt UnusedUndef, UnusedZero; 2701 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2702 UnusedZero, TLO, Depth + 1)) 2703 return true; 2704 2705 // See if we can simplify either vselect operand. 2706 APInt DemandedLHS(DemandedElts); 2707 APInt DemandedRHS(DemandedElts); 2708 APInt UndefLHS, ZeroLHS; 2709 APInt UndefRHS, ZeroRHS; 2710 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2711 ZeroLHS, TLO, Depth + 1)) 2712 return true; 2713 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2714 ZeroRHS, TLO, Depth + 1)) 2715 return true; 2716 2717 KnownUndef = UndefLHS & UndefRHS; 2718 KnownZero = ZeroLHS & ZeroRHS; 2719 break; 2720 } 2721 case ISD::VECTOR_SHUFFLE: { 2722 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2723 2724 // Collect demanded elements from shuffle operands.. 2725 APInt DemandedLHS(NumElts, 0); 2726 APInt DemandedRHS(NumElts, 0); 2727 for (unsigned i = 0; i != NumElts; ++i) { 2728 int M = ShuffleMask[i]; 2729 if (M < 0 || !DemandedElts[i]) 2730 continue; 2731 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2732 if (M < (int)NumElts) 2733 DemandedLHS.setBit(M); 2734 else 2735 DemandedRHS.setBit(M - NumElts); 2736 } 2737 2738 // See if we can simplify either shuffle operand. 2739 APInt UndefLHS, ZeroLHS; 2740 APInt UndefRHS, ZeroRHS; 2741 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2742 ZeroLHS, TLO, Depth + 1)) 2743 return true; 2744 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2745 ZeroRHS, TLO, Depth + 1)) 2746 return true; 2747 2748 // Simplify mask using undef elements from LHS/RHS. 2749 bool Updated = false; 2750 bool IdentityLHS = true, IdentityRHS = true; 2751 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2752 for (unsigned i = 0; i != NumElts; ++i) { 2753 int &M = NewMask[i]; 2754 if (M < 0) 2755 continue; 2756 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2757 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2758 Updated = true; 2759 M = -1; 2760 } 2761 IdentityLHS &= (M < 0) || (M == (int)i); 2762 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2763 } 2764 2765 // Update legal shuffle masks based on demanded elements if it won't reduce 2766 // to Identity which can cause premature removal of the shuffle mask. 2767 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2768 SDValue LegalShuffle = 2769 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2770 NewMask, TLO.DAG); 2771 if (LegalShuffle) 2772 return TLO.CombineTo(Op, LegalShuffle); 2773 } 2774 2775 // Propagate undef/zero elements from LHS/RHS. 2776 for (unsigned i = 0; i != NumElts; ++i) { 2777 int M = ShuffleMask[i]; 2778 if (M < 0) { 2779 KnownUndef.setBit(i); 2780 } else if (M < (int)NumElts) { 2781 if (UndefLHS[M]) 2782 KnownUndef.setBit(i); 2783 if (ZeroLHS[M]) 2784 KnownZero.setBit(i); 2785 } else { 2786 if (UndefRHS[M - NumElts]) 2787 KnownUndef.setBit(i); 2788 if (ZeroRHS[M - NumElts]) 2789 KnownZero.setBit(i); 2790 } 2791 } 2792 break; 2793 } 2794 case ISD::ANY_EXTEND_VECTOR_INREG: 2795 case ISD::SIGN_EXTEND_VECTOR_INREG: 2796 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2797 APInt SrcUndef, SrcZero; 2798 SDValue Src = Op.getOperand(0); 2799 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2800 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2801 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2802 Depth + 1)) 2803 return true; 2804 KnownZero = SrcZero.zextOrTrunc(NumElts); 2805 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2806 2807 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2808 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2809 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2810 // aext - if we just need the bottom element then we can bitcast. 2811 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2812 } 2813 2814 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2815 // zext(undef) upper bits are guaranteed to be zero. 2816 if (DemandedElts.isSubsetOf(KnownUndef)) 2817 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2818 KnownUndef.clearAllBits(); 2819 } 2820 break; 2821 } 2822 2823 // TODO: There are more binop opcodes that could be handled here - MIN, 2824 // MAX, saturated math, etc. 2825 case ISD::OR: 2826 case ISD::XOR: 2827 case ISD::ADD: 2828 case ISD::SUB: 2829 case ISD::FADD: 2830 case ISD::FSUB: 2831 case ISD::FMUL: 2832 case ISD::FDIV: 2833 case ISD::FREM: { 2834 SDValue Op0 = Op.getOperand(0); 2835 SDValue Op1 = Op.getOperand(1); 2836 2837 APInt UndefRHS, ZeroRHS; 2838 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2839 Depth + 1)) 2840 return true; 2841 APInt UndefLHS, ZeroLHS; 2842 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2843 Depth + 1)) 2844 return true; 2845 2846 KnownZero = ZeroLHS & ZeroRHS; 2847 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2848 2849 // Attempt to avoid multi-use ops if we don't need anything from them. 2850 // TODO - use KnownUndef to relax the demandedelts? 2851 if (!DemandedElts.isAllOnes()) 2852 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2853 return true; 2854 break; 2855 } 2856 case ISD::SHL: 2857 case ISD::SRL: 2858 case ISD::SRA: 2859 case ISD::ROTL: 2860 case ISD::ROTR: { 2861 SDValue Op0 = Op.getOperand(0); 2862 SDValue Op1 = Op.getOperand(1); 2863 2864 APInt UndefRHS, ZeroRHS; 2865 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2866 Depth + 1)) 2867 return true; 2868 APInt UndefLHS, ZeroLHS; 2869 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2870 Depth + 1)) 2871 return true; 2872 2873 KnownZero = ZeroLHS; 2874 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2875 2876 // Attempt to avoid multi-use ops if we don't need anything from them. 2877 // TODO - use KnownUndef to relax the demandedelts? 2878 if (!DemandedElts.isAllOnes()) 2879 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2880 return true; 2881 break; 2882 } 2883 case ISD::MUL: 2884 case ISD::AND: { 2885 SDValue Op0 = Op.getOperand(0); 2886 SDValue Op1 = Op.getOperand(1); 2887 2888 APInt SrcUndef, SrcZero; 2889 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2890 Depth + 1)) 2891 return true; 2892 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2893 TLO, Depth + 1)) 2894 return true; 2895 2896 // If either side has a zero element, then the result element is zero, even 2897 // if the other is an UNDEF. 2898 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2899 // and then handle 'and' nodes with the rest of the binop opcodes. 2900 KnownZero |= SrcZero; 2901 KnownUndef &= SrcUndef; 2902 KnownUndef &= ~KnownZero; 2903 2904 // Attempt to avoid multi-use ops if we don't need anything from them. 2905 // TODO - use KnownUndef to relax the demandedelts? 2906 if (!DemandedElts.isAllOnes()) 2907 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2908 return true; 2909 break; 2910 } 2911 case ISD::TRUNCATE: 2912 case ISD::SIGN_EXTEND: 2913 case ISD::ZERO_EXTEND: 2914 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2915 KnownZero, TLO, Depth + 1)) 2916 return true; 2917 2918 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2919 // zext(undef) upper bits are guaranteed to be zero. 2920 if (DemandedElts.isSubsetOf(KnownUndef)) 2921 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2922 KnownUndef.clearAllBits(); 2923 } 2924 break; 2925 default: { 2926 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2927 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2928 KnownZero, TLO, Depth)) 2929 return true; 2930 } else { 2931 KnownBits Known; 2932 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2933 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2934 TLO, Depth, AssumeSingleUse)) 2935 return true; 2936 } 2937 break; 2938 } 2939 } 2940 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2941 2942 // Constant fold all undef cases. 2943 // TODO: Handle zero cases as well. 2944 if (DemandedElts.isSubsetOf(KnownUndef)) 2945 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2946 2947 return false; 2948 } 2949 2950 /// Determine which of the bits specified in Mask are known to be either zero or 2951 /// one and return them in the Known. 2952 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2953 KnownBits &Known, 2954 const APInt &DemandedElts, 2955 const SelectionDAG &DAG, 2956 unsigned Depth) const { 2957 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2958 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2959 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2960 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2961 "Should use MaskedValueIsZero if you don't know whether Op" 2962 " is a target node!"); 2963 Known.resetAll(); 2964 } 2965 2966 void TargetLowering::computeKnownBitsForTargetInstr( 2967 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2968 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2969 unsigned Depth) const { 2970 Known.resetAll(); 2971 } 2972 2973 void TargetLowering::computeKnownBitsForFrameIndex( 2974 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2975 // The low bits are known zero if the pointer is aligned. 2976 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2977 } 2978 2979 Align TargetLowering::computeKnownAlignForTargetInstr( 2980 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2981 unsigned Depth) const { 2982 return Align(1); 2983 } 2984 2985 /// This method can be implemented by targets that want to expose additional 2986 /// information about sign bits to the DAG Combiner. 2987 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2988 const APInt &, 2989 const SelectionDAG &, 2990 unsigned Depth) const { 2991 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2992 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2993 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2994 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2995 "Should use ComputeNumSignBits if you don't know whether Op" 2996 " is a target node!"); 2997 return 1; 2998 } 2999 3000 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3001 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3002 const MachineRegisterInfo &MRI, unsigned Depth) const { 3003 return 1; 3004 } 3005 3006 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3007 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3008 TargetLoweringOpt &TLO, unsigned Depth) const { 3009 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3010 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3011 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3012 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3013 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3014 " is a target node!"); 3015 return false; 3016 } 3017 3018 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3019 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3020 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3025 "Should use SimplifyDemandedBits if you don't know whether Op" 3026 " is a target node!"); 3027 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3028 return false; 3029 } 3030 3031 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3032 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3033 SelectionDAG &DAG, unsigned Depth) const { 3034 assert( 3035 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3036 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3037 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3038 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3039 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3040 " is a target node!"); 3041 return SDValue(); 3042 } 3043 3044 SDValue 3045 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3046 SDValue N1, MutableArrayRef<int> Mask, 3047 SelectionDAG &DAG) const { 3048 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3049 if (!LegalMask) { 3050 std::swap(N0, N1); 3051 ShuffleVectorSDNode::commuteMask(Mask); 3052 LegalMask = isShuffleMaskLegal(Mask, VT); 3053 } 3054 3055 if (!LegalMask) 3056 return SDValue(); 3057 3058 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3059 } 3060 3061 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3062 return nullptr; 3063 } 3064 3065 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3066 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3067 bool PoisonOnly, unsigned Depth) const { 3068 assert( 3069 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3070 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3071 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3072 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3073 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3074 " is a target node!"); 3075 return false; 3076 } 3077 3078 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3079 const SelectionDAG &DAG, 3080 bool SNaN, 3081 unsigned Depth) const { 3082 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3083 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3084 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3085 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3086 "Should use isKnownNeverNaN if you don't know whether Op" 3087 " is a target node!"); 3088 return false; 3089 } 3090 3091 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3092 // work with truncating build vectors and vectors with elements of less than 3093 // 8 bits. 3094 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3095 if (!N) 3096 return false; 3097 3098 APInt CVal; 3099 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3100 CVal = CN->getAPIntValue(); 3101 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3102 auto *CN = BV->getConstantSplatNode(); 3103 if (!CN) 3104 return false; 3105 3106 // If this is a truncating build vector, truncate the splat value. 3107 // Otherwise, we may fail to match the expected values below. 3108 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3109 CVal = CN->getAPIntValue(); 3110 if (BVEltWidth < CVal.getBitWidth()) 3111 CVal = CVal.trunc(BVEltWidth); 3112 } else { 3113 return false; 3114 } 3115 3116 switch (getBooleanContents(N->getValueType(0))) { 3117 case UndefinedBooleanContent: 3118 return CVal[0]; 3119 case ZeroOrOneBooleanContent: 3120 return CVal.isOneValue(); 3121 case ZeroOrNegativeOneBooleanContent: 3122 return CVal.isAllOnes(); 3123 } 3124 3125 llvm_unreachable("Invalid boolean contents"); 3126 } 3127 3128 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3129 if (!N) 3130 return false; 3131 3132 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3133 if (!CN) { 3134 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3135 if (!BV) 3136 return false; 3137 3138 // Only interested in constant splats, we don't care about undef 3139 // elements in identifying boolean constants and getConstantSplatNode 3140 // returns NULL if all ops are undef; 3141 CN = BV->getConstantSplatNode(); 3142 if (!CN) 3143 return false; 3144 } 3145 3146 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3147 return !CN->getAPIntValue()[0]; 3148 3149 return CN->isNullValue(); 3150 } 3151 3152 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3153 bool SExt) const { 3154 if (VT == MVT::i1) 3155 return N->isOne(); 3156 3157 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3158 switch (Cnt) { 3159 case TargetLowering::ZeroOrOneBooleanContent: 3160 // An extended value of 1 is always true, unless its original type is i1, 3161 // in which case it will be sign extended to -1. 3162 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3163 case TargetLowering::UndefinedBooleanContent: 3164 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3165 return N->isAllOnesValue() && SExt; 3166 } 3167 llvm_unreachable("Unexpected enumeration."); 3168 } 3169 3170 /// This helper function of SimplifySetCC tries to optimize the comparison when 3171 /// either operand of the SetCC node is a bitwise-and instruction. 3172 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3173 ISD::CondCode Cond, const SDLoc &DL, 3174 DAGCombinerInfo &DCI) const { 3175 // Match these patterns in any of their permutations: 3176 // (X & Y) == Y 3177 // (X & Y) != Y 3178 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3179 std::swap(N0, N1); 3180 3181 EVT OpVT = N0.getValueType(); 3182 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3183 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3184 return SDValue(); 3185 3186 SDValue X, Y; 3187 if (N0.getOperand(0) == N1) { 3188 X = N0.getOperand(1); 3189 Y = N0.getOperand(0); 3190 } else if (N0.getOperand(1) == N1) { 3191 X = N0.getOperand(0); 3192 Y = N0.getOperand(1); 3193 } else { 3194 return SDValue(); 3195 } 3196 3197 SelectionDAG &DAG = DCI.DAG; 3198 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3199 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3200 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3201 // Note that where Y is variable and is known to have at most one bit set 3202 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3203 // equivalent when Y == 0. 3204 assert(OpVT.isInteger()); 3205 Cond = ISD::getSetCCInverse(Cond, OpVT); 3206 if (DCI.isBeforeLegalizeOps() || 3207 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3208 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3209 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3210 // If the target supports an 'and-not' or 'and-complement' logic operation, 3211 // try to use that to make a comparison operation more efficient. 3212 // But don't do this transform if the mask is a single bit because there are 3213 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3214 // 'rlwinm' on PPC). 3215 3216 // Bail out if the compare operand that we want to turn into a zero is 3217 // already a zero (otherwise, infinite loop). 3218 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3219 if (YConst && YConst->isNullValue()) 3220 return SDValue(); 3221 3222 // Transform this into: ~X & Y == 0. 3223 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3224 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3225 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3226 } 3227 3228 return SDValue(); 3229 } 3230 3231 /// There are multiple IR patterns that could be checking whether certain 3232 /// truncation of a signed number would be lossy or not. The pattern which is 3233 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3234 /// We are looking for the following pattern: (KeptBits is a constant) 3235 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3236 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3237 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3238 /// We will unfold it into the natural trunc+sext pattern: 3239 /// ((%x << C) a>> C) dstcond %x 3240 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3241 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3242 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3243 const SDLoc &DL) const { 3244 // We must be comparing with a constant. 3245 ConstantSDNode *C1; 3246 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3247 return SDValue(); 3248 3249 // N0 should be: add %x, (1 << (KeptBits-1)) 3250 if (N0->getOpcode() != ISD::ADD) 3251 return SDValue(); 3252 3253 // And we must be 'add'ing a constant. 3254 ConstantSDNode *C01; 3255 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3256 return SDValue(); 3257 3258 SDValue X = N0->getOperand(0); 3259 EVT XVT = X.getValueType(); 3260 3261 // Validate constants ... 3262 3263 APInt I1 = C1->getAPIntValue(); 3264 3265 ISD::CondCode NewCond; 3266 if (Cond == ISD::CondCode::SETULT) { 3267 NewCond = ISD::CondCode::SETEQ; 3268 } else if (Cond == ISD::CondCode::SETULE) { 3269 NewCond = ISD::CondCode::SETEQ; 3270 // But need to 'canonicalize' the constant. 3271 I1 += 1; 3272 } else if (Cond == ISD::CondCode::SETUGT) { 3273 NewCond = ISD::CondCode::SETNE; 3274 // But need to 'canonicalize' the constant. 3275 I1 += 1; 3276 } else if (Cond == ISD::CondCode::SETUGE) { 3277 NewCond = ISD::CondCode::SETNE; 3278 } else 3279 return SDValue(); 3280 3281 APInt I01 = C01->getAPIntValue(); 3282 3283 auto checkConstants = [&I1, &I01]() -> bool { 3284 // Both of them must be power-of-two, and the constant from setcc is bigger. 3285 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3286 }; 3287 3288 if (checkConstants()) { 3289 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3290 } else { 3291 // What if we invert constants? (and the target predicate) 3292 I1.negate(); 3293 I01.negate(); 3294 assert(XVT.isInteger()); 3295 NewCond = getSetCCInverse(NewCond, XVT); 3296 if (!checkConstants()) 3297 return SDValue(); 3298 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3299 } 3300 3301 // They are power-of-two, so which bit is set? 3302 const unsigned KeptBits = I1.logBase2(); 3303 const unsigned KeptBitsMinusOne = I01.logBase2(); 3304 3305 // Magic! 3306 if (KeptBits != (KeptBitsMinusOne + 1)) 3307 return SDValue(); 3308 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3309 3310 // We don't want to do this in every single case. 3311 SelectionDAG &DAG = DCI.DAG; 3312 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3313 XVT, KeptBits)) 3314 return SDValue(); 3315 3316 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3317 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3318 3319 // Unfold into: ((%x << C) a>> C) cond %x 3320 // Where 'cond' will be either 'eq' or 'ne'. 3321 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3322 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3323 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3324 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3325 3326 return T2; 3327 } 3328 3329 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3330 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3331 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3332 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3333 assert(isConstOrConstSplat(N1C) && 3334 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3335 "Should be a comparison with 0."); 3336 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3337 "Valid only for [in]equality comparisons."); 3338 3339 unsigned NewShiftOpcode; 3340 SDValue X, C, Y; 3341 3342 SelectionDAG &DAG = DCI.DAG; 3343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3344 3345 // Look for '(C l>>/<< Y)'. 3346 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3347 // The shift should be one-use. 3348 if (!V.hasOneUse()) 3349 return false; 3350 unsigned OldShiftOpcode = V.getOpcode(); 3351 switch (OldShiftOpcode) { 3352 case ISD::SHL: 3353 NewShiftOpcode = ISD::SRL; 3354 break; 3355 case ISD::SRL: 3356 NewShiftOpcode = ISD::SHL; 3357 break; 3358 default: 3359 return false; // must be a logical shift. 3360 } 3361 // We should be shifting a constant. 3362 // FIXME: best to use isConstantOrConstantVector(). 3363 C = V.getOperand(0); 3364 ConstantSDNode *CC = 3365 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3366 if (!CC) 3367 return false; 3368 Y = V.getOperand(1); 3369 3370 ConstantSDNode *XC = 3371 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3372 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3373 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3374 }; 3375 3376 // LHS of comparison should be an one-use 'and'. 3377 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3378 return SDValue(); 3379 3380 X = N0.getOperand(0); 3381 SDValue Mask = N0.getOperand(1); 3382 3383 // 'and' is commutative! 3384 if (!Match(Mask)) { 3385 std::swap(X, Mask); 3386 if (!Match(Mask)) 3387 return SDValue(); 3388 } 3389 3390 EVT VT = X.getValueType(); 3391 3392 // Produce: 3393 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3394 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3395 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3396 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3397 return T2; 3398 } 3399 3400 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3401 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3402 /// handle the commuted versions of these patterns. 3403 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3404 ISD::CondCode Cond, const SDLoc &DL, 3405 DAGCombinerInfo &DCI) const { 3406 unsigned BOpcode = N0.getOpcode(); 3407 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3408 "Unexpected binop"); 3409 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3410 3411 // (X + Y) == X --> Y == 0 3412 // (X - Y) == X --> Y == 0 3413 // (X ^ Y) == X --> Y == 0 3414 SelectionDAG &DAG = DCI.DAG; 3415 EVT OpVT = N0.getValueType(); 3416 SDValue X = N0.getOperand(0); 3417 SDValue Y = N0.getOperand(1); 3418 if (X == N1) 3419 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3420 3421 if (Y != N1) 3422 return SDValue(); 3423 3424 // (X + Y) == Y --> X == 0 3425 // (X ^ Y) == Y --> X == 0 3426 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3427 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3428 3429 // The shift would not be valid if the operands are boolean (i1). 3430 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3431 return SDValue(); 3432 3433 // (X - Y) == Y --> X == Y << 1 3434 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3435 !DCI.isBeforeLegalize()); 3436 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3437 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3438 if (!DCI.isCalledByLegalizer()) 3439 DCI.AddToWorklist(YShl1.getNode()); 3440 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3441 } 3442 3443 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3444 SDValue N0, const APInt &C1, 3445 ISD::CondCode Cond, const SDLoc &dl, 3446 SelectionDAG &DAG) { 3447 // Look through truncs that don't change the value of a ctpop. 3448 // FIXME: Add vector support? Need to be careful with setcc result type below. 3449 SDValue CTPOP = N0; 3450 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3451 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3452 CTPOP = N0.getOperand(0); 3453 3454 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3455 return SDValue(); 3456 3457 EVT CTVT = CTPOP.getValueType(); 3458 SDValue CTOp = CTPOP.getOperand(0); 3459 3460 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3461 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3462 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3463 return SDValue(); 3464 3465 // (ctpop x) u< 2 -> (x & x-1) == 0 3466 // (ctpop x) u> 1 -> (x & x-1) != 0 3467 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3468 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3469 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3470 return SDValue(); 3471 if (C1 == 0 && (Cond == ISD::SETULT)) 3472 return SDValue(); // This is handled elsewhere. 3473 3474 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3475 3476 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3477 SDValue Result = CTOp; 3478 for (unsigned i = 0; i < Passes; i++) { 3479 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3480 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3481 } 3482 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3483 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3484 } 3485 3486 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3487 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3488 // For scalars, keep CTPOP if it is legal or custom. 3489 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3490 return SDValue(); 3491 // This is based on X86's custom lowering for CTPOP which produces more 3492 // instructions than the expansion here. 3493 3494 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3495 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3496 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3497 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3498 assert(CTVT.isInteger()); 3499 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3500 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3501 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3502 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3503 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3504 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3505 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3506 } 3507 3508 return SDValue(); 3509 } 3510 3511 /// Try to simplify a setcc built with the specified operands and cc. If it is 3512 /// unable to simplify it, return a null SDValue. 3513 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3514 ISD::CondCode Cond, bool foldBooleans, 3515 DAGCombinerInfo &DCI, 3516 const SDLoc &dl) const { 3517 SelectionDAG &DAG = DCI.DAG; 3518 const DataLayout &Layout = DAG.getDataLayout(); 3519 EVT OpVT = N0.getValueType(); 3520 3521 // Constant fold or commute setcc. 3522 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3523 return Fold; 3524 3525 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3526 // TODO: Handle non-splat vector constants. All undef causes trouble. 3527 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3528 // infinite loop here when we encounter one. 3529 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3530 if (isConstOrConstSplat(N0) && 3531 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3532 (DCI.isBeforeLegalizeOps() || 3533 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3534 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3535 3536 // If we have a subtract with the same 2 non-constant operands as this setcc 3537 // -- but in reverse order -- then try to commute the operands of this setcc 3538 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3539 // instruction on some targets. 3540 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3541 (DCI.isBeforeLegalizeOps() || 3542 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3543 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3544 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3545 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3546 3547 if (auto *N1C = isConstOrConstSplat(N1)) { 3548 const APInt &C1 = N1C->getAPIntValue(); 3549 3550 // Optimize some CTPOP cases. 3551 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3552 return V; 3553 3554 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3555 // equality comparison, then we're just comparing whether X itself is 3556 // zero. 3557 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3558 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3559 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3560 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3561 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3562 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3563 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3564 // (srl (ctlz x), 5) == 0 -> X != 0 3565 // (srl (ctlz x), 5) != 1 -> X != 0 3566 Cond = ISD::SETNE; 3567 } else { 3568 // (srl (ctlz x), 5) != 0 -> X == 0 3569 // (srl (ctlz x), 5) == 1 -> X == 0 3570 Cond = ISD::SETEQ; 3571 } 3572 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3573 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3574 Cond); 3575 } 3576 } 3577 } 3578 } 3579 3580 // FIXME: Support vectors. 3581 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3582 const APInt &C1 = N1C->getAPIntValue(); 3583 3584 // (zext x) == C --> x == (trunc C) 3585 // (sext x) == C --> x == (trunc C) 3586 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3587 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3588 unsigned MinBits = N0.getValueSizeInBits(); 3589 SDValue PreExt; 3590 bool Signed = false; 3591 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3592 // ZExt 3593 MinBits = N0->getOperand(0).getValueSizeInBits(); 3594 PreExt = N0->getOperand(0); 3595 } else if (N0->getOpcode() == ISD::AND) { 3596 // DAGCombine turns costly ZExts into ANDs 3597 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3598 if ((C->getAPIntValue()+1).isPowerOf2()) { 3599 MinBits = C->getAPIntValue().countTrailingOnes(); 3600 PreExt = N0->getOperand(0); 3601 } 3602 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3603 // SExt 3604 MinBits = N0->getOperand(0).getValueSizeInBits(); 3605 PreExt = N0->getOperand(0); 3606 Signed = true; 3607 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3608 // ZEXTLOAD / SEXTLOAD 3609 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3610 MinBits = LN0->getMemoryVT().getSizeInBits(); 3611 PreExt = N0; 3612 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3613 Signed = true; 3614 MinBits = LN0->getMemoryVT().getSizeInBits(); 3615 PreExt = N0; 3616 } 3617 } 3618 3619 // Figure out how many bits we need to preserve this constant. 3620 unsigned ReqdBits = Signed ? 3621 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3622 C1.getActiveBits(); 3623 3624 // Make sure we're not losing bits from the constant. 3625 if (MinBits > 0 && 3626 MinBits < C1.getBitWidth() && 3627 MinBits >= ReqdBits) { 3628 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3629 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3630 // Will get folded away. 3631 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3632 if (MinBits == 1 && C1 == 1) 3633 // Invert the condition. 3634 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3635 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3636 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3637 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3638 } 3639 3640 // If truncating the setcc operands is not desirable, we can still 3641 // simplify the expression in some cases: 3642 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3643 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3644 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3645 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3646 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3647 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3648 SDValue TopSetCC = N0->getOperand(0); 3649 unsigned N0Opc = N0->getOpcode(); 3650 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3651 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3652 TopSetCC.getOpcode() == ISD::SETCC && 3653 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3654 (isConstFalseVal(N1C) || 3655 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3656 3657 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3658 (!N1C->isNullValue() && Cond == ISD::SETNE); 3659 3660 if (!Inverse) 3661 return TopSetCC; 3662 3663 ISD::CondCode InvCond = ISD::getSetCCInverse( 3664 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3665 TopSetCC.getOperand(0).getValueType()); 3666 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3667 TopSetCC.getOperand(1), 3668 InvCond); 3669 } 3670 } 3671 } 3672 3673 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3674 // equality or unsigned, and all 1 bits of the const are in the same 3675 // partial word, see if we can shorten the load. 3676 if (DCI.isBeforeLegalize() && 3677 !ISD::isSignedIntSetCC(Cond) && 3678 N0.getOpcode() == ISD::AND && C1 == 0 && 3679 N0.getNode()->hasOneUse() && 3680 isa<LoadSDNode>(N0.getOperand(0)) && 3681 N0.getOperand(0).getNode()->hasOneUse() && 3682 isa<ConstantSDNode>(N0.getOperand(1))) { 3683 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3684 APInt bestMask; 3685 unsigned bestWidth = 0, bestOffset = 0; 3686 if (Lod->isSimple() && Lod->isUnindexed()) { 3687 unsigned origWidth = N0.getValueSizeInBits(); 3688 unsigned maskWidth = origWidth; 3689 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3690 // 8 bits, but have to be careful... 3691 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3692 origWidth = Lod->getMemoryVT().getSizeInBits(); 3693 const APInt &Mask = N0.getConstantOperandAPInt(1); 3694 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3695 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3696 for (unsigned offset=0; offset<origWidth/width; offset++) { 3697 if (Mask.isSubsetOf(newMask)) { 3698 if (Layout.isLittleEndian()) 3699 bestOffset = (uint64_t)offset * (width/8); 3700 else 3701 bestOffset = (origWidth/width - offset - 1) * (width/8); 3702 bestMask = Mask.lshr(offset * (width/8) * 8); 3703 bestWidth = width; 3704 break; 3705 } 3706 newMask <<= width; 3707 } 3708 } 3709 } 3710 if (bestWidth) { 3711 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3712 if (newVT.isRound() && 3713 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3714 SDValue Ptr = Lod->getBasePtr(); 3715 if (bestOffset != 0) 3716 Ptr = 3717 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3718 SDValue NewLoad = 3719 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3720 Lod->getPointerInfo().getWithOffset(bestOffset), 3721 Lod->getOriginalAlign()); 3722 return DAG.getSetCC(dl, VT, 3723 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3724 DAG.getConstant(bestMask.trunc(bestWidth), 3725 dl, newVT)), 3726 DAG.getConstant(0LL, dl, newVT), Cond); 3727 } 3728 } 3729 } 3730 3731 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3732 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3733 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3734 3735 // If the comparison constant has bits in the upper part, the 3736 // zero-extended value could never match. 3737 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3738 C1.getBitWidth() - InSize))) { 3739 switch (Cond) { 3740 case ISD::SETUGT: 3741 case ISD::SETUGE: 3742 case ISD::SETEQ: 3743 return DAG.getConstant(0, dl, VT); 3744 case ISD::SETULT: 3745 case ISD::SETULE: 3746 case ISD::SETNE: 3747 return DAG.getConstant(1, dl, VT); 3748 case ISD::SETGT: 3749 case ISD::SETGE: 3750 // True if the sign bit of C1 is set. 3751 return DAG.getConstant(C1.isNegative(), dl, VT); 3752 case ISD::SETLT: 3753 case ISD::SETLE: 3754 // True if the sign bit of C1 isn't set. 3755 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3756 default: 3757 break; 3758 } 3759 } 3760 3761 // Otherwise, we can perform the comparison with the low bits. 3762 switch (Cond) { 3763 case ISD::SETEQ: 3764 case ISD::SETNE: 3765 case ISD::SETUGT: 3766 case ISD::SETUGE: 3767 case ISD::SETULT: 3768 case ISD::SETULE: { 3769 EVT newVT = N0.getOperand(0).getValueType(); 3770 if (DCI.isBeforeLegalizeOps() || 3771 (isOperationLegal(ISD::SETCC, newVT) && 3772 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3773 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3774 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3775 3776 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3777 NewConst, Cond); 3778 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3779 } 3780 break; 3781 } 3782 default: 3783 break; // todo, be more careful with signed comparisons 3784 } 3785 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3786 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3787 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3788 OpVT)) { 3789 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3790 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3791 EVT ExtDstTy = N0.getValueType(); 3792 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3793 3794 // If the constant doesn't fit into the number of bits for the source of 3795 // the sign extension, it is impossible for both sides to be equal. 3796 if (C1.getMinSignedBits() > ExtSrcTyBits) 3797 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3798 3799 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3800 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3801 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3802 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3803 DAG.getConstant(Imm, dl, ExtDstTy)); 3804 if (!DCI.isCalledByLegalizer()) 3805 DCI.AddToWorklist(ZextOp.getNode()); 3806 // Otherwise, make this a use of a zext. 3807 return DAG.getSetCC(dl, VT, ZextOp, 3808 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3809 } else if ((N1C->isNullValue() || N1C->isOne()) && 3810 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3811 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3812 if (N0.getOpcode() == ISD::SETCC && 3813 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3814 (N0.getValueType() == MVT::i1 || 3815 getBooleanContents(N0.getOperand(0).getValueType()) == 3816 ZeroOrOneBooleanContent)) { 3817 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3818 if (TrueWhenTrue) 3819 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3820 // Invert the condition. 3821 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3822 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3823 if (DCI.isBeforeLegalizeOps() || 3824 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3825 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3826 } 3827 3828 if ((N0.getOpcode() == ISD::XOR || 3829 (N0.getOpcode() == ISD::AND && 3830 N0.getOperand(0).getOpcode() == ISD::XOR && 3831 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3832 isOneConstant(N0.getOperand(1))) { 3833 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3834 // can only do this if the top bits are known zero. 3835 unsigned BitWidth = N0.getValueSizeInBits(); 3836 if (DAG.MaskedValueIsZero(N0, 3837 APInt::getHighBitsSet(BitWidth, 3838 BitWidth-1))) { 3839 // Okay, get the un-inverted input value. 3840 SDValue Val; 3841 if (N0.getOpcode() == ISD::XOR) { 3842 Val = N0.getOperand(0); 3843 } else { 3844 assert(N0.getOpcode() == ISD::AND && 3845 N0.getOperand(0).getOpcode() == ISD::XOR); 3846 // ((X^1)&1)^1 -> X & 1 3847 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3848 N0.getOperand(0).getOperand(0), 3849 N0.getOperand(1)); 3850 } 3851 3852 return DAG.getSetCC(dl, VT, Val, N1, 3853 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3854 } 3855 } else if (N1C->isOne()) { 3856 SDValue Op0 = N0; 3857 if (Op0.getOpcode() == ISD::TRUNCATE) 3858 Op0 = Op0.getOperand(0); 3859 3860 if ((Op0.getOpcode() == ISD::XOR) && 3861 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3862 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3863 SDValue XorLHS = Op0.getOperand(0); 3864 SDValue XorRHS = Op0.getOperand(1); 3865 // Ensure that the input setccs return an i1 type or 0/1 value. 3866 if (Op0.getValueType() == MVT::i1 || 3867 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3868 ZeroOrOneBooleanContent && 3869 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3870 ZeroOrOneBooleanContent)) { 3871 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3872 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3873 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3874 } 3875 } 3876 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3877 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3878 if (Op0.getValueType().bitsGT(VT)) 3879 Op0 = DAG.getNode(ISD::AND, dl, VT, 3880 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3881 DAG.getConstant(1, dl, VT)); 3882 else if (Op0.getValueType().bitsLT(VT)) 3883 Op0 = DAG.getNode(ISD::AND, dl, VT, 3884 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3885 DAG.getConstant(1, dl, VT)); 3886 3887 return DAG.getSetCC(dl, VT, Op0, 3888 DAG.getConstant(0, dl, Op0.getValueType()), 3889 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3890 } 3891 if (Op0.getOpcode() == ISD::AssertZext && 3892 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3893 return DAG.getSetCC(dl, VT, Op0, 3894 DAG.getConstant(0, dl, Op0.getValueType()), 3895 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3896 } 3897 } 3898 3899 // Given: 3900 // icmp eq/ne (urem %x, %y), 0 3901 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3902 // icmp eq/ne %x, 0 3903 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3904 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3905 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3906 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3907 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3908 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3909 } 3910 3911 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3912 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3913 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3914 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3915 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3916 N1C && N1C->isAllOnesValue()) { 3917 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3918 DAG.getConstant(0, dl, OpVT), 3919 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3920 } 3921 3922 if (SDValue V = 3923 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3924 return V; 3925 } 3926 3927 // These simplifications apply to splat vectors as well. 3928 // TODO: Handle more splat vector cases. 3929 if (auto *N1C = isConstOrConstSplat(N1)) { 3930 const APInt &C1 = N1C->getAPIntValue(); 3931 3932 APInt MinVal, MaxVal; 3933 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3934 if (ISD::isSignedIntSetCC(Cond)) { 3935 MinVal = APInt::getSignedMinValue(OperandBitSize); 3936 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3937 } else { 3938 MinVal = APInt::getMinValue(OperandBitSize); 3939 MaxVal = APInt::getMaxValue(OperandBitSize); 3940 } 3941 3942 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3943 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3944 // X >= MIN --> true 3945 if (C1 == MinVal) 3946 return DAG.getBoolConstant(true, dl, VT, OpVT); 3947 3948 if (!VT.isVector()) { // TODO: Support this for vectors. 3949 // X >= C0 --> X > (C0 - 1) 3950 APInt C = C1 - 1; 3951 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3952 if ((DCI.isBeforeLegalizeOps() || 3953 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3954 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3955 isLegalICmpImmediate(C.getSExtValue())))) { 3956 return DAG.getSetCC(dl, VT, N0, 3957 DAG.getConstant(C, dl, N1.getValueType()), 3958 NewCC); 3959 } 3960 } 3961 } 3962 3963 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3964 // X <= MAX --> true 3965 if (C1 == MaxVal) 3966 return DAG.getBoolConstant(true, dl, VT, OpVT); 3967 3968 // X <= C0 --> X < (C0 + 1) 3969 if (!VT.isVector()) { // TODO: Support this for vectors. 3970 APInt C = C1 + 1; 3971 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3972 if ((DCI.isBeforeLegalizeOps() || 3973 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3974 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3975 isLegalICmpImmediate(C.getSExtValue())))) { 3976 return DAG.getSetCC(dl, VT, N0, 3977 DAG.getConstant(C, dl, N1.getValueType()), 3978 NewCC); 3979 } 3980 } 3981 } 3982 3983 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3984 if (C1 == MinVal) 3985 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3986 3987 // TODO: Support this for vectors after legalize ops. 3988 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3989 // Canonicalize setlt X, Max --> setne X, Max 3990 if (C1 == MaxVal) 3991 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3992 3993 // If we have setult X, 1, turn it into seteq X, 0 3994 if (C1 == MinVal+1) 3995 return DAG.getSetCC(dl, VT, N0, 3996 DAG.getConstant(MinVal, dl, N0.getValueType()), 3997 ISD::SETEQ); 3998 } 3999 } 4000 4001 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4002 if (C1 == MaxVal) 4003 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4004 4005 // TODO: Support this for vectors after legalize ops. 4006 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4007 // Canonicalize setgt X, Min --> setne X, Min 4008 if (C1 == MinVal) 4009 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4010 4011 // If we have setugt X, Max-1, turn it into seteq X, Max 4012 if (C1 == MaxVal-1) 4013 return DAG.getSetCC(dl, VT, N0, 4014 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4015 ISD::SETEQ); 4016 } 4017 } 4018 4019 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4020 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4021 if (C1.isZero()) 4022 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4023 VT, N0, N1, Cond, DCI, dl)) 4024 return CC; 4025 4026 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4027 // For example, when high 32-bits of i64 X are known clear: 4028 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4029 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4030 bool CmpZero = N1C->getAPIntValue().isNullValue(); 4031 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4032 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4033 // Match or(lo,shl(hi,bw/2)) pattern. 4034 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4035 unsigned EltBits = V.getScalarValueSizeInBits(); 4036 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4037 return false; 4038 SDValue LHS = V.getOperand(0); 4039 SDValue RHS = V.getOperand(1); 4040 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4041 // Unshifted element must have zero upperbits. 4042 if (RHS.getOpcode() == ISD::SHL && 4043 isa<ConstantSDNode>(RHS.getOperand(1)) && 4044 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4045 DAG.MaskedValueIsZero(LHS, HiBits)) { 4046 Lo = LHS; 4047 Hi = RHS.getOperand(0); 4048 return true; 4049 } 4050 if (LHS.getOpcode() == ISD::SHL && 4051 isa<ConstantSDNode>(LHS.getOperand(1)) && 4052 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4053 DAG.MaskedValueIsZero(RHS, HiBits)) { 4054 Lo = RHS; 4055 Hi = LHS.getOperand(0); 4056 return true; 4057 } 4058 return false; 4059 }; 4060 4061 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4062 unsigned EltBits = N0.getScalarValueSizeInBits(); 4063 unsigned HalfBits = EltBits / 2; 4064 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4065 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4066 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4067 SDValue NewN0 = 4068 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4069 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4070 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4071 }; 4072 4073 SDValue Lo, Hi; 4074 if (IsConcat(N0, Lo, Hi)) 4075 return MergeConcat(Lo, Hi); 4076 4077 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4078 SDValue Lo0, Lo1, Hi0, Hi1; 4079 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4080 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4081 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4082 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4083 } 4084 } 4085 } 4086 } 4087 4088 // If we have "setcc X, C0", check to see if we can shrink the immediate 4089 // by changing cc. 4090 // TODO: Support this for vectors after legalize ops. 4091 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4092 // SETUGT X, SINTMAX -> SETLT X, 0 4093 // SETUGE X, SINTMIN -> SETLT X, 0 4094 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4095 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4096 return DAG.getSetCC(dl, VT, N0, 4097 DAG.getConstant(0, dl, N1.getValueType()), 4098 ISD::SETLT); 4099 4100 // SETULT X, SINTMIN -> SETGT X, -1 4101 // SETULE X, SINTMAX -> SETGT X, -1 4102 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4103 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4104 return DAG.getSetCC(dl, VT, N0, 4105 DAG.getAllOnesConstant(dl, N1.getValueType()), 4106 ISD::SETGT); 4107 } 4108 } 4109 4110 // Back to non-vector simplifications. 4111 // TODO: Can we do these for vector splats? 4112 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4114 const APInt &C1 = N1C->getAPIntValue(); 4115 EVT ShValTy = N0.getValueType(); 4116 4117 // Fold bit comparisons when we can. This will result in an 4118 // incorrect value when boolean false is negative one, unless 4119 // the bitsize is 1 in which case the false value is the same 4120 // in practice regardless of the representation. 4121 if ((VT.getSizeInBits() == 1 || 4122 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4123 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4124 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4125 N0.getOpcode() == ISD::AND) { 4126 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4127 EVT ShiftTy = 4128 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4129 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4130 // Perform the xform if the AND RHS is a single bit. 4131 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4132 if (AndRHS->getAPIntValue().isPowerOf2() && 4133 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4134 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4135 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4136 DAG.getConstant(ShCt, dl, ShiftTy))); 4137 } 4138 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4139 // (X & 8) == 8 --> (X & 8) >> 3 4140 // Perform the xform if C1 is a single bit. 4141 unsigned ShCt = C1.logBase2(); 4142 if (C1.isPowerOf2() && 4143 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4144 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4145 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4146 DAG.getConstant(ShCt, dl, ShiftTy))); 4147 } 4148 } 4149 } 4150 } 4151 4152 if (C1.getMinSignedBits() <= 64 && 4153 !isLegalICmpImmediate(C1.getSExtValue())) { 4154 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4155 // (X & -256) == 256 -> (X >> 8) == 1 4156 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4157 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4158 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4159 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4160 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4161 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4162 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4163 SDValue Shift = 4164 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4165 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4166 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4167 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4168 } 4169 } 4170 } 4171 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4172 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4173 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4174 // X < 0x100000000 -> (X >> 32) < 1 4175 // X >= 0x100000000 -> (X >> 32) >= 1 4176 // X <= 0x0ffffffff -> (X >> 32) < 1 4177 // X > 0x0ffffffff -> (X >> 32) >= 1 4178 unsigned ShiftBits; 4179 APInt NewC = C1; 4180 ISD::CondCode NewCond = Cond; 4181 if (AdjOne) { 4182 ShiftBits = C1.countTrailingOnes(); 4183 NewC = NewC + 1; 4184 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4185 } else { 4186 ShiftBits = C1.countTrailingZeros(); 4187 } 4188 NewC.lshrInPlace(ShiftBits); 4189 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4190 isLegalICmpImmediate(NewC.getSExtValue()) && 4191 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4192 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4193 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4194 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4195 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4196 } 4197 } 4198 } 4199 } 4200 4201 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4202 auto *CFP = cast<ConstantFPSDNode>(N1); 4203 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4204 4205 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4206 // constant if knowing that the operand is non-nan is enough. We prefer to 4207 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4208 // materialize 0.0. 4209 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4210 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4211 4212 // setcc (fneg x), C -> setcc swap(pred) x, -C 4213 if (N0.getOpcode() == ISD::FNEG) { 4214 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4215 if (DCI.isBeforeLegalizeOps() || 4216 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4217 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4218 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4219 } 4220 } 4221 4222 // If the condition is not legal, see if we can find an equivalent one 4223 // which is legal. 4224 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4225 // If the comparison was an awkward floating-point == or != and one of 4226 // the comparison operands is infinity or negative infinity, convert the 4227 // condition to a less-awkward <= or >=. 4228 if (CFP->getValueAPF().isInfinity()) { 4229 bool IsNegInf = CFP->getValueAPF().isNegative(); 4230 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4231 switch (Cond) { 4232 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4233 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4234 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4235 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4236 default: break; 4237 } 4238 if (NewCond != ISD::SETCC_INVALID && 4239 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4240 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4241 } 4242 } 4243 } 4244 4245 if (N0 == N1) { 4246 // The sext(setcc()) => setcc() optimization relies on the appropriate 4247 // constant being emitted. 4248 assert(!N0.getValueType().isInteger() && 4249 "Integer types should be handled by FoldSetCC"); 4250 4251 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4252 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4253 if (UOF == 2) // FP operators that are undefined on NaNs. 4254 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4255 if (UOF == unsigned(EqTrue)) 4256 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4257 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4258 // if it is not already. 4259 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4260 if (NewCond != Cond && 4261 (DCI.isBeforeLegalizeOps() || 4262 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4263 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4264 } 4265 4266 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4267 N0.getValueType().isInteger()) { 4268 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4269 N0.getOpcode() == ISD::XOR) { 4270 // Simplify (X+Y) == (X+Z) --> Y == Z 4271 if (N0.getOpcode() == N1.getOpcode()) { 4272 if (N0.getOperand(0) == N1.getOperand(0)) 4273 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4274 if (N0.getOperand(1) == N1.getOperand(1)) 4275 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4276 if (isCommutativeBinOp(N0.getOpcode())) { 4277 // If X op Y == Y op X, try other combinations. 4278 if (N0.getOperand(0) == N1.getOperand(1)) 4279 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4280 Cond); 4281 if (N0.getOperand(1) == N1.getOperand(0)) 4282 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4283 Cond); 4284 } 4285 } 4286 4287 // If RHS is a legal immediate value for a compare instruction, we need 4288 // to be careful about increasing register pressure needlessly. 4289 bool LegalRHSImm = false; 4290 4291 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4292 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4293 // Turn (X+C1) == C2 --> X == C2-C1 4294 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4295 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4296 DAG.getConstant(RHSC->getAPIntValue()- 4297 LHSR->getAPIntValue(), 4298 dl, N0.getValueType()), Cond); 4299 } 4300 4301 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4302 if (N0.getOpcode() == ISD::XOR) 4303 // If we know that all of the inverted bits are zero, don't bother 4304 // performing the inversion. 4305 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4306 return 4307 DAG.getSetCC(dl, VT, N0.getOperand(0), 4308 DAG.getConstant(LHSR->getAPIntValue() ^ 4309 RHSC->getAPIntValue(), 4310 dl, N0.getValueType()), 4311 Cond); 4312 } 4313 4314 // Turn (C1-X) == C2 --> X == C1-C2 4315 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4316 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4317 return 4318 DAG.getSetCC(dl, VT, N0.getOperand(1), 4319 DAG.getConstant(SUBC->getAPIntValue() - 4320 RHSC->getAPIntValue(), 4321 dl, N0.getValueType()), 4322 Cond); 4323 } 4324 } 4325 4326 // Could RHSC fold directly into a compare? 4327 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4328 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4329 } 4330 4331 // (X+Y) == X --> Y == 0 and similar folds. 4332 // Don't do this if X is an immediate that can fold into a cmp 4333 // instruction and X+Y has other uses. It could be an induction variable 4334 // chain, and the transform would increase register pressure. 4335 if (!LegalRHSImm || N0.hasOneUse()) 4336 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4337 return V; 4338 } 4339 4340 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4341 N1.getOpcode() == ISD::XOR) 4342 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4343 return V; 4344 4345 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4346 return V; 4347 } 4348 4349 // Fold remainder of division by a constant. 4350 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4351 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4352 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4353 4354 // When division is cheap or optimizing for minimum size, 4355 // fall through to DIVREM creation by skipping this fold. 4356 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4357 if (N0.getOpcode() == ISD::UREM) { 4358 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4359 return Folded; 4360 } else if (N0.getOpcode() == ISD::SREM) { 4361 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4362 return Folded; 4363 } 4364 } 4365 } 4366 4367 // Fold away ALL boolean setcc's. 4368 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4369 SDValue Temp; 4370 switch (Cond) { 4371 default: llvm_unreachable("Unknown integer setcc!"); 4372 case ISD::SETEQ: // X == Y -> ~(X^Y) 4373 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4374 N0 = DAG.getNOT(dl, Temp, OpVT); 4375 if (!DCI.isCalledByLegalizer()) 4376 DCI.AddToWorklist(Temp.getNode()); 4377 break; 4378 case ISD::SETNE: // X != Y --> (X^Y) 4379 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4380 break; 4381 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4382 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4383 Temp = DAG.getNOT(dl, N0, OpVT); 4384 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4385 if (!DCI.isCalledByLegalizer()) 4386 DCI.AddToWorklist(Temp.getNode()); 4387 break; 4388 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4389 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4390 Temp = DAG.getNOT(dl, N1, OpVT); 4391 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4392 if (!DCI.isCalledByLegalizer()) 4393 DCI.AddToWorklist(Temp.getNode()); 4394 break; 4395 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4396 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4397 Temp = DAG.getNOT(dl, N0, OpVT); 4398 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4399 if (!DCI.isCalledByLegalizer()) 4400 DCI.AddToWorklist(Temp.getNode()); 4401 break; 4402 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4403 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4404 Temp = DAG.getNOT(dl, N1, OpVT); 4405 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4406 break; 4407 } 4408 if (VT.getScalarType() != MVT::i1) { 4409 if (!DCI.isCalledByLegalizer()) 4410 DCI.AddToWorklist(N0.getNode()); 4411 // FIXME: If running after legalize, we probably can't do this. 4412 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4413 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4414 } 4415 return N0; 4416 } 4417 4418 // Could not fold it. 4419 return SDValue(); 4420 } 4421 4422 /// Returns true (and the GlobalValue and the offset) if the node is a 4423 /// GlobalAddress + offset. 4424 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4425 int64_t &Offset) const { 4426 4427 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4428 4429 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4430 GA = GASD->getGlobal(); 4431 Offset += GASD->getOffset(); 4432 return true; 4433 } 4434 4435 if (N->getOpcode() == ISD::ADD) { 4436 SDValue N1 = N->getOperand(0); 4437 SDValue N2 = N->getOperand(1); 4438 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4439 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4440 Offset += V->getSExtValue(); 4441 return true; 4442 } 4443 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4444 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4445 Offset += V->getSExtValue(); 4446 return true; 4447 } 4448 } 4449 } 4450 4451 return false; 4452 } 4453 4454 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4455 DAGCombinerInfo &DCI) const { 4456 // Default implementation: no optimization. 4457 return SDValue(); 4458 } 4459 4460 //===----------------------------------------------------------------------===// 4461 // Inline Assembler Implementation Methods 4462 //===----------------------------------------------------------------------===// 4463 4464 TargetLowering::ConstraintType 4465 TargetLowering::getConstraintType(StringRef Constraint) const { 4466 unsigned S = Constraint.size(); 4467 4468 if (S == 1) { 4469 switch (Constraint[0]) { 4470 default: break; 4471 case 'r': 4472 return C_RegisterClass; 4473 case 'm': // memory 4474 case 'o': // offsetable 4475 case 'V': // not offsetable 4476 return C_Memory; 4477 case 'n': // Simple Integer 4478 case 'E': // Floating Point Constant 4479 case 'F': // Floating Point Constant 4480 return C_Immediate; 4481 case 'i': // Simple Integer or Relocatable Constant 4482 case 's': // Relocatable Constant 4483 case 'p': // Address. 4484 case 'X': // Allow ANY value. 4485 case 'I': // Target registers. 4486 case 'J': 4487 case 'K': 4488 case 'L': 4489 case 'M': 4490 case 'N': 4491 case 'O': 4492 case 'P': 4493 case '<': 4494 case '>': 4495 return C_Other; 4496 } 4497 } 4498 4499 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4500 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4501 return C_Memory; 4502 return C_Register; 4503 } 4504 return C_Unknown; 4505 } 4506 4507 /// Try to replace an X constraint, which matches anything, with another that 4508 /// has more specific requirements based on the type of the corresponding 4509 /// operand. 4510 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4511 if (ConstraintVT.isInteger()) 4512 return "r"; 4513 if (ConstraintVT.isFloatingPoint()) 4514 return "f"; // works for many targets 4515 return nullptr; 4516 } 4517 4518 SDValue TargetLowering::LowerAsmOutputForConstraint( 4519 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4520 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4521 return SDValue(); 4522 } 4523 4524 /// Lower the specified operand into the Ops vector. 4525 /// If it is invalid, don't add anything to Ops. 4526 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4527 std::string &Constraint, 4528 std::vector<SDValue> &Ops, 4529 SelectionDAG &DAG) const { 4530 4531 if (Constraint.length() > 1) return; 4532 4533 char ConstraintLetter = Constraint[0]; 4534 switch (ConstraintLetter) { 4535 default: break; 4536 case 'X': // Allows any operand; labels (basic block) use this. 4537 if (Op.getOpcode() == ISD::BasicBlock || 4538 Op.getOpcode() == ISD::TargetBlockAddress) { 4539 Ops.push_back(Op); 4540 return; 4541 } 4542 LLVM_FALLTHROUGH; 4543 case 'i': // Simple Integer or Relocatable Constant 4544 case 'n': // Simple Integer 4545 case 's': { // Relocatable Constant 4546 4547 GlobalAddressSDNode *GA; 4548 ConstantSDNode *C; 4549 BlockAddressSDNode *BA; 4550 uint64_t Offset = 0; 4551 4552 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4553 // etc., since getelementpointer is variadic. We can't use 4554 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4555 // while in this case the GA may be furthest from the root node which is 4556 // likely an ISD::ADD. 4557 while (1) { 4558 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4559 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4560 GA->getValueType(0), 4561 Offset + GA->getOffset())); 4562 return; 4563 } 4564 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4565 // gcc prints these as sign extended. Sign extend value to 64 bits 4566 // now; without this it would get ZExt'd later in 4567 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4568 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4569 BooleanContent BCont = getBooleanContents(MVT::i64); 4570 ISD::NodeType ExtOpc = 4571 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4572 int64_t ExtVal = 4573 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4574 Ops.push_back( 4575 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4576 return; 4577 } 4578 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4579 Ops.push_back(DAG.getTargetBlockAddress( 4580 BA->getBlockAddress(), BA->getValueType(0), 4581 Offset + BA->getOffset(), BA->getTargetFlags())); 4582 return; 4583 } 4584 const unsigned OpCode = Op.getOpcode(); 4585 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4586 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4587 Op = Op.getOperand(1); 4588 // Subtraction is not commutative. 4589 else if (OpCode == ISD::ADD && 4590 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4591 Op = Op.getOperand(0); 4592 else 4593 return; 4594 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4595 continue; 4596 } 4597 return; 4598 } 4599 break; 4600 } 4601 } 4602 } 4603 4604 std::pair<unsigned, const TargetRegisterClass *> 4605 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4606 StringRef Constraint, 4607 MVT VT) const { 4608 if (Constraint.empty() || Constraint[0] != '{') 4609 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4610 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4611 4612 // Remove the braces from around the name. 4613 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4614 4615 std::pair<unsigned, const TargetRegisterClass *> R = 4616 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4617 4618 // Figure out which register class contains this reg. 4619 for (const TargetRegisterClass *RC : RI->regclasses()) { 4620 // If none of the value types for this register class are valid, we 4621 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4622 if (!isLegalRC(*RI, *RC)) 4623 continue; 4624 4625 for (const MCPhysReg &PR : *RC) { 4626 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4627 std::pair<unsigned, const TargetRegisterClass *> S = 4628 std::make_pair(PR, RC); 4629 4630 // If this register class has the requested value type, return it, 4631 // otherwise keep searching and return the first class found 4632 // if no other is found which explicitly has the requested type. 4633 if (RI->isTypeLegalForClass(*RC, VT)) 4634 return S; 4635 if (!R.second) 4636 R = S; 4637 } 4638 } 4639 } 4640 4641 return R; 4642 } 4643 4644 //===----------------------------------------------------------------------===// 4645 // Constraint Selection. 4646 4647 /// Return true of this is an input operand that is a matching constraint like 4648 /// "4". 4649 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4650 assert(!ConstraintCode.empty() && "No known constraint!"); 4651 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4652 } 4653 4654 /// If this is an input matching constraint, this method returns the output 4655 /// operand it matches. 4656 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4657 assert(!ConstraintCode.empty() && "No known constraint!"); 4658 return atoi(ConstraintCode.c_str()); 4659 } 4660 4661 /// Split up the constraint string from the inline assembly value into the 4662 /// specific constraints and their prefixes, and also tie in the associated 4663 /// operand values. 4664 /// If this returns an empty vector, and if the constraint string itself 4665 /// isn't empty, there was an error parsing. 4666 TargetLowering::AsmOperandInfoVector 4667 TargetLowering::ParseConstraints(const DataLayout &DL, 4668 const TargetRegisterInfo *TRI, 4669 const CallBase &Call) const { 4670 /// Information about all of the constraints. 4671 AsmOperandInfoVector ConstraintOperands; 4672 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4673 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4674 4675 // Do a prepass over the constraints, canonicalizing them, and building up the 4676 // ConstraintOperands list. 4677 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4678 unsigned ResNo = 0; // ResNo - The result number of the next output. 4679 4680 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4681 ConstraintOperands.emplace_back(std::move(CI)); 4682 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4683 4684 // Update multiple alternative constraint count. 4685 if (OpInfo.multipleAlternatives.size() > maCount) 4686 maCount = OpInfo.multipleAlternatives.size(); 4687 4688 OpInfo.ConstraintVT = MVT::Other; 4689 4690 // Compute the value type for each operand. 4691 switch (OpInfo.Type) { 4692 case InlineAsm::isOutput: 4693 // Indirect outputs just consume an argument. 4694 if (OpInfo.isIndirect) { 4695 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4696 break; 4697 } 4698 4699 // The return value of the call is this value. As such, there is no 4700 // corresponding argument. 4701 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4702 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4703 OpInfo.ConstraintVT = 4704 getSimpleValueType(DL, STy->getElementType(ResNo)); 4705 } else { 4706 assert(ResNo == 0 && "Asm only has one result!"); 4707 OpInfo.ConstraintVT = 4708 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4709 } 4710 ++ResNo; 4711 break; 4712 case InlineAsm::isInput: 4713 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4714 break; 4715 case InlineAsm::isClobber: 4716 // Nothing to do. 4717 break; 4718 } 4719 4720 if (OpInfo.CallOperandVal) { 4721 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4722 if (OpInfo.isIndirect) { 4723 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4724 if (!PtrTy) 4725 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4726 OpTy = PtrTy->getElementType(); 4727 } 4728 4729 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4730 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4731 if (STy->getNumElements() == 1) 4732 OpTy = STy->getElementType(0); 4733 4734 // If OpTy is not a single value, it may be a struct/union that we 4735 // can tile with integers. 4736 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4737 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4738 switch (BitSize) { 4739 default: break; 4740 case 1: 4741 case 8: 4742 case 16: 4743 case 32: 4744 case 64: 4745 case 128: 4746 OpInfo.ConstraintVT = 4747 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4748 break; 4749 } 4750 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4751 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4752 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4753 } else { 4754 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4755 } 4756 } 4757 } 4758 4759 // If we have multiple alternative constraints, select the best alternative. 4760 if (!ConstraintOperands.empty()) { 4761 if (maCount) { 4762 unsigned bestMAIndex = 0; 4763 int bestWeight = -1; 4764 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4765 int weight = -1; 4766 unsigned maIndex; 4767 // Compute the sums of the weights for each alternative, keeping track 4768 // of the best (highest weight) one so far. 4769 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4770 int weightSum = 0; 4771 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4772 cIndex != eIndex; ++cIndex) { 4773 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4774 if (OpInfo.Type == InlineAsm::isClobber) 4775 continue; 4776 4777 // If this is an output operand with a matching input operand, 4778 // look up the matching input. If their types mismatch, e.g. one 4779 // is an integer, the other is floating point, or their sizes are 4780 // different, flag it as an maCantMatch. 4781 if (OpInfo.hasMatchingInput()) { 4782 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4783 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4784 if ((OpInfo.ConstraintVT.isInteger() != 4785 Input.ConstraintVT.isInteger()) || 4786 (OpInfo.ConstraintVT.getSizeInBits() != 4787 Input.ConstraintVT.getSizeInBits())) { 4788 weightSum = -1; // Can't match. 4789 break; 4790 } 4791 } 4792 } 4793 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4794 if (weight == -1) { 4795 weightSum = -1; 4796 break; 4797 } 4798 weightSum += weight; 4799 } 4800 // Update best. 4801 if (weightSum > bestWeight) { 4802 bestWeight = weightSum; 4803 bestMAIndex = maIndex; 4804 } 4805 } 4806 4807 // Now select chosen alternative in each constraint. 4808 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4809 cIndex != eIndex; ++cIndex) { 4810 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4811 if (cInfo.Type == InlineAsm::isClobber) 4812 continue; 4813 cInfo.selectAlternative(bestMAIndex); 4814 } 4815 } 4816 } 4817 4818 // Check and hook up tied operands, choose constraint code to use. 4819 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4820 cIndex != eIndex; ++cIndex) { 4821 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4822 4823 // If this is an output operand with a matching input operand, look up the 4824 // matching input. If their types mismatch, e.g. one is an integer, the 4825 // other is floating point, or their sizes are different, flag it as an 4826 // error. 4827 if (OpInfo.hasMatchingInput()) { 4828 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4829 4830 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4831 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4832 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4833 OpInfo.ConstraintVT); 4834 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4835 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4836 Input.ConstraintVT); 4837 if ((OpInfo.ConstraintVT.isInteger() != 4838 Input.ConstraintVT.isInteger()) || 4839 (MatchRC.second != InputRC.second)) { 4840 report_fatal_error("Unsupported asm: input constraint" 4841 " with a matching output constraint of" 4842 " incompatible type!"); 4843 } 4844 } 4845 } 4846 } 4847 4848 return ConstraintOperands; 4849 } 4850 4851 /// Return an integer indicating how general CT is. 4852 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4853 switch (CT) { 4854 case TargetLowering::C_Immediate: 4855 case TargetLowering::C_Other: 4856 case TargetLowering::C_Unknown: 4857 return 0; 4858 case TargetLowering::C_Register: 4859 return 1; 4860 case TargetLowering::C_RegisterClass: 4861 return 2; 4862 case TargetLowering::C_Memory: 4863 return 3; 4864 } 4865 llvm_unreachable("Invalid constraint type"); 4866 } 4867 4868 /// Examine constraint type and operand type and determine a weight value. 4869 /// This object must already have been set up with the operand type 4870 /// and the current alternative constraint selected. 4871 TargetLowering::ConstraintWeight 4872 TargetLowering::getMultipleConstraintMatchWeight( 4873 AsmOperandInfo &info, int maIndex) const { 4874 InlineAsm::ConstraintCodeVector *rCodes; 4875 if (maIndex >= (int)info.multipleAlternatives.size()) 4876 rCodes = &info.Codes; 4877 else 4878 rCodes = &info.multipleAlternatives[maIndex].Codes; 4879 ConstraintWeight BestWeight = CW_Invalid; 4880 4881 // Loop over the options, keeping track of the most general one. 4882 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4883 ConstraintWeight weight = 4884 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4885 if (weight > BestWeight) 4886 BestWeight = weight; 4887 } 4888 4889 return BestWeight; 4890 } 4891 4892 /// Examine constraint type and operand type and determine a weight value. 4893 /// This object must already have been set up with the operand type 4894 /// and the current alternative constraint selected. 4895 TargetLowering::ConstraintWeight 4896 TargetLowering::getSingleConstraintMatchWeight( 4897 AsmOperandInfo &info, const char *constraint) const { 4898 ConstraintWeight weight = CW_Invalid; 4899 Value *CallOperandVal = info.CallOperandVal; 4900 // If we don't have a value, we can't do a match, 4901 // but allow it at the lowest weight. 4902 if (!CallOperandVal) 4903 return CW_Default; 4904 // Look at the constraint type. 4905 switch (*constraint) { 4906 case 'i': // immediate integer. 4907 case 'n': // immediate integer with a known value. 4908 if (isa<ConstantInt>(CallOperandVal)) 4909 weight = CW_Constant; 4910 break; 4911 case 's': // non-explicit intregal immediate. 4912 if (isa<GlobalValue>(CallOperandVal)) 4913 weight = CW_Constant; 4914 break; 4915 case 'E': // immediate float if host format. 4916 case 'F': // immediate float. 4917 if (isa<ConstantFP>(CallOperandVal)) 4918 weight = CW_Constant; 4919 break; 4920 case '<': // memory operand with autodecrement. 4921 case '>': // memory operand with autoincrement. 4922 case 'm': // memory operand. 4923 case 'o': // offsettable memory operand 4924 case 'V': // non-offsettable memory operand 4925 weight = CW_Memory; 4926 break; 4927 case 'r': // general register. 4928 case 'g': // general register, memory operand or immediate integer. 4929 // note: Clang converts "g" to "imr". 4930 if (CallOperandVal->getType()->isIntegerTy()) 4931 weight = CW_Register; 4932 break; 4933 case 'X': // any operand. 4934 default: 4935 weight = CW_Default; 4936 break; 4937 } 4938 return weight; 4939 } 4940 4941 /// If there are multiple different constraints that we could pick for this 4942 /// operand (e.g. "imr") try to pick the 'best' one. 4943 /// This is somewhat tricky: constraints fall into four classes: 4944 /// Other -> immediates and magic values 4945 /// Register -> one specific register 4946 /// RegisterClass -> a group of regs 4947 /// Memory -> memory 4948 /// Ideally, we would pick the most specific constraint possible: if we have 4949 /// something that fits into a register, we would pick it. The problem here 4950 /// is that if we have something that could either be in a register or in 4951 /// memory that use of the register could cause selection of *other* 4952 /// operands to fail: they might only succeed if we pick memory. Because of 4953 /// this the heuristic we use is: 4954 /// 4955 /// 1) If there is an 'other' constraint, and if the operand is valid for 4956 /// that constraint, use it. This makes us take advantage of 'i' 4957 /// constraints when available. 4958 /// 2) Otherwise, pick the most general constraint present. This prefers 4959 /// 'm' over 'r', for example. 4960 /// 4961 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4962 const TargetLowering &TLI, 4963 SDValue Op, SelectionDAG *DAG) { 4964 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4965 unsigned BestIdx = 0; 4966 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4967 int BestGenerality = -1; 4968 4969 // Loop over the options, keeping track of the most general one. 4970 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4971 TargetLowering::ConstraintType CType = 4972 TLI.getConstraintType(OpInfo.Codes[i]); 4973 4974 // Indirect 'other' or 'immediate' constraints are not allowed. 4975 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4976 CType == TargetLowering::C_Register || 4977 CType == TargetLowering::C_RegisterClass)) 4978 continue; 4979 4980 // If this is an 'other' or 'immediate' constraint, see if the operand is 4981 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4982 // the operand is an integer in the range [0..31] we want to use I (saving a 4983 // load of a register), otherwise we must use 'r'. 4984 if ((CType == TargetLowering::C_Other || 4985 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4986 assert(OpInfo.Codes[i].size() == 1 && 4987 "Unhandled multi-letter 'other' constraint"); 4988 std::vector<SDValue> ResultOps; 4989 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4990 ResultOps, *DAG); 4991 if (!ResultOps.empty()) { 4992 BestType = CType; 4993 BestIdx = i; 4994 break; 4995 } 4996 } 4997 4998 // Things with matching constraints can only be registers, per gcc 4999 // documentation. This mainly affects "g" constraints. 5000 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5001 continue; 5002 5003 // This constraint letter is more general than the previous one, use it. 5004 int Generality = getConstraintGenerality(CType); 5005 if (Generality > BestGenerality) { 5006 BestType = CType; 5007 BestIdx = i; 5008 BestGenerality = Generality; 5009 } 5010 } 5011 5012 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5013 OpInfo.ConstraintType = BestType; 5014 } 5015 5016 /// Determines the constraint code and constraint type to use for the specific 5017 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5018 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5019 SDValue Op, 5020 SelectionDAG *DAG) const { 5021 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5022 5023 // Single-letter constraints ('r') are very common. 5024 if (OpInfo.Codes.size() == 1) { 5025 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5026 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5027 } else { 5028 ChooseConstraint(OpInfo, *this, Op, DAG); 5029 } 5030 5031 // 'X' matches anything. 5032 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5033 // Labels and constants are handled elsewhere ('X' is the only thing 5034 // that matches labels). For Functions, the type here is the type of 5035 // the result, which is not what we want to look at; leave them alone. 5036 Value *v = OpInfo.CallOperandVal; 5037 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5038 OpInfo.CallOperandVal = v; 5039 return; 5040 } 5041 5042 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5043 return; 5044 5045 // Otherwise, try to resolve it to something we know about by looking at 5046 // the actual operand type. 5047 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5048 OpInfo.ConstraintCode = Repl; 5049 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5050 } 5051 } 5052 } 5053 5054 /// Given an exact SDIV by a constant, create a multiplication 5055 /// with the multiplicative inverse of the constant. 5056 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5057 const SDLoc &dl, SelectionDAG &DAG, 5058 SmallVectorImpl<SDNode *> &Created) { 5059 SDValue Op0 = N->getOperand(0); 5060 SDValue Op1 = N->getOperand(1); 5061 EVT VT = N->getValueType(0); 5062 EVT SVT = VT.getScalarType(); 5063 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5064 EVT ShSVT = ShVT.getScalarType(); 5065 5066 bool UseSRA = false; 5067 SmallVector<SDValue, 16> Shifts, Factors; 5068 5069 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5070 if (C->isNullValue()) 5071 return false; 5072 APInt Divisor = C->getAPIntValue(); 5073 unsigned Shift = Divisor.countTrailingZeros(); 5074 if (Shift) { 5075 Divisor.ashrInPlace(Shift); 5076 UseSRA = true; 5077 } 5078 // Calculate the multiplicative inverse, using Newton's method. 5079 APInt t; 5080 APInt Factor = Divisor; 5081 while ((t = Divisor * Factor) != 1) 5082 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5083 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5084 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5085 return true; 5086 }; 5087 5088 // Collect all magic values from the build vector. 5089 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5090 return SDValue(); 5091 5092 SDValue Shift, Factor; 5093 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5094 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5095 Factor = DAG.getBuildVector(VT, dl, Factors); 5096 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5097 assert(Shifts.size() == 1 && Factors.size() == 1 && 5098 "Expected matchUnaryPredicate to return one element for scalable " 5099 "vectors"); 5100 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5101 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5102 } else { 5103 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5104 Shift = Shifts[0]; 5105 Factor = Factors[0]; 5106 } 5107 5108 SDValue Res = Op0; 5109 5110 // Shift the value upfront if it is even, so the LSB is one. 5111 if (UseSRA) { 5112 // TODO: For UDIV use SRL instead of SRA. 5113 SDNodeFlags Flags; 5114 Flags.setExact(true); 5115 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5116 Created.push_back(Res.getNode()); 5117 } 5118 5119 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5120 } 5121 5122 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5123 SelectionDAG &DAG, 5124 SmallVectorImpl<SDNode *> &Created) const { 5125 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5127 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5128 return SDValue(N, 0); // Lower SDIV as SDIV 5129 return SDValue(); 5130 } 5131 5132 namespace { 5133 /// Magic data for optimising signed division by a constant. 5134 struct ms { 5135 APInt m; ///< magic number 5136 unsigned s; ///< shift amount 5137 }; 5138 5139 /// Magic data for optimising unsigned division by a constant. 5140 struct mu { 5141 APInt m; ///< magic number 5142 bool a; ///< add indicator 5143 unsigned s; ///< shift amount 5144 }; 5145 } // namespace 5146 5147 /// Calculate the magic numbers required to implement an unsigned integer 5148 /// division by a constant as a sequence of multiplies, adds and shifts. 5149 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 5150 /// S. Warren, Jr., chapter 10. 5151 /// LeadingZeros can be used to simplify the calculation if the upper bits 5152 /// of the divided value are known zero. 5153 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) { 5154 unsigned p; 5155 APInt nc, delta, q1, r1, q2, r2; 5156 struct mu magu; 5157 magu.a = 0; // initialize "add" indicator 5158 APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros); 5159 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5160 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 5161 5162 nc = allOnes - (allOnes - d).urem(d); 5163 p = d.getBitWidth() - 1; // initialize p 5164 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 5165 r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc) 5166 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 5167 r2 = signedMax - q2 * d; // initialize r2 = rem((2p-1),d) 5168 do { 5169 p = p + 1; 5170 if (r1.uge(nc - r1)) { 5171 q1 = q1 + q1 + 1; // update q1 5172 r1 = r1 + r1 - nc; // update r1 5173 } else { 5174 q1 = q1 + q1; // update q1 5175 r1 = r1 + r1; // update r1 5176 } 5177 if ((r2 + 1).uge(d - r2)) { 5178 if (q2.uge(signedMax)) 5179 magu.a = 1; 5180 q2 = q2 + q2 + 1; // update q2 5181 r2 = r2 + r2 + 1 - d; // update r2 5182 } else { 5183 if (q2.uge(signedMin)) 5184 magu.a = 1; 5185 q2 = q2 + q2; // update q2 5186 r2 = r2 + r2 + 1; // update r2 5187 } 5188 delta = d - 1 - r2; 5189 } while (p < d.getBitWidth() * 2 && 5190 (q1.ult(delta) || (q1 == delta && r1 == 0))); 5191 magu.m = q2 + 1; // resulting magic number 5192 magu.s = p - d.getBitWidth(); // resulting shift 5193 return magu; 5194 } 5195 5196 /// Calculate the magic numbers required to implement a signed integer division 5197 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 5198 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 5199 /// Warren, Jr., Chapter 10. 5200 static ms magic(const APInt &d) { 5201 unsigned p; 5202 APInt ad, anc, delta, q1, r1, q2, r2, t; 5203 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5204 struct ms mag; 5205 5206 ad = d.abs(); 5207 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 5208 anc = t - 1 - t.urem(ad); // absolute value of nc 5209 p = d.getBitWidth() - 1; // initialize p 5210 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 5211 r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc)) 5212 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 5213 r2 = signedMin - q2 * ad; // initialize r2 = rem(2p,abs(d)) 5214 do { 5215 p = p + 1; 5216 q1 = q1 << 1; // update q1 = 2p/abs(nc) 5217 r1 = r1 << 1; // update r1 = rem(2p/abs(nc)) 5218 if (r1.uge(anc)) { // must be unsigned comparison 5219 q1 = q1 + 1; 5220 r1 = r1 - anc; 5221 } 5222 q2 = q2 << 1; // update q2 = 2p/abs(d) 5223 r2 = r2 << 1; // update r2 = rem(2p/abs(d)) 5224 if (r2.uge(ad)) { // must be unsigned comparison 5225 q2 = q2 + 1; 5226 r2 = r2 - ad; 5227 } 5228 delta = ad - r2; 5229 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 5230 5231 mag.m = q2 + 1; 5232 if (d.isNegative()) 5233 mag.m = -mag.m; // resulting magic number 5234 mag.s = p - d.getBitWidth(); // resulting shift 5235 return mag; 5236 } 5237 5238 /// Given an ISD::SDIV node expressing a divide by constant, 5239 /// return a DAG expression to select that will generate the same value by 5240 /// multiplying by a magic number. 5241 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5242 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5243 bool IsAfterLegalization, 5244 SmallVectorImpl<SDNode *> &Created) const { 5245 SDLoc dl(N); 5246 EVT VT = N->getValueType(0); 5247 EVT SVT = VT.getScalarType(); 5248 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5249 EVT ShSVT = ShVT.getScalarType(); 5250 unsigned EltBits = VT.getScalarSizeInBits(); 5251 EVT MulVT; 5252 5253 // Check to see if we can do this. 5254 // FIXME: We should be more aggressive here. 5255 if (!isTypeLegal(VT)) { 5256 // Limit this to simple scalars for now. 5257 if (VT.isVector() || !VT.isSimple()) 5258 return SDValue(); 5259 5260 // If this type will be promoted to a large enough type with a legal 5261 // multiply operation, we can go ahead and do this transform. 5262 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5263 return SDValue(); 5264 5265 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5266 if (MulVT.getSizeInBits() < (2 * EltBits) || 5267 !isOperationLegal(ISD::MUL, MulVT)) 5268 return SDValue(); 5269 } 5270 5271 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5272 if (N->getFlags().hasExact()) 5273 return BuildExactSDIV(*this, N, dl, DAG, Created); 5274 5275 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5276 5277 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5278 if (C->isNullValue()) 5279 return false; 5280 5281 const APInt &Divisor = C->getAPIntValue(); 5282 ms magics = magic(Divisor); 5283 int NumeratorFactor = 0; 5284 int ShiftMask = -1; 5285 5286 if (Divisor.isOneValue() || Divisor.isAllOnes()) { 5287 // If d is +1/-1, we just multiply the numerator by +1/-1. 5288 NumeratorFactor = Divisor.getSExtValue(); 5289 magics.m = 0; 5290 magics.s = 0; 5291 ShiftMask = 0; 5292 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5293 // If d > 0 and m < 0, add the numerator. 5294 NumeratorFactor = 1; 5295 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5296 // If d < 0 and m > 0, subtract the numerator. 5297 NumeratorFactor = -1; 5298 } 5299 5300 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5301 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5302 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5303 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5304 return true; 5305 }; 5306 5307 SDValue N0 = N->getOperand(0); 5308 SDValue N1 = N->getOperand(1); 5309 5310 // Collect the shifts / magic values from each element. 5311 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5312 return SDValue(); 5313 5314 SDValue MagicFactor, Factor, Shift, ShiftMask; 5315 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5316 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5317 Factor = DAG.getBuildVector(VT, dl, Factors); 5318 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5319 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5320 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5321 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5322 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5323 "Expected matchUnaryPredicate to return one element for scalable " 5324 "vectors"); 5325 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5326 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5327 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5328 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5329 } else { 5330 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5331 MagicFactor = MagicFactors[0]; 5332 Factor = Factors[0]; 5333 Shift = Shifts[0]; 5334 ShiftMask = ShiftMasks[0]; 5335 } 5336 5337 // Multiply the numerator (operand 0) by the magic value. 5338 // FIXME: We should support doing a MUL in a wider type. 5339 auto GetMULHS = [&](SDValue X, SDValue Y) { 5340 // If the type isn't legal, use a wider mul of the the type calculated 5341 // earlier. 5342 if (!isTypeLegal(VT)) { 5343 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5344 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5345 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5346 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5347 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5348 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5349 } 5350 5351 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5352 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5353 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5354 SDValue LoHi = 5355 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5356 return SDValue(LoHi.getNode(), 1); 5357 } 5358 return SDValue(); 5359 }; 5360 5361 SDValue Q = GetMULHS(N0, MagicFactor); 5362 if (!Q) 5363 return SDValue(); 5364 5365 Created.push_back(Q.getNode()); 5366 5367 // (Optionally) Add/subtract the numerator using Factor. 5368 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5369 Created.push_back(Factor.getNode()); 5370 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5371 Created.push_back(Q.getNode()); 5372 5373 // Shift right algebraic by shift value. 5374 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5375 Created.push_back(Q.getNode()); 5376 5377 // Extract the sign bit, mask it and add it to the quotient. 5378 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5379 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5380 Created.push_back(T.getNode()); 5381 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5382 Created.push_back(T.getNode()); 5383 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5384 } 5385 5386 /// Given an ISD::UDIV node expressing a divide by constant, 5387 /// return a DAG expression to select that will generate the same value by 5388 /// multiplying by a magic number. 5389 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5390 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5391 bool IsAfterLegalization, 5392 SmallVectorImpl<SDNode *> &Created) const { 5393 SDLoc dl(N); 5394 EVT VT = N->getValueType(0); 5395 EVT SVT = VT.getScalarType(); 5396 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5397 EVT ShSVT = ShVT.getScalarType(); 5398 unsigned EltBits = VT.getScalarSizeInBits(); 5399 EVT MulVT; 5400 5401 // Check to see if we can do this. 5402 // FIXME: We should be more aggressive here. 5403 if (!isTypeLegal(VT)) { 5404 // Limit this to simple scalars for now. 5405 if (VT.isVector() || !VT.isSimple()) 5406 return SDValue(); 5407 5408 // If this type will be promoted to a large enough type with a legal 5409 // multiply operation, we can go ahead and do this transform. 5410 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5411 return SDValue(); 5412 5413 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5414 if (MulVT.getSizeInBits() < (2 * EltBits) || 5415 !isOperationLegal(ISD::MUL, MulVT)) 5416 return SDValue(); 5417 } 5418 5419 bool UseNPQ = false; 5420 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5421 5422 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5423 if (C->isNullValue()) 5424 return false; 5425 // FIXME: We should use a narrower constant when the upper 5426 // bits are known to be zero. 5427 const APInt& Divisor = C->getAPIntValue(); 5428 mu magics = magicu(Divisor); 5429 unsigned PreShift = 0, PostShift = 0; 5430 5431 // If the divisor is even, we can avoid using the expensive fixup by 5432 // shifting the divided value upfront. 5433 if (magics.a != 0 && !Divisor[0]) { 5434 PreShift = Divisor.countTrailingZeros(); 5435 // Get magic number for the shifted divisor. 5436 magics = magicu(Divisor.lshr(PreShift), PreShift); 5437 assert(magics.a == 0 && "Should use cheap fixup now"); 5438 } 5439 5440 APInt Magic = magics.m; 5441 5442 unsigned SelNPQ; 5443 if (magics.a == 0 || Divisor.isOneValue()) { 5444 assert(magics.s < Divisor.getBitWidth() && 5445 "We shouldn't generate an undefined shift!"); 5446 PostShift = magics.s; 5447 SelNPQ = false; 5448 } else { 5449 PostShift = magics.s - 1; 5450 SelNPQ = true; 5451 } 5452 5453 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5454 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5455 NPQFactors.push_back( 5456 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5457 : APInt::getZero(EltBits), 5458 dl, SVT)); 5459 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5460 UseNPQ |= SelNPQ; 5461 return true; 5462 }; 5463 5464 SDValue N0 = N->getOperand(0); 5465 SDValue N1 = N->getOperand(1); 5466 5467 // Collect the shifts/magic values from each element. 5468 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5469 return SDValue(); 5470 5471 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5472 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5473 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5474 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5475 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5476 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5477 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5478 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5479 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5480 "Expected matchUnaryPredicate to return one for scalable vectors"); 5481 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5482 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5483 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5484 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5485 } else { 5486 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5487 PreShift = PreShifts[0]; 5488 MagicFactor = MagicFactors[0]; 5489 PostShift = PostShifts[0]; 5490 } 5491 5492 SDValue Q = N0; 5493 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5494 Created.push_back(Q.getNode()); 5495 5496 // FIXME: We should support doing a MUL in a wider type. 5497 auto GetMULHU = [&](SDValue X, SDValue Y) { 5498 // If the type isn't legal, use a wider mul of the the type calculated 5499 // earlier. 5500 if (!isTypeLegal(VT)) { 5501 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5502 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5503 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5504 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5505 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5506 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5507 } 5508 5509 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5510 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5511 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5512 SDValue LoHi = 5513 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5514 return SDValue(LoHi.getNode(), 1); 5515 } 5516 return SDValue(); // No mulhu or equivalent 5517 }; 5518 5519 // Multiply the numerator (operand 0) by the magic value. 5520 Q = GetMULHU(Q, MagicFactor); 5521 if (!Q) 5522 return SDValue(); 5523 5524 Created.push_back(Q.getNode()); 5525 5526 if (UseNPQ) { 5527 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5528 Created.push_back(NPQ.getNode()); 5529 5530 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5531 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5532 if (VT.isVector()) 5533 NPQ = GetMULHU(NPQ, NPQFactor); 5534 else 5535 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5536 5537 Created.push_back(NPQ.getNode()); 5538 5539 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5540 Created.push_back(Q.getNode()); 5541 } 5542 5543 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5544 Created.push_back(Q.getNode()); 5545 5546 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5547 5548 SDValue One = DAG.getConstant(1, dl, VT); 5549 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5550 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5551 } 5552 5553 /// If all values in Values that *don't* match the predicate are same 'splat' 5554 /// value, then replace all values with that splat value. 5555 /// Else, if AlternativeReplacement was provided, then replace all values that 5556 /// do match predicate with AlternativeReplacement value. 5557 static void 5558 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5559 std::function<bool(SDValue)> Predicate, 5560 SDValue AlternativeReplacement = SDValue()) { 5561 SDValue Replacement; 5562 // Is there a value for which the Predicate does *NOT* match? What is it? 5563 auto SplatValue = llvm::find_if_not(Values, Predicate); 5564 if (SplatValue != Values.end()) { 5565 // Does Values consist only of SplatValue's and values matching Predicate? 5566 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5567 return Value == *SplatValue || Predicate(Value); 5568 })) // Then we shall replace values matching predicate with SplatValue. 5569 Replacement = *SplatValue; 5570 } 5571 if (!Replacement) { 5572 // Oops, we did not find the "baseline" splat value. 5573 if (!AlternativeReplacement) 5574 return; // Nothing to do. 5575 // Let's replace with provided value then. 5576 Replacement = AlternativeReplacement; 5577 } 5578 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5579 } 5580 5581 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5582 /// where the divisor is constant and the comparison target is zero, 5583 /// return a DAG expression that will generate the same comparison result 5584 /// using only multiplications, additions and shifts/rotations. 5585 /// Ref: "Hacker's Delight" 10-17. 5586 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5587 SDValue CompTargetNode, 5588 ISD::CondCode Cond, 5589 DAGCombinerInfo &DCI, 5590 const SDLoc &DL) const { 5591 SmallVector<SDNode *, 5> Built; 5592 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5593 DCI, DL, Built)) { 5594 for (SDNode *N : Built) 5595 DCI.AddToWorklist(N); 5596 return Folded; 5597 } 5598 5599 return SDValue(); 5600 } 5601 5602 SDValue 5603 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5604 SDValue CompTargetNode, ISD::CondCode Cond, 5605 DAGCombinerInfo &DCI, const SDLoc &DL, 5606 SmallVectorImpl<SDNode *> &Created) const { 5607 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5608 // - D must be constant, with D = D0 * 2^K where D0 is odd 5609 // - P is the multiplicative inverse of D0 modulo 2^W 5610 // - Q = floor(((2^W) - 1) / D) 5611 // where W is the width of the common type of N and D. 5612 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5613 "Only applicable for (in)equality comparisons."); 5614 5615 SelectionDAG &DAG = DCI.DAG; 5616 5617 EVT VT = REMNode.getValueType(); 5618 EVT SVT = VT.getScalarType(); 5619 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5620 EVT ShSVT = ShVT.getScalarType(); 5621 5622 // If MUL is unavailable, we cannot proceed in any case. 5623 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5624 return SDValue(); 5625 5626 bool ComparingWithAllZeros = true; 5627 bool AllComparisonsWithNonZerosAreTautological = true; 5628 bool HadTautologicalLanes = false; 5629 bool AllLanesAreTautological = true; 5630 bool HadEvenDivisor = false; 5631 bool AllDivisorsArePowerOfTwo = true; 5632 bool HadTautologicalInvertedLanes = false; 5633 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5634 5635 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5636 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5637 if (CDiv->isNullValue()) 5638 return false; 5639 5640 const APInt &D = CDiv->getAPIntValue(); 5641 const APInt &Cmp = CCmp->getAPIntValue(); 5642 5643 ComparingWithAllZeros &= Cmp.isNullValue(); 5644 5645 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5646 // if C2 is not less than C1, the comparison is always false. 5647 // But we will only be able to produce the comparison that will give the 5648 // opposive tautological answer. So this lane would need to be fixed up. 5649 bool TautologicalInvertedLane = D.ule(Cmp); 5650 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5651 5652 // If all lanes are tautological (either all divisors are ones, or divisor 5653 // is not greater than the constant we are comparing with), 5654 // we will prefer to avoid the fold. 5655 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5656 HadTautologicalLanes |= TautologicalLane; 5657 AllLanesAreTautological &= TautologicalLane; 5658 5659 // If we are comparing with non-zero, we need'll need to subtract said 5660 // comparison value from the LHS. But there is no point in doing that if 5661 // every lane where we are comparing with non-zero is tautological.. 5662 if (!Cmp.isNullValue()) 5663 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5664 5665 // Decompose D into D0 * 2^K 5666 unsigned K = D.countTrailingZeros(); 5667 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5668 APInt D0 = D.lshr(K); 5669 5670 // D is even if it has trailing zeros. 5671 HadEvenDivisor |= (K != 0); 5672 // D is a power-of-two if D0 is one. 5673 // If all divisors are power-of-two, we will prefer to avoid the fold. 5674 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5675 5676 // P = inv(D0, 2^W) 5677 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5678 unsigned W = D.getBitWidth(); 5679 APInt P = D0.zext(W + 1) 5680 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5681 .trunc(W); 5682 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5683 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5684 5685 // Q = floor((2^W - 1) u/ D) 5686 // R = ((2^W - 1) u% D) 5687 APInt Q, R; 5688 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5689 5690 // If we are comparing with zero, then that comparison constant is okay, 5691 // else it may need to be one less than that. 5692 if (Cmp.ugt(R)) 5693 Q -= 1; 5694 5695 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5696 "We are expecting that K is always less than all-ones for ShSVT"); 5697 5698 // If the lane is tautological the result can be constant-folded. 5699 if (TautologicalLane) { 5700 // Set P and K amount to a bogus values so we can try to splat them. 5701 P = 0; 5702 K = -1; 5703 // And ensure that comparison constant is tautological, 5704 // it will always compare true/false. 5705 Q = -1; 5706 } 5707 5708 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5709 KAmts.push_back( 5710 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5711 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5712 return true; 5713 }; 5714 5715 SDValue N = REMNode.getOperand(0); 5716 SDValue D = REMNode.getOperand(1); 5717 5718 // Collect the values from each element. 5719 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5720 return SDValue(); 5721 5722 // If all lanes are tautological, the result can be constant-folded. 5723 if (AllLanesAreTautological) 5724 return SDValue(); 5725 5726 // If this is a urem by a powers-of-two, avoid the fold since it can be 5727 // best implemented as a bit test. 5728 if (AllDivisorsArePowerOfTwo) 5729 return SDValue(); 5730 5731 SDValue PVal, KVal, QVal; 5732 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5733 if (HadTautologicalLanes) { 5734 // Try to turn PAmts into a splat, since we don't care about the values 5735 // that are currently '0'. If we can't, just keep '0'`s. 5736 turnVectorIntoSplatVector(PAmts, isNullConstant); 5737 // Try to turn KAmts into a splat, since we don't care about the values 5738 // that are currently '-1'. If we can't, change them to '0'`s. 5739 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5740 DAG.getConstant(0, DL, ShSVT)); 5741 } 5742 5743 PVal = DAG.getBuildVector(VT, DL, PAmts); 5744 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5745 QVal = DAG.getBuildVector(VT, DL, QAmts); 5746 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5747 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5748 "Expected matchBinaryPredicate to return one element for " 5749 "SPLAT_VECTORs"); 5750 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5751 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5752 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5753 } else { 5754 PVal = PAmts[0]; 5755 KVal = KAmts[0]; 5756 QVal = QAmts[0]; 5757 } 5758 5759 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5760 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5761 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5762 assert(CompTargetNode.getValueType() == N.getValueType() && 5763 "Expecting that the types on LHS and RHS of comparisons match."); 5764 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5765 } 5766 5767 // (mul N, P) 5768 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5769 Created.push_back(Op0.getNode()); 5770 5771 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5772 // divisors as a performance improvement, since rotating by 0 is a no-op. 5773 if (HadEvenDivisor) { 5774 // We need ROTR to do this. 5775 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5776 return SDValue(); 5777 // UREM: (rotr (mul N, P), K) 5778 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5779 Created.push_back(Op0.getNode()); 5780 } 5781 5782 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5783 SDValue NewCC = 5784 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5785 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5786 if (!HadTautologicalInvertedLanes) 5787 return NewCC; 5788 5789 // If any lanes previously compared always-false, the NewCC will give 5790 // always-true result for them, so we need to fixup those lanes. 5791 // Or the other way around for inequality predicate. 5792 assert(VT.isVector() && "Can/should only get here for vectors."); 5793 Created.push_back(NewCC.getNode()); 5794 5795 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5796 // if C2 is not less than C1, the comparison is always false. 5797 // But we have produced the comparison that will give the 5798 // opposive tautological answer. So these lanes would need to be fixed up. 5799 SDValue TautologicalInvertedChannels = 5800 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5801 Created.push_back(TautologicalInvertedChannels.getNode()); 5802 5803 // NOTE: we avoid letting illegal types through even if we're before legalize 5804 // ops – legalization has a hard time producing good code for this. 5805 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5806 // If we have a vector select, let's replace the comparison results in the 5807 // affected lanes with the correct tautological result. 5808 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5809 DL, SETCCVT, SETCCVT); 5810 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5811 Replacement, NewCC); 5812 } 5813 5814 // Else, we can just invert the comparison result in the appropriate lanes. 5815 // 5816 // NOTE: see the note above VSELECT above. 5817 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5818 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5819 TautologicalInvertedChannels); 5820 5821 return SDValue(); // Don't know how to lower. 5822 } 5823 5824 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5825 /// where the divisor is constant and the comparison target is zero, 5826 /// return a DAG expression that will generate the same comparison result 5827 /// using only multiplications, additions and shifts/rotations. 5828 /// Ref: "Hacker's Delight" 10-17. 5829 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5830 SDValue CompTargetNode, 5831 ISD::CondCode Cond, 5832 DAGCombinerInfo &DCI, 5833 const SDLoc &DL) const { 5834 SmallVector<SDNode *, 7> Built; 5835 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5836 DCI, DL, Built)) { 5837 assert(Built.size() <= 7 && "Max size prediction failed."); 5838 for (SDNode *N : Built) 5839 DCI.AddToWorklist(N); 5840 return Folded; 5841 } 5842 5843 return SDValue(); 5844 } 5845 5846 SDValue 5847 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5848 SDValue CompTargetNode, ISD::CondCode Cond, 5849 DAGCombinerInfo &DCI, const SDLoc &DL, 5850 SmallVectorImpl<SDNode *> &Created) const { 5851 // Fold: 5852 // (seteq/ne (srem N, D), 0) 5853 // To: 5854 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5855 // 5856 // - D must be constant, with D = D0 * 2^K where D0 is odd 5857 // - P is the multiplicative inverse of D0 modulo 2^W 5858 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5859 // - Q = floor((2 * A) / (2^K)) 5860 // where W is the width of the common type of N and D. 5861 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5862 "Only applicable for (in)equality comparisons."); 5863 5864 SelectionDAG &DAG = DCI.DAG; 5865 5866 EVT VT = REMNode.getValueType(); 5867 EVT SVT = VT.getScalarType(); 5868 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5869 EVT ShSVT = ShVT.getScalarType(); 5870 5871 // If we are after ops legalization, and MUL is unavailable, we can not 5872 // proceed. 5873 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5874 return SDValue(); 5875 5876 // TODO: Could support comparing with non-zero too. 5877 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5878 if (!CompTarget || !CompTarget->isNullValue()) 5879 return SDValue(); 5880 5881 bool HadIntMinDivisor = false; 5882 bool HadOneDivisor = false; 5883 bool AllDivisorsAreOnes = true; 5884 bool HadEvenDivisor = false; 5885 bool NeedToApplyOffset = false; 5886 bool AllDivisorsArePowerOfTwo = true; 5887 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5888 5889 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5890 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5891 if (C->isNullValue()) 5892 return false; 5893 5894 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5895 5896 // WARNING: this fold is only valid for positive divisors! 5897 APInt D = C->getAPIntValue(); 5898 if (D.isNegative()) 5899 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5900 5901 HadIntMinDivisor |= D.isMinSignedValue(); 5902 5903 // If all divisors are ones, we will prefer to avoid the fold. 5904 HadOneDivisor |= D.isOneValue(); 5905 AllDivisorsAreOnes &= D.isOneValue(); 5906 5907 // Decompose D into D0 * 2^K 5908 unsigned K = D.countTrailingZeros(); 5909 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5910 APInt D0 = D.lshr(K); 5911 5912 if (!D.isMinSignedValue()) { 5913 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5914 // we don't care about this lane in this fold, we'll special-handle it. 5915 HadEvenDivisor |= (K != 0); 5916 } 5917 5918 // D is a power-of-two if D0 is one. This includes INT_MIN. 5919 // If all divisors are power-of-two, we will prefer to avoid the fold. 5920 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5921 5922 // P = inv(D0, 2^W) 5923 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5924 unsigned W = D.getBitWidth(); 5925 APInt P = D0.zext(W + 1) 5926 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5927 .trunc(W); 5928 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5929 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5930 5931 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5932 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5933 A.clearLowBits(K); 5934 5935 if (!D.isMinSignedValue()) { 5936 // If divisor INT_MIN, then we don't care about this lane in this fold, 5937 // we'll special-handle it. 5938 NeedToApplyOffset |= A != 0; 5939 } 5940 5941 // Q = floor((2 * A) / (2^K)) 5942 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5943 5944 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5945 "We are expecting that A is always less than all-ones for SVT"); 5946 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5947 "We are expecting that K is always less than all-ones for ShSVT"); 5948 5949 // If the divisor is 1 the result can be constant-folded. Likewise, we 5950 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5951 if (D.isOneValue()) { 5952 // Set P, A and K to a bogus values so we can try to splat them. 5953 P = 0; 5954 A = -1; 5955 K = -1; 5956 5957 // x ?% 1 == 0 <--> true <--> x u<= -1 5958 Q = -1; 5959 } 5960 5961 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5962 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5963 KAmts.push_back( 5964 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5965 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5966 return true; 5967 }; 5968 5969 SDValue N = REMNode.getOperand(0); 5970 SDValue D = REMNode.getOperand(1); 5971 5972 // Collect the values from each element. 5973 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5974 return SDValue(); 5975 5976 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5977 if (AllDivisorsAreOnes) 5978 return SDValue(); 5979 5980 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5981 // since it can be best implemented as a bit test. 5982 if (AllDivisorsArePowerOfTwo) 5983 return SDValue(); 5984 5985 SDValue PVal, AVal, KVal, QVal; 5986 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5987 if (HadOneDivisor) { 5988 // Try to turn PAmts into a splat, since we don't care about the values 5989 // that are currently '0'. If we can't, just keep '0'`s. 5990 turnVectorIntoSplatVector(PAmts, isNullConstant); 5991 // Try to turn AAmts into a splat, since we don't care about the 5992 // values that are currently '-1'. If we can't, change them to '0'`s. 5993 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5994 DAG.getConstant(0, DL, SVT)); 5995 // Try to turn KAmts into a splat, since we don't care about the values 5996 // that are currently '-1'. If we can't, change them to '0'`s. 5997 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5998 DAG.getConstant(0, DL, ShSVT)); 5999 } 6000 6001 PVal = DAG.getBuildVector(VT, DL, PAmts); 6002 AVal = DAG.getBuildVector(VT, DL, AAmts); 6003 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6004 QVal = DAG.getBuildVector(VT, DL, QAmts); 6005 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6006 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6007 QAmts.size() == 1 && 6008 "Expected matchUnaryPredicate to return one element for scalable " 6009 "vectors"); 6010 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6011 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6012 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6013 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6014 } else { 6015 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6016 PVal = PAmts[0]; 6017 AVal = AAmts[0]; 6018 KVal = KAmts[0]; 6019 QVal = QAmts[0]; 6020 } 6021 6022 // (mul N, P) 6023 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6024 Created.push_back(Op0.getNode()); 6025 6026 if (NeedToApplyOffset) { 6027 // We need ADD to do this. 6028 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6029 return SDValue(); 6030 6031 // (add (mul N, P), A) 6032 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6033 Created.push_back(Op0.getNode()); 6034 } 6035 6036 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6037 // divisors as a performance improvement, since rotating by 0 is a no-op. 6038 if (HadEvenDivisor) { 6039 // We need ROTR to do this. 6040 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6041 return SDValue(); 6042 // SREM: (rotr (add (mul N, P), A), K) 6043 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6044 Created.push_back(Op0.getNode()); 6045 } 6046 6047 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6048 SDValue Fold = 6049 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6050 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6051 6052 // If we didn't have lanes with INT_MIN divisor, then we're done. 6053 if (!HadIntMinDivisor) 6054 return Fold; 6055 6056 // That fold is only valid for positive divisors. Which effectively means, 6057 // it is invalid for INT_MIN divisors. So if we have such a lane, 6058 // we must fix-up results for said lanes. 6059 assert(VT.isVector() && "Can/should only get here for vectors."); 6060 6061 // NOTE: we avoid letting illegal types through even if we're before legalize 6062 // ops – legalization has a hard time producing good code for the code that 6063 // follows. 6064 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6065 !isOperationLegalOrCustom(ISD::AND, VT) || 6066 !isOperationLegalOrCustom(Cond, VT) || 6067 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6068 return SDValue(); 6069 6070 Created.push_back(Fold.getNode()); 6071 6072 SDValue IntMin = DAG.getConstant( 6073 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6074 SDValue IntMax = DAG.getConstant( 6075 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6076 SDValue Zero = 6077 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6078 6079 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6080 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6081 Created.push_back(DivisorIsIntMin.getNode()); 6082 6083 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6084 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6085 Created.push_back(Masked.getNode()); 6086 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6087 Created.push_back(MaskedIsZero.getNode()); 6088 6089 // To produce final result we need to blend 2 vectors: 'SetCC' and 6090 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6091 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6092 // constant-folded, select can get lowered to a shuffle with constant mask. 6093 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6094 MaskedIsZero, Fold); 6095 6096 return Blended; 6097 } 6098 6099 bool TargetLowering:: 6100 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6101 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6102 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6103 "be a constant integer"); 6104 return true; 6105 } 6106 6107 return false; 6108 } 6109 6110 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6111 const DenormalMode &Mode) const { 6112 SDLoc DL(Op); 6113 EVT VT = Op.getValueType(); 6114 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6115 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6116 // Testing it with denormal inputs to avoid wrong estimate. 6117 if (Mode.Input == DenormalMode::IEEE) { 6118 // This is specifically a check for the handling of denormal inputs, 6119 // not the result. 6120 6121 // Test = fabs(X) < SmallestNormal 6122 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6123 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6124 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6125 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6126 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6127 } 6128 // Test = X == 0.0 6129 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6130 } 6131 6132 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6133 bool LegalOps, bool OptForSize, 6134 NegatibleCost &Cost, 6135 unsigned Depth) const { 6136 // fneg is removable even if it has multiple uses. 6137 if (Op.getOpcode() == ISD::FNEG) { 6138 Cost = NegatibleCost::Cheaper; 6139 return Op.getOperand(0); 6140 } 6141 6142 // Don't recurse exponentially. 6143 if (Depth > SelectionDAG::MaxRecursionDepth) 6144 return SDValue(); 6145 6146 // Pre-increment recursion depth for use in recursive calls. 6147 ++Depth; 6148 const SDNodeFlags Flags = Op->getFlags(); 6149 const TargetOptions &Options = DAG.getTarget().Options; 6150 EVT VT = Op.getValueType(); 6151 unsigned Opcode = Op.getOpcode(); 6152 6153 // Don't allow anything with multiple uses unless we know it is free. 6154 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6155 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6156 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6157 if (!IsFreeExtend) 6158 return SDValue(); 6159 } 6160 6161 auto RemoveDeadNode = [&](SDValue N) { 6162 if (N && N.getNode()->use_empty()) 6163 DAG.RemoveDeadNode(N.getNode()); 6164 }; 6165 6166 SDLoc DL(Op); 6167 6168 // Because getNegatedExpression can delete nodes we need a handle to keep 6169 // temporary nodes alive in case the recursion manages to create an identical 6170 // node. 6171 std::list<HandleSDNode> Handles; 6172 6173 switch (Opcode) { 6174 case ISD::ConstantFP: { 6175 // Don't invert constant FP values after legalization unless the target says 6176 // the negated constant is legal. 6177 bool IsOpLegal = 6178 isOperationLegal(ISD::ConstantFP, VT) || 6179 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6180 OptForSize); 6181 6182 if (LegalOps && !IsOpLegal) 6183 break; 6184 6185 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6186 V.changeSign(); 6187 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6188 6189 // If we already have the use of the negated floating constant, it is free 6190 // to negate it even it has multiple uses. 6191 if (!Op.hasOneUse() && CFP.use_empty()) 6192 break; 6193 Cost = NegatibleCost::Neutral; 6194 return CFP; 6195 } 6196 case ISD::BUILD_VECTOR: { 6197 // Only permit BUILD_VECTOR of constants. 6198 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6199 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6200 })) 6201 break; 6202 6203 bool IsOpLegal = 6204 (isOperationLegal(ISD::ConstantFP, VT) && 6205 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6206 llvm::all_of(Op->op_values(), [&](SDValue N) { 6207 return N.isUndef() || 6208 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6209 OptForSize); 6210 }); 6211 6212 if (LegalOps && !IsOpLegal) 6213 break; 6214 6215 SmallVector<SDValue, 4> Ops; 6216 for (SDValue C : Op->op_values()) { 6217 if (C.isUndef()) { 6218 Ops.push_back(C); 6219 continue; 6220 } 6221 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6222 V.changeSign(); 6223 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6224 } 6225 Cost = NegatibleCost::Neutral; 6226 return DAG.getBuildVector(VT, DL, Ops); 6227 } 6228 case ISD::FADD: { 6229 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6230 break; 6231 6232 // After operation legalization, it might not be legal to create new FSUBs. 6233 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6234 break; 6235 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6236 6237 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6238 NegatibleCost CostX = NegatibleCost::Expensive; 6239 SDValue NegX = 6240 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6241 // Prevent this node from being deleted by the next call. 6242 if (NegX) 6243 Handles.emplace_back(NegX); 6244 6245 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6246 NegatibleCost CostY = NegatibleCost::Expensive; 6247 SDValue NegY = 6248 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6249 6250 // We're done with the handles. 6251 Handles.clear(); 6252 6253 // Negate the X if its cost is less or equal than Y. 6254 if (NegX && (CostX <= CostY)) { 6255 Cost = CostX; 6256 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6257 if (NegY != N) 6258 RemoveDeadNode(NegY); 6259 return N; 6260 } 6261 6262 // Negate the Y if it is not expensive. 6263 if (NegY) { 6264 Cost = CostY; 6265 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6266 if (NegX != N) 6267 RemoveDeadNode(NegX); 6268 return N; 6269 } 6270 break; 6271 } 6272 case ISD::FSUB: { 6273 // We can't turn -(A-B) into B-A when we honor signed zeros. 6274 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6275 break; 6276 6277 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6278 // fold (fneg (fsub 0, Y)) -> Y 6279 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6280 if (C->isZero()) { 6281 Cost = NegatibleCost::Cheaper; 6282 return Y; 6283 } 6284 6285 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6286 Cost = NegatibleCost::Neutral; 6287 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6288 } 6289 case ISD::FMUL: 6290 case ISD::FDIV: { 6291 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6292 6293 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6294 NegatibleCost CostX = NegatibleCost::Expensive; 6295 SDValue NegX = 6296 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6297 // Prevent this node from being deleted by the next call. 6298 if (NegX) 6299 Handles.emplace_back(NegX); 6300 6301 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6302 NegatibleCost CostY = NegatibleCost::Expensive; 6303 SDValue NegY = 6304 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6305 6306 // We're done with the handles. 6307 Handles.clear(); 6308 6309 // Negate the X if its cost is less or equal than Y. 6310 if (NegX && (CostX <= CostY)) { 6311 Cost = CostX; 6312 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6313 if (NegY != N) 6314 RemoveDeadNode(NegY); 6315 return N; 6316 } 6317 6318 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6319 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6320 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6321 break; 6322 6323 // Negate the Y if it is not expensive. 6324 if (NegY) { 6325 Cost = CostY; 6326 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6327 if (NegX != N) 6328 RemoveDeadNode(NegX); 6329 return N; 6330 } 6331 break; 6332 } 6333 case ISD::FMA: 6334 case ISD::FMAD: { 6335 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6336 break; 6337 6338 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6339 NegatibleCost CostZ = NegatibleCost::Expensive; 6340 SDValue NegZ = 6341 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6342 // Give up if fail to negate the Z. 6343 if (!NegZ) 6344 break; 6345 6346 // Prevent this node from being deleted by the next two calls. 6347 Handles.emplace_back(NegZ); 6348 6349 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6350 NegatibleCost CostX = NegatibleCost::Expensive; 6351 SDValue NegX = 6352 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6353 // Prevent this node from being deleted by the next call. 6354 if (NegX) 6355 Handles.emplace_back(NegX); 6356 6357 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6358 NegatibleCost CostY = NegatibleCost::Expensive; 6359 SDValue NegY = 6360 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6361 6362 // We're done with the handles. 6363 Handles.clear(); 6364 6365 // Negate the X if its cost is less or equal than Y. 6366 if (NegX && (CostX <= CostY)) { 6367 Cost = std::min(CostX, CostZ); 6368 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6369 if (NegY != N) 6370 RemoveDeadNode(NegY); 6371 return N; 6372 } 6373 6374 // Negate the Y if it is not expensive. 6375 if (NegY) { 6376 Cost = std::min(CostY, CostZ); 6377 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6378 if (NegX != N) 6379 RemoveDeadNode(NegX); 6380 return N; 6381 } 6382 break; 6383 } 6384 6385 case ISD::FP_EXTEND: 6386 case ISD::FSIN: 6387 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6388 OptForSize, Cost, Depth)) 6389 return DAG.getNode(Opcode, DL, VT, NegV); 6390 break; 6391 case ISD::FP_ROUND: 6392 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6393 OptForSize, Cost, Depth)) 6394 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6395 break; 6396 } 6397 6398 return SDValue(); 6399 } 6400 6401 //===----------------------------------------------------------------------===// 6402 // Legalization Utilities 6403 //===----------------------------------------------------------------------===// 6404 6405 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6406 SDValue LHS, SDValue RHS, 6407 SmallVectorImpl<SDValue> &Result, 6408 EVT HiLoVT, SelectionDAG &DAG, 6409 MulExpansionKind Kind, SDValue LL, 6410 SDValue LH, SDValue RL, SDValue RH) const { 6411 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6412 Opcode == ISD::SMUL_LOHI); 6413 6414 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6415 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6416 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6417 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6418 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6419 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6420 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6421 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6422 6423 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6424 return false; 6425 6426 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6427 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6428 6429 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6430 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6431 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6432 6433 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6434 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6435 bool Signed) -> bool { 6436 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6437 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6438 Hi = SDValue(Lo.getNode(), 1); 6439 return true; 6440 } 6441 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6442 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6443 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6444 return true; 6445 } 6446 return false; 6447 }; 6448 6449 SDValue Lo, Hi; 6450 6451 if (!LL.getNode() && !RL.getNode() && 6452 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6453 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6454 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6455 } 6456 6457 if (!LL.getNode()) 6458 return false; 6459 6460 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6461 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6462 DAG.MaskedValueIsZero(RHS, HighMask)) { 6463 // The inputs are both zero-extended. 6464 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6465 Result.push_back(Lo); 6466 Result.push_back(Hi); 6467 if (Opcode != ISD::MUL) { 6468 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6469 Result.push_back(Zero); 6470 Result.push_back(Zero); 6471 } 6472 return true; 6473 } 6474 } 6475 6476 if (!VT.isVector() && Opcode == ISD::MUL && 6477 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6478 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6479 // The input values are both sign-extended. 6480 // TODO non-MUL case? 6481 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6482 Result.push_back(Lo); 6483 Result.push_back(Hi); 6484 return true; 6485 } 6486 } 6487 6488 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6489 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6490 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6491 // FIXME getShiftAmountTy does not always return a sensible result when VT 6492 // is an illegal type, and so the type may be too small to fit the shift 6493 // amount. Override it with i32. The shift will have to be legalized. 6494 ShiftAmountTy = MVT::i32; 6495 } 6496 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6497 6498 if (!LH.getNode() && !RH.getNode() && 6499 isOperationLegalOrCustom(ISD::SRL, VT) && 6500 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6501 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6502 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6503 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6504 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6505 } 6506 6507 if (!LH.getNode()) 6508 return false; 6509 6510 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6511 return false; 6512 6513 Result.push_back(Lo); 6514 6515 if (Opcode == ISD::MUL) { 6516 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6517 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6518 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6519 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6520 Result.push_back(Hi); 6521 return true; 6522 } 6523 6524 // Compute the full width result. 6525 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6526 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6527 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6528 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6529 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6530 }; 6531 6532 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6533 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6534 return false; 6535 6536 // This is effectively the add part of a multiply-add of half-sized operands, 6537 // so it cannot overflow. 6538 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6539 6540 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6541 return false; 6542 6543 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6544 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6545 6546 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6547 isOperationLegalOrCustom(ISD::ADDE, VT)); 6548 if (UseGlue) 6549 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6550 Merge(Lo, Hi)); 6551 else 6552 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6553 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6554 6555 SDValue Carry = Next.getValue(1); 6556 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6557 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6558 6559 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6560 return false; 6561 6562 if (UseGlue) 6563 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6564 Carry); 6565 else 6566 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6567 Zero, Carry); 6568 6569 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6570 6571 if (Opcode == ISD::SMUL_LOHI) { 6572 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6573 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6574 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6575 6576 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6577 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6578 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6579 } 6580 6581 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6582 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6583 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6584 return true; 6585 } 6586 6587 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6588 SelectionDAG &DAG, MulExpansionKind Kind, 6589 SDValue LL, SDValue LH, SDValue RL, 6590 SDValue RH) const { 6591 SmallVector<SDValue, 2> Result; 6592 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6593 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6594 DAG, Kind, LL, LH, RL, RH); 6595 if (Ok) { 6596 assert(Result.size() == 2); 6597 Lo = Result[0]; 6598 Hi = Result[1]; 6599 } 6600 return Ok; 6601 } 6602 6603 // Check that (every element of) Z is undef or not an exact multiple of BW. 6604 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6605 return ISD::matchUnaryPredicate( 6606 Z, 6607 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6608 true); 6609 } 6610 6611 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6612 SelectionDAG &DAG) const { 6613 EVT VT = Node->getValueType(0); 6614 6615 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6616 !isOperationLegalOrCustom(ISD::SRL, VT) || 6617 !isOperationLegalOrCustom(ISD::SUB, VT) || 6618 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6619 return false; 6620 6621 SDValue X = Node->getOperand(0); 6622 SDValue Y = Node->getOperand(1); 6623 SDValue Z = Node->getOperand(2); 6624 6625 unsigned BW = VT.getScalarSizeInBits(); 6626 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6627 SDLoc DL(SDValue(Node, 0)); 6628 6629 EVT ShVT = Z.getValueType(); 6630 6631 // If a funnel shift in the other direction is more supported, use it. 6632 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6633 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6634 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6635 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6636 // fshl X, Y, Z -> fshr X, Y, -Z 6637 // fshr X, Y, Z -> fshl X, Y, -Z 6638 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6639 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6640 } else { 6641 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6642 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6643 SDValue One = DAG.getConstant(1, DL, ShVT); 6644 if (IsFSHL) { 6645 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6646 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6647 } else { 6648 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6649 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6650 } 6651 Z = DAG.getNOT(DL, Z, ShVT); 6652 } 6653 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6654 return true; 6655 } 6656 6657 SDValue ShX, ShY; 6658 SDValue ShAmt, InvShAmt; 6659 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6660 // fshl: X << C | Y >> (BW - C) 6661 // fshr: X << (BW - C) | Y >> C 6662 // where C = Z % BW is not zero 6663 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6664 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6665 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6666 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6667 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6668 } else { 6669 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6670 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6671 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6672 if (isPowerOf2_32(BW)) { 6673 // Z % BW -> Z & (BW - 1) 6674 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6675 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6676 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6677 } else { 6678 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6679 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6680 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6681 } 6682 6683 SDValue One = DAG.getConstant(1, DL, ShVT); 6684 if (IsFSHL) { 6685 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6686 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6687 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6688 } else { 6689 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6690 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6691 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6692 } 6693 } 6694 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6695 return true; 6696 } 6697 6698 // TODO: Merge with expandFunnelShift. 6699 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6700 SDValue &Result, SelectionDAG &DAG) const { 6701 EVT VT = Node->getValueType(0); 6702 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6703 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6704 SDValue Op0 = Node->getOperand(0); 6705 SDValue Op1 = Node->getOperand(1); 6706 SDLoc DL(SDValue(Node, 0)); 6707 6708 EVT ShVT = Op1.getValueType(); 6709 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6710 6711 // If a rotate in the other direction is supported, use it. 6712 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6713 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6714 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6715 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6716 return true; 6717 } 6718 6719 if (!AllowVectorOps && VT.isVector() && 6720 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6721 !isOperationLegalOrCustom(ISD::SRL, VT) || 6722 !isOperationLegalOrCustom(ISD::SUB, VT) || 6723 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6724 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6725 return false; 6726 6727 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6728 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6729 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6730 SDValue ShVal; 6731 SDValue HsVal; 6732 if (isPowerOf2_32(EltSizeInBits)) { 6733 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6734 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6735 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6736 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6737 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6738 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6739 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6740 } else { 6741 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6742 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6743 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6744 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6745 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6746 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6747 SDValue One = DAG.getConstant(1, DL, ShVT); 6748 HsVal = 6749 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6750 } 6751 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6752 return true; 6753 } 6754 6755 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6756 SelectionDAG &DAG) const { 6757 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6758 EVT VT = Node->getValueType(0); 6759 unsigned VTBits = VT.getScalarSizeInBits(); 6760 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6761 6762 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6763 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6764 SDValue ShOpLo = Node->getOperand(0); 6765 SDValue ShOpHi = Node->getOperand(1); 6766 SDValue ShAmt = Node->getOperand(2); 6767 EVT ShAmtVT = ShAmt.getValueType(); 6768 EVT ShAmtCCVT = 6769 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6770 SDLoc dl(Node); 6771 6772 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6773 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6774 // away during isel. 6775 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6776 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6777 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6778 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6779 : DAG.getConstant(0, dl, VT); 6780 6781 SDValue Tmp2, Tmp3; 6782 if (IsSHL) { 6783 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6784 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6785 } else { 6786 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6787 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6788 } 6789 6790 // If the shift amount is larger or equal than the width of a part we don't 6791 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6792 // values for large shift amounts. 6793 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6794 DAG.getConstant(VTBits, dl, ShAmtVT)); 6795 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6796 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6797 6798 if (IsSHL) { 6799 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6800 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6801 } else { 6802 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6803 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6804 } 6805 } 6806 6807 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6808 SelectionDAG &DAG) const { 6809 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6810 SDValue Src = Node->getOperand(OpNo); 6811 EVT SrcVT = Src.getValueType(); 6812 EVT DstVT = Node->getValueType(0); 6813 SDLoc dl(SDValue(Node, 0)); 6814 6815 // FIXME: Only f32 to i64 conversions are supported. 6816 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6817 return false; 6818 6819 if (Node->isStrictFPOpcode()) 6820 // When a NaN is converted to an integer a trap is allowed. We can't 6821 // use this expansion here because it would eliminate that trap. Other 6822 // traps are also allowed and cannot be eliminated. See 6823 // IEEE 754-2008 sec 5.8. 6824 return false; 6825 6826 // Expand f32 -> i64 conversion 6827 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6828 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6829 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6830 EVT IntVT = SrcVT.changeTypeToInteger(); 6831 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6832 6833 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6834 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6835 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6836 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6837 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6838 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6839 6840 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6841 6842 SDValue ExponentBits = DAG.getNode( 6843 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6844 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6845 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6846 6847 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6848 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6849 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6850 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6851 6852 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6853 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6854 DAG.getConstant(0x00800000, dl, IntVT)); 6855 6856 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6857 6858 R = DAG.getSelectCC( 6859 dl, Exponent, ExponentLoBit, 6860 DAG.getNode(ISD::SHL, dl, DstVT, R, 6861 DAG.getZExtOrTrunc( 6862 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6863 dl, IntShVT)), 6864 DAG.getNode(ISD::SRL, dl, DstVT, R, 6865 DAG.getZExtOrTrunc( 6866 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6867 dl, IntShVT)), 6868 ISD::SETGT); 6869 6870 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6871 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6872 6873 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6874 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6875 return true; 6876 } 6877 6878 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6879 SDValue &Chain, 6880 SelectionDAG &DAG) const { 6881 SDLoc dl(SDValue(Node, 0)); 6882 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6883 SDValue Src = Node->getOperand(OpNo); 6884 6885 EVT SrcVT = Src.getValueType(); 6886 EVT DstVT = Node->getValueType(0); 6887 EVT SetCCVT = 6888 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6889 EVT DstSetCCVT = 6890 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6891 6892 // Only expand vector types if we have the appropriate vector bit operations. 6893 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6894 ISD::FP_TO_SINT; 6895 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6896 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6897 return false; 6898 6899 // If the maximum float value is smaller then the signed integer range, 6900 // the destination signmask can't be represented by the float, so we can 6901 // just use FP_TO_SINT directly. 6902 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6903 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6904 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6905 if (APFloat::opOverflow & 6906 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6907 if (Node->isStrictFPOpcode()) { 6908 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6909 { Node->getOperand(0), Src }); 6910 Chain = Result.getValue(1); 6911 } else 6912 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6913 return true; 6914 } 6915 6916 // Don't expand it if there isn't cheap fsub instruction. 6917 if (!isOperationLegalOrCustom( 6918 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6919 return false; 6920 6921 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6922 SDValue Sel; 6923 6924 if (Node->isStrictFPOpcode()) { 6925 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6926 Node->getOperand(0), /*IsSignaling*/ true); 6927 Chain = Sel.getValue(1); 6928 } else { 6929 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6930 } 6931 6932 bool Strict = Node->isStrictFPOpcode() || 6933 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6934 6935 if (Strict) { 6936 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6937 // signmask then offset (the result of which should be fully representable). 6938 // Sel = Src < 0x8000000000000000 6939 // FltOfs = select Sel, 0, 0x8000000000000000 6940 // IntOfs = select Sel, 0, 0x8000000000000000 6941 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6942 6943 // TODO: Should any fast-math-flags be set for the FSUB? 6944 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6945 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6946 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6947 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6948 DAG.getConstant(0, dl, DstVT), 6949 DAG.getConstant(SignMask, dl, DstVT)); 6950 SDValue SInt; 6951 if (Node->isStrictFPOpcode()) { 6952 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6953 { Chain, Src, FltOfs }); 6954 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6955 { Val.getValue(1), Val }); 6956 Chain = SInt.getValue(1); 6957 } else { 6958 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6959 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6960 } 6961 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6962 } else { 6963 // Expand based on maximum range of FP_TO_SINT: 6964 // True = fp_to_sint(Src) 6965 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6966 // Result = select (Src < 0x8000000000000000), True, False 6967 6968 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6969 // TODO: Should any fast-math-flags be set for the FSUB? 6970 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6971 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6972 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6973 DAG.getConstant(SignMask, dl, DstVT)); 6974 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6975 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6976 } 6977 return true; 6978 } 6979 6980 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6981 SDValue &Chain, 6982 SelectionDAG &DAG) const { 6983 // This transform is not correct for converting 0 when rounding mode is set 6984 // to round toward negative infinity which will produce -0.0. So disable under 6985 // strictfp. 6986 if (Node->isStrictFPOpcode()) 6987 return false; 6988 6989 SDValue Src = Node->getOperand(0); 6990 EVT SrcVT = Src.getValueType(); 6991 EVT DstVT = Node->getValueType(0); 6992 6993 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6994 return false; 6995 6996 // Only expand vector types if we have the appropriate vector bit operations. 6997 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6998 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6999 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7000 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7001 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7002 return false; 7003 7004 SDLoc dl(SDValue(Node, 0)); 7005 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7006 7007 // Implementation of unsigned i64 to f64 following the algorithm in 7008 // __floatundidf in compiler_rt. This implementation performs rounding 7009 // correctly in all rounding modes with the exception of converting 0 7010 // when rounding toward negative infinity. In that case the fsub will produce 7011 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7012 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7013 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7014 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7015 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7016 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7017 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7018 7019 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7020 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7021 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7022 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7023 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7024 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7025 SDValue HiSub = 7026 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7027 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7028 return true; 7029 } 7030 7031 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7032 SelectionDAG &DAG) const { 7033 SDLoc dl(Node); 7034 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7035 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7036 EVT VT = Node->getValueType(0); 7037 7038 if (VT.isScalableVector()) 7039 report_fatal_error( 7040 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7041 7042 if (isOperationLegalOrCustom(NewOp, VT)) { 7043 SDValue Quiet0 = Node->getOperand(0); 7044 SDValue Quiet1 = Node->getOperand(1); 7045 7046 if (!Node->getFlags().hasNoNaNs()) { 7047 // Insert canonicalizes if it's possible we need to quiet to get correct 7048 // sNaN behavior. 7049 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7050 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7051 Node->getFlags()); 7052 } 7053 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7054 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7055 Node->getFlags()); 7056 } 7057 } 7058 7059 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7060 } 7061 7062 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7063 // instead if there are no NaNs. 7064 if (Node->getFlags().hasNoNaNs()) { 7065 unsigned IEEE2018Op = 7066 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7067 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7068 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7069 Node->getOperand(1), Node->getFlags()); 7070 } 7071 } 7072 7073 // If none of the above worked, but there are no NaNs, then expand to 7074 // a compare/select sequence. This is required for correctness since 7075 // InstCombine might have canonicalized a fcmp+select sequence to a 7076 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7077 // expansion to libcall, we might introduce a link-time dependency 7078 // on libm into a file that originally did not have one. 7079 if (Node->getFlags().hasNoNaNs()) { 7080 ISD::CondCode Pred = 7081 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7082 SDValue Op1 = Node->getOperand(0); 7083 SDValue Op2 = Node->getOperand(1); 7084 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7085 // Copy FMF flags, but always set the no-signed-zeros flag 7086 // as this is implied by the FMINNUM/FMAXNUM semantics. 7087 SDNodeFlags Flags = Node->getFlags(); 7088 Flags.setNoSignedZeros(true); 7089 SelCC->setFlags(Flags); 7090 return SelCC; 7091 } 7092 7093 return SDValue(); 7094 } 7095 7096 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 7097 SelectionDAG &DAG) const { 7098 SDLoc dl(Node); 7099 EVT VT = Node->getValueType(0); 7100 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7101 SDValue Op = Node->getOperand(0); 7102 unsigned Len = VT.getScalarSizeInBits(); 7103 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7104 7105 // TODO: Add support for irregular type lengths. 7106 if (!(Len <= 128 && Len % 8 == 0)) 7107 return false; 7108 7109 // Only expand vector types if we have the appropriate vector bit operations. 7110 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 7111 !isOperationLegalOrCustom(ISD::SUB, VT) || 7112 !isOperationLegalOrCustom(ISD::SRL, VT) || 7113 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 7114 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7115 return false; 7116 7117 // This is the "best" algorithm from 7118 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7119 SDValue Mask55 = 7120 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7121 SDValue Mask33 = 7122 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7123 SDValue Mask0F = 7124 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7125 SDValue Mask01 = 7126 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7127 7128 // v = v - ((v >> 1) & 0x55555555...) 7129 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7130 DAG.getNode(ISD::AND, dl, VT, 7131 DAG.getNode(ISD::SRL, dl, VT, Op, 7132 DAG.getConstant(1, dl, ShVT)), 7133 Mask55)); 7134 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7135 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7136 DAG.getNode(ISD::AND, dl, VT, 7137 DAG.getNode(ISD::SRL, dl, VT, Op, 7138 DAG.getConstant(2, dl, ShVT)), 7139 Mask33)); 7140 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7141 Op = DAG.getNode(ISD::AND, dl, VT, 7142 DAG.getNode(ISD::ADD, dl, VT, Op, 7143 DAG.getNode(ISD::SRL, dl, VT, Op, 7144 DAG.getConstant(4, dl, ShVT))), 7145 Mask0F); 7146 // v = (v * 0x01010101...) >> (Len - 8) 7147 if (Len > 8) 7148 Op = 7149 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7150 DAG.getConstant(Len - 8, dl, ShVT)); 7151 7152 Result = Op; 7153 return true; 7154 } 7155 7156 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7157 SelectionDAG &DAG) const { 7158 SDLoc dl(Node); 7159 EVT VT = Node->getValueType(0); 7160 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7161 SDValue Op = Node->getOperand(0); 7162 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7163 7164 // If the non-ZERO_UNDEF version is supported we can use that instead. 7165 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7166 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7167 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7168 return true; 7169 } 7170 7171 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7172 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7173 EVT SetCCVT = 7174 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7175 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7176 SDValue Zero = DAG.getConstant(0, dl, VT); 7177 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7178 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7179 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7180 return true; 7181 } 7182 7183 // Only expand vector types if we have the appropriate vector bit operations. 7184 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7185 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7186 !isOperationLegalOrCustom(ISD::SRL, VT) || 7187 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7188 return false; 7189 7190 // for now, we do this: 7191 // x = x | (x >> 1); 7192 // x = x | (x >> 2); 7193 // ... 7194 // x = x | (x >>16); 7195 // x = x | (x >>32); // for 64-bit input 7196 // return popcount(~x); 7197 // 7198 // Ref: "Hacker's Delight" by Henry Warren 7199 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7200 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7201 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7202 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7203 } 7204 Op = DAG.getNOT(dl, Op, VT); 7205 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7206 return true; 7207 } 7208 7209 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7210 SelectionDAG &DAG) const { 7211 SDLoc dl(Node); 7212 EVT VT = Node->getValueType(0); 7213 SDValue Op = Node->getOperand(0); 7214 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7215 7216 // If the non-ZERO_UNDEF version is supported we can use that instead. 7217 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7218 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7219 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7220 return true; 7221 } 7222 7223 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7224 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7225 EVT SetCCVT = 7226 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7227 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7228 SDValue Zero = DAG.getConstant(0, dl, VT); 7229 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7230 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7231 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7232 return true; 7233 } 7234 7235 // Only expand vector types if we have the appropriate vector bit operations. 7236 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7237 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7238 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7239 !isOperationLegalOrCustom(ISD::SUB, VT) || 7240 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7241 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7242 return false; 7243 7244 // for now, we use: { return popcount(~x & (x - 1)); } 7245 // unless the target has ctlz but not ctpop, in which case we use: 7246 // { return 32 - nlz(~x & (x-1)); } 7247 // Ref: "Hacker's Delight" by Henry Warren 7248 SDValue Tmp = DAG.getNode( 7249 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7250 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7251 7252 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7253 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7254 Result = 7255 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7256 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7257 return true; 7258 } 7259 7260 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7261 return true; 7262 } 7263 7264 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7265 SelectionDAG &DAG, bool IsNegative) const { 7266 SDLoc dl(N); 7267 EVT VT = N->getValueType(0); 7268 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7269 SDValue Op = N->getOperand(0); 7270 7271 // abs(x) -> smax(x,sub(0,x)) 7272 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7273 isOperationLegal(ISD::SMAX, VT)) { 7274 SDValue Zero = DAG.getConstant(0, dl, VT); 7275 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7276 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7277 return true; 7278 } 7279 7280 // abs(x) -> umin(x,sub(0,x)) 7281 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7282 isOperationLegal(ISD::UMIN, VT)) { 7283 SDValue Zero = DAG.getConstant(0, dl, VT); 7284 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7285 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7286 return true; 7287 } 7288 7289 // 0 - abs(x) -> smin(x, sub(0,x)) 7290 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7291 isOperationLegal(ISD::SMIN, VT)) { 7292 SDValue Zero = DAG.getConstant(0, dl, VT); 7293 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7294 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7295 return true; 7296 } 7297 7298 // Only expand vector types if we have the appropriate vector operations. 7299 if (VT.isVector() && 7300 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7301 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7302 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7303 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7304 return false; 7305 7306 SDValue Shift = 7307 DAG.getNode(ISD::SRA, dl, VT, Op, 7308 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7309 if (!IsNegative) { 7310 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7311 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7312 } else { 7313 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7314 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7315 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7316 } 7317 return true; 7318 } 7319 7320 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7321 SDLoc dl(N); 7322 EVT VT = N->getValueType(0); 7323 SDValue Op = N->getOperand(0); 7324 7325 if (!VT.isSimple()) 7326 return SDValue(); 7327 7328 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7329 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7330 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7331 default: 7332 return SDValue(); 7333 case MVT::i16: 7334 // Use a rotate by 8. This can be further expanded if necessary. 7335 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7336 case MVT::i32: 7337 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7338 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7339 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7340 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7341 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7342 DAG.getConstant(0xFF0000, dl, VT)); 7343 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7344 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7345 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7346 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7347 case MVT::i64: 7348 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7349 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7350 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7351 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7352 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7353 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7354 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7355 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7356 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7357 DAG.getConstant(255ULL<<48, dl, VT)); 7358 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7359 DAG.getConstant(255ULL<<40, dl, VT)); 7360 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7361 DAG.getConstant(255ULL<<32, dl, VT)); 7362 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7363 DAG.getConstant(255ULL<<24, dl, VT)); 7364 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7365 DAG.getConstant(255ULL<<16, dl, VT)); 7366 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7367 DAG.getConstant(255ULL<<8 , dl, VT)); 7368 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7369 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7370 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7371 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7372 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7373 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7374 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7375 } 7376 } 7377 7378 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7379 SDLoc dl(N); 7380 EVT VT = N->getValueType(0); 7381 SDValue Op = N->getOperand(0); 7382 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7383 unsigned Sz = VT.getScalarSizeInBits(); 7384 7385 SDValue Tmp, Tmp2, Tmp3; 7386 7387 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7388 // and finally the i1 pairs. 7389 // TODO: We can easily support i4/i2 legal types if any target ever does. 7390 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7391 // Create the masks - repeating the pattern every byte. 7392 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7393 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7394 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7395 7396 // BSWAP if the type is wider than a single byte. 7397 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7398 7399 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7400 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7401 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7402 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7403 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7404 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7405 7406 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7407 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7408 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7409 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7410 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7411 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7412 7413 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7414 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7415 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7416 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7417 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7418 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7419 return Tmp; 7420 } 7421 7422 Tmp = DAG.getConstant(0, dl, VT); 7423 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7424 if (I < J) 7425 Tmp2 = 7426 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7427 else 7428 Tmp2 = 7429 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7430 7431 APInt Shift(Sz, 1); 7432 Shift <<= J; 7433 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7434 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7435 } 7436 7437 return Tmp; 7438 } 7439 7440 std::pair<SDValue, SDValue> 7441 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7442 SelectionDAG &DAG) const { 7443 SDLoc SL(LD); 7444 SDValue Chain = LD->getChain(); 7445 SDValue BasePTR = LD->getBasePtr(); 7446 EVT SrcVT = LD->getMemoryVT(); 7447 EVT DstVT = LD->getValueType(0); 7448 ISD::LoadExtType ExtType = LD->getExtensionType(); 7449 7450 if (SrcVT.isScalableVector()) 7451 report_fatal_error("Cannot scalarize scalable vector loads"); 7452 7453 unsigned NumElem = SrcVT.getVectorNumElements(); 7454 7455 EVT SrcEltVT = SrcVT.getScalarType(); 7456 EVT DstEltVT = DstVT.getScalarType(); 7457 7458 // A vector must always be stored in memory as-is, i.e. without any padding 7459 // between the elements, since various code depend on it, e.g. in the 7460 // handling of a bitcast of a vector type to int, which may be done with a 7461 // vector store followed by an integer load. A vector that does not have 7462 // elements that are byte-sized must therefore be stored as an integer 7463 // built out of the extracted vector elements. 7464 if (!SrcEltVT.isByteSized()) { 7465 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7466 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7467 7468 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7469 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7470 7471 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7472 SDValue SrcEltBitMask = DAG.getConstant( 7473 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7474 7475 // Load the whole vector and avoid masking off the top bits as it makes 7476 // the codegen worse. 7477 SDValue Load = 7478 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7479 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7480 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7481 7482 SmallVector<SDValue, 8> Vals; 7483 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7484 unsigned ShiftIntoIdx = 7485 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7486 SDValue ShiftAmount = 7487 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7488 LoadVT, SL, /*LegalTypes=*/false); 7489 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7490 SDValue Elt = 7491 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7492 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7493 7494 if (ExtType != ISD::NON_EXTLOAD) { 7495 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7496 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7497 } 7498 7499 Vals.push_back(Scalar); 7500 } 7501 7502 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7503 return std::make_pair(Value, Load.getValue(1)); 7504 } 7505 7506 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7507 assert(SrcEltVT.isByteSized()); 7508 7509 SmallVector<SDValue, 8> Vals; 7510 SmallVector<SDValue, 8> LoadChains; 7511 7512 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7513 SDValue ScalarLoad = 7514 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7515 LD->getPointerInfo().getWithOffset(Idx * Stride), 7516 SrcEltVT, LD->getOriginalAlign(), 7517 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7518 7519 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7520 7521 Vals.push_back(ScalarLoad.getValue(0)); 7522 LoadChains.push_back(ScalarLoad.getValue(1)); 7523 } 7524 7525 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7526 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7527 7528 return std::make_pair(Value, NewChain); 7529 } 7530 7531 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7532 SelectionDAG &DAG) const { 7533 SDLoc SL(ST); 7534 7535 SDValue Chain = ST->getChain(); 7536 SDValue BasePtr = ST->getBasePtr(); 7537 SDValue Value = ST->getValue(); 7538 EVT StVT = ST->getMemoryVT(); 7539 7540 if (StVT.isScalableVector()) 7541 report_fatal_error("Cannot scalarize scalable vector stores"); 7542 7543 // The type of the data we want to save 7544 EVT RegVT = Value.getValueType(); 7545 EVT RegSclVT = RegVT.getScalarType(); 7546 7547 // The type of data as saved in memory. 7548 EVT MemSclVT = StVT.getScalarType(); 7549 7550 unsigned NumElem = StVT.getVectorNumElements(); 7551 7552 // A vector must always be stored in memory as-is, i.e. without any padding 7553 // between the elements, since various code depend on it, e.g. in the 7554 // handling of a bitcast of a vector type to int, which may be done with a 7555 // vector store followed by an integer load. A vector that does not have 7556 // elements that are byte-sized must therefore be stored as an integer 7557 // built out of the extracted vector elements. 7558 if (!MemSclVT.isByteSized()) { 7559 unsigned NumBits = StVT.getSizeInBits(); 7560 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7561 7562 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7563 7564 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7565 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7566 DAG.getVectorIdxConstant(Idx, SL)); 7567 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7568 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7569 unsigned ShiftIntoIdx = 7570 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7571 SDValue ShiftAmount = 7572 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7573 SDValue ShiftedElt = 7574 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7575 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7576 } 7577 7578 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7579 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7580 ST->getAAInfo()); 7581 } 7582 7583 // Store Stride in bytes 7584 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7585 assert(Stride && "Zero stride!"); 7586 // Extract each of the elements from the original vector and save them into 7587 // memory individually. 7588 SmallVector<SDValue, 8> Stores; 7589 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7590 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7591 DAG.getVectorIdxConstant(Idx, SL)); 7592 7593 SDValue Ptr = 7594 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7595 7596 // This scalar TruncStore may be illegal, but we legalize it later. 7597 SDValue Store = DAG.getTruncStore( 7598 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7599 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7600 ST->getAAInfo()); 7601 7602 Stores.push_back(Store); 7603 } 7604 7605 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7606 } 7607 7608 std::pair<SDValue, SDValue> 7609 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7610 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7611 "unaligned indexed loads not implemented!"); 7612 SDValue Chain = LD->getChain(); 7613 SDValue Ptr = LD->getBasePtr(); 7614 EVT VT = LD->getValueType(0); 7615 EVT LoadedVT = LD->getMemoryVT(); 7616 SDLoc dl(LD); 7617 auto &MF = DAG.getMachineFunction(); 7618 7619 if (VT.isFloatingPoint() || VT.isVector()) { 7620 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7621 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7622 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7623 LoadedVT.isVector()) { 7624 // Scalarize the load and let the individual components be handled. 7625 return scalarizeVectorLoad(LD, DAG); 7626 } 7627 7628 // Expand to a (misaligned) integer load of the same size, 7629 // then bitconvert to floating point or vector. 7630 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7631 LD->getMemOperand()); 7632 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7633 if (LoadedVT != VT) 7634 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7635 ISD::ANY_EXTEND, dl, VT, Result); 7636 7637 return std::make_pair(Result, newLoad.getValue(1)); 7638 } 7639 7640 // Copy the value to a (aligned) stack slot using (unaligned) integer 7641 // loads and stores, then do a (aligned) load from the stack slot. 7642 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7643 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7644 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7645 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7646 7647 // Make sure the stack slot is also aligned for the register type. 7648 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7649 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7650 SmallVector<SDValue, 8> Stores; 7651 SDValue StackPtr = StackBase; 7652 unsigned Offset = 0; 7653 7654 EVT PtrVT = Ptr.getValueType(); 7655 EVT StackPtrVT = StackPtr.getValueType(); 7656 7657 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7658 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7659 7660 // Do all but one copies using the full register width. 7661 for (unsigned i = 1; i < NumRegs; i++) { 7662 // Load one integer register's worth from the original location. 7663 SDValue Load = DAG.getLoad( 7664 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7665 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7666 LD->getAAInfo()); 7667 // Follow the load with a store to the stack slot. Remember the store. 7668 Stores.push_back(DAG.getStore( 7669 Load.getValue(1), dl, Load, StackPtr, 7670 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7671 // Increment the pointers. 7672 Offset += RegBytes; 7673 7674 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7675 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7676 } 7677 7678 // The last copy may be partial. Do an extending load. 7679 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7680 8 * (LoadedBytes - Offset)); 7681 SDValue Load = 7682 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7683 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7684 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7685 LD->getAAInfo()); 7686 // Follow the load with a store to the stack slot. Remember the store. 7687 // On big-endian machines this requires a truncating store to ensure 7688 // that the bits end up in the right place. 7689 Stores.push_back(DAG.getTruncStore( 7690 Load.getValue(1), dl, Load, StackPtr, 7691 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7692 7693 // The order of the stores doesn't matter - say it with a TokenFactor. 7694 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7695 7696 // Finally, perform the original load only redirected to the stack slot. 7697 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7698 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7699 LoadedVT); 7700 7701 // Callers expect a MERGE_VALUES node. 7702 return std::make_pair(Load, TF); 7703 } 7704 7705 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7706 "Unaligned load of unsupported type."); 7707 7708 // Compute the new VT that is half the size of the old one. This is an 7709 // integer MVT. 7710 unsigned NumBits = LoadedVT.getSizeInBits(); 7711 EVT NewLoadedVT; 7712 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7713 NumBits >>= 1; 7714 7715 Align Alignment = LD->getOriginalAlign(); 7716 unsigned IncrementSize = NumBits / 8; 7717 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7718 7719 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7720 if (HiExtType == ISD::NON_EXTLOAD) 7721 HiExtType = ISD::ZEXTLOAD; 7722 7723 // Load the value in two parts 7724 SDValue Lo, Hi; 7725 if (DAG.getDataLayout().isLittleEndian()) { 7726 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7727 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7728 LD->getAAInfo()); 7729 7730 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7731 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7732 LD->getPointerInfo().getWithOffset(IncrementSize), 7733 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7734 LD->getAAInfo()); 7735 } else { 7736 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7737 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7738 LD->getAAInfo()); 7739 7740 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7741 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7742 LD->getPointerInfo().getWithOffset(IncrementSize), 7743 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7744 LD->getAAInfo()); 7745 } 7746 7747 // aggregate the two parts 7748 SDValue ShiftAmount = 7749 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7750 DAG.getDataLayout())); 7751 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7752 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7753 7754 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7755 Hi.getValue(1)); 7756 7757 return std::make_pair(Result, TF); 7758 } 7759 7760 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7761 SelectionDAG &DAG) const { 7762 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7763 "unaligned indexed stores not implemented!"); 7764 SDValue Chain = ST->getChain(); 7765 SDValue Ptr = ST->getBasePtr(); 7766 SDValue Val = ST->getValue(); 7767 EVT VT = Val.getValueType(); 7768 Align Alignment = ST->getOriginalAlign(); 7769 auto &MF = DAG.getMachineFunction(); 7770 EVT StoreMemVT = ST->getMemoryVT(); 7771 7772 SDLoc dl(ST); 7773 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7774 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7775 if (isTypeLegal(intVT)) { 7776 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7777 StoreMemVT.isVector()) { 7778 // Scalarize the store and let the individual components be handled. 7779 SDValue Result = scalarizeVectorStore(ST, DAG); 7780 return Result; 7781 } 7782 // Expand to a bitconvert of the value to the integer type of the 7783 // same size, then a (misaligned) int store. 7784 // FIXME: Does not handle truncating floating point stores! 7785 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7786 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7787 Alignment, ST->getMemOperand()->getFlags()); 7788 return Result; 7789 } 7790 // Do a (aligned) store to a stack slot, then copy from the stack slot 7791 // to the final destination using (unaligned) integer loads and stores. 7792 MVT RegVT = getRegisterType( 7793 *DAG.getContext(), 7794 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7795 EVT PtrVT = Ptr.getValueType(); 7796 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7797 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7798 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7799 7800 // Make sure the stack slot is also aligned for the register type. 7801 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7802 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7803 7804 // Perform the original store, only redirected to the stack slot. 7805 SDValue Store = DAG.getTruncStore( 7806 Chain, dl, Val, StackPtr, 7807 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7808 7809 EVT StackPtrVT = StackPtr.getValueType(); 7810 7811 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7812 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7813 SmallVector<SDValue, 8> Stores; 7814 unsigned Offset = 0; 7815 7816 // Do all but one copies using the full register width. 7817 for (unsigned i = 1; i < NumRegs; i++) { 7818 // Load one integer register's worth from the stack slot. 7819 SDValue Load = DAG.getLoad( 7820 RegVT, dl, Store, StackPtr, 7821 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7822 // Store it to the final location. Remember the store. 7823 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7824 ST->getPointerInfo().getWithOffset(Offset), 7825 ST->getOriginalAlign(), 7826 ST->getMemOperand()->getFlags())); 7827 // Increment the pointers. 7828 Offset += RegBytes; 7829 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7830 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7831 } 7832 7833 // The last store may be partial. Do a truncating store. On big-endian 7834 // machines this requires an extending load from the stack slot to ensure 7835 // that the bits are in the right place. 7836 EVT LoadMemVT = 7837 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7838 7839 // Load from the stack slot. 7840 SDValue Load = DAG.getExtLoad( 7841 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7842 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7843 7844 Stores.push_back( 7845 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7846 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7847 ST->getOriginalAlign(), 7848 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7849 // The order of the stores doesn't matter - say it with a TokenFactor. 7850 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7851 return Result; 7852 } 7853 7854 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7855 "Unaligned store of unknown type."); 7856 // Get the half-size VT 7857 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7858 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7859 unsigned IncrementSize = NumBits / 8; 7860 7861 // Divide the stored value in two parts. 7862 SDValue ShiftAmount = DAG.getConstant( 7863 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7864 SDValue Lo = Val; 7865 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7866 7867 // Store the two parts 7868 SDValue Store1, Store2; 7869 Store1 = DAG.getTruncStore(Chain, dl, 7870 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7871 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7872 ST->getMemOperand()->getFlags()); 7873 7874 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7875 Store2 = DAG.getTruncStore( 7876 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7877 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7878 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7879 7880 SDValue Result = 7881 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7882 return Result; 7883 } 7884 7885 SDValue 7886 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7887 const SDLoc &DL, EVT DataVT, 7888 SelectionDAG &DAG, 7889 bool IsCompressedMemory) const { 7890 SDValue Increment; 7891 EVT AddrVT = Addr.getValueType(); 7892 EVT MaskVT = Mask.getValueType(); 7893 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7894 "Incompatible types of Data and Mask"); 7895 if (IsCompressedMemory) { 7896 if (DataVT.isScalableVector()) 7897 report_fatal_error( 7898 "Cannot currently handle compressed memory with scalable vectors"); 7899 // Incrementing the pointer according to number of '1's in the mask. 7900 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7901 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7902 if (MaskIntVT.getSizeInBits() < 32) { 7903 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7904 MaskIntVT = MVT::i32; 7905 } 7906 7907 // Count '1's with POPCNT. 7908 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7909 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7910 // Scale is an element size in bytes. 7911 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7912 AddrVT); 7913 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7914 } else if (DataVT.isScalableVector()) { 7915 Increment = DAG.getVScale(DL, AddrVT, 7916 APInt(AddrVT.getFixedSizeInBits(), 7917 DataVT.getStoreSize().getKnownMinSize())); 7918 } else 7919 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7920 7921 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7922 } 7923 7924 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7925 EVT VecVT, const SDLoc &dl, 7926 unsigned NumSubElts) { 7927 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7928 return Idx; 7929 7930 EVT IdxVT = Idx.getValueType(); 7931 unsigned NElts = VecVT.getVectorMinNumElements(); 7932 if (VecVT.isScalableVector()) { 7933 // If this is a constant index and we know the value plus the number of the 7934 // elements in the subvector minus one is less than the minimum number of 7935 // elements then it's safe to return Idx. 7936 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7937 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7938 return Idx; 7939 SDValue VS = 7940 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7941 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7942 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7943 DAG.getConstant(NumSubElts, dl, IdxVT)); 7944 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7945 } 7946 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7947 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7948 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7949 DAG.getConstant(Imm, dl, IdxVT)); 7950 } 7951 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7952 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7953 DAG.getConstant(MaxIndex, dl, IdxVT)); 7954 } 7955 7956 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7957 SDValue VecPtr, EVT VecVT, 7958 SDValue Index) const { 7959 return getVectorSubVecPointer( 7960 DAG, VecPtr, VecVT, 7961 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7962 Index); 7963 } 7964 7965 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7966 SDValue VecPtr, EVT VecVT, 7967 EVT SubVecVT, 7968 SDValue Index) const { 7969 SDLoc dl(Index); 7970 // Make sure the index type is big enough to compute in. 7971 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7972 7973 EVT EltVT = VecVT.getVectorElementType(); 7974 7975 // Calculate the element offset and add it to the pointer. 7976 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7977 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7978 "Converting bits to bytes lost precision"); 7979 7980 // Scalable vectors don't need clamping as these are checked at compile time 7981 if (SubVecVT.isFixedLengthVector()) { 7982 assert(SubVecVT.getVectorElementType() == EltVT && 7983 "Sub-vector must be a fixed vector with matching element type"); 7984 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7985 SubVecVT.getVectorNumElements()); 7986 } 7987 7988 EVT IdxVT = Index.getValueType(); 7989 7990 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7991 DAG.getConstant(EltSize, dl, IdxVT)); 7992 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7993 } 7994 7995 //===----------------------------------------------------------------------===// 7996 // Implementation of Emulated TLS Model 7997 //===----------------------------------------------------------------------===// 7998 7999 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8000 SelectionDAG &DAG) const { 8001 // Access to address of TLS varialbe xyz is lowered to a function call: 8002 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8003 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8004 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8005 SDLoc dl(GA); 8006 8007 ArgListTy Args; 8008 ArgListEntry Entry; 8009 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8010 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8011 StringRef EmuTlsVarName(NameString); 8012 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8013 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8014 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8015 Entry.Ty = VoidPtrType; 8016 Args.push_back(Entry); 8017 8018 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8019 8020 TargetLowering::CallLoweringInfo CLI(DAG); 8021 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8022 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8023 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8024 8025 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8026 // At last for X86 targets, maybe good for other targets too? 8027 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8028 MFI.setAdjustsStack(true); // Is this only for X86 target? 8029 MFI.setHasCalls(true); 8030 8031 assert((GA->getOffset() == 0) && 8032 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8033 return CallResult.first; 8034 } 8035 8036 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8037 SelectionDAG &DAG) const { 8038 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8039 if (!isCtlzFast()) 8040 return SDValue(); 8041 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8042 SDLoc dl(Op); 8043 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8044 if (C->isNullValue() && CC == ISD::SETEQ) { 8045 EVT VT = Op.getOperand(0).getValueType(); 8046 SDValue Zext = Op.getOperand(0); 8047 if (VT.bitsLT(MVT::i32)) { 8048 VT = MVT::i32; 8049 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8050 } 8051 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8052 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8053 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8054 DAG.getConstant(Log2b, dl, MVT::i32)); 8055 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8056 } 8057 } 8058 return SDValue(); 8059 } 8060 8061 // Convert redundant addressing modes (e.g. scaling is redundant 8062 // when accessing bytes). 8063 ISD::MemIndexType 8064 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8065 SDValue Offsets) const { 8066 bool IsScaledIndex = 8067 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8068 bool IsSignedIndex = 8069 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8070 8071 // Scaling is unimportant for bytes, canonicalize to unscaled. 8072 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 8073 IsScaledIndex = false; 8074 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8075 } 8076 8077 return IndexType; 8078 } 8079 8080 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8081 SDValue Op0 = Node->getOperand(0); 8082 SDValue Op1 = Node->getOperand(1); 8083 EVT VT = Op0.getValueType(); 8084 unsigned Opcode = Node->getOpcode(); 8085 SDLoc DL(Node); 8086 8087 // umin(x,y) -> sub(x,usubsat(x,y)) 8088 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8089 isOperationLegal(ISD::USUBSAT, VT)) { 8090 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8091 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8092 } 8093 8094 // umax(x,y) -> add(x,usubsat(y,x)) 8095 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8096 isOperationLegal(ISD::USUBSAT, VT)) { 8097 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8098 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8099 } 8100 8101 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8102 ISD::CondCode CC; 8103 switch (Opcode) { 8104 default: llvm_unreachable("How did we get here?"); 8105 case ISD::SMAX: CC = ISD::SETGT; break; 8106 case ISD::SMIN: CC = ISD::SETLT; break; 8107 case ISD::UMAX: CC = ISD::SETUGT; break; 8108 case ISD::UMIN: CC = ISD::SETULT; break; 8109 } 8110 8111 // FIXME: Should really try to split the vector in case it's legal on a 8112 // subvector. 8113 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8114 return DAG.UnrollVectorOp(Node); 8115 8116 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 8117 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8118 } 8119 8120 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8121 unsigned Opcode = Node->getOpcode(); 8122 SDValue LHS = Node->getOperand(0); 8123 SDValue RHS = Node->getOperand(1); 8124 EVT VT = LHS.getValueType(); 8125 SDLoc dl(Node); 8126 8127 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8128 assert(VT.isInteger() && "Expected operands to be integers"); 8129 8130 // usub.sat(a, b) -> umax(a, b) - b 8131 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8132 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8133 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8134 } 8135 8136 // uadd.sat(a, b) -> umin(a, ~b) + b 8137 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8138 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8139 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8140 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8141 } 8142 8143 unsigned OverflowOp; 8144 switch (Opcode) { 8145 case ISD::SADDSAT: 8146 OverflowOp = ISD::SADDO; 8147 break; 8148 case ISD::UADDSAT: 8149 OverflowOp = ISD::UADDO; 8150 break; 8151 case ISD::SSUBSAT: 8152 OverflowOp = ISD::SSUBO; 8153 break; 8154 case ISD::USUBSAT: 8155 OverflowOp = ISD::USUBO; 8156 break; 8157 default: 8158 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8159 "addition or subtraction node."); 8160 } 8161 8162 // FIXME: Should really try to split the vector in case it's legal on a 8163 // subvector. 8164 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8165 return DAG.UnrollVectorOp(Node); 8166 8167 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8168 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8169 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8170 SDValue SumDiff = Result.getValue(0); 8171 SDValue Overflow = Result.getValue(1); 8172 SDValue Zero = DAG.getConstant(0, dl, VT); 8173 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8174 8175 if (Opcode == ISD::UADDSAT) { 8176 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8177 // (LHS + RHS) | OverflowMask 8178 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8179 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8180 } 8181 // Overflow ? 0xffff.... : (LHS + RHS) 8182 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8183 } 8184 8185 if (Opcode == ISD::USUBSAT) { 8186 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8187 // (LHS - RHS) & ~OverflowMask 8188 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8189 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8190 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8191 } 8192 // Overflow ? 0 : (LHS - RHS) 8193 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8194 } 8195 8196 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8197 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8198 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8199 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8200 DAG.getConstant(BitWidth - 1, dl, VT)); 8201 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8202 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8203 } 8204 8205 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8206 unsigned Opcode = Node->getOpcode(); 8207 bool IsSigned = Opcode == ISD::SSHLSAT; 8208 SDValue LHS = Node->getOperand(0); 8209 SDValue RHS = Node->getOperand(1); 8210 EVT VT = LHS.getValueType(); 8211 SDLoc dl(Node); 8212 8213 assert((Node->getOpcode() == ISD::SSHLSAT || 8214 Node->getOpcode() == ISD::USHLSAT) && 8215 "Expected a SHLSAT opcode"); 8216 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8217 assert(VT.isInteger() && "Expected operands to be integers"); 8218 8219 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8220 8221 unsigned BW = VT.getScalarSizeInBits(); 8222 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8223 SDValue Orig = 8224 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8225 8226 SDValue SatVal; 8227 if (IsSigned) { 8228 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8229 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8230 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8231 SatMin, SatMax, ISD::SETLT); 8232 } else { 8233 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8234 } 8235 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8236 8237 return Result; 8238 } 8239 8240 SDValue 8241 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8242 assert((Node->getOpcode() == ISD::SMULFIX || 8243 Node->getOpcode() == ISD::UMULFIX || 8244 Node->getOpcode() == ISD::SMULFIXSAT || 8245 Node->getOpcode() == ISD::UMULFIXSAT) && 8246 "Expected a fixed point multiplication opcode"); 8247 8248 SDLoc dl(Node); 8249 SDValue LHS = Node->getOperand(0); 8250 SDValue RHS = Node->getOperand(1); 8251 EVT VT = LHS.getValueType(); 8252 unsigned Scale = Node->getConstantOperandVal(2); 8253 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8254 Node->getOpcode() == ISD::UMULFIXSAT); 8255 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8256 Node->getOpcode() == ISD::SMULFIXSAT); 8257 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8258 unsigned VTSize = VT.getScalarSizeInBits(); 8259 8260 if (!Scale) { 8261 // [us]mul.fix(a, b, 0) -> mul(a, b) 8262 if (!Saturating) { 8263 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8264 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8265 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8266 SDValue Result = 8267 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8268 SDValue Product = Result.getValue(0); 8269 SDValue Overflow = Result.getValue(1); 8270 SDValue Zero = DAG.getConstant(0, dl, VT); 8271 8272 APInt MinVal = APInt::getSignedMinValue(VTSize); 8273 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8274 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8275 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8276 // Xor the inputs, if resulting sign bit is 0 the product will be 8277 // positive, else negative. 8278 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8279 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8280 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8281 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8282 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8283 SDValue Result = 8284 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8285 SDValue Product = Result.getValue(0); 8286 SDValue Overflow = Result.getValue(1); 8287 8288 APInt MaxVal = APInt::getMaxValue(VTSize); 8289 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8290 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8291 } 8292 } 8293 8294 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8295 "Expected scale to be less than the number of bits if signed or at " 8296 "most the number of bits if unsigned."); 8297 assert(LHS.getValueType() == RHS.getValueType() && 8298 "Expected both operands to be the same type"); 8299 8300 // Get the upper and lower bits of the result. 8301 SDValue Lo, Hi; 8302 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8303 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8304 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8305 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8306 Lo = Result.getValue(0); 8307 Hi = Result.getValue(1); 8308 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8309 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8310 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8311 } else if (VT.isVector()) { 8312 return SDValue(); 8313 } else { 8314 report_fatal_error("Unable to expand fixed point multiplication."); 8315 } 8316 8317 if (Scale == VTSize) 8318 // Result is just the top half since we'd be shifting by the width of the 8319 // operand. Overflow impossible so this works for both UMULFIX and 8320 // UMULFIXSAT. 8321 return Hi; 8322 8323 // The result will need to be shifted right by the scale since both operands 8324 // are scaled. The result is given to us in 2 halves, so we only want part of 8325 // both in the result. 8326 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8327 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8328 DAG.getConstant(Scale, dl, ShiftTy)); 8329 if (!Saturating) 8330 return Result; 8331 8332 if (!Signed) { 8333 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8334 // widened multiplication) aren't all zeroes. 8335 8336 // Saturate to max if ((Hi >> Scale) != 0), 8337 // which is the same as if (Hi > ((1 << Scale) - 1)) 8338 APInt MaxVal = APInt::getMaxValue(VTSize); 8339 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8340 dl, VT); 8341 Result = DAG.getSelectCC(dl, Hi, LowMask, 8342 DAG.getConstant(MaxVal, dl, VT), Result, 8343 ISD::SETUGT); 8344 8345 return Result; 8346 } 8347 8348 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8349 // widened multiplication) aren't all ones or all zeroes. 8350 8351 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8352 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8353 8354 if (Scale == 0) { 8355 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8356 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8357 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8358 // Saturated to SatMin if wide product is negative, and SatMax if wide 8359 // product is positive ... 8360 SDValue Zero = DAG.getConstant(0, dl, VT); 8361 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8362 ISD::SETLT); 8363 // ... but only if we overflowed. 8364 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8365 } 8366 8367 // We handled Scale==0 above so all the bits to examine is in Hi. 8368 8369 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8370 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8371 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8372 dl, VT); 8373 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8374 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8375 // which is the same as if (HI < (-1 << (Scale - 1)) 8376 SDValue HighMask = 8377 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8378 dl, VT); 8379 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8380 return Result; 8381 } 8382 8383 SDValue 8384 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8385 SDValue LHS, SDValue RHS, 8386 unsigned Scale, SelectionDAG &DAG) const { 8387 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8388 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8389 "Expected a fixed point division opcode"); 8390 8391 EVT VT = LHS.getValueType(); 8392 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8393 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8394 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8395 8396 // If there is enough room in the type to upscale the LHS or downscale the 8397 // RHS before the division, we can perform it in this type without having to 8398 // resize. For signed operations, the LHS headroom is the number of 8399 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8400 // The headroom for the RHS is the number of trailing zeroes. 8401 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8402 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8403 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8404 8405 // For signed saturating operations, we need to be able to detect true integer 8406 // division overflow; that is, when you have MIN / -EPS. However, this 8407 // is undefined behavior and if we emit divisions that could take such 8408 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8409 // example). 8410 // Avoid this by requiring an extra bit so that we never get this case. 8411 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8412 // signed saturating division, we need to emit a whopping 32-bit division. 8413 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8414 return SDValue(); 8415 8416 unsigned LHSShift = std::min(LHSLead, Scale); 8417 unsigned RHSShift = Scale - LHSShift; 8418 8419 // At this point, we know that if we shift the LHS up by LHSShift and the 8420 // RHS down by RHSShift, we can emit a regular division with a final scaling 8421 // factor of Scale. 8422 8423 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8424 if (LHSShift) 8425 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8426 DAG.getConstant(LHSShift, dl, ShiftTy)); 8427 if (RHSShift) 8428 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8429 DAG.getConstant(RHSShift, dl, ShiftTy)); 8430 8431 SDValue Quot; 8432 if (Signed) { 8433 // For signed operations, if the resulting quotient is negative and the 8434 // remainder is nonzero, subtract 1 from the quotient to round towards 8435 // negative infinity. 8436 SDValue Rem; 8437 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8438 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8439 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8440 if (isTypeLegal(VT) && 8441 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8442 Quot = DAG.getNode(ISD::SDIVREM, dl, 8443 DAG.getVTList(VT, VT), 8444 LHS, RHS); 8445 Rem = Quot.getValue(1); 8446 Quot = Quot.getValue(0); 8447 } else { 8448 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8449 LHS, RHS); 8450 Rem = DAG.getNode(ISD::SREM, dl, VT, 8451 LHS, RHS); 8452 } 8453 SDValue Zero = DAG.getConstant(0, dl, VT); 8454 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8455 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8456 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8457 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8458 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8459 DAG.getConstant(1, dl, VT)); 8460 Quot = DAG.getSelect(dl, VT, 8461 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8462 Sub1, Quot); 8463 } else 8464 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8465 LHS, RHS); 8466 8467 return Quot; 8468 } 8469 8470 void TargetLowering::expandUADDSUBO( 8471 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8472 SDLoc dl(Node); 8473 SDValue LHS = Node->getOperand(0); 8474 SDValue RHS = Node->getOperand(1); 8475 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8476 8477 // If ADD/SUBCARRY is legal, use that instead. 8478 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8479 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8480 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8481 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8482 { LHS, RHS, CarryIn }); 8483 Result = SDValue(NodeCarry.getNode(), 0); 8484 Overflow = SDValue(NodeCarry.getNode(), 1); 8485 return; 8486 } 8487 8488 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8489 LHS.getValueType(), LHS, RHS); 8490 8491 EVT ResultType = Node->getValueType(1); 8492 EVT SetCCType = getSetCCResultType( 8493 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8494 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8495 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8496 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8497 } 8498 8499 void TargetLowering::expandSADDSUBO( 8500 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8501 SDLoc dl(Node); 8502 SDValue LHS = Node->getOperand(0); 8503 SDValue RHS = Node->getOperand(1); 8504 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8505 8506 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8507 LHS.getValueType(), LHS, RHS); 8508 8509 EVT ResultType = Node->getValueType(1); 8510 EVT OType = getSetCCResultType( 8511 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8512 8513 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8514 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8515 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8516 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8517 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8518 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8519 return; 8520 } 8521 8522 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8523 8524 // For an addition, the result should be less than one of the operands (LHS) 8525 // if and only if the other operand (RHS) is negative, otherwise there will 8526 // be overflow. 8527 // For a subtraction, the result should be less than one of the operands 8528 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8529 // otherwise there will be overflow. 8530 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8531 SDValue ConditionRHS = 8532 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8533 8534 Overflow = DAG.getBoolExtOrTrunc( 8535 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8536 ResultType, ResultType); 8537 } 8538 8539 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8540 SDValue &Overflow, SelectionDAG &DAG) const { 8541 SDLoc dl(Node); 8542 EVT VT = Node->getValueType(0); 8543 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8544 SDValue LHS = Node->getOperand(0); 8545 SDValue RHS = Node->getOperand(1); 8546 bool isSigned = Node->getOpcode() == ISD::SMULO; 8547 8548 // For power-of-two multiplications we can use a simpler shift expansion. 8549 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8550 const APInt &C = RHSC->getAPIntValue(); 8551 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8552 if (C.isPowerOf2()) { 8553 // smulo(x, signed_min) is same as umulo(x, signed_min). 8554 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8555 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8556 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8557 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8558 Overflow = DAG.getSetCC(dl, SetCCVT, 8559 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8560 dl, VT, Result, ShiftAmt), 8561 LHS, ISD::SETNE); 8562 return true; 8563 } 8564 } 8565 8566 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8567 if (VT.isVector()) 8568 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8569 VT.getVectorNumElements()); 8570 8571 SDValue BottomHalf; 8572 SDValue TopHalf; 8573 static const unsigned Ops[2][3] = 8574 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8575 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8576 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8577 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8578 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8579 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8580 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8581 RHS); 8582 TopHalf = BottomHalf.getValue(1); 8583 } else if (isTypeLegal(WideVT)) { 8584 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8585 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8586 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8587 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8588 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8589 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8590 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8591 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8592 } else { 8593 if (VT.isVector()) 8594 return false; 8595 8596 // We can fall back to a libcall with an illegal type for the MUL if we 8597 // have a libcall big enough. 8598 // Also, we can fall back to a division in some cases, but that's a big 8599 // performance hit in the general case. 8600 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8601 if (WideVT == MVT::i16) 8602 LC = RTLIB::MUL_I16; 8603 else if (WideVT == MVT::i32) 8604 LC = RTLIB::MUL_I32; 8605 else if (WideVT == MVT::i64) 8606 LC = RTLIB::MUL_I64; 8607 else if (WideVT == MVT::i128) 8608 LC = RTLIB::MUL_I128; 8609 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8610 8611 SDValue HiLHS; 8612 SDValue HiRHS; 8613 if (isSigned) { 8614 // The high part is obtained by SRA'ing all but one of the bits of low 8615 // part. 8616 unsigned LoSize = VT.getFixedSizeInBits(); 8617 HiLHS = 8618 DAG.getNode(ISD::SRA, dl, VT, LHS, 8619 DAG.getConstant(LoSize - 1, dl, 8620 getPointerTy(DAG.getDataLayout()))); 8621 HiRHS = 8622 DAG.getNode(ISD::SRA, dl, VT, RHS, 8623 DAG.getConstant(LoSize - 1, dl, 8624 getPointerTy(DAG.getDataLayout()))); 8625 } else { 8626 HiLHS = DAG.getConstant(0, dl, VT); 8627 HiRHS = DAG.getConstant(0, dl, VT); 8628 } 8629 8630 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8631 // pre-lowered to the correct types. This all depends upon WideVT not 8632 // being a legal type for the architecture and thus has to be split to 8633 // two arguments. 8634 SDValue Ret; 8635 TargetLowering::MakeLibCallOptions CallOptions; 8636 CallOptions.setSExt(isSigned); 8637 CallOptions.setIsPostTypeLegalization(true); 8638 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8639 // Halves of WideVT are packed into registers in different order 8640 // depending on platform endianness. This is usually handled by 8641 // the C calling convention, but we can't defer to it in 8642 // the legalizer. 8643 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8644 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8645 } else { 8646 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8647 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8648 } 8649 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8650 "Ret value is a collection of constituent nodes holding result."); 8651 if (DAG.getDataLayout().isLittleEndian()) { 8652 // Same as above. 8653 BottomHalf = Ret.getOperand(0); 8654 TopHalf = Ret.getOperand(1); 8655 } else { 8656 BottomHalf = Ret.getOperand(1); 8657 TopHalf = Ret.getOperand(0); 8658 } 8659 } 8660 8661 Result = BottomHalf; 8662 if (isSigned) { 8663 SDValue ShiftAmt = DAG.getConstant( 8664 VT.getScalarSizeInBits() - 1, dl, 8665 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8666 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8667 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8668 } else { 8669 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8670 DAG.getConstant(0, dl, VT), ISD::SETNE); 8671 } 8672 8673 // Truncate the result if SetCC returns a larger type than needed. 8674 EVT RType = Node->getValueType(1); 8675 if (RType.bitsLT(Overflow.getValueType())) 8676 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8677 8678 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8679 "Unexpected result type for S/UMULO legalization"); 8680 return true; 8681 } 8682 8683 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8684 SDLoc dl(Node); 8685 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8686 SDValue Op = Node->getOperand(0); 8687 EVT VT = Op.getValueType(); 8688 8689 if (VT.isScalableVector()) 8690 report_fatal_error( 8691 "Expanding reductions for scalable vectors is undefined."); 8692 8693 // Try to use a shuffle reduction for power of two vectors. 8694 if (VT.isPow2VectorType()) { 8695 while (VT.getVectorNumElements() > 1) { 8696 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8697 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8698 break; 8699 8700 SDValue Lo, Hi; 8701 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8702 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8703 VT = HalfVT; 8704 } 8705 } 8706 8707 EVT EltVT = VT.getVectorElementType(); 8708 unsigned NumElts = VT.getVectorNumElements(); 8709 8710 SmallVector<SDValue, 8> Ops; 8711 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8712 8713 SDValue Res = Ops[0]; 8714 for (unsigned i = 1; i < NumElts; i++) 8715 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8716 8717 // Result type may be wider than element type. 8718 if (EltVT != Node->getValueType(0)) 8719 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8720 return Res; 8721 } 8722 8723 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8724 SDLoc dl(Node); 8725 SDValue AccOp = Node->getOperand(0); 8726 SDValue VecOp = Node->getOperand(1); 8727 SDNodeFlags Flags = Node->getFlags(); 8728 8729 EVT VT = VecOp.getValueType(); 8730 EVT EltVT = VT.getVectorElementType(); 8731 8732 if (VT.isScalableVector()) 8733 report_fatal_error( 8734 "Expanding reductions for scalable vectors is undefined."); 8735 8736 unsigned NumElts = VT.getVectorNumElements(); 8737 8738 SmallVector<SDValue, 8> Ops; 8739 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8740 8741 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8742 8743 SDValue Res = AccOp; 8744 for (unsigned i = 0; i < NumElts; i++) 8745 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8746 8747 return Res; 8748 } 8749 8750 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8751 SelectionDAG &DAG) const { 8752 EVT VT = Node->getValueType(0); 8753 SDLoc dl(Node); 8754 bool isSigned = Node->getOpcode() == ISD::SREM; 8755 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8756 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8757 SDValue Dividend = Node->getOperand(0); 8758 SDValue Divisor = Node->getOperand(1); 8759 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8760 SDVTList VTs = DAG.getVTList(VT, VT); 8761 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8762 return true; 8763 } 8764 if (isOperationLegalOrCustom(DivOpc, VT)) { 8765 // X % Y -> X-X/Y*Y 8766 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8767 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8768 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8769 return true; 8770 } 8771 return false; 8772 } 8773 8774 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8775 SelectionDAG &DAG) const { 8776 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8777 SDLoc dl(SDValue(Node, 0)); 8778 SDValue Src = Node->getOperand(0); 8779 8780 // DstVT is the result type, while SatVT is the size to which we saturate 8781 EVT SrcVT = Src.getValueType(); 8782 EVT DstVT = Node->getValueType(0); 8783 8784 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8785 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8786 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8787 assert(SatWidth <= DstWidth && 8788 "Expected saturation width smaller than result width"); 8789 8790 // Determine minimum and maximum integer values and their corresponding 8791 // floating-point values. 8792 APInt MinInt, MaxInt; 8793 if (IsSigned) { 8794 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8795 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8796 } else { 8797 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8798 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8799 } 8800 8801 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8802 // libcall emission cannot handle this. Large result types will fail. 8803 if (SrcVT == MVT::f16) { 8804 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8805 SrcVT = Src.getValueType(); 8806 } 8807 8808 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8809 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8810 8811 APFloat::opStatus MinStatus = 8812 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8813 APFloat::opStatus MaxStatus = 8814 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8815 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8816 !(MaxStatus & APFloat::opStatus::opInexact); 8817 8818 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8819 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8820 8821 // If the integer bounds are exactly representable as floats and min/max are 8822 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8823 // of comparisons and selects. 8824 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8825 isOperationLegal(ISD::FMAXNUM, SrcVT); 8826 if (AreExactFloatBounds && MinMaxLegal) { 8827 SDValue Clamped = Src; 8828 8829 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8830 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8831 // Clamp by MaxFloat from above. NaN cannot occur. 8832 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8833 // Convert clamped value to integer. 8834 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8835 dl, DstVT, Clamped); 8836 8837 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8838 // which will cast to zero. 8839 if (!IsSigned) 8840 return FpToInt; 8841 8842 // Otherwise, select 0 if Src is NaN. 8843 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8844 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8845 ISD::CondCode::SETUO); 8846 } 8847 8848 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8849 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8850 8851 // Result of direct conversion. The assumption here is that the operation is 8852 // non-trapping and it's fine to apply it to an out-of-range value if we 8853 // select it away later. 8854 SDValue FpToInt = 8855 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8856 8857 SDValue Select = FpToInt; 8858 8859 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8860 // MinInt if Src is NaN. 8861 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8862 ISD::CondCode::SETULT); 8863 // If Src OGT MaxFloat, select MaxInt. 8864 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8865 ISD::CondCode::SETOGT); 8866 8867 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8868 // is already zero. 8869 if (!IsSigned) 8870 return Select; 8871 8872 // Otherwise, select 0 if Src is NaN. 8873 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8874 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8875 } 8876 8877 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8878 SelectionDAG &DAG) const { 8879 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8880 assert(Node->getValueType(0).isScalableVector() && 8881 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8882 8883 EVT VT = Node->getValueType(0); 8884 SDValue V1 = Node->getOperand(0); 8885 SDValue V2 = Node->getOperand(1); 8886 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8887 SDLoc DL(Node); 8888 8889 // Expand through memory thusly: 8890 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8891 // Store V1, Ptr 8892 // Store V2, Ptr + sizeof(V1) 8893 // If (Imm < 0) 8894 // TrailingElts = -Imm 8895 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8896 // else 8897 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8898 // Res = Load Ptr 8899 8900 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8901 8902 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8903 VT.getVectorElementCount() * 2); 8904 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8905 EVT PtrVT = StackPtr.getValueType(); 8906 auto &MF = DAG.getMachineFunction(); 8907 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8908 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8909 8910 // Store the lo part of CONCAT_VECTORS(V1, V2) 8911 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8912 // Store the hi part of CONCAT_VECTORS(V1, V2) 8913 SDValue OffsetToV2 = DAG.getVScale( 8914 DL, PtrVT, 8915 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8916 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8917 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8918 8919 if (Imm >= 0) { 8920 // Load back the required element. getVectorElementPointer takes care of 8921 // clamping the index if it's out-of-bounds. 8922 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8923 // Load the spliced result 8924 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8925 MachinePointerInfo::getUnknownStack(MF)); 8926 } 8927 8928 uint64_t TrailingElts = -Imm; 8929 8930 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8931 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8932 SDValue TrailingBytes = 8933 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8934 8935 if (TrailingElts > VT.getVectorMinNumElements()) { 8936 SDValue VLBytes = DAG.getVScale( 8937 DL, PtrVT, 8938 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8939 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8940 } 8941 8942 // Calculate the start address of the spliced result. 8943 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8944 8945 // Load the spliced result 8946 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8947 MachinePointerInfo::getUnknownStack(MF)); 8948 } 8949 8950 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8951 SDValue &LHS, SDValue &RHS, 8952 SDValue &CC, bool &NeedInvert, 8953 const SDLoc &dl, SDValue &Chain, 8954 bool IsSignaling) const { 8955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8956 MVT OpVT = LHS.getSimpleValueType(); 8957 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8958 NeedInvert = false; 8959 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8960 default: 8961 llvm_unreachable("Unknown condition code action!"); 8962 case TargetLowering::Legal: 8963 // Nothing to do. 8964 break; 8965 case TargetLowering::Expand: { 8966 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8967 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8968 std::swap(LHS, RHS); 8969 CC = DAG.getCondCode(InvCC); 8970 return true; 8971 } 8972 // Swapping operands didn't work. Try inverting the condition. 8973 bool NeedSwap = false; 8974 InvCC = getSetCCInverse(CCCode, OpVT); 8975 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8976 // If inverting the condition is not enough, try swapping operands 8977 // on top of it. 8978 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8979 NeedSwap = true; 8980 } 8981 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8982 CC = DAG.getCondCode(InvCC); 8983 NeedInvert = true; 8984 if (NeedSwap) 8985 std::swap(LHS, RHS); 8986 return true; 8987 } 8988 8989 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8990 unsigned Opc = 0; 8991 switch (CCCode) { 8992 default: 8993 llvm_unreachable("Don't know how to expand this condition!"); 8994 case ISD::SETUO: 8995 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8996 CC1 = ISD::SETUNE; 8997 CC2 = ISD::SETUNE; 8998 Opc = ISD::OR; 8999 break; 9000 } 9001 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9002 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9003 NeedInvert = true; 9004 LLVM_FALLTHROUGH; 9005 case ISD::SETO: 9006 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9007 "If SETO is expanded, SETOEQ must be legal!"); 9008 CC1 = ISD::SETOEQ; 9009 CC2 = ISD::SETOEQ; 9010 Opc = ISD::AND; 9011 break; 9012 case ISD::SETONE: 9013 case ISD::SETUEQ: 9014 // If the SETUO or SETO CC isn't legal, we might be able to use 9015 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9016 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9017 // the operands. 9018 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9019 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9020 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9021 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9022 CC1 = ISD::SETOGT; 9023 CC2 = ISD::SETOLT; 9024 Opc = ISD::OR; 9025 NeedInvert = ((unsigned)CCCode & 0x8U); 9026 break; 9027 } 9028 LLVM_FALLTHROUGH; 9029 case ISD::SETOEQ: 9030 case ISD::SETOGT: 9031 case ISD::SETOGE: 9032 case ISD::SETOLT: 9033 case ISD::SETOLE: 9034 case ISD::SETUNE: 9035 case ISD::SETUGT: 9036 case ISD::SETUGE: 9037 case ISD::SETULT: 9038 case ISD::SETULE: 9039 // If we are floating point, assign and break, otherwise fall through. 9040 if (!OpVT.isInteger()) { 9041 // We can use the 4th bit to tell if we are the unordered 9042 // or ordered version of the opcode. 9043 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9044 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9045 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9046 break; 9047 } 9048 // Fallthrough if we are unsigned integer. 9049 LLVM_FALLTHROUGH; 9050 case ISD::SETLE: 9051 case ISD::SETGT: 9052 case ISD::SETGE: 9053 case ISD::SETLT: 9054 case ISD::SETNE: 9055 case ISD::SETEQ: 9056 // If all combinations of inverting the condition and swapping operands 9057 // didn't work then we have no means to expand the condition. 9058 llvm_unreachable("Don't know how to expand this condition!"); 9059 } 9060 9061 SDValue SetCC1, SetCC2; 9062 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9063 // If we aren't the ordered or unorder operation, 9064 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9065 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9066 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9067 } else { 9068 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9069 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9070 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9071 } 9072 if (Chain) 9073 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9074 SetCC2.getValue(1)); 9075 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9076 RHS = SDValue(); 9077 CC = SDValue(); 9078 return true; 9079 } 9080 } 9081 return false; 9082 } 9083