1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The constructor takes ownership of TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm, 39 const TargetLoweringObjectFile *tlof) 40 : TargetLoweringBase(tm, tlof) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = isSigned; 100 Entry.isZExt = !isSigned; 101 Args.push_back(Entry); 102 } 103 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 104 105 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 106 TargetLowering::CallLoweringInfo CLI(DAG); 107 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 108 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, &Args, 0) 109 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 110 .setSExtResult(isSigned).setZExtResult(!isSigned); 111 return LowerCallTo(CLI); 112 } 113 114 115 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 116 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 117 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 118 SDValue &NewLHS, SDValue &NewRHS, 119 ISD::CondCode &CCCode, 120 SDLoc dl) const { 121 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 122 && "Unsupported setcc type!"); 123 124 // Expand into one or more soft-fp libcall(s). 125 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 126 switch (CCCode) { 127 case ISD::SETEQ: 128 case ISD::SETOEQ: 129 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 130 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 131 break; 132 case ISD::SETNE: 133 case ISD::SETUNE: 134 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 135 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 136 break; 137 case ISD::SETGE: 138 case ISD::SETOGE: 139 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 140 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 141 break; 142 case ISD::SETLT: 143 case ISD::SETOLT: 144 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 145 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 146 break; 147 case ISD::SETLE: 148 case ISD::SETOLE: 149 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 150 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 151 break; 152 case ISD::SETGT: 153 case ISD::SETOGT: 154 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 155 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 156 break; 157 case ISD::SETUO: 158 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 159 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 160 break; 161 case ISD::SETO: 162 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 163 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 164 break; 165 default: 166 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 167 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 168 switch (CCCode) { 169 case ISD::SETONE: 170 // SETONE = SETOLT | SETOGT 171 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 172 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 173 // Fallthrough 174 case ISD::SETUGT: 175 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 176 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 177 break; 178 case ISD::SETUGE: 179 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 181 break; 182 case ISD::SETULT: 183 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 184 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 185 break; 186 case ISD::SETULE: 187 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 189 break; 190 case ISD::SETUEQ: 191 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 192 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 193 break; 194 default: llvm_unreachable("Do not know how to soften this setcc!"); 195 } 196 } 197 198 // Use the target specific return value for comparions lib calls. 199 EVT RetVT = getCmpLibcallReturnType(); 200 SDValue Ops[2] = { NewLHS, NewRHS }; 201 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 202 dl).first; 203 NewRHS = DAG.getConstant(0, RetVT); 204 CCCode = getCmpLibcallCC(LC1); 205 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 206 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 207 getSetCCResultType(*DAG.getContext(), RetVT), 208 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 209 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 210 dl).first; 211 NewLHS = DAG.getNode(ISD::SETCC, dl, 212 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 213 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 214 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 215 NewRHS = SDValue(); 216 } 217 } 218 219 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 220 /// current function. The returned value is a member of the 221 /// MachineJumpTableInfo::JTEntryKind enum. 222 unsigned TargetLowering::getJumpTableEncoding() const { 223 // In non-pic modes, just use the address of a block. 224 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 225 return MachineJumpTableInfo::EK_BlockAddress; 226 227 // In PIC mode, if the target supports a GPRel32 directive, use it. 228 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 229 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 230 231 // Otherwise, use a label difference. 232 return MachineJumpTableInfo::EK_LabelDifference32; 233 } 234 235 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 236 SelectionDAG &DAG) const { 237 // If our PIC model is GP relative, use the global offset table as the base. 238 unsigned JTEncoding = getJumpTableEncoding(); 239 240 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 241 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 242 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 243 244 return Table; 245 } 246 247 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 248 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 249 /// MCExpr. 250 const MCExpr * 251 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 252 unsigned JTI,MCContext &Ctx) const{ 253 // The normal PIC reloc base is the label at the start of the jump table. 254 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 255 } 256 257 bool 258 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 259 // Assume that everything is safe in static mode. 260 if (getTargetMachine().getRelocationModel() == Reloc::Static) 261 return true; 262 263 // In dynamic-no-pic mode, assume that known defined values are safe. 264 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 265 GA && 266 !GA->getGlobal()->isDeclaration() && 267 !GA->getGlobal()->isWeakForLinker()) 268 return true; 269 270 // Otherwise assume nothing is safe. 271 return false; 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Optimization Methods 276 //===----------------------------------------------------------------------===// 277 278 /// ShrinkDemandedConstant - Check to see if the specified operand of the 279 /// specified instruction is a constant integer. If so, check to see if there 280 /// are any bits set in the constant that are not demanded. If so, shrink the 281 /// constant and return true. 282 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 283 const APInt &Demanded) { 284 SDLoc dl(Op); 285 286 // FIXME: ISD::SELECT, ISD::SELECT_CC 287 switch (Op.getOpcode()) { 288 default: break; 289 case ISD::XOR: 290 case ISD::AND: 291 case ISD::OR: { 292 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 293 if (!C) return false; 294 295 if (Op.getOpcode() == ISD::XOR && 296 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 297 return false; 298 299 // if we can expand it to have all bits set, do it 300 if (C->getAPIntValue().intersects(~Demanded)) { 301 EVT VT = Op.getValueType(); 302 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 303 DAG.getConstant(Demanded & 304 C->getAPIntValue(), 305 VT)); 306 return CombineTo(Op, New); 307 } 308 309 break; 310 } 311 } 312 313 return false; 314 } 315 316 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 317 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 318 /// cast, but it could be generalized for targets with other types of 319 /// implicit widening casts. 320 bool 321 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 322 unsigned BitWidth, 323 const APInt &Demanded, 324 SDLoc dl) { 325 assert(Op.getNumOperands() == 2 && 326 "ShrinkDemandedOp only supports binary operators!"); 327 assert(Op.getNode()->getNumValues() == 1 && 328 "ShrinkDemandedOp only supports nodes with one result!"); 329 330 // Early return, as this function cannot handle vector types. 331 if (Op.getValueType().isVector()) 332 return false; 333 334 // Don't do this if the node has another user, which may require the 335 // full value. 336 if (!Op.getNode()->hasOneUse()) 337 return false; 338 339 // Search for the smallest integer type with free casts to and from 340 // Op's type. For expedience, just check power-of-2 integer types. 341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 342 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 343 unsigned SmallVTBits = DemandedSize; 344 if (!isPowerOf2_32(SmallVTBits)) 345 SmallVTBits = NextPowerOf2(SmallVTBits); 346 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 347 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 348 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 349 TLI.isZExtFree(SmallVT, Op.getValueType())) { 350 // We found a type with free casts. 351 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 352 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 353 Op.getNode()->getOperand(0)), 354 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 355 Op.getNode()->getOperand(1))); 356 bool NeedZext = DemandedSize > SmallVTBits; 357 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 358 dl, Op.getValueType(), X); 359 return CombineTo(Op, Z); 360 } 361 } 362 return false; 363 } 364 365 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 366 /// DemandedMask bits of the result of Op are ever used downstream. If we can 367 /// use this information to simplify Op, create a new simplified DAG node and 368 /// return true, returning the original and new nodes in Old and New. Otherwise, 369 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 370 /// the expression (used to simplify the caller). The KnownZero/One bits may 371 /// only be accurate for those bits in the DemandedMask. 372 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 373 const APInt &DemandedMask, 374 APInt &KnownZero, 375 APInt &KnownOne, 376 TargetLoweringOpt &TLO, 377 unsigned Depth) const { 378 unsigned BitWidth = DemandedMask.getBitWidth(); 379 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 380 "Mask size mismatches value type size!"); 381 APInt NewMask = DemandedMask; 382 SDLoc dl(Op); 383 384 // Don't know anything. 385 KnownZero = KnownOne = APInt(BitWidth, 0); 386 387 // Other users may use these bits. 388 if (!Op.getNode()->hasOneUse()) { 389 if (Depth != 0) { 390 // If not at the root, Just compute the KnownZero/KnownOne bits to 391 // simplify things downstream. 392 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 393 return false; 394 } 395 // If this is the root being simplified, allow it to have multiple uses, 396 // just set the NewMask to all bits. 397 NewMask = APInt::getAllOnesValue(BitWidth); 398 } else if (DemandedMask == 0) { 399 // Not demanding any bits from Op. 400 if (Op.getOpcode() != ISD::UNDEF) 401 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 402 return false; 403 } else if (Depth == 6) { // Limit search depth. 404 return false; 405 } 406 407 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 408 switch (Op.getOpcode()) { 409 case ISD::Constant: 410 // We know all of the bits for a constant! 411 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 412 KnownZero = ~KnownOne; 413 return false; // Don't fall through, will infinitely loop. 414 case ISD::AND: 415 // If the RHS is a constant, check to see if the LHS would be zero without 416 // using the bits from the RHS. Below, we use knowledge about the RHS to 417 // simplify the LHS, here we're using information from the LHS to simplify 418 // the RHS. 419 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 420 APInt LHSZero, LHSOne; 421 // Do not increment Depth here; that can cause an infinite loop. 422 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 423 // If the LHS already has zeros where RHSC does, this and is dead. 424 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 425 return TLO.CombineTo(Op, Op.getOperand(0)); 426 // If any of the set bits in the RHS are known zero on the LHS, shrink 427 // the constant. 428 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 429 return true; 430 } 431 432 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 433 KnownOne, TLO, Depth+1)) 434 return true; 435 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 436 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 437 KnownZero2, KnownOne2, TLO, Depth+1)) 438 return true; 439 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 440 441 // If all of the demanded bits are known one on one side, return the other. 442 // These bits cannot contribute to the result of the 'and'. 443 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 444 return TLO.CombineTo(Op, Op.getOperand(0)); 445 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 446 return TLO.CombineTo(Op, Op.getOperand(1)); 447 // If all of the demanded bits in the inputs are known zeros, return zero. 448 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 449 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 450 // If the RHS is a constant, see if we can simplify it. 451 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 452 return true; 453 // If the operation can be done in a smaller type, do so. 454 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 455 return true; 456 457 // Output known-1 bits are only known if set in both the LHS & RHS. 458 KnownOne &= KnownOne2; 459 // Output known-0 are known to be clear if zero in either the LHS | RHS. 460 KnownZero |= KnownZero2; 461 break; 462 case ISD::OR: 463 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 464 KnownOne, TLO, Depth+1)) 465 return true; 466 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 467 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 468 KnownZero2, KnownOne2, TLO, Depth+1)) 469 return true; 470 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 471 472 // If all of the demanded bits are known zero on one side, return the other. 473 // These bits cannot contribute to the result of the 'or'. 474 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 475 return TLO.CombineTo(Op, Op.getOperand(0)); 476 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 477 return TLO.CombineTo(Op, Op.getOperand(1)); 478 // If all of the potentially set bits on one side are known to be set on 479 // the other side, just use the 'other' side. 480 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 481 return TLO.CombineTo(Op, Op.getOperand(0)); 482 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 483 return TLO.CombineTo(Op, Op.getOperand(1)); 484 // If the RHS is a constant, see if we can simplify it. 485 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 486 return true; 487 // If the operation can be done in a smaller type, do so. 488 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 489 return true; 490 491 // Output known-0 bits are only known if clear in both the LHS & RHS. 492 KnownZero &= KnownZero2; 493 // Output known-1 are known to be set if set in either the LHS | RHS. 494 KnownOne |= KnownOne2; 495 break; 496 case ISD::XOR: 497 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 498 KnownOne, TLO, Depth+1)) 499 return true; 500 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 501 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 502 KnownOne2, TLO, Depth+1)) 503 return true; 504 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 505 506 // If all of the demanded bits are known zero on one side, return the other. 507 // These bits cannot contribute to the result of the 'xor'. 508 if ((KnownZero & NewMask) == NewMask) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 if ((KnownZero2 & NewMask) == NewMask) 511 return TLO.CombineTo(Op, Op.getOperand(1)); 512 // If the operation can be done in a smaller type, do so. 513 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 514 return true; 515 516 // If all of the unknown bits are known to be zero on one side or the other 517 // (but not both) turn this into an *inclusive* or. 518 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 519 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 520 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 521 Op.getOperand(0), 522 Op.getOperand(1))); 523 524 // Output known-0 bits are known if clear or set in both the LHS & RHS. 525 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 526 // Output known-1 are known to be set if set in only one of the LHS, RHS. 527 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 528 529 // If all of the demanded bits on one side are known, and all of the set 530 // bits on that side are also known to be set on the other side, turn this 531 // into an AND, as we know the bits will be cleared. 532 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 533 // NB: it is okay if more bits are known than are requested 534 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 535 if (KnownOne == KnownOne2) { // set bits are the same on both sides 536 EVT VT = Op.getValueType(); 537 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 538 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 539 Op.getOperand(0), ANDC)); 540 } 541 } 542 543 // If the RHS is a constant, see if we can simplify it. 544 // for XOR, we prefer to force bits to 1 if they will make a -1. 545 // if we can't force bits, try to shrink constant 546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 547 APInt Expanded = C->getAPIntValue() | (~NewMask); 548 // if we can expand it to have all bits set, do it 549 if (Expanded.isAllOnesValue()) { 550 if (Expanded != C->getAPIntValue()) { 551 EVT VT = Op.getValueType(); 552 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 553 TLO.DAG.getConstant(Expanded, VT)); 554 return TLO.CombineTo(Op, New); 555 } 556 // if it already has all the bits set, nothing to change 557 // but don't shrink either! 558 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 559 return true; 560 } 561 } 562 563 KnownZero = KnownZeroOut; 564 KnownOne = KnownOneOut; 565 break; 566 case ISD::SELECT: 567 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 568 KnownOne, TLO, Depth+1)) 569 return true; 570 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 571 KnownOne2, TLO, Depth+1)) 572 return true; 573 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 574 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 575 576 // If the operands are constants, see if we can simplify them. 577 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 578 return true; 579 580 // Only known if known in both the LHS and RHS. 581 KnownOne &= KnownOne2; 582 KnownZero &= KnownZero2; 583 break; 584 case ISD::SELECT_CC: 585 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 586 KnownOne, TLO, Depth+1)) 587 return true; 588 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 589 KnownOne2, TLO, Depth+1)) 590 return true; 591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 592 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 593 594 // If the operands are constants, see if we can simplify them. 595 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 596 return true; 597 598 // Only known if known in both the LHS and RHS. 599 KnownOne &= KnownOne2; 600 KnownZero &= KnownZero2; 601 break; 602 case ISD::SHL: 603 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 604 unsigned ShAmt = SA->getZExtValue(); 605 SDValue InOp = Op.getOperand(0); 606 607 // If the shift count is an invalid immediate, don't do anything. 608 if (ShAmt >= BitWidth) 609 break; 610 611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 612 // single shift. We can do this if the bottom bits (which are shifted 613 // out) are never demanded. 614 if (InOp.getOpcode() == ISD::SRL && 615 isa<ConstantSDNode>(InOp.getOperand(1))) { 616 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 617 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 618 unsigned Opc = ISD::SHL; 619 int Diff = ShAmt-C1; 620 if (Diff < 0) { 621 Diff = -Diff; 622 Opc = ISD::SRL; 623 } 624 625 SDValue NewSA = 626 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 627 EVT VT = Op.getValueType(); 628 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 629 InOp.getOperand(0), NewSA)); 630 } 631 } 632 633 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 634 KnownZero, KnownOne, TLO, Depth+1)) 635 return true; 636 637 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 638 // are not demanded. This will likely allow the anyext to be folded away. 639 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 640 SDValue InnerOp = InOp.getNode()->getOperand(0); 641 EVT InnerVT = InnerOp.getValueType(); 642 unsigned InnerBits = InnerVT.getSizeInBits(); 643 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 644 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 645 EVT ShTy = getShiftAmountTy(InnerVT); 646 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 647 ShTy = InnerVT; 648 SDValue NarrowShl = 649 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 650 TLO.DAG.getConstant(ShAmt, ShTy)); 651 return 652 TLO.CombineTo(Op, 653 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 654 NarrowShl)); 655 } 656 // Repeat the SHL optimization above in cases where an extension 657 // intervenes: (shl (anyext (shr x, c1)), c2) to 658 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 659 // aren't demanded (as above) and that the shifted upper c1 bits of 660 // x aren't demanded. 661 if (InOp.hasOneUse() && 662 InnerOp.getOpcode() == ISD::SRL && 663 InnerOp.hasOneUse() && 664 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 665 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 666 ->getZExtValue(); 667 if (InnerShAmt < ShAmt && 668 InnerShAmt < InnerBits && 669 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 670 NewMask.trunc(ShAmt) == 0) { 671 SDValue NewSA = 672 TLO.DAG.getConstant(ShAmt - InnerShAmt, 673 Op.getOperand(1).getValueType()); 674 EVT VT = Op.getValueType(); 675 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 676 InnerOp.getOperand(0)); 677 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 678 NewExt, NewSA)); 679 } 680 } 681 } 682 683 KnownZero <<= SA->getZExtValue(); 684 KnownOne <<= SA->getZExtValue(); 685 // low bits known zero. 686 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 687 } 688 break; 689 case ISD::SRL: 690 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 691 EVT VT = Op.getValueType(); 692 unsigned ShAmt = SA->getZExtValue(); 693 unsigned VTSize = VT.getSizeInBits(); 694 SDValue InOp = Op.getOperand(0); 695 696 // If the shift count is an invalid immediate, don't do anything. 697 if (ShAmt >= BitWidth) 698 break; 699 700 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 701 // single shift. We can do this if the top bits (which are shifted out) 702 // are never demanded. 703 if (InOp.getOpcode() == ISD::SHL && 704 isa<ConstantSDNode>(InOp.getOperand(1))) { 705 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 706 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 707 unsigned Opc = ISD::SRL; 708 int Diff = ShAmt-C1; 709 if (Diff < 0) { 710 Diff = -Diff; 711 Opc = ISD::SHL; 712 } 713 714 SDValue NewSA = 715 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 716 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 717 InOp.getOperand(0), NewSA)); 718 } 719 } 720 721 // Compute the new bits that are at the top now. 722 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 723 KnownZero, KnownOne, TLO, Depth+1)) 724 return true; 725 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 726 KnownZero = KnownZero.lshr(ShAmt); 727 KnownOne = KnownOne.lshr(ShAmt); 728 729 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 730 KnownZero |= HighBits; // High bits known zero. 731 } 732 break; 733 case ISD::SRA: 734 // If this is an arithmetic shift right and only the low-bit is set, we can 735 // always convert this into a logical shr, even if the shift amount is 736 // variable. The low bit of the shift cannot be an input sign bit unless 737 // the shift amount is >= the size of the datatype, which is undefined. 738 if (NewMask == 1) 739 return TLO.CombineTo(Op, 740 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 741 Op.getOperand(0), Op.getOperand(1))); 742 743 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 744 EVT VT = Op.getValueType(); 745 unsigned ShAmt = SA->getZExtValue(); 746 747 // If the shift count is an invalid immediate, don't do anything. 748 if (ShAmt >= BitWidth) 749 break; 750 751 APInt InDemandedMask = (NewMask << ShAmt); 752 753 // If any of the demanded bits are produced by the sign extension, we also 754 // demand the input sign bit. 755 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 756 if (HighBits.intersects(NewMask)) 757 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 758 759 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 760 KnownZero, KnownOne, TLO, Depth+1)) 761 return true; 762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 763 KnownZero = KnownZero.lshr(ShAmt); 764 KnownOne = KnownOne.lshr(ShAmt); 765 766 // Handle the sign bit, adjusted to where it is now in the mask. 767 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 768 769 // If the input sign bit is known to be zero, or if none of the top bits 770 // are demanded, turn this into an unsigned shift right. 771 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 772 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 773 Op.getOperand(0), 774 Op.getOperand(1))); 775 776 int Log2 = NewMask.exactLogBase2(); 777 if (Log2 >= 0) { 778 // The bit must come from the sign. 779 SDValue NewSA = 780 TLO.DAG.getConstant(BitWidth - 1 - Log2, 781 Op.getOperand(1).getValueType()); 782 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 783 Op.getOperand(0), NewSA)); 784 } 785 786 if (KnownOne.intersects(SignBit)) 787 // New bits are known one. 788 KnownOne |= HighBits; 789 } 790 break; 791 case ISD::SIGN_EXTEND_INREG: { 792 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 793 794 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 795 // If we only care about the highest bit, don't bother shifting right. 796 if (MsbMask == DemandedMask) { 797 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 798 SDValue InOp = Op.getOperand(0); 799 800 // Compute the correct shift amount type, which must be getShiftAmountTy 801 // for scalar types after legalization. 802 EVT ShiftAmtTy = Op.getValueType(); 803 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 804 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 805 806 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 807 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 808 Op.getValueType(), InOp, ShiftAmt)); 809 } 810 811 // Sign extension. Compute the demanded bits in the result that are not 812 // present in the input. 813 APInt NewBits = 814 APInt::getHighBitsSet(BitWidth, 815 BitWidth - ExVT.getScalarType().getSizeInBits()); 816 817 // If none of the extended bits are demanded, eliminate the sextinreg. 818 if ((NewBits & NewMask) == 0) 819 return TLO.CombineTo(Op, Op.getOperand(0)); 820 821 APInt InSignBit = 822 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 823 APInt InputDemandedBits = 824 APInt::getLowBitsSet(BitWidth, 825 ExVT.getScalarType().getSizeInBits()) & 826 NewMask; 827 828 // Since the sign extended bits are demanded, we know that the sign 829 // bit is demanded. 830 InputDemandedBits |= InSignBit; 831 832 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 833 KnownZero, KnownOne, TLO, Depth+1)) 834 return true; 835 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 836 837 // If the sign bit of the input is known set or clear, then we know the 838 // top bits of the result. 839 840 // If the input sign bit is known zero, convert this into a zero extension. 841 if (KnownZero.intersects(InSignBit)) 842 return TLO.CombineTo(Op, 843 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 844 845 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 846 KnownOne |= NewBits; 847 KnownZero &= ~NewBits; 848 } else { // Input sign bit unknown 849 KnownZero &= ~NewBits; 850 KnownOne &= ~NewBits; 851 } 852 break; 853 } 854 case ISD::BUILD_PAIR: { 855 EVT HalfVT = Op.getOperand(0).getValueType(); 856 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 857 858 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 859 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 860 861 APInt KnownZeroLo, KnownOneLo; 862 APInt KnownZeroHi, KnownOneHi; 863 864 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 865 KnownOneLo, TLO, Depth + 1)) 866 return true; 867 868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 869 KnownOneHi, TLO, Depth + 1)) 870 return true; 871 872 KnownZero = KnownZeroLo.zext(BitWidth) | 873 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 874 875 KnownOne = KnownOneLo.zext(BitWidth) | 876 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 877 break; 878 } 879 case ISD::ZERO_EXTEND: { 880 unsigned OperandBitWidth = 881 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 882 APInt InMask = NewMask.trunc(OperandBitWidth); 883 884 // If none of the top bits are demanded, convert this into an any_extend. 885 APInt NewBits = 886 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 887 if (!NewBits.intersects(NewMask)) 888 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 889 Op.getValueType(), 890 Op.getOperand(0))); 891 892 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 893 KnownZero, KnownOne, TLO, Depth+1)) 894 return true; 895 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 896 KnownZero = KnownZero.zext(BitWidth); 897 KnownOne = KnownOne.zext(BitWidth); 898 KnownZero |= NewBits; 899 break; 900 } 901 case ISD::SIGN_EXTEND: { 902 EVT InVT = Op.getOperand(0).getValueType(); 903 unsigned InBits = InVT.getScalarType().getSizeInBits(); 904 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 905 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 906 APInt NewBits = ~InMask & NewMask; 907 908 // If none of the top bits are demanded, convert this into an any_extend. 909 if (NewBits == 0) 910 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 911 Op.getValueType(), 912 Op.getOperand(0))); 913 914 // Since some of the sign extended bits are demanded, we know that the sign 915 // bit is demanded. 916 APInt InDemandedBits = InMask & NewMask; 917 InDemandedBits |= InSignBit; 918 InDemandedBits = InDemandedBits.trunc(InBits); 919 920 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 921 KnownOne, TLO, Depth+1)) 922 return true; 923 KnownZero = KnownZero.zext(BitWidth); 924 KnownOne = KnownOne.zext(BitWidth); 925 926 // If the sign bit is known zero, convert this to a zero extend. 927 if (KnownZero.intersects(InSignBit)) 928 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 929 Op.getValueType(), 930 Op.getOperand(0))); 931 932 // If the sign bit is known one, the top bits match. 933 if (KnownOne.intersects(InSignBit)) { 934 KnownOne |= NewBits; 935 assert((KnownZero & NewBits) == 0); 936 } else { // Otherwise, top bits aren't known. 937 assert((KnownOne & NewBits) == 0); 938 assert((KnownZero & NewBits) == 0); 939 } 940 break; 941 } 942 case ISD::ANY_EXTEND: { 943 unsigned OperandBitWidth = 944 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 945 APInt InMask = NewMask.trunc(OperandBitWidth); 946 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 947 KnownZero, KnownOne, TLO, Depth+1)) 948 return true; 949 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 950 KnownZero = KnownZero.zext(BitWidth); 951 KnownOne = KnownOne.zext(BitWidth); 952 break; 953 } 954 case ISD::TRUNCATE: { 955 // Simplify the input, using demanded bit information, and compute the known 956 // zero/one bits live out. 957 unsigned OperandBitWidth = 958 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 959 APInt TruncMask = NewMask.zext(OperandBitWidth); 960 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 961 KnownZero, KnownOne, TLO, Depth+1)) 962 return true; 963 KnownZero = KnownZero.trunc(BitWidth); 964 KnownOne = KnownOne.trunc(BitWidth); 965 966 // If the input is only used by this truncate, see if we can shrink it based 967 // on the known demanded bits. 968 if (Op.getOperand(0).getNode()->hasOneUse()) { 969 SDValue In = Op.getOperand(0); 970 switch (In.getOpcode()) { 971 default: break; 972 case ISD::SRL: 973 // Shrink SRL by a constant if none of the high bits shifted in are 974 // demanded. 975 if (TLO.LegalTypes() && 976 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 977 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 978 // undesirable. 979 break; 980 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 981 if (!ShAmt) 982 break; 983 SDValue Shift = In.getOperand(1); 984 if (TLO.LegalTypes()) { 985 uint64_t ShVal = ShAmt->getZExtValue(); 986 Shift = 987 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 988 } 989 990 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 991 OperandBitWidth - BitWidth); 992 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 993 994 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 995 // None of the shifted in bits are needed. Add a truncate of the 996 // shift input, then shift it. 997 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 998 Op.getValueType(), 999 In.getOperand(0)); 1000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1001 Op.getValueType(), 1002 NewTrunc, 1003 Shift)); 1004 } 1005 break; 1006 } 1007 } 1008 1009 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1010 break; 1011 } 1012 case ISD::AssertZext: { 1013 // AssertZext demands all of the high bits, plus any of the low bits 1014 // demanded by its users. 1015 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1016 APInt InMask = APInt::getLowBitsSet(BitWidth, 1017 VT.getSizeInBits()); 1018 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1019 KnownZero, KnownOne, TLO, Depth+1)) 1020 return true; 1021 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1022 1023 KnownZero |= ~InMask & NewMask; 1024 break; 1025 } 1026 case ISD::BITCAST: 1027 // If this is an FP->Int bitcast and if the sign bit is the only 1028 // thing demanded, turn this into a FGETSIGN. 1029 if (!TLO.LegalOperations() && 1030 !Op.getValueType().isVector() && 1031 !Op.getOperand(0).getValueType().isVector() && 1032 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1033 Op.getOperand(0).getValueType().isFloatingPoint()) { 1034 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1035 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1036 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1037 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1038 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1039 // place. We expect the SHL to be eliminated by other optimizations. 1040 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1041 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1042 if (!OpVTLegal && OpVTSizeInBits > 32) 1043 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1044 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1045 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1046 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1047 Op.getValueType(), 1048 Sign, ShAmt)); 1049 } 1050 } 1051 break; 1052 case ISD::ADD: 1053 case ISD::MUL: 1054 case ISD::SUB: { 1055 // Add, Sub, and Mul don't demand any bits in positions beyond that 1056 // of the highest bit demanded of them. 1057 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1058 BitWidth - NewMask.countLeadingZeros()); 1059 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1060 KnownOne2, TLO, Depth+1)) 1061 return true; 1062 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1063 KnownOne2, TLO, Depth+1)) 1064 return true; 1065 // See if the operation should be performed at a smaller bit width. 1066 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1067 return true; 1068 } 1069 // FALL THROUGH 1070 default: 1071 // Just use computeKnownBits to compute output bits. 1072 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1073 break; 1074 } 1075 1076 // If we know the value of all of the demanded bits, return this as a 1077 // constant. 1078 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1079 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1080 1081 return false; 1082 } 1083 1084 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1085 /// in Mask are known to be either zero or one and return them in the 1086 /// KnownZero/KnownOne bitsets. 1087 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1088 APInt &KnownZero, 1089 APInt &KnownOne, 1090 const SelectionDAG &DAG, 1091 unsigned Depth) const { 1092 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1093 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1094 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1095 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1096 "Should use MaskedValueIsZero if you don't know whether Op" 1097 " is a target node!"); 1098 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1099 } 1100 1101 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1102 /// targets that want to expose additional information about sign bits to the 1103 /// DAG Combiner. 1104 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1105 const SelectionDAG &, 1106 unsigned Depth) const { 1107 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1108 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1109 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1110 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1111 "Should use ComputeNumSignBits if you don't know whether Op" 1112 " is a target node!"); 1113 return 1; 1114 } 1115 1116 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1117 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1118 /// determine which bit is set. 1119 /// 1120 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1121 // A left-shift of a constant one will have exactly one bit set, because 1122 // shifting the bit off the end is undefined. 1123 if (Val.getOpcode() == ISD::SHL) 1124 if (ConstantSDNode *C = 1125 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1126 if (C->getAPIntValue() == 1) 1127 return true; 1128 1129 // Similarly, a right-shift of a constant sign-bit will have exactly 1130 // one bit set. 1131 if (Val.getOpcode() == ISD::SRL) 1132 if (ConstantSDNode *C = 1133 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1134 if (C->getAPIntValue().isSignBit()) 1135 return true; 1136 1137 // More could be done here, though the above checks are enough 1138 // to handle some common cases. 1139 1140 // Fall back to computeKnownBits to catch other known cases. 1141 EVT OpVT = Val.getValueType(); 1142 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1143 APInt KnownZero, KnownOne; 1144 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1145 return (KnownZero.countPopulation() == BitWidth - 1) && 1146 (KnownOne.countPopulation() == 1); 1147 } 1148 1149 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1150 if (!N) 1151 return false; 1152 1153 bool IsVec = false; 1154 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1155 if (!CN) { 1156 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1157 if (!BV) 1158 return false; 1159 1160 IsVec = true; 1161 CN = BV->getConstantSplatValue(); 1162 } 1163 1164 switch (getBooleanContents(IsVec)) { 1165 case UndefinedBooleanContent: 1166 return CN->getAPIntValue()[0]; 1167 case ZeroOrOneBooleanContent: 1168 return CN->isOne(); 1169 case ZeroOrNegativeOneBooleanContent: 1170 return CN->isAllOnesValue(); 1171 } 1172 1173 llvm_unreachable("Invalid boolean contents"); 1174 } 1175 1176 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1177 if (!N) 1178 return false; 1179 1180 bool IsVec = false; 1181 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1182 if (!CN) { 1183 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1184 if (!BV) 1185 return false; 1186 1187 IsVec = true; 1188 CN = BV->getConstantSplatValue(); 1189 } 1190 1191 if (getBooleanContents(IsVec) == UndefinedBooleanContent) 1192 return !CN->getAPIntValue()[0]; 1193 1194 return CN->isNullValue(); 1195 } 1196 1197 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1198 /// and cc. If it is unable to simplify it, return a null SDValue. 1199 SDValue 1200 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1201 ISD::CondCode Cond, bool foldBooleans, 1202 DAGCombinerInfo &DCI, SDLoc dl) const { 1203 SelectionDAG &DAG = DCI.DAG; 1204 1205 // These setcc operations always fold. 1206 switch (Cond) { 1207 default: break; 1208 case ISD::SETFALSE: 1209 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1210 case ISD::SETTRUE: 1211 case ISD::SETTRUE2: { 1212 TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector()); 1213 return DAG.getConstant( 1214 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1215 } 1216 } 1217 1218 // Ensure that the constant occurs on the RHS, and fold constant 1219 // comparisons. 1220 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1221 if (isa<ConstantSDNode>(N0.getNode()) && 1222 (DCI.isBeforeLegalizeOps() || 1223 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1224 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1225 1226 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1227 const APInt &C1 = N1C->getAPIntValue(); 1228 1229 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1230 // equality comparison, then we're just comparing whether X itself is 1231 // zero. 1232 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1233 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1234 N0.getOperand(1).getOpcode() == ISD::Constant) { 1235 const APInt &ShAmt 1236 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1237 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1238 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1239 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1240 // (srl (ctlz x), 5) == 0 -> X != 0 1241 // (srl (ctlz x), 5) != 1 -> X != 0 1242 Cond = ISD::SETNE; 1243 } else { 1244 // (srl (ctlz x), 5) != 0 -> X == 0 1245 // (srl (ctlz x), 5) == 1 -> X == 0 1246 Cond = ISD::SETEQ; 1247 } 1248 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1249 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1250 Zero, Cond); 1251 } 1252 } 1253 1254 SDValue CTPOP = N0; 1255 // Look through truncs that don't change the value of a ctpop. 1256 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1257 CTPOP = N0.getOperand(0); 1258 1259 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1260 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1261 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1262 EVT CTVT = CTPOP.getValueType(); 1263 SDValue CTOp = CTPOP.getOperand(0); 1264 1265 // (ctpop x) u< 2 -> (x & x-1) == 0 1266 // (ctpop x) u> 1 -> (x & x-1) != 0 1267 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1268 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1269 DAG.getConstant(1, CTVT)); 1270 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1271 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1272 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1273 } 1274 1275 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1276 } 1277 1278 // (zext x) == C --> x == (trunc C) 1279 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1280 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1281 unsigned MinBits = N0.getValueSizeInBits(); 1282 SDValue PreZExt; 1283 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1284 // ZExt 1285 MinBits = N0->getOperand(0).getValueSizeInBits(); 1286 PreZExt = N0->getOperand(0); 1287 } else if (N0->getOpcode() == ISD::AND) { 1288 // DAGCombine turns costly ZExts into ANDs 1289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1290 if ((C->getAPIntValue()+1).isPowerOf2()) { 1291 MinBits = C->getAPIntValue().countTrailingOnes(); 1292 PreZExt = N0->getOperand(0); 1293 } 1294 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1295 // ZEXTLOAD 1296 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1297 MinBits = LN0->getMemoryVT().getSizeInBits(); 1298 PreZExt = N0; 1299 } 1300 } 1301 1302 // Make sure we're not losing bits from the constant. 1303 if (MinBits > 0 && 1304 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1305 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1306 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1307 // Will get folded away. 1308 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1309 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1310 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1311 } 1312 } 1313 } 1314 1315 // If the LHS is '(and load, const)', the RHS is 0, 1316 // the test is for equality or unsigned, and all 1 bits of the const are 1317 // in the same partial word, see if we can shorten the load. 1318 if (DCI.isBeforeLegalize() && 1319 !ISD::isSignedIntSetCC(Cond) && 1320 N0.getOpcode() == ISD::AND && C1 == 0 && 1321 N0.getNode()->hasOneUse() && 1322 isa<LoadSDNode>(N0.getOperand(0)) && 1323 N0.getOperand(0).getNode()->hasOneUse() && 1324 isa<ConstantSDNode>(N0.getOperand(1))) { 1325 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1326 APInt bestMask; 1327 unsigned bestWidth = 0, bestOffset = 0; 1328 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1329 unsigned origWidth = N0.getValueType().getSizeInBits(); 1330 unsigned maskWidth = origWidth; 1331 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1332 // 8 bits, but have to be careful... 1333 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1334 origWidth = Lod->getMemoryVT().getSizeInBits(); 1335 const APInt &Mask = 1336 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1337 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1338 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1339 for (unsigned offset=0; offset<origWidth/width; offset++) { 1340 if ((newMask & Mask) == Mask) { 1341 if (!getDataLayout()->isLittleEndian()) 1342 bestOffset = (origWidth/width - offset - 1) * (width/8); 1343 else 1344 bestOffset = (uint64_t)offset * (width/8); 1345 bestMask = Mask.lshr(offset * (width/8) * 8); 1346 bestWidth = width; 1347 break; 1348 } 1349 newMask = newMask << width; 1350 } 1351 } 1352 } 1353 if (bestWidth) { 1354 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1355 if (newVT.isRound()) { 1356 EVT PtrType = Lod->getOperand(1).getValueType(); 1357 SDValue Ptr = Lod->getBasePtr(); 1358 if (bestOffset != 0) 1359 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1360 DAG.getConstant(bestOffset, PtrType)); 1361 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1362 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1363 Lod->getPointerInfo().getWithOffset(bestOffset), 1364 false, false, false, NewAlign); 1365 return DAG.getSetCC(dl, VT, 1366 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1367 DAG.getConstant(bestMask.trunc(bestWidth), 1368 newVT)), 1369 DAG.getConstant(0LL, newVT), Cond); 1370 } 1371 } 1372 } 1373 1374 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1375 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1376 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1377 1378 // If the comparison constant has bits in the upper part, the 1379 // zero-extended value could never match. 1380 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1381 C1.getBitWidth() - InSize))) { 1382 switch (Cond) { 1383 case ISD::SETUGT: 1384 case ISD::SETUGE: 1385 case ISD::SETEQ: return DAG.getConstant(0, VT); 1386 case ISD::SETULT: 1387 case ISD::SETULE: 1388 case ISD::SETNE: return DAG.getConstant(1, VT); 1389 case ISD::SETGT: 1390 case ISD::SETGE: 1391 // True if the sign bit of C1 is set. 1392 return DAG.getConstant(C1.isNegative(), VT); 1393 case ISD::SETLT: 1394 case ISD::SETLE: 1395 // True if the sign bit of C1 isn't set. 1396 return DAG.getConstant(C1.isNonNegative(), VT); 1397 default: 1398 break; 1399 } 1400 } 1401 1402 // Otherwise, we can perform the comparison with the low bits. 1403 switch (Cond) { 1404 case ISD::SETEQ: 1405 case ISD::SETNE: 1406 case ISD::SETUGT: 1407 case ISD::SETUGE: 1408 case ISD::SETULT: 1409 case ISD::SETULE: { 1410 EVT newVT = N0.getOperand(0).getValueType(); 1411 if (DCI.isBeforeLegalizeOps() || 1412 (isOperationLegal(ISD::SETCC, newVT) && 1413 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1414 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1415 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT); 1416 1417 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1418 NewConst, Cond); 1419 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT); 1420 } 1421 break; 1422 } 1423 default: 1424 break; // todo, be more careful with signed comparisons 1425 } 1426 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1427 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1428 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1429 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1430 EVT ExtDstTy = N0.getValueType(); 1431 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1432 1433 // If the constant doesn't fit into the number of bits for the source of 1434 // the sign extension, it is impossible for both sides to be equal. 1435 if (C1.getMinSignedBits() > ExtSrcTyBits) 1436 return DAG.getConstant(Cond == ISD::SETNE, VT); 1437 1438 SDValue ZextOp; 1439 EVT Op0Ty = N0.getOperand(0).getValueType(); 1440 if (Op0Ty == ExtSrcTy) { 1441 ZextOp = N0.getOperand(0); 1442 } else { 1443 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1444 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1445 DAG.getConstant(Imm, Op0Ty)); 1446 } 1447 if (!DCI.isCalledByLegalizer()) 1448 DCI.AddToWorklist(ZextOp.getNode()); 1449 // Otherwise, make this a use of a zext. 1450 return DAG.getSetCC(dl, VT, ZextOp, 1451 DAG.getConstant(C1 & APInt::getLowBitsSet( 1452 ExtDstTyBits, 1453 ExtSrcTyBits), 1454 ExtDstTy), 1455 Cond); 1456 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1457 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1458 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1459 if (N0.getOpcode() == ISD::SETCC && 1460 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1461 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1462 if (TrueWhenTrue) 1463 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1464 // Invert the condition. 1465 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1466 CC = ISD::getSetCCInverse(CC, 1467 N0.getOperand(0).getValueType().isInteger()); 1468 if (DCI.isBeforeLegalizeOps() || 1469 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1470 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1471 } 1472 1473 if ((N0.getOpcode() == ISD::XOR || 1474 (N0.getOpcode() == ISD::AND && 1475 N0.getOperand(0).getOpcode() == ISD::XOR && 1476 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1477 isa<ConstantSDNode>(N0.getOperand(1)) && 1478 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1479 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1480 // can only do this if the top bits are known zero. 1481 unsigned BitWidth = N0.getValueSizeInBits(); 1482 if (DAG.MaskedValueIsZero(N0, 1483 APInt::getHighBitsSet(BitWidth, 1484 BitWidth-1))) { 1485 // Okay, get the un-inverted input value. 1486 SDValue Val; 1487 if (N0.getOpcode() == ISD::XOR) 1488 Val = N0.getOperand(0); 1489 else { 1490 assert(N0.getOpcode() == ISD::AND && 1491 N0.getOperand(0).getOpcode() == ISD::XOR); 1492 // ((X^1)&1)^1 -> X & 1 1493 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1494 N0.getOperand(0).getOperand(0), 1495 N0.getOperand(1)); 1496 } 1497 1498 return DAG.getSetCC(dl, VT, Val, N1, 1499 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1500 } 1501 } else if (N1C->getAPIntValue() == 1 && 1502 (VT == MVT::i1 || 1503 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 1504 SDValue Op0 = N0; 1505 if (Op0.getOpcode() == ISD::TRUNCATE) 1506 Op0 = Op0.getOperand(0); 1507 1508 if ((Op0.getOpcode() == ISD::XOR) && 1509 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1510 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1511 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1512 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1513 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1514 Cond); 1515 } 1516 if (Op0.getOpcode() == ISD::AND && 1517 isa<ConstantSDNode>(Op0.getOperand(1)) && 1518 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1519 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1520 if (Op0.getValueType().bitsGT(VT)) 1521 Op0 = DAG.getNode(ISD::AND, dl, VT, 1522 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1523 DAG.getConstant(1, VT)); 1524 else if (Op0.getValueType().bitsLT(VT)) 1525 Op0 = DAG.getNode(ISD::AND, dl, VT, 1526 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1527 DAG.getConstant(1, VT)); 1528 1529 return DAG.getSetCC(dl, VT, Op0, 1530 DAG.getConstant(0, Op0.getValueType()), 1531 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1532 } 1533 if (Op0.getOpcode() == ISD::AssertZext && 1534 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1535 return DAG.getSetCC(dl, VT, Op0, 1536 DAG.getConstant(0, Op0.getValueType()), 1537 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1538 } 1539 } 1540 1541 APInt MinVal, MaxVal; 1542 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1543 if (ISD::isSignedIntSetCC(Cond)) { 1544 MinVal = APInt::getSignedMinValue(OperandBitSize); 1545 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1546 } else { 1547 MinVal = APInt::getMinValue(OperandBitSize); 1548 MaxVal = APInt::getMaxValue(OperandBitSize); 1549 } 1550 1551 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1552 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1553 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1554 // X >= C0 --> X > (C0 - 1) 1555 APInt C = C1 - 1; 1556 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1557 if ((DCI.isBeforeLegalizeOps() || 1558 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1559 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1560 isLegalICmpImmediate(C.getSExtValue())))) { 1561 return DAG.getSetCC(dl, VT, N0, 1562 DAG.getConstant(C, N1.getValueType()), 1563 NewCC); 1564 } 1565 } 1566 1567 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1568 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1569 // X <= C0 --> X < (C0 + 1) 1570 APInt C = C1 + 1; 1571 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1572 if ((DCI.isBeforeLegalizeOps() || 1573 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1574 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1575 isLegalICmpImmediate(C.getSExtValue())))) { 1576 return DAG.getSetCC(dl, VT, N0, 1577 DAG.getConstant(C, N1.getValueType()), 1578 NewCC); 1579 } 1580 } 1581 1582 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1583 return DAG.getConstant(0, VT); // X < MIN --> false 1584 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1585 return DAG.getConstant(1, VT); // X >= MIN --> true 1586 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1587 return DAG.getConstant(0, VT); // X > MAX --> false 1588 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1589 return DAG.getConstant(1, VT); // X <= MAX --> true 1590 1591 // Canonicalize setgt X, Min --> setne X, Min 1592 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1593 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1594 // Canonicalize setlt X, Max --> setne X, Max 1595 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1596 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1597 1598 // If we have setult X, 1, turn it into seteq X, 0 1599 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1600 return DAG.getSetCC(dl, VT, N0, 1601 DAG.getConstant(MinVal, N0.getValueType()), 1602 ISD::SETEQ); 1603 // If we have setugt X, Max-1, turn it into seteq X, Max 1604 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1605 return DAG.getSetCC(dl, VT, N0, 1606 DAG.getConstant(MaxVal, N0.getValueType()), 1607 ISD::SETEQ); 1608 1609 // If we have "setcc X, C0", check to see if we can shrink the immediate 1610 // by changing cc. 1611 1612 // SETUGT X, SINTMAX -> SETLT X, 0 1613 if (Cond == ISD::SETUGT && 1614 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1615 return DAG.getSetCC(dl, VT, N0, 1616 DAG.getConstant(0, N1.getValueType()), 1617 ISD::SETLT); 1618 1619 // SETULT X, SINTMIN -> SETGT X, -1 1620 if (Cond == ISD::SETULT && 1621 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1622 SDValue ConstMinusOne = 1623 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1624 N1.getValueType()); 1625 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1626 } 1627 1628 // Fold bit comparisons when we can. 1629 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1630 (VT == N0.getValueType() || 1631 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1632 N0.getOpcode() == ISD::AND) 1633 if (ConstantSDNode *AndRHS = 1634 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1635 EVT ShiftTy = DCI.isBeforeLegalize() ? 1636 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1637 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1638 // Perform the xform if the AND RHS is a single bit. 1639 if (AndRHS->getAPIntValue().isPowerOf2()) { 1640 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1641 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1642 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1643 } 1644 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1645 // (X & 8) == 8 --> (X & 8) >> 3 1646 // Perform the xform if C1 is a single bit. 1647 if (C1.isPowerOf2()) { 1648 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1649 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1650 DAG.getConstant(C1.logBase2(), ShiftTy))); 1651 } 1652 } 1653 } 1654 1655 if (C1.getMinSignedBits() <= 64 && 1656 !isLegalICmpImmediate(C1.getSExtValue())) { 1657 // (X & -256) == 256 -> (X >> 8) == 1 1658 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1659 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1660 if (ConstantSDNode *AndRHS = 1661 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1662 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1663 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1664 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1665 EVT ShiftTy = DCI.isBeforeLegalize() ? 1666 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1667 EVT CmpTy = N0.getValueType(); 1668 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1669 DAG.getConstant(ShiftBits, ShiftTy)); 1670 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1671 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1672 } 1673 } 1674 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1675 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1676 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1677 // X < 0x100000000 -> (X >> 32) < 1 1678 // X >= 0x100000000 -> (X >> 32) >= 1 1679 // X <= 0x0ffffffff -> (X >> 32) < 1 1680 // X > 0x0ffffffff -> (X >> 32) >= 1 1681 unsigned ShiftBits; 1682 APInt NewC = C1; 1683 ISD::CondCode NewCond = Cond; 1684 if (AdjOne) { 1685 ShiftBits = C1.countTrailingOnes(); 1686 NewC = NewC + 1; 1687 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1688 } else { 1689 ShiftBits = C1.countTrailingZeros(); 1690 } 1691 NewC = NewC.lshr(ShiftBits); 1692 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1693 EVT ShiftTy = DCI.isBeforeLegalize() ? 1694 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1695 EVT CmpTy = N0.getValueType(); 1696 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1697 DAG.getConstant(ShiftBits, ShiftTy)); 1698 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1699 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1700 } 1701 } 1702 } 1703 } 1704 1705 if (isa<ConstantFPSDNode>(N0.getNode())) { 1706 // Constant fold or commute setcc. 1707 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1708 if (O.getNode()) return O; 1709 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1710 // If the RHS of an FP comparison is a constant, simplify it away in 1711 // some cases. 1712 if (CFP->getValueAPF().isNaN()) { 1713 // If an operand is known to be a nan, we can fold it. 1714 switch (ISD::getUnorderedFlavor(Cond)) { 1715 default: llvm_unreachable("Unknown flavor!"); 1716 case 0: // Known false. 1717 return DAG.getConstant(0, VT); 1718 case 1: // Known true. 1719 return DAG.getConstant(1, VT); 1720 case 2: // Undefined. 1721 return DAG.getUNDEF(VT); 1722 } 1723 } 1724 1725 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1726 // constant if knowing that the operand is non-nan is enough. We prefer to 1727 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1728 // materialize 0.0. 1729 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1730 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1731 1732 // If the condition is not legal, see if we can find an equivalent one 1733 // which is legal. 1734 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1735 // If the comparison was an awkward floating-point == or != and one of 1736 // the comparison operands is infinity or negative infinity, convert the 1737 // condition to a less-awkward <= or >=. 1738 if (CFP->getValueAPF().isInfinity()) { 1739 if (CFP->getValueAPF().isNegative()) { 1740 if (Cond == ISD::SETOEQ && 1741 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1742 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1743 if (Cond == ISD::SETUEQ && 1744 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1745 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1746 if (Cond == ISD::SETUNE && 1747 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1748 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1749 if (Cond == ISD::SETONE && 1750 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1752 } else { 1753 if (Cond == ISD::SETOEQ && 1754 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1755 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1756 if (Cond == ISD::SETUEQ && 1757 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1758 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1759 if (Cond == ISD::SETUNE && 1760 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1761 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1762 if (Cond == ISD::SETONE && 1763 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1764 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1765 } 1766 } 1767 } 1768 } 1769 1770 if (N0 == N1) { 1771 // The sext(setcc()) => setcc() optimization relies on the appropriate 1772 // constant being emitted. 1773 uint64_t EqVal = 0; 1774 switch (getBooleanContents(N0.getValueType().isVector())) { 1775 case UndefinedBooleanContent: 1776 case ZeroOrOneBooleanContent: 1777 EqVal = ISD::isTrueWhenEqual(Cond); 1778 break; 1779 case ZeroOrNegativeOneBooleanContent: 1780 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1781 break; 1782 } 1783 1784 // We can always fold X == X for integer setcc's. 1785 if (N0.getValueType().isInteger()) { 1786 return DAG.getConstant(EqVal, VT); 1787 } 1788 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1789 if (UOF == 2) // FP operators that are undefined on NaNs. 1790 return DAG.getConstant(EqVal, VT); 1791 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1792 return DAG.getConstant(EqVal, VT); 1793 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1794 // if it is not already. 1795 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1796 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1797 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1798 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1799 } 1800 1801 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1802 N0.getValueType().isInteger()) { 1803 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1804 N0.getOpcode() == ISD::XOR) { 1805 // Simplify (X+Y) == (X+Z) --> Y == Z 1806 if (N0.getOpcode() == N1.getOpcode()) { 1807 if (N0.getOperand(0) == N1.getOperand(0)) 1808 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1809 if (N0.getOperand(1) == N1.getOperand(1)) 1810 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1811 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1812 // If X op Y == Y op X, try other combinations. 1813 if (N0.getOperand(0) == N1.getOperand(1)) 1814 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1815 Cond); 1816 if (N0.getOperand(1) == N1.getOperand(0)) 1817 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1818 Cond); 1819 } 1820 } 1821 1822 // If RHS is a legal immediate value for a compare instruction, we need 1823 // to be careful about increasing register pressure needlessly. 1824 bool LegalRHSImm = false; 1825 1826 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1827 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1828 // Turn (X+C1) == C2 --> X == C2-C1 1829 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1830 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1831 DAG.getConstant(RHSC->getAPIntValue()- 1832 LHSR->getAPIntValue(), 1833 N0.getValueType()), Cond); 1834 } 1835 1836 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1837 if (N0.getOpcode() == ISD::XOR) 1838 // If we know that all of the inverted bits are zero, don't bother 1839 // performing the inversion. 1840 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1841 return 1842 DAG.getSetCC(dl, VT, N0.getOperand(0), 1843 DAG.getConstant(LHSR->getAPIntValue() ^ 1844 RHSC->getAPIntValue(), 1845 N0.getValueType()), 1846 Cond); 1847 } 1848 1849 // Turn (C1-X) == C2 --> X == C1-C2 1850 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1851 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1852 return 1853 DAG.getSetCC(dl, VT, N0.getOperand(1), 1854 DAG.getConstant(SUBC->getAPIntValue() - 1855 RHSC->getAPIntValue(), 1856 N0.getValueType()), 1857 Cond); 1858 } 1859 } 1860 1861 // Could RHSC fold directly into a compare? 1862 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1863 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1864 } 1865 1866 // Simplify (X+Z) == X --> Z == 0 1867 // Don't do this if X is an immediate that can fold into a cmp 1868 // instruction and X+Z has other uses. It could be an induction variable 1869 // chain, and the transform would increase register pressure. 1870 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1871 if (N0.getOperand(0) == N1) 1872 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1873 DAG.getConstant(0, N0.getValueType()), Cond); 1874 if (N0.getOperand(1) == N1) { 1875 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1876 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1877 DAG.getConstant(0, N0.getValueType()), Cond); 1878 if (N0.getNode()->hasOneUse()) { 1879 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1880 // (Z-X) == X --> Z == X<<1 1881 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1882 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1883 if (!DCI.isCalledByLegalizer()) 1884 DCI.AddToWorklist(SH.getNode()); 1885 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1886 } 1887 } 1888 } 1889 } 1890 1891 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1892 N1.getOpcode() == ISD::XOR) { 1893 // Simplify X == (X+Z) --> Z == 0 1894 if (N1.getOperand(0) == N0) 1895 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1896 DAG.getConstant(0, N1.getValueType()), Cond); 1897 if (N1.getOperand(1) == N0) { 1898 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1899 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1900 DAG.getConstant(0, N1.getValueType()), Cond); 1901 if (N1.getNode()->hasOneUse()) { 1902 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1903 // X == (Z-X) --> X<<1 == Z 1904 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1905 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1906 if (!DCI.isCalledByLegalizer()) 1907 DCI.AddToWorklist(SH.getNode()); 1908 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1909 } 1910 } 1911 } 1912 1913 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1914 // Note that where y is variable and is known to have at most 1915 // one bit set (for example, if it is z&1) we cannot do this; 1916 // the expressions are not equivalent when y==0. 1917 if (N0.getOpcode() == ISD::AND) 1918 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1919 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1920 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1921 if (DCI.isBeforeLegalizeOps() || 1922 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1923 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1924 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1925 } 1926 } 1927 } 1928 if (N1.getOpcode() == ISD::AND) 1929 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1930 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1931 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1932 if (DCI.isBeforeLegalizeOps() || 1933 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1934 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1935 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1936 } 1937 } 1938 } 1939 } 1940 1941 // Fold away ALL boolean setcc's. 1942 SDValue Temp; 1943 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1944 switch (Cond) { 1945 default: llvm_unreachable("Unknown integer setcc!"); 1946 case ISD::SETEQ: // X == Y -> ~(X^Y) 1947 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1948 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1949 if (!DCI.isCalledByLegalizer()) 1950 DCI.AddToWorklist(Temp.getNode()); 1951 break; 1952 case ISD::SETNE: // X != Y --> (X^Y) 1953 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1954 break; 1955 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1956 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1957 Temp = DAG.getNOT(dl, N0, MVT::i1); 1958 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1959 if (!DCI.isCalledByLegalizer()) 1960 DCI.AddToWorklist(Temp.getNode()); 1961 break; 1962 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1963 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1964 Temp = DAG.getNOT(dl, N1, MVT::i1); 1965 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1966 if (!DCI.isCalledByLegalizer()) 1967 DCI.AddToWorklist(Temp.getNode()); 1968 break; 1969 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1970 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1971 Temp = DAG.getNOT(dl, N0, MVT::i1); 1972 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1973 if (!DCI.isCalledByLegalizer()) 1974 DCI.AddToWorklist(Temp.getNode()); 1975 break; 1976 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1977 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1978 Temp = DAG.getNOT(dl, N1, MVT::i1); 1979 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1980 break; 1981 } 1982 if (VT != MVT::i1) { 1983 if (!DCI.isCalledByLegalizer()) 1984 DCI.AddToWorklist(N0.getNode()); 1985 // FIXME: If running after legalize, we probably can't do this. 1986 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1987 } 1988 return N0; 1989 } 1990 1991 // Could not fold it. 1992 return SDValue(); 1993 } 1994 1995 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 1996 /// node is a GlobalAddress + offset. 1997 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 1998 int64_t &Offset) const { 1999 if (isa<GlobalAddressSDNode>(N)) { 2000 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2001 GA = GASD->getGlobal(); 2002 Offset += GASD->getOffset(); 2003 return true; 2004 } 2005 2006 if (N->getOpcode() == ISD::ADD) { 2007 SDValue N1 = N->getOperand(0); 2008 SDValue N2 = N->getOperand(1); 2009 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2010 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2011 if (V) { 2012 Offset += V->getSExtValue(); 2013 return true; 2014 } 2015 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2016 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2017 if (V) { 2018 Offset += V->getSExtValue(); 2019 return true; 2020 } 2021 } 2022 } 2023 2024 return false; 2025 } 2026 2027 2028 SDValue TargetLowering:: 2029 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2030 // Default implementation: no optimization. 2031 return SDValue(); 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // Inline Assembler Implementation Methods 2036 //===----------------------------------------------------------------------===// 2037 2038 2039 TargetLowering::ConstraintType 2040 TargetLowering::getConstraintType(const std::string &Constraint) const { 2041 unsigned S = Constraint.size(); 2042 2043 if (S == 1) { 2044 switch (Constraint[0]) { 2045 default: break; 2046 case 'r': return C_RegisterClass; 2047 case 'm': // memory 2048 case 'o': // offsetable 2049 case 'V': // not offsetable 2050 return C_Memory; 2051 case 'i': // Simple Integer or Relocatable Constant 2052 case 'n': // Simple Integer 2053 case 'E': // Floating Point Constant 2054 case 'F': // Floating Point Constant 2055 case 's': // Relocatable Constant 2056 case 'p': // Address. 2057 case 'X': // Allow ANY value. 2058 case 'I': // Target registers. 2059 case 'J': 2060 case 'K': 2061 case 'L': 2062 case 'M': 2063 case 'N': 2064 case 'O': 2065 case 'P': 2066 case '<': 2067 case '>': 2068 return C_Other; 2069 } 2070 } 2071 2072 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2073 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2074 return C_Memory; 2075 return C_Register; 2076 } 2077 return C_Unknown; 2078 } 2079 2080 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2081 /// with another that has more specific requirements based on the type of the 2082 /// corresponding operand. 2083 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2084 if (ConstraintVT.isInteger()) 2085 return "r"; 2086 if (ConstraintVT.isFloatingPoint()) 2087 return "f"; // works for many targets 2088 return nullptr; 2089 } 2090 2091 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2092 /// vector. If it is invalid, don't add anything to Ops. 2093 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2094 std::string &Constraint, 2095 std::vector<SDValue> &Ops, 2096 SelectionDAG &DAG) const { 2097 2098 if (Constraint.length() > 1) return; 2099 2100 char ConstraintLetter = Constraint[0]; 2101 switch (ConstraintLetter) { 2102 default: break; 2103 case 'X': // Allows any operand; labels (basic block) use this. 2104 if (Op.getOpcode() == ISD::BasicBlock) { 2105 Ops.push_back(Op); 2106 return; 2107 } 2108 // fall through 2109 case 'i': // Simple Integer or Relocatable Constant 2110 case 'n': // Simple Integer 2111 case 's': { // Relocatable Constant 2112 // These operands are interested in values of the form (GV+C), where C may 2113 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2114 // is possible and fine if either GV or C are missing. 2115 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2116 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2117 2118 // If we have "(add GV, C)", pull out GV/C 2119 if (Op.getOpcode() == ISD::ADD) { 2120 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2122 if (!C || !GA) { 2123 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2124 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2125 } 2126 if (!C || !GA) 2127 C = nullptr, GA = nullptr; 2128 } 2129 2130 // If we find a valid operand, map to the TargetXXX version so that the 2131 // value itself doesn't get selected. 2132 if (GA) { // Either &GV or &GV+C 2133 if (ConstraintLetter != 'n') { 2134 int64_t Offs = GA->getOffset(); 2135 if (C) Offs += C->getZExtValue(); 2136 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2137 C ? SDLoc(C) : SDLoc(), 2138 Op.getValueType(), Offs)); 2139 return; 2140 } 2141 } 2142 if (C) { // just C, no GV. 2143 // Simple constants are not allowed for 's'. 2144 if (ConstraintLetter != 's') { 2145 // gcc prints these as sign extended. Sign extend value to 64 bits 2146 // now; without this it would get ZExt'd later in 2147 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2148 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2149 MVT::i64)); 2150 return; 2151 } 2152 } 2153 break; 2154 } 2155 } 2156 } 2157 2158 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2159 getRegForInlineAsmConstraint(const std::string &Constraint, 2160 MVT VT) const { 2161 if (Constraint.empty() || Constraint[0] != '{') 2162 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2163 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2164 2165 // Remove the braces from around the name. 2166 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2167 2168 std::pair<unsigned, const TargetRegisterClass*> R = 2169 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2170 2171 // Figure out which register class contains this reg. 2172 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2173 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2174 E = RI->regclass_end(); RCI != E; ++RCI) { 2175 const TargetRegisterClass *RC = *RCI; 2176 2177 // If none of the value types for this register class are valid, we 2178 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2179 if (!isLegalRC(RC)) 2180 continue; 2181 2182 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2183 I != E; ++I) { 2184 if (RegName.equals_lower(RI->getName(*I))) { 2185 std::pair<unsigned, const TargetRegisterClass*> S = 2186 std::make_pair(*I, RC); 2187 2188 // If this register class has the requested value type, return it, 2189 // otherwise keep searching and return the first class found 2190 // if no other is found which explicitly has the requested type. 2191 if (RC->hasType(VT)) 2192 return S; 2193 else if (!R.second) 2194 R = S; 2195 } 2196 } 2197 } 2198 2199 return R; 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // Constraint Selection. 2204 2205 /// isMatchingInputConstraint - Return true of this is an input operand that is 2206 /// a matching constraint like "4". 2207 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2208 assert(!ConstraintCode.empty() && "No known constraint!"); 2209 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2210 } 2211 2212 /// getMatchedOperand - If this is an input matching constraint, this method 2213 /// returns the output operand it matches. 2214 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2215 assert(!ConstraintCode.empty() && "No known constraint!"); 2216 return atoi(ConstraintCode.c_str()); 2217 } 2218 2219 2220 /// ParseConstraints - Split up the constraint string from the inline 2221 /// assembly value into the specific constraints and their prefixes, 2222 /// and also tie in the associated operand values. 2223 /// If this returns an empty vector, and if the constraint string itself 2224 /// isn't empty, there was an error parsing. 2225 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2226 ImmutableCallSite CS) const { 2227 /// ConstraintOperands - Information about all of the constraints. 2228 AsmOperandInfoVector ConstraintOperands; 2229 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2230 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2231 2232 // Do a prepass over the constraints, canonicalizing them, and building up the 2233 // ConstraintOperands list. 2234 InlineAsm::ConstraintInfoVector 2235 ConstraintInfos = IA->ParseConstraints(); 2236 2237 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2238 unsigned ResNo = 0; // ResNo - The result number of the next output. 2239 2240 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2241 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2242 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2243 2244 // Update multiple alternative constraint count. 2245 if (OpInfo.multipleAlternatives.size() > maCount) 2246 maCount = OpInfo.multipleAlternatives.size(); 2247 2248 OpInfo.ConstraintVT = MVT::Other; 2249 2250 // Compute the value type for each operand. 2251 switch (OpInfo.Type) { 2252 case InlineAsm::isOutput: 2253 // Indirect outputs just consume an argument. 2254 if (OpInfo.isIndirect) { 2255 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2256 break; 2257 } 2258 2259 // The return value of the call is this value. As such, there is no 2260 // corresponding argument. 2261 assert(!CS.getType()->isVoidTy() && 2262 "Bad inline asm!"); 2263 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2264 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2265 } else { 2266 assert(ResNo == 0 && "Asm only has one result!"); 2267 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2268 } 2269 ++ResNo; 2270 break; 2271 case InlineAsm::isInput: 2272 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2273 break; 2274 case InlineAsm::isClobber: 2275 // Nothing to do. 2276 break; 2277 } 2278 2279 if (OpInfo.CallOperandVal) { 2280 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2281 if (OpInfo.isIndirect) { 2282 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2283 if (!PtrTy) 2284 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2285 OpTy = PtrTy->getElementType(); 2286 } 2287 2288 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2289 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2290 if (STy->getNumElements() == 1) 2291 OpTy = STy->getElementType(0); 2292 2293 // If OpTy is not a single value, it may be a struct/union that we 2294 // can tile with integers. 2295 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2296 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2297 switch (BitSize) { 2298 default: break; 2299 case 1: 2300 case 8: 2301 case 16: 2302 case 32: 2303 case 64: 2304 case 128: 2305 OpInfo.ConstraintVT = 2306 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2307 break; 2308 } 2309 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2310 unsigned PtrSize 2311 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2312 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2313 } else { 2314 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2315 } 2316 } 2317 } 2318 2319 // If we have multiple alternative constraints, select the best alternative. 2320 if (ConstraintInfos.size()) { 2321 if (maCount) { 2322 unsigned bestMAIndex = 0; 2323 int bestWeight = -1; 2324 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2325 int weight = -1; 2326 unsigned maIndex; 2327 // Compute the sums of the weights for each alternative, keeping track 2328 // of the best (highest weight) one so far. 2329 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2330 int weightSum = 0; 2331 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2332 cIndex != eIndex; ++cIndex) { 2333 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2334 if (OpInfo.Type == InlineAsm::isClobber) 2335 continue; 2336 2337 // If this is an output operand with a matching input operand, 2338 // look up the matching input. If their types mismatch, e.g. one 2339 // is an integer, the other is floating point, or their sizes are 2340 // different, flag it as an maCantMatch. 2341 if (OpInfo.hasMatchingInput()) { 2342 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2343 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2344 if ((OpInfo.ConstraintVT.isInteger() != 2345 Input.ConstraintVT.isInteger()) || 2346 (OpInfo.ConstraintVT.getSizeInBits() != 2347 Input.ConstraintVT.getSizeInBits())) { 2348 weightSum = -1; // Can't match. 2349 break; 2350 } 2351 } 2352 } 2353 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2354 if (weight == -1) { 2355 weightSum = -1; 2356 break; 2357 } 2358 weightSum += weight; 2359 } 2360 // Update best. 2361 if (weightSum > bestWeight) { 2362 bestWeight = weightSum; 2363 bestMAIndex = maIndex; 2364 } 2365 } 2366 2367 // Now select chosen alternative in each constraint. 2368 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2369 cIndex != eIndex; ++cIndex) { 2370 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2371 if (cInfo.Type == InlineAsm::isClobber) 2372 continue; 2373 cInfo.selectAlternative(bestMAIndex); 2374 } 2375 } 2376 } 2377 2378 // Check and hook up tied operands, choose constraint code to use. 2379 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2380 cIndex != eIndex; ++cIndex) { 2381 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2382 2383 // If this is an output operand with a matching input operand, look up the 2384 // matching input. If their types mismatch, e.g. one is an integer, the 2385 // other is floating point, or their sizes are different, flag it as an 2386 // error. 2387 if (OpInfo.hasMatchingInput()) { 2388 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2389 2390 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2391 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2392 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2393 OpInfo.ConstraintVT); 2394 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2395 getRegForInlineAsmConstraint(Input.ConstraintCode, 2396 Input.ConstraintVT); 2397 if ((OpInfo.ConstraintVT.isInteger() != 2398 Input.ConstraintVT.isInteger()) || 2399 (MatchRC.second != InputRC.second)) { 2400 report_fatal_error("Unsupported asm: input constraint" 2401 " with a matching output constraint of" 2402 " incompatible type!"); 2403 } 2404 } 2405 2406 } 2407 } 2408 2409 return ConstraintOperands; 2410 } 2411 2412 2413 /// getConstraintGenerality - Return an integer indicating how general CT 2414 /// is. 2415 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2416 switch (CT) { 2417 case TargetLowering::C_Other: 2418 case TargetLowering::C_Unknown: 2419 return 0; 2420 case TargetLowering::C_Register: 2421 return 1; 2422 case TargetLowering::C_RegisterClass: 2423 return 2; 2424 case TargetLowering::C_Memory: 2425 return 3; 2426 } 2427 llvm_unreachable("Invalid constraint type"); 2428 } 2429 2430 /// Examine constraint type and operand type and determine a weight value. 2431 /// This object must already have been set up with the operand type 2432 /// and the current alternative constraint selected. 2433 TargetLowering::ConstraintWeight 2434 TargetLowering::getMultipleConstraintMatchWeight( 2435 AsmOperandInfo &info, int maIndex) const { 2436 InlineAsm::ConstraintCodeVector *rCodes; 2437 if (maIndex >= (int)info.multipleAlternatives.size()) 2438 rCodes = &info.Codes; 2439 else 2440 rCodes = &info.multipleAlternatives[maIndex].Codes; 2441 ConstraintWeight BestWeight = CW_Invalid; 2442 2443 // Loop over the options, keeping track of the most general one. 2444 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2445 ConstraintWeight weight = 2446 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2447 if (weight > BestWeight) 2448 BestWeight = weight; 2449 } 2450 2451 return BestWeight; 2452 } 2453 2454 /// Examine constraint type and operand type and determine a weight value. 2455 /// This object must already have been set up with the operand type 2456 /// and the current alternative constraint selected. 2457 TargetLowering::ConstraintWeight 2458 TargetLowering::getSingleConstraintMatchWeight( 2459 AsmOperandInfo &info, const char *constraint) const { 2460 ConstraintWeight weight = CW_Invalid; 2461 Value *CallOperandVal = info.CallOperandVal; 2462 // If we don't have a value, we can't do a match, 2463 // but allow it at the lowest weight. 2464 if (!CallOperandVal) 2465 return CW_Default; 2466 // Look at the constraint type. 2467 switch (*constraint) { 2468 case 'i': // immediate integer. 2469 case 'n': // immediate integer with a known value. 2470 if (isa<ConstantInt>(CallOperandVal)) 2471 weight = CW_Constant; 2472 break; 2473 case 's': // non-explicit intregal immediate. 2474 if (isa<GlobalValue>(CallOperandVal)) 2475 weight = CW_Constant; 2476 break; 2477 case 'E': // immediate float if host format. 2478 case 'F': // immediate float. 2479 if (isa<ConstantFP>(CallOperandVal)) 2480 weight = CW_Constant; 2481 break; 2482 case '<': // memory operand with autodecrement. 2483 case '>': // memory operand with autoincrement. 2484 case 'm': // memory operand. 2485 case 'o': // offsettable memory operand 2486 case 'V': // non-offsettable memory operand 2487 weight = CW_Memory; 2488 break; 2489 case 'r': // general register. 2490 case 'g': // general register, memory operand or immediate integer. 2491 // note: Clang converts "g" to "imr". 2492 if (CallOperandVal->getType()->isIntegerTy()) 2493 weight = CW_Register; 2494 break; 2495 case 'X': // any operand. 2496 default: 2497 weight = CW_Default; 2498 break; 2499 } 2500 return weight; 2501 } 2502 2503 /// ChooseConstraint - If there are multiple different constraints that we 2504 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2505 /// This is somewhat tricky: constraints fall into four classes: 2506 /// Other -> immediates and magic values 2507 /// Register -> one specific register 2508 /// RegisterClass -> a group of regs 2509 /// Memory -> memory 2510 /// Ideally, we would pick the most specific constraint possible: if we have 2511 /// something that fits into a register, we would pick it. The problem here 2512 /// is that if we have something that could either be in a register or in 2513 /// memory that use of the register could cause selection of *other* 2514 /// operands to fail: they might only succeed if we pick memory. Because of 2515 /// this the heuristic we use is: 2516 /// 2517 /// 1) If there is an 'other' constraint, and if the operand is valid for 2518 /// that constraint, use it. This makes us take advantage of 'i' 2519 /// constraints when available. 2520 /// 2) Otherwise, pick the most general constraint present. This prefers 2521 /// 'm' over 'r', for example. 2522 /// 2523 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2524 const TargetLowering &TLI, 2525 SDValue Op, SelectionDAG *DAG) { 2526 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2527 unsigned BestIdx = 0; 2528 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2529 int BestGenerality = -1; 2530 2531 // Loop over the options, keeping track of the most general one. 2532 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2533 TargetLowering::ConstraintType CType = 2534 TLI.getConstraintType(OpInfo.Codes[i]); 2535 2536 // If this is an 'other' constraint, see if the operand is valid for it. 2537 // For example, on X86 we might have an 'rI' constraint. If the operand 2538 // is an integer in the range [0..31] we want to use I (saving a load 2539 // of a register), otherwise we must use 'r'. 2540 if (CType == TargetLowering::C_Other && Op.getNode()) { 2541 assert(OpInfo.Codes[i].size() == 1 && 2542 "Unhandled multi-letter 'other' constraint"); 2543 std::vector<SDValue> ResultOps; 2544 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2545 ResultOps, *DAG); 2546 if (!ResultOps.empty()) { 2547 BestType = CType; 2548 BestIdx = i; 2549 break; 2550 } 2551 } 2552 2553 // Things with matching constraints can only be registers, per gcc 2554 // documentation. This mainly affects "g" constraints. 2555 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2556 continue; 2557 2558 // This constraint letter is more general than the previous one, use it. 2559 int Generality = getConstraintGenerality(CType); 2560 if (Generality > BestGenerality) { 2561 BestType = CType; 2562 BestIdx = i; 2563 BestGenerality = Generality; 2564 } 2565 } 2566 2567 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2568 OpInfo.ConstraintType = BestType; 2569 } 2570 2571 /// ComputeConstraintToUse - Determines the constraint code and constraint 2572 /// type to use for the specific AsmOperandInfo, setting 2573 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2574 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2575 SDValue Op, 2576 SelectionDAG *DAG) const { 2577 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2578 2579 // Single-letter constraints ('r') are very common. 2580 if (OpInfo.Codes.size() == 1) { 2581 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2582 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2583 } else { 2584 ChooseConstraint(OpInfo, *this, Op, DAG); 2585 } 2586 2587 // 'X' matches anything. 2588 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2589 // Labels and constants are handled elsewhere ('X' is the only thing 2590 // that matches labels). For Functions, the type here is the type of 2591 // the result, which is not what we want to look at; leave them alone. 2592 Value *v = OpInfo.CallOperandVal; 2593 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2594 OpInfo.CallOperandVal = v; 2595 return; 2596 } 2597 2598 // Otherwise, try to resolve it to something we know about by looking at 2599 // the actual operand type. 2600 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2601 OpInfo.ConstraintCode = Repl; 2602 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2603 } 2604 } 2605 } 2606 2607 /// \brief Given an exact SDIV by a constant, create a multiplication 2608 /// with the multiplicative inverse of the constant. 2609 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2610 SelectionDAG &DAG) const { 2611 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2612 APInt d = C->getAPIntValue(); 2613 assert(d != 0 && "Division by zero!"); 2614 2615 // Shift the value upfront if it is even, so the LSB is one. 2616 unsigned ShAmt = d.countTrailingZeros(); 2617 if (ShAmt) { 2618 // TODO: For UDIV use SRL instead of SRA. 2619 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2620 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2621 true); 2622 d = d.ashr(ShAmt); 2623 } 2624 2625 // Calculate the multiplicative inverse, using Newton's method. 2626 APInt t, xn = d; 2627 while ((t = d*xn) != 1) 2628 xn *= APInt(d.getBitWidth(), 2) - t; 2629 2630 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2631 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2632 } 2633 2634 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2635 /// return a DAG expression to select that will generate the same value by 2636 /// multiplying by a magic number. See: 2637 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2638 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2639 SelectionDAG &DAG, bool IsAfterLegalization, 2640 std::vector<SDNode *> *Created) const { 2641 EVT VT = N->getValueType(0); 2642 SDLoc dl(N); 2643 2644 // Check to see if we can do this. 2645 // FIXME: We should be more aggressive here. 2646 if (!isTypeLegal(VT)) 2647 return SDValue(); 2648 2649 APInt::ms magics = Divisor.magic(); 2650 2651 // Multiply the numerator (operand 0) by the magic value 2652 // FIXME: We should support doing a MUL in a wider type 2653 SDValue Q; 2654 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2655 isOperationLegalOrCustom(ISD::MULHS, VT)) 2656 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2657 DAG.getConstant(magics.m, VT)); 2658 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2659 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2660 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2661 N->getOperand(0), 2662 DAG.getConstant(magics.m, VT)).getNode(), 1); 2663 else 2664 return SDValue(); // No mulhs or equvialent 2665 // If d > 0 and m < 0, add the numerator 2666 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2667 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2668 if (Created) 2669 Created->push_back(Q.getNode()); 2670 } 2671 // If d < 0 and m > 0, subtract the numerator. 2672 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2673 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2674 if (Created) 2675 Created->push_back(Q.getNode()); 2676 } 2677 // Shift right algebraic if shift value is nonzero 2678 if (magics.s > 0) { 2679 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2680 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2681 if (Created) 2682 Created->push_back(Q.getNode()); 2683 } 2684 // Extract the sign bit and add it to the quotient 2685 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2686 DAG.getConstant(VT.getScalarSizeInBits() - 1, 2687 getShiftAmountTy(Q.getValueType()))); 2688 if (Created) 2689 Created->push_back(T.getNode()); 2690 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2691 } 2692 2693 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2694 /// return a DAG expression to select that will generate the same value by 2695 /// multiplying by a magic number. See: 2696 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2697 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2698 SelectionDAG &DAG, bool IsAfterLegalization, 2699 std::vector<SDNode *> *Created) const { 2700 EVT VT = N->getValueType(0); 2701 SDLoc dl(N); 2702 2703 // Check to see if we can do this. 2704 // FIXME: We should be more aggressive here. 2705 if (!isTypeLegal(VT)) 2706 return SDValue(); 2707 2708 // FIXME: We should use a narrower constant when the upper 2709 // bits are known to be zero. 2710 APInt::mu magics = Divisor.magicu(); 2711 2712 SDValue Q = N->getOperand(0); 2713 2714 // If the divisor is even, we can avoid using the expensive fixup by shifting 2715 // the divided value upfront. 2716 if (magics.a != 0 && !Divisor[0]) { 2717 unsigned Shift = Divisor.countTrailingZeros(); 2718 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2719 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2720 if (Created) 2721 Created->push_back(Q.getNode()); 2722 2723 // Get magic number for the shifted divisor. 2724 magics = Divisor.lshr(Shift).magicu(Shift); 2725 assert(magics.a == 0 && "Should use cheap fixup now"); 2726 } 2727 2728 // Multiply the numerator (operand 0) by the magic value 2729 // FIXME: We should support doing a MUL in a wider type 2730 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2731 isOperationLegalOrCustom(ISD::MULHU, VT)) 2732 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2733 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2734 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2735 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2736 DAG.getConstant(magics.m, VT)).getNode(), 1); 2737 else 2738 return SDValue(); // No mulhu or equvialent 2739 if (Created) 2740 Created->push_back(Q.getNode()); 2741 2742 if (magics.a == 0) { 2743 assert(magics.s < Divisor.getBitWidth() && 2744 "We shouldn't generate an undefined shift!"); 2745 return DAG.getNode(ISD::SRL, dl, VT, Q, 2746 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2747 } else { 2748 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2749 if (Created) 2750 Created->push_back(NPQ.getNode()); 2751 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2752 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2753 if (Created) 2754 Created->push_back(NPQ.getNode()); 2755 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2756 if (Created) 2757 Created->push_back(NPQ.getNode()); 2758 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2759 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2760 } 2761 } 2762 2763 bool TargetLowering:: 2764 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2765 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2766 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2767 "be a constant integer"); 2768 return true; 2769 } 2770 2771 return false; 2772 } 2773 2774 //===----------------------------------------------------------------------===// 2775 // Legalization Utilities 2776 //===----------------------------------------------------------------------===// 2777 2778 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2779 SelectionDAG &DAG, SDValue LL, SDValue LH, 2780 SDValue RL, SDValue RH) const { 2781 EVT VT = N->getValueType(0); 2782 SDLoc dl(N); 2783 2784 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2785 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2786 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2787 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2788 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2789 unsigned OuterBitSize = VT.getSizeInBits(); 2790 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2791 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2792 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2793 2794 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2795 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2796 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2797 2798 if (!LL.getNode() && !RL.getNode() && 2799 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2800 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2801 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2802 } 2803 2804 if (!LL.getNode()) 2805 return false; 2806 2807 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2808 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2809 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2810 // The inputs are both zero-extended. 2811 if (HasUMUL_LOHI) { 2812 // We can emit a umul_lohi. 2813 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, 2814 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2815 Hi = SDValue(Lo.getNode(), 1); 2816 return true; 2817 } 2818 if (HasMULHU) { 2819 // We can emit a mulhu+mul. 2820 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2821 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2822 return true; 2823 } 2824 } 2825 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2826 // The input values are both sign-extended. 2827 if (HasSMUL_LOHI) { 2828 // We can emit a smul_lohi. 2829 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, 2830 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2831 Hi = SDValue(Lo.getNode(), 1); 2832 return true; 2833 } 2834 if (HasMULHS) { 2835 // We can emit a mulhs+mul. 2836 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2837 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2838 return true; 2839 } 2840 } 2841 2842 if (!LH.getNode() && !RH.getNode() && 2843 isOperationLegalOrCustom(ISD::SRL, VT) && 2844 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2845 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2846 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT)); 2847 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2848 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2849 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2850 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2851 } 2852 2853 if (!LH.getNode()) 2854 return false; 2855 2856 if (HasUMUL_LOHI) { 2857 // Lo,Hi = umul LHS, RHS. 2858 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2859 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2860 Lo = UMulLOHI; 2861 Hi = UMulLOHI.getValue(1); 2862 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2863 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2864 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2865 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2866 return true; 2867 } 2868 if (HasMULHU) { 2869 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2870 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2871 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2872 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2873 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2874 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2875 return true; 2876 } 2877 } 2878 return false; 2879 } 2880