1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::SCALAR_TO_VECTOR: { 523 if (!DemandedElts[0]) 524 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 525 526 KnownBits SrcKnown; 527 SDValue Src = Op.getOperand(0); 528 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 529 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 530 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 531 return true; 532 Known = SrcKnown.zextOrTrunc(BitWidth, false); 533 break; 534 } 535 case ISD::BUILD_VECTOR: 536 // Collect the known bits that are shared by every constant vector element. 537 Known.Zero.setAllBits(); Known.One.setAllBits(); 538 for (SDValue SrcOp : Op->ops()) { 539 if (!isa<ConstantSDNode>(SrcOp)) { 540 // We can only handle all constant values - bail out with no known bits. 541 Known = KnownBits(BitWidth); 542 return false; 543 } 544 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 545 Known2.Zero = ~Known2.One; 546 547 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 548 if (Known2.One.getBitWidth() != BitWidth) { 549 assert(Known2.getBitWidth() > BitWidth && 550 "Expected BUILD_VECTOR implicit truncation"); 551 Known2 = Known2.trunc(BitWidth); 552 } 553 554 // Known bits are the values that are shared by every element. 555 // TODO: support per-element known bits. 556 Known.One &= Known2.One; 557 Known.Zero &= Known2.Zero; 558 } 559 return false; // Don't fall through, will infinitely loop. 560 case ISD::CONCAT_VECTORS: { 561 Known.Zero.setAllBits(); 562 Known.One.setAllBits(); 563 EVT SubVT = Op.getOperand(0).getValueType(); 564 unsigned NumSubVecs = Op.getNumOperands(); 565 unsigned NumSubElts = SubVT.getVectorNumElements(); 566 for (unsigned i = 0; i != NumSubVecs; ++i) { 567 APInt DemandedSubElts = 568 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 569 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 570 Known2, TLO, Depth + 1)) 571 return true; 572 // Known bits are shared by every demanded subvector element. 573 if (!!DemandedSubElts) { 574 Known.One &= Known2.One; 575 Known.Zero &= Known2.Zero; 576 } 577 } 578 break; 579 } 580 case ISD::VECTOR_SHUFFLE: { 581 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 582 583 // Collect demanded elements from shuffle operands.. 584 APInt DemandedLHS(NumElts, 0); 585 APInt DemandedRHS(NumElts, 0); 586 for (unsigned i = 0; i != NumElts; ++i) { 587 if (!DemandedElts[i]) 588 continue; 589 int M = ShuffleMask[i]; 590 if (M < 0) { 591 // For UNDEF elements, we don't know anything about the common state of 592 // the shuffle result. 593 DemandedLHS.clearAllBits(); 594 DemandedRHS.clearAllBits(); 595 break; 596 } 597 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 598 if (M < (int)NumElts) 599 DemandedLHS.setBit(M); 600 else 601 DemandedRHS.setBit(M - NumElts); 602 } 603 604 if (!!DemandedLHS || !!DemandedRHS) { 605 Known.Zero.setAllBits(); 606 Known.One.setAllBits(); 607 if (!!DemandedLHS) { 608 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 609 Known2, TLO, Depth + 1)) 610 return true; 611 Known.One &= Known2.One; 612 Known.Zero &= Known2.Zero; 613 } 614 if (!!DemandedRHS) { 615 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 616 Known2, TLO, Depth + 1)) 617 return true; 618 Known.One &= Known2.One; 619 Known.Zero &= Known2.Zero; 620 } 621 } 622 break; 623 } 624 case ISD::AND: { 625 SDValue Op0 = Op.getOperand(0); 626 SDValue Op1 = Op.getOperand(1); 627 628 // If the RHS is a constant, check to see if the LHS would be zero without 629 // using the bits from the RHS. Below, we use knowledge about the RHS to 630 // simplify the LHS, here we're using information from the LHS to simplify 631 // the RHS. 632 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 633 // Do not increment Depth here; that can cause an infinite loop. 634 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 635 // If the LHS already has zeros where RHSC does, this 'and' is dead. 636 if ((LHSKnown.Zero & DemandedBits) == 637 (~RHSC->getAPIntValue() & DemandedBits)) 638 return TLO.CombineTo(Op, Op0); 639 640 // If any of the set bits in the RHS are known zero on the LHS, shrink 641 // the constant. 642 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 643 return true; 644 645 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 646 // constant, but if this 'and' is only clearing bits that were just set by 647 // the xor, then this 'and' can be eliminated by shrinking the mask of 648 // the xor. For example, for a 32-bit X: 649 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 650 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 651 LHSKnown.One == ~RHSC->getAPIntValue()) { 652 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 653 return TLO.CombineTo(Op, Xor); 654 } 655 } 656 657 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 658 Depth + 1)) 659 return true; 660 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 661 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 662 Known2, TLO, Depth + 1)) 663 return true; 664 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 665 666 // If all of the demanded bits are known one on one side, return the other. 667 // These bits cannot contribute to the result of the 'and'. 668 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 669 return TLO.CombineTo(Op, Op0); 670 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 671 return TLO.CombineTo(Op, Op1); 672 // If all of the demanded bits in the inputs are known zeros, return zero. 673 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 674 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 675 // If the RHS is a constant, see if we can simplify it. 676 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 677 return true; 678 // If the operation can be done in a smaller type, do so. 679 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 680 return true; 681 682 // Output known-1 bits are only known if set in both the LHS & RHS. 683 Known.One &= Known2.One; 684 // Output known-0 are known to be clear if zero in either the LHS | RHS. 685 Known.Zero |= Known2.Zero; 686 break; 687 } 688 case ISD::OR: { 689 SDValue Op0 = Op.getOperand(0); 690 SDValue Op1 = Op.getOperand(1); 691 692 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 693 Depth + 1)) 694 return true; 695 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 696 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 697 Known2, TLO, Depth + 1)) 698 return true; 699 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 700 701 // If all of the demanded bits are known zero on one side, return the other. 702 // These bits cannot contribute to the result of the 'or'. 703 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 704 return TLO.CombineTo(Op, Op0); 705 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 706 return TLO.CombineTo(Op, Op1); 707 // If the RHS is a constant, see if we can simplify it. 708 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 709 return true; 710 // If the operation can be done in a smaller type, do so. 711 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 712 return true; 713 714 // Output known-0 bits are only known if clear in both the LHS & RHS. 715 Known.Zero &= Known2.Zero; 716 // Output known-1 are known to be set if set in either the LHS | RHS. 717 Known.One |= Known2.One; 718 break; 719 } 720 case ISD::XOR: { 721 SDValue Op0 = Op.getOperand(0); 722 SDValue Op1 = Op.getOperand(1); 723 724 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 725 Depth + 1)) 726 return true; 727 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 728 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 729 Depth + 1)) 730 return true; 731 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 732 733 // If all of the demanded bits are known zero on one side, return the other. 734 // These bits cannot contribute to the result of the 'xor'. 735 if (DemandedBits.isSubsetOf(Known.Zero)) 736 return TLO.CombineTo(Op, Op0); 737 if (DemandedBits.isSubsetOf(Known2.Zero)) 738 return TLO.CombineTo(Op, Op1); 739 // If the operation can be done in a smaller type, do so. 740 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 741 return true; 742 743 // If all of the unknown bits are known to be zero on one side or the other 744 // (but not both) turn this into an *inclusive* or. 745 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 746 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 747 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 748 749 // Output known-0 bits are known if clear or set in both the LHS & RHS. 750 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 751 // Output known-1 are known to be set if set in only one of the LHS, RHS. 752 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 753 754 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 755 // If one side is a constant, and all of the known set bits on the other 756 // side are also set in the constant, turn this into an AND, as we know 757 // the bits will be cleared. 758 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 759 // NB: it is okay if more bits are known than are requested 760 if (C->getAPIntValue() == Known2.One) { 761 SDValue ANDC = 762 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 763 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 764 } 765 766 // If the RHS is a constant, see if we can change it. Don't alter a -1 767 // constant because that's a 'not' op, and that is better for combining 768 // and codegen. 769 if (!C->isAllOnesValue()) { 770 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 771 // We're flipping all demanded bits. Flip the undemanded bits too. 772 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 773 return TLO.CombineTo(Op, New); 774 } 775 // If we can't turn this into a 'not', try to shrink the constant. 776 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 777 return true; 778 } 779 } 780 781 Known = std::move(KnownOut); 782 break; 783 } 784 case ISD::SELECT: 785 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 786 Depth + 1)) 787 return true; 788 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 789 Depth + 1)) 790 return true; 791 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 792 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 793 794 // If the operands are constants, see if we can simplify them. 795 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 796 return true; 797 798 // Only known if known in both the LHS and RHS. 799 Known.One &= Known2.One; 800 Known.Zero &= Known2.Zero; 801 break; 802 case ISD::SELECT_CC: 803 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 804 Depth + 1)) 805 return true; 806 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 807 Depth + 1)) 808 return true; 809 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 810 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 811 812 // If the operands are constants, see if we can simplify them. 813 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 814 return true; 815 816 // Only known if known in both the LHS and RHS. 817 Known.One &= Known2.One; 818 Known.Zero &= Known2.Zero; 819 break; 820 case ISD::SETCC: { 821 SDValue Op0 = Op.getOperand(0); 822 SDValue Op1 = Op.getOperand(1); 823 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 824 // If (1) we only need the sign-bit, (2) the setcc operands are the same 825 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 826 // -1, we may be able to bypass the setcc. 827 if (DemandedBits.isSignMask() && 828 Op0.getScalarValueSizeInBits() == BitWidth && 829 getBooleanContents(VT) == 830 BooleanContent::ZeroOrNegativeOneBooleanContent) { 831 // If we're testing X < 0, then this compare isn't needed - just use X! 832 // FIXME: We're limiting to integer types here, but this should also work 833 // if we don't care about FP signed-zero. The use of SETLT with FP means 834 // that we don't care about NaNs. 835 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 836 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 837 return TLO.CombineTo(Op, Op0); 838 839 // TODO: Should we check for other forms of sign-bit comparisons? 840 // Examples: X <= -1, X >= 0 841 } 842 if (getBooleanContents(Op0.getValueType()) == 843 TargetLowering::ZeroOrOneBooleanContent && 844 BitWidth > 1) 845 Known.Zero.setBitsFrom(1); 846 break; 847 } 848 case ISD::SHL: { 849 SDValue Op0 = Op.getOperand(0); 850 SDValue Op1 = Op.getOperand(1); 851 852 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 853 // If the shift count is an invalid immediate, don't do anything. 854 if (SA->getAPIntValue().uge(BitWidth)) 855 break; 856 857 unsigned ShAmt = SA->getZExtValue(); 858 859 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 860 // single shift. We can do this if the bottom bits (which are shifted 861 // out) are never demanded. 862 if (Op0.getOpcode() == ISD::SRL) { 863 if (ShAmt && 864 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 865 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 866 if (SA2->getAPIntValue().ult(BitWidth)) { 867 unsigned C1 = SA2->getZExtValue(); 868 unsigned Opc = ISD::SHL; 869 int Diff = ShAmt - C1; 870 if (Diff < 0) { 871 Diff = -Diff; 872 Opc = ISD::SRL; 873 } 874 875 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 876 return TLO.CombineTo( 877 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 878 } 879 } 880 } 881 } 882 883 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 884 Known, TLO, Depth + 1)) 885 return true; 886 887 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 888 // are not demanded. This will likely allow the anyext to be folded away. 889 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 890 SDValue InnerOp = Op0.getOperand(0); 891 EVT InnerVT = InnerOp.getValueType(); 892 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 893 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 894 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 895 EVT ShTy = getShiftAmountTy(InnerVT, DL); 896 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 897 ShTy = InnerVT; 898 SDValue NarrowShl = 899 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 900 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 901 return TLO.CombineTo( 902 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 903 } 904 // Repeat the SHL optimization above in cases where an extension 905 // intervenes: (shl (anyext (shr x, c1)), c2) to 906 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 907 // aren't demanded (as above) and that the shifted upper c1 bits of 908 // x aren't demanded. 909 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 910 InnerOp.hasOneUse()) { 911 if (ConstantSDNode *SA2 = 912 isConstOrConstSplat(InnerOp.getOperand(1))) { 913 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 914 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 915 DemandedBits.getActiveBits() <= 916 (InnerBits - InnerShAmt + ShAmt) && 917 DemandedBits.countTrailingZeros() >= ShAmt) { 918 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 919 Op1.getValueType()); 920 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 921 InnerOp.getOperand(0)); 922 return TLO.CombineTo( 923 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 924 } 925 } 926 } 927 } 928 929 Known.Zero <<= ShAmt; 930 Known.One <<= ShAmt; 931 // low bits known zero. 932 Known.Zero.setLowBits(ShAmt); 933 } 934 break; 935 } 936 case ISD::SRL: { 937 SDValue Op0 = Op.getOperand(0); 938 SDValue Op1 = Op.getOperand(1); 939 940 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 941 // If the shift count is an invalid immediate, don't do anything. 942 if (SA->getAPIntValue().uge(BitWidth)) 943 break; 944 945 unsigned ShAmt = SA->getZExtValue(); 946 APInt InDemandedMask = (DemandedBits << ShAmt); 947 948 // If the shift is exact, then it does demand the low bits (and knows that 949 // they are zero). 950 if (Op->getFlags().hasExact()) 951 InDemandedMask.setLowBits(ShAmt); 952 953 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 954 // single shift. We can do this if the top bits (which are shifted out) 955 // are never demanded. 956 if (Op0.getOpcode() == ISD::SHL) { 957 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 958 if (ShAmt && 959 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 960 if (SA2->getAPIntValue().ult(BitWidth)) { 961 unsigned C1 = SA2->getZExtValue(); 962 unsigned Opc = ISD::SRL; 963 int Diff = ShAmt - C1; 964 if (Diff < 0) { 965 Diff = -Diff; 966 Opc = ISD::SHL; 967 } 968 969 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 970 return TLO.CombineTo( 971 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 972 } 973 } 974 } 975 } 976 977 // Compute the new bits that are at the top now. 978 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 979 Depth + 1)) 980 return true; 981 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 982 Known.Zero.lshrInPlace(ShAmt); 983 Known.One.lshrInPlace(ShAmt); 984 985 Known.Zero.setHighBits(ShAmt); // High bits known zero. 986 } 987 break; 988 } 989 case ISD::SRA: { 990 SDValue Op0 = Op.getOperand(0); 991 SDValue Op1 = Op.getOperand(1); 992 993 // If this is an arithmetic shift right and only the low-bit is set, we can 994 // always convert this into a logical shr, even if the shift amount is 995 // variable. The low bit of the shift cannot be an input sign bit unless 996 // the shift amount is >= the size of the datatype, which is undefined. 997 if (DemandedBits.isOneValue()) 998 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 999 1000 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1001 // If the shift count is an invalid immediate, don't do anything. 1002 if (SA->getAPIntValue().uge(BitWidth)) 1003 break; 1004 1005 unsigned ShAmt = SA->getZExtValue(); 1006 APInt InDemandedMask = (DemandedBits << ShAmt); 1007 1008 // If the shift is exact, then it does demand the low bits (and knows that 1009 // they are zero). 1010 if (Op->getFlags().hasExact()) 1011 InDemandedMask.setLowBits(ShAmt); 1012 1013 // If any of the demanded bits are produced by the sign extension, we also 1014 // demand the input sign bit. 1015 if (DemandedBits.countLeadingZeros() < ShAmt) 1016 InDemandedMask.setSignBit(); 1017 1018 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1019 Depth + 1)) 1020 return true; 1021 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1022 Known.Zero.lshrInPlace(ShAmt); 1023 Known.One.lshrInPlace(ShAmt); 1024 1025 // If the input sign bit is known to be zero, or if none of the top bits 1026 // are demanded, turn this into an unsigned shift right. 1027 if (Known.Zero[BitWidth - ShAmt - 1] || 1028 DemandedBits.countLeadingZeros() >= ShAmt) { 1029 SDNodeFlags Flags; 1030 Flags.setExact(Op->getFlags().hasExact()); 1031 return TLO.CombineTo( 1032 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1033 } 1034 1035 int Log2 = DemandedBits.exactLogBase2(); 1036 if (Log2 >= 0) { 1037 // The bit must come from the sign. 1038 SDValue NewSA = 1039 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1040 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1041 } 1042 1043 if (Known.One[BitWidth - ShAmt - 1]) 1044 // New bits are known one. 1045 Known.One.setHighBits(ShAmt); 1046 } 1047 break; 1048 } 1049 case ISD::FSHL: 1050 case ISD::FSHR: { 1051 SDValue Op0 = Op.getOperand(0); 1052 SDValue Op1 = Op.getOperand(1); 1053 SDValue Op2 = Op.getOperand(2); 1054 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1055 1056 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1057 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1058 1059 // For fshl, 0-shift returns the 1st arg. 1060 // For fshr, 0-shift returns the 2nd arg. 1061 if (Amt == 0) { 1062 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1063 Known, TLO, Depth + 1)) 1064 return true; 1065 break; 1066 } 1067 1068 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1069 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1070 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1071 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1072 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1073 Depth + 1)) 1074 return true; 1075 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1076 Depth + 1)) 1077 return true; 1078 1079 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1080 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1081 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1082 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1083 Known.One |= Known2.One; 1084 Known.Zero |= Known2.Zero; 1085 } 1086 break; 1087 } 1088 case ISD::SIGN_EXTEND_INREG: { 1089 SDValue Op0 = Op.getOperand(0); 1090 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1091 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1092 1093 // If we only care about the highest bit, don't bother shifting right. 1094 if (DemandedBits.isSignMask()) { 1095 bool AlreadySignExtended = 1096 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1097 // However if the input is already sign extended we expect the sign 1098 // extension to be dropped altogether later and do not simplify. 1099 if (!AlreadySignExtended) { 1100 // Compute the correct shift amount type, which must be getShiftAmountTy 1101 // for scalar types after legalization. 1102 EVT ShiftAmtTy = VT; 1103 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1104 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1105 1106 SDValue ShiftAmt = 1107 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1108 return TLO.CombineTo(Op, 1109 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1110 } 1111 } 1112 1113 // If none of the extended bits are demanded, eliminate the sextinreg. 1114 if (DemandedBits.getActiveBits() <= ExVTBits) 1115 return TLO.CombineTo(Op, Op0); 1116 1117 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1118 1119 // Since the sign extended bits are demanded, we know that the sign 1120 // bit is demanded. 1121 InputDemandedBits.setBit(ExVTBits - 1); 1122 1123 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1124 return true; 1125 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1126 1127 // If the sign bit of the input is known set or clear, then we know the 1128 // top bits of the result. 1129 1130 // If the input sign bit is known zero, convert this into a zero extension. 1131 if (Known.Zero[ExVTBits - 1]) 1132 return TLO.CombineTo( 1133 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1134 1135 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1136 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1137 Known.One.setBitsFrom(ExVTBits); 1138 Known.Zero &= Mask; 1139 } else { // Input sign bit unknown 1140 Known.Zero &= Mask; 1141 Known.One &= Mask; 1142 } 1143 break; 1144 } 1145 case ISD::BUILD_PAIR: { 1146 EVT HalfVT = Op.getOperand(0).getValueType(); 1147 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1148 1149 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1150 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1151 1152 KnownBits KnownLo, KnownHi; 1153 1154 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1155 return true; 1156 1157 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1158 return true; 1159 1160 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1161 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1162 1163 Known.One = KnownLo.One.zext(BitWidth) | 1164 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1165 break; 1166 } 1167 case ISD::ZERO_EXTEND: { 1168 SDValue Src = Op.getOperand(0); 1169 unsigned InBits = Src.getScalarValueSizeInBits(); 1170 1171 // If none of the top bits are demanded, convert this into an any_extend. 1172 if (DemandedBits.getActiveBits() <= InBits) 1173 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1174 1175 APInt InDemandedBits = DemandedBits.trunc(InBits); 1176 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1177 return true; 1178 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1179 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1180 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1181 break; 1182 } 1183 case ISD::SIGN_EXTEND: { 1184 SDValue Src = Op.getOperand(0); 1185 unsigned InBits = Src.getScalarValueSizeInBits(); 1186 1187 // If none of the top bits are demanded, convert this into an any_extend. 1188 if (DemandedBits.getActiveBits() <= InBits) 1189 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1190 1191 // Since some of the sign extended bits are demanded, we know that the sign 1192 // bit is demanded. 1193 APInt InDemandedBits = DemandedBits.trunc(InBits); 1194 InDemandedBits.setBit(InBits - 1); 1195 1196 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1197 return true; 1198 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1199 // If the sign bit is known one, the top bits match. 1200 Known = Known.sext(BitWidth); 1201 1202 // If the sign bit is known zero, convert this to a zero extend. 1203 if (Known.isNonNegative()) 1204 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1205 break; 1206 } 1207 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1208 // TODO - merge this with SIGN_EXTEND above? 1209 SDValue Src = Op.getOperand(0); 1210 unsigned InBits = Src.getScalarValueSizeInBits(); 1211 1212 APInt InDemandedBits = DemandedBits.trunc(InBits); 1213 1214 // If some of the sign extended bits are demanded, we know that the sign 1215 // bit is demanded. 1216 if (InBits < DemandedBits.getActiveBits()) 1217 InDemandedBits.setBit(InBits - 1); 1218 1219 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 // If the sign bit is known one, the top bits match. 1223 Known = Known.sext(BitWidth); 1224 break; 1225 } 1226 case ISD::ANY_EXTEND: { 1227 SDValue Src = Op.getOperand(0); 1228 unsigned InBits = Src.getScalarValueSizeInBits(); 1229 APInt InDemandedBits = DemandedBits.trunc(InBits); 1230 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1231 return true; 1232 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1233 Known = Known.zext(BitWidth, false /* => any extend */); 1234 break; 1235 } 1236 case ISD::TRUNCATE: { 1237 SDValue Src = Op.getOperand(0); 1238 1239 // Simplify the input, using demanded bit information, and compute the known 1240 // zero/one bits live out. 1241 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1242 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1243 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1244 return true; 1245 Known = Known.trunc(BitWidth); 1246 1247 // If the input is only used by this truncate, see if we can shrink it based 1248 // on the known demanded bits. 1249 if (Src.getNode()->hasOneUse()) { 1250 switch (Src.getOpcode()) { 1251 default: 1252 break; 1253 case ISD::SRL: 1254 // Shrink SRL by a constant if none of the high bits shifted in are 1255 // demanded. 1256 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1257 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1258 // undesirable. 1259 break; 1260 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1261 if (!ShAmt) 1262 break; 1263 SDValue Shift = Src.getOperand(1); 1264 if (TLO.LegalTypes()) { 1265 uint64_t ShVal = ShAmt->getZExtValue(); 1266 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1267 } 1268 1269 if (ShAmt->getZExtValue() < BitWidth) { 1270 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1271 OperandBitWidth - BitWidth); 1272 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1273 HighBits = HighBits.trunc(BitWidth); 1274 1275 if (!(HighBits & DemandedBits)) { 1276 // None of the shifted in bits are needed. Add a truncate of the 1277 // shift input, then shift it. 1278 SDValue NewTrunc = 1279 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1280 return TLO.CombineTo( 1281 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1282 } 1283 } 1284 break; 1285 } 1286 } 1287 1288 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1289 break; 1290 } 1291 case ISD::AssertZext: { 1292 // AssertZext demands all of the high bits, plus any of the low bits 1293 // demanded by its users. 1294 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1295 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1296 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1297 TLO, Depth + 1)) 1298 return true; 1299 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1300 1301 Known.Zero |= ~InMask; 1302 break; 1303 } 1304 case ISD::EXTRACT_VECTOR_ELT: { 1305 SDValue Src = Op.getOperand(0); 1306 SDValue Idx = Op.getOperand(1); 1307 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1308 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1309 1310 // Demand the bits from every vector element without a constant index. 1311 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1312 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1313 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1314 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1315 1316 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1317 // anything about the extended bits. 1318 APInt DemandedSrcBits = DemandedBits; 1319 if (BitWidth > EltBitWidth) 1320 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1321 1322 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1323 Depth + 1)) 1324 return true; 1325 1326 Known = Known2; 1327 if (BitWidth > EltBitWidth) 1328 Known = Known.zext(BitWidth, false /* => any extend */); 1329 break; 1330 } 1331 case ISD::BITCAST: { 1332 SDValue Src = Op.getOperand(0); 1333 EVT SrcVT = Src.getValueType(); 1334 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1335 1336 // If this is an FP->Int bitcast and if the sign bit is the only 1337 // thing demanded, turn this into a FGETSIGN. 1338 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1339 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1340 SrcVT.isFloatingPoint()) { 1341 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1342 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1343 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1344 SrcVT != MVT::f128) { 1345 // Cannot eliminate/lower SHL for f128 yet. 1346 EVT Ty = OpVTLegal ? VT : MVT::i32; 1347 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1348 // place. We expect the SHL to be eliminated by other optimizations. 1349 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1350 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1351 if (!OpVTLegal && OpVTSizeInBits > 32) 1352 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1353 unsigned ShVal = Op.getValueSizeInBits() - 1; 1354 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1355 return TLO.CombineTo(Op, 1356 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1357 } 1358 } 1359 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1360 // demanding the element if any bits from it are demanded. 1361 // TODO - bigendian once we have test coverage. 1362 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1363 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1364 (BitWidth % NumSrcEltBits) == 0 && 1365 TLO.DAG.getDataLayout().isLittleEndian()) { 1366 unsigned Scale = BitWidth / NumSrcEltBits; 1367 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1368 DemandedSubElts = APInt::getNullValue(Scale); 1369 for (unsigned i = 0; i != Scale; ++i) { 1370 unsigned Offset = i * NumSrcEltBits; 1371 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1372 if (!Sub.isNullValue()) 1373 DemandedSubElts.setBit(i); 1374 } 1375 return true; 1376 }; 1377 1378 APInt DemandedSubElts; 1379 if (GetDemandedSubMask(DemandedSubElts)) { 1380 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1381 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1382 1383 APInt KnownUndef, KnownZero; 1384 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1385 TLO, Depth + 1)) 1386 return true; 1387 } 1388 } 1389 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1390 // recursive call where Known may be useful to the caller. 1391 if (Depth > 0) { 1392 Known = TLO.DAG.computeKnownBits(Op, Depth); 1393 return false; 1394 } 1395 break; 1396 } 1397 case ISD::ADD: 1398 case ISD::MUL: 1399 case ISD::SUB: { 1400 // Add, Sub, and Mul don't demand any bits in positions beyond that 1401 // of the highest bit demanded of them. 1402 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1403 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1404 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1405 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1406 Depth + 1) || 1407 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1408 Depth + 1) || 1409 // See if the operation should be performed at a smaller bit width. 1410 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1411 SDNodeFlags Flags = Op.getNode()->getFlags(); 1412 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1413 // Disable the nsw and nuw flags. We can no longer guarantee that we 1414 // won't wrap after simplification. 1415 Flags.setNoSignedWrap(false); 1416 Flags.setNoUnsignedWrap(false); 1417 SDValue NewOp = 1418 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1419 return TLO.CombineTo(Op, NewOp); 1420 } 1421 return true; 1422 } 1423 1424 // If we have a constant operand, we may be able to turn it into -1 if we 1425 // do not demand the high bits. This can make the constant smaller to 1426 // encode, allow more general folding, or match specialized instruction 1427 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1428 // is probably not useful (and could be detrimental). 1429 ConstantSDNode *C = isConstOrConstSplat(Op1); 1430 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1431 if (C && !C->isAllOnesValue() && !C->isOne() && 1432 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1433 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1434 // We can't guarantee that the new math op doesn't wrap, so explicitly 1435 // clear those flags to prevent folding with a potential existing node 1436 // that has those flags set. 1437 SDNodeFlags Flags; 1438 Flags.setNoSignedWrap(false); 1439 Flags.setNoUnsignedWrap(false); 1440 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1441 return TLO.CombineTo(Op, NewOp); 1442 } 1443 1444 LLVM_FALLTHROUGH; 1445 } 1446 default: 1447 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1448 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1449 Known, TLO, Depth)) 1450 return true; 1451 break; 1452 } 1453 1454 // Just use computeKnownBits to compute output bits. 1455 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1456 break; 1457 } 1458 1459 // If we know the value of all of the demanded bits, return this as a 1460 // constant. 1461 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1462 // Avoid folding to a constant if any OpaqueConstant is involved. 1463 const SDNode *N = Op.getNode(); 1464 for (SDNodeIterator I = SDNodeIterator::begin(N), 1465 E = SDNodeIterator::end(N); 1466 I != E; ++I) { 1467 SDNode *Op = *I; 1468 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1469 if (C->isOpaque()) 1470 return false; 1471 } 1472 // TODO: Handle float bits as well. 1473 if (VT.isInteger()) 1474 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1475 } 1476 1477 return false; 1478 } 1479 1480 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1481 const APInt &DemandedElts, 1482 APInt &KnownUndef, 1483 APInt &KnownZero, 1484 DAGCombinerInfo &DCI) const { 1485 SelectionDAG &DAG = DCI.DAG; 1486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1487 !DCI.isBeforeLegalizeOps()); 1488 1489 bool Simplified = 1490 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1491 if (Simplified) { 1492 DCI.AddToWorklist(Op.getNode()); 1493 DCI.CommitTargetLoweringOpt(TLO); 1494 } 1495 return Simplified; 1496 } 1497 1498 /// Given a vector binary operation and known undefined elements for each input 1499 /// operand, compute whether each element of the output is undefined. 1500 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1501 const APInt &UndefOp0, 1502 const APInt &UndefOp1) { 1503 EVT VT = BO.getValueType(); 1504 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1505 1506 EVT EltVT = VT.getVectorElementType(); 1507 unsigned NumElts = VT.getVectorNumElements(); 1508 assert(UndefOp0.getBitWidth() == NumElts && 1509 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1510 1511 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1512 const APInt &UndefVals) { 1513 if (UndefVals[Index]) 1514 return DAG.getUNDEF(EltVT); 1515 1516 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1517 // Try hard to make sure that the getNode() call is not creating temporary 1518 // nodes. Ignore opaque integers because they do not constant fold. 1519 SDValue Elt = BV->getOperand(Index); 1520 auto *C = dyn_cast<ConstantSDNode>(Elt); 1521 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1522 return Elt; 1523 } 1524 1525 return SDValue(); 1526 }; 1527 1528 APInt KnownUndef = APInt::getNullValue(NumElts); 1529 for (unsigned i = 0; i != NumElts; ++i) { 1530 // If both inputs for this element are either constant or undef and match 1531 // the element type, compute the constant/undef result for this element of 1532 // the vector. 1533 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1534 // not handle FP constants. The code within getNode() should be refactored 1535 // to avoid the danger of creating a bogus temporary node here. 1536 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1537 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1538 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1539 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1540 KnownUndef.setBit(i); 1541 } 1542 return KnownUndef; 1543 } 1544 1545 bool TargetLowering::SimplifyDemandedVectorElts( 1546 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1547 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1548 bool AssumeSingleUse) const { 1549 EVT VT = Op.getValueType(); 1550 APInt DemandedElts = DemandedEltMask; 1551 unsigned NumElts = DemandedElts.getBitWidth(); 1552 assert(VT.isVector() && "Expected vector op"); 1553 assert(VT.getVectorNumElements() == NumElts && 1554 "Mask size mismatches value type element count!"); 1555 1556 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1557 1558 // Undef operand. 1559 if (Op.isUndef()) { 1560 KnownUndef.setAllBits(); 1561 return false; 1562 } 1563 1564 // If Op has other users, assume that all elements are needed. 1565 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1566 DemandedElts.setAllBits(); 1567 1568 // Not demanding any elements from Op. 1569 if (DemandedElts == 0) { 1570 KnownUndef.setAllBits(); 1571 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1572 } 1573 1574 // Limit search depth. 1575 if (Depth >= 6) 1576 return false; 1577 1578 SDLoc DL(Op); 1579 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1580 1581 switch (Op.getOpcode()) { 1582 case ISD::SCALAR_TO_VECTOR: { 1583 if (!DemandedElts[0]) { 1584 KnownUndef.setAllBits(); 1585 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1586 } 1587 KnownUndef.setHighBits(NumElts - 1); 1588 break; 1589 } 1590 case ISD::BITCAST: { 1591 SDValue Src = Op.getOperand(0); 1592 EVT SrcVT = Src.getValueType(); 1593 1594 // We only handle vectors here. 1595 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1596 if (!SrcVT.isVector()) 1597 break; 1598 1599 // Fast handling of 'identity' bitcasts. 1600 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1601 if (NumSrcElts == NumElts) 1602 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1603 KnownZero, TLO, Depth + 1); 1604 1605 APInt SrcZero, SrcUndef; 1606 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1607 1608 // Bitcast from 'large element' src vector to 'small element' vector, we 1609 // must demand a source element if any DemandedElt maps to it. 1610 if ((NumElts % NumSrcElts) == 0) { 1611 unsigned Scale = NumElts / NumSrcElts; 1612 for (unsigned i = 0; i != NumElts; ++i) 1613 if (DemandedElts[i]) 1614 SrcDemandedElts.setBit(i / Scale); 1615 1616 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1617 TLO, Depth + 1)) 1618 return true; 1619 1620 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1621 // of the large element. 1622 // TODO - bigendian once we have test coverage. 1623 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1624 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1625 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1626 for (unsigned i = 0; i != NumElts; ++i) 1627 if (DemandedElts[i]) { 1628 unsigned Ofs = (i % Scale) * EltSizeInBits; 1629 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1630 } 1631 1632 KnownBits Known; 1633 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1634 return true; 1635 } 1636 1637 // If the src element is zero/undef then all the output elements will be - 1638 // only demanded elements are guaranteed to be correct. 1639 for (unsigned i = 0; i != NumSrcElts; ++i) { 1640 if (SrcDemandedElts[i]) { 1641 if (SrcZero[i]) 1642 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1643 if (SrcUndef[i]) 1644 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1645 } 1646 } 1647 } 1648 1649 // Bitcast from 'small element' src vector to 'large element' vector, we 1650 // demand all smaller source elements covered by the larger demanded element 1651 // of this vector. 1652 if ((NumSrcElts % NumElts) == 0) { 1653 unsigned Scale = NumSrcElts / NumElts; 1654 for (unsigned i = 0; i != NumElts; ++i) 1655 if (DemandedElts[i]) 1656 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1657 1658 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1659 TLO, Depth + 1)) 1660 return true; 1661 1662 // If all the src elements covering an output element are zero/undef, then 1663 // the output element will be as well, assuming it was demanded. 1664 for (unsigned i = 0; i != NumElts; ++i) { 1665 if (DemandedElts[i]) { 1666 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1667 KnownZero.setBit(i); 1668 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1669 KnownUndef.setBit(i); 1670 } 1671 } 1672 } 1673 break; 1674 } 1675 case ISD::BUILD_VECTOR: { 1676 // Check all elements and simplify any unused elements with UNDEF. 1677 if (!DemandedElts.isAllOnesValue()) { 1678 // Don't simplify BROADCASTS. 1679 if (llvm::any_of(Op->op_values(), 1680 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1681 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1682 bool Updated = false; 1683 for (unsigned i = 0; i != NumElts; ++i) { 1684 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1685 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1686 KnownUndef.setBit(i); 1687 Updated = true; 1688 } 1689 } 1690 if (Updated) 1691 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1692 } 1693 } 1694 for (unsigned i = 0; i != NumElts; ++i) { 1695 SDValue SrcOp = Op.getOperand(i); 1696 if (SrcOp.isUndef()) { 1697 KnownUndef.setBit(i); 1698 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1699 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1700 KnownZero.setBit(i); 1701 } 1702 } 1703 break; 1704 } 1705 case ISD::CONCAT_VECTORS: { 1706 EVT SubVT = Op.getOperand(0).getValueType(); 1707 unsigned NumSubVecs = Op.getNumOperands(); 1708 unsigned NumSubElts = SubVT.getVectorNumElements(); 1709 for (unsigned i = 0; i != NumSubVecs; ++i) { 1710 SDValue SubOp = Op.getOperand(i); 1711 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1712 APInt SubUndef, SubZero; 1713 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1714 Depth + 1)) 1715 return true; 1716 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1717 KnownZero.insertBits(SubZero, i * NumSubElts); 1718 } 1719 break; 1720 } 1721 case ISD::INSERT_SUBVECTOR: { 1722 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1723 break; 1724 SDValue Base = Op.getOperand(0); 1725 SDValue Sub = Op.getOperand(1); 1726 EVT SubVT = Sub.getValueType(); 1727 unsigned NumSubElts = SubVT.getVectorNumElements(); 1728 const APInt &Idx = Op.getConstantOperandAPInt(2); 1729 if (Idx.ugt(NumElts - NumSubElts)) 1730 break; 1731 unsigned SubIdx = Idx.getZExtValue(); 1732 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1733 APInt SubUndef, SubZero; 1734 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1735 Depth + 1)) 1736 return true; 1737 APInt BaseElts = DemandedElts; 1738 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1739 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1740 Depth + 1)) 1741 return true; 1742 KnownUndef.insertBits(SubUndef, SubIdx); 1743 KnownZero.insertBits(SubZero, SubIdx); 1744 break; 1745 } 1746 case ISD::EXTRACT_SUBVECTOR: { 1747 SDValue Src = Op.getOperand(0); 1748 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1749 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1750 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1751 // Offset the demanded elts by the subvector index. 1752 uint64_t Idx = SubIdx->getZExtValue(); 1753 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1754 APInt SrcUndef, SrcZero; 1755 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1756 Depth + 1)) 1757 return true; 1758 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1759 KnownZero = SrcZero.extractBits(NumElts, Idx); 1760 } 1761 break; 1762 } 1763 case ISD::INSERT_VECTOR_ELT: { 1764 SDValue Vec = Op.getOperand(0); 1765 SDValue Scl = Op.getOperand(1); 1766 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1767 1768 // For a legal, constant insertion index, if we don't need this insertion 1769 // then strip it, else remove it from the demanded elts. 1770 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1771 unsigned Idx = CIdx->getZExtValue(); 1772 if (!DemandedElts[Idx]) 1773 return TLO.CombineTo(Op, Vec); 1774 1775 APInt DemandedVecElts(DemandedElts); 1776 DemandedVecElts.clearBit(Idx); 1777 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1778 KnownZero, TLO, Depth + 1)) 1779 return true; 1780 1781 KnownUndef.clearBit(Idx); 1782 if (Scl.isUndef()) 1783 KnownUndef.setBit(Idx); 1784 1785 KnownZero.clearBit(Idx); 1786 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1787 KnownZero.setBit(Idx); 1788 break; 1789 } 1790 1791 APInt VecUndef, VecZero; 1792 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1793 Depth + 1)) 1794 return true; 1795 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1796 break; 1797 } 1798 case ISD::VSELECT: { 1799 // Try to transform the select condition based on the current demanded 1800 // elements. 1801 // TODO: If a condition element is undef, we can choose from one arm of the 1802 // select (and if one arm is undef, then we can propagate that to the 1803 // result). 1804 // TODO - add support for constant vselect masks (see IR version of this). 1805 APInt UnusedUndef, UnusedZero; 1806 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1807 UnusedZero, TLO, Depth + 1)) 1808 return true; 1809 1810 // See if we can simplify either vselect operand. 1811 APInt DemandedLHS(DemandedElts); 1812 APInt DemandedRHS(DemandedElts); 1813 APInt UndefLHS, ZeroLHS; 1814 APInt UndefRHS, ZeroRHS; 1815 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1816 ZeroLHS, TLO, Depth + 1)) 1817 return true; 1818 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1819 ZeroRHS, TLO, Depth + 1)) 1820 return true; 1821 1822 KnownUndef = UndefLHS & UndefRHS; 1823 KnownZero = ZeroLHS & ZeroRHS; 1824 break; 1825 } 1826 case ISD::VECTOR_SHUFFLE: { 1827 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1828 1829 // Collect demanded elements from shuffle operands.. 1830 APInt DemandedLHS(NumElts, 0); 1831 APInt DemandedRHS(NumElts, 0); 1832 for (unsigned i = 0; i != NumElts; ++i) { 1833 int M = ShuffleMask[i]; 1834 if (M < 0 || !DemandedElts[i]) 1835 continue; 1836 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1837 if (M < (int)NumElts) 1838 DemandedLHS.setBit(M); 1839 else 1840 DemandedRHS.setBit(M - NumElts); 1841 } 1842 1843 // See if we can simplify either shuffle operand. 1844 APInt UndefLHS, ZeroLHS; 1845 APInt UndefRHS, ZeroRHS; 1846 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1847 ZeroLHS, TLO, Depth + 1)) 1848 return true; 1849 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1850 ZeroRHS, TLO, Depth + 1)) 1851 return true; 1852 1853 // Simplify mask using undef elements from LHS/RHS. 1854 bool Updated = false; 1855 bool IdentityLHS = true, IdentityRHS = true; 1856 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1857 for (unsigned i = 0; i != NumElts; ++i) { 1858 int &M = NewMask[i]; 1859 if (M < 0) 1860 continue; 1861 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1862 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1863 Updated = true; 1864 M = -1; 1865 } 1866 IdentityLHS &= (M < 0) || (M == (int)i); 1867 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1868 } 1869 1870 // Update legal shuffle masks based on demanded elements if it won't reduce 1871 // to Identity which can cause premature removal of the shuffle mask. 1872 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1873 isShuffleMaskLegal(NewMask, VT)) 1874 return TLO.CombineTo(Op, 1875 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1876 Op.getOperand(1), NewMask)); 1877 1878 // Propagate undef/zero elements from LHS/RHS. 1879 for (unsigned i = 0; i != NumElts; ++i) { 1880 int M = ShuffleMask[i]; 1881 if (M < 0) { 1882 KnownUndef.setBit(i); 1883 } else if (M < (int)NumElts) { 1884 if (UndefLHS[M]) 1885 KnownUndef.setBit(i); 1886 if (ZeroLHS[M]) 1887 KnownZero.setBit(i); 1888 } else { 1889 if (UndefRHS[M - NumElts]) 1890 KnownUndef.setBit(i); 1891 if (ZeroRHS[M - NumElts]) 1892 KnownZero.setBit(i); 1893 } 1894 } 1895 break; 1896 } 1897 case ISD::SIGN_EXTEND_VECTOR_INREG: 1898 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1899 APInt SrcUndef, SrcZero; 1900 SDValue Src = Op.getOperand(0); 1901 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1902 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1903 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 1904 Depth + 1)) 1905 return true; 1906 KnownZero = SrcZero.zextOrTrunc(NumElts); 1907 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1908 1909 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1910 // zext(undef) upper bits are guaranteed to be zero. 1911 if (DemandedElts.isSubsetOf(KnownUndef)) 1912 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1913 KnownUndef.clearAllBits(); 1914 } 1915 break; 1916 } 1917 1918 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 1919 // MAX, saturated math, etc. 1920 case ISD::OR: 1921 case ISD::XOR: 1922 case ISD::ADD: 1923 case ISD::SUB: 1924 case ISD::FADD: 1925 case ISD::FSUB: 1926 case ISD::FMUL: 1927 case ISD::FDIV: 1928 case ISD::FREM: { 1929 APInt UndefRHS, ZeroRHS; 1930 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 1931 ZeroRHS, TLO, Depth + 1)) 1932 return true; 1933 APInt UndefLHS, ZeroLHS; 1934 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 1935 ZeroLHS, TLO, Depth + 1)) 1936 return true; 1937 1938 KnownZero = ZeroLHS & ZeroRHS; 1939 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 1940 break; 1941 } 1942 case ISD::AND: { 1943 APInt SrcUndef, SrcZero; 1944 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1945 SrcZero, TLO, Depth + 1)) 1946 return true; 1947 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1948 KnownZero, TLO, Depth + 1)) 1949 return true; 1950 1951 // If either side has a zero element, then the result element is zero, even 1952 // if the other is an UNDEF. 1953 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 1954 // and then handle 'and' nodes with the rest of the binop opcodes. 1955 KnownZero |= SrcZero; 1956 KnownUndef &= SrcUndef; 1957 KnownUndef &= ~KnownZero; 1958 break; 1959 } 1960 case ISD::TRUNCATE: 1961 case ISD::SIGN_EXTEND: 1962 case ISD::ZERO_EXTEND: 1963 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1964 KnownZero, TLO, Depth + 1)) 1965 return true; 1966 1967 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 1968 // zext(undef) upper bits are guaranteed to be zero. 1969 if (DemandedElts.isSubsetOf(KnownUndef)) 1970 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1971 KnownUndef.clearAllBits(); 1972 } 1973 break; 1974 default: { 1975 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1976 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1977 KnownZero, TLO, Depth)) 1978 return true; 1979 } else { 1980 KnownBits Known; 1981 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 1982 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 1983 Depth, AssumeSingleUse)) 1984 return true; 1985 } 1986 break; 1987 } 1988 } 1989 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1990 1991 // Constant fold all undef cases. 1992 // TODO: Handle zero cases as well. 1993 if (DemandedElts.isSubsetOf(KnownUndef)) 1994 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1995 1996 return false; 1997 } 1998 1999 /// Determine which of the bits specified in Mask are known to be either zero or 2000 /// one and return them in the Known. 2001 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2002 KnownBits &Known, 2003 const APInt &DemandedElts, 2004 const SelectionDAG &DAG, 2005 unsigned Depth) const { 2006 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2007 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2008 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2009 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2010 "Should use MaskedValueIsZero if you don't know whether Op" 2011 " is a target node!"); 2012 Known.resetAll(); 2013 } 2014 2015 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2016 KnownBits &Known, 2017 const APInt &DemandedElts, 2018 const SelectionDAG &DAG, 2019 unsigned Depth) const { 2020 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2021 2022 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2023 // The low bits are known zero if the pointer is aligned. 2024 Known.Zero.setLowBits(Log2_32(Align)); 2025 } 2026 } 2027 2028 /// This method can be implemented by targets that want to expose additional 2029 /// information about sign bits to the DAG Combiner. 2030 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2031 const APInt &, 2032 const SelectionDAG &, 2033 unsigned Depth) const { 2034 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2035 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2036 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2037 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2038 "Should use ComputeNumSignBits if you don't know whether Op" 2039 " is a target node!"); 2040 return 1; 2041 } 2042 2043 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2044 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2045 TargetLoweringOpt &TLO, unsigned Depth) const { 2046 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2047 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2048 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2049 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2050 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2051 " is a target node!"); 2052 return false; 2053 } 2054 2055 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2056 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2057 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2058 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2059 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2060 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2061 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2062 "Should use SimplifyDemandedBits if you don't know whether Op" 2063 " is a target node!"); 2064 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2065 return false; 2066 } 2067 2068 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2069 const SelectionDAG &DAG, 2070 bool SNaN, 2071 unsigned Depth) const { 2072 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2073 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2074 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2075 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2076 "Should use isKnownNeverNaN if you don't know whether Op" 2077 " is a target node!"); 2078 return false; 2079 } 2080 2081 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2082 // work with truncating build vectors and vectors with elements of less than 2083 // 8 bits. 2084 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2085 if (!N) 2086 return false; 2087 2088 APInt CVal; 2089 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2090 CVal = CN->getAPIntValue(); 2091 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2092 auto *CN = BV->getConstantSplatNode(); 2093 if (!CN) 2094 return false; 2095 2096 // If this is a truncating build vector, truncate the splat value. 2097 // Otherwise, we may fail to match the expected values below. 2098 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2099 CVal = CN->getAPIntValue(); 2100 if (BVEltWidth < CVal.getBitWidth()) 2101 CVal = CVal.trunc(BVEltWidth); 2102 } else { 2103 return false; 2104 } 2105 2106 switch (getBooleanContents(N->getValueType(0))) { 2107 case UndefinedBooleanContent: 2108 return CVal[0]; 2109 case ZeroOrOneBooleanContent: 2110 return CVal.isOneValue(); 2111 case ZeroOrNegativeOneBooleanContent: 2112 return CVal.isAllOnesValue(); 2113 } 2114 2115 llvm_unreachable("Invalid boolean contents"); 2116 } 2117 2118 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2119 if (!N) 2120 return false; 2121 2122 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2123 if (!CN) { 2124 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2125 if (!BV) 2126 return false; 2127 2128 // Only interested in constant splats, we don't care about undef 2129 // elements in identifying boolean constants and getConstantSplatNode 2130 // returns NULL if all ops are undef; 2131 CN = BV->getConstantSplatNode(); 2132 if (!CN) 2133 return false; 2134 } 2135 2136 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2137 return !CN->getAPIntValue()[0]; 2138 2139 return CN->isNullValue(); 2140 } 2141 2142 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2143 bool SExt) const { 2144 if (VT == MVT::i1) 2145 return N->isOne(); 2146 2147 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2148 switch (Cnt) { 2149 case TargetLowering::ZeroOrOneBooleanContent: 2150 // An extended value of 1 is always true, unless its original type is i1, 2151 // in which case it will be sign extended to -1. 2152 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2153 case TargetLowering::UndefinedBooleanContent: 2154 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2155 return N->isAllOnesValue() && SExt; 2156 } 2157 llvm_unreachable("Unexpected enumeration."); 2158 } 2159 2160 /// This helper function of SimplifySetCC tries to optimize the comparison when 2161 /// either operand of the SetCC node is a bitwise-and instruction. 2162 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2163 ISD::CondCode Cond, const SDLoc &DL, 2164 DAGCombinerInfo &DCI) const { 2165 // Match these patterns in any of their permutations: 2166 // (X & Y) == Y 2167 // (X & Y) != Y 2168 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2169 std::swap(N0, N1); 2170 2171 EVT OpVT = N0.getValueType(); 2172 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2173 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2174 return SDValue(); 2175 2176 SDValue X, Y; 2177 if (N0.getOperand(0) == N1) { 2178 X = N0.getOperand(1); 2179 Y = N0.getOperand(0); 2180 } else if (N0.getOperand(1) == N1) { 2181 X = N0.getOperand(0); 2182 Y = N0.getOperand(1); 2183 } else { 2184 return SDValue(); 2185 } 2186 2187 SelectionDAG &DAG = DCI.DAG; 2188 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2189 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2190 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2191 // Note that where Y is variable and is known to have at most one bit set 2192 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2193 // equivalent when Y == 0. 2194 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2195 if (DCI.isBeforeLegalizeOps() || 2196 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2197 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2198 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2199 // If the target supports an 'and-not' or 'and-complement' logic operation, 2200 // try to use that to make a comparison operation more efficient. 2201 // But don't do this transform if the mask is a single bit because there are 2202 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2203 // 'rlwinm' on PPC). 2204 2205 // Bail out if the compare operand that we want to turn into a zero is 2206 // already a zero (otherwise, infinite loop). 2207 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2208 if (YConst && YConst->isNullValue()) 2209 return SDValue(); 2210 2211 // Transform this into: ~X & Y == 0. 2212 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2213 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2214 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2215 } 2216 2217 return SDValue(); 2218 } 2219 2220 /// There are multiple IR patterns that could be checking whether certain 2221 /// truncation of a signed number would be lossy or not. The pattern which is 2222 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2223 /// We are looking for the following pattern: (KeptBits is a constant) 2224 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2225 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2226 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2227 /// We will unfold it into the natural trunc+sext pattern: 2228 /// ((%x << C) a>> C) dstcond %x 2229 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2230 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2231 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2232 const SDLoc &DL) const { 2233 // We must be comparing with a constant. 2234 ConstantSDNode *C1; 2235 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2236 return SDValue(); 2237 2238 // N0 should be: add %x, (1 << (KeptBits-1)) 2239 if (N0->getOpcode() != ISD::ADD) 2240 return SDValue(); 2241 2242 // And we must be 'add'ing a constant. 2243 ConstantSDNode *C01; 2244 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2245 return SDValue(); 2246 2247 SDValue X = N0->getOperand(0); 2248 EVT XVT = X.getValueType(); 2249 2250 // Validate constants ... 2251 2252 APInt I1 = C1->getAPIntValue(); 2253 2254 ISD::CondCode NewCond; 2255 if (Cond == ISD::CondCode::SETULT) { 2256 NewCond = ISD::CondCode::SETEQ; 2257 } else if (Cond == ISD::CondCode::SETULE) { 2258 NewCond = ISD::CondCode::SETEQ; 2259 // But need to 'canonicalize' the constant. 2260 I1 += 1; 2261 } else if (Cond == ISD::CondCode::SETUGT) { 2262 NewCond = ISD::CondCode::SETNE; 2263 // But need to 'canonicalize' the constant. 2264 I1 += 1; 2265 } else if (Cond == ISD::CondCode::SETUGE) { 2266 NewCond = ISD::CondCode::SETNE; 2267 } else 2268 return SDValue(); 2269 2270 APInt I01 = C01->getAPIntValue(); 2271 2272 auto checkConstants = [&I1, &I01]() -> bool { 2273 // Both of them must be power-of-two, and the constant from setcc is bigger. 2274 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2275 }; 2276 2277 if (checkConstants()) { 2278 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2279 } else { 2280 // What if we invert constants? (and the target predicate) 2281 I1.negate(); 2282 I01.negate(); 2283 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2284 if (!checkConstants()) 2285 return SDValue(); 2286 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2287 } 2288 2289 // They are power-of-two, so which bit is set? 2290 const unsigned KeptBits = I1.logBase2(); 2291 const unsigned KeptBitsMinusOne = I01.logBase2(); 2292 2293 // Magic! 2294 if (KeptBits != (KeptBitsMinusOne + 1)) 2295 return SDValue(); 2296 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2297 2298 // We don't want to do this in every single case. 2299 SelectionDAG &DAG = DCI.DAG; 2300 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2301 XVT, KeptBits)) 2302 return SDValue(); 2303 2304 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2305 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2306 2307 // Unfold into: ((%x << C) a>> C) cond %x 2308 // Where 'cond' will be either 'eq' or 'ne'. 2309 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2310 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2311 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2312 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2313 2314 return T2; 2315 } 2316 2317 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2318 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2319 /// handle the commuted versions of these patterns. 2320 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2321 ISD::CondCode Cond, const SDLoc &DL, 2322 DAGCombinerInfo &DCI) const { 2323 unsigned BOpcode = N0.getOpcode(); 2324 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2325 "Unexpected binop"); 2326 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2327 2328 // (X + Y) == X --> Y == 0 2329 // (X - Y) == X --> Y == 0 2330 // (X ^ Y) == X --> Y == 0 2331 SelectionDAG &DAG = DCI.DAG; 2332 EVT OpVT = N0.getValueType(); 2333 SDValue X = N0.getOperand(0); 2334 SDValue Y = N0.getOperand(1); 2335 if (X == N1) 2336 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2337 2338 if (Y != N1) 2339 return SDValue(); 2340 2341 // (X + Y) == Y --> X == 0 2342 // (X ^ Y) == Y --> X == 0 2343 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2344 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2345 2346 // The shift would not be valid if the operands are boolean (i1). 2347 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2348 return SDValue(); 2349 2350 // (X - Y) == Y --> X == Y << 1 2351 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2352 !DCI.isBeforeLegalize()); 2353 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2354 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2355 if (!DCI.isCalledByLegalizer()) 2356 DCI.AddToWorklist(YShl1.getNode()); 2357 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2358 } 2359 2360 /// Try to simplify a setcc built with the specified operands and cc. If it is 2361 /// unable to simplify it, return a null SDValue. 2362 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2363 ISD::CondCode Cond, bool foldBooleans, 2364 DAGCombinerInfo &DCI, 2365 const SDLoc &dl) const { 2366 SelectionDAG &DAG = DCI.DAG; 2367 EVT OpVT = N0.getValueType(); 2368 2369 // Constant fold or commute setcc. 2370 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2371 return Fold; 2372 2373 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2374 // TODO: Handle non-splat vector constants. All undef causes trouble. 2375 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2376 if (isConstOrConstSplat(N0) && 2377 (DCI.isBeforeLegalizeOps() || 2378 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2379 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2380 2381 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2382 const APInt &C1 = N1C->getAPIntValue(); 2383 2384 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2385 // equality comparison, then we're just comparing whether X itself is 2386 // zero. 2387 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2388 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2389 N0.getOperand(1).getOpcode() == ISD::Constant) { 2390 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2391 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2392 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2393 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2394 // (srl (ctlz x), 5) == 0 -> X != 0 2395 // (srl (ctlz x), 5) != 1 -> X != 0 2396 Cond = ISD::SETNE; 2397 } else { 2398 // (srl (ctlz x), 5) != 0 -> X == 0 2399 // (srl (ctlz x), 5) == 1 -> X == 0 2400 Cond = ISD::SETEQ; 2401 } 2402 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2403 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2404 Zero, Cond); 2405 } 2406 } 2407 2408 SDValue CTPOP = N0; 2409 // Look through truncs that don't change the value of a ctpop. 2410 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2411 CTPOP = N0.getOperand(0); 2412 2413 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2414 (N0 == CTPOP || 2415 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2416 EVT CTVT = CTPOP.getValueType(); 2417 SDValue CTOp = CTPOP.getOperand(0); 2418 2419 // (ctpop x) u< 2 -> (x & x-1) == 0 2420 // (ctpop x) u> 1 -> (x & x-1) != 0 2421 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2422 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2423 DAG.getConstant(1, dl, CTVT)); 2424 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2425 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2426 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2427 } 2428 2429 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2430 } 2431 2432 // (zext x) == C --> x == (trunc C) 2433 // (sext x) == C --> x == (trunc C) 2434 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2435 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2436 unsigned MinBits = N0.getValueSizeInBits(); 2437 SDValue PreExt; 2438 bool Signed = false; 2439 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2440 // ZExt 2441 MinBits = N0->getOperand(0).getValueSizeInBits(); 2442 PreExt = N0->getOperand(0); 2443 } else if (N0->getOpcode() == ISD::AND) { 2444 // DAGCombine turns costly ZExts into ANDs 2445 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2446 if ((C->getAPIntValue()+1).isPowerOf2()) { 2447 MinBits = C->getAPIntValue().countTrailingOnes(); 2448 PreExt = N0->getOperand(0); 2449 } 2450 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2451 // SExt 2452 MinBits = N0->getOperand(0).getValueSizeInBits(); 2453 PreExt = N0->getOperand(0); 2454 Signed = true; 2455 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2456 // ZEXTLOAD / SEXTLOAD 2457 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2458 MinBits = LN0->getMemoryVT().getSizeInBits(); 2459 PreExt = N0; 2460 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2461 Signed = true; 2462 MinBits = LN0->getMemoryVT().getSizeInBits(); 2463 PreExt = N0; 2464 } 2465 } 2466 2467 // Figure out how many bits we need to preserve this constant. 2468 unsigned ReqdBits = Signed ? 2469 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2470 C1.getActiveBits(); 2471 2472 // Make sure we're not losing bits from the constant. 2473 if (MinBits > 0 && 2474 MinBits < C1.getBitWidth() && 2475 MinBits >= ReqdBits) { 2476 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2477 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2478 // Will get folded away. 2479 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2480 if (MinBits == 1 && C1 == 1) 2481 // Invert the condition. 2482 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2483 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2484 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2485 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2486 } 2487 2488 // If truncating the setcc operands is not desirable, we can still 2489 // simplify the expression in some cases: 2490 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2491 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2492 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2493 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2494 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2495 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2496 SDValue TopSetCC = N0->getOperand(0); 2497 unsigned N0Opc = N0->getOpcode(); 2498 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2499 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2500 TopSetCC.getOpcode() == ISD::SETCC && 2501 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2502 (isConstFalseVal(N1C) || 2503 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2504 2505 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2506 (!N1C->isNullValue() && Cond == ISD::SETNE); 2507 2508 if (!Inverse) 2509 return TopSetCC; 2510 2511 ISD::CondCode InvCond = ISD::getSetCCInverse( 2512 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2513 TopSetCC.getOperand(0).getValueType().isInteger()); 2514 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2515 TopSetCC.getOperand(1), 2516 InvCond); 2517 } 2518 } 2519 } 2520 2521 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2522 // equality or unsigned, and all 1 bits of the const are in the same 2523 // partial word, see if we can shorten the load. 2524 if (DCI.isBeforeLegalize() && 2525 !ISD::isSignedIntSetCC(Cond) && 2526 N0.getOpcode() == ISD::AND && C1 == 0 && 2527 N0.getNode()->hasOneUse() && 2528 isa<LoadSDNode>(N0.getOperand(0)) && 2529 N0.getOperand(0).getNode()->hasOneUse() && 2530 isa<ConstantSDNode>(N0.getOperand(1))) { 2531 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2532 APInt bestMask; 2533 unsigned bestWidth = 0, bestOffset = 0; 2534 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2535 unsigned origWidth = N0.getValueSizeInBits(); 2536 unsigned maskWidth = origWidth; 2537 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2538 // 8 bits, but have to be careful... 2539 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2540 origWidth = Lod->getMemoryVT().getSizeInBits(); 2541 const APInt &Mask = N0.getConstantOperandAPInt(1); 2542 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2543 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2544 for (unsigned offset=0; offset<origWidth/width; offset++) { 2545 if (Mask.isSubsetOf(newMask)) { 2546 if (DAG.getDataLayout().isLittleEndian()) 2547 bestOffset = (uint64_t)offset * (width/8); 2548 else 2549 bestOffset = (origWidth/width - offset - 1) * (width/8); 2550 bestMask = Mask.lshr(offset * (width/8) * 8); 2551 bestWidth = width; 2552 break; 2553 } 2554 newMask <<= width; 2555 } 2556 } 2557 } 2558 if (bestWidth) { 2559 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2560 if (newVT.isRound() && 2561 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2562 EVT PtrType = Lod->getOperand(1).getValueType(); 2563 SDValue Ptr = Lod->getBasePtr(); 2564 if (bestOffset != 0) 2565 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2566 DAG.getConstant(bestOffset, dl, PtrType)); 2567 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2568 SDValue NewLoad = DAG.getLoad( 2569 newVT, dl, Lod->getChain(), Ptr, 2570 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2571 return DAG.getSetCC(dl, VT, 2572 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2573 DAG.getConstant(bestMask.trunc(bestWidth), 2574 dl, newVT)), 2575 DAG.getConstant(0LL, dl, newVT), Cond); 2576 } 2577 } 2578 } 2579 2580 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2581 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2582 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2583 2584 // If the comparison constant has bits in the upper part, the 2585 // zero-extended value could never match. 2586 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2587 C1.getBitWidth() - InSize))) { 2588 switch (Cond) { 2589 case ISD::SETUGT: 2590 case ISD::SETUGE: 2591 case ISD::SETEQ: 2592 return DAG.getConstant(0, dl, VT); 2593 case ISD::SETULT: 2594 case ISD::SETULE: 2595 case ISD::SETNE: 2596 return DAG.getConstant(1, dl, VT); 2597 case ISD::SETGT: 2598 case ISD::SETGE: 2599 // True if the sign bit of C1 is set. 2600 return DAG.getConstant(C1.isNegative(), dl, VT); 2601 case ISD::SETLT: 2602 case ISD::SETLE: 2603 // True if the sign bit of C1 isn't set. 2604 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2605 default: 2606 break; 2607 } 2608 } 2609 2610 // Otherwise, we can perform the comparison with the low bits. 2611 switch (Cond) { 2612 case ISD::SETEQ: 2613 case ISD::SETNE: 2614 case ISD::SETUGT: 2615 case ISD::SETUGE: 2616 case ISD::SETULT: 2617 case ISD::SETULE: { 2618 EVT newVT = N0.getOperand(0).getValueType(); 2619 if (DCI.isBeforeLegalizeOps() || 2620 (isOperationLegal(ISD::SETCC, newVT) && 2621 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2622 EVT NewSetCCVT = 2623 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2624 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2625 2626 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2627 NewConst, Cond); 2628 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2629 } 2630 break; 2631 } 2632 default: 2633 break; // todo, be more careful with signed comparisons 2634 } 2635 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2636 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2637 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2638 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2639 EVT ExtDstTy = N0.getValueType(); 2640 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2641 2642 // If the constant doesn't fit into the number of bits for the source of 2643 // the sign extension, it is impossible for both sides to be equal. 2644 if (C1.getMinSignedBits() > ExtSrcTyBits) 2645 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2646 2647 SDValue ZextOp; 2648 EVT Op0Ty = N0.getOperand(0).getValueType(); 2649 if (Op0Ty == ExtSrcTy) { 2650 ZextOp = N0.getOperand(0); 2651 } else { 2652 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2653 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2654 DAG.getConstant(Imm, dl, Op0Ty)); 2655 } 2656 if (!DCI.isCalledByLegalizer()) 2657 DCI.AddToWorklist(ZextOp.getNode()); 2658 // Otherwise, make this a use of a zext. 2659 return DAG.getSetCC(dl, VT, ZextOp, 2660 DAG.getConstant(C1 & APInt::getLowBitsSet( 2661 ExtDstTyBits, 2662 ExtSrcTyBits), 2663 dl, ExtDstTy), 2664 Cond); 2665 } else if ((N1C->isNullValue() || N1C->isOne()) && 2666 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2667 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2668 if (N0.getOpcode() == ISD::SETCC && 2669 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2670 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2671 if (TrueWhenTrue) 2672 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2673 // Invert the condition. 2674 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2675 CC = ISD::getSetCCInverse(CC, 2676 N0.getOperand(0).getValueType().isInteger()); 2677 if (DCI.isBeforeLegalizeOps() || 2678 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2679 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2680 } 2681 2682 if ((N0.getOpcode() == ISD::XOR || 2683 (N0.getOpcode() == ISD::AND && 2684 N0.getOperand(0).getOpcode() == ISD::XOR && 2685 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2686 isa<ConstantSDNode>(N0.getOperand(1)) && 2687 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2688 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2689 // can only do this if the top bits are known zero. 2690 unsigned BitWidth = N0.getValueSizeInBits(); 2691 if (DAG.MaskedValueIsZero(N0, 2692 APInt::getHighBitsSet(BitWidth, 2693 BitWidth-1))) { 2694 // Okay, get the un-inverted input value. 2695 SDValue Val; 2696 if (N0.getOpcode() == ISD::XOR) { 2697 Val = N0.getOperand(0); 2698 } else { 2699 assert(N0.getOpcode() == ISD::AND && 2700 N0.getOperand(0).getOpcode() == ISD::XOR); 2701 // ((X^1)&1)^1 -> X & 1 2702 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2703 N0.getOperand(0).getOperand(0), 2704 N0.getOperand(1)); 2705 } 2706 2707 return DAG.getSetCC(dl, VT, Val, N1, 2708 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2709 } 2710 } else if (N1C->isOne() && 2711 (VT == MVT::i1 || 2712 getBooleanContents(N0->getValueType(0)) == 2713 ZeroOrOneBooleanContent)) { 2714 SDValue Op0 = N0; 2715 if (Op0.getOpcode() == ISD::TRUNCATE) 2716 Op0 = Op0.getOperand(0); 2717 2718 if ((Op0.getOpcode() == ISD::XOR) && 2719 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2720 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2721 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2722 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2723 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2724 Cond); 2725 } 2726 if (Op0.getOpcode() == ISD::AND && 2727 isa<ConstantSDNode>(Op0.getOperand(1)) && 2728 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2729 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2730 if (Op0.getValueType().bitsGT(VT)) 2731 Op0 = DAG.getNode(ISD::AND, dl, VT, 2732 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2733 DAG.getConstant(1, dl, VT)); 2734 else if (Op0.getValueType().bitsLT(VT)) 2735 Op0 = DAG.getNode(ISD::AND, dl, VT, 2736 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2737 DAG.getConstant(1, dl, VT)); 2738 2739 return DAG.getSetCC(dl, VT, Op0, 2740 DAG.getConstant(0, dl, Op0.getValueType()), 2741 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2742 } 2743 if (Op0.getOpcode() == ISD::AssertZext && 2744 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2745 return DAG.getSetCC(dl, VT, Op0, 2746 DAG.getConstant(0, dl, Op0.getValueType()), 2747 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2748 } 2749 } 2750 2751 if (SDValue V = 2752 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2753 return V; 2754 } 2755 2756 // These simplifications apply to splat vectors as well. 2757 // TODO: Handle more splat vector cases. 2758 if (auto *N1C = isConstOrConstSplat(N1)) { 2759 const APInt &C1 = N1C->getAPIntValue(); 2760 2761 APInt MinVal, MaxVal; 2762 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2763 if (ISD::isSignedIntSetCC(Cond)) { 2764 MinVal = APInt::getSignedMinValue(OperandBitSize); 2765 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2766 } else { 2767 MinVal = APInt::getMinValue(OperandBitSize); 2768 MaxVal = APInt::getMaxValue(OperandBitSize); 2769 } 2770 2771 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2772 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2773 // X >= MIN --> true 2774 if (C1 == MinVal) 2775 return DAG.getBoolConstant(true, dl, VT, OpVT); 2776 2777 if (!VT.isVector()) { // TODO: Support this for vectors. 2778 // X >= C0 --> X > (C0 - 1) 2779 APInt C = C1 - 1; 2780 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2781 if ((DCI.isBeforeLegalizeOps() || 2782 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2783 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2784 isLegalICmpImmediate(C.getSExtValue())))) { 2785 return DAG.getSetCC(dl, VT, N0, 2786 DAG.getConstant(C, dl, N1.getValueType()), 2787 NewCC); 2788 } 2789 } 2790 } 2791 2792 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2793 // X <= MAX --> true 2794 if (C1 == MaxVal) 2795 return DAG.getBoolConstant(true, dl, VT, OpVT); 2796 2797 // X <= C0 --> X < (C0 + 1) 2798 if (!VT.isVector()) { // TODO: Support this for vectors. 2799 APInt C = C1 + 1; 2800 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2801 if ((DCI.isBeforeLegalizeOps() || 2802 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2803 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2804 isLegalICmpImmediate(C.getSExtValue())))) { 2805 return DAG.getSetCC(dl, VT, N0, 2806 DAG.getConstant(C, dl, N1.getValueType()), 2807 NewCC); 2808 } 2809 } 2810 } 2811 2812 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2813 if (C1 == MinVal) 2814 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2815 2816 // TODO: Support this for vectors after legalize ops. 2817 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2818 // Canonicalize setlt X, Max --> setne X, Max 2819 if (C1 == MaxVal) 2820 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2821 2822 // If we have setult X, 1, turn it into seteq X, 0 2823 if (C1 == MinVal+1) 2824 return DAG.getSetCC(dl, VT, N0, 2825 DAG.getConstant(MinVal, dl, N0.getValueType()), 2826 ISD::SETEQ); 2827 } 2828 } 2829 2830 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2831 if (C1 == MaxVal) 2832 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2833 2834 // TODO: Support this for vectors after legalize ops. 2835 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2836 // Canonicalize setgt X, Min --> setne X, Min 2837 if (C1 == MinVal) 2838 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2839 2840 // If we have setugt X, Max-1, turn it into seteq X, Max 2841 if (C1 == MaxVal-1) 2842 return DAG.getSetCC(dl, VT, N0, 2843 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2844 ISD::SETEQ); 2845 } 2846 } 2847 2848 // If we have "setcc X, C0", check to see if we can shrink the immediate 2849 // by changing cc. 2850 // TODO: Support this for vectors after legalize ops. 2851 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2852 // SETUGT X, SINTMAX -> SETLT X, 0 2853 if (Cond == ISD::SETUGT && 2854 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2855 return DAG.getSetCC(dl, VT, N0, 2856 DAG.getConstant(0, dl, N1.getValueType()), 2857 ISD::SETLT); 2858 2859 // SETULT X, SINTMIN -> SETGT X, -1 2860 if (Cond == ISD::SETULT && 2861 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2862 SDValue ConstMinusOne = 2863 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2864 N1.getValueType()); 2865 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2866 } 2867 } 2868 } 2869 2870 // Back to non-vector simplifications. 2871 // TODO: Can we do these for vector splats? 2872 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2873 const APInt &C1 = N1C->getAPIntValue(); 2874 2875 // Fold bit comparisons when we can. 2876 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2877 (VT == N0.getValueType() || 2878 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2879 N0.getOpcode() == ISD::AND) { 2880 auto &DL = DAG.getDataLayout(); 2881 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2882 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2883 !DCI.isBeforeLegalize()); 2884 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2885 // Perform the xform if the AND RHS is a single bit. 2886 if (AndRHS->getAPIntValue().isPowerOf2()) { 2887 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2888 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2889 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2890 ShiftTy))); 2891 } 2892 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2893 // (X & 8) == 8 --> (X & 8) >> 3 2894 // Perform the xform if C1 is a single bit. 2895 if (C1.isPowerOf2()) { 2896 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2897 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2898 DAG.getConstant(C1.logBase2(), dl, 2899 ShiftTy))); 2900 } 2901 } 2902 } 2903 } 2904 2905 if (C1.getMinSignedBits() <= 64 && 2906 !isLegalICmpImmediate(C1.getSExtValue())) { 2907 // (X & -256) == 256 -> (X >> 8) == 1 2908 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2909 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2910 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2911 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2912 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2913 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2914 auto &DL = DAG.getDataLayout(); 2915 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2916 !DCI.isBeforeLegalize()); 2917 EVT CmpTy = N0.getValueType(); 2918 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2919 DAG.getConstant(ShiftBits, dl, 2920 ShiftTy)); 2921 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2922 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2923 } 2924 } 2925 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2926 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2927 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2928 // X < 0x100000000 -> (X >> 32) < 1 2929 // X >= 0x100000000 -> (X >> 32) >= 1 2930 // X <= 0x0ffffffff -> (X >> 32) < 1 2931 // X > 0x0ffffffff -> (X >> 32) >= 1 2932 unsigned ShiftBits; 2933 APInt NewC = C1; 2934 ISD::CondCode NewCond = Cond; 2935 if (AdjOne) { 2936 ShiftBits = C1.countTrailingOnes(); 2937 NewC = NewC + 1; 2938 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2939 } else { 2940 ShiftBits = C1.countTrailingZeros(); 2941 } 2942 NewC.lshrInPlace(ShiftBits); 2943 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2944 isLegalICmpImmediate(NewC.getSExtValue())) { 2945 auto &DL = DAG.getDataLayout(); 2946 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2947 !DCI.isBeforeLegalize()); 2948 EVT CmpTy = N0.getValueType(); 2949 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2950 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2951 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2952 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2953 } 2954 } 2955 } 2956 } 2957 2958 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 2959 auto *CFP = cast<ConstantFPSDNode>(N1); 2960 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 2961 2962 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2963 // constant if knowing that the operand is non-nan is enough. We prefer to 2964 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2965 // materialize 0.0. 2966 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2967 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2968 2969 // setcc (fneg x), C -> setcc swap(pred) x, -C 2970 if (N0.getOpcode() == ISD::FNEG) { 2971 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2972 if (DCI.isBeforeLegalizeOps() || 2973 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2974 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2975 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2976 } 2977 } 2978 2979 // If the condition is not legal, see if we can find an equivalent one 2980 // which is legal. 2981 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2982 // If the comparison was an awkward floating-point == or != and one of 2983 // the comparison operands is infinity or negative infinity, convert the 2984 // condition to a less-awkward <= or >=. 2985 if (CFP->getValueAPF().isInfinity()) { 2986 if (CFP->getValueAPF().isNegative()) { 2987 if (Cond == ISD::SETOEQ && 2988 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2989 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2990 if (Cond == ISD::SETUEQ && 2991 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2992 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2993 if (Cond == ISD::SETUNE && 2994 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2995 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2996 if (Cond == ISD::SETONE && 2997 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2998 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2999 } else { 3000 if (Cond == ISD::SETOEQ && 3001 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3002 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3003 if (Cond == ISD::SETUEQ && 3004 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3005 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3006 if (Cond == ISD::SETUNE && 3007 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3008 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3009 if (Cond == ISD::SETONE && 3010 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3011 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3012 } 3013 } 3014 } 3015 } 3016 3017 if (N0 == N1) { 3018 // The sext(setcc()) => setcc() optimization relies on the appropriate 3019 // constant being emitted. 3020 assert(!N0.getValueType().isInteger() && 3021 "Integer types should be handled by FoldSetCC"); 3022 3023 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3024 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3025 if (UOF == 2) // FP operators that are undefined on NaNs. 3026 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3027 if (UOF == unsigned(EqTrue)) 3028 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3029 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3030 // if it is not already. 3031 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3032 if (NewCond != Cond && 3033 (DCI.isBeforeLegalizeOps() || 3034 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3035 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3036 } 3037 3038 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3039 N0.getValueType().isInteger()) { 3040 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3041 N0.getOpcode() == ISD::XOR) { 3042 // Simplify (X+Y) == (X+Z) --> Y == Z 3043 if (N0.getOpcode() == N1.getOpcode()) { 3044 if (N0.getOperand(0) == N1.getOperand(0)) 3045 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3046 if (N0.getOperand(1) == N1.getOperand(1)) 3047 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3048 if (isCommutativeBinOp(N0.getOpcode())) { 3049 // If X op Y == Y op X, try other combinations. 3050 if (N0.getOperand(0) == N1.getOperand(1)) 3051 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3052 Cond); 3053 if (N0.getOperand(1) == N1.getOperand(0)) 3054 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3055 Cond); 3056 } 3057 } 3058 3059 // If RHS is a legal immediate value for a compare instruction, we need 3060 // to be careful about increasing register pressure needlessly. 3061 bool LegalRHSImm = false; 3062 3063 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3064 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3065 // Turn (X+C1) == C2 --> X == C2-C1 3066 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3067 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3068 DAG.getConstant(RHSC->getAPIntValue()- 3069 LHSR->getAPIntValue(), 3070 dl, N0.getValueType()), Cond); 3071 } 3072 3073 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3074 if (N0.getOpcode() == ISD::XOR) 3075 // If we know that all of the inverted bits are zero, don't bother 3076 // performing the inversion. 3077 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3078 return 3079 DAG.getSetCC(dl, VT, N0.getOperand(0), 3080 DAG.getConstant(LHSR->getAPIntValue() ^ 3081 RHSC->getAPIntValue(), 3082 dl, N0.getValueType()), 3083 Cond); 3084 } 3085 3086 // Turn (C1-X) == C2 --> X == C1-C2 3087 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3088 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3089 return 3090 DAG.getSetCC(dl, VT, N0.getOperand(1), 3091 DAG.getConstant(SUBC->getAPIntValue() - 3092 RHSC->getAPIntValue(), 3093 dl, N0.getValueType()), 3094 Cond); 3095 } 3096 } 3097 3098 // Could RHSC fold directly into a compare? 3099 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3100 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3101 } 3102 3103 // (X+Y) == X --> Y == 0 and similar folds. 3104 // Don't do this if X is an immediate that can fold into a cmp 3105 // instruction and X+Y has other uses. It could be an induction variable 3106 // chain, and the transform would increase register pressure. 3107 if (!LegalRHSImm || N0.hasOneUse()) 3108 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3109 return V; 3110 } 3111 3112 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3113 N1.getOpcode() == ISD::XOR) 3114 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3115 return V; 3116 3117 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3118 return V; 3119 } 3120 3121 // Fold away ALL boolean setcc's. 3122 SDValue Temp; 3123 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3124 EVT OpVT = N0.getValueType(); 3125 switch (Cond) { 3126 default: llvm_unreachable("Unknown integer setcc!"); 3127 case ISD::SETEQ: // X == Y -> ~(X^Y) 3128 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3129 N0 = DAG.getNOT(dl, Temp, OpVT); 3130 if (!DCI.isCalledByLegalizer()) 3131 DCI.AddToWorklist(Temp.getNode()); 3132 break; 3133 case ISD::SETNE: // X != Y --> (X^Y) 3134 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3135 break; 3136 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3137 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3138 Temp = DAG.getNOT(dl, N0, OpVT); 3139 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3140 if (!DCI.isCalledByLegalizer()) 3141 DCI.AddToWorklist(Temp.getNode()); 3142 break; 3143 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3144 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3145 Temp = DAG.getNOT(dl, N1, OpVT); 3146 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3147 if (!DCI.isCalledByLegalizer()) 3148 DCI.AddToWorklist(Temp.getNode()); 3149 break; 3150 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3151 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3152 Temp = DAG.getNOT(dl, N0, OpVT); 3153 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3154 if (!DCI.isCalledByLegalizer()) 3155 DCI.AddToWorklist(Temp.getNode()); 3156 break; 3157 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3158 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3159 Temp = DAG.getNOT(dl, N1, OpVT); 3160 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3161 break; 3162 } 3163 if (VT.getScalarType() != MVT::i1) { 3164 if (!DCI.isCalledByLegalizer()) 3165 DCI.AddToWorklist(N0.getNode()); 3166 // FIXME: If running after legalize, we probably can't do this. 3167 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3168 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3169 } 3170 return N0; 3171 } 3172 3173 // Could not fold it. 3174 return SDValue(); 3175 } 3176 3177 /// Returns true (and the GlobalValue and the offset) if the node is a 3178 /// GlobalAddress + offset. 3179 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3180 int64_t &Offset) const { 3181 3182 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3183 3184 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3185 GA = GASD->getGlobal(); 3186 Offset += GASD->getOffset(); 3187 return true; 3188 } 3189 3190 if (N->getOpcode() == ISD::ADD) { 3191 SDValue N1 = N->getOperand(0); 3192 SDValue N2 = N->getOperand(1); 3193 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3194 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3195 Offset += V->getSExtValue(); 3196 return true; 3197 } 3198 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3199 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3200 Offset += V->getSExtValue(); 3201 return true; 3202 } 3203 } 3204 } 3205 3206 return false; 3207 } 3208 3209 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3210 DAGCombinerInfo &DCI) const { 3211 // Default implementation: no optimization. 3212 return SDValue(); 3213 } 3214 3215 //===----------------------------------------------------------------------===// 3216 // Inline Assembler Implementation Methods 3217 //===----------------------------------------------------------------------===// 3218 3219 TargetLowering::ConstraintType 3220 TargetLowering::getConstraintType(StringRef Constraint) const { 3221 unsigned S = Constraint.size(); 3222 3223 if (S == 1) { 3224 switch (Constraint[0]) { 3225 default: break; 3226 case 'r': return C_RegisterClass; 3227 case 'm': // memory 3228 case 'o': // offsetable 3229 case 'V': // not offsetable 3230 return C_Memory; 3231 case 'i': // Simple Integer or Relocatable Constant 3232 case 'n': // Simple Integer 3233 case 'E': // Floating Point Constant 3234 case 'F': // Floating Point Constant 3235 case 's': // Relocatable Constant 3236 case 'p': // Address. 3237 case 'X': // Allow ANY value. 3238 case 'I': // Target registers. 3239 case 'J': 3240 case 'K': 3241 case 'L': 3242 case 'M': 3243 case 'N': 3244 case 'O': 3245 case 'P': 3246 case '<': 3247 case '>': 3248 return C_Other; 3249 } 3250 } 3251 3252 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3253 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3254 return C_Memory; 3255 return C_Register; 3256 } 3257 return C_Unknown; 3258 } 3259 3260 /// Try to replace an X constraint, which matches anything, with another that 3261 /// has more specific requirements based on the type of the corresponding 3262 /// operand. 3263 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3264 if (ConstraintVT.isInteger()) 3265 return "r"; 3266 if (ConstraintVT.isFloatingPoint()) 3267 return "f"; // works for many targets 3268 return nullptr; 3269 } 3270 3271 SDValue TargetLowering::LowerAsmOutputForConstraint( 3272 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3273 SelectionDAG &DAG) const { 3274 return SDValue(); 3275 } 3276 3277 /// Lower the specified operand into the Ops vector. 3278 /// If it is invalid, don't add anything to Ops. 3279 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3280 std::string &Constraint, 3281 std::vector<SDValue> &Ops, 3282 SelectionDAG &DAG) const { 3283 3284 if (Constraint.length() > 1) return; 3285 3286 char ConstraintLetter = Constraint[0]; 3287 switch (ConstraintLetter) { 3288 default: break; 3289 case 'X': // Allows any operand; labels (basic block) use this. 3290 if (Op.getOpcode() == ISD::BasicBlock || 3291 Op.getOpcode() == ISD::TargetBlockAddress) { 3292 Ops.push_back(Op); 3293 return; 3294 } 3295 LLVM_FALLTHROUGH; 3296 case 'i': // Simple Integer or Relocatable Constant 3297 case 'n': // Simple Integer 3298 case 's': { // Relocatable Constant 3299 // These operands are interested in values of the form (GV+C), where C may 3300 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3301 // is possible and fine if either GV or C are missing. 3302 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3303 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3304 3305 // If we have "(add GV, C)", pull out GV/C 3306 if (Op.getOpcode() == ISD::ADD) { 3307 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3308 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3309 if (!C || !GA) { 3310 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3311 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3312 } 3313 if (!C || !GA) { 3314 C = nullptr; 3315 GA = nullptr; 3316 } 3317 } 3318 3319 // If we find a valid operand, map to the TargetXXX version so that the 3320 // value itself doesn't get selected. 3321 if (GA) { // Either &GV or &GV+C 3322 if (ConstraintLetter != 'n') { 3323 int64_t Offs = GA->getOffset(); 3324 if (C) Offs += C->getZExtValue(); 3325 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3326 C ? SDLoc(C) : SDLoc(), 3327 Op.getValueType(), Offs)); 3328 } 3329 return; 3330 } 3331 if (C) { // just C, no GV. 3332 // Simple constants are not allowed for 's'. 3333 if (ConstraintLetter != 's') { 3334 // gcc prints these as sign extended. Sign extend value to 64 bits 3335 // now; without this it would get ZExt'd later in 3336 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3337 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3338 SDLoc(C), MVT::i64)); 3339 } 3340 return; 3341 } 3342 break; 3343 } 3344 } 3345 } 3346 3347 std::pair<unsigned, const TargetRegisterClass *> 3348 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3349 StringRef Constraint, 3350 MVT VT) const { 3351 if (Constraint.empty() || Constraint[0] != '{') 3352 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3353 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3354 3355 // Remove the braces from around the name. 3356 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3357 3358 std::pair<unsigned, const TargetRegisterClass *> R = 3359 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3360 3361 // Figure out which register class contains this reg. 3362 for (const TargetRegisterClass *RC : RI->regclasses()) { 3363 // If none of the value types for this register class are valid, we 3364 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3365 if (!isLegalRC(*RI, *RC)) 3366 continue; 3367 3368 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3369 I != E; ++I) { 3370 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3371 std::pair<unsigned, const TargetRegisterClass *> S = 3372 std::make_pair(*I, RC); 3373 3374 // If this register class has the requested value type, return it, 3375 // otherwise keep searching and return the first class found 3376 // if no other is found which explicitly has the requested type. 3377 if (RI->isTypeLegalForClass(*RC, VT)) 3378 return S; 3379 if (!R.second) 3380 R = S; 3381 } 3382 } 3383 } 3384 3385 return R; 3386 } 3387 3388 //===----------------------------------------------------------------------===// 3389 // Constraint Selection. 3390 3391 /// Return true of this is an input operand that is a matching constraint like 3392 /// "4". 3393 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3394 assert(!ConstraintCode.empty() && "No known constraint!"); 3395 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3396 } 3397 3398 /// If this is an input matching constraint, this method returns the output 3399 /// operand it matches. 3400 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3401 assert(!ConstraintCode.empty() && "No known constraint!"); 3402 return atoi(ConstraintCode.c_str()); 3403 } 3404 3405 /// Split up the constraint string from the inline assembly value into the 3406 /// specific constraints and their prefixes, and also tie in the associated 3407 /// operand values. 3408 /// If this returns an empty vector, and if the constraint string itself 3409 /// isn't empty, there was an error parsing. 3410 TargetLowering::AsmOperandInfoVector 3411 TargetLowering::ParseConstraints(const DataLayout &DL, 3412 const TargetRegisterInfo *TRI, 3413 ImmutableCallSite CS) const { 3414 /// Information about all of the constraints. 3415 AsmOperandInfoVector ConstraintOperands; 3416 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3417 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3418 3419 // Do a prepass over the constraints, canonicalizing them, and building up the 3420 // ConstraintOperands list. 3421 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3422 unsigned ResNo = 0; // ResNo - The result number of the next output. 3423 3424 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3425 ConstraintOperands.emplace_back(std::move(CI)); 3426 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3427 3428 // Update multiple alternative constraint count. 3429 if (OpInfo.multipleAlternatives.size() > maCount) 3430 maCount = OpInfo.multipleAlternatives.size(); 3431 3432 OpInfo.ConstraintVT = MVT::Other; 3433 3434 // Compute the value type for each operand. 3435 switch (OpInfo.Type) { 3436 case InlineAsm::isOutput: 3437 // Indirect outputs just consume an argument. 3438 if (OpInfo.isIndirect) { 3439 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3440 break; 3441 } 3442 3443 // The return value of the call is this value. As such, there is no 3444 // corresponding argument. 3445 assert(!CS.getType()->isVoidTy() && 3446 "Bad inline asm!"); 3447 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3448 OpInfo.ConstraintVT = 3449 getSimpleValueType(DL, STy->getElementType(ResNo)); 3450 } else { 3451 assert(ResNo == 0 && "Asm only has one result!"); 3452 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3453 } 3454 ++ResNo; 3455 break; 3456 case InlineAsm::isInput: 3457 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3458 break; 3459 case InlineAsm::isClobber: 3460 // Nothing to do. 3461 break; 3462 } 3463 3464 if (OpInfo.CallOperandVal) { 3465 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3466 if (OpInfo.isIndirect) { 3467 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3468 if (!PtrTy) 3469 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3470 OpTy = PtrTy->getElementType(); 3471 } 3472 3473 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3474 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3475 if (STy->getNumElements() == 1) 3476 OpTy = STy->getElementType(0); 3477 3478 // If OpTy is not a single value, it may be a struct/union that we 3479 // can tile with integers. 3480 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3481 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3482 switch (BitSize) { 3483 default: break; 3484 case 1: 3485 case 8: 3486 case 16: 3487 case 32: 3488 case 64: 3489 case 128: 3490 OpInfo.ConstraintVT = 3491 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3492 break; 3493 } 3494 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3495 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3496 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3497 } else { 3498 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3499 } 3500 } 3501 } 3502 3503 // If we have multiple alternative constraints, select the best alternative. 3504 if (!ConstraintOperands.empty()) { 3505 if (maCount) { 3506 unsigned bestMAIndex = 0; 3507 int bestWeight = -1; 3508 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3509 int weight = -1; 3510 unsigned maIndex; 3511 // Compute the sums of the weights for each alternative, keeping track 3512 // of the best (highest weight) one so far. 3513 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3514 int weightSum = 0; 3515 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3516 cIndex != eIndex; ++cIndex) { 3517 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3518 if (OpInfo.Type == InlineAsm::isClobber) 3519 continue; 3520 3521 // If this is an output operand with a matching input operand, 3522 // look up the matching input. If their types mismatch, e.g. one 3523 // is an integer, the other is floating point, or their sizes are 3524 // different, flag it as an maCantMatch. 3525 if (OpInfo.hasMatchingInput()) { 3526 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3527 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3528 if ((OpInfo.ConstraintVT.isInteger() != 3529 Input.ConstraintVT.isInteger()) || 3530 (OpInfo.ConstraintVT.getSizeInBits() != 3531 Input.ConstraintVT.getSizeInBits())) { 3532 weightSum = -1; // Can't match. 3533 break; 3534 } 3535 } 3536 } 3537 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3538 if (weight == -1) { 3539 weightSum = -1; 3540 break; 3541 } 3542 weightSum += weight; 3543 } 3544 // Update best. 3545 if (weightSum > bestWeight) { 3546 bestWeight = weightSum; 3547 bestMAIndex = maIndex; 3548 } 3549 } 3550 3551 // Now select chosen alternative in each constraint. 3552 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3553 cIndex != eIndex; ++cIndex) { 3554 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3555 if (cInfo.Type == InlineAsm::isClobber) 3556 continue; 3557 cInfo.selectAlternative(bestMAIndex); 3558 } 3559 } 3560 } 3561 3562 // Check and hook up tied operands, choose constraint code to use. 3563 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3564 cIndex != eIndex; ++cIndex) { 3565 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3566 3567 // If this is an output operand with a matching input operand, look up the 3568 // matching input. If their types mismatch, e.g. one is an integer, the 3569 // other is floating point, or their sizes are different, flag it as an 3570 // error. 3571 if (OpInfo.hasMatchingInput()) { 3572 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3573 3574 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3575 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3576 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3577 OpInfo.ConstraintVT); 3578 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3579 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3580 Input.ConstraintVT); 3581 if ((OpInfo.ConstraintVT.isInteger() != 3582 Input.ConstraintVT.isInteger()) || 3583 (MatchRC.second != InputRC.second)) { 3584 report_fatal_error("Unsupported asm: input constraint" 3585 " with a matching output constraint of" 3586 " incompatible type!"); 3587 } 3588 } 3589 } 3590 } 3591 3592 return ConstraintOperands; 3593 } 3594 3595 /// Return an integer indicating how general CT is. 3596 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3597 switch (CT) { 3598 case TargetLowering::C_Other: 3599 case TargetLowering::C_Unknown: 3600 return 0; 3601 case TargetLowering::C_Register: 3602 return 1; 3603 case TargetLowering::C_RegisterClass: 3604 return 2; 3605 case TargetLowering::C_Memory: 3606 return 3; 3607 } 3608 llvm_unreachable("Invalid constraint type"); 3609 } 3610 3611 /// Examine constraint type and operand type and determine a weight value. 3612 /// This object must already have been set up with the operand type 3613 /// and the current alternative constraint selected. 3614 TargetLowering::ConstraintWeight 3615 TargetLowering::getMultipleConstraintMatchWeight( 3616 AsmOperandInfo &info, int maIndex) const { 3617 InlineAsm::ConstraintCodeVector *rCodes; 3618 if (maIndex >= (int)info.multipleAlternatives.size()) 3619 rCodes = &info.Codes; 3620 else 3621 rCodes = &info.multipleAlternatives[maIndex].Codes; 3622 ConstraintWeight BestWeight = CW_Invalid; 3623 3624 // Loop over the options, keeping track of the most general one. 3625 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3626 ConstraintWeight weight = 3627 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3628 if (weight > BestWeight) 3629 BestWeight = weight; 3630 } 3631 3632 return BestWeight; 3633 } 3634 3635 /// Examine constraint type and operand type and determine a weight value. 3636 /// This object must already have been set up with the operand type 3637 /// and the current alternative constraint selected. 3638 TargetLowering::ConstraintWeight 3639 TargetLowering::getSingleConstraintMatchWeight( 3640 AsmOperandInfo &info, const char *constraint) const { 3641 ConstraintWeight weight = CW_Invalid; 3642 Value *CallOperandVal = info.CallOperandVal; 3643 // If we don't have a value, we can't do a match, 3644 // but allow it at the lowest weight. 3645 if (!CallOperandVal) 3646 return CW_Default; 3647 // Look at the constraint type. 3648 switch (*constraint) { 3649 case 'i': // immediate integer. 3650 case 'n': // immediate integer with a known value. 3651 if (isa<ConstantInt>(CallOperandVal)) 3652 weight = CW_Constant; 3653 break; 3654 case 's': // non-explicit intregal immediate. 3655 if (isa<GlobalValue>(CallOperandVal)) 3656 weight = CW_Constant; 3657 break; 3658 case 'E': // immediate float if host format. 3659 case 'F': // immediate float. 3660 if (isa<ConstantFP>(CallOperandVal)) 3661 weight = CW_Constant; 3662 break; 3663 case '<': // memory operand with autodecrement. 3664 case '>': // memory operand with autoincrement. 3665 case 'm': // memory operand. 3666 case 'o': // offsettable memory operand 3667 case 'V': // non-offsettable memory operand 3668 weight = CW_Memory; 3669 break; 3670 case 'r': // general register. 3671 case 'g': // general register, memory operand or immediate integer. 3672 // note: Clang converts "g" to "imr". 3673 if (CallOperandVal->getType()->isIntegerTy()) 3674 weight = CW_Register; 3675 break; 3676 case 'X': // any operand. 3677 default: 3678 weight = CW_Default; 3679 break; 3680 } 3681 return weight; 3682 } 3683 3684 /// If there are multiple different constraints that we could pick for this 3685 /// operand (e.g. "imr") try to pick the 'best' one. 3686 /// This is somewhat tricky: constraints fall into four classes: 3687 /// Other -> immediates and magic values 3688 /// Register -> one specific register 3689 /// RegisterClass -> a group of regs 3690 /// Memory -> memory 3691 /// Ideally, we would pick the most specific constraint possible: if we have 3692 /// something that fits into a register, we would pick it. The problem here 3693 /// is that if we have something that could either be in a register or in 3694 /// memory that use of the register could cause selection of *other* 3695 /// operands to fail: they might only succeed if we pick memory. Because of 3696 /// this the heuristic we use is: 3697 /// 3698 /// 1) If there is an 'other' constraint, and if the operand is valid for 3699 /// that constraint, use it. This makes us take advantage of 'i' 3700 /// constraints when available. 3701 /// 2) Otherwise, pick the most general constraint present. This prefers 3702 /// 'm' over 'r', for example. 3703 /// 3704 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3705 const TargetLowering &TLI, 3706 SDValue Op, SelectionDAG *DAG) { 3707 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3708 unsigned BestIdx = 0; 3709 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3710 int BestGenerality = -1; 3711 3712 // Loop over the options, keeping track of the most general one. 3713 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3714 TargetLowering::ConstraintType CType = 3715 TLI.getConstraintType(OpInfo.Codes[i]); 3716 3717 // If this is an 'other' constraint, see if the operand is valid for it. 3718 // For example, on X86 we might have an 'rI' constraint. If the operand 3719 // is an integer in the range [0..31] we want to use I (saving a load 3720 // of a register), otherwise we must use 'r'. 3721 if (CType == TargetLowering::C_Other && Op.getNode()) { 3722 assert(OpInfo.Codes[i].size() == 1 && 3723 "Unhandled multi-letter 'other' constraint"); 3724 std::vector<SDValue> ResultOps; 3725 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3726 ResultOps, *DAG); 3727 if (!ResultOps.empty()) { 3728 BestType = CType; 3729 BestIdx = i; 3730 break; 3731 } 3732 } 3733 3734 // Things with matching constraints can only be registers, per gcc 3735 // documentation. This mainly affects "g" constraints. 3736 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3737 continue; 3738 3739 // This constraint letter is more general than the previous one, use it. 3740 int Generality = getConstraintGenerality(CType); 3741 if (Generality > BestGenerality) { 3742 BestType = CType; 3743 BestIdx = i; 3744 BestGenerality = Generality; 3745 } 3746 } 3747 3748 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3749 OpInfo.ConstraintType = BestType; 3750 } 3751 3752 /// Determines the constraint code and constraint type to use for the specific 3753 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3754 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3755 SDValue Op, 3756 SelectionDAG *DAG) const { 3757 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3758 3759 // Single-letter constraints ('r') are very common. 3760 if (OpInfo.Codes.size() == 1) { 3761 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3762 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3763 } else { 3764 ChooseConstraint(OpInfo, *this, Op, DAG); 3765 } 3766 3767 // 'X' matches anything. 3768 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3769 // Labels and constants are handled elsewhere ('X' is the only thing 3770 // that matches labels). For Functions, the type here is the type of 3771 // the result, which is not what we want to look at; leave them alone. 3772 Value *v = OpInfo.CallOperandVal; 3773 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3774 OpInfo.CallOperandVal = v; 3775 return; 3776 } 3777 3778 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3779 return; 3780 3781 // Otherwise, try to resolve it to something we know about by looking at 3782 // the actual operand type. 3783 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3784 OpInfo.ConstraintCode = Repl; 3785 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3786 } 3787 } 3788 } 3789 3790 /// Given an exact SDIV by a constant, create a multiplication 3791 /// with the multiplicative inverse of the constant. 3792 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3793 const SDLoc &dl, SelectionDAG &DAG, 3794 SmallVectorImpl<SDNode *> &Created) { 3795 SDValue Op0 = N->getOperand(0); 3796 SDValue Op1 = N->getOperand(1); 3797 EVT VT = N->getValueType(0); 3798 EVT SVT = VT.getScalarType(); 3799 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3800 EVT ShSVT = ShVT.getScalarType(); 3801 3802 bool UseSRA = false; 3803 SmallVector<SDValue, 16> Shifts, Factors; 3804 3805 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3806 if (C->isNullValue()) 3807 return false; 3808 APInt Divisor = C->getAPIntValue(); 3809 unsigned Shift = Divisor.countTrailingZeros(); 3810 if (Shift) { 3811 Divisor.ashrInPlace(Shift); 3812 UseSRA = true; 3813 } 3814 // Calculate the multiplicative inverse, using Newton's method. 3815 APInt t; 3816 APInt Factor = Divisor; 3817 while ((t = Divisor * Factor) != 1) 3818 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3819 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3820 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3821 return true; 3822 }; 3823 3824 // Collect all magic values from the build vector. 3825 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3826 return SDValue(); 3827 3828 SDValue Shift, Factor; 3829 if (VT.isVector()) { 3830 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3831 Factor = DAG.getBuildVector(VT, dl, Factors); 3832 } else { 3833 Shift = Shifts[0]; 3834 Factor = Factors[0]; 3835 } 3836 3837 SDValue Res = Op0; 3838 3839 // Shift the value upfront if it is even, so the LSB is one. 3840 if (UseSRA) { 3841 // TODO: For UDIV use SRL instead of SRA. 3842 SDNodeFlags Flags; 3843 Flags.setExact(true); 3844 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3845 Created.push_back(Res.getNode()); 3846 } 3847 3848 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3849 } 3850 3851 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3852 SelectionDAG &DAG, 3853 SmallVectorImpl<SDNode *> &Created) const { 3854 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3856 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3857 return SDValue(N, 0); // Lower SDIV as SDIV 3858 return SDValue(); 3859 } 3860 3861 /// Given an ISD::SDIV node expressing a divide by constant, 3862 /// return a DAG expression to select that will generate the same value by 3863 /// multiplying by a magic number. 3864 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3865 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3866 bool IsAfterLegalization, 3867 SmallVectorImpl<SDNode *> &Created) const { 3868 SDLoc dl(N); 3869 EVT VT = N->getValueType(0); 3870 EVT SVT = VT.getScalarType(); 3871 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3872 EVT ShSVT = ShVT.getScalarType(); 3873 unsigned EltBits = VT.getScalarSizeInBits(); 3874 3875 // Check to see if we can do this. 3876 // FIXME: We should be more aggressive here. 3877 if (!isTypeLegal(VT)) 3878 return SDValue(); 3879 3880 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3881 if (N->getFlags().hasExact()) 3882 return BuildExactSDIV(*this, N, dl, DAG, Created); 3883 3884 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3885 3886 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3887 if (C->isNullValue()) 3888 return false; 3889 3890 const APInt &Divisor = C->getAPIntValue(); 3891 APInt::ms magics = Divisor.magic(); 3892 int NumeratorFactor = 0; 3893 int ShiftMask = -1; 3894 3895 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3896 // If d is +1/-1, we just multiply the numerator by +1/-1. 3897 NumeratorFactor = Divisor.getSExtValue(); 3898 magics.m = 0; 3899 magics.s = 0; 3900 ShiftMask = 0; 3901 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3902 // If d > 0 and m < 0, add the numerator. 3903 NumeratorFactor = 1; 3904 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3905 // If d < 0 and m > 0, subtract the numerator. 3906 NumeratorFactor = -1; 3907 } 3908 3909 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3910 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3911 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3912 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3913 return true; 3914 }; 3915 3916 SDValue N0 = N->getOperand(0); 3917 SDValue N1 = N->getOperand(1); 3918 3919 // Collect the shifts / magic values from each element. 3920 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3921 return SDValue(); 3922 3923 SDValue MagicFactor, Factor, Shift, ShiftMask; 3924 if (VT.isVector()) { 3925 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3926 Factor = DAG.getBuildVector(VT, dl, Factors); 3927 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3928 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3929 } else { 3930 MagicFactor = MagicFactors[0]; 3931 Factor = Factors[0]; 3932 Shift = Shifts[0]; 3933 ShiftMask = ShiftMasks[0]; 3934 } 3935 3936 // Multiply the numerator (operand 0) by the magic value. 3937 // FIXME: We should support doing a MUL in a wider type. 3938 SDValue Q; 3939 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3940 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3941 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3942 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3943 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3944 SDValue LoHi = 3945 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3946 Q = SDValue(LoHi.getNode(), 1); 3947 } else 3948 return SDValue(); // No mulhs or equivalent. 3949 Created.push_back(Q.getNode()); 3950 3951 // (Optionally) Add/subtract the numerator using Factor. 3952 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3953 Created.push_back(Factor.getNode()); 3954 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3955 Created.push_back(Q.getNode()); 3956 3957 // Shift right algebraic by shift value. 3958 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3959 Created.push_back(Q.getNode()); 3960 3961 // Extract the sign bit, mask it and add it to the quotient. 3962 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3963 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3964 Created.push_back(T.getNode()); 3965 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3966 Created.push_back(T.getNode()); 3967 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3968 } 3969 3970 /// Given an ISD::UDIV node expressing a divide by constant, 3971 /// return a DAG expression to select that will generate the same value by 3972 /// multiplying by a magic number. 3973 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3974 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3975 bool IsAfterLegalization, 3976 SmallVectorImpl<SDNode *> &Created) const { 3977 SDLoc dl(N); 3978 EVT VT = N->getValueType(0); 3979 EVT SVT = VT.getScalarType(); 3980 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3981 EVT ShSVT = ShVT.getScalarType(); 3982 unsigned EltBits = VT.getScalarSizeInBits(); 3983 3984 // Check to see if we can do this. 3985 // FIXME: We should be more aggressive here. 3986 if (!isTypeLegal(VT)) 3987 return SDValue(); 3988 3989 bool UseNPQ = false; 3990 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 3991 3992 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 3993 if (C->isNullValue()) 3994 return false; 3995 // FIXME: We should use a narrower constant when the upper 3996 // bits are known to be zero. 3997 APInt Divisor = C->getAPIntValue(); 3998 APInt::mu magics = Divisor.magicu(); 3999 unsigned PreShift = 0, PostShift = 0; 4000 4001 // If the divisor is even, we can avoid using the expensive fixup by 4002 // shifting the divided value upfront. 4003 if (magics.a != 0 && !Divisor[0]) { 4004 PreShift = Divisor.countTrailingZeros(); 4005 // Get magic number for the shifted divisor. 4006 magics = Divisor.lshr(PreShift).magicu(PreShift); 4007 assert(magics.a == 0 && "Should use cheap fixup now"); 4008 } 4009 4010 APInt Magic = magics.m; 4011 4012 unsigned SelNPQ; 4013 if (magics.a == 0 || Divisor.isOneValue()) { 4014 assert(magics.s < Divisor.getBitWidth() && 4015 "We shouldn't generate an undefined shift!"); 4016 PostShift = magics.s; 4017 SelNPQ = false; 4018 } else { 4019 PostShift = magics.s - 1; 4020 SelNPQ = true; 4021 } 4022 4023 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4024 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4025 NPQFactors.push_back( 4026 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4027 : APInt::getNullValue(EltBits), 4028 dl, SVT)); 4029 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4030 UseNPQ |= SelNPQ; 4031 return true; 4032 }; 4033 4034 SDValue N0 = N->getOperand(0); 4035 SDValue N1 = N->getOperand(1); 4036 4037 // Collect the shifts/magic values from each element. 4038 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4039 return SDValue(); 4040 4041 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4042 if (VT.isVector()) { 4043 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4044 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4045 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4046 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4047 } else { 4048 PreShift = PreShifts[0]; 4049 MagicFactor = MagicFactors[0]; 4050 PostShift = PostShifts[0]; 4051 } 4052 4053 SDValue Q = N0; 4054 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4055 Created.push_back(Q.getNode()); 4056 4057 // FIXME: We should support doing a MUL in a wider type. 4058 auto GetMULHU = [&](SDValue X, SDValue Y) { 4059 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4060 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4061 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4062 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4063 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4064 SDValue LoHi = 4065 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4066 return SDValue(LoHi.getNode(), 1); 4067 } 4068 return SDValue(); // No mulhu or equivalent 4069 }; 4070 4071 // Multiply the numerator (operand 0) by the magic value. 4072 Q = GetMULHU(Q, MagicFactor); 4073 if (!Q) 4074 return SDValue(); 4075 4076 Created.push_back(Q.getNode()); 4077 4078 if (UseNPQ) { 4079 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4080 Created.push_back(NPQ.getNode()); 4081 4082 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4083 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4084 if (VT.isVector()) 4085 NPQ = GetMULHU(NPQ, NPQFactor); 4086 else 4087 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4088 4089 Created.push_back(NPQ.getNode()); 4090 4091 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4092 Created.push_back(Q.getNode()); 4093 } 4094 4095 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4096 Created.push_back(Q.getNode()); 4097 4098 SDValue One = DAG.getConstant(1, dl, VT); 4099 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4100 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4101 } 4102 4103 bool TargetLowering:: 4104 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4105 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4106 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4107 "be a constant integer"); 4108 return true; 4109 } 4110 4111 return false; 4112 } 4113 4114 //===----------------------------------------------------------------------===// 4115 // Legalization Utilities 4116 //===----------------------------------------------------------------------===// 4117 4118 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4119 SDValue LHS, SDValue RHS, 4120 SmallVectorImpl<SDValue> &Result, 4121 EVT HiLoVT, SelectionDAG &DAG, 4122 MulExpansionKind Kind, SDValue LL, 4123 SDValue LH, SDValue RL, SDValue RH) const { 4124 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4125 Opcode == ISD::SMUL_LOHI); 4126 4127 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4128 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4129 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4130 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4131 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4132 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4133 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4134 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4135 4136 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4137 return false; 4138 4139 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4140 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4141 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4142 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4143 4144 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4145 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4146 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4147 4148 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4149 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4150 bool Signed) -> bool { 4151 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4152 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4153 Hi = SDValue(Lo.getNode(), 1); 4154 return true; 4155 } 4156 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4157 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4158 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4159 return true; 4160 } 4161 return false; 4162 }; 4163 4164 SDValue Lo, Hi; 4165 4166 if (!LL.getNode() && !RL.getNode() && 4167 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4168 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4169 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4170 } 4171 4172 if (!LL.getNode()) 4173 return false; 4174 4175 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4176 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4177 DAG.MaskedValueIsZero(RHS, HighMask)) { 4178 // The inputs are both zero-extended. 4179 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4180 Result.push_back(Lo); 4181 Result.push_back(Hi); 4182 if (Opcode != ISD::MUL) { 4183 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4184 Result.push_back(Zero); 4185 Result.push_back(Zero); 4186 } 4187 return true; 4188 } 4189 } 4190 4191 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4192 RHSSB > InnerBitSize) { 4193 // The input values are both sign-extended. 4194 // TODO non-MUL case? 4195 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4196 Result.push_back(Lo); 4197 Result.push_back(Hi); 4198 return true; 4199 } 4200 } 4201 4202 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4203 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4204 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4205 // FIXME getShiftAmountTy does not always return a sensible result when VT 4206 // is an illegal type, and so the type may be too small to fit the shift 4207 // amount. Override it with i32. The shift will have to be legalized. 4208 ShiftAmountTy = MVT::i32; 4209 } 4210 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4211 4212 if (!LH.getNode() && !RH.getNode() && 4213 isOperationLegalOrCustom(ISD::SRL, VT) && 4214 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4215 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4216 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4217 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4218 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4219 } 4220 4221 if (!LH.getNode()) 4222 return false; 4223 4224 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4225 return false; 4226 4227 Result.push_back(Lo); 4228 4229 if (Opcode == ISD::MUL) { 4230 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4231 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4232 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4233 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4234 Result.push_back(Hi); 4235 return true; 4236 } 4237 4238 // Compute the full width result. 4239 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4240 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4241 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4242 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4243 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4244 }; 4245 4246 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4247 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4248 return false; 4249 4250 // This is effectively the add part of a multiply-add of half-sized operands, 4251 // so it cannot overflow. 4252 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4253 4254 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4255 return false; 4256 4257 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4258 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4259 4260 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4261 isOperationLegalOrCustom(ISD::ADDE, VT)); 4262 if (UseGlue) 4263 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4264 Merge(Lo, Hi)); 4265 else 4266 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4267 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4268 4269 SDValue Carry = Next.getValue(1); 4270 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4271 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4272 4273 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4274 return false; 4275 4276 if (UseGlue) 4277 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4278 Carry); 4279 else 4280 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4281 Zero, Carry); 4282 4283 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4284 4285 if (Opcode == ISD::SMUL_LOHI) { 4286 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4287 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4288 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4289 4290 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4291 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4292 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4293 } 4294 4295 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4296 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4297 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4298 return true; 4299 } 4300 4301 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4302 SelectionDAG &DAG, MulExpansionKind Kind, 4303 SDValue LL, SDValue LH, SDValue RL, 4304 SDValue RH) const { 4305 SmallVector<SDValue, 2> Result; 4306 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4307 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4308 DAG, Kind, LL, LH, RL, RH); 4309 if (Ok) { 4310 assert(Result.size() == 2); 4311 Lo = Result[0]; 4312 Hi = Result[1]; 4313 } 4314 return Ok; 4315 } 4316 4317 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4318 SelectionDAG &DAG) const { 4319 EVT VT = Node->getValueType(0); 4320 4321 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4322 !isOperationLegalOrCustom(ISD::SRL, VT) || 4323 !isOperationLegalOrCustom(ISD::SUB, VT) || 4324 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4325 return false; 4326 4327 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4328 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4329 SDValue X = Node->getOperand(0); 4330 SDValue Y = Node->getOperand(1); 4331 SDValue Z = Node->getOperand(2); 4332 4333 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4334 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4335 SDLoc DL(SDValue(Node, 0)); 4336 4337 EVT ShVT = Z.getValueType(); 4338 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4339 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4340 4341 SDValue ShAmt; 4342 if (isPowerOf2_32(EltSizeInBits)) { 4343 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4344 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4345 } else { 4346 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4347 } 4348 4349 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4350 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4351 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4352 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4353 4354 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4355 // and that is undefined. We must compare and select to avoid UB. 4356 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4357 4358 // For fshl, 0-shift returns the 1st arg (X). 4359 // For fshr, 0-shift returns the 2nd arg (Y). 4360 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4361 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4362 return true; 4363 } 4364 4365 // TODO: Merge with expandFunnelShift. 4366 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4367 SelectionDAG &DAG) const { 4368 EVT VT = Node->getValueType(0); 4369 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4370 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4371 SDValue Op0 = Node->getOperand(0); 4372 SDValue Op1 = Node->getOperand(1); 4373 SDLoc DL(SDValue(Node, 0)); 4374 4375 EVT ShVT = Op1.getValueType(); 4376 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4377 4378 // If a rotate in the other direction is legal, use it. 4379 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4380 if (isOperationLegal(RevRot, VT)) { 4381 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4382 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4383 return true; 4384 } 4385 4386 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4387 !isOperationLegalOrCustom(ISD::SRL, VT) || 4388 !isOperationLegalOrCustom(ISD::SUB, VT) || 4389 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4390 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4391 return false; 4392 4393 // Otherwise, 4394 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4395 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4396 // 4397 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4398 "Expecting the type bitwidth to be a power of 2"); 4399 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4400 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4401 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4402 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4403 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4404 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4405 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4406 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4407 return true; 4408 } 4409 4410 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4411 SelectionDAG &DAG) const { 4412 SDValue Src = Node->getOperand(0); 4413 EVT SrcVT = Src.getValueType(); 4414 EVT DstVT = Node->getValueType(0); 4415 SDLoc dl(SDValue(Node, 0)); 4416 4417 // FIXME: Only f32 to i64 conversions are supported. 4418 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4419 return false; 4420 4421 // Expand f32 -> i64 conversion 4422 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4423 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4424 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4425 EVT IntVT = SrcVT.changeTypeToInteger(); 4426 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4427 4428 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4429 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4430 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4431 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4432 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4433 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4434 4435 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4436 4437 SDValue ExponentBits = DAG.getNode( 4438 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4439 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4440 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4441 4442 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4443 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4444 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4445 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4446 4447 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4448 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4449 DAG.getConstant(0x00800000, dl, IntVT)); 4450 4451 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4452 4453 R = DAG.getSelectCC( 4454 dl, Exponent, ExponentLoBit, 4455 DAG.getNode(ISD::SHL, dl, DstVT, R, 4456 DAG.getZExtOrTrunc( 4457 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4458 dl, IntShVT)), 4459 DAG.getNode(ISD::SRL, dl, DstVT, R, 4460 DAG.getZExtOrTrunc( 4461 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4462 dl, IntShVT)), 4463 ISD::SETGT); 4464 4465 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4466 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4467 4468 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4469 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4470 return true; 4471 } 4472 4473 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4474 SelectionDAG &DAG) const { 4475 SDLoc dl(SDValue(Node, 0)); 4476 SDValue Src = Node->getOperand(0); 4477 4478 EVT SrcVT = Src.getValueType(); 4479 EVT DstVT = Node->getValueType(0); 4480 EVT SetCCVT = 4481 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4482 4483 // Only expand vector types if we have the appropriate vector bit operations. 4484 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4485 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4486 return false; 4487 4488 // If the maximum float value is smaller then the signed integer range, 4489 // the destination signmask can't be represented by the float, so we can 4490 // just use FP_TO_SINT directly. 4491 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4492 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4493 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4494 if (APFloat::opOverflow & 4495 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4496 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4497 return true; 4498 } 4499 4500 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4501 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4502 4503 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4504 if (Strict) { 4505 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4506 // signmask then offset (the result of which should be fully representable). 4507 // Sel = Src < 0x8000000000000000 4508 // Val = select Sel, Src, Src - 0x8000000000000000 4509 // Ofs = select Sel, 0, 0x8000000000000000 4510 // Result = fp_to_sint(Val) ^ Ofs 4511 4512 // TODO: Should any fast-math-flags be set for the FSUB? 4513 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4514 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4515 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4516 DAG.getConstant(SignMask, dl, DstVT)); 4517 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4518 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4519 } else { 4520 // Expand based on maximum range of FP_TO_SINT: 4521 // True = fp_to_sint(Src) 4522 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4523 // Result = select (Src < 0x8000000000000000), True, False 4524 4525 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4526 // TODO: Should any fast-math-flags be set for the FSUB? 4527 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4528 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4529 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4530 DAG.getConstant(SignMask, dl, DstVT)); 4531 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4532 } 4533 return true; 4534 } 4535 4536 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4537 SelectionDAG &DAG) const { 4538 SDValue Src = Node->getOperand(0); 4539 EVT SrcVT = Src.getValueType(); 4540 EVT DstVT = Node->getValueType(0); 4541 4542 if (SrcVT.getScalarType() != MVT::i64) 4543 return false; 4544 4545 SDLoc dl(SDValue(Node, 0)); 4546 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4547 4548 if (DstVT.getScalarType() == MVT::f32) { 4549 // Only expand vector types if we have the appropriate vector bit 4550 // operations. 4551 if (SrcVT.isVector() && 4552 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4553 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4554 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4555 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4556 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4557 return false; 4558 4559 // For unsigned conversions, convert them to signed conversions using the 4560 // algorithm from the x86_64 __floatundidf in compiler_rt. 4561 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4562 4563 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4564 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4565 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4566 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4567 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4568 4569 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4570 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4571 4572 // TODO: This really should be implemented using a branch rather than a 4573 // select. We happen to get lucky and machinesink does the right 4574 // thing most of the time. This would be a good candidate for a 4575 // pseudo-op, or, even better, for whole-function isel. 4576 EVT SetCCVT = 4577 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4578 4579 SDValue SignBitTest = DAG.getSetCC( 4580 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4581 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4582 return true; 4583 } 4584 4585 if (DstVT.getScalarType() == MVT::f64) { 4586 // Only expand vector types if we have the appropriate vector bit 4587 // operations. 4588 if (SrcVT.isVector() && 4589 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4590 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4591 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4592 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4593 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4594 return false; 4595 4596 // Implementation of unsigned i64 to f64 following the algorithm in 4597 // __floatundidf in compiler_rt. This implementation has the advantage 4598 // of performing rounding correctly, both in the default rounding mode 4599 // and in all alternate rounding modes. 4600 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4601 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4602 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4603 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4604 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4605 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4606 4607 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4608 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4609 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4610 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4611 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4612 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4613 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4614 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4615 return true; 4616 } 4617 4618 return false; 4619 } 4620 4621 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4622 SelectionDAG &DAG) const { 4623 SDLoc dl(Node); 4624 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4625 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4626 EVT VT = Node->getValueType(0); 4627 if (isOperationLegalOrCustom(NewOp, VT)) { 4628 SDValue Quiet0 = Node->getOperand(0); 4629 SDValue Quiet1 = Node->getOperand(1); 4630 4631 if (!Node->getFlags().hasNoNaNs()) { 4632 // Insert canonicalizes if it's possible we need to quiet to get correct 4633 // sNaN behavior. 4634 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4635 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4636 Node->getFlags()); 4637 } 4638 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4639 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4640 Node->getFlags()); 4641 } 4642 } 4643 4644 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4645 } 4646 4647 return SDValue(); 4648 } 4649 4650 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4651 SelectionDAG &DAG) const { 4652 SDLoc dl(Node); 4653 EVT VT = Node->getValueType(0); 4654 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4655 SDValue Op = Node->getOperand(0); 4656 unsigned Len = VT.getScalarSizeInBits(); 4657 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4658 4659 // TODO: Add support for irregular type lengths. 4660 if (!(Len <= 128 && Len % 8 == 0)) 4661 return false; 4662 4663 // Only expand vector types if we have the appropriate vector bit operations. 4664 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4665 !isOperationLegalOrCustom(ISD::SUB, VT) || 4666 !isOperationLegalOrCustom(ISD::SRL, VT) || 4667 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4668 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4669 return false; 4670 4671 // This is the "best" algorithm from 4672 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4673 SDValue Mask55 = 4674 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4675 SDValue Mask33 = 4676 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4677 SDValue Mask0F = 4678 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4679 SDValue Mask01 = 4680 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4681 4682 // v = v - ((v >> 1) & 0x55555555...) 4683 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4684 DAG.getNode(ISD::AND, dl, VT, 4685 DAG.getNode(ISD::SRL, dl, VT, Op, 4686 DAG.getConstant(1, dl, ShVT)), 4687 Mask55)); 4688 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4689 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4690 DAG.getNode(ISD::AND, dl, VT, 4691 DAG.getNode(ISD::SRL, dl, VT, Op, 4692 DAG.getConstant(2, dl, ShVT)), 4693 Mask33)); 4694 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4695 Op = DAG.getNode(ISD::AND, dl, VT, 4696 DAG.getNode(ISD::ADD, dl, VT, Op, 4697 DAG.getNode(ISD::SRL, dl, VT, Op, 4698 DAG.getConstant(4, dl, ShVT))), 4699 Mask0F); 4700 // v = (v * 0x01010101...) >> (Len - 8) 4701 if (Len > 8) 4702 Op = 4703 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4704 DAG.getConstant(Len - 8, dl, ShVT)); 4705 4706 Result = Op; 4707 return true; 4708 } 4709 4710 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4711 SelectionDAG &DAG) const { 4712 SDLoc dl(Node); 4713 EVT VT = Node->getValueType(0); 4714 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4715 SDValue Op = Node->getOperand(0); 4716 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4717 4718 // If the non-ZERO_UNDEF version is supported we can use that instead. 4719 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4720 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4721 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4722 return true; 4723 } 4724 4725 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4726 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4727 EVT SetCCVT = 4728 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4729 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4730 SDValue Zero = DAG.getConstant(0, dl, VT); 4731 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4732 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4733 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4734 return true; 4735 } 4736 4737 // Only expand vector types if we have the appropriate vector bit operations. 4738 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4739 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4740 !isOperationLegalOrCustom(ISD::SRL, VT) || 4741 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4742 return false; 4743 4744 // for now, we do this: 4745 // x = x | (x >> 1); 4746 // x = x | (x >> 2); 4747 // ... 4748 // x = x | (x >>16); 4749 // x = x | (x >>32); // for 64-bit input 4750 // return popcount(~x); 4751 // 4752 // Ref: "Hacker's Delight" by Henry Warren 4753 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4754 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4755 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4756 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4757 } 4758 Op = DAG.getNOT(dl, Op, VT); 4759 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4760 return true; 4761 } 4762 4763 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4764 SelectionDAG &DAG) const { 4765 SDLoc dl(Node); 4766 EVT VT = Node->getValueType(0); 4767 SDValue Op = Node->getOperand(0); 4768 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4769 4770 // If the non-ZERO_UNDEF version is supported we can use that instead. 4771 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4772 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4773 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4774 return true; 4775 } 4776 4777 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4778 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4779 EVT SetCCVT = 4780 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4781 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4782 SDValue Zero = DAG.getConstant(0, dl, VT); 4783 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4784 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4785 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4786 return true; 4787 } 4788 4789 // Only expand vector types if we have the appropriate vector bit operations. 4790 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4791 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4792 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4793 !isOperationLegalOrCustom(ISD::SUB, VT) || 4794 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4795 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4796 return false; 4797 4798 // for now, we use: { return popcount(~x & (x - 1)); } 4799 // unless the target has ctlz but not ctpop, in which case we use: 4800 // { return 32 - nlz(~x & (x-1)); } 4801 // Ref: "Hacker's Delight" by Henry Warren 4802 SDValue Tmp = DAG.getNode( 4803 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4804 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4805 4806 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4807 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4808 Result = 4809 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4810 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4811 return true; 4812 } 4813 4814 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4815 return true; 4816 } 4817 4818 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4819 SelectionDAG &DAG) const { 4820 SDLoc dl(N); 4821 EVT VT = N->getValueType(0); 4822 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4823 SDValue Op = N->getOperand(0); 4824 4825 // Only expand vector types if we have the appropriate vector operations. 4826 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4827 !isOperationLegalOrCustom(ISD::ADD, VT) || 4828 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4829 return false; 4830 4831 SDValue Shift = 4832 DAG.getNode(ISD::SRA, dl, VT, Op, 4833 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4834 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4835 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4836 return true; 4837 } 4838 4839 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4840 SelectionDAG &DAG) const { 4841 SDLoc SL(LD); 4842 SDValue Chain = LD->getChain(); 4843 SDValue BasePTR = LD->getBasePtr(); 4844 EVT SrcVT = LD->getMemoryVT(); 4845 ISD::LoadExtType ExtType = LD->getExtensionType(); 4846 4847 unsigned NumElem = SrcVT.getVectorNumElements(); 4848 4849 EVT SrcEltVT = SrcVT.getScalarType(); 4850 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4851 4852 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4853 assert(SrcEltVT.isByteSized()); 4854 4855 SmallVector<SDValue, 8> Vals; 4856 SmallVector<SDValue, 8> LoadChains; 4857 4858 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4859 SDValue ScalarLoad = 4860 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4861 LD->getPointerInfo().getWithOffset(Idx * Stride), 4862 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4863 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4864 4865 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4866 4867 Vals.push_back(ScalarLoad.getValue(0)); 4868 LoadChains.push_back(ScalarLoad.getValue(1)); 4869 } 4870 4871 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4872 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4873 4874 return DAG.getMergeValues({Value, NewChain}, SL); 4875 } 4876 4877 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4878 SelectionDAG &DAG) const { 4879 SDLoc SL(ST); 4880 4881 SDValue Chain = ST->getChain(); 4882 SDValue BasePtr = ST->getBasePtr(); 4883 SDValue Value = ST->getValue(); 4884 EVT StVT = ST->getMemoryVT(); 4885 4886 // The type of the data we want to save 4887 EVT RegVT = Value.getValueType(); 4888 EVT RegSclVT = RegVT.getScalarType(); 4889 4890 // The type of data as saved in memory. 4891 EVT MemSclVT = StVT.getScalarType(); 4892 4893 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4894 unsigned NumElem = StVT.getVectorNumElements(); 4895 4896 // A vector must always be stored in memory as-is, i.e. without any padding 4897 // between the elements, since various code depend on it, e.g. in the 4898 // handling of a bitcast of a vector type to int, which may be done with a 4899 // vector store followed by an integer load. A vector that does not have 4900 // elements that are byte-sized must therefore be stored as an integer 4901 // built out of the extracted vector elements. 4902 if (!MemSclVT.isByteSized()) { 4903 unsigned NumBits = StVT.getSizeInBits(); 4904 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4905 4906 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4907 4908 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4909 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4910 DAG.getConstant(Idx, SL, IdxVT)); 4911 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4912 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4913 unsigned ShiftIntoIdx = 4914 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4915 SDValue ShiftAmount = 4916 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4917 SDValue ShiftedElt = 4918 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4919 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4920 } 4921 4922 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4923 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4924 ST->getAAInfo()); 4925 } 4926 4927 // Store Stride in bytes 4928 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4929 assert(Stride && "Zero stride!"); 4930 // Extract each of the elements from the original vector and save them into 4931 // memory individually. 4932 SmallVector<SDValue, 8> Stores; 4933 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4934 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4935 DAG.getConstant(Idx, SL, IdxVT)); 4936 4937 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4938 4939 // This scalar TruncStore may be illegal, but we legalize it later. 4940 SDValue Store = DAG.getTruncStore( 4941 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4942 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4943 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4944 4945 Stores.push_back(Store); 4946 } 4947 4948 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4949 } 4950 4951 std::pair<SDValue, SDValue> 4952 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4953 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4954 "unaligned indexed loads not implemented!"); 4955 SDValue Chain = LD->getChain(); 4956 SDValue Ptr = LD->getBasePtr(); 4957 EVT VT = LD->getValueType(0); 4958 EVT LoadedVT = LD->getMemoryVT(); 4959 SDLoc dl(LD); 4960 auto &MF = DAG.getMachineFunction(); 4961 4962 if (VT.isFloatingPoint() || VT.isVector()) { 4963 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4964 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4965 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4966 LoadedVT.isVector()) { 4967 // Scalarize the load and let the individual components be handled. 4968 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4969 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4970 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4971 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4972 } 4973 4974 // Expand to a (misaligned) integer load of the same size, 4975 // then bitconvert to floating point or vector. 4976 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4977 LD->getMemOperand()); 4978 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4979 if (LoadedVT != VT) 4980 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4981 ISD::ANY_EXTEND, dl, VT, Result); 4982 4983 return std::make_pair(Result, newLoad.getValue(1)); 4984 } 4985 4986 // Copy the value to a (aligned) stack slot using (unaligned) integer 4987 // loads and stores, then do a (aligned) load from the stack slot. 4988 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4989 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4990 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4991 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4992 4993 // Make sure the stack slot is also aligned for the register type. 4994 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4995 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4996 SmallVector<SDValue, 8> Stores; 4997 SDValue StackPtr = StackBase; 4998 unsigned Offset = 0; 4999 5000 EVT PtrVT = Ptr.getValueType(); 5001 EVT StackPtrVT = StackPtr.getValueType(); 5002 5003 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5004 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5005 5006 // Do all but one copies using the full register width. 5007 for (unsigned i = 1; i < NumRegs; i++) { 5008 // Load one integer register's worth from the original location. 5009 SDValue Load = DAG.getLoad( 5010 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5011 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5012 LD->getAAInfo()); 5013 // Follow the load with a store to the stack slot. Remember the store. 5014 Stores.push_back(DAG.getStore( 5015 Load.getValue(1), dl, Load, StackPtr, 5016 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5017 // Increment the pointers. 5018 Offset += RegBytes; 5019 5020 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5021 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5022 } 5023 5024 // The last copy may be partial. Do an extending load. 5025 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5026 8 * (LoadedBytes - Offset)); 5027 SDValue Load = 5028 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5029 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5030 MinAlign(LD->getAlignment(), Offset), 5031 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5032 // Follow the load with a store to the stack slot. Remember the store. 5033 // On big-endian machines this requires a truncating store to ensure 5034 // that the bits end up in the right place. 5035 Stores.push_back(DAG.getTruncStore( 5036 Load.getValue(1), dl, Load, StackPtr, 5037 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5038 5039 // The order of the stores doesn't matter - say it with a TokenFactor. 5040 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5041 5042 // Finally, perform the original load only redirected to the stack slot. 5043 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5044 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5045 LoadedVT); 5046 5047 // Callers expect a MERGE_VALUES node. 5048 return std::make_pair(Load, TF); 5049 } 5050 5051 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5052 "Unaligned load of unsupported type."); 5053 5054 // Compute the new VT that is half the size of the old one. This is an 5055 // integer MVT. 5056 unsigned NumBits = LoadedVT.getSizeInBits(); 5057 EVT NewLoadedVT; 5058 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5059 NumBits >>= 1; 5060 5061 unsigned Alignment = LD->getAlignment(); 5062 unsigned IncrementSize = NumBits / 8; 5063 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5064 5065 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5066 if (HiExtType == ISD::NON_EXTLOAD) 5067 HiExtType = ISD::ZEXTLOAD; 5068 5069 // Load the value in two parts 5070 SDValue Lo, Hi; 5071 if (DAG.getDataLayout().isLittleEndian()) { 5072 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5073 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5074 LD->getAAInfo()); 5075 5076 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5077 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5078 LD->getPointerInfo().getWithOffset(IncrementSize), 5079 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5080 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5081 } else { 5082 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5083 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5084 LD->getAAInfo()); 5085 5086 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5087 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5088 LD->getPointerInfo().getWithOffset(IncrementSize), 5089 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5090 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5091 } 5092 5093 // aggregate the two parts 5094 SDValue ShiftAmount = 5095 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5096 DAG.getDataLayout())); 5097 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5098 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5099 5100 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5101 Hi.getValue(1)); 5102 5103 return std::make_pair(Result, TF); 5104 } 5105 5106 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5107 SelectionDAG &DAG) const { 5108 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5109 "unaligned indexed stores not implemented!"); 5110 SDValue Chain = ST->getChain(); 5111 SDValue Ptr = ST->getBasePtr(); 5112 SDValue Val = ST->getValue(); 5113 EVT VT = Val.getValueType(); 5114 int Alignment = ST->getAlignment(); 5115 auto &MF = DAG.getMachineFunction(); 5116 EVT MemVT = ST->getMemoryVT(); 5117 5118 SDLoc dl(ST); 5119 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5120 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5121 if (isTypeLegal(intVT)) { 5122 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5123 MemVT.isVector()) { 5124 // Scalarize the store and let the individual components be handled. 5125 SDValue Result = scalarizeVectorStore(ST, DAG); 5126 5127 return Result; 5128 } 5129 // Expand to a bitconvert of the value to the integer type of the 5130 // same size, then a (misaligned) int store. 5131 // FIXME: Does not handle truncating floating point stores! 5132 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5133 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5134 Alignment, ST->getMemOperand()->getFlags()); 5135 return Result; 5136 } 5137 // Do a (aligned) store to a stack slot, then copy from the stack slot 5138 // to the final destination using (unaligned) integer loads and stores. 5139 EVT StoredVT = ST->getMemoryVT(); 5140 MVT RegVT = 5141 getRegisterType(*DAG.getContext(), 5142 EVT::getIntegerVT(*DAG.getContext(), 5143 StoredVT.getSizeInBits())); 5144 EVT PtrVT = Ptr.getValueType(); 5145 unsigned StoredBytes = StoredVT.getStoreSize(); 5146 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5147 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5148 5149 // Make sure the stack slot is also aligned for the register type. 5150 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5151 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5152 5153 // Perform the original store, only redirected to the stack slot. 5154 SDValue Store = DAG.getTruncStore( 5155 Chain, dl, Val, StackPtr, 5156 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5157 5158 EVT StackPtrVT = StackPtr.getValueType(); 5159 5160 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5161 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5162 SmallVector<SDValue, 8> Stores; 5163 unsigned Offset = 0; 5164 5165 // Do all but one copies using the full register width. 5166 for (unsigned i = 1; i < NumRegs; i++) { 5167 // Load one integer register's worth from the stack slot. 5168 SDValue Load = DAG.getLoad( 5169 RegVT, dl, Store, StackPtr, 5170 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5171 // Store it to the final location. Remember the store. 5172 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5173 ST->getPointerInfo().getWithOffset(Offset), 5174 MinAlign(ST->getAlignment(), Offset), 5175 ST->getMemOperand()->getFlags())); 5176 // Increment the pointers. 5177 Offset += RegBytes; 5178 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5179 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5180 } 5181 5182 // The last store may be partial. Do a truncating store. On big-endian 5183 // machines this requires an extending load from the stack slot to ensure 5184 // that the bits are in the right place. 5185 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5186 8 * (StoredBytes - Offset)); 5187 5188 // Load from the stack slot. 5189 SDValue Load = DAG.getExtLoad( 5190 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5191 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5192 5193 Stores.push_back( 5194 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5195 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5196 MinAlign(ST->getAlignment(), Offset), 5197 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5198 // The order of the stores doesn't matter - say it with a TokenFactor. 5199 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5200 return Result; 5201 } 5202 5203 assert(ST->getMemoryVT().isInteger() && 5204 !ST->getMemoryVT().isVector() && 5205 "Unaligned store of unknown type."); 5206 // Get the half-size VT 5207 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5208 int NumBits = NewStoredVT.getSizeInBits(); 5209 int IncrementSize = NumBits / 8; 5210 5211 // Divide the stored value in two parts. 5212 SDValue ShiftAmount = 5213 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5214 DAG.getDataLayout())); 5215 SDValue Lo = Val; 5216 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5217 5218 // Store the two parts 5219 SDValue Store1, Store2; 5220 Store1 = DAG.getTruncStore(Chain, dl, 5221 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5222 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5223 ST->getMemOperand()->getFlags()); 5224 5225 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5226 Alignment = MinAlign(Alignment, IncrementSize); 5227 Store2 = DAG.getTruncStore( 5228 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5229 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5230 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5231 5232 SDValue Result = 5233 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5234 return Result; 5235 } 5236 5237 SDValue 5238 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5239 const SDLoc &DL, EVT DataVT, 5240 SelectionDAG &DAG, 5241 bool IsCompressedMemory) const { 5242 SDValue Increment; 5243 EVT AddrVT = Addr.getValueType(); 5244 EVT MaskVT = Mask.getValueType(); 5245 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5246 "Incompatible types of Data and Mask"); 5247 if (IsCompressedMemory) { 5248 // Incrementing the pointer according to number of '1's in the mask. 5249 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5250 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5251 if (MaskIntVT.getSizeInBits() < 32) { 5252 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5253 MaskIntVT = MVT::i32; 5254 } 5255 5256 // Count '1's with POPCNT. 5257 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5258 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5259 // Scale is an element size in bytes. 5260 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5261 AddrVT); 5262 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5263 } else 5264 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5265 5266 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5267 } 5268 5269 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5270 SDValue Idx, 5271 EVT VecVT, 5272 const SDLoc &dl) { 5273 if (isa<ConstantSDNode>(Idx)) 5274 return Idx; 5275 5276 EVT IdxVT = Idx.getValueType(); 5277 unsigned NElts = VecVT.getVectorNumElements(); 5278 if (isPowerOf2_32(NElts)) { 5279 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5280 Log2_32(NElts)); 5281 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5282 DAG.getConstant(Imm, dl, IdxVT)); 5283 } 5284 5285 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5286 DAG.getConstant(NElts - 1, dl, IdxVT)); 5287 } 5288 5289 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5290 SDValue VecPtr, EVT VecVT, 5291 SDValue Index) const { 5292 SDLoc dl(Index); 5293 // Make sure the index type is big enough to compute in. 5294 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5295 5296 EVT EltVT = VecVT.getVectorElementType(); 5297 5298 // Calculate the element offset and add it to the pointer. 5299 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5300 assert(EltSize * 8 == EltVT.getSizeInBits() && 5301 "Converting bits to bytes lost precision"); 5302 5303 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5304 5305 EVT IdxVT = Index.getValueType(); 5306 5307 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5308 DAG.getConstant(EltSize, dl, IdxVT)); 5309 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5310 } 5311 5312 //===----------------------------------------------------------------------===// 5313 // Implementation of Emulated TLS Model 5314 //===----------------------------------------------------------------------===// 5315 5316 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5317 SelectionDAG &DAG) const { 5318 // Access to address of TLS varialbe xyz is lowered to a function call: 5319 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5320 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5321 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5322 SDLoc dl(GA); 5323 5324 ArgListTy Args; 5325 ArgListEntry Entry; 5326 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5327 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5328 StringRef EmuTlsVarName(NameString); 5329 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5330 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5331 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5332 Entry.Ty = VoidPtrType; 5333 Args.push_back(Entry); 5334 5335 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5336 5337 TargetLowering::CallLoweringInfo CLI(DAG); 5338 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5339 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5340 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5341 5342 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5343 // At last for X86 targets, maybe good for other targets too? 5344 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5345 MFI.setAdjustsStack(true); // Is this only for X86 target? 5346 MFI.setHasCalls(true); 5347 5348 assert((GA->getOffset() == 0) && 5349 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5350 return CallResult.first; 5351 } 5352 5353 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5354 SelectionDAG &DAG) const { 5355 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5356 if (!isCtlzFast()) 5357 return SDValue(); 5358 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5359 SDLoc dl(Op); 5360 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5361 if (C->isNullValue() && CC == ISD::SETEQ) { 5362 EVT VT = Op.getOperand(0).getValueType(); 5363 SDValue Zext = Op.getOperand(0); 5364 if (VT.bitsLT(MVT::i32)) { 5365 VT = MVT::i32; 5366 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5367 } 5368 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5369 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5370 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5371 DAG.getConstant(Log2b, dl, MVT::i32)); 5372 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5373 } 5374 } 5375 return SDValue(); 5376 } 5377 5378 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5379 unsigned Opcode = Node->getOpcode(); 5380 SDValue LHS = Node->getOperand(0); 5381 SDValue RHS = Node->getOperand(1); 5382 EVT VT = LHS.getValueType(); 5383 SDLoc dl(Node); 5384 5385 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5386 assert(VT.isInteger() && "Expected operands to be integers"); 5387 5388 // usub.sat(a, b) -> umax(a, b) - b 5389 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5390 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5391 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5392 } 5393 5394 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5395 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5396 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5397 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5398 } 5399 5400 unsigned OverflowOp; 5401 switch (Opcode) { 5402 case ISD::SADDSAT: 5403 OverflowOp = ISD::SADDO; 5404 break; 5405 case ISD::UADDSAT: 5406 OverflowOp = ISD::UADDO; 5407 break; 5408 case ISD::SSUBSAT: 5409 OverflowOp = ISD::SSUBO; 5410 break; 5411 case ISD::USUBSAT: 5412 OverflowOp = ISD::USUBO; 5413 break; 5414 default: 5415 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5416 "addition or subtraction node."); 5417 } 5418 5419 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5420 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5421 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5422 LHS, RHS); 5423 SDValue SumDiff = Result.getValue(0); 5424 SDValue Overflow = Result.getValue(1); 5425 SDValue Zero = DAG.getConstant(0, dl, VT); 5426 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5427 5428 if (Opcode == ISD::UADDSAT) { 5429 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5430 // (LHS + RHS) | OverflowMask 5431 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5432 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5433 } 5434 // Overflow ? 0xffff.... : (LHS + RHS) 5435 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5436 } else if (Opcode == ISD::USUBSAT) { 5437 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5438 // (LHS - RHS) & ~OverflowMask 5439 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5440 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5441 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5442 } 5443 // Overflow ? 0 : (LHS - RHS) 5444 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5445 } else { 5446 // SatMax -> Overflow && SumDiff < 0 5447 // SatMin -> Overflow && SumDiff >= 0 5448 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5449 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5450 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5451 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5452 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5453 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5454 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5455 } 5456 } 5457 5458 SDValue 5459 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5460 assert((Node->getOpcode() == ISD::SMULFIX || 5461 Node->getOpcode() == ISD::UMULFIX) && 5462 "Expected opcode to be SMULFIX or UMULFIX."); 5463 5464 SDLoc dl(Node); 5465 SDValue LHS = Node->getOperand(0); 5466 SDValue RHS = Node->getOperand(1); 5467 EVT VT = LHS.getValueType(); 5468 unsigned Scale = Node->getConstantOperandVal(2); 5469 5470 // [us]mul.fix(a, b, 0) -> mul(a, b) 5471 if (!Scale) { 5472 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5473 return SDValue(); 5474 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5475 } 5476 5477 unsigned VTSize = VT.getScalarSizeInBits(); 5478 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5479 5480 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5481 "Expected scale to be less than the number of bits if signed or at " 5482 "most the number of bits if unsigned."); 5483 assert(LHS.getValueType() == RHS.getValueType() && 5484 "Expected both operands to be the same type"); 5485 5486 // Get the upper and lower bits of the result. 5487 SDValue Lo, Hi; 5488 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5489 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5490 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5491 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5492 Lo = Result.getValue(0); 5493 Hi = Result.getValue(1); 5494 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5495 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5496 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5497 } else if (VT.isVector()) { 5498 return SDValue(); 5499 } else { 5500 report_fatal_error("Unable to expand fixed point multiplication."); 5501 } 5502 5503 if (Scale == VTSize) 5504 // Result is just the top half since we'd be shifting by the width of the 5505 // operand. 5506 return Hi; 5507 5508 // The result will need to be shifted right by the scale since both operands 5509 // are scaled. The result is given to us in 2 halves, so we only want part of 5510 // both in the result. 5511 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5512 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5513 DAG.getConstant(Scale, dl, ShiftTy)); 5514 } 5515 5516 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5517 SDValue &Overflow, SelectionDAG &DAG) const { 5518 SDLoc dl(Node); 5519 EVT VT = Node->getValueType(0); 5520 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5521 SDValue LHS = Node->getOperand(0); 5522 SDValue RHS = Node->getOperand(1); 5523 bool isSigned = Node->getOpcode() == ISD::SMULO; 5524 5525 // For power-of-two multiplications we can use a simpler shift expansion. 5526 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5527 const APInt &C = RHSC->getAPIntValue(); 5528 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5529 if (C.isPowerOf2()) { 5530 // smulo(x, signed_min) is same as umulo(x, signed_min). 5531 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5532 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5533 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5534 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5535 Overflow = DAG.getSetCC(dl, SetCCVT, 5536 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5537 dl, VT, Result, ShiftAmt), 5538 LHS, ISD::SETNE); 5539 return true; 5540 } 5541 } 5542 5543 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5544 if (VT.isVector()) 5545 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5546 VT.getVectorNumElements()); 5547 5548 SDValue BottomHalf; 5549 SDValue TopHalf; 5550 static const unsigned Ops[2][3] = 5551 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5552 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5553 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5554 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5555 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5556 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5557 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5558 RHS); 5559 TopHalf = BottomHalf.getValue(1); 5560 } else if (isTypeLegal(WideVT)) { 5561 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5562 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5563 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5564 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5565 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5566 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5567 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5568 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5569 } else { 5570 if (VT.isVector()) 5571 return false; 5572 5573 // We can fall back to a libcall with an illegal type for the MUL if we 5574 // have a libcall big enough. 5575 // Also, we can fall back to a division in some cases, but that's a big 5576 // performance hit in the general case. 5577 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5578 if (WideVT == MVT::i16) 5579 LC = RTLIB::MUL_I16; 5580 else if (WideVT == MVT::i32) 5581 LC = RTLIB::MUL_I32; 5582 else if (WideVT == MVT::i64) 5583 LC = RTLIB::MUL_I64; 5584 else if (WideVT == MVT::i128) 5585 LC = RTLIB::MUL_I128; 5586 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5587 5588 SDValue HiLHS; 5589 SDValue HiRHS; 5590 if (isSigned) { 5591 // The high part is obtained by SRA'ing all but one of the bits of low 5592 // part. 5593 unsigned LoSize = VT.getSizeInBits(); 5594 HiLHS = 5595 DAG.getNode(ISD::SRA, dl, VT, LHS, 5596 DAG.getConstant(LoSize - 1, dl, 5597 getPointerTy(DAG.getDataLayout()))); 5598 HiRHS = 5599 DAG.getNode(ISD::SRA, dl, VT, RHS, 5600 DAG.getConstant(LoSize - 1, dl, 5601 getPointerTy(DAG.getDataLayout()))); 5602 } else { 5603 HiLHS = DAG.getConstant(0, dl, VT); 5604 HiRHS = DAG.getConstant(0, dl, VT); 5605 } 5606 5607 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5608 // pre-lowered to the correct types. This all depends upon WideVT not 5609 // being a legal type for the architecture and thus has to be split to 5610 // two arguments. 5611 SDValue Ret; 5612 if (DAG.getDataLayout().isLittleEndian()) { 5613 // Halves of WideVT are packed into registers in different order 5614 // depending on platform endianness. This is usually handled by 5615 // the C calling convention, but we can't defer to it in 5616 // the legalizer. 5617 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5618 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5619 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5620 /* isPostTypeLegalization */ true).first; 5621 } else { 5622 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5623 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5624 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5625 /* isPostTypeLegalization */ true).first; 5626 } 5627 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5628 "Ret value is a collection of constituent nodes holding result."); 5629 if (DAG.getDataLayout().isLittleEndian()) { 5630 // Same as above. 5631 BottomHalf = Ret.getOperand(0); 5632 TopHalf = Ret.getOperand(1); 5633 } else { 5634 BottomHalf = Ret.getOperand(1); 5635 TopHalf = Ret.getOperand(0); 5636 } 5637 } 5638 5639 Result = BottomHalf; 5640 if (isSigned) { 5641 SDValue ShiftAmt = DAG.getConstant( 5642 VT.getScalarSizeInBits() - 1, dl, 5643 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5644 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5645 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5646 } else { 5647 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5648 DAG.getConstant(0, dl, VT), ISD::SETNE); 5649 } 5650 5651 // Truncate the result if SetCC returns a larger type than needed. 5652 EVT RType = Node->getValueType(1); 5653 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5654 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5655 5656 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5657 "Unexpected result type for S/UMULO legalization"); 5658 return true; 5659 } 5660 5661 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 5662 SDLoc dl(Node); 5663 bool NoNaN = Node->getFlags().hasNoNaNs(); 5664 unsigned BaseOpcode = 0; 5665 switch (Node->getOpcode()) { 5666 default: llvm_unreachable("Expected VECREDUCE opcode"); 5667 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 5668 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 5669 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 5670 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 5671 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 5672 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 5673 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 5674 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 5675 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 5676 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 5677 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 5678 case ISD::VECREDUCE_FMAX: 5679 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 5680 break; 5681 case ISD::VECREDUCE_FMIN: 5682 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 5683 break; 5684 } 5685 5686 SDValue Op = Node->getOperand(0); 5687 EVT VT = Op.getValueType(); 5688 5689 // Try to use a shuffle reduction for power of two vectors. 5690 if (VT.isPow2VectorType()) { 5691 while (VT.getVectorNumElements() > 1) { 5692 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 5693 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 5694 break; 5695 5696 SDValue Lo, Hi; 5697 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 5698 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 5699 VT = HalfVT; 5700 } 5701 } 5702 5703 EVT EltVT = VT.getVectorElementType(); 5704 unsigned NumElts = VT.getVectorNumElements(); 5705 5706 SmallVector<SDValue, 8> Ops; 5707 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 5708 5709 SDValue Res = Ops[0]; 5710 for (unsigned i = 1; i < NumElts; i++) 5711 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 5712 5713 // Result type may be wider than element type. 5714 if (EltVT != Node->getValueType(0)) 5715 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 5716 return Res; 5717 } 5718